xref: /titanic_51/usr/src/uts/sun4u/io/sysiosbus.c (revision 745c8c960c38d44c7ea8ade6e1f4e7ca3956eb09)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 #include <sys/types.h>
28 #include <sys/conf.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/sunndi.h>
32 #include <sys/ddi_impldefs.h>
33 #include <sys/ddi_implfuncs.h>
34 #include <sys/obpdefs.h>
35 #include <sys/cmn_err.h>
36 #include <sys/errno.h>
37 #include <sys/kmem.h>
38 #include <sys/debug.h>
39 #include <sys/sysmacros.h>
40 #include <sys/autoconf.h>
41 #include <sys/spl.h>
42 #include <sys/iommu.h>
43 #include <sys/sysiosbus.h>
44 #include <sys/sysioerr.h>
45 #include <sys/iocache.h>
46 #include <sys/async.h>
47 #include <sys/machsystm.h>
48 #include <sys/intreg.h>
49 #include <sys/ddi_subrdefs.h>
50 #ifdef _STARFIRE
51 #include <sys/starfire.h>
52 #endif /* _STARFIRE */
53 #include <sys/sdt.h>
54 
55 /* Useful debugging Stuff */
56 #include <sys/nexusdebug.h>
57 /* Bitfield debugging definitions for this file */
58 #define	SBUS_ATTACH_DEBUG	0x1
59 #define	SBUS_SBUSMEM_DEBUG	0x2
60 #define	SBUS_INTERRUPT_DEBUG	0x4
61 #define	SBUS_REGISTERS_DEBUG	0x8
62 
63 /*
64  * Interrupt registers table.
65  * This table is necessary due to inconsistencies in the sysio register
66  * layout.  If this gets fixed in the chip, we can get rid of this stupid
67  * table.
68  */
69 static struct sbus_slot_entry ino_1 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
70 					SBUS_SLOT0_L1_CLEAR, NULL};
71 static struct sbus_slot_entry ino_2 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
72 					SBUS_SLOT0_L2_CLEAR, NULL};
73 static struct sbus_slot_entry ino_3 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
74 					SBUS_SLOT0_L3_CLEAR, NULL};
75 static struct sbus_slot_entry ino_4 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
76 					SBUS_SLOT0_L4_CLEAR, NULL};
77 static struct sbus_slot_entry ino_5 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
78 					SBUS_SLOT0_L5_CLEAR, NULL};
79 static struct sbus_slot_entry ino_6 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
80 					SBUS_SLOT0_L6_CLEAR, NULL};
81 static struct sbus_slot_entry ino_7 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
82 					SBUS_SLOT0_L7_CLEAR, NULL};
83 static struct sbus_slot_entry ino_9 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
84 					SBUS_SLOT1_L1_CLEAR, NULL};
85 static struct sbus_slot_entry ino_10 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
86 					SBUS_SLOT1_L2_CLEAR, NULL};
87 static struct sbus_slot_entry ino_11 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
88 					SBUS_SLOT1_L3_CLEAR, NULL};
89 static struct sbus_slot_entry ino_12 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
90 					SBUS_SLOT1_L4_CLEAR, NULL};
91 static struct sbus_slot_entry ino_13 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
92 					SBUS_SLOT1_L5_CLEAR, NULL};
93 static struct sbus_slot_entry ino_14 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
94 					SBUS_SLOT1_L6_CLEAR, NULL};
95 static struct sbus_slot_entry ino_15 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
96 					SBUS_SLOT1_L7_CLEAR, NULL};
97 static struct sbus_slot_entry ino_17 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
98 					SBUS_SLOT2_L1_CLEAR, NULL};
99 static struct sbus_slot_entry ino_18 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
100 					SBUS_SLOT2_L2_CLEAR, NULL};
101 static struct sbus_slot_entry ino_19 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
102 					SBUS_SLOT2_L3_CLEAR, NULL};
103 static struct sbus_slot_entry ino_20 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
104 					SBUS_SLOT2_L4_CLEAR, NULL};
105 static struct sbus_slot_entry ino_21 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
106 					SBUS_SLOT2_L5_CLEAR, NULL};
107 static struct sbus_slot_entry ino_22 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
108 					SBUS_SLOT2_L6_CLEAR, NULL};
109 static struct sbus_slot_entry ino_23 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
110 					SBUS_SLOT2_L7_CLEAR, NULL};
111 static struct sbus_slot_entry ino_25 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
112 					SBUS_SLOT3_L1_CLEAR, NULL};
113 static struct sbus_slot_entry ino_26 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
114 					SBUS_SLOT3_L2_CLEAR, NULL};
115 static struct sbus_slot_entry ino_27 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
116 					SBUS_SLOT3_L3_CLEAR, NULL};
117 static struct sbus_slot_entry ino_28 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
118 					SBUS_SLOT3_L4_CLEAR, NULL};
119 static struct sbus_slot_entry ino_29 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
120 					SBUS_SLOT3_L5_CLEAR, NULL};
121 static struct sbus_slot_entry ino_30 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
122 					SBUS_SLOT3_L6_CLEAR, NULL};
123 static struct sbus_slot_entry ino_31 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
124 					SBUS_SLOT3_L7_CLEAR, NULL};
125 static struct sbus_slot_entry ino_32 = {SBUS_SLOT5_CONFIG, ESP_MAPREG,
126 					ESP_CLEAR, ESP_INTR_STATE_SHIFT};
127 static struct sbus_slot_entry ino_33 = {SBUS_SLOT5_CONFIG, ETHER_MAPREG,
128 					ETHER_CLEAR, ETHER_INTR_STATE_SHIFT};
129 static struct sbus_slot_entry ino_34 = {SBUS_SLOT5_CONFIG, PP_MAPREG,
130 					PP_CLEAR, PP_INTR_STATE_SHIFT};
131 static struct sbus_slot_entry ino_36 = {SBUS_SLOT4_CONFIG, AUDIO_MAPREG,
132 					AUDIO_CLEAR, AUDIO_INTR_STATE_SHIFT};
133 static struct sbus_slot_entry ino_40 = {SBUS_SLOT6_CONFIG, KBDMOUSE_MAPREG,
134 					KBDMOUSE_CLEAR,
135 					KBDMOUSE_INTR_STATE_SHIFT};
136 static struct sbus_slot_entry ino_41 = {SBUS_SLOT6_CONFIG, FLOPPY_MAPREG,
137 					FLOPPY_CLEAR, FLOPPY_INTR_STATE_SHIFT};
138 static struct sbus_slot_entry ino_42 = {SBUS_SLOT6_CONFIG, THERMAL_MAPREG,
139 					THERMAL_CLEAR,
140 					THERMAL_INTR_STATE_SHIFT};
141 static struct sbus_slot_entry ino_48 = {SBUS_SLOT6_CONFIG, TIMER0_MAPREG,
142 					TIMER0_CLEAR, TIMER0_INTR_STATE_SHIFT};
143 static struct sbus_slot_entry ino_49 = {SBUS_SLOT6_CONFIG, TIMER1_MAPREG,
144 					TIMER1_CLEAR, TIMER1_INTR_STATE_SHIFT};
145 static struct sbus_slot_entry ino_52 = {SBUS_SLOT6_CONFIG, UE_ECC_MAPREG,
146 					UE_ECC_CLEAR, UE_INTR_STATE_SHIFT};
147 static struct sbus_slot_entry ino_53 = {SBUS_SLOT6_CONFIG, CE_ECC_MAPREG,
148 					CE_ECC_CLEAR, CE_INTR_STATE_SHIFT};
149 static struct sbus_slot_entry ino_54 = {SBUS_SLOT6_CONFIG, SBUS_ERR_MAPREG,
150 					SBUS_ERR_CLEAR, SERR_INTR_STATE_SHIFT};
151 static struct sbus_slot_entry ino_55 = {SBUS_SLOT6_CONFIG, PM_WAKEUP_MAPREG,
152 					PM_WAKEUP_CLEAR, PM_INTR_STATE_SHIFT};
153 static struct sbus_slot_entry ino_ffb = {NULL, FFB_MAPPING_REG, NULL, NULL};
154 static struct sbus_slot_entry ino_exp = {NULL, EXP_MAPPING_REG, NULL, NULL};
155 
156 /* Construct the interrupt number array */
157 struct sbus_slot_entry *ino_table[] = {
158 	NULL, &ino_1, &ino_2, &ino_3, &ino_4, &ino_5, &ino_6, &ino_7,
159 	NULL, &ino_9, &ino_10, &ino_11, &ino_12, &ino_13, &ino_14, &ino_15,
160 	NULL, &ino_17, &ino_18, &ino_19, &ino_20, &ino_21, &ino_22, &ino_23,
161 	NULL, &ino_25, &ino_26, &ino_27, &ino_28, &ino_29, &ino_30, &ino_31,
162 	&ino_32, &ino_33, &ino_34, NULL, &ino_36, NULL, NULL, NULL,
163 	&ino_40, &ino_41, &ino_42, NULL, NULL, NULL, NULL, NULL, &ino_48,
164 	&ino_49, NULL, NULL, &ino_52, &ino_53, &ino_54, &ino_55, &ino_ffb,
165 	&ino_exp
166 };
167 
168 /*
169  * This table represents the Fusion interrupt priorities.  They range
170  * from 1 - 15, so we'll pattern the priorities after the 4M.  We map Fusion
171  * interrupt number to system priority.  The mondo number is used as an
172  * index into this table.
173  */
174 int interrupt_priorities[] = {
175 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 0 sbus level 1 - 7 */
176 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 1 sbus level 1 - 7 */
177 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 2 sbus level 1 - 7 */
178 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 3 sbus level 1 - 7 */
179 	4,				/* Onboard SCSI */
180 	6,				/* Onboard Ethernet */
181 	3,				/* Onboard Parallel port */
182 	-1,				/* Not in use */
183 	9,				/* Onboard Audio */
184 	-1, -1, -1,			/* Not in use */
185 	12,				/* Onboard keyboard/serial ports */
186 	11,				/* Onboard Floppy */
187 	9,				/* Thermal interrupt */
188 	-1, -1, -1,			/* Not is use */
189 	10,				/* Timer 0 (tick timer) */
190 	14,				/* Timer 1 (not used) */
191 	15,				/* Sysio UE ECC error */
192 	10,				/* Sysio CE ECC error */
193 	10,				/* Sysio Sbus error */
194 	10,				/* PM Wakeup */
195 };
196 
197 /* Interrupt counter flag.  To enable/disable spurious interrupt counter. */
198 static int intr_cntr_on;
199 
200 /*
201  * Function prototypes.
202  */
203 static int
204 sbus_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *);
205 
206 static int
207 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
208     ddi_intr_handle_impl_t *hdlp);
209 
210 static void
211 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
212     ddi_intr_handle_impl_t *hdlp);
213 
214 static int
215 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
216     ddi_intr_handle_impl_t *hdlp, void *result);
217 
218 static int
219 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
220     uint32_t *pil, int32_t ign);
221 
222 static int
223 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
224 
225 static int
226 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
227 
228 static int
229 sbus_do_detach(dev_info_t *devi);
230 
231 static	void
232 sbus_add_picN_kstats(dev_info_t *dip);
233 
234 static	void
235 sbus_add_kstats(struct sbus_soft_state *);
236 
237 static	int
238 sbus_counters_kstat_update(kstat_t *, int);
239 
240 extern int
241 sysio_err_uninit(struct sbus_soft_state *softsp);
242 
243 extern int
244 iommu_uninit(struct sbus_soft_state *softsp);
245 
246 extern int
247 stream_buf_uninit(struct sbus_soft_state *softsp);
248 
249 static int
250 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip);
251 
252 static void make_sbus_ppd(dev_info_t *child);
253 
254 static int
255 sbusmem_initchild(dev_info_t *dip, dev_info_t *child);
256 
257 static int
258 sbus_initchild(dev_info_t *dip, dev_info_t *child);
259 
260 static int
261 sbus_uninitchild(dev_info_t *dip);
262 
263 static int
264 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args);
265 
266 static int
267 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
268     void *result);
269 
270 static int
271 sbus_init(struct sbus_soft_state *softsp, caddr_t address);
272 
273 static int
274 sbus_resume_init(struct sbus_soft_state *softsp, int resume);
275 
276 static void
277 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
278     int flag);
279 
280 static void sbus_intrdist(void *);
281 static uint_t sbus_intr_reset(void *);
282 
283 static int
284 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
285     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state);
286 
287 #ifdef	_STARFIRE
288 void
289 pc_ittrans_init(int, caddr_t *);
290 
291 void
292 pc_ittrans_uninit(caddr_t);
293 
294 int
295 pc_translate_tgtid(caddr_t, int, volatile uint64_t *);
296 
297 void
298 pc_ittrans_cleanup(caddr_t, volatile uint64_t *);
299 #endif	/* _STARFIRE */
300 
301 /*
302  * Configuration data structures
303  */
304 static struct bus_ops sbus_bus_ops = {
305 	BUSO_REV,
306 	i_ddi_bus_map,
307 	0,
308 	0,
309 	0,
310 	i_ddi_map_fault,
311 	iommu_dma_map,
312 	iommu_dma_allochdl,
313 	iommu_dma_freehdl,
314 	iommu_dma_bindhdl,
315 	iommu_dma_unbindhdl,
316 	iommu_dma_flush,
317 	iommu_dma_win,
318 	iommu_dma_mctl,
319 	sbus_ctlops,
320 	ddi_bus_prop_op,
321 	0,			/* (*bus_get_eventcookie)();	*/
322 	0,			/* (*bus_add_eventcall)();	*/
323 	0,			/* (*bus_remove_eventcall)();	*/
324 	0,			/* (*bus_post_event)();		*/
325 	0,			/* (*bus_intr_control)();	*/
326 	0,			/* (*bus_config)();		*/
327 	0,			/* (*bus_unconfig)();		*/
328 	0,			/* (*bus_fm_init)();		*/
329 	0,			/* (*bus_fm_fini)();		*/
330 	0,			/* (*bus_fm_access_enter)();	*/
331 	0,			/* (*bus_fm_access_exit)();	*/
332 	0,			/* (*bus_power)();		*/
333 	sbus_intr_ops		/* (*bus_intr_op)();		*/
334 };
335 
336 static struct cb_ops sbus_cb_ops = {
337 	nodev,			/* open */
338 	nodev,			/* close */
339 	nodev,			/* strategy */
340 	nodev,			/* print */
341 	nodev,			/* dump */
342 	nodev,			/* read */
343 	nodev,			/* write */
344 	nodev,			/* ioctl */
345 	nodev,			/* devmap */
346 	nodev,			/* mmap */
347 	nodev,			/* segmap */
348 	nochpoll,		/* poll */
349 	ddi_prop_op,		/* prop_op */
350 	NULL,
351 	D_NEW | D_MP | D_HOTPLUG,
352 	CB_REV,				/* rev */
353 	nodev,				/* int (*cb_aread)() */
354 	nodev				/* int (*cb_awrite)() */
355 };
356 
357 static struct dev_ops sbus_ops = {
358 	DEVO_REV,		/* devo_rev, */
359 	0,			/* refcnt  */
360 	ddi_no_info,		/* info */
361 	nulldev,		/* identify */
362 	nulldev,		/* probe */
363 	sbus_attach,		/* attach */
364 	sbus_detach,		/* detach */
365 	nodev,			/* reset */
366 	&sbus_cb_ops,		/* driver operations */
367 	&sbus_bus_ops,		/* bus operations */
368 	nulldev,		/* power */
369 	ddi_quiesce_not_supported,	/* devo_quiesce */
370 };
371 
372 /* global data */
373 void *sbusp;		/* sbus soft state hook */
374 void *sbus_cprp;	/* subs suspend/resume soft state hook */
375 static kstat_t *sbus_picN_ksp[SBUS_NUM_PICS]; /* performance picN kstats */
376 static int	sbus_attachcnt = 0;   /* number of instances attached */
377 static kmutex_t	sbus_attachcnt_mutex; /* sbus_attachcnt lock - attach/detach */
378 
379 #include <sys/modctl.h>
380 extern struct mod_ops mod_driverops;
381 
382 static struct modldrv modldrv = {
383 	&mod_driverops, 	/* Type of module.  This one is a driver */
384 	"SBus (sysio) nexus driver",	/* Name of module. */
385 	&sbus_ops,		/* driver ops */
386 };
387 
388 static struct modlinkage modlinkage = {
389 	MODREV_1, (void *)&modldrv, NULL
390 };
391 
392 /*
393  * These are the module initialization routines.
394  */
395 int
396 _init(void)
397 {
398 	int error;
399 
400 	if ((error = ddi_soft_state_init(&sbusp,
401 	    sizeof (struct sbus_soft_state), 1)) != 0)
402 		return (error);
403 
404 	/*
405 	 * Initialize cpr soft state structure
406 	 */
407 	if ((error = ddi_soft_state_init(&sbus_cprp,
408 	    sizeof (uint64_t) * MAX_INO_TABLE_SIZE, 0)) != 0)
409 		return (error);
410 
411 	/* Initialize global mutex */
412 	mutex_init(&sbus_attachcnt_mutex, NULL, MUTEX_DRIVER, NULL);
413 
414 	return (mod_install(&modlinkage));
415 }
416 
417 int
418 _fini(void)
419 {
420 	int error;
421 
422 	if ((error = mod_remove(&modlinkage)) != 0)
423 		return (error);
424 
425 	mutex_destroy(&sbus_attachcnt_mutex);
426 	ddi_soft_state_fini(&sbusp);
427 	ddi_soft_state_fini(&sbus_cprp);
428 	return (0);
429 }
430 
431 int
432 _info(struct modinfo *modinfop)
433 {
434 	return (mod_info(&modlinkage, modinfop));
435 }
436 
437 /*ARGSUSED*/
438 static int
439 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
440 {
441 	struct sbus_soft_state *softsp;
442 	int instance, error;
443 	uint64_t *cpr_softsp;
444 	ddi_device_acc_attr_t attr;
445 
446 
447 #ifdef	DEBUG
448 	debug_info = 1;
449 	debug_print_level = 0;
450 #endif
451 
452 	instance = ddi_get_instance(devi);
453 
454 	switch (cmd) {
455 	case DDI_ATTACH:
456 		break;
457 
458 	case DDI_RESUME:
459 		softsp = ddi_get_soft_state(sbusp, instance);
460 
461 		if ((error = iommu_resume_init(softsp)) != DDI_SUCCESS)
462 			return (error);
463 
464 		if ((error = sbus_resume_init(softsp, 1)) != DDI_SUCCESS)
465 			return (error);
466 
467 		if ((error = stream_buf_resume_init(softsp)) != DDI_SUCCESS)
468 			return (error);
469 
470 		/*
471 		 * Restore Interrupt Mapping registers
472 		 */
473 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
474 
475 		if (cpr_softsp != NULL) {
476 			sbus_cpr_handle_intr_map_reg(cpr_softsp,
477 			    softsp->intr_mapping_reg, 0);
478 			ddi_soft_state_free(sbus_cprp, instance);
479 		}
480 
481 		return (DDI_SUCCESS);
482 
483 	default:
484 		return (DDI_FAILURE);
485 	}
486 
487 	if (ddi_soft_state_zalloc(sbusp, instance) != DDI_SUCCESS)
488 		return (DDI_FAILURE);
489 
490 	softsp = ddi_get_soft_state(sbusp, instance);
491 
492 	/* Set the dip in the soft state */
493 	softsp->dip = devi;
494 
495 	if ((softsp->upa_id = (int)ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
496 	    DDI_PROP_DONTPASS, "upa-portid", -1)) == -1) {
497 		cmn_err(CE_WARN, "Unable to retrieve sbus upa-portid"
498 		    "property.");
499 		error = DDI_FAILURE;
500 		goto bad;
501 	}
502 
503 	/*
504 	 * The firmware maps in all 3 pages of the sysio chips device
505 	 * device registers and exports the mapping in the int-sized
506 	 * property "address".  Read in this address and pass it to
507 	 * the subsidiary *_init functions, so we don't create extra
508 	 * mappings to the same physical pages and we don't have to
509 	 * retrieve the more than once.
510 	 */
511 	/*
512 	 * Implement new policy to start ignoring the "address" property
513 	 * due to new requirements from DR.  The problem is that the contents
514 	 * of the "address" property contain vm mappings from OBP which needs
515 	 * to be recaptured into kernel vm.  Instead of relying on a blanket
516 	 * recapture during boot time, we map psycho registers each time during
517 	 * attach and unmap the during detach.  In some future point of time
518 	 * OBP will drop creating "address" property but this driver will
519 	 * will already not rely on this property any more.
520 	 */
521 
522 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
523 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
524 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
525 	if (ddi_regs_map_setup(softsp->dip, 0, &softsp->address, 0, 0,
526 	    &attr, &softsp->ac) != DDI_SUCCESS) {
527 		cmn_err(CE_WARN, "%s%d: unable to map reg set 0\n",
528 		    ddi_get_name(softsp->dip),
529 		    ddi_get_instance(softsp->dip));
530 		return (0);
531 	}
532 	if (softsp->address == (caddr_t)-1) {
533 		cmn_err(CE_CONT, "?sbus%d: No sysio <address> property\n",
534 		    ddi_get_instance(softsp->dip));
535 		return (DDI_FAILURE);
536 	}
537 
538 	DPRINTF(SBUS_ATTACH_DEBUG, ("sbus: devi=0x%p, softsp=0x%p\n",
539 	    (void *)devi, (void *)softsp));
540 
541 #ifdef	notdef
542 	/*
543 	 * This bit of code, plus the firmware, will tell us if
544 	 * the #size-cells infrastructure code works, to some degree.
545 	 * You should be able to use the firmware to determine if
546 	 * the address returned by ddi_map_regs maps the correct phys. pages.
547 	 */
548 
549 	{
550 		caddr_t addr;
551 		int rv;
552 
553 		cmn_err(CE_CONT, "?sbus: address property = 0x%x\n", address);
554 
555 		if ((rv = ddi_map_regs(softsp->dip, 0, &addr,
556 		    (off_t)0, (off_t)0)) != DDI_SUCCESS)  {
557 			cmn_err(CE_CONT, "?sbus: ddi_map_regs failed: %d\n",
558 			    rv);
559 		} else {
560 			cmn_err(CE_CONT, "?sbus: ddi_map_regs returned "
561 			    " virtual address 0x%x\n", addr);
562 		}
563 	}
564 #endif	/* notdef */
565 
566 	if ((error = iommu_init(softsp, softsp->address)) != DDI_SUCCESS)
567 		goto bad;
568 
569 	if ((error = sbus_init(softsp, softsp->address)) != DDI_SUCCESS)
570 		goto bad;
571 
572 	if ((error = sysio_err_init(softsp, softsp->address)) != DDI_SUCCESS)
573 		goto bad;
574 
575 	if ((error = stream_buf_init(softsp, softsp->address)) != DDI_SUCCESS)
576 		goto bad;
577 
578 	/* Init the pokefault mutex for sbus devices */
579 	mutex_init(&softsp->pokefault_mutex, NULL, MUTEX_SPIN,
580 	    (void *)ipltospl(SBUS_ERR_PIL - 1));
581 
582 	sbus_add_kstats(softsp);
583 
584 	bus_func_register(BF_TYPE_RESINTR, sbus_intr_reset, devi);
585 
586 	intr_dist_add(sbus_intrdist, devi);
587 
588 	ddi_report_dev(devi);
589 
590 	return (DDI_SUCCESS);
591 
592 bad:
593 	ddi_soft_state_free(sbusp, instance);
594 	return (error);
595 }
596 
597 /* ARGSUSED */
598 static int
599 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
600 {
601 	int instance;
602 	struct sbus_soft_state *softsp;
603 	uint64_t *cpr_softsp;
604 
605 	switch (cmd) {
606 	case DDI_SUSPEND:
607 		/*
608 		 * Allocate the cpr  soft data structure to save the current
609 		 * state of the interrupt mapping registers.
610 		 * This structure will be deallocated after the system
611 		 * is resumed.
612 		 */
613 		instance = ddi_get_instance(devi);
614 
615 		if (ddi_soft_state_zalloc(sbus_cprp, instance)
616 		    != DDI_SUCCESS)
617 			return (DDI_FAILURE);
618 
619 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
620 
621 		softsp = ddi_get_soft_state(sbusp, instance);
622 
623 		sbus_cpr_handle_intr_map_reg(cpr_softsp,
624 		    softsp->intr_mapping_reg, 1);
625 		return (DDI_SUCCESS);
626 
627 	case DDI_DETACH:
628 		return (sbus_do_detach(devi));
629 	default:
630 		return (DDI_FAILURE);
631 	}
632 }
633 
634 static int
635 sbus_do_detach(dev_info_t *devi)
636 {
637 	int instance, pic;
638 	struct sbus_soft_state *softsp;
639 
640 	instance = ddi_get_instance(devi);
641 	softsp = ddi_get_soft_state(sbusp, instance);
642 	ASSERT(softsp != NULL);
643 
644 	bus_func_unregister(BF_TYPE_RESINTR, sbus_intr_reset, devi);
645 
646 	intr_dist_rem(sbus_intrdist, devi);
647 
648 	/* disable the streamming cache */
649 	if (stream_buf_uninit(softsp) == DDI_FAILURE) {
650 		goto err;
651 	}
652 
653 	/* remove the interrupt handlers from the system */
654 	if (sysio_err_uninit(softsp) == DDI_FAILURE) {
655 		goto err;
656 	}
657 
658 	/* disable the IOMMU */
659 	if (iommu_uninit(softsp)) {
660 		goto err;
661 	}
662 
663 	/* unmap register space if we have a handle */
664 	if (softsp->ac) {
665 		ddi_regs_map_free(&softsp->ac);
666 		softsp->address = NULL;
667 	}
668 
669 	/*
670 	 * remove counter kstats for this device
671 	 */
672 	if (softsp->sbus_counters_ksp != (kstat_t *)NULL)
673 		kstat_delete(softsp->sbus_counters_ksp);
674 
675 	/*
676 	 * if we are the last instance to detach we need to
677 	 * remove the picN kstats. We use sbus_attachcnt as a
678 	 * count of how many instances are still attached. This
679 	 * is protected by a mutex.
680 	 */
681 	mutex_enter(&sbus_attachcnt_mutex);
682 	sbus_attachcnt --;
683 	if (sbus_attachcnt == 0) {
684 		for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
685 			if (sbus_picN_ksp[pic] != (kstat_t *)NULL) {
686 				kstat_delete(sbus_picN_ksp[pic]);
687 				sbus_picN_ksp[pic] = NULL;
688 			}
689 		}
690 	}
691 	mutex_exit(&sbus_attachcnt_mutex);
692 
693 #ifdef _STARFIRE
694 	/* free starfire specific soft intr mapping structure */
695 	pc_ittrans_uninit(softsp->ittrans_cookie);
696 #endif /* _STARFIRE */
697 
698 	/* free the soft state structure */
699 	ddi_soft_state_free(sbusp, instance);
700 
701 	return (DDI_SUCCESS);
702 err:
703 	return (DDI_FAILURE);
704 }
705 
706 static int
707 sbus_init(struct sbus_soft_state *softsp, caddr_t address)
708 {
709 	int i;
710 	extern void set_intr_mapping_reg(int, uint64_t *, int);
711 	int numproxy;
712 
713 	/*
714 	 * Simply add each registers offset to the base address
715 	 * to calculate the already mapped virtual address of
716 	 * the device register...
717 	 *
718 	 * define a macro for the pointer arithmetic; all registers
719 	 * are 64 bits wide and are defined as uint64_t's.
720 	 */
721 
722 #define	REG_ADDR(b, o)	(uint64_t *)((caddr_t)(b) + (o))
723 
724 	softsp->sysio_ctrl_reg = REG_ADDR(address, OFF_SYSIO_CTRL_REG);
725 	softsp->sbus_ctrl_reg = REG_ADDR(address, OFF_SBUS_CTRL_REG);
726 	softsp->sbus_slot_config_reg = REG_ADDR(address, OFF_SBUS_SLOT_CONFIG);
727 	softsp->intr_mapping_reg = REG_ADDR(address, OFF_INTR_MAPPING_REG);
728 	softsp->clr_intr_reg = REG_ADDR(address, OFF_CLR_INTR_REG);
729 	softsp->intr_retry_reg = REG_ADDR(address, OFF_INTR_RETRY_REG);
730 	softsp->sbus_intr_state = REG_ADDR(address, OFF_SBUS_INTR_STATE_REG);
731 	softsp->sbus_pcr = REG_ADDR(address, OFF_SBUS_PCR);
732 	softsp->sbus_pic = REG_ADDR(address, OFF_SBUS_PIC);
733 
734 #undef	REG_ADDR
735 
736 	DPRINTF(SBUS_REGISTERS_DEBUG, ("SYSIO Control reg: 0x%p\n"
737 	    "SBUS Control reg: 0x%p", (void *)softsp->sysio_ctrl_reg,
738 	    (void *)softsp->sbus_ctrl_reg));
739 
740 #ifdef _STARFIRE
741 	/* Setup interrupt target translation for starfire */
742 	pc_ittrans_init(softsp->upa_id, &softsp->ittrans_cookie);
743 #endif /* _STARFIRE */
744 
745 	softsp->intr_mapping_ign =
746 	    UPAID_TO_IGN(softsp->upa_id) << IMR_IGN_SHIFT;
747 
748 	/* Diag reg 2 is the next 64 bit word after diag reg 1 */
749 	softsp->obio_intr_state = softsp->sbus_intr_state + 1;
750 
751 	(void) sbus_resume_init(softsp, 0);
752 
753 	/*
754 	 * Set the initial burstsizes for each slot to all 1's.  This will
755 	 * get changed at initchild time.
756 	 */
757 	for (i = 0; i < MAX_SBUS_SLOTS; i++)
758 		softsp->sbus_slave_burstsizes[i] = 0xffffffffu;
759 
760 	/*
761 	 * Since SYSIO is used as an interrupt mastering device for slave
762 	 * only UPA devices, we call a dedicated kernel function to register
763 	 * The address of the interrupt mapping register for the slave device.
764 	 *
765 	 * If RISC/sysio is wired to support 2 upa slave interrupt
766 	 * devices then register 2nd mapping register with system.
767 	 * The slave/proxy portid algorithm (decribed in Fusion Desktop Spec)
768 	 * allows for upto 3 slaves per proxy but Psycho/SYSIO only support 2.
769 	 *
770 	 * #upa-interrupt-proxies property defines how many UPA interrupt
771 	 * slaves a bridge is wired to support. Older systems that lack
772 	 * this property will default to 1.
773 	 */
774 	numproxy = ddi_prop_get_int(DDI_DEV_T_ANY, softsp->dip,
775 	    DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1);
776 
777 	if (numproxy > 0)
778 		set_intr_mapping_reg(softsp->upa_id,
779 		    (uint64_t *)(softsp->intr_mapping_reg +
780 		    FFB_MAPPING_REG), 1);
781 
782 	if (numproxy > 1)
783 		set_intr_mapping_reg(softsp->upa_id,
784 		    (uint64_t *)(softsp->intr_mapping_reg +
785 		    EXP_MAPPING_REG), 2);
786 
787 	/* support for a 3 interrupt proxy would go here */
788 
789 	/* Turn on spurious interrupt counter if we're not a DEBUG kernel. */
790 #ifndef DEBUG
791 	intr_cntr_on = 1;
792 #else
793 	intr_cntr_on = 0;
794 #endif
795 
796 
797 	return (DDI_SUCCESS);
798 }
799 
800 /*
801  * This procedure is part of sbus initialization. It is called by
802  * sbus_init() and is invoked when the system is being resumed.
803  */
804 static int
805 sbus_resume_init(struct sbus_soft_state *softsp, int resume)
806 {
807 	int i;
808 	uint_t sbus_burst_sizes;
809 
810 	/*
811 	 * This shouldn't be needed when we have a real OBP PROM.
812 	 * (RAZ) Get rid of this later!!!
813 	 */
814 
815 #ifdef _STARFIRE
816 	/*
817 	 * For Starfire, we need to program a
818 	 * constant odd value.
819 	 * Zero out the MID field before ORing
820 	 * We leave the LSB of the MID field intact since
821 	 * we cannot have a zero(even) MID value
822 	 */
823 	uint64_t tmpconst = 0x1DULL;
824 	*softsp->sysio_ctrl_reg &= 0xFF0FFFFFFFFFFFFFULL;
825 	*softsp->sysio_ctrl_reg |= tmpconst << 51;
826 
827 	/*
828 	 * Program in the interrupt group number
829 	 * Here we have to convert the starfire
830 	 * 7 bit upaid into a 5bit value.
831 	 */
832 	*softsp->sysio_ctrl_reg |=
833 	    (uint64_t)STARFIRE_UPAID2HWIGN(softsp->upa_id)
834 	    << SYSIO_IGN;
835 #else
836 	/* for the rest of sun4u's */
837 	*softsp->sysio_ctrl_reg |=
838 	    (uint64_t)softsp->upa_id << 51;
839 
840 	/* Program in the interrupt group number */
841 	*softsp->sysio_ctrl_reg |=
842 	    (uint64_t)softsp->upa_id << SYSIO_IGN;
843 #endif /* _STARFIRE */
844 
845 	/*
846 	 * Set appropriate fields of sbus control register.
847 	 * Set DVMA arbitration enable for all devices.
848 	 */
849 	*softsp->sbus_ctrl_reg |= SBUS_ARBIT_ALL;
850 
851 	/* Calculate our burstsizes now so we don't have to do it later */
852 	sbus_burst_sizes = (SYSIO64_BURST_RANGE << SYSIO64_BURST_SHIFT)
853 	    | SYSIO_BURST_RANGE;
854 
855 	sbus_burst_sizes = ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
856 	    DDI_PROP_DONTPASS, "up-burst-sizes", sbus_burst_sizes);
857 
858 	softsp->sbus_burst_sizes = sbus_burst_sizes & SYSIO_BURST_MASK;
859 	softsp->sbus64_burst_sizes = sbus_burst_sizes & SYSIO64_BURST_MASK;
860 
861 	if (!resume) {
862 		/* Set burstsizes to smallest value */
863 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
864 			volatile uint64_t *config;
865 			uint64_t tmpreg;
866 
867 			config = softsp->sbus_slot_config_reg + i;
868 
869 			/* Write out the burst size */
870 			tmpreg = (uint64_t)0;
871 			*config = tmpreg;
872 
873 			/* Flush any write buffers */
874 			tmpreg = *softsp->sbus_ctrl_reg;
875 
876 			DPRINTF(SBUS_REGISTERS_DEBUG, ("Sbus slot 0x%x slot "
877 			    "configuration reg: 0x%p", (i > 3) ? i + 9 : i,
878 			    (void *)config));
879 		}
880 	} else {
881 		/* Program the slot configuration registers */
882 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
883 			volatile uint64_t *config;
884 #ifndef lint
885 			uint64_t tmpreg;
886 #endif /* !lint */
887 			uint_t slave_burstsizes;
888 
889 			slave_burstsizes = 0;
890 			if (softsp->sbus_slave_burstsizes[i] != 0xffffffffu) {
891 				config = softsp->sbus_slot_config_reg + i;
892 
893 				if (softsp->sbus_slave_burstsizes[i] &
894 				    SYSIO64_BURST_MASK) {
895 					/* get the 64 bit burstsizes */
896 					slave_burstsizes =
897 					    softsp->sbus_slave_burstsizes[i] >>
898 					    SYSIO64_BURST_SHIFT;
899 
900 					/* Turn on 64 bit PIO's on the sbus */
901 					*config |= SBUS_ETM;
902 				} else {
903 					slave_burstsizes =
904 					    softsp->sbus_slave_burstsizes[i] &
905 					    SYSIO_BURST_MASK;
906 				}
907 
908 				/* Get burstsizes into sysio register format */
909 				slave_burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
910 
911 				/* Program the burstsizes */
912 				*config |= (uint64_t)slave_burstsizes;
913 
914 				/* Flush any write buffers */
915 #ifndef lint
916 				tmpreg = *softsp->sbus_ctrl_reg;
917 #endif /* !lint */
918 			}
919 		}
920 	}
921 
922 	return (DDI_SUCCESS);
923 }
924 
925 #define	get_prop(di, pname, flag, pval, plen)	\
926 	(ddi_prop_op(DDI_DEV_T_NONE, di, PROP_LEN_AND_VAL_ALLOC, \
927 	flag | DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, \
928 	pname, (caddr_t)pval, plen))
929 
930 struct prop_ispec {
931 	uint_t	pri, vec;
932 };
933 
934 /*
935  * Create a sysio_parent_private_data structure from the ddi properties of
936  * the dev_info node.
937  *
938  * The "reg" and either an "intr" or "interrupts" properties are required
939  * if the driver wishes to create mappings or field interrupts on behalf
940  * of the device.
941  *
942  * The "reg" property is assumed to be a list of at least one triple
943  *
944  *	<bustype, address, size>*1
945  *
946  * On pre-fusion machines, the "intr" property was the IPL for the system.
947  * Most new sbus devices post an "interrupts" property that corresponds to
948  * a particular bus level.  All devices on fusion using an "intr" property
949  * will have it's contents translated into a bus level.  Hence, "intr" and
950  * "interrupts on the fusion platform can be treated the same.
951  *
952  * The "interrupts" property is assumed to be a list of at least one
953  * n-tuples that describes the interrupt capabilities of the bus the device
954  * is connected to.  For SBus, this looks like
955  *
956  *	<SBus-level>*1
957  *
958  * (This property obsoletes the 'intr' property).
959  *
960  * The OBP_RANGES property is optional.
961  */
962 static void
963 make_sbus_ppd(dev_info_t *child)
964 {
965 	struct sysio_parent_private_data *pdptr;
966 	int n;
967 	int *reg_prop, *rgstr_prop, *rng_prop;
968 	int reg_len, rgstr_len, rng_len;
969 
970 	/*
971 	 * Make the function idempotent, because name_child could
972 	 * be called multiple times on a node.
973 	 */
974 	if (ddi_get_parent_data(child) != NULL)
975 		return;
976 
977 	pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
978 	ddi_set_parent_data(child, pdptr);
979 
980 	/*
981 	 * Handle the 'reg'/'registers' properties.
982 	 * "registers" overrides "reg", but requires that "reg" be exported,
983 	 * so we can handle wildcard specifiers.  "registers" implies an
984 	 * sbus style device.  "registers" implies that we insert the
985 	 * correct value in the regspec_bustype field of each spec for a real
986 	 * (non-pseudo) device node.  "registers" is a s/w only property, so
987 	 * we inhibit the prom search for this property.
988 	 */
989 	if (get_prop(child, OBP_REG, 0, &reg_prop, &reg_len) != DDI_SUCCESS)
990 		reg_len = 0;
991 
992 	/*
993 	 * Save the underlying slot number and slot offset.
994 	 * Among other things, we use these to name the child node.
995 	 */
996 	pdptr->slot = (uint_t)-1;
997 	if (reg_len != 0) {
998 		pdptr->slot = ((struct regspec *)reg_prop)->regspec_bustype;
999 		pdptr->offset = ((struct regspec *)reg_prop)->regspec_addr;
1000 	}
1001 
1002 	rgstr_len = 0;
1003 	(void) get_prop(child, "registers", DDI_PROP_NOTPROM,
1004 	    &rgstr_prop, &rgstr_len);
1005 
1006 	if (rgstr_len != 0)  {
1007 		if (ndi_dev_is_persistent_node(child) && (reg_len != 0))  {
1008 			/*
1009 			 * Convert wildcard "registers" for a real node...
1010 			 * (Else, this is the wildcard prototype node)
1011 			 */
1012 			struct regspec *rp = (struct regspec *)reg_prop;
1013 			uint_t slot = rp->regspec_bustype;
1014 			int i;
1015 
1016 			rp = (struct regspec *)rgstr_prop;
1017 			n = rgstr_len / sizeof (struct regspec);
1018 			for (i = 0; i < n; ++i, ++rp)
1019 				rp->regspec_bustype = slot;
1020 		}
1021 
1022 		if (reg_len != 0)
1023 			kmem_free(reg_prop, reg_len);
1024 
1025 		reg_prop = rgstr_prop;
1026 		reg_len = rgstr_len;
1027 	}
1028 	if (reg_len != 0)  {
1029 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
1030 		pdptr->par_reg = (struct regspec *)reg_prop;
1031 	}
1032 
1033 	/*
1034 	 * See if I have ranges.
1035 	 */
1036 	if (get_prop(child, OBP_RANGES, 0, &rng_prop, &rng_len) ==
1037 	    DDI_SUCCESS) {
1038 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
1039 		pdptr->par_rng = (struct rangespec *)rng_prop;
1040 	}
1041 }
1042 
1043 /*
1044  * Special handling for "sbusmem" pseudo device nodes.
1045  * The special handling automatically creates the "reg"
1046  * property in the sbusmem nodes, based on the parent's
1047  * property so that each slot will automtically have a
1048  * correctly sized "reg" property, once created,
1049  * sbus_initchild does the rest of the work to init
1050  * the child node.
1051  */
1052 static int
1053 sbusmem_initchild(dev_info_t *dip, dev_info_t *child)
1054 {
1055 	int i, n;
1056 	int slot, size;
1057 	char ident[10];
1058 
1059 	slot = ddi_getprop(DDI_DEV_T_NONE, child,
1060 	    DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "slot", -1);
1061 	if (slot == -1) {
1062 		DPRINTF(SBUS_SBUSMEM_DEBUG, ("can't get slot property\n"));
1063 		return (DDI_FAILURE);
1064 	}
1065 
1066 	/*
1067 	 * Find the parent range corresponding to this "slot",
1068 	 * so we can set the size of the child's "reg" property.
1069 	 */
1070 	for (i = 0, n = sparc_pd_getnrng(dip); i < n; i++) {
1071 		struct rangespec *rp = sparc_pd_getrng(dip, i);
1072 
1073 		if (rp->rng_cbustype == (uint_t)slot) {
1074 			struct regspec r;
1075 
1076 			/* create reg property */
1077 
1078 			r.regspec_bustype = (uint_t)slot;
1079 			r.regspec_addr = 0;
1080 			r.regspec_size = rp->rng_size;
1081 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
1082 			    child, "reg", (int *)&r,
1083 			    sizeof (struct regspec) / sizeof (int));
1084 
1085 			/* create size property for slot */
1086 
1087 			size = rp->rng_size;
1088 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
1089 			    child, "size", size);
1090 
1091 			(void) sprintf(ident, "slot%x", slot);
1092 			(void) ddi_prop_update_string(DDI_DEV_T_NONE,
1093 			    child, "ident", ident);
1094 
1095 			return (DDI_SUCCESS);
1096 		}
1097 	}
1098 	return (DDI_FAILURE);
1099 }
1100 
1101 /*
1102  * Nexus routine to name a child.
1103  * It takes a dev_info node and a buffer, returns the name
1104  * in the buffer.
1105  */
1106 static int
1107 sysio_name_child(dev_info_t *child, char *name, int namelen)
1108 {
1109 	/*
1110 	 * Fill in parent-private data
1111 	 */
1112 	make_sbus_ppd(child);
1113 
1114 	/*
1115 	 * Name the device node using the underlying (prom) values
1116 	 * of the first entry in the "reg" property.  For SBus devices,
1117 	 * the textual form of the name is <name>@<slot#>,<offset>.
1118 	 * This must match the prom's pathname or mountroot, etc, won't
1119 	 */
1120 	name[0] = '\0';
1121 	if (sysio_pd_getslot(child) != (uint_t)-1) {
1122 		(void) snprintf(name, namelen, "%x,%x",
1123 		    sysio_pd_getslot(child), sysio_pd_getoffset(child));
1124 	}
1125 	return (DDI_SUCCESS);
1126 }
1127 
1128 /*
1129  * Called from the bus_ctl op of sysio sbus nexus driver
1130  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
1131  * the children of sysio sbusses based on the reg spec.
1132  *
1133  * Handles the following properties:
1134  *
1135  *	Property		value
1136  *	  Name			type
1137  *
1138  *	reg		register spec
1139  *	registers	wildcard s/w sbus register spec (.conf file property)
1140  *	intr		old-form interrupt spec
1141  *	interrupts	new (bus-oriented) interrupt spec
1142  *	ranges		range spec
1143  */
1144 static int
1145 sbus_initchild(dev_info_t *dip, dev_info_t *child)
1146 {
1147 	char name[MAXNAMELEN];
1148 	ulong_t slave_burstsizes;
1149 	int slot;
1150 	volatile uint64_t *slot_reg;
1151 #ifndef lint
1152 	uint64_t tmp;
1153 #endif /* !lint */
1154 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1155 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1156 
1157 	if (strcmp(ddi_get_name(child), "sbusmem") == 0) {
1158 		if (sbusmem_initchild(dip, child) != DDI_SUCCESS)
1159 			return (DDI_FAILURE);
1160 	}
1161 
1162 	/*
1163 	 * If this is a s/w node defined with the "registers" property,
1164 	 * this means that this is a wildcard specifier, whose properties
1165 	 * get applied to all previously defined h/w nodes with the same
1166 	 * name and same parent.
1167 	 */
1168 	if (ndi_dev_is_persistent_node(child) == 0) {
1169 		int len = 0;
1170 		if ((ddi_getproplen(DDI_DEV_T_ANY, child, DDI_PROP_NOTPROM,
1171 		    "registers", &len) == DDI_SUCCESS) && (len != 0)) {
1172 			ndi_merge_wildcard_node(child);
1173 			return (DDI_FAILURE);
1174 		}
1175 	}
1176 
1177 	/* name the child */
1178 	(void) sysio_name_child(child, name, MAXNAMELEN);
1179 	ddi_set_name_addr(child, name);
1180 
1181 	/*
1182 	 * If a pseudo node, attempt to merge it into a hw node.
1183 	 * If merge is successful, we uinitialize the node and
1184 	 * return failure, to allow caller to remove the node.
1185 	 * The merge fails, this is a real pseudo node. Allow
1186 	 * initchild to continue.
1187 	 */
1188 	if ((ndi_dev_is_persistent_node(child) == 0) &&
1189 	    (ndi_merge_node(child, sysio_name_child) == DDI_SUCCESS)) {
1190 		(void) sbus_uninitchild(child);
1191 		return (DDI_FAILURE);
1192 	}
1193 
1194 	/* Figure out the child devices slot number */
1195 	slot = sysio_pd_getslot(child);
1196 
1197 	/* If we don't have a reg property, bypass slot specific programming */
1198 	if (slot < 0 || slot >= MAX_SBUS_SLOT_ADDR) {
1199 #ifdef DEBUG
1200 		cmn_err(CE_WARN, "?Invalid sbus slot address 0x%x for %s "
1201 		    "device\n", slot, ddi_get_name(child));
1202 #endif /* DEBUG */
1203 		goto done;
1204 	}
1205 
1206 	/* Modify the onboard slot numbers if applicable. */
1207 	slot = (slot > 3) ? slot - 9 : slot;
1208 
1209 	/* Get the slot configuration register for the child device. */
1210 	slot_reg = softsp->sbus_slot_config_reg + slot;
1211 
1212 	/*
1213 	 * Program the devices slot configuration register for the
1214 	 * appropriate slave burstsizes.
1215 	 * The upper 16 bits of the slave-burst-sizes are for 64 bit sbus
1216 	 * and the lower 16 bits are the burst sizes for 32 bit sbus. If
1217 	 * we see that a device supports both 64 bit and 32 bit slave accesses,
1218 	 * we default to 64 bit and turn it on in the slot config reg.
1219 	 *
1220 	 * For older devices, make sure we check the "burst-sizes" property
1221 	 * too.
1222 	 */
1223 	if ((slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1224 	    DDI_PROP_DONTPASS, "slave-burst-sizes", 0)) != 0 ||
1225 	    (slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1226 	    DDI_PROP_DONTPASS, "burst-sizes", 0)) != 0) {
1227 		uint_t burstsizes = 0;
1228 
1229 		/*
1230 		 * If we only have 32 bit burst sizes from a previous device,
1231 		 * mask out any burstsizes for 64 bit mode.
1232 		 */
1233 		if (((softsp->sbus_slave_burstsizes[slot] &
1234 		    0xffff0000u) == 0) &&
1235 		    ((softsp->sbus_slave_burstsizes[slot] & 0xffff) != 0)) {
1236 			slave_burstsizes &= 0xffff;
1237 		}
1238 
1239 		/*
1240 		 * If "slave-burst-sizes was defined but we have 0 at this
1241 		 * point, we must have had 64 bit burstsizes, however a prior
1242 		 * device can only burst in 32 bit mode.  Therefore, we leave
1243 		 * the burstsizes in the 32 bit mode and disregard the 64 bit.
1244 		 */
1245 		if (slave_burstsizes == 0)
1246 			goto done;
1247 
1248 		/*
1249 		 * We and in the new burst sizes with that of prior devices.
1250 		 * This ensures that we always take the least common
1251 		 * denominator of the burst sizes.
1252 		 */
1253 		softsp->sbus_slave_burstsizes[slot] &=
1254 		    (slave_burstsizes &
1255 		    ((SYSIO64_SLAVEBURST_RANGE <<
1256 		    SYSIO64_BURST_SHIFT) |
1257 		    SYSIO_SLAVEBURST_RANGE));
1258 
1259 		/* Get the 64 bit burstsizes. */
1260 		if (softsp->sbus_slave_burstsizes[slot] &
1261 		    SYSIO64_BURST_MASK) {
1262 			/* get the 64 bit burstsizes */
1263 			burstsizes = softsp->sbus_slave_burstsizes[slot] >>
1264 			    SYSIO64_BURST_SHIFT;
1265 
1266 			/* Turn on 64 bit PIO's on the sbus */
1267 			*slot_reg |= SBUS_ETM;
1268 		} else {
1269 			/* Turn off 64 bit PIO's on the sbus */
1270 			*slot_reg &= ~SBUS_ETM;
1271 
1272 			/* Get the 32 bit burstsizes if we don't have 64 bit. */
1273 			if (softsp->sbus_slave_burstsizes[slot] &
1274 			    SYSIO_BURST_MASK) {
1275 				burstsizes =
1276 				    softsp->sbus_slave_burstsizes[slot] &
1277 				    SYSIO_BURST_MASK;
1278 			}
1279 		}
1280 
1281 		/* Get the burstsizes into sysio register format */
1282 		burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
1283 
1284 		/* Reset reg in case we're scaling back */
1285 		*slot_reg &= (uint64_t)~SYSIO_SLAVEBURST_MASK;
1286 
1287 		/* Program the burstsizes */
1288 		*slot_reg |= (uint64_t)burstsizes;
1289 
1290 		/* Flush system load/store buffers */
1291 #ifndef lint
1292 		tmp = *slot_reg;
1293 #endif /* !lint */
1294 	}
1295 
1296 done:
1297 	return (DDI_SUCCESS);
1298 }
1299 
1300 static int
1301 sbus_uninitchild(dev_info_t *dip)
1302 {
1303 	struct sysio_parent_private_data *pdptr;
1304 	size_t n;
1305 
1306 	if ((pdptr = ddi_get_parent_data(dip)) != NULL)  {
1307 		if ((n = (size_t)pdptr->par_nrng) != 0)
1308 			kmem_free(pdptr->par_rng, n *
1309 			    sizeof (struct rangespec));
1310 
1311 		if ((n = pdptr->par_nreg) != 0)
1312 			kmem_free(pdptr->par_reg, n * sizeof (struct regspec));
1313 
1314 		kmem_free(pdptr, sizeof (*pdptr));
1315 		ddi_set_parent_data(dip, NULL);
1316 	}
1317 	ddi_set_name_addr(dip, NULL);
1318 	/*
1319 	 * Strip the node to properly convert it back to prototype form
1320 	 */
1321 	ddi_remove_minor_node(dip, NULL);
1322 	impl_rem_dev_props(dip);
1323 	return (DDI_SUCCESS);
1324 }
1325 
1326 #ifdef  DEBUG
1327 int	sbus_peekfault_cnt = 0;
1328 int	sbus_pokefault_cnt = 0;
1329 #endif  /* DEBUG */
1330 
1331 static int
1332 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args)
1333 {
1334 	int err = DDI_SUCCESS;
1335 	on_trap_data_t otd;
1336 	volatile uint64_t tmpreg;
1337 
1338 	/* Cautious access not supported. */
1339 	if (in_args->handle != NULL)
1340 		return (DDI_FAILURE);
1341 
1342 	mutex_enter(&softsp->pokefault_mutex);
1343 	softsp->ontrap_data = &otd;
1344 
1345 	/* Set up protected environment. */
1346 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1347 		uintptr_t tramp = otd.ot_trampoline;
1348 
1349 		otd.ot_trampoline = (uintptr_t)&poke_fault;
1350 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
1351 		    (void *)in_args->host_addr);
1352 		otd.ot_trampoline = tramp;
1353 	} else
1354 		err = DDI_FAILURE;
1355 
1356 	/* Flush any sbus store buffers. */
1357 	tmpreg = *softsp->sbus_ctrl_reg;
1358 
1359 	/*
1360 	 * Read the sbus error reg and see if a fault occured.  If
1361 	 * one has, give the SYSIO time to packetize the interrupt
1362 	 * for the fault and send it out.  The sbus error handler will
1363 	 * 0 these fields when it's called to service the fault.
1364 	 */
1365 	tmpreg = *softsp->sbus_err_reg;
1366 	while (tmpreg & SB_AFSR_P_TO || tmpreg & SB_AFSR_P_BERR)
1367 		tmpreg = *softsp->sbus_err_reg;
1368 
1369 	/* Take down protected environment. */
1370 	no_trap();
1371 
1372 	softsp->ontrap_data = NULL;
1373 	mutex_exit(&softsp->pokefault_mutex);
1374 
1375 #ifdef  DEBUG
1376 	if (err == DDI_FAILURE)
1377 		sbus_pokefault_cnt++;
1378 #endif
1379 	return (err);
1380 }
1381 
1382 /*ARGSUSED*/
1383 static int
1384 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
1385     void *result)
1386 {
1387 	int err = DDI_SUCCESS;
1388 	on_trap_data_t otd;
1389 
1390 	/* No safe access except for peek is supported. */
1391 	if (in_args->handle != NULL)
1392 		return (DDI_FAILURE);
1393 
1394 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1395 		uintptr_t tramp = otd.ot_trampoline;
1396 
1397 		otd.ot_trampoline = (uintptr_t)&peek_fault;
1398 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
1399 		    (void *)in_args->host_addr);
1400 		otd.ot_trampoline = tramp;
1401 		result = (void *)in_args->host_addr;
1402 	} else
1403 		err = DDI_FAILURE;
1404 
1405 #ifdef  DEBUG
1406 	if (err == DDI_FAILURE)
1407 		sbus_peekfault_cnt++;
1408 #endif
1409 	no_trap();
1410 	return (err);
1411 }
1412 
1413 static int
1414 sbus_ctlops(dev_info_t *dip, dev_info_t *rdip,
1415     ddi_ctl_enum_t op, void *arg, void *result)
1416 {
1417 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1418 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1419 
1420 	switch (op) {
1421 
1422 	case DDI_CTLOPS_INITCHILD:
1423 		return (sbus_initchild(dip, (dev_info_t *)arg));
1424 
1425 	case DDI_CTLOPS_UNINITCHILD:
1426 		return (sbus_uninitchild(arg));
1427 
1428 	case DDI_CTLOPS_IOMIN: {
1429 		int val = *((int *)result);
1430 
1431 		/*
1432 		 * The 'arg' value of nonzero indicates 'streaming' mode.
1433 		 * If in streaming mode, pick the largest of our burstsizes
1434 		 * available and say that that is our minimum value (modulo
1435 		 * what mincycle is).
1436 		 */
1437 		if ((int)(uintptr_t)arg)
1438 			val = maxbit(val,
1439 			    (1 << (ddi_fls(softsp->sbus_burst_sizes) - 1)));
1440 		else
1441 			val = maxbit(val,
1442 			    (1 << (ddi_ffs(softsp->sbus_burst_sizes) - 1)));
1443 
1444 		*((int *)result) = val;
1445 		return (ddi_ctlops(dip, rdip, op, arg, result));
1446 	}
1447 
1448 	case DDI_CTLOPS_REPORTDEV: {
1449 		dev_info_t *pdev;
1450 		int i, n, len, f_len;
1451 		char *msgbuf;
1452 
1453 	/*
1454 	 * So we can do one atomic cmn_err call, we allocate a 4k
1455 	 * buffer, and format the reportdev message into that buffer,
1456 	 * send it to cmn_err, and then free the allocated buffer.
1457 	 * If message is longer than 1k, the message is truncated and
1458 	 * an error message is emitted (debug kernel only).
1459 	 */
1460 #define	REPORTDEV_BUFSIZE	1024
1461 
1462 		int sbusid = ddi_get_instance(dip);
1463 
1464 		if (ddi_get_parent_data(rdip) == NULL)
1465 			return (DDI_FAILURE);
1466 
1467 		msgbuf = kmem_zalloc(REPORTDEV_BUFSIZE, KM_SLEEP);
1468 
1469 		pdev = ddi_get_parent(rdip);
1470 		f_len = snprintf(msgbuf, REPORTDEV_BUFSIZE,
1471 		    "%s%d at %s%d: SBus%d ",
1472 		    ddi_driver_name(rdip), ddi_get_instance(rdip),
1473 		    ddi_driver_name(pdev), ddi_get_instance(pdev), sbusid);
1474 		len = strlen(msgbuf);
1475 
1476 		for (i = 0, n = sysio_pd_getnreg(rdip); i < n; i++) {
1477 			struct regspec *rp;
1478 
1479 			rp = sysio_pd_getreg(rdip, i);
1480 			if (i != 0) {
1481 				f_len += snprintf(msgbuf + len,
1482 				    REPORTDEV_BUFSIZE - len, " and ");
1483 				len = strlen(msgbuf);
1484 			}
1485 
1486 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1487 			    "slot 0x%x offset 0x%x",
1488 			    rp->regspec_bustype, rp->regspec_addr);
1489 			len = strlen(msgbuf);
1490 		}
1491 
1492 		for (i = 0, n = i_ddi_get_intx_nintrs(rdip); i < n; i++) {
1493 			uint32_t sbuslevel, inum, pri;
1494 
1495 			if (i != 0) {
1496 				f_len += snprintf(msgbuf + len,
1497 				    REPORTDEV_BUFSIZE - len, ",");
1498 				len = strlen(msgbuf);
1499 			}
1500 
1501 			sbuslevel = inum = i_ddi_get_inum(rdip, i);
1502 			pri = i_ddi_get_intr_pri(rdip, i);
1503 
1504 			(void) sbus_xlate_intrs(dip, rdip, &inum,
1505 			    &pri, softsp->intr_mapping_ign);
1506 
1507 			if (sbuslevel > MAX_SBUS_LEVEL)
1508 				f_len += snprintf(msgbuf + len,
1509 				    REPORTDEV_BUFSIZE - len,
1510 				    " Onboard device ");
1511 			else
1512 				f_len += snprintf(msgbuf + len,
1513 				    REPORTDEV_BUFSIZE - len, " SBus level %d ",
1514 				    sbuslevel);
1515 			len = strlen(msgbuf);
1516 
1517 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1518 			    "sparc9 ipl %d", pri);
1519 			len = strlen(msgbuf);
1520 		}
1521 #ifdef DEBUG
1522 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
1523 		cmn_err(CE_NOTE, "next message is truncated: "
1524 		    "printed length 1024, real length %d", f_len);
1525 	}
1526 #endif /* DEBUG */
1527 
1528 		cmn_err(CE_CONT, "?%s\n", msgbuf);
1529 		kmem_free(msgbuf, REPORTDEV_BUFSIZE);
1530 		return (DDI_SUCCESS);
1531 
1532 #undef	REPORTDEV_BUFSIZE
1533 	}
1534 
1535 	case DDI_CTLOPS_SLAVEONLY:
1536 		return (DDI_FAILURE);
1537 
1538 	case DDI_CTLOPS_AFFINITY: {
1539 		dev_info_t *dipb = (dev_info_t *)arg;
1540 		int r_slot, b_slot;
1541 
1542 		if ((b_slot = find_sbus_slot(dip, dipb)) < 0)
1543 			return (DDI_FAILURE);
1544 
1545 		if ((r_slot = find_sbus_slot(dip, rdip)) < 0)
1546 			return (DDI_FAILURE);
1547 
1548 		return ((b_slot == r_slot)? DDI_SUCCESS : DDI_FAILURE);
1549 
1550 	}
1551 	case DDI_CTLOPS_DMAPMAPC:
1552 		cmn_err(CE_CONT, "?DDI_DMAPMAPC called!!\n");
1553 		return (DDI_FAILURE);
1554 
1555 	case DDI_CTLOPS_POKE:
1556 		return (sbus_ctlops_poke(softsp, (peekpoke_ctlops_t *)arg));
1557 
1558 	case DDI_CTLOPS_PEEK:
1559 		return (sbus_ctlops_peek(softsp, (peekpoke_ctlops_t *)arg,
1560 		    result));
1561 
1562 	case DDI_CTLOPS_DVMAPAGESIZE:
1563 		*(ulong_t *)result = IOMMU_PAGESIZE;
1564 		return (DDI_SUCCESS);
1565 
1566 	default:
1567 		return (ddi_ctlops(dip, rdip, op, arg, result));
1568 	}
1569 }
1570 
1571 static int
1572 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip)
1573 {
1574 	dev_info_t *child;
1575 	int slot = -1;
1576 
1577 	/*
1578 	 * look for the node that's a direct child of this Sbus node.
1579 	 */
1580 	while (rdip && (child = ddi_get_parent(rdip)) != dip) {
1581 		rdip = child;
1582 	}
1583 
1584 	/*
1585 	 * If there is one, get the slot number of *my* child
1586 	 */
1587 	if (child == dip)
1588 		slot = sysio_pd_getslot(rdip);
1589 
1590 	return (slot);
1591 }
1592 
1593 /*
1594  * This is the sbus interrupt routine wrapper function.  This function
1595  * installs itself as a child devices interrupt handler.  It's function is
1596  * to dispatch a child devices interrupt handler, and then
1597  * reset the interrupt clear register for the child device.
1598  *
1599  * Warning: This routine may need to be implemented as an assembly level
1600  * routine to improve performance.
1601  */
1602 
1603 #define	MAX_INTR_CNT 10
1604 
1605 static uint_t
1606 sbus_intr_wrapper(caddr_t arg)
1607 {
1608 	uint_t intr_return = DDI_INTR_UNCLAIMED;
1609 	volatile uint64_t tmpreg;
1610 	struct sbus_wrapper_arg *intr_info;
1611 	struct sbus_intr_handler *intr_handler;
1612 	uchar_t *spurious_cntr;
1613 
1614 	intr_info = (struct sbus_wrapper_arg *)arg;
1615 	spurious_cntr = &intr_info->softsp->spurious_cntrs[intr_info->pil];
1616 	intr_handler = intr_info->handler_list;
1617 
1618 	while (intr_handler) {
1619 		caddr_t arg1 = intr_handler->arg1;
1620 		caddr_t arg2 = intr_handler->arg2;
1621 		uint_t (*funcp)() = intr_handler->funcp;
1622 		dev_info_t *dip = intr_handler->dip;
1623 		int r;
1624 
1625 		if (intr_handler->intr_state == SBUS_INTR_STATE_DISABLE) {
1626 			intr_handler = intr_handler->next;
1627 			continue;
1628 		}
1629 
1630 		DTRACE_PROBE4(interrupt__start, dev_info_t, dip,
1631 		    void *, funcp, caddr_t, arg1, caddr_t, arg2);
1632 
1633 		r = (*funcp)(arg1, arg2);
1634 
1635 		DTRACE_PROBE4(interrupt__complete, dev_info_t, dip,
1636 		    void *, funcp, caddr_t, arg1, int, r);
1637 
1638 		intr_return |= r;
1639 		intr_handler = intr_handler->next;
1640 	}
1641 
1642 	/* Set the interrupt state machine to idle */
1643 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1644 	tmpreg = SBUS_INTR_IDLE;
1645 	*intr_info->clear_reg = tmpreg;
1646 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1647 
1648 	if (intr_return == DDI_INTR_UNCLAIMED) {
1649 		(*spurious_cntr)++;
1650 
1651 		if (*spurious_cntr < MAX_INTR_CNT) {
1652 			if (intr_cntr_on)
1653 				return (DDI_INTR_CLAIMED);
1654 		}
1655 #ifdef DEBUG
1656 		else if (intr_info->pil >= LOCK_LEVEL) {
1657 			cmn_err(CE_PANIC, "%d unclaimed interrupts at "
1658 			    "interrupt level %d", MAX_INTR_CNT,
1659 			    intr_info->pil);
1660 		}
1661 #endif
1662 
1663 		/*
1664 		 * Reset spurious counter once we acknowledge
1665 		 * it to the system level.
1666 		 */
1667 		*spurious_cntr = (uchar_t)0;
1668 	} else {
1669 		*spurious_cntr = (uchar_t)0;
1670 	}
1671 
1672 	return (intr_return);
1673 }
1674 
1675 /*
1676  * add_intrspec - Add an interrupt specification.
1677  */
1678 static int
1679 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1680     ddi_intr_handle_impl_t *hdlp)
1681 {
1682 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1683 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1684 	volatile uint64_t *mondo_vec_reg;
1685 	volatile uint64_t tmp_mondo_vec;
1686 	volatile uint64_t *intr_state_reg;
1687 	volatile uint64_t tmpreg;	/* HW flush reg */
1688 	uint_t start_bit;
1689 	int ino;
1690 	uint_t cpu_id;
1691 	struct sbus_wrapper_arg *sbus_arg;
1692 	struct sbus_intr_handler *intr_handler;
1693 	uint32_t slot;
1694 	/* Interrupt state machine reset flag */
1695 	int reset_ism_register = 1;
1696 	int ret = DDI_SUCCESS;
1697 
1698 	/* Check if we have a valid sbus slot address */
1699 	if (((slot = (uint_t)find_sbus_slot(dip, rdip)) >=
1700 	    MAX_SBUS_SLOT_ADDR) || (slot < (uint_t)0)) {
1701 		cmn_err(CE_WARN, "Invalid sbus slot 0x%x during add intr\n",
1702 		    slot);
1703 		return (DDI_FAILURE);
1704 	}
1705 
1706 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: sbus interrupt %d "
1707 	    "for device %s%d\n", hdlp->ih_vector, ddi_driver_name(rdip),
1708 	    ddi_get_instance(rdip)));
1709 
1710 	/* Xlate the interrupt */
1711 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1712 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1713 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1714 		    ddi_driver_name(rdip));
1715 		return (DDI_FAILURE);
1716 	}
1717 
1718 	/* get the ino number */
1719 	ino = hdlp->ih_vector & SBUS_MAX_INO;
1720 	mondo_vec_reg = (softsp->intr_mapping_reg +
1721 	    ino_table[ino]->mapping_reg);
1722 
1723 	/*
1724 	 * This is an intermediate step in identifying
1725 	 * the exact bits which represent the device in the interrupt
1726 	 * state diagnostic register.
1727 	 */
1728 	if (ino > MAX_MONDO_EXTERNAL) {
1729 		start_bit = ino_table[ino]->diagreg_shift;
1730 		intr_state_reg = softsp->obio_intr_state;
1731 	} else {
1732 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1733 		intr_state_reg = softsp->sbus_intr_state;
1734 	}
1735 
1736 
1737 	/* Allocate a nexus interrupt data structure */
1738 	intr_handler = kmem_zalloc(sizeof (struct sbus_intr_handler), KM_SLEEP);
1739 	intr_handler->dip = rdip;
1740 	intr_handler->funcp = hdlp->ih_cb_func;
1741 	intr_handler->arg1 = hdlp->ih_cb_arg1;
1742 	intr_handler->arg2 = hdlp->ih_cb_arg2;
1743 	intr_handler->inum = hdlp->ih_inum;
1744 
1745 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: xlated interrupt 0x%x "
1746 	    "intr_handler 0x%p\n", hdlp->ih_vector, (void *)intr_handler));
1747 
1748 	/*
1749 	 * Grab this lock here. So it will protect the poll list.
1750 	 */
1751 	mutex_enter(&softsp->intr_poll_list_lock);
1752 
1753 	sbus_arg = softsp->intr_list[ino];
1754 	/* Check if we have a poll list to deal with */
1755 	if (sbus_arg) {
1756 		tmp_mondo_vec = *mondo_vec_reg;
1757 		tmp_mondo_vec &= ~INTERRUPT_VALID;
1758 		*mondo_vec_reg = tmp_mondo_vec;
1759 
1760 		tmpreg = *softsp->sbus_ctrl_reg;
1761 #ifdef	lint
1762 		tmpreg = tmpreg;
1763 #endif
1764 
1765 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:sbus_arg exists "
1766 		    "0x%p\n", (void *)sbus_arg));
1767 		/*
1768 		 * Two bits per ino in the diagnostic register
1769 		 * indicate the status of its interrupt.
1770 		 * 0 - idle, 1 - transmit, 3 - pending.
1771 		 */
1772 		while (((*intr_state_reg >>
1773 		    start_bit) & 0x3) == INT_PENDING && !panicstr)
1774 			/* empty */;
1775 
1776 		intr_handler->next = sbus_arg->handler_list;
1777 		sbus_arg->handler_list = intr_handler;
1778 
1779 		reset_ism_register = 0;
1780 	} else {
1781 		sbus_arg = kmem_zalloc(sizeof (struct sbus_wrapper_arg),
1782 		    KM_SLEEP);
1783 
1784 		softsp->intr_list[ino] = sbus_arg;
1785 		sbus_arg->clear_reg = (softsp->clr_intr_reg +
1786 		    ino_table[ino]->clear_reg);
1787 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Ino 0x%x Interrupt "
1788 		    "clear reg: 0x%p\n", ino, (void *)sbus_arg->clear_reg));
1789 		sbus_arg->softsp = softsp;
1790 		sbus_arg->handler_list = intr_handler;
1791 
1792 		/*
1793 		 * No handler added yet in the interrupt vector
1794 		 * table for this ino.
1795 		 * Install the nexus interrupt wrapper in the
1796 		 * system. The wrapper will call the device
1797 		 * interrupt handler.
1798 		 */
1799 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
1800 		    (ddi_intr_handler_t *)sbus_intr_wrapper,
1801 		    (caddr_t)sbus_arg, NULL);
1802 
1803 		ret = i_ddi_add_ivintr(hdlp);
1804 
1805 		/*
1806 		 * Restore original interrupt handler
1807 		 * and arguments in interrupt handle.
1808 		 */
1809 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, intr_handler->funcp,
1810 		    intr_handler->arg1, intr_handler->arg2);
1811 
1812 		if (ret != DDI_SUCCESS) {
1813 			mutex_exit(&softsp->intr_poll_list_lock);
1814 			goto done;
1815 		}
1816 
1817 		if ((slot >= EXT_SBUS_SLOTS) ||
1818 		    (softsp->intr_hndlr_cnt[slot] == 0)) {
1819 
1820 			cpu_id = intr_dist_cpuid();
1821 #ifdef	_STARFIRE
1822 			tmp_mondo_vec = pc_translate_tgtid(
1823 			    softsp->ittrans_cookie, cpu_id,
1824 			    mondo_vec_reg) << IMR_TID_SHIFT;
1825 #else
1826 			tmp_mondo_vec =
1827 			    cpu_id << IMR_TID_SHIFT;
1828 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: initial "
1829 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1830 #endif	/* _STARFIRE */
1831 		} else {
1832 			/*
1833 			 * There is already a different
1834 			 * ino programmed at this IMR.
1835 			 * Just read the IMR out to get the
1836 			 * correct MID target.
1837 			 */
1838 			tmp_mondo_vec = *mondo_vec_reg;
1839 			tmp_mondo_vec &= ~INTERRUPT_VALID;
1840 			*mondo_vec_reg = tmp_mondo_vec;
1841 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: existing "
1842 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1843 		}
1844 
1845 		sbus_arg->pil = hdlp->ih_pri;
1846 
1847 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Alloc sbus_arg "
1848 		    "0x%p\n", (void *)sbus_arg));
1849 	}
1850 
1851 	softsp->intr_hndlr_cnt[slot]++;
1852 
1853 	mutex_exit(&softsp->intr_poll_list_lock);
1854 
1855 	/*
1856 	 * Program the ino vector accordingly.  This MUST be the
1857 	 * last thing we do.  Once we program the ino, the device
1858 	 * may begin to interrupt. Add this hardware interrupt to
1859 	 * the interrupt lists, and get the CPU to target it at.
1860 	 */
1861 
1862 	tmp_mondo_vec |= INTERRUPT_VALID;
1863 
1864 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: Ino 0x%x mapping reg: 0x%p "
1865 	    "Intr cntr %d\n", ino, (void *)mondo_vec_reg,
1866 	    softsp->intr_hndlr_cnt[slot]));
1867 
1868 	/* Force the interrupt state machine to idle. */
1869 	if (reset_ism_register) {
1870 		tmpreg = SBUS_INTR_IDLE;
1871 		*sbus_arg->clear_reg = tmpreg;
1872 	}
1873 
1874 	/* Store it in the hardware reg. */
1875 	*mondo_vec_reg = tmp_mondo_vec;
1876 
1877 	/* Flush store buffers */
1878 	tmpreg = *softsp->sbus_ctrl_reg;
1879 
1880 done:
1881 	return (ret);
1882 }
1883 
1884 static void
1885 sbus_free_handler(dev_info_t *dip, uint32_t inum,
1886     struct sbus_wrapper_arg *sbus_arg)
1887 {
1888 	struct sbus_intr_handler *listp, *prevp;
1889 
1890 	if (sbus_arg) {
1891 		prevp = NULL;
1892 		listp = sbus_arg->handler_list;
1893 
1894 		while (listp) {
1895 			if (listp->dip == dip && listp->inum == inum) {
1896 				if (prevp)
1897 					prevp->next = listp->next;
1898 				else {
1899 					prevp = listp->next;
1900 					sbus_arg->handler_list = prevp;
1901 				}
1902 
1903 				kmem_free(listp,
1904 				    sizeof (struct sbus_intr_handler));
1905 				break;
1906 			}
1907 			prevp = listp;
1908 			listp = listp->next;
1909 		}
1910 	}
1911 }
1912 
1913 /*
1914  * remove_intrspec - Remove an interrupt specification.
1915  */
1916 /*ARGSUSED*/
1917 static void
1918 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1919     ddi_intr_handle_impl_t *hdlp)
1920 {
1921 	volatile uint64_t *mondo_vec_reg;
1922 	volatile uint64_t *intr_state_reg;
1923 #ifndef lint
1924 	volatile uint64_t tmpreg;
1925 #endif /* !lint */
1926 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1927 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1928 	int start_bit, ino, slot;
1929 	struct sbus_wrapper_arg *sbus_arg;
1930 
1931 	/* Grab the mutex protecting the poll list */
1932 	mutex_enter(&softsp->intr_poll_list_lock);
1933 
1934 	/* Xlate the interrupt */
1935 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1936 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1937 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1938 		    ddi_driver_name(rdip));
1939 		goto done;
1940 	}
1941 
1942 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
1943 
1944 	mondo_vec_reg = (softsp->intr_mapping_reg +
1945 	    ino_table[ino]->mapping_reg);
1946 
1947 	/* Turn off the valid bit in the mapping register. */
1948 	*mondo_vec_reg &= ~INTERRUPT_VALID;
1949 #ifndef lint
1950 	tmpreg = *softsp->sbus_ctrl_reg;
1951 #endif /* !lint */
1952 
1953 	/* Get our bit position for checking intr pending */
1954 	if (ino > MAX_MONDO_EXTERNAL) {
1955 		start_bit = ino_table[ino]->diagreg_shift;
1956 		intr_state_reg = softsp->obio_intr_state;
1957 	} else {
1958 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1959 		intr_state_reg = softsp->sbus_intr_state;
1960 	}
1961 
1962 	while (((*intr_state_reg >> start_bit) & 0x3) == INT_PENDING &&
1963 	    !panicstr)
1964 		/* empty */;
1965 
1966 	slot = find_sbus_slot(dip, rdip);
1967 
1968 	/* Return if the slot is invalid */
1969 	if (slot >= MAX_SBUS_SLOT_ADDR || slot < 0) {
1970 		goto done;
1971 	}
1972 
1973 	sbus_arg = softsp->intr_list[ino];
1974 
1975 	/* Decrement the intr handler count on this slot */
1976 	softsp->intr_hndlr_cnt[slot]--;
1977 
1978 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Softsp 0x%p, Mondo 0x%x, "
1979 	    "ino 0x%x, sbus_arg 0x%p intr cntr %d\n", (void *)softsp,
1980 	    hdlp->ih_vector, ino, (void *)sbus_arg,
1981 	    softsp->intr_hndlr_cnt[slot]));
1982 
1983 	ASSERT(sbus_arg != NULL);
1984 	ASSERT(sbus_arg->handler_list != NULL);
1985 	sbus_free_handler(rdip, hdlp->ih_inum, sbus_arg);
1986 
1987 	/* If we still have a list, we're done. */
1988 	if (sbus_arg->handler_list == NULL)
1989 		i_ddi_rem_ivintr(hdlp);
1990 
1991 	/*
1992 	 * If other devices are still installed for this slot, we need to
1993 	 * turn the valid bit back on.
1994 	 */
1995 	if (softsp->intr_hndlr_cnt[slot] > 0) {
1996 		*mondo_vec_reg |= INTERRUPT_VALID;
1997 #ifndef lint
1998 		tmpreg = *softsp->sbus_ctrl_reg;
1999 #endif /* !lint */
2000 	}
2001 
2002 	if ((softsp->intr_hndlr_cnt[slot] == 0) || (slot >= EXT_SBUS_SLOTS)) {
2003 		ASSERT(sbus_arg->handler_list == NULL);
2004 #ifdef	_STARFIRE
2005 		/* Do cleanup for interrupt target translation */
2006 		pc_ittrans_cleanup(softsp->ittrans_cookie, mondo_vec_reg);
2007 #endif	/* _STARFIRE */
2008 	}
2009 
2010 
2011 	/* Free up the memory used for the sbus interrupt handler */
2012 	if (sbus_arg->handler_list == NULL) {
2013 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Freeing sbus arg "
2014 		    "0x%p\n", (void *)sbus_arg));
2015 		kmem_free(sbus_arg, sizeof (struct sbus_wrapper_arg));
2016 		softsp->intr_list[ino] = NULL;
2017 	}
2018 
2019 done:
2020 	mutex_exit(&softsp->intr_poll_list_lock);
2021 }
2022 
2023 /*
2024  * We're prepared to claim that the interrupt string is in
2025  * the form of a list of <SBusintr> specifications, or we're dealing
2026  * with on-board devices and we have an interrupt_number property which
2027  * gives us our mondo number.
2028  * Translate the sbus levels or mondos into sysiointrspecs.
2029  */
2030 static int
2031 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
2032     uint32_t *pil, int32_t ign)
2033 {
2034 	uint32_t ino, slot, level = *intr;
2035 	int ret = DDI_SUCCESS;
2036 
2037 	/*
2038 	 * Create the sysio ino number.  onboard devices will have
2039 	 * an "interrupts" property, that is equal to the ino number.
2040 	 * If the devices are from the
2041 	 * expansion slots, we construct the ino number by putting
2042 	 * the slot number in the upper three bits, and the sbus
2043 	 * interrupt level in the lower three bits.
2044 	 */
2045 	if (level > MAX_SBUS_LEVEL) {
2046 		ino = level;
2047 	} else {
2048 		/* Construct ino from slot and interrupts */
2049 		if ((slot = find_sbus_slot(dip, rdip)) == -1) {
2050 			cmn_err(CE_WARN, "Can't determine sbus slot "
2051 			    "of %s device\n", ddi_driver_name(rdip));
2052 			ret = DDI_FAILURE;
2053 			goto done;
2054 		}
2055 
2056 		if (slot >= MAX_SBUS_SLOT_ADDR) {
2057 			cmn_err(CE_WARN, "Invalid sbus slot 0x%x"
2058 			    "in %s device\n", slot, ddi_driver_name(rdip));
2059 			ret = DDI_FAILURE;
2060 			goto done;
2061 		}
2062 
2063 		ino = slot << 3;
2064 		ino |= level;
2065 	}
2066 
2067 	/* Sanity check the inos range */
2068 	if (ino >= MAX_INO_TABLE_SIZE) {
2069 		cmn_err(CE_WARN, "Ino vector 0x%x out of range", ino);
2070 		ret = DDI_FAILURE;
2071 		goto done;
2072 	}
2073 	/* Sanity check the inos value */
2074 	if (!ino_table[ino]) {
2075 		cmn_err(CE_WARN, "Ino vector 0x%x is invalid", ino);
2076 		ret = DDI_FAILURE;
2077 		goto done;
2078 	}
2079 
2080 	if (*pil == 0) {
2081 #define	SOC_PRIORITY 5
2082 		/* The sunfire i/o board has a soc in the printer slot */
2083 		if ((ino_table[ino]->clear_reg == PP_CLEAR) &&
2084 		    ((strcmp(ddi_get_name(rdip), "soc") == 0) ||
2085 		    (strcmp(ddi_get_name(rdip), "SUNW,soc") == 0))) {
2086 			*pil = SOC_PRIORITY;
2087 		} else {
2088 			/* Figure out the pil associated with this interrupt */
2089 			*pil = interrupt_priorities[ino];
2090 		}
2091 	}
2092 
2093 	/* Or in the upa_id into the interrupt group number field */
2094 	*intr = (uint32_t)(ino | ign);
2095 
2096 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Xlate intr: Interrupt info for "
2097 	    "device %s Mondo: 0x%x, ino: 0x%x, Pil: 0x%x, sbus level: 0x%x\n",
2098 	    ddi_driver_name(rdip), *intr, ino, *pil, level));
2099 
2100 done:
2101 	return (ret);
2102 }
2103 
2104 /* new intr_ops structure */
2105 int
2106 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
2107     ddi_intr_handle_impl_t *hdlp, void *result)
2108 {
2109 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2110 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2111 	int			ret = DDI_SUCCESS;
2112 
2113 
2114 	switch (intr_op) {
2115 	case DDI_INTROP_GETCAP:
2116 		*(int *)result = DDI_INTR_FLAG_LEVEL;
2117 		break;
2118 	case DDI_INTROP_ALLOC:
2119 		*(int *)result = hdlp->ih_scratch1;
2120 		break;
2121 	case DDI_INTROP_FREE:
2122 		break;
2123 	case DDI_INTROP_GETPRI:
2124 		if (hdlp->ih_pri == 0) {
2125 			/* Xlate the interrupt */
2126 			(void) sbus_xlate_intrs(dip, rdip,
2127 			    (uint32_t *)&hdlp->ih_vector, &hdlp->ih_pri,
2128 			    softsp->intr_mapping_ign);
2129 		}
2130 
2131 		*(int *)result = hdlp->ih_pri;
2132 		break;
2133 	case DDI_INTROP_SETPRI:
2134 		break;
2135 	case DDI_INTROP_ADDISR:
2136 		ret = sbus_add_intr_impl(dip, rdip, hdlp);
2137 		break;
2138 	case DDI_INTROP_REMISR:
2139 		sbus_remove_intr_impl(dip, rdip, hdlp);
2140 		break;
2141 	case DDI_INTROP_ENABLE:
2142 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2143 		    SBUS_INTR_STATE_ENABLE);
2144 		break;
2145 	case DDI_INTROP_DISABLE:
2146 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2147 		    SBUS_INTR_STATE_DISABLE);
2148 		break;
2149 	case DDI_INTROP_NINTRS:
2150 	case DDI_INTROP_NAVAIL:
2151 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
2152 		break;
2153 	case DDI_INTROP_SETCAP:
2154 	case DDI_INTROP_SETMASK:
2155 	case DDI_INTROP_CLRMASK:
2156 	case DDI_INTROP_GETPENDING:
2157 		ret = DDI_ENOTSUP;
2158 		break;
2159 	case DDI_INTROP_SUPPORTED_TYPES:
2160 		/* Sbus nexus driver supports only fixed interrupts */
2161 		*(int *)result = i_ddi_get_intx_nintrs(rdip) ?
2162 		    DDI_INTR_TYPE_FIXED : 0;
2163 		break;
2164 	default:
2165 		ret = i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result);
2166 		break;
2167 	}
2168 
2169 	return (ret);
2170 }
2171 
2172 
2173 /*
2174  * Called by suspend/resume to save/restore the interrupt status (valid bit)
2175  * of the interrupt mapping registers.
2176  */
2177 static void
2178 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
2179     int save)
2180 {
2181 	int i;
2182 	volatile uint64_t *mondo_vec_reg;
2183 
2184 	for (i = 0; i < MAX_INO_TABLE_SIZE; i++) {
2185 		if (ino_table[i] != NULL) {
2186 			mondo_vec_reg = baddr + ino_table[i]->mapping_reg;
2187 			if (save) {
2188 				if (*mondo_vec_reg & INTERRUPT_VALID) {
2189 					cpr_softsp[i] = *mondo_vec_reg;
2190 				}
2191 			} else {
2192 				if (cpr_softsp[i]) {
2193 					*mondo_vec_reg = cpr_softsp[i];
2194 				}
2195 			}
2196 		}
2197 	}
2198 }
2199 
2200 #define	SZ_INO_TABLE (sizeof (ino_table) / sizeof (ino_table[0]))
2201 
2202 /*
2203  * sbus_intrdist
2204  *
2205  * This function retargets active interrupts by reprogramming the mondo
2206  * vec register. If the CPU ID of the target has not changed, then
2207  * the mondo is not reprogrammed. The routine must hold the mondo
2208  * lock for this instance of the sbus.
2209  */
2210 static void
2211 sbus_intrdist(void *arg)
2212 {
2213 	struct sbus_soft_state *softsp;
2214 	dev_info_t *dip = (dev_info_t *)arg;
2215 	volatile uint64_t *mondo_vec_reg;
2216 	uint64_t *last_mondo_vec_reg;
2217 	uint64_t mondo_vec;
2218 	volatile uint64_t *intr_state_reg;
2219 	uint_t start_bit;
2220 	volatile uint64_t tmpreg; /* HW flush reg */
2221 	uint_t mondo;
2222 	uint_t cpu_id;
2223 
2224 	/* extract the soft state pointer */
2225 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2226 
2227 	last_mondo_vec_reg = NULL;
2228 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2229 		if (ino_table[mondo] == NULL)
2230 			continue;
2231 
2232 		mondo_vec_reg = (softsp->intr_mapping_reg +
2233 		    ino_table[mondo]->mapping_reg);
2234 
2235 		/* Don't reprogram the same register twice */
2236 		if (mondo_vec_reg == last_mondo_vec_reg)
2237 			continue;
2238 
2239 		if ((*mondo_vec_reg & INTERRUPT_VALID) == 0)
2240 			continue;
2241 
2242 		last_mondo_vec_reg = (uint64_t *)mondo_vec_reg;
2243 
2244 		cpu_id = intr_dist_cpuid();
2245 #ifdef _STARFIRE
2246 		/*
2247 		 * For Starfire it is a pain to check the current target for
2248 		 * the mondo since we have to read the PC asics ITTR slot
2249 		 * assigned to this mondo. It will be much easier to assume
2250 		 * the current target is always different and do the target
2251 		 * reprogram all the time.
2252 		 */
2253 #else
2254 		if (((*mondo_vec_reg & IMR_TID) >> IMR_TID_SHIFT) == cpu_id) {
2255 			/* It is the same, don't reprogram */
2256 			return;
2257 		}
2258 #endif	/* _STARFIRE */
2259 
2260 		/* So it's OK to reprogram the CPU target */
2261 
2262 		/* turn off valid bit and wait for the state machine to idle */
2263 		*mondo_vec_reg &= ~INTERRUPT_VALID;
2264 
2265 		tmpreg = *softsp->sbus_ctrl_reg;
2266 
2267 #ifdef	lint
2268 		tmpreg = tmpreg;
2269 #endif	/* lint */
2270 
2271 		if (mondo > MAX_MONDO_EXTERNAL) {
2272 			start_bit = ino_table[mondo]->diagreg_shift;
2273 			intr_state_reg = softsp->obio_intr_state;
2274 
2275 			/*
2276 			 * Loop waiting for state machine to idle. Do not keep
2277 			 * looping on a panic so that the system does not hang.
2278 			 */
2279 			while ((((*intr_state_reg >> start_bit) & 0x3) ==
2280 			    INT_PENDING) && !panicstr)
2281 				/* empty */;
2282 		} else {
2283 			int int_pending = 0;	/* interrupts pending */
2284 
2285 			/*
2286 			 * Shift over to first bit for this Sbus slot, 16
2287 			 * bits per slot, bits 0-1 of each slot are reserved.
2288 			 */
2289 			start_bit = 16 * (mondo >> 3) + 2;
2290 			intr_state_reg = softsp->sbus_intr_state;
2291 
2292 			/*
2293 			 * Make sure interrupts for levels 1-7 of this slot
2294 			 * are not pending.
2295 			 */
2296 			do {
2297 				int level;	/* Sbus interrupt level */
2298 				int shift;		/* # of bits to shift */
2299 				uint64_t state_reg = *intr_state_reg;
2300 
2301 				int_pending = 0;
2302 
2303 				for (shift = start_bit, level = 1; level < 8;
2304 				    level++, shift += 2) {
2305 					if (((state_reg >> shift) &
2306 					    0x3) == INT_PENDING) {
2307 						int_pending = 1;
2308 						break;
2309 					}
2310 				}
2311 			} while (int_pending && !panicstr);
2312 		}
2313 
2314 		/* re-target the mondo and turn it on */
2315 #ifdef _STARFIRE
2316 		mondo_vec = (pc_translate_tgtid(softsp->ittrans_cookie,
2317 		    cpu_id, mondo_vec_reg) <<
2318 		    INTERRUPT_CPU_FIELD) |
2319 		    INTERRUPT_VALID;
2320 #else
2321 		mondo_vec = (cpu_id << INTERRUPT_CPU_FIELD) | INTERRUPT_VALID;
2322 #endif	/* _STARFIRE */
2323 
2324 		/* write it back to the hardware. */
2325 		*mondo_vec_reg = mondo_vec;
2326 
2327 		/* flush the hardware buffers. */
2328 		tmpreg = *mondo_vec_reg;
2329 
2330 #ifdef	lint
2331 		tmpreg = tmpreg;
2332 #endif	/* lint */
2333 	}
2334 }
2335 
2336 /*
2337  * Reset interrupts to IDLE.  This function is called during
2338  * panic handling after redistributing interrupts; it's needed to
2339  * support dumping to network devices after 'sync' from OBP.
2340  *
2341  * N.B.  This routine runs in a context where all other threads
2342  * are permanently suspended.
2343  */
2344 static uint_t
2345 sbus_intr_reset(void *arg)
2346 {
2347 	dev_info_t *dip = (dev_info_t *)arg;
2348 	struct sbus_soft_state *softsp;
2349 	uint_t mondo;
2350 	volatile uint64_t *mondo_clear_reg;
2351 
2352 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2353 
2354 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2355 		if (ino_table[mondo] == NULL ||
2356 		    ino_table[mondo]->clear_reg == NULL) {
2357 
2358 			continue;
2359 		}
2360 
2361 		mondo_clear_reg = (softsp->clr_intr_reg +
2362 		    ino_table[mondo]->clear_reg);
2363 		*mondo_clear_reg = SBUS_INTR_IDLE;
2364 	}
2365 
2366 	return (BF_NONE);
2367 }
2368 
2369 /*
2370  * called from sbus_add_kstats() to create a kstat for each %pic
2371  * that the SBUS supports. These (read-only) kstats export the
2372  * event names that each %pic supports.
2373  *
2374  * if we fail to create any of these kstats we must remove any
2375  * that we have already created and return;
2376  *
2377  * NOTE: because all sbus devices use the same events we only
2378  *	 need to create the picN kstats once. All instances can
2379  *	 use the same picN kstats.
2380  *
2381  *       The flexibility exists to allow each device specify it's
2382  *       own events by creating picN kstats with the instance number
2383  *       set to ddi_get_instance(softsp->dip).
2384  *
2385  *       When searching for a picN kstat for a device you should
2386  *       first search for a picN kstat using the instance number
2387  *       of the device you are interested in. If that fails you
2388  *       should use the first picN kstat found for that device.
2389  */
2390 static	void
2391 sbus_add_picN_kstats(dev_info_t *dip)
2392 {
2393 	/*
2394 	 * SBUS Performance Events.
2395 	 *
2396 	 * We declare an array of event-names and event-masks.
2397 	 * The num of events in this array is AC_NUM_EVENTS.
2398 	 */
2399 	sbus_event_mask_t sbus_events_arr[SBUS_NUM_EVENTS] = {
2400 		{"dvma_stream_rd", 0x0}, {"dvma_stream_wr", 0x1},
2401 		{"dvma_const_rd", 0x2}, {"dvma_const_wr", 0x3},
2402 		{"dvma_tlb_misses", 0x4}, {"dvma_stream_buf_mis", 0x5},
2403 		{"dvma_cycles", 0x6}, {"dvma_bytes_xfr", 0x7},
2404 		{"interrupts", 0x8}, {"upa_inter_nack", 0x9},
2405 		{"pio_reads", 0xA}, {"pio_writes", 0xB},
2406 		{"sbus_reruns", 0xC}, {"pio_cycles", 0xD}
2407 	};
2408 
2409 	/*
2410 	 * We declare an array of clear masks for each pic.
2411 	 * These masks are used to clear the %pcr bits for
2412 	 * each pic.
2413 	 */
2414 	sbus_event_mask_t sbus_clear_pic[SBUS_NUM_PICS] = {
2415 		/* pic0 */
2416 		{"clear_pic", (uint64_t)~(0xf)},
2417 		/* pic1 */
2418 		{"clear_pic", (uint64_t)~(0xf << 8)}
2419 	};
2420 
2421 	struct kstat_named *sbus_pic_named_data;
2422 	int  		event, pic;
2423 	char 		pic_name[30];
2424 	int		instance = ddi_get_instance(dip);
2425 	int		pic_shift = 0;
2426 
2427 	for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
2428 		/*
2429 		 * create the picN kstat. The size of this kstat is
2430 		 * SBUS_NUM_EVENTS + 1 for the clear_event_mask
2431 		 */
2432 		(void) sprintf(pic_name, "pic%d", pic);	/* pic0, pic1 ... */
2433 		if ((sbus_picN_ksp[pic] = kstat_create("sbus",
2434 		    instance, pic_name, "bus", KSTAT_TYPE_NAMED,
2435 		    SBUS_NUM_EVENTS + 1, NULL)) == NULL) {
2436 				cmn_err(CE_WARN, "sbus %s: kstat_create failed",
2437 				    pic_name);
2438 
2439 			/* remove pic0 kstat if pic1 create fails */
2440 			if (pic == 1) {
2441 				kstat_delete(sbus_picN_ksp[0]);
2442 				sbus_picN_ksp[0] = NULL;
2443 			}
2444 			return;
2445 		}
2446 
2447 		sbus_pic_named_data =
2448 		    (struct kstat_named *)(sbus_picN_ksp[pic]->ks_data);
2449 
2450 		/*
2451 		 * when we are writing pcr_masks to the kstat we need to
2452 		 * shift bits left by 8 for pic1 events.
2453 		 */
2454 		if (pic == 1)
2455 			pic_shift = 8;
2456 
2457 		/*
2458 		 * for each picN event we need to write a kstat record
2459 		 * (name = EVENT, value.ui64 = PCR_MASK)
2460 		 */
2461 		for (event = 0; event < SBUS_NUM_EVENTS; event ++) {
2462 
2463 			/* pcr_mask */
2464 			sbus_pic_named_data[event].value.ui64 =
2465 			    sbus_events_arr[event].pcr_mask << pic_shift;
2466 
2467 			/* event-name */
2468 			kstat_named_init(&sbus_pic_named_data[event],
2469 			    sbus_events_arr[event].event_name,
2470 			    KSTAT_DATA_UINT64);
2471 		}
2472 
2473 		/*
2474 		 * we add the clear_pic event and mask as the last
2475 		 * record in the kstat
2476 		 */
2477 		/* pcr mask */
2478 		sbus_pic_named_data[SBUS_NUM_EVENTS].value.ui64 =
2479 		    sbus_clear_pic[pic].pcr_mask;
2480 
2481 		/* event-name */
2482 		kstat_named_init(&sbus_pic_named_data[SBUS_NUM_EVENTS],
2483 		    sbus_clear_pic[pic].event_name,
2484 		    KSTAT_DATA_UINT64);
2485 
2486 		kstat_install(sbus_picN_ksp[pic]);
2487 	}
2488 }
2489 
2490 static	void
2491 sbus_add_kstats(struct sbus_soft_state *softsp)
2492 {
2493 	struct kstat *sbus_counters_ksp;
2494 	struct kstat_named *sbus_counters_named_data;
2495 
2496 	/*
2497 	 * Create the picN kstats if we are the first instance
2498 	 * to attach. We use sbus_attachcnt as a count of how
2499 	 * many instances have attached. This is protected by
2500 	 * a mutex.
2501 	 */
2502 	mutex_enter(&sbus_attachcnt_mutex);
2503 	if (sbus_attachcnt == 0)
2504 		sbus_add_picN_kstats(softsp->dip);
2505 
2506 	sbus_attachcnt ++;
2507 	mutex_exit(&sbus_attachcnt_mutex);
2508 
2509 	/*
2510 	 * A "counter" kstat is created for each sbus
2511 	 * instance that provides access to the %pcr and %pic
2512 	 * registers for that instance.
2513 	 *
2514 	 * The size of this kstat is SBUS_NUM_PICS + 1 for %pcr
2515 	 */
2516 	if ((sbus_counters_ksp = kstat_create("sbus",
2517 	    ddi_get_instance(softsp->dip), "counters",
2518 	    "bus", KSTAT_TYPE_NAMED, SBUS_NUM_PICS + 1,
2519 	    KSTAT_FLAG_WRITABLE)) == NULL) {
2520 
2521 			cmn_err(CE_WARN, "sbus%d counters: kstat_create"
2522 			    " failed", ddi_get_instance(softsp->dip));
2523 		return;
2524 	}
2525 
2526 	sbus_counters_named_data =
2527 	    (struct kstat_named *)(sbus_counters_ksp->ks_data);
2528 
2529 	/* initialize the named kstats */
2530 	kstat_named_init(&sbus_counters_named_data[0],
2531 	    "pcr", KSTAT_DATA_UINT64);
2532 
2533 	kstat_named_init(&sbus_counters_named_data[1],
2534 	    "pic0", KSTAT_DATA_UINT64);
2535 
2536 	kstat_named_init(&sbus_counters_named_data[2],
2537 	    "pic1", KSTAT_DATA_UINT64);
2538 
2539 	sbus_counters_ksp->ks_update = sbus_counters_kstat_update;
2540 	sbus_counters_ksp->ks_private = (void *)softsp;
2541 
2542 	kstat_install(sbus_counters_ksp);
2543 
2544 	/* update the sofstate */
2545 	softsp->sbus_counters_ksp = sbus_counters_ksp;
2546 }
2547 
2548 static	int
2549 sbus_counters_kstat_update(kstat_t *ksp, int rw)
2550 {
2551 	struct kstat_named *sbus_counters_data;
2552 	struct sbus_soft_state *softsp;
2553 	uint64_t pic_register;
2554 
2555 	sbus_counters_data = (struct kstat_named *)ksp->ks_data;
2556 	softsp = (struct sbus_soft_state *)ksp->ks_private;
2557 
2558 	if (rw == KSTAT_WRITE) {
2559 
2560 		/*
2561 		 * Write the pcr value to the softsp->sbus_pcr.
2562 		 * The pic register is read-only so we don't
2563 		 * attempt to write to it.
2564 		 */
2565 
2566 		*softsp->sbus_pcr =
2567 		    (uint32_t)sbus_counters_data[0].value.ui64;
2568 
2569 	} else {
2570 		/*
2571 		 * Read %pcr and %pic register values and write them
2572 		 * into counters kstat.
2573 		 *
2574 		 * Due to a hardware bug we need to right shift the %pcr
2575 		 * by 4 bits. This is only done when reading the %pcr.
2576 		 *
2577 		 */
2578 		/* pcr */
2579 		sbus_counters_data[0].value.ui64 = *softsp->sbus_pcr >> 4;
2580 
2581 		pic_register = *softsp->sbus_pic;
2582 		/*
2583 		 * sbus pic register:
2584 		 *  (63:32) = pic0
2585 		 *  (31:00) = pic1
2586 		 */
2587 
2588 		/* pic0 */
2589 		sbus_counters_data[1].value.ui64 = pic_register >> 32;
2590 		/* pic1 */
2591 		sbus_counters_data[2].value.ui64 =
2592 		    pic_register & SBUS_PIC0_MASK;
2593 
2594 	}
2595 	return (0);
2596 }
2597 
2598 static int
2599 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
2600     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
2601 {
2602 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2603 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2604 	int ino;
2605 	struct sbus_wrapper_arg *sbus_arg;
2606 	struct sbus_intr_handler *intr_handler;
2607 
2608 	/* Xlate the interrupt */
2609 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
2610 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
2611 		cmn_err(CE_WARN, "sbus_update_intr_state() can't xlate SBUS "
2612 		    "devices %s interrupt.", ddi_driver_name(rdip));
2613 		return (DDI_FAILURE);
2614 	}
2615 
2616 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
2617 	sbus_arg = softsp->intr_list[ino];
2618 
2619 	ASSERT(sbus_arg != NULL);
2620 	ASSERT(sbus_arg->handler_list != NULL);
2621 	intr_handler = sbus_arg->handler_list;
2622 
2623 	while (intr_handler) {
2624 		if ((intr_handler->inum == hdlp->ih_inum) &&
2625 		    (intr_handler->dip == rdip)) {
2626 			intr_handler->intr_state = new_intr_state;
2627 			return (DDI_SUCCESS);
2628 		}
2629 
2630 		intr_handler = intr_handler->next;
2631 	}
2632 
2633 	return (DDI_FAILURE);
2634 }
2635