xref: /titanic_51/usr/src/uts/sun4u/io/pci/pci_ecc.c (revision 42487ff1899d230ad6c2d55cf9573489ca5eb770)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PCI ECC support
31  */
32 
33 #include <sys/types.h>
34 #include <sys/systm.h>		/* for strrchr */
35 #include <sys/kmem.h>
36 #include <sys/sunddi.h>
37 #include <sys/intr.h>
38 #include <sys/async.h>		/* struct async_flt */
39 #include <sys/ddi_impldefs.h>
40 #include <sys/machsystm.h>
41 #include <sys/sysmacros.h>
42 #include <sys/fm/protocol.h>
43 #include <sys/fm/util.h>
44 #include <sys/fm/io/pci.h>
45 #include <sys/fm/io/sun4upci.h>
46 #include <sys/fm/io/ddi.h>
47 #include <sys/pci/pci_obj.h>	/* ld/st physio */
48 #include <sys/cpuvar.h>
49 #include <sys/errclassify.h>
50 #include <sys/cpu_module.h>
51 #include <sys/async.h>
52 
53 /*LINTLIBRARY*/
54 
55 static void ecc_disable(ecc_t *, int);
56 static void ecc_delayed_ce(void *);
57 static uint64_t ecc_read_afsr(ecc_intr_info_t *);
58 static void ecc_ereport_post(dev_info_t *dip, ecc_errstate_t *ecc_err);
59 
60 clock_t pci_ecc_panic_delay = 200;
61 int ecc_ce_delay_secs = 6;	/* number of sec to delay reenabling of CEs */
62 int ecc_ce_delayed = 1;		/* global for enabling/disabling CE delay */
63 
64 void
65 ecc_create(pci_t *pci_p)
66 {
67 #ifdef DEBUG
68 	dev_info_t *dip = pci_p->pci_dip;
69 #endif
70 	uint64_t cb_base_pa = pci_p->pci_cb_p->cb_base_pa;
71 	ecc_t *ecc_p;
72 
73 	ecc_p = (ecc_t *)kmem_zalloc(sizeof (ecc_t), KM_SLEEP);
74 	ecc_p->ecc_pci_cmn_p = pci_p->pci_common_p;
75 	pci_p->pci_ecc_p = ecc_p;
76 
77 	ecc_p->ecc_ue.ecc_p = ecc_p;
78 	ecc_p->ecc_ue.ecc_type = CBNINTR_UE;
79 	ecc_p->ecc_ce.ecc_p = ecc_p;
80 	ecc_p->ecc_ce.ecc_type = CBNINTR_CE;
81 
82 	pci_ecc_setup(ecc_p);
83 
84 	/*
85 	 * Determine the virtual addresses of the streaming cache
86 	 * control/status and flush registers.
87 	 */
88 	ecc_p->ecc_csr_pa = cb_base_pa + COMMON_ECC_CSR_OFFSET;
89 	ecc_p->ecc_ue.ecc_afsr_pa = cb_base_pa + COMMON_UE_AFSR_OFFSET;
90 	ecc_p->ecc_ue.ecc_afar_pa = cb_base_pa + COMMON_UE_AFAR_OFFSET;
91 	ecc_p->ecc_ce.ecc_afsr_pa = cb_base_pa + COMMON_CE_AFSR_OFFSET;
92 	ecc_p->ecc_ce.ecc_afar_pa = cb_base_pa + COMMON_CE_AFAR_OFFSET;
93 
94 	DEBUG1(DBG_ATTACH, dip, "ecc_create: csr=%x\n", ecc_p->ecc_csr_pa);
95 	DEBUG2(DBG_ATTACH, dip, "ecc_create: ue_afsr=%x, ue_afar=%x\n",
96 		ecc_p->ecc_ue.ecc_afsr_pa, ecc_p->ecc_ue.ecc_afar_pa);
97 	DEBUG2(DBG_ATTACH, dip, "ecc_create: ce_afsr=%x, ce_afar=%x\n",
98 		ecc_p->ecc_ce.ecc_afsr_pa, ecc_p->ecc_ce.ecc_afar_pa);
99 
100 	ecc_configure(pci_p);
101 
102 	/*
103 	 * Register routines to be called from system error handling code.
104 	 */
105 	bus_func_register(BF_TYPE_ERRDIS, (busfunc_t)ecc_disable_nowait, ecc_p);
106 }
107 
108 int
109 ecc_register_intr(pci_t *pci_p)
110 {
111 	ecc_t *ecc_p = pci_p->pci_ecc_p;
112 	int ret;
113 
114 	/*
115 	 * Install the UE and CE error interrupt handlers.
116 	 */
117 	if ((ret = pci_ecc_add_intr(pci_p, CBNINTR_UE, &ecc_p->ecc_ue)) !=
118 	    DDI_SUCCESS)
119 		return (ret);
120 	if ((ret = pci_ecc_add_intr(pci_p, CBNINTR_CE, &ecc_p->ecc_ce)) !=
121 	    DDI_SUCCESS)
122 		return (ret);
123 
124 	return (DDI_SUCCESS);
125 }
126 
127 void
128 ecc_destroy(pci_t *pci_p)
129 {
130 	ecc_t *ecc_p = pci_p->pci_ecc_p;
131 
132 	DEBUG0(DBG_DETACH, pci_p->pci_dip, "ecc_destroy:\n");
133 
134 	/*
135 	 * Disable UE and CE ECC error interrupts.
136 	 */
137 	ecc_disable_wait(ecc_p);
138 
139 	/*
140 	 * Remove the ECC interrupt handlers.
141 	 */
142 	pci_ecc_rem_intr(pci_p, CBNINTR_UE, &ecc_p->ecc_ue);
143 	pci_ecc_rem_intr(pci_p, CBNINTR_CE, &ecc_p->ecc_ce);
144 
145 	/*
146 	 * Unregister our error handling functions.
147 	 */
148 	bus_func_unregister(BF_TYPE_ERRDIS,
149 	    (busfunc_t)ecc_disable_nowait, ecc_p);
150 	/*
151 	 * If a timer has been set, unset it.
152 	 */
153 	(void) untimeout(ecc_p->ecc_to_id);
154 
155 	kmem_free(ecc_p, sizeof (ecc_t));
156 	pci_p->pci_ecc_p = NULL;
157 }
158 
159 void
160 ecc_configure(pci_t *pci_p)
161 {
162 	ecc_t *ecc_p = pci_p->pci_ecc_p;
163 	dev_info_t *dip = pci_p->pci_dip;
164 	uint64_t l;
165 
166 	/*
167 	 * Clear any pending ECC errors.
168 	 */
169 	DEBUG0(DBG_ATTACH, dip, "ecc_configure: clearing UE and CE errors\n");
170 	l = (COMMON_ECC_UE_AFSR_E_MASK << COMMON_ECC_UE_AFSR_PE_SHIFT) |
171 		(COMMON_ECC_UE_AFSR_E_MASK << COMMON_ECC_UE_AFSR_SE_SHIFT);
172 	stdphysio(ecc_p->ecc_ue.ecc_afsr_pa, l);
173 
174 	l = (COMMON_ECC_CE_AFSR_E_MASK << COMMON_ECC_CE_AFSR_PE_SHIFT) |
175 		(COMMON_ECC_CE_AFSR_E_MASK << COMMON_ECC_CE_AFSR_SE_SHIFT);
176 	stdphysio(ecc_p->ecc_ce.ecc_afsr_pa, l);
177 
178 	/*
179 	 * Enable ECC error detections via the control register.
180 	 */
181 	DEBUG0(DBG_ATTACH, dip, "ecc_configure: enabling UE CE detection\n");
182 	l = COMMON_ECC_CTRL_ECC_EN;
183 	if (ecc_error_intr_enable)
184 		l |= COMMON_ECC_CTRL_UE_INTEN | COMMON_ECC_CTRL_CE_INTEN;
185 	stdphysio(ecc_p->ecc_csr_pa, l);
186 }
187 
188 void
189 ecc_enable_intr(pci_t *pci_p)
190 {
191 	cb_enable_nintr(pci_p, CBNINTR_UE);
192 	cb_enable_nintr(pci_p, CBNINTR_CE);
193 }
194 
195 void
196 ecc_disable_wait(ecc_t *ecc_p)
197 {
198 	ecc_disable(ecc_p, IB_INTR_WAIT);
199 }
200 
201 uint_t
202 ecc_disable_nowait(ecc_t *ecc_p)
203 {
204 	ecc_disable(ecc_p, IB_INTR_NOWAIT);
205 	return (BF_NONE);
206 }
207 
208 static void
209 ecc_disable(ecc_t *ecc_p, int wait)
210 {
211 	cb_t *cb_p = ecc_p->ecc_pci_cmn_p->pci_common_cb_p;
212 	uint64_t csr_pa = ecc_p->ecc_csr_pa;
213 	uint64_t csr = lddphysio(csr_pa);
214 
215 	csr &= ~(COMMON_ECC_CTRL_UE_INTEN | COMMON_ECC_CTRL_CE_INTEN);
216 	stdphysio(csr_pa, csr);
217 
218 	cb_disable_nintr(cb_p, CBNINTR_UE, wait);
219 	cb_disable_nintr(cb_p, CBNINTR_CE, wait);
220 }
221 
222 /*
223  * I/O ECC error handling:
224  *
225  * Below are the generic functions that handle PCI(pcisch, pcipsy) detected
226  * ECC errors.
227  *
228  * The registered interrupt handler for both pcisch and pcipsy is ecc_intr(),
229  * it's function is to receive the error, capture some state, and pass that on
230  * to the ecc_err_handler() for reporting purposes.
231  *
232  * ecc_err_handler() gathers more state(via ecc_errstate_get) and attempts
233  * to handle and report the error. ecc_err_handler() must determine if we need
234  * to panic due to this error (via pci_ecc_classify, which also decodes the
235  * ECC afsr), and if any side effects exist that may have caused or are due
236  * to this error. PBM errors related to the ECC error may exist, to report
237  * them we call pci_pbm_err_handler() and call ndi_fm_handler_dispatch() so
238  * that the child devices can log their pci errors.
239  *
240  * To report the error we must also get the syndrome and unum, which can not
241  * be done in high level interrupted context. Therefore we have an error
242  * queue(pci_ecc_queue) which we dispatch errors to, to report the errors
243  * (ecc_err_drain()).
244  *
245  * ecc_err_drain() will be called when either the softint is triggered
246  * or the system is panicing. Either way it will gather more information
247  * about the error from the CPU(via ecc_cpu_call(), ecc.c), attempt to
248  * retire the faulty page(if error is a UE), and report the detected error.
249  *
250  * ecc_delayed_ce() is called via timeout from ecc_err_handler() following
251  * the receipt of a CE interrupt.  It will be called after 6ms and check to
252  * see if any new CEs are present, if so we will log and another timeout will
253  * be set by(ecc_err_handler()).  If no CEs are present then it will re-enable
254  * CEs by clearing the previous interrupt.  This is to keep the system going
255  * in the event of a CE storm.
256  */
257 
258 /*
259  * Function used to get ECC AFSR register
260  */
261 static uint64_t
262 ecc_read_afsr(ecc_intr_info_t *ecc_ii_p)
263 {
264 	uint_t i;
265 	uint64_t afsr = 0ull;
266 
267 	ASSERT((ecc_ii_p->ecc_type == CBNINTR_UE) ||
268 	    (ecc_ii_p->ecc_type == CBNINTR_CE));
269 	if (!ecc_ii_p->ecc_errpndg_mask)
270 		return (lddphysio(ecc_ii_p->ecc_afsr_pa));
271 
272 	for (i = 0; i < pci_ecc_afsr_retries; i++) {
273 
274 		/*
275 		 * If we timeout, the logging routine will
276 		 * know because it will see the ERRPNDG bits
277 		 * set in the AFSR.
278 		 */
279 		afsr = lddphysio(ecc_ii_p->ecc_afsr_pa);
280 		if ((afsr & ecc_ii_p->ecc_errpndg_mask) == 0)
281 			break;
282 	}
283 	return (afsr);
284 }
285 
286 /*
287  * IO detected ECC error interrupt handler, calls ecc_err_handler to post
288  * error reports and handle the interrupt. Re-entry into ecc_err_handler
289  * is protected by the per-chip mutex pci_fm_mutex.
290  */
291 uint_t
292 ecc_intr(caddr_t a)
293 {
294 	ecc_intr_info_t *ecc_ii_p = (ecc_intr_info_t *)a;
295 	ecc_t *ecc_p = ecc_ii_p->ecc_p;
296 	pci_common_t *cmn_p = ecc_p->ecc_pci_cmn_p;
297 	ecc_errstate_t ecc_err;
298 	int ret = DDI_FM_OK;
299 
300 	bzero(&ecc_err, sizeof (ecc_errstate_t));
301 	ecc_err.ecc_ena = fm_ena_generate(0, FM_ENA_FMT1);
302 	ecc_err.ecc_ii_p = *ecc_ii_p;
303 	ecc_err.ecc_p = ecc_p;
304 	ecc_err.ecc_caller = PCI_ECC_CALL;
305 
306 	mutex_enter(&cmn_p->pci_fm_mutex);
307 	ret = ecc_err_handler(&ecc_err);
308 	mutex_exit(&cmn_p->pci_fm_mutex);
309 	if (ret == DDI_FM_FATAL) {
310 		/*
311 		 * Need delay here to allow CPUs to handle related traps,
312 		 * such as FRUs for USIIIi systems.
313 		 */
314 		DELAY(pci_ecc_panic_delay);
315 		fm_panic("Fatal PCI UE Error");
316 	}
317 
318 	return (DDI_INTR_CLAIMED);
319 }
320 
321 /*
322  * Function used to gather IO ECC error state.
323  */
324 static void
325 ecc_errstate_get(ecc_errstate_t *ecc_err_p)
326 {
327 	ecc_t *ecc_p;
328 	uint_t bus_id;
329 
330 	ASSERT(ecc_err_p);
331 
332 	ecc_p = ecc_err_p->ecc_ii_p.ecc_p;
333 	bus_id = ecc_p->ecc_pci_cmn_p->pci_common_id;
334 
335 	ASSERT(MUTEX_HELD(&ecc_p->ecc_pci_cmn_p->pci_fm_mutex));
336 	/*
337 	 * Read the fault registers.
338 	 */
339 	ecc_err_p->ecc_afsr = ecc_read_afsr(&ecc_err_p->ecc_ii_p);
340 	ecc_err_p->ecc_afar = lddphysio(ecc_err_p->ecc_ii_p.ecc_afar_pa);
341 
342 	ecc_err_p->ecc_offset = ((ecc_err_p->ecc_afsr &
343 				ecc_err_p->ecc_ii_p.ecc_offset_mask) >>
344 			ecc_err_p->ecc_ii_p.ecc_offset_shift) <<
345 		ecc_err_p->ecc_ii_p.ecc_size_log2;
346 
347 	ecc_err_p->ecc_aflt.flt_id = gethrtime();
348 	ecc_err_p->ecc_aflt.flt_stat = ecc_err_p->ecc_afsr;
349 	ecc_err_p->ecc_aflt.flt_addr = P2ALIGN(ecc_err_p->ecc_afar, 64) +
350 		ecc_err_p->ecc_offset;
351 	ecc_err_p->ecc_aflt.flt_bus_id = bus_id;
352 	ecc_err_p->ecc_aflt.flt_inst = CPU->cpu_id;
353 	ecc_err_p->ecc_aflt.flt_status = ECC_IOBUS;
354 	ecc_err_p->ecc_aflt.flt_in_memory = (pf_is_memory
355 			(ecc_err_p->ecc_afar >> MMU_PAGESHIFT))? 1: 0;
356 	ecc_err_p->ecc_aflt.flt_class = BUS_FAULT;
357 }
358 
359 /*
360  * ecc_pci_check: Called by ecc_err_handler() this function is responsible
361  * for calling pci_pbm_err_handler() for both sides of the schizo/psycho
362  * and calling their children error handlers(via ndi_fm_handler_dispatch()).
363  */
364 static int
365 ecc_pci_check(ecc_t *ecc_p, uint64_t fme_ena)
366 {
367 	ddi_fm_error_t derr;
368 	int i;
369 	int ret;
370 
371 	ASSERT(MUTEX_HELD(&ecc_p->ecc_pci_cmn_p->pci_fm_mutex));
372 
373 	bzero(&derr, sizeof (ddi_fm_error_t));
374 	derr.fme_version = DDI_FME_VERSION;
375 	derr.fme_ena = fme_ena;
376 	ret = DDI_FM_NONFATAL;
377 
378 	/*
379 	 * Need to report any PBM errors which may have caused or
380 	 * resulted from this error.
381 	 *
382 	 * Each psycho or schizo is represented by a pair of pci nodes
383 	 * in the device tree.
384 	 */
385 	for (i = 0; i < 2; i++) {
386 		dev_info_t *dip;
387 		pci_t *pci_p;
388 
389 		/* Make sure PBM PCI node exists */
390 		pci_p = ecc_p->ecc_pci_cmn_p->pci_p[i];
391 		if (pci_p == NULL)
392 			continue;
393 
394 		dip = pci_p->pci_dip;
395 		if (pci_pbm_err_handler(dip, &derr, (void *)pci_p,
396 		    PCI_ECC_CALL) == DDI_FM_FATAL)
397 			ret = DDI_FM_FATAL;
398 	}
399 	if (ret == DDI_FM_FATAL)
400 		return (DDI_FM_FATAL);
401 	else
402 		return (DDI_FM_NONFATAL);
403 }
404 
405 /*
406  * Function used to handle and log IO detected ECC errors, can be called by
407  * ecc_intr and pci_err_callback(trap callback). Protected by pci_fm_mutex.
408  */
409 int
410 ecc_err_handler(ecc_errstate_t *ecc_err_p)
411 {
412 	uint64_t pri_err, sec_err;
413 	ecc_intr_info_t *ecc_ii_p = &ecc_err_p->ecc_ii_p;
414 	ecc_t *ecc_p = ecc_ii_p->ecc_p;
415 	pci_t *pci_p;
416 	cb_t *cb_p;
417 	int fatal = 0;
418 	int nonfatal = 0;
419 
420 	ASSERT(MUTEX_HELD(&ecc_p->ecc_pci_cmn_p->pci_fm_mutex));
421 
422 	pci_p = ecc_p->ecc_pci_cmn_p->pci_p[0];
423 	if (pci_p == NULL)
424 		pci_p = ecc_p->ecc_pci_cmn_p->pci_p[1];
425 
426 	cb_p = ecc_p->ecc_pci_cmn_p->pci_common_cb_p;
427 
428 	ecc_errstate_get(ecc_err_p);
429 	pri_err = (ecc_err_p->ecc_afsr >> COMMON_ECC_UE_AFSR_PE_SHIFT) &
430 		COMMON_ECC_UE_AFSR_E_MASK;
431 
432 	sec_err = (ecc_err_p->ecc_afsr >> COMMON_ECC_UE_AFSR_SE_SHIFT) &
433 		COMMON_ECC_UE_AFSR_E_MASK;
434 
435 	switch (ecc_ii_p->ecc_type) {
436 	case CBNINTR_UE:
437 		if (pri_err) {
438 			ecc_err_p->ecc_aflt.flt_synd =
439 				pci_ecc_get_synd(ecc_err_p->ecc_afsr);
440 			ecc_err_p->ecc_pri = 1;
441 			pci_ecc_classify(pri_err, ecc_err_p);
442 			errorq_dispatch(pci_ecc_queue, (void *)ecc_err_p,
443 				sizeof (ecc_errstate_t),
444 				ecc_err_p->ecc_aflt.flt_panic);
445 		}
446 		if (sec_err) {
447 			ecc_errstate_t ecc_sec_err;
448 			uint64_t sec_tmp;
449 			int i;
450 			uint64_t afsr_err[] = {COMMON_ECC_UE_AFSR_E_PIO,
451 				COMMON_ECC_UE_AFSR_E_DRD,
452 				COMMON_ECC_UE_AFSR_E_DWR};
453 
454 			ecc_sec_err = *ecc_err_p;
455 			ecc_sec_err.ecc_pri = 0;
456 			/*
457 			 * Secondary errors are cummulative so we need to loop
458 			 * through to capture them all.
459 			 */
460 			for (i = 0; i < 3; i++) {
461 				sec_tmp = sec_err & afsr_err[i];
462 				if (sec_tmp) {
463 					pci_ecc_classify(sec_tmp, &ecc_sec_err);
464 					ecc_ereport_post(pci_p->pci_dip,
465 					    &ecc_sec_err);
466 				}
467 			}
468 		}
469 		/*
470 		 * Check for PCI bus errors that may have resulted from or
471 		 * caused this UE.
472 		 */
473 		if (ecc_err_p->ecc_caller == PCI_ECC_CALL &&
474 		    ecc_pci_check(ecc_p, ecc_err_p->ecc_ena) == DDI_FM_FATAL)
475 			ecc_err_p->ecc_aflt.flt_panic = 1;
476 
477 		if (ecc_err_p->ecc_aflt.flt_panic &&
478 				ecc_err_p->ecc_aflt.flt_in_memory)
479 			panic_aflt = ecc_err_p->ecc_aflt;
480 
481 		if (ecc_err_p->ecc_aflt.flt_panic) {
482 			/*
483 			 * Disable all further errors since this will be
484 			 * treated as a fatal error.
485 			 */
486 			(void) ecc_disable_nowait(ecc_p);
487 			fatal++;
488 		}
489 		break;
490 
491 	case CBNINTR_CE:
492 		if (pri_err) {
493 			ecc_err_p->ecc_pri = 1;
494 			pci_ecc_classify(pri_err, ecc_err_p);
495 			ecc_err_p->ecc_aflt.flt_synd =
496 				pci_ecc_get_synd(ecc_err_p->ecc_afsr);
497 			ce_scrub(&ecc_err_p->ecc_aflt);
498 			errorq_dispatch(pci_ecc_queue, (void *)ecc_err_p,
499 					sizeof (ecc_errstate_t), ERRORQ_ASYNC);
500 			nonfatal++;
501 		}
502 		if (sec_err) {
503 			ecc_errstate_t ecc_sec_err;
504 
505 			ecc_sec_err = *ecc_err_p;
506 			ecc_sec_err.ecc_pri = 0;
507 			pci_ecc_classify(sec_err, &ecc_sec_err);
508 			ecc_ereport_post(pci_p->pci_dip, &ecc_sec_err);
509 			nonfatal++;
510 		}
511 		break;
512 
513 	default:
514 		return (DDI_FM_OK);
515 	}
516 	/* Clear the errors */
517 	stdphysio(ecc_ii_p->ecc_afsr_pa, ecc_err_p->ecc_afsr);
518 	/*
519 	 * Clear the interrupt if called by ecc_intr and UE error or if called
520 	 * by ecc_intr and CE error and delayed CE interrupt handling is
521 	 * turned off.
522 	 */
523 	if ((ecc_err_p->ecc_caller == PCI_ECC_CALL &&
524 	    ecc_ii_p->ecc_type == CBNINTR_UE && !fatal) ||
525 	    (ecc_err_p->ecc_caller == PCI_ECC_CALL &&
526 	    ecc_ii_p->ecc_type == CBNINTR_CE && !ecc_ce_delayed))
527 		cb_clear_nintr(cb_p, ecc_ii_p->ecc_type);
528 	if (!fatal && !nonfatal)
529 		return (DDI_FM_OK);
530 	else if (fatal)
531 		return (DDI_FM_FATAL);
532 	return (DDI_FM_NONFATAL);
533 }
534 
535 /*
536  * Called from ecc_err_drain below for CBINTR_CE case.
537  */
538 static int
539 ecc_err_cexdiag(ecc_errstate_t *ecc_err, errorq_elem_t *eqep)
540 {
541 	struct async_flt *ecc = &ecc_err->ecc_aflt;
542 	uint64_t errors;
543 
544 	if (page_retire_check(ecc->flt_addr, &errors) == EINVAL) {
545 		CE_XDIAG_SETSKIPCODE(ecc->flt_disp, CE_XDIAG_SKIP_NOPP);
546 		return (0);
547 	} else if (errors != PR_OK) {
548 		CE_XDIAG_SETSKIPCODE(ecc->flt_disp, CE_XDIAG_SKIP_PAGEDET);
549 		return (0);
550 	} else {
551 		return (ce_scrub_xdiag_recirc(ecc, pci_ecc_queue, eqep,
552 		    offsetof(ecc_errstate_t, ecc_aflt)));
553 	}
554 }
555 
556 /*
557  * Function used to drain pci_ecc_queue, either during panic or after softint
558  * is generated, to log IO detected ECC errors.
559  */
560 /*ARGSUSED*/
561 void
562 ecc_err_drain(void *not_used, ecc_errstate_t *ecc_err, errorq_elem_t *eqep)
563 {
564 	struct async_flt *ecc = &ecc_err->ecc_aflt;
565 	pci_t *pci_p = ecc_err->ecc_p->ecc_pci_cmn_p->pci_p[0];
566 	int ecc_type = ecc_err->ecc_ii_p.ecc_type;
567 
568 	if (pci_p == NULL)
569 		pci_p = ecc_err->ecc_p->ecc_pci_cmn_p->pci_p[1];
570 
571 	if (ecc->flt_class == RECIRC_BUS_FAULT) {
572 		/*
573 		 * Perform any additional actions that occur after the
574 		 * ecc_err_cexdiag below and post the ereport.
575 		 */
576 		ecc->flt_class = BUS_FAULT;
577 		ecc_err->ecc_err_type = flt_to_error_type(ecc);
578 		ecc_ereport_post(pci_p->pci_dip, ecc_err);
579 		return;
580 	}
581 
582 	ecc_cpu_call(ecc, ecc_err->ecc_unum, (ecc_type == CBNINTR_UE) ?
583 			ECC_IO_UE : ECC_IO_CE);
584 
585 	switch (ecc_type) {
586 	case CBNINTR_UE:
587 		if (ecc_err->ecc_pg_ret == 1) {
588 			(void) page_retire(ecc->flt_addr, PR_UE);
589 		}
590 		ecc_err->ecc_err_type = flt_to_error_type(ecc);
591 		break;
592 
593 	case CBNINTR_CE:
594 		/*
595 		 * Setup timeout (if CE detected via interrupt) to
596 		 * re-enable CE interrupts if no more CEs are detected.
597 		 * This is to protect against CE storms.
598 		 */
599 		if (ecc_ce_delayed &&
600 		    ecc_err->ecc_caller == PCI_ECC_CALL &&
601 		    ecc_err->ecc_p->ecc_to_id == 0) {
602 			ecc_err->ecc_p->ecc_to_id = timeout(ecc_delayed_ce,
603 			    (void *)ecc_err->ecc_p,
604 			    drv_usectohz((clock_t)ecc_ce_delay_secs *
605 			    MICROSEC));
606 		}
607 
608 		/* ecc_err_cexdiag returns nonzero to recirculate */
609 		if (CE_XDIAG_EXT_ALG_APPLIED(ecc->flt_disp) &&
610 		    ecc_err_cexdiag(ecc_err, eqep))
611 			return;
612 		ecc_err->ecc_err_type = flt_to_error_type(ecc);
613 		break;
614 	}
615 
616 	ecc_ereport_post(pci_p->pci_dip, ecc_err);
617 }
618 
619 static void
620 ecc_delayed_ce(void *arg)
621 {
622 	ecc_t *ecc_p = (ecc_t *)arg;
623 	pci_common_t *cmn_p;
624 	cb_t *cb_p;
625 
626 	ASSERT(ecc_p);
627 
628 	cmn_p = ecc_p->ecc_pci_cmn_p;
629 	cb_p = cmn_p->pci_common_cb_p;
630 	/*
631 	 * If no more CE errors are found then enable interrupts(by
632 	 * clearing the previous interrupt), else send in for logging
633 	 * and the timeout should be set again.
634 	 */
635 	ecc_p->ecc_to_id = 0;
636 	if (!((ecc_read_afsr(&ecc_p->ecc_ce) >>
637 	    COMMON_ECC_UE_AFSR_PE_SHIFT) & COMMON_ECC_UE_AFSR_E_MASK)) {
638 		cb_clear_nintr(cb_p, ecc_p->ecc_ce.ecc_type);
639 	} else {
640 		ecc_errstate_t ecc_err;
641 
642 		bzero(&ecc_err, sizeof (ecc_errstate_t));
643 		ecc_err.ecc_ena = fm_ena_generate(0, FM_ENA_FMT1);
644 		ecc_err.ecc_ii_p = ecc_p->ecc_ce;
645 		ecc_err.ecc_p = ecc_p;
646 		ecc_err.ecc_caller = PCI_ECC_CALL;
647 
648 		mutex_enter(&cmn_p->pci_fm_mutex);
649 		(void) ecc_err_handler(&ecc_err);
650 		mutex_exit(&cmn_p->pci_fm_mutex);
651 	}
652 }
653 
654 /*
655  * Function used to post IO detected ECC ereports.
656  */
657 static void
658 ecc_ereport_post(dev_info_t *dip, ecc_errstate_t *ecc_err)
659 {
660 	char buf[FM_MAX_CLASS], dev_path[MAXPATHLEN], *ptr;
661 	struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl;
662 	nvlist_t *ereport, *detector;
663 	nv_alloc_t *nva;
664 	errorq_elem_t *eqep;
665 
666 	/*
667 	 * We do not use ddi_fm_ereport_post because we need to set a
668 	 * special detector here. Since we do not have a device path for
669 	 * the bridge chip we use what we think it should be to aid in
670 	 * diagnosis. This path fmri is created by pci_fmri_create()
671 	 * during initialization.
672 	 */
673 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s", DDI_IO_CLASS,
674 	    ecc_err->ecc_bridge_type, ecc_err->ecc_aflt.flt_erpt_class);
675 
676 	ecc_err->ecc_ena = ecc_err->ecc_ena ? ecc_err->ecc_ena :
677 		fm_ena_generate(0, FM_ENA_FMT1);
678 
679 	eqep = errorq_reserve(fmhdl->fh_errorq);
680 	if (eqep == NULL)
681 		return;
682 
683 	ereport = errorq_elem_nvl(fmhdl->fh_errorq, eqep);
684 	nva = errorq_elem_nva(fmhdl->fh_errorq, eqep);
685 	detector = fm_nvlist_create(nva);
686 
687 	ASSERT(ereport);
688 	ASSERT(nva);
689 	ASSERT(detector);
690 
691 	ddi_pathname(dip, dev_path);
692 	ptr = strrchr(dev_path, (int)',');
693 
694 	if (ptr)
695 		*ptr = '\0';
696 
697 	fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL, dev_path, NULL);
698 
699 	if (ecc_err->ecc_pri) {
700 		if ((ecc_err->ecc_fmri = fm_nvlist_create(nva)) != NULL) {
701 			char sid[DIMM_SERIAL_ID_LEN] = "";
702 			uint64_t offset = (uint64_t)-1;
703 			int len;
704 			int ret;
705 
706 			ret = cpu_get_mem_sid(ecc_err->ecc_unum, sid,
707 			    DIMM_SERIAL_ID_LEN, &len);
708 
709 			if (ret == 0) {
710 				(void) cpu_get_mem_offset(
711 				    ecc_err->ecc_aflt.flt_addr, &offset);
712 			}
713 
714 			fm_fmri_mem_set(ecc_err->ecc_fmri,
715 			    FM_MEM_SCHEME_VERSION, NULL, ecc_err->ecc_unum,
716 			    (ret == 0) ? sid : NULL, offset);
717 		}
718 		fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
719 		    ecc_err->ecc_ena, detector,
720 		    PCI_ECC_AFSR, DATA_TYPE_UINT64, ecc_err->ecc_afsr,
721 		    PCI_ECC_AFAR, DATA_TYPE_UINT64, ecc_err->ecc_aflt.flt_addr,
722 		    PCI_ECC_CTRL, DATA_TYPE_UINT64, ecc_err->ecc_ctrl,
723 		    PCI_ECC_SYND, DATA_TYPE_UINT16, ecc_err->ecc_aflt.flt_synd,
724 		    PCI_ECC_TYPE, DATA_TYPE_STRING, ecc_err->ecc_err_type,
725 		    PCI_ECC_DISP, DATA_TYPE_UINT64, ecc_err->ecc_aflt.flt_disp,
726 		    PCI_ECC_RESOURCE, DATA_TYPE_NVLIST, ecc_err->ecc_fmri,
727 		    NULL);
728 	} else {
729 		fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
730 		    ecc_err->ecc_ena, detector,
731 		    PCI_ECC_AFSR, DATA_TYPE_UINT64, ecc_err->ecc_afsr,
732 		    PCI_ECC_CTRL, DATA_TYPE_UINT64, ecc_err->ecc_ctrl,
733 		    NULL);
734 	}
735 	errorq_commit(fmhdl->fh_errorq, eqep, ERRORQ_ASYNC);
736 }
737