xref: /titanic_51/usr/src/uts/sun4u/cpu/us3_cheetahplus.c (revision d15360a7f1d6c844288e4ec4c82be4ed51792be2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/ddi.h>
32 #include <sys/sysmacros.h>
33 #include <sys/archsystm.h>
34 #include <sys/vmsystm.h>
35 #include <sys/machparam.h>
36 #include <sys/machsystm.h>
37 #include <sys/machthread.h>
38 #include <sys/cpu.h>
39 #include <sys/cmp.h>
40 #include <sys/elf_SPARC.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/seg_kmem.h>
43 #include <sys/cpuvar.h>
44 #include <sys/cheetahregs.h>
45 #include <sys/us3_module.h>
46 #include <sys/async.h>
47 #include <sys/cmn_err.h>
48 #include <sys/debug.h>
49 #include <sys/dditypes.h>
50 #include <sys/prom_debug.h>
51 #include <sys/prom_plat.h>
52 #include <sys/cpu_module.h>
53 #include <sys/sysmacros.h>
54 #include <sys/intreg.h>
55 #include <sys/clock.h>
56 #include <sys/platform_module.h>
57 #include <sys/machtrap.h>
58 #include <sys/ontrap.h>
59 #include <sys/panic.h>
60 #include <sys/memlist.h>
61 #include <sys/bootconf.h>
62 #include <sys/ivintr.h>
63 #include <sys/atomic.h>
64 #include <sys/fm/protocol.h>
65 #include <sys/fm/cpu/UltraSPARC-III.h>
66 #include <sys/fm/util.h>
67 
68 #ifdef	CHEETAHPLUS_ERRATUM_25
69 #include <sys/cyclic.h>
70 #endif	/* CHEETAHPLUS_ERRATUM_25 */
71 
72 /*
73  * See comment above cpu_scrub_cpu_setup() for description
74  */
75 #define	SCRUBBER_NEITHER_CORE_ONLINE	0x0
76 #define	SCRUBBER_CORE_0_ONLINE		0x1
77 #define	SCRUBBER_CORE_1_ONLINE		0x2
78 #define	SCRUBBER_BOTH_CORES_ONLINE	(SCRUBBER_CORE_0_ONLINE | \
79 					SCRUBBER_CORE_1_ONLINE)
80 
81 static int pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data);
82 static void cpu_async_log_tlb_parity_err(void *flt);
83 static cpu_t *cpu_get_sibling_core(cpu_t *cpup);
84 
85 
86 /*
87  * Setup trap handlers.
88  */
89 void
90 cpu_init_trap(void)
91 {
92 	CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr);
93 
94 	CH_SET_TRAP(tt0_fecc, fecc_err_instr);
95 	CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr);
96 	CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr);
97 
98 	CH_SET_TRAP(tt0_dperr, dcache_parity_instr);
99 	CH_SET_TRAP(tt1_dperr, dcache_parity_tl1_instr);
100 	CH_SET_TRAP(tt1_swtrap1, dcache_parity_tl1_cont_instr);
101 
102 	CH_SET_TRAP(tt0_iperr, icache_parity_instr);
103 	CH_SET_TRAP(tt1_iperr, icache_parity_tl1_instr);
104 	CH_SET_TRAP(tt1_swtrap2, icache_parity_tl1_cont_instr);
105 }
106 
107 /*
108  * Set the magic constants of the implementation.
109  */
110 /*ARGSUSED*/
111 void
112 cpu_fiximp(dnode_t dnode)
113 {
114 	int i, a;
115 	extern int vac_size, vac_shift;
116 	extern uint_t vac_mask;
117 
118 	dcache_size = CH_DCACHE_SIZE;
119 	dcache_linesize = CH_DCACHE_LSIZE;
120 
121 	icache_size = CHP_ICACHE_MAX_SIZE;
122 	icache_linesize = CHP_ICACHE_MIN_LSIZE;
123 
124 	ecache_size = CH_ECACHE_MAX_SIZE;
125 	ecache_alignsize = CH_ECACHE_MAX_LSIZE;
126 	ecache_associativity = CHP_ECACHE_MIN_NWAY;
127 
128 	/*
129 	 * ecache_setsize needs to maximum of all cpu ecache setsizes
130 	 */
131 	ecache_setsize = CHP_ECACHE_MAX_SETSIZE;
132 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
133 
134 	vac_size = CH_VAC_SIZE;
135 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
136 	i = 0; a = vac_size;
137 	while (a >>= 1)
138 		++i;
139 	vac_shift = i;
140 	shm_alignment = vac_size;
141 	vac = 1;
142 }
143 
144 /*
145  * Use Panther values for Panther-only domains.
146  * See Panther PRM, 1.5.4 Cache Hierarchy
147  */
148 void
149 cpu_fix_allpanther(void)
150 {
151 	/* dcache same as Ch+ */
152 	icache_size = PN_ICACHE_SIZE;
153 	icache_linesize = PN_ICACHE_LSIZE;
154 	ecache_size = PN_L3_SIZE;
155 	ecache_alignsize = PN_L3_LINESIZE;
156 	ecache_associativity = PN_L3_NWAYS;
157 	ecache_setsize = PN_L3_SET_SIZE;
158 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
159 	/* vac same as Ch+ */
160 }
161 
162 void
163 send_mondo_set(cpuset_t set)
164 {
165 	int lo, busy, nack, shipped = 0;
166 	uint16_t i, cpuids[IDSR_BN_SETS];
167 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
168 	uint64_t starttick, endtick, tick, lasttick;
169 #if (NCPU > IDSR_BN_SETS)
170 	int index = 0;
171 	int ncpuids = 0;
172 #endif
173 #ifdef	CHEETAHPLUS_ERRATUM_25
174 	int recovered = 0;
175 	int cpuid;
176 #endif
177 
178 	ASSERT(!CPUSET_ISNULL(set));
179 	starttick = lasttick = gettick();
180 
181 #if (NCPU <= IDSR_BN_SETS)
182 	for (i = 0; i < NCPU; i++)
183 		if (CPU_IN_SET(set, i)) {
184 			shipit(i, shipped);
185 			nackmask |= IDSR_NACK_BIT(shipped);
186 			cpuids[shipped++] = i;
187 			CPUSET_DEL(set, i);
188 			if (CPUSET_ISNULL(set))
189 				break;
190 		}
191 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
192 #else
193 	for (i = 0; i < NCPU; i++)
194 		if (CPU_IN_SET(set, i)) {
195 			ncpuids++;
196 
197 			/*
198 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
199 			 * find we have shipped to more than (IDSR_BN_SETS)
200 			 * CPUs, set "index" to the highest numbered CPU in
201 			 * the set so we can ship to other CPUs a bit later on.
202 			 */
203 			if (shipped < IDSR_BN_SETS) {
204 				shipit(i, shipped);
205 				nackmask |= IDSR_NACK_BIT(shipped);
206 				cpuids[shipped++] = i;
207 				CPUSET_DEL(set, i);
208 				if (CPUSET_ISNULL(set))
209 					break;
210 			} else
211 				index = (int)i;
212 		}
213 
214 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
215 #endif
216 
217 	busymask = IDSR_NACK_TO_BUSY(nackmask);
218 	busy = nack = 0;
219 	endtick = starttick + xc_tick_limit;
220 	for (;;) {
221 		idsr = getidsr();
222 #if (NCPU <= IDSR_BN_SETS)
223 		if (idsr == 0)
224 			break;
225 #else
226 		if (idsr == 0 && shipped == ncpuids)
227 			break;
228 #endif
229 		tick = gettick();
230 		/*
231 		 * If there is a big jump between the current tick
232 		 * count and lasttick, we have probably hit a break
233 		 * point.  Adjust endtick accordingly to avoid panic.
234 		 */
235 		if (tick > (lasttick + xc_tick_jump_limit))
236 			endtick += (tick - lasttick);
237 		lasttick = tick;
238 		if (tick > endtick) {
239 			if (panic_quiesce)
240 				return;
241 #ifdef	CHEETAHPLUS_ERRATUM_25
242 			cpuid = -1;
243 			for (i = 0; i < IDSR_BN_SETS; i++) {
244 				if (idsr & (IDSR_NACK_BIT(i) |
245 				    IDSR_BUSY_BIT(i))) {
246 					cpuid = cpuids[i];
247 					break;
248 				}
249 			}
250 			if (cheetah_sendmondo_recover && cpuid != -1 &&
251 			    recovered == 0) {
252 				if (mondo_recover(cpuid, i)) {
253 					/*
254 					 * We claimed the whole memory or
255 					 * full scan is disabled.
256 					 */
257 					recovered++;
258 				}
259 				tick = gettick();
260 				endtick = tick + xc_tick_limit;
261 				lasttick = tick;
262 				/*
263 				 * Recheck idsr
264 				 */
265 				continue;
266 			} else
267 #endif	/* CHEETAHPLUS_ERRATUM_25 */
268 			{
269 				cmn_err(CE_CONT, "send mondo timeout "
270 				    "[%d NACK %d BUSY]\nIDSR 0x%"
271 				    "" PRIx64 "  cpuids:", nack, busy, idsr);
272 				for (i = 0; i < IDSR_BN_SETS; i++) {
273 					if (idsr & (IDSR_NACK_BIT(i) |
274 					    IDSR_BUSY_BIT(i))) {
275 						cmn_err(CE_CONT, " 0x%x",
276 						    cpuids[i]);
277 					}
278 				}
279 				cmn_err(CE_CONT, "\n");
280 				cmn_err(CE_PANIC, "send_mondo_set: timeout");
281 			}
282 		}
283 		curnack = idsr & nackmask;
284 		curbusy = idsr & busymask;
285 #if (NCPU > IDSR_BN_SETS)
286 		if (shipped < ncpuids) {
287 			uint64_t cpus_left;
288 			uint16_t next = (uint16_t)index;
289 
290 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
291 				busymask;
292 
293 			if (cpus_left) {
294 				do {
295 					/*
296 					 * Sequence through and ship to the
297 					 * remainder of the CPUs in the system
298 					 * (e.g. other than the first
299 					 * (IDSR_BN_SETS)) in reverse order.
300 					 */
301 					lo = lowbit(cpus_left) - 1;
302 					i = IDSR_BUSY_IDX(lo);
303 					shipit(next, i);
304 					shipped++;
305 					cpuids[i] = next;
306 
307 					/*
308 					 * If we've processed all the CPUs,
309 					 * exit the loop now and save
310 					 * instructions.
311 					 */
312 					if (shipped == ncpuids)
313 						break;
314 
315 					for ((index = ((int)next - 1));
316 					    index >= 0; index--)
317 						if (CPU_IN_SET(set, index)) {
318 							next = (uint16_t)index;
319 							break;
320 						}
321 
322 					cpus_left &= ~(1ull << lo);
323 				} while (cpus_left);
324 #ifdef	CHEETAHPLUS_ERRATUM_25
325 				/*
326 				 * Clear recovered because we are sending to
327 				 * a new set of targets.
328 				 */
329 				recovered = 0;
330 #endif
331 				continue;
332 			}
333 		}
334 #endif
335 		if (curbusy) {
336 			busy++;
337 			continue;
338 		}
339 
340 #ifdef SEND_MONDO_STATS
341 		{
342 			int n = gettick() - starttick;
343 			if (n < 8192)
344 				x_nack_stimes[n >> 7]++;
345 		}
346 #endif
347 		while (gettick() < (tick + sys_clock_mhz))
348 			;
349 		do {
350 			lo = lowbit(curnack) - 1;
351 			i = IDSR_NACK_IDX(lo);
352 			shipit(cpuids[i], i);
353 			curnack &= ~(1ull << lo);
354 		} while (curnack);
355 		nack++;
356 		busy = 0;
357 	}
358 #ifdef SEND_MONDO_STATS
359 	{
360 		int n = gettick() - starttick;
361 		if (n < 8192)
362 			x_set_stimes[n >> 7]++;
363 		else
364 			x_set_ltimes[(n >> 13) & 0xf]++;
365 	}
366 	x_set_cpus[shipped]++;
367 #endif
368 }
369 
370 /*
371  * Handles error logging for implementation specific error types
372  */
373 /*ARGSUSED1*/
374 int
375 cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep)
376 {
377 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
378 	struct async_flt *aflt = (struct async_flt *)flt;
379 
380 	switch (ch_flt->flt_type) {
381 
382 	case CPU_IC_PARITY:
383 		cpu_async_log_ic_parity_err(flt);
384 		return (CH_ASYNC_LOG_DONE);
385 
386 	case CPU_DC_PARITY:
387 		cpu_async_log_dc_parity_err(flt);
388 		return (CH_ASYNC_LOG_DONE);
389 
390 	case CPU_DUE:
391 		cpu_log_err(aflt);
392 		cpu_page_retire(ch_flt);
393 		return (CH_ASYNC_LOG_DONE);
394 
395 	case CPU_ITLB_PARITY:
396 	case CPU_DTLB_PARITY:
397 		cpu_async_log_tlb_parity_err(flt);
398 		return (CH_ASYNC_LOG_DONE);
399 
400 	default:
401 		return (CH_ASYNC_LOG_UNKNOWN);
402 	}
403 }
404 
405 /*
406  * Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache
407  * control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on).
408  * We need to do this on the fly because we may have mixed Cheetah+'s with
409  * both direct and 2-way Ecaches. Panther only supports 4-way L3$.
410  */
411 int
412 cpu_ecache_nway(void)
413 {
414 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
415 		return (PN_L3_NWAYS);
416 	return ((get_ecache_ctrl() & ECCR_ASSOC) ? 2 : 1);
417 }
418 
419 /*
420  * Note that these are entered into the table: Fatal Errors (PERR, IERR, ISAP,
421  * EMU, IMU) first, orphaned UCU/UCC, AFAR Overwrite policy, finally IVU, IVC.
422  * Afar overwrite policy is:
423  *   Class 4:
424  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
425  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
426  *   Class 3:
427  *      AFSR     -- UE, DUE, EDU, WDU, CPU
428  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
429  *   Class 2:
430  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
431  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
432  *   Class 1:
433  *      AFSR     -- TO, DTO, BERR, DBERR
434  */
435 ecc_type_to_info_t ecc_type_to_info[] = {
436 
437 	/* Fatal Errors */
438 	C_AFSR_PERR,		"PERR ",	ECC_ALL_TRAPS,
439 		CPU_FATAL,	"PERR Fatal",
440 		FM_EREPORT_PAYLOAD_SYSTEM2,
441 		FM_EREPORT_CPU_USIII_PERR,
442 	C_AFSR_IERR,		"IERR ", 	ECC_ALL_TRAPS,
443 		CPU_FATAL,	"IERR Fatal",
444 		FM_EREPORT_PAYLOAD_SYSTEM2,
445 		FM_EREPORT_CPU_USIII_IERR,
446 	C_AFSR_ISAP,		"ISAP ",	ECC_ALL_TRAPS,
447 		CPU_FATAL,	"ISAP Fatal",
448 		FM_EREPORT_PAYLOAD_SYSTEM1,
449 		FM_EREPORT_CPU_USIII_ISAP,
450 	C_AFSR_L3_TUE_SH,	"L3_TUE_SH ", 	ECC_C_TRAP,
451 		CPU_FATAL,	"L3_TUE_SH Fatal",
452 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
453 		FM_EREPORT_CPU_USIII_L3_TUE_SH,
454 	C_AFSR_L3_TUE,		"L3_TUE ", 	ECC_C_TRAP,
455 		CPU_FATAL,	"L3_TUE Fatal",
456 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
457 		FM_EREPORT_CPU_USIII_L3_TUE,
458 	C_AFSR_TUE_SH,		"TUE_SH ", 	ECC_C_TRAP,
459 		CPU_FATAL,	"TUE_SH Fatal",
460 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
461 		FM_EREPORT_CPU_USIII_TUE_SH,
462 	C_AFSR_TUE,		"TUE ", 	ECC_ALL_TRAPS,
463 		CPU_FATAL,	"TUE Fatal",
464 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
465 		FM_EREPORT_CPU_USIII_TUE,
466 	C_AFSR_EMU,		"EMU ",		ECC_ASYNC_TRAPS,
467 		CPU_FATAL,	"EMU Fatal",
468 		FM_EREPORT_PAYLOAD_MEMORY,
469 		FM_EREPORT_CPU_USIII_EMU,
470 	C_AFSR_IMU,		"IMU ",		ECC_C_TRAP,
471 		CPU_FATAL,	"IMU Fatal",
472 		FM_EREPORT_PAYLOAD_SYSTEM1,
473 		FM_EREPORT_CPU_USIII_IMU,
474 
475 	/* L3$ Address parity errors are reported via the MECC bit */
476 	C_AFSR_L3_MECC,		"L3_MECC ",	ECC_MECC_TRAPS,
477 		CPU_L3_ADDR_PE,	"L3 Address Parity",
478 		FM_EREPORT_PAYLOAD_L3_DATA,
479 		FM_EREPORT_CPU_USIII_L3_MECC,
480 
481 	/* Orphaned UCC/UCU Errors */
482 	C_AFSR_L3_UCU,		"L3_OUCU ",	ECC_ORPH_TRAPS,
483 		CPU_ORPH,	"Orphaned L3_UCU",
484 		FM_EREPORT_PAYLOAD_L3_DATA,
485 		FM_EREPORT_CPU_USIII_L3_UCU,
486 	C_AFSR_L3_UCC,		"L3_OUCC ",	ECC_ORPH_TRAPS,
487 		CPU_ORPH,	"Orphaned L3_UCC",
488 		FM_EREPORT_PAYLOAD_L3_DATA,
489 		FM_EREPORT_CPU_USIII_L3_UCC,
490 	C_AFSR_UCU,		"OUCU ",	ECC_ORPH_TRAPS,
491 		CPU_ORPH,	"Orphaned UCU",
492 		FM_EREPORT_PAYLOAD_L2_DATA,
493 		FM_EREPORT_CPU_USIII_UCU,
494 	C_AFSR_UCC,		"OUCC ",	ECC_ORPH_TRAPS,
495 		CPU_ORPH,	"Orphaned UCC",
496 		FM_EREPORT_PAYLOAD_L2_DATA,
497 		FM_EREPORT_CPU_USIII_UCC,
498 
499 	/* UCU, UCC */
500 	C_AFSR_L3_UCU,		"L3_UCU ",	ECC_F_TRAP,
501 		CPU_UE_ECACHE,	"L3_UCU",
502 		FM_EREPORT_PAYLOAD_L3_DATA,
503 		FM_EREPORT_CPU_USIII_L3_UCU,
504 	C_AFSR_L3_UCC,		"L3_UCC ",	ECC_F_TRAP,
505 		CPU_CE_ECACHE,	"L3_UCC",
506 		FM_EREPORT_PAYLOAD_L3_DATA,
507 		FM_EREPORT_CPU_USIII_L3_UCC,
508 	C_AFSR_UCU,		"UCU ",		ECC_F_TRAP,
509 		CPU_UE_ECACHE,	"UCU",
510 		FM_EREPORT_PAYLOAD_L2_DATA,
511 		FM_EREPORT_CPU_USIII_UCU,
512 	C_AFSR_UCC,		"UCC ",		ECC_F_TRAP,
513 		CPU_CE_ECACHE,	"UCC",
514 		FM_EREPORT_PAYLOAD_L2_DATA,
515 		FM_EREPORT_CPU_USIII_UCC,
516 	C_AFSR_TSCE,		"TSCE ",	ECC_F_TRAP,
517 		CPU_CE_ECACHE,	"TSCE",
518 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
519 		FM_EREPORT_CPU_USIII_TSCE,
520 
521 	/* UE, EDU:ST, EDU:BLD, WDU, CPU */
522 	C_AFSR_UE,		"UE ",		ECC_ASYNC_TRAPS,
523 		CPU_UE,		"Uncorrectable system bus (UE)",
524 		FM_EREPORT_PAYLOAD_MEMORY,
525 		FM_EREPORT_CPU_USIII_UE,
526 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_C_TRAP,
527 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:ST",
528 		FM_EREPORT_PAYLOAD_L3_DATA,
529 		FM_EREPORT_CPU_USIII_L3_EDUST,
530 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_D_TRAP,
531 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:BLD",
532 		FM_EREPORT_PAYLOAD_L3_DATA,
533 		FM_EREPORT_CPU_USIII_L3_EDUBL,
534 	C_AFSR_L3_WDU,		"L3_WDU ",	ECC_C_TRAP,
535 		CPU_UE_ECACHE_RETIRE,	"L3_WDU",
536 		FM_EREPORT_PAYLOAD_L3_DATA,
537 		FM_EREPORT_CPU_USIII_L3_WDU,
538 	C_AFSR_L3_CPU,		"L3_CPU ",	ECC_C_TRAP,
539 		CPU_UE_ECACHE,	"L3_CPU",
540 		FM_EREPORT_PAYLOAD_L3_DATA,
541 		FM_EREPORT_CPU_USIII_L3_CPU,
542 	C_AFSR_EDU,		"EDU ",		ECC_C_TRAP,
543 		CPU_UE_ECACHE_RETIRE,	"EDU:ST",
544 		FM_EREPORT_PAYLOAD_L2_DATA,
545 		FM_EREPORT_CPU_USIII_EDUST,
546 	C_AFSR_EDU,		"EDU ",		ECC_D_TRAP,
547 		CPU_UE_ECACHE_RETIRE,	"EDU:BLD",
548 		FM_EREPORT_PAYLOAD_L2_DATA,
549 		FM_EREPORT_CPU_USIII_EDUBL,
550 	C_AFSR_WDU,		"WDU ",		ECC_C_TRAP,
551 		CPU_UE_ECACHE_RETIRE,	"WDU",
552 		FM_EREPORT_PAYLOAD_L2_DATA,
553 		FM_EREPORT_CPU_USIII_WDU,
554 	C_AFSR_CPU,		"CPU ",		ECC_C_TRAP,
555 		CPU_UE_ECACHE,	"CPU",
556 		FM_EREPORT_PAYLOAD_L2_DATA,
557 		FM_EREPORT_CPU_USIII_CPU,
558 	C_AFSR_DUE,		"DUE ",		ECC_C_TRAP,
559 		CPU_DUE,	"DUE",
560 		FM_EREPORT_PAYLOAD_MEMORY,
561 		FM_EREPORT_CPU_USIII_DUE,
562 
563 	/* CE, EDC, EMC, WDC, CPC */
564 	C_AFSR_CE,		"CE ",		ECC_C_TRAP,
565 		CPU_CE,		"Corrected system bus (CE)",
566 		FM_EREPORT_PAYLOAD_MEMORY,
567 		FM_EREPORT_CPU_USIII_CE,
568 	C_AFSR_L3_EDC,		"L3_EDC ",	ECC_C_TRAP,
569 		CPU_CE_ECACHE,	"L3_EDC",
570 		FM_EREPORT_PAYLOAD_L3_DATA,
571 		FM_EREPORT_CPU_USIII_L3_EDC,
572 	C_AFSR_EDC,		"EDC ",		ECC_C_TRAP,
573 		CPU_CE_ECACHE,	"EDC",
574 		FM_EREPORT_PAYLOAD_L2_DATA,
575 		FM_EREPORT_CPU_USIII_EDC,
576 	C_AFSR_EMC,		"EMC ",		ECC_C_TRAP,
577 		CPU_EMC,	"EMC",
578 		FM_EREPORT_PAYLOAD_MEMORY,
579 		FM_EREPORT_CPU_USIII_EMC,
580 	C_AFSR_L3_WDC,		"L3_WDC ",	ECC_C_TRAP,
581 		CPU_CE_ECACHE,	"L3_WDC",
582 		FM_EREPORT_PAYLOAD_L3_DATA,
583 		FM_EREPORT_CPU_USIII_L3_WDC,
584 	C_AFSR_L3_CPC,		"L3_CPC ",	ECC_C_TRAP,
585 		CPU_CE_ECACHE,	"L3_CPC",
586 		FM_EREPORT_PAYLOAD_L3_DATA,
587 		FM_EREPORT_CPU_USIII_L3_CPC,
588 	C_AFSR_L3_THCE,		"L3_THCE ",	ECC_C_TRAP,
589 		CPU_CE_ECACHE,	"L3_THCE",
590 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
591 		FM_EREPORT_CPU_USIII_L3_THCE,
592 	C_AFSR_WDC,		"WDC ",		ECC_C_TRAP,
593 		CPU_CE_ECACHE,	"WDC",
594 		FM_EREPORT_PAYLOAD_L2_DATA,
595 		FM_EREPORT_CPU_USIII_WDC,
596 	C_AFSR_CPC,		"CPC ",		ECC_C_TRAP,
597 		CPU_CE_ECACHE,	"CPC",
598 		FM_EREPORT_PAYLOAD_L2_DATA,
599 		FM_EREPORT_CPU_USIII_CPC,
600 	C_AFSR_THCE,		"THCE ",	ECC_C_TRAP,
601 		CPU_CE_ECACHE,	"THCE",
602 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
603 		FM_EREPORT_CPU_USIII_THCE,
604 
605 	/* TO, BERR */
606 	C_AFSR_TO,		"TO ",		ECC_ASYNC_TRAPS,
607 		CPU_TO,		"Timeout (TO)",
608 		FM_EREPORT_PAYLOAD_IO,
609 		FM_EREPORT_CPU_USIII_TO,
610 	C_AFSR_BERR,		"BERR ",	ECC_ASYNC_TRAPS,
611 		CPU_BERR,	"Bus Error (BERR)",
612 		FM_EREPORT_PAYLOAD_IO,
613 		FM_EREPORT_CPU_USIII_BERR,
614 	C_AFSR_DTO,		"DTO ",		ECC_C_TRAP,
615 		CPU_TO,		"Disrupting Timeout (DTO)",
616 		FM_EREPORT_PAYLOAD_IO,
617 		FM_EREPORT_CPU_USIII_DTO,
618 	C_AFSR_DBERR,		"DBERR ",	ECC_C_TRAP,
619 		CPU_BERR,	"Disrupting Bus Error (DBERR)",
620 		FM_EREPORT_PAYLOAD_IO,
621 		FM_EREPORT_CPU_USIII_DBERR,
622 
623 	/* IVU, IVC, IMC */
624 	C_AFSR_IVU,		"IVU ",		ECC_C_TRAP,
625 		CPU_IV,		"IVU",
626 		FM_EREPORT_PAYLOAD_SYSTEM1,
627 		FM_EREPORT_CPU_USIII_IVU,
628 	C_AFSR_IVC,		"IVC ",		ECC_C_TRAP,
629 		CPU_IV,		"IVC",
630 		FM_EREPORT_PAYLOAD_SYSTEM1,
631 		FM_EREPORT_CPU_USIII_IVC,
632 	C_AFSR_IMC,		"IMC ",		ECC_C_TRAP,
633 		CPU_IV,		"IMC",
634 		FM_EREPORT_PAYLOAD_SYSTEM1,
635 		FM_EREPORT_CPU_USIII_IMC,
636 
637 	0,			NULL,		0,
638 		0,		NULL,
639 		FM_EREPORT_PAYLOAD_UNKNOWN,
640 		FM_EREPORT_CPU_USIII_UNKNOWN,
641 };
642 
643 /*
644  * See Cheetah+ Delta PRM 10.9 and section P.6.1 of the Panther PRM
645  *   Class 4:
646  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
647  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
648  *   Class 3:
649  *      AFSR     -- UE, DUE, EDU, EMU, WDU, CPU
650  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
651  *   Class 2:
652  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
653  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
654  *   Class 1:
655  *      AFSR     -- TO, DTO, BERR, DBERR
656  *      AFSR_EXT --
657  */
658 uint64_t afar_overwrite[] = {
659 	/* class 4: */
660 	C_AFSR_UCC | C_AFSR_UCU | C_AFSR_TUE | C_AFSR_TSCE | C_AFSR_TUE_SH |
661 	C_AFSR_L3_UCC | C_AFSR_L3_UCU | C_AFSR_L3_TUE | C_AFSR_L3_TUE_SH,
662 	/* class 3: */
663 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_EDU | C_AFSR_EMU | C_AFSR_WDU |
664 	C_AFSR_CPU | C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
665 	/* class 2: */
666 	C_AFSR_CE | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC | C_AFSR_CPC |
667 	C_AFSR_THCE | C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC |
668 	C_AFSR_L3_THCE,
669 	/* class 1: */
670 	C_AFSR_TO | C_AFSR_DTO | C_AFSR_BERR | C_AFSR_DBERR,
671 
672 	0
673 };
674 
675 /*
676  * See Cheetah+ Delta PRM 10.9.
677  *   Class 2:  UE, DUE, IVU, EDU, WDU, UCU, CPU
678  *   Class 1:  CE, IVC, EDC, WDC, UCC, CPC
679  */
680 uint64_t esynd_overwrite[] = {
681 	/* class 2: */
682 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
683 	    C_AFSR_UCU | C_AFSR_CPU,
684 	/* class 1: */
685 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_UCC |
686 	    C_AFSR_CPC,
687 	0
688 };
689 
690 /*
691  * In panther, the E_SYND overwrite policy changed a little bit
692  * by adding one more level.
693  *   class 3:
694  *      AFSR     -- UCU, UCC
695  *      AFSR_EXT -- L3_UCU, L3_UCC
696  *   Class 2:
697  *      AFSR     -- UE, DUE, IVU, EDU, WDU, CPU
698  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
699  *   Class 1:
700  *      AFSR     -- CE, IVC, EDC, WDC, CPC
701  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC
702  */
703 uint64_t pn_esynd_overwrite[] = {
704 	/* class 3: */
705 	C_AFSR_UCU | C_AFSR_UCC |
706 	C_AFSR_L3_UCU | C_AFSR_L3_UCC,
707 	/* class 2: */
708 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
709 	    C_AFSR_CPU |
710 	C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
711 	/* class 1: */
712 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_CPC |
713 	C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC,
714 
715 	0
716 };
717 
718 int
719 afsr_to_pn_esynd_status(uint64_t afsr, uint64_t afsr_bit)
720 {
721 	return (afsr_to_overw_status(afsr, afsr_bit, pn_esynd_overwrite));
722 }
723 
724 /*
725  * Prioritized list of Error bits for MSYND overwrite.
726  * See Cheetah PRM P.6.3
727  *   Class 2:  EMU
728  *   Class 1:  EMC
729  *
730  * Panther adds IMU and IMC.
731  */
732 uint64_t msynd_overwrite[] = {
733 	/* class 2: */
734 	C_AFSR_EMU | C_AFSR_IMU,
735 	/* class 1: */
736 	C_AFSR_EMC | C_AFSR_IMC,
737 
738 	0
739 };
740 
741 /*
742  * change cpu speed bits -- new speed will be normal-speed/divisor.
743  *
744  * The Jalapeno memory controllers are required to drain outstanding
745  * memory transactions within 32 JBus clocks in order to be ready
746  * to enter Estar mode.  In some corner cases however, that time
747  * fell short.
748  *
749  * A safe software solution is to force MCU to act like in Estar mode,
750  * then delay 1us (in ppm code) prior to assert J_CHNG_L signal.
751  * To reverse the effect, upon exiting Estar, software restores the
752  * MCU to its original state.
753  */
754 /* ARGSUSED1 */
755 void
756 cpu_change_speed(uint64_t divisor, uint64_t arg2)
757 {
758 	bus_config_eclk_t *bceclk;
759 	uint64_t		reg;
760 
761 	for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) {
762 		if (bceclk->divisor != divisor)
763 			continue;
764 		reg = get_safari_config();
765 		reg &= ~SAFARI_CONFIG_ECLK_MASK;
766 		reg |= bceclk->mask;
767 		set_safari_config(reg);
768 		CPU->cpu_m.divisor = (uchar_t)divisor;
769 		return;
770 	}
771 	/*
772 	 * We will reach here only if OBP and kernel don't agree on
773 	 * the speeds supported by the CPU.
774 	 */
775 	cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor);
776 }
777 
778 /*
779  * Cpu private initialization.  This includes allocating the cpu_private
780  * data structure, initializing it, and initializing the scrubber for this
781  * cpu.  This function calls cpu_init_ecache_scrub_dr to init the scrubber.
782  * We use kmem_cache_create for the cheetah private data structure because
783  * it needs to be allocated on a PAGESIZE (8192) byte boundary.
784  */
785 void
786 cpu_init_private(struct cpu *cp)
787 {
788 	cheetah_private_t *chprp;
789 	int i;
790 
791 	ASSERT(CPU_PRIVATE(cp) == NULL);
792 
793 	/* LINTED: E_TRUE_LOGICAL_EXPR */
794 	ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) +
795 	    sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE);
796 
797 	/*
798 	 * Running with Cheetah CPUs in a Cheetah+, Jaguar, Panther or
799 	 * mixed Cheetah+/Jaguar/Panther machine is not a supported
800 	 * configuration. Attempting to do so may result in unpredictable
801 	 * failures (e.g. running Cheetah+ CPUs with Cheetah E$ disp flush)
802 	 * so don't allow it.
803 	 *
804 	 * This is just defensive code since this configuration mismatch
805 	 * should have been caught prior to OS execution.
806 	 */
807 	if (!(IS_CHEETAH_PLUS(cpunodes[cp->cpu_id].implementation) ||
808 	    IS_JAGUAR(cpunodes[cp->cpu_id].implementation) ||
809 	    IS_PANTHER(cpunodes[cp->cpu_id].implementation))) {
810 		cmn_err(CE_PANIC, "CPU%d: UltraSPARC-III not supported"
811 		    " on UltraSPARC-III+/IV/IV+ code\n", cp->cpu_id);
812 	}
813 
814 	/*
815 	 * If the ch_private_cache has not been created, create it.
816 	 */
817 	if (ch_private_cache == NULL) {
818 		ch_private_cache = kmem_cache_create("ch_private_cache",
819 		    sizeof (cheetah_private_t), PAGESIZE, NULL, NULL,
820 		    NULL, NULL, static_arena, 0);
821 	}
822 
823 	chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP);
824 
825 	bzero(chprp, sizeof (cheetah_private_t));
826 	chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID;
827 	chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID;
828 	chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID;
829 	chprp->chpr_tlb_logout.tlo_addr = LOGOUT_INVALID;
830 	for (i = 0; i < CH_ERR_TL1_TLMAX; i++)
831 		chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar
832 		    = LOGOUT_INVALID;
833 
834 	/* Panther has a larger Icache compared to cheetahplus or Jaguar */
835 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
836 		chprp->chpr_icache_size = PN_ICACHE_SIZE;
837 		chprp->chpr_icache_linesize = PN_ICACHE_LSIZE;
838 	} else {
839 		chprp->chpr_icache_size = CH_ICACHE_SIZE;
840 		chprp->chpr_icache_linesize = CH_ICACHE_LSIZE;
841 	}
842 
843 	cpu_init_ecache_scrub_dr(cp);
844 
845 	/*
846 	 * Panther's L2$ and E$ are shared between cores, so the scrubber is
847 	 * only needed on one of the cores.  At this point, we assume all cores
848 	 * are online, and we only enable the scrubber on core 0.
849 	 */
850 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
851 		chprp->chpr_scrub_misc.chsm_core_state =
852 		    SCRUBBER_BOTH_CORES_ONLINE;
853 		if (cp->cpu_id != (processorid_t)cmp_cpu_to_chip(cp->cpu_id)) {
854 			chprp->chpr_scrub_misc.chsm_enable[
855 			    CACHE_SCRUBBER_INFO_E] = 0;
856 		}
857 	}
858 
859 	chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size /
860 	    cpu_ecache_nway();
861 
862 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
863 	ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp);
864 	ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1);
865 }
866 
867 /*
868  * Clear the error state registers for this CPU.
869  * For Cheetah+/Jaguar, just clear the AFSR but
870  * for Panther we also have to clear the AFSR_EXT.
871  */
872 void
873 set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
874 {
875 	set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS);
876 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
877 		set_afsr_ext(cpu_error_regs->afsr_ext & ~C_AFSR_EXT_FATAL_ERRS);
878 	}
879 }
880 
881 void
882 pn_cpu_log_diag_l2_info(ch_async_flt_t *ch_flt) {
883 	struct async_flt *aflt = (struct async_flt *)ch_flt;
884 	ch_ec_data_t *l2_data = &ch_flt->flt_diag_data.chd_l2_data[0];
885 	uint64_t faddr = aflt->flt_addr;
886 	uint8_t log_way_mask = 0;
887 	int i;
888 
889 	/*
890 	 * Only Panther CPUs have the additional L2$ data that needs
891 	 * to be logged here
892 	 */
893 	if (!IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
894 		return;
895 
896 	/*
897 	 * We'll use a simple bit mask to keep track of which way(s)
898 	 * of the stored cache line we want to log. The idea is to
899 	 * log the entry if it is a valid line and it matches our
900 	 * fault AFAR. If no match is found, we will simply log all
901 	 * the ways.
902 	 */
903 	for (i = 0; i < PN_L2_NWAYS; i++)
904 		if (pn_matching_valid_l2_line(faddr, &l2_data[i]))
905 			log_way_mask |= (1 << i);
906 
907 	/* If no matching valid lines were found, we log all ways */
908 	if (log_way_mask == 0)
909 		log_way_mask = (1 << PN_L2_NWAYS) - 1;
910 
911 	/* Log the cache lines */
912 	for (i = 0; i < PN_L2_NWAYS; i++)
913 		if (log_way_mask & (1 << i))
914 			l2_data[i].ec_logflag = EC_LOGFLAG_MAGIC;
915 }
916 
917 /*
918  * For this routine to return true, the L2 tag in question must be valid
919  * and the tag PA must match the fault address (faddr) assuming the correct
920  * index is being used.
921  */
922 static int
923 pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data) {
924 	if ((!PN_L2_LINE_INVALID(clo_l2_data->ec_tag)) &&
925 	((faddr & P2ALIGN(C_AFAR_PA, PN_L2_SET_SIZE)) ==
926 	    PN_L2TAG_TO_PA(clo_l2_data->ec_tag)))
927 		return (1);
928 	return (0);
929 }
930 
931 /*
932  * This array is used to convert the 3 digit PgSz encoding (as used in
933  * various MMU registers such as MMU_TAG_ACCESS_EXT) into the corresponding
934  * page size.
935  */
936 static uint64_t tlb_pgsz_to_size[] = {
937 	/* 000 = 8KB: */
938 	0x2000,
939 	/* 001 = 64KB: */
940 	0x10000,
941 	/* 010 = 512KB: */
942 	0x80000,
943 	/* 011 = 4MB: */
944 	0x400000,
945 	/* 100 = 32MB: */
946 	0x2000000,
947 	/* 101 = 256MB: */
948 	0x10000000,
949 	/* undefined for encodings 110 and 111: */
950 	0, 0
951 };
952 
953 /*
954  * The itlb_parity_trap and dtlb_parity_trap handlers transfer control here
955  * after collecting logout information related to the TLB parity error and
956  * flushing the offending TTE entries from the ITLB or DTLB.
957  *
958  * DTLB traps which occur at TL>0 are not recoverable because we will most
959  * likely be corrupting some other trap handler's alternate globals. As
960  * such, we simply panic here when that happens. ITLB parity errors are
961  * not expected to happen at TL>0.
962  */
963 void
964 cpu_tlb_parity_error(struct regs *rp, ulong_t trap_va, ulong_t tlb_info) {
965 	ch_async_flt_t ch_flt;
966 	struct async_flt *aflt;
967 	pn_tlb_logout_t *tlop = NULL;
968 	int immu_parity = (tlb_info & PN_TLO_INFO_IMMU) != 0;
969 	int tl1_trap = (tlb_info & PN_TLO_INFO_TL1) != 0;
970 	char *error_class;
971 
972 	bzero(&ch_flt, sizeof (ch_async_flt_t));
973 
974 	/*
975 	 * Get the CPU log out info. If we can't find our CPU private
976 	 * pointer, or if the logout information does not correspond to
977 	 * this error, then we will have to make due without detailed
978 	 * logout information.
979 	 */
980 	if (CPU_PRIVATE(CPU)) {
981 		tlop = CPU_PRIVATE_PTR(CPU, chpr_tlb_logout);
982 		if ((tlop->tlo_addr != trap_va) ||
983 		    (tlop->tlo_info != tlb_info))
984 			tlop = NULL;
985 	}
986 
987 	if (tlop) {
988 		ch_flt.tlb_diag_data = *tlop;
989 
990 		/* Zero out + invalidate TLB logout. */
991 		bzero(tlop, sizeof (pn_tlb_logout_t));
992 		tlop->tlo_addr = LOGOUT_INVALID;
993 	} else {
994 		/*
995 		 * Copy what logout information we have and mark
996 		 * it incomplete.
997 		 */
998 		ch_flt.flt_data_incomplete = 1;
999 		ch_flt.tlb_diag_data.tlo_info = tlb_info;
1000 		ch_flt.tlb_diag_data.tlo_addr = trap_va;
1001 	}
1002 
1003 	/*
1004 	 * Log the error.
1005 	 */
1006 	aflt = (struct async_flt *)&ch_flt;
1007 	aflt->flt_id = gethrtime_waitfree();
1008 	aflt->flt_bus_id = getprocessorid();
1009 	aflt->flt_inst = CPU->cpu_id;
1010 	aflt->flt_pc = (caddr_t)rp->r_pc;
1011 	aflt->flt_addr = trap_va;
1012 	aflt->flt_prot = AFLT_PROT_NONE;
1013 	aflt->flt_class = CPU_FAULT;
1014 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1015 	aflt->flt_tl = tl1_trap ? 1 : 0;
1016 	aflt->flt_panic = tl1_trap ? 1 : 0;
1017 
1018 	if (immu_parity) {
1019 		aflt->flt_status = ECC_ITLB_TRAP;
1020 		ch_flt.flt_type = CPU_ITLB_PARITY;
1021 		error_class = FM_EREPORT_CPU_USIII_ITLBPE;
1022 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ITLB_PE;
1023 	} else {
1024 		aflt->flt_status = ECC_DTLB_TRAP;
1025 		ch_flt.flt_type = CPU_DTLB_PARITY;
1026 		error_class = FM_EREPORT_CPU_USIII_DTLBPE;
1027 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DTLB_PE;
1028 	}
1029 
1030 	/*
1031 	 * The TLB entries have already been flushed by the TL1 trap
1032 	 * handler so at this point the only thing left to do is log
1033 	 * the error message.
1034 	 */
1035 	if (aflt->flt_panic) {
1036 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1037 		    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
1038 		/*
1039 		 * Panic here if aflt->flt_panic has been set.  Enqueued
1040 		 * errors will be logged as part of the panic flow.
1041 		 */
1042 		fm_panic("%sError(s)", immu_parity ? "ITLBPE " : "DTLBPE ");
1043 	} else {
1044 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1045 		    sizeof (ch_async_flt_t), ce_queue, aflt->flt_panic);
1046 	}
1047 }
1048 
1049 /*
1050  * This routine is called when a TLB parity error event is 'ue_drain'ed
1051  * or 'ce_drain'ed from the errorq.
1052  */
1053 void
1054 cpu_async_log_tlb_parity_err(void *flt) {
1055 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
1056 	struct async_flt *aflt = (struct async_flt *)flt;
1057 #ifdef lint
1058 	aflt = aflt;
1059 #endif
1060 
1061 	/*
1062 	 * We only capture TLB information if we encountered
1063 	 * a TLB parity error and Panther is the only CPU which
1064 	 * can detect a TLB parity error.
1065 	 */
1066 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1067 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1068 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1069 
1070 	if (ch_flt->flt_data_incomplete == 0) {
1071 		if (ch_flt->flt_type == CPU_ITLB_PARITY)
1072 			ch_flt->tlb_diag_data.tlo_logflag = IT_LOGFLAG_MAGIC;
1073 		else /* parity error is in DTLB */
1074 			ch_flt->tlb_diag_data.tlo_logflag = DT_LOGFLAG_MAGIC;
1075 	}
1076 }
1077 
1078 /*
1079  * Add L1 Prefetch cache data to the ereport payload.
1080  */
1081 void
1082 cpu_payload_add_pcache(struct async_flt *aflt, nvlist_t *nvl)
1083 {
1084 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1085 	ch_pc_data_t *pcp;
1086 	ch_pc_data_t pcdata[CH_PCACHE_NWAY];
1087 	uint_t nelem;
1088 	int i, ways_logged = 0;
1089 
1090 	/*
1091 	 * We only capture P$ information if we encountered
1092 	 * a P$ parity error and Panther is the only CPU which
1093 	 * can detect a P$ parity error.
1094 	 */
1095 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1096 	for (i = 0; i < CH_PCACHE_NWAY; i++) {
1097 		pcp = &ch_flt->parity_data.dpe.cpl_pc[i];
1098 		if (pcp->pc_logflag == PC_LOGFLAG_MAGIC) {
1099 			bcopy(pcp, &pcdata[ways_logged],
1100 				sizeof (ch_pc_data_t));
1101 			ways_logged++;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Add the pcache data to the payload.
1107 	 */
1108 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_WAYS,
1109 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
1110 	if (ways_logged != 0) {
1111 		nelem = sizeof (ch_pc_data_t) / sizeof (uint64_t) * ways_logged;
1112 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_DATA,
1113 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)pcdata, NULL);
1114 	}
1115 }
1116 
1117 /*
1118  * Add TLB diagnostic data to the ereport payload.
1119  */
1120 void
1121 cpu_payload_add_tlb(struct async_flt *aflt, nvlist_t *nvl)
1122 {
1123 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1124 	uint8_t num_entries, tlb_data_words;
1125 
1126 	/*
1127 	 * We only capture TLB information if we encountered
1128 	 * a TLB parity error and Panther is the only CPU which
1129 	 * can detect a TLB parity error.
1130 	 */
1131 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1132 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1133 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1134 
1135 	if (ch_flt->flt_type == CPU_ITLB_PARITY) {
1136 		num_entries = (uint8_t)(PN_ITLB_NWAYS * PN_NUM_512_ITLBS);
1137 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1138 		    num_entries;
1139 
1140 		/*
1141 		 * Add the TLB diagnostic data to the payload
1142 		 * if it was collected.
1143 		 */
1144 		if (ch_flt->tlb_diag_data.tlo_logflag == IT_LOGFLAG_MAGIC) {
1145 			fm_payload_set(nvl,
1146 			    FM_EREPORT_PAYLOAD_NAME_ITLB_ENTRIES,
1147 			    DATA_TYPE_UINT8, num_entries, NULL);
1148 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_ITLB_DATA,
1149 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1150 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_itlb_tte,
1151 			    NULL);
1152 		}
1153 	} else {
1154 		num_entries = (uint8_t)(PN_DTLB_NWAYS * PN_NUM_512_DTLBS);
1155 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1156 		    num_entries;
1157 
1158 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_VA,
1159 		    DATA_TYPE_UINT64, ch_flt->tlb_diag_data.tlo_addr, NULL);
1160 
1161 		/*
1162 		 * Add the TLB diagnostic data to the payload
1163 		 * if it was collected.
1164 		 */
1165 		if (ch_flt->tlb_diag_data.tlo_logflag == DT_LOGFLAG_MAGIC) {
1166 			fm_payload_set(nvl,
1167 			    FM_EREPORT_PAYLOAD_NAME_DTLB_ENTRIES,
1168 			    DATA_TYPE_UINT8, num_entries, NULL);
1169 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_DTLB_DATA,
1170 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1171 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_dtlb_tte,
1172 			    NULL);
1173 		}
1174 	}
1175 }
1176 
1177 /*
1178  * Panther Cache Scrubbing:
1179  *
1180  * In Jaguar, the E$ was split between cores, so the scrubber must run on both
1181  * cores.  For Panther, however, the L2$ and L3$ are shared across cores.
1182  * Therefore, the E$ scrubber only needs to run on one of the two cores.
1183  *
1184  * There are four possible states for the E$ scrubber:
1185  *
1186  * 0. If both cores are offline, add core 0 to cpu_offline_set so that
1187  *    the offline scrubber will run on it.
1188  * 1. If core 0 is online and core 1 off, we run the scrubber on core 0.
1189  * 2. If core 1 is online and core 0 off, we move the scrubber to run
1190  *    on core 1.
1191  * 3. If both cores are online, only run the scrubber on core 0.
1192  *
1193  * These states are enumerated by the SCRUBBER_[BOTH|CORE|NEITHER]_* defines
1194  * above.  One of those values is stored in
1195  * chpr_scrub_misc->chsm_core_state on each core.
1196  *
1197  * Also note that, for Panther, ecache_flush_line() will flush out the L2$
1198  * before the E$, so the L2$ will be scrubbed by the E$ scrubber.  No
1199  * additional code is necessary to scrub the L2$.
1200  *
1201  * For all cpu types, whenever a cpu or core is offlined, add it to
1202  * cpu_offline_set so the necessary scrubbers can still run.  This is still
1203  * necessary on Panther so the D$ scrubber can still run.
1204  */
1205 /*ARGSUSED*/
1206 int
1207 cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
1208 {
1209 	processorid_t core_0_id;
1210 	cpu_t *core_cpus[2];
1211 	ch_scrub_misc_t *core_scrub[2];
1212 	int old_state, i;
1213 	int new_state = SCRUBBER_NEITHER_CORE_ONLINE;
1214 
1215 	switch (what) {
1216 	case CPU_ON:
1217 	case CPU_INIT:
1218 		CPUSET_DEL(cpu_offline_set, cpuid);
1219 		break;
1220 	case CPU_OFF:
1221 		CPUSET_ADD(cpu_offline_set, cpuid);
1222 		break;
1223 	default:
1224 		return (0);
1225 	}
1226 
1227 	if (!IS_PANTHER(cpunodes[cpuid].implementation)) {
1228 		return (0);
1229 	}
1230 
1231 	/*
1232 	 * Update the chsm_enable[CACHE_SCRUBBER_INFO_E] value
1233 	 * if necessary
1234 	 */
1235 	core_0_id = cmp_cpu_to_chip(cpuid);
1236 	core_cpus[0] = cpu_get(core_0_id);
1237 	core_cpus[1] = cpu_get_sibling_core(core_cpus[0]);
1238 
1239 	for (i = 0; i < 2; i++) {
1240 		if (core_cpus[i] == NULL) {
1241 			/*
1242 			 * This should only happen if one of the two cores is
1243 			 * blacklisted, which should only happen when we're
1244 			 * doing hardware bringup or debugging.  Give up and
1245 			 * return quietly.
1246 			 */
1247 			return (0);
1248 		}
1249 		core_scrub[i] = CPU_PRIVATE_PTR(core_cpus[i], chpr_scrub_misc);
1250 	}
1251 
1252 	if (cpuid == (processorid_t)cmp_cpu_to_chip(cpuid)) {
1253 		/* cpuid is core 0 */
1254 		if (cpu_is_active(core_cpus[1])) {
1255 			new_state |= SCRUBBER_CORE_1_ONLINE;
1256 		}
1257 		if (what != CPU_OFF) {
1258 			new_state |= SCRUBBER_CORE_0_ONLINE;
1259 		}
1260 	} else {
1261 		/* cpuid is core 1 */
1262 		if (cpu_is_active(core_cpus[0])) {
1263 			new_state |= SCRUBBER_CORE_0_ONLINE;
1264 		}
1265 		if (what != CPU_OFF) {
1266 			new_state |= SCRUBBER_CORE_1_ONLINE;
1267 		}
1268 	}
1269 
1270 	old_state = core_scrub[0]->chsm_core_state;
1271 
1272 	if (old_state == new_state) {
1273 		return (0);
1274 	}
1275 
1276 	if (old_state == SCRUBBER_CORE_1_ONLINE) {
1277 		/*
1278 		 * We need to move the scrubber state from core 1
1279 		 * back to core 0.  This data is not protected by
1280 		 * locks, but the worst that can happen is some
1281 		 * lines are scrubbed multiple times.  chsm_oustanding is
1282 		 * set to 0 to make sure an interrupt is scheduled the
1283 		 * first time through do_scrub().
1284 		 */
1285 		core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1286 		    core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1287 		core_scrub[0]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1288 	}
1289 
1290 	switch (new_state) {
1291 	case SCRUBBER_NEITHER_CORE_ONLINE:
1292 	case SCRUBBER_BOTH_CORES_ONLINE:
1293 	case SCRUBBER_CORE_0_ONLINE:
1294 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1295 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1296 		break;
1297 
1298 	case SCRUBBER_CORE_1_ONLINE:
1299 	default:
1300 		/*
1301 		 * We need to move the scrubber state from core 0
1302 		 * to core 1.
1303 		 */
1304 		core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1305 		    core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1306 		core_scrub[1]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1307 
1308 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1309 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1310 		break;
1311 	}
1312 
1313 	core_scrub[0]->chsm_core_state = new_state;
1314 	core_scrub[1]->chsm_core_state = new_state;
1315 	return (0);
1316 }
1317 
1318 /*
1319  * Returns a pointer to the cpu structure of the argument's sibling core.
1320  * If no sibling core can be found, return NULL.
1321  */
1322 static cpu_t *
1323 cpu_get_sibling_core(cpu_t *cpup)
1324 {
1325 	cpu_t *nextp;
1326 
1327 	if (!cmp_cpu_is_cmp(cpup->cpu_id))
1328 		return (NULL);
1329 
1330 	nextp = cpup->cpu_next_chip;
1331 	if ((nextp == NULL) || (nextp == cpup))
1332 		return (NULL);
1333 
1334 	return (nextp);
1335 }
1336