xref: /titanic_51/usr/src/uts/sun4/vm/sfmmu.c (revision 791a814c934fcd4deb13b26c1f116ff283272a0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <vm/hat.h>
28 #include <vm/hat_sfmmu.h>
29 #include <vm/page.h>
30 #include <sys/pte.h>
31 #include <sys/systm.h>
32 #include <sys/mman.h>
33 #include <sys/sysmacros.h>
34 #include <sys/machparam.h>
35 #include <sys/vtrace.h>
36 #include <sys/kmem.h>
37 #include <sys/mmu.h>
38 #include <sys/cmn_err.h>
39 #include <sys/cpu.h>
40 #include <sys/cpuvar.h>
41 #include <sys/debug.h>
42 #include <sys/lgrp.h>
43 #include <sys/archsystm.h>
44 #include <sys/machsystm.h>
45 #include <sys/vmsystm.h>
46 #include <sys/bitmap.h>
47 #include <vm/as.h>
48 #include <vm/seg.h>
49 #include <vm/seg_kmem.h>
50 #include <vm/seg_kp.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/rm.h>
53 #include <vm/vm_dep.h>
54 #include <sys/t_lock.h>
55 #include <sys/vm_machparam.h>
56 #include <sys/promif.h>
57 #include <sys/prom_isa.h>
58 #include <sys/prom_plat.h>
59 #include <sys/prom_debug.h>
60 #include <sys/privregs.h>
61 #include <sys/bootconf.h>
62 #include <sys/memlist.h>
63 #include <sys/memlist_plat.h>
64 #include <sys/cpu_module.h>
65 #include <sys/reboot.h>
66 #include <sys/kdi.h>
67 
68 /*
69  * Static routines
70  */
71 static void	sfmmu_map_prom_mappings(struct translation *, size_t);
72 static struct translation *read_prom_mappings(size_t *);
73 static void	sfmmu_reloc_trap_handler(void *, void *, size_t);
74 
75 /*
76  * External routines
77  */
78 extern void sfmmu_remap_kernel(void);
79 extern void sfmmu_patch_utsb(void);
80 
81 /*
82  * Global Data:
83  */
84 extern caddr_t	textva, datava;
85 extern tte_t	ktext_tte, kdata_tte;	/* ttes for kernel text and data */
86 extern int	enable_bigktsb;
87 extern int	kmem64_smchunks;
88 
89 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */
90 uint64_t memseg_phash[N_MEM_SLOTS];	/* use physical memseg addresses */
91 
92 int	sfmmu_kern_mapped = 0;
93 
94 /*
95  * DMMU primary context register for the kernel context. Machine specific code
96  * inserts correct page size codes when necessary
97  */
98 uint64_t kcontextreg = KCONTEXT;
99 
100 #ifdef DEBUG
101 static int ndata_middle_hole_detected = 0;
102 #endif
103 
104 /* Extern Global Data */
105 
106 extern int page_relocate_ready;
107 
108 /*
109  * Controls the logic which enables the use of the
110  * QUAD_LDD_PHYS ASI for TSB accesses.
111  */
112 extern int	ktsb_phys;
113 
114 /*
115  * Global Routines called from within:
116  *	usr/src/uts/sun4u
117  *	usr/src/uts/sfmmu
118  *	usr/src/uts/sun
119  */
120 
121 pfn_t
122 va_to_pfn(void *vaddr)
123 {
124 	u_longlong_t physaddr;
125 	int mode, valid;
126 
127 	if (tba_taken_over)
128 		return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr));
129 
130 #if !defined(C_OBP)
131 	if (!kmem64_smchunks &&
132 	    (caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) {
133 		if (kmem64_pabase == (uint64_t)-1)
134 			prom_panic("va_to_pfn: kmem64_pabase not init");
135 		physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base);
136 		return ((pfn_t)physaddr >> MMU_PAGESHIFT);
137 	}
138 #endif	/* !C_OBP */
139 
140 	if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) &&
141 	    (valid == -1)) {
142 		return ((pfn_t)(physaddr >> MMU_PAGESHIFT));
143 	}
144 	return (PFN_INVALID);
145 }
146 
147 uint64_t
148 va_to_pa(void *vaddr)
149 {
150 	pfn_t pfn;
151 
152 	if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID)
153 		return ((uint64_t)-1);
154 	return (((uint64_t)pfn << MMU_PAGESHIFT) |
155 	    ((uint64_t)vaddr & MMU_PAGEOFFSET));
156 }
157 
158 void
159 hat_kern_setup(void)
160 {
161 	struct translation *trans_root;
162 	size_t ntrans_root;
163 	extern void startup_fixup_physavail(void);
164 
165 	/*
166 	 * These are the steps we take to take over the mmu from the prom.
167 	 *
168 	 * (1)	Read the prom's mappings through the translation property.
169 	 * (2)	Remap the kernel text and kernel data with 2 locked 4MB ttes.
170 	 *	Create the the hmeblks for these 2 ttes at this time.
171 	 * (3)	Create hat structures for all other prom mappings.  Since the
172 	 *	kernel text and data hme_blks have already been created we
173 	 *	skip the equivalent prom's mappings.
174 	 * (4)	Initialize the tsb and its corresponding hardware regs.
175 	 * (5)	Take over the trap table (currently in startup).
176 	 * (6)	Up to this point it is possible the prom required some of its
177 	 *	locked tte's.  Now that we own the trap table we remove them.
178 	 */
179 
180 	ktsb_pbase = va_to_pa(ktsb_base);
181 	ktsb4m_pbase = va_to_pa(ktsb4m_base);
182 	PRM_DEBUG(ktsb_pbase);
183 	PRM_DEBUG(ktsb4m_pbase);
184 
185 	sfmmu_patch_ktsb();
186 	sfmmu_patch_utsb();
187 	sfmmu_patch_mmu_asi(ktsb_phys);
188 
189 	sfmmu_init_tsbs();
190 
191 	if (kpm_enable) {
192 		sfmmu_kpm_patch_tlbm();
193 		if (kpm_smallpages == 0) {
194 			sfmmu_kpm_patch_tsbm();
195 		}
196 	}
197 
198 	if (!shctx_on) {
199 		sfmmu_patch_shctx();
200 	}
201 
202 	/*
203 	 * The 8K-indexed kernel TSB space is used to hold
204 	 * translations below...
205 	 */
206 	trans_root = read_prom_mappings(&ntrans_root);
207 	sfmmu_remap_kernel();
208 	startup_fixup_physavail();
209 	mmu_init_kernel_pgsz(kas.a_hat);
210 	sfmmu_map_prom_mappings(trans_root, ntrans_root);
211 
212 	/*
213 	 * We invalidate 8K kernel TSB because we used it in
214 	 * sfmmu_map_prom_mappings()
215 	 */
216 	sfmmu_inv_tsb(ktsb_base, ktsb_sz);
217 	sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz);
218 
219 	sfmmu_init_ktsbinfo();
220 
221 
222 	sfmmu_kern_mapped = 1;
223 
224 	/*
225 	 * hments have been created for mapped pages, and thus we're ready
226 	 * for kmdb to start using its own trap table.  It walks the hments
227 	 * to resolve TLB misses, and can't be used until they're ready.
228 	 */
229 	if (boothowto & RB_DEBUG)
230 		kdi_dvec_vmready();
231 }
232 
233 /*
234  * Macro used below to convert the prom's 32-bit high and low fields into
235  * a value appropriate for the 64-bit kernel.
236  */
237 
238 #define	COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo))
239 
240 /*
241  * Track larges pages used.
242  * Provides observability for this feature on non-debug kernels.
243  */
244 ulong_t map_prom_lpcount[MMU_PAGE_SIZES];
245 
246 /*
247  * This function traverses the prom mapping list and creates equivalent
248  * mappings in the sfmmu mapping hash.
249  */
250 static void
251 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root)
252 {
253 	struct translation *promt;
254 	tte_t	tte, oldtte, *ttep;
255 	pfn_t	pfn, oldpfn, basepfn;
256 	caddr_t vaddr;
257 	size_t	size, offset;
258 	unsigned long i;
259 	uint_t	attr;
260 	page_t *pp;
261 	extern struct memlist *virt_avail;
262 	char buf[256];
263 
264 	ttep = &tte;
265 	for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) {
266 		ASSERT(promt->tte_hi != 0);
267 		ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0);
268 
269 		vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo);
270 
271 		/*
272 		 * hack until we get rid of map-for-unix
273 		 */
274 		if (vaddr < (caddr_t)KERNELBASE)
275 			continue;
276 
277 		ttep->tte_inthi = promt->tte_hi;
278 		ttep->tte_intlo = promt->tte_lo;
279 		attr = PROC_DATA | HAT_NOSYNC;
280 #if defined(TTE_IS_GLOBAL)
281 		if (TTE_IS_GLOBAL(ttep)) {
282 			/*
283 			 * The prom better not use global translations
284 			 * because a user process might use the same
285 			 * virtual addresses
286 			 */
287 			prom_panic("sfmmu_map_prom_mappings: global"
288 			    " translation");
289 			TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0);
290 		}
291 #endif
292 		if (TTE_IS_LOCKED(ttep)) {
293 			/* clear the lock bits */
294 			TTE_CLR_LOCKED(ttep);
295 		}
296 		attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE;
297 		attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE;
298 		attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0;
299 		attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0;
300 
301 		size = COMBINE(promt->size_hi, promt->size_lo);
302 		offset = 0;
303 		basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi,
304 		    promt->virt_lo), ttep);
305 		while (size) {
306 			vaddr = (caddr_t)(COMBINE(promt->virt_hi,
307 			    promt->virt_lo) + offset);
308 
309 			/*
310 			 * make sure address is not in virt-avail list
311 			 */
312 			if (address_in_memlist(virt_avail, (uint64_t)vaddr,
313 			    size)) {
314 				prom_panic("sfmmu_map_prom_mappings:"
315 				    " inconsistent translation/avail lists");
316 			}
317 
318 			pfn = basepfn + mmu_btop(offset);
319 			if (pf_is_memory(pfn)) {
320 				if (attr & SFMMU_UNCACHEPTTE) {
321 					prom_panic("sfmmu_map_prom_mappings:"
322 					    " uncached prom memory page");
323 				}
324 			} else {
325 				if (!(attr & SFMMU_SIDEFFECT)) {
326 					prom_panic("sfmmu_map_prom_mappings:"
327 					    " prom i/o page without"
328 					    " side-effect");
329 				}
330 			}
331 
332 			/*
333 			 * skip kmem64 area
334 			 */
335 			if (!kmem64_smchunks &&
336 			    vaddr >= kmem64_base &&
337 			    vaddr < kmem64_aligned_end) {
338 #if !defined(C_OBP)
339 				prom_panic("sfmmu_map_prom_mappings:"
340 				    " unexpected kmem64 prom mapping");
341 #else	/* !C_OBP */
342 				size_t mapsz;
343 
344 				if (ptob(pfn) !=
345 				    kmem64_pabase + (vaddr - kmem64_base)) {
346 					prom_panic("sfmmu_map_prom_mappings:"
347 					    " unexpected kmem64 prom mapping");
348 				}
349 
350 				mapsz = kmem64_aligned_end - vaddr;
351 				if (mapsz >= size) {
352 					break;
353 				}
354 				size -= mapsz;
355 				offset += mapsz;
356 				continue;
357 #endif	/* !C_OBP */
358 			}
359 
360 			oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte);
361 			ASSERT(oldpfn != PFN_SUSPENDED);
362 			ASSERT(page_relocate_ready == 0);
363 
364 			if (oldpfn != PFN_INVALID) {
365 				/*
366 				 * mapping already exists.
367 				 * Verify they are equal
368 				 */
369 				if (pfn != oldpfn) {
370 					(void) snprintf(buf, sizeof (buf),
371 					"sfmmu_map_prom_mappings: mapping"
372 					" conflict (va = 0x%p, pfn = 0x%p,"
373 					" oldpfn = 0x%p)", (void *)vaddr,
374 					    (void *)pfn, (void *)oldpfn);
375 					prom_panic(buf);
376 				}
377 				size -= MMU_PAGESIZE;
378 				offset += MMU_PAGESIZE;
379 				continue;
380 			}
381 
382 			pp = page_numtopp_nolock(pfn);
383 			if ((pp != NULL) && PP_ISFREE((page_t *)pp)) {
384 				(void) snprintf(buf, sizeof (buf),
385 				"sfmmu_map_prom_mappings: prom-mapped"
386 				" page (va = 0x%p, pfn = 0x%p) on free list",
387 				    (void *)vaddr, (void *)pfn);
388 				prom_panic(buf);
389 			}
390 
391 			sfmmu_memtte(ttep, pfn, attr, TTE8K);
392 			sfmmu_tteload(kas.a_hat, ttep, vaddr, pp,
393 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
394 			size -= MMU_PAGESIZE;
395 			offset += MMU_PAGESIZE;
396 		}
397 	}
398 
399 	/*
400 	 * We claimed kmem64 from prom, so now we need to load tte.
401 	 */
402 	if (!kmem64_smchunks && kmem64_base != NULL) {
403 		pgcnt_t pages;
404 		size_t psize;
405 		int pszc;
406 
407 		pszc = kmem64_szc;
408 #ifdef sun4u
409 		if (pszc > TTE8K) {
410 			pszc = segkmem_lpszc;
411 		}
412 #endif	/* sun4u */
413 		psize = TTEBYTES(pszc);
414 		pages = btop(psize);
415 		basepfn = kmem64_pabase >> MMU_PAGESHIFT;
416 		vaddr = kmem64_base;
417 		while (vaddr < kmem64_end) {
418 			sfmmu_memtte(ttep, basepfn,
419 			    PROC_DATA | HAT_NOSYNC, pszc);
420 			sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL,
421 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
422 			vaddr += psize;
423 			basepfn += pages;
424 		}
425 		map_prom_lpcount[pszc] =
426 		    ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) -
427 		    kmem64_base) >> TTE_PAGE_SHIFT(pszc);
428 	}
429 }
430 
431 #undef COMBINE	/* local to previous routine */
432 
433 /*
434  * This routine reads in the "translations" property in to a buffer and
435  * returns a pointer to this buffer and the number of translations.
436  */
437 static struct translation *
438 read_prom_mappings(size_t *ntransrootp)
439 {
440 	char *prop = "translations";
441 	size_t translen;
442 	pnode_t node;
443 	struct translation *transroot;
444 
445 	/*
446 	 * the "translations" property is associated with the mmu node
447 	 */
448 	node = (pnode_t)prom_getphandle(prom_mmu_ihandle());
449 
450 	/*
451 	 * We use the TSB space to read in the prom mappings.  This space
452 	 * is currently not being used because we haven't taken over the
453 	 * trap table yet.  It should be big enough to hold the mappings.
454 	 */
455 	if ((translen = prom_getproplen(node, prop)) == -1)
456 		cmn_err(CE_PANIC, "no translations property");
457 	*ntransrootp = translen / sizeof (*transroot);
458 	translen = roundup(translen, MMU_PAGESIZE);
459 	PRM_DEBUG(translen);
460 	if (translen > TSB_BYTES(ktsb_szcode))
461 		cmn_err(CE_PANIC, "not enough space for translations");
462 
463 	transroot = (struct translation *)ktsb_base;
464 	ASSERT(transroot);
465 	if (prom_getprop(node, prop, (caddr_t)transroot) == -1) {
466 		cmn_err(CE_PANIC, "translations getprop failed");
467 	}
468 	return (transroot);
469 }
470 
471 /*
472  * Init routine of the nucleus data memory allocator.
473  *
474  * The nucleus data memory allocator is organized in ecache_alignsize'd
475  * memory chunks. Memory allocated by ndata_alloc() will never be freed.
476  *
477  * The ndata argument is used as header of the ndata freelist.
478  * Other freelist nodes are placed in the nucleus memory itself
479  * at the beginning of a free memory chunk. Therefore a freelist
480  * node (struct memlist) must fit into the smallest allocatable
481  * memory chunk (ecache_alignsize bytes).
482  *
483  * The memory interval [base, end] passed to ndata_alloc_init() must be
484  * bzero'd to allow the allocator to return bzero'd memory easily.
485  */
486 void
487 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end)
488 {
489 	ASSERT(sizeof (struct memlist) <= ecache_alignsize);
490 
491 	base = roundup(base, ecache_alignsize);
492 	end = end - end % ecache_alignsize;
493 
494 	ASSERT(base < end);
495 
496 	ndata->address = base;
497 	ndata->size = end - base;
498 	ndata->next = NULL;
499 	ndata->prev = NULL;
500 }
501 
502 /*
503  * Deliver the size of the largest free memory chunk.
504  */
505 size_t
506 ndata_maxsize(struct memlist *ndata)
507 {
508 	size_t chunksize = ndata->size;
509 
510 	while ((ndata = ndata->next) != NULL) {
511 		if (chunksize < ndata->size)
512 			chunksize = ndata->size;
513 	}
514 
515 	return (chunksize);
516 }
517 
518 
519 /*
520  * Allocate the last properly aligned memory chunk.
521  * This function is called when no more large nucleus memory chunks
522  * will be allocated.  The remaining free nucleus memory at the end
523  * of the nucleus can be added to the phys_avail list.
524  */
525 void *
526 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr)
527 {
528 	uintptr_t base;
529 	size_t wasteage = 0;
530 #ifdef	DEBUG
531 	static int called = 0;
532 
533 	if (called++ > 0)
534 		cmn_err(CE_PANIC, "ndata_extra_base() called more than once");
535 #endif /* DEBUG */
536 
537 	/*
538 	 * The alignment needs to be a multiple of ecache_alignsize.
539 	 */
540 	ASSERT((alignment % ecache_alignsize) ==  0);
541 
542 	while (ndata->next != NULL) {
543 		wasteage += ndata->size;
544 		ndata = ndata->next;
545 	}
546 
547 	base = roundup(ndata->address, alignment);
548 
549 	if (base >= ndata->address + ndata->size)
550 		return (NULL);
551 
552 	if ((caddr_t)(ndata->address + ndata->size) != endaddr) {
553 #ifdef DEBUG
554 		ndata_middle_hole_detected = 1;	/* see if we hit this again */
555 #endif
556 		return (NULL);
557 	}
558 
559 	if (base == ndata->address) {
560 		if (ndata->prev != NULL)
561 			ndata->prev->next = NULL;
562 		else
563 			ndata->size = 0;
564 
565 		bzero((void *)base, sizeof (struct memlist));
566 
567 	} else {
568 		ndata->size = base - ndata->address;
569 		wasteage += ndata->size;
570 	}
571 	PRM_DEBUG(wasteage);
572 
573 	return ((void *)base);
574 }
575 
576 /*
577  * Select the best matching buffer, avoid memory fragmentation.
578  */
579 static struct memlist *
580 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment)
581 {
582 	struct memlist *fnd_below = NULL;
583 	struct memlist *fnd_above = NULL;
584 	struct memlist *fnd_unused = NULL;
585 	struct memlist *frlist;
586 	uintptr_t base;
587 	uintptr_t end;
588 	size_t below;
589 	size_t above;
590 	size_t unused;
591 	size_t best_below = ULONG_MAX;
592 	size_t best_above = ULONG_MAX;
593 	size_t best_unused = ULONG_MAX;
594 
595 	ASSERT(ndata != NULL);
596 
597 	/*
598 	 * Look for the best matching buffer, avoid memory fragmentation.
599 	 * The following strategy is used, try to find
600 	 *   1. an exact fitting buffer
601 	 *   2. avoid wasting any space below the buffer, take first
602 	 *	fitting buffer
603 	 *   3. avoid wasting any space above the buffer, take first
604 	 *	fitting buffer
605 	 *   4. avoid wasting space, take first fitting buffer
606 	 *   5. take the last buffer in chain
607 	 */
608 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
609 		base = roundup(frlist->address, alignment);
610 		end = roundup(base + wanted, ecache_alignsize);
611 
612 		if (end > frlist->address + frlist->size)
613 			continue;
614 
615 		below = (base - frlist->address) / ecache_alignsize;
616 		above = (frlist->address + frlist->size - end) /
617 		    ecache_alignsize;
618 		unused = below + above;
619 
620 		if (unused == 0)
621 			return (frlist);
622 
623 		if (frlist->next == NULL)
624 			break;
625 
626 		if (below < best_below) {
627 			best_below = below;
628 			fnd_below = frlist;
629 		}
630 
631 		if (above < best_above) {
632 			best_above = above;
633 			fnd_above = frlist;
634 		}
635 
636 		if (unused < best_unused) {
637 			best_unused = unused;
638 			fnd_unused = frlist;
639 		}
640 	}
641 
642 	if (best_below == 0)
643 		return (fnd_below);
644 	if (best_above == 0)
645 		return (fnd_above);
646 	if (best_unused < ULONG_MAX)
647 		return (fnd_unused);
648 
649 	return (frlist);
650 }
651 
652 /*
653  * Nucleus data memory allocator.
654  * The granularity of the allocator is ecache_alignsize.
655  * See also comment for ndata_alloc_init().
656  */
657 void *
658 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment)
659 {
660 	struct memlist *found;
661 	struct memlist *fnd_above;
662 	uintptr_t base;
663 	uintptr_t end;
664 	size_t below;
665 	size_t above;
666 
667 	/*
668 	 * Look for the best matching buffer, avoid memory fragmentation.
669 	 */
670 	if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL)
671 		return (NULL);
672 
673 	/*
674 	 * Allocate the nucleus data buffer.
675 	 */
676 	base = roundup(found->address, alignment);
677 	end = roundup(base + wanted, ecache_alignsize);
678 	ASSERT(end <= found->address + found->size);
679 
680 	below = base - found->address;
681 	above = found->address + found->size - end;
682 	ASSERT(above == 0 || (above % ecache_alignsize) == 0);
683 
684 	if (below >= ecache_alignsize) {
685 		/*
686 		 * There is free memory below the allocated memory chunk.
687 		 */
688 		found->size = below - below % ecache_alignsize;
689 
690 		if (above) {
691 			fnd_above = (struct memlist *)end;
692 			fnd_above->address = end;
693 			fnd_above->size = above;
694 
695 			if ((fnd_above->next = found->next) != NULL)
696 				found->next->prev = fnd_above;
697 			fnd_above->prev = found;
698 			found->next = fnd_above;
699 		}
700 
701 		return ((void *)base);
702 	}
703 
704 	if (found->prev == NULL) {
705 		/*
706 		 * The first chunk (ndata) is selected.
707 		 */
708 		ASSERT(found == ndata);
709 		if (above) {
710 			found->address = end;
711 			found->size = above;
712 		} else if (found->next != NULL) {
713 			found->address = found->next->address;
714 			found->size = found->next->size;
715 			if ((found->next = found->next->next) != NULL)
716 				found->next->prev = found;
717 
718 			bzero((void *)found->address, sizeof (struct memlist));
719 		} else {
720 			found->address = end;
721 			found->size = 0;
722 		}
723 
724 		return ((void *)base);
725 	}
726 
727 	/*
728 	 * Not the first chunk.
729 	 */
730 	if (above) {
731 		fnd_above = (struct memlist *)end;
732 		fnd_above->address = end;
733 		fnd_above->size = above;
734 
735 		if ((fnd_above->next = found->next) != NULL)
736 			fnd_above->next->prev = fnd_above;
737 		fnd_above->prev = found->prev;
738 		found->prev->next = fnd_above;
739 
740 	} else {
741 		if ((found->prev->next = found->next) != NULL)
742 			found->next->prev = found->prev;
743 	}
744 
745 	bzero((void *)found->address, sizeof (struct memlist));
746 
747 	return ((void *)base);
748 }
749 
750 /*
751  * Size the kernel TSBs based upon the amount of physical
752  * memory in the system.
753  */
754 static void
755 calc_tsb_sizes(pgcnt_t npages)
756 {
757 	PRM_DEBUG(npages);
758 
759 	if (npages <= TSB_FREEMEM_MIN) {
760 		ktsb_szcode = TSB_128K_SZCODE;
761 		enable_bigktsb = 0;
762 	} else if (npages <= TSB_FREEMEM_LARGE / 2) {
763 		ktsb_szcode = TSB_256K_SZCODE;
764 		enable_bigktsb = 0;
765 	} else if (npages <= TSB_FREEMEM_LARGE) {
766 		ktsb_szcode = TSB_512K_SZCODE;
767 		enable_bigktsb = 0;
768 	} else if (npages <= TSB_FREEMEM_LARGE * 2 ||
769 	    enable_bigktsb == 0) {
770 		ktsb_szcode = TSB_1M_SZCODE;
771 		enable_bigktsb = 0;
772 	} else {
773 		ktsb_szcode = highbit(npages - 1);
774 		ktsb_szcode -= TSB_START_SIZE;
775 		ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE);
776 		ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE);
777 	}
778 
779 	/*
780 	 * We choose the TSB to hold kernel 4M mappings to have twice
781 	 * the reach as the primary kernel TSB since this TSB will
782 	 * potentially (currently) be shared by both mappings to all of
783 	 * physical memory plus user TSBs. If this TSB has to be in nucleus
784 	 * (only for Spitfire and Cheetah) limit its size to 64K.
785 	 */
786 	ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1);
787 	ktsb4m_szcode -= TSB_START_SIZE;
788 	ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE);
789 	ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK);
790 	if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode >
791 	    TSB_64K_SZCODE) {
792 		ktsb4m_szcode = TSB_64K_SZCODE;
793 		max_bootlp_tteszc = TTE8K;
794 	}
795 
796 	ktsb_sz = TSB_BYTES(ktsb_szcode);	/* kernel 8K tsb size */
797 	ktsb4m_sz = TSB_BYTES(ktsb4m_szcode);	/* kernel 4M tsb size */
798 }
799 
800 /*
801  * Allocate kernel TSBs from nucleus data memory.
802  * The function return 0 on success and -1 on failure.
803  */
804 int
805 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages)
806 {
807 	/*
808 	 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS.
809 	 */
810 	sfmmu_setup_4lp();
811 
812 	/*
813 	 * Size the kernel TSBs based upon the amount of physical
814 	 * memory in the system.
815 	 */
816 	calc_tsb_sizes(npages);
817 
818 	/*
819 	 * Allocate the 8K kernel TSB if it belongs inside the nucleus.
820 	 */
821 	if (enable_bigktsb == 0) {
822 		if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL)
823 			return (-1);
824 		ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1)));
825 
826 		PRM_DEBUG(ktsb_base);
827 		PRM_DEBUG(ktsb_sz);
828 		PRM_DEBUG(ktsb_szcode);
829 	}
830 
831 	/*
832 	 * Next, allocate 4M kernel TSB from the nucleus since it's small.
833 	 */
834 	if (ktsb4m_szcode <= TSB_64K_SZCODE) {
835 
836 		ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz);
837 		if (ktsb4m_base == NULL)
838 			return (-1);
839 		ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1)));
840 
841 		PRM_DEBUG(ktsb4m_base);
842 		PRM_DEBUG(ktsb4m_sz);
843 		PRM_DEBUG(ktsb4m_szcode);
844 	}
845 
846 	return (0);
847 }
848 
849 size_t
850 calc_hmehash_sz(pgcnt_t npages)
851 {
852 	ulong_t hme_buckets;
853 
854 	/*
855 	 * The number of buckets in the hme hash tables
856 	 * is a power of 2 such that the average hash chain length is
857 	 * HMENT_HASHAVELEN.  The number of buckets for the user hash is
858 	 * a function of physical memory and a predefined overmapping factor.
859 	 * The number of buckets for the kernel hash is a function of
860 	 * physical memory only.
861 	 */
862 	hme_buckets = (npages * HMEHASH_FACTOR) /
863 	    (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT));
864 
865 	uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS);
866 
867 	if (uhmehash_num > USER_BUCKETS_THRESHOLD) {
868 		/*
869 		 * if uhmehash_num is not power of 2 round it down to the
870 		 *  next power of 2.
871 		 */
872 		uint_t align = 1 << (highbit(uhmehash_num - 1) - 1);
873 		uhmehash_num = P2ALIGN(uhmehash_num, align);
874 	} else
875 		uhmehash_num = 1 << highbit(uhmehash_num - 1);
876 
877 	hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT);
878 	khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS);
879 	khmehash_num = 1 << highbit(khmehash_num - 1);
880 	khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS);
881 
882 	return ((uhmehash_num + khmehash_num) * sizeof (struct hmehash_bucket));
883 }
884 
885 caddr_t
886 alloc_hmehash(caddr_t alloc_base)
887 {
888 	size_t khmehash_sz, uhmehash_sz;
889 
890 	khme_hash = (struct hmehash_bucket *)alloc_base;
891 	khmehash_sz = khmehash_num * sizeof (struct hmehash_bucket);
892 	alloc_base += khmehash_sz;
893 
894 	uhme_hash = (struct hmehash_bucket *)alloc_base;
895 	uhmehash_sz = uhmehash_num * sizeof (struct hmehash_bucket);
896 	alloc_base += uhmehash_sz;
897 
898 	PRM_DEBUG(khme_hash);
899 	PRM_DEBUG(uhme_hash);
900 
901 	return (alloc_base);
902 }
903 
904 /*
905  * Allocate hat structs from the nucleus data memory.
906  */
907 int
908 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages)
909 {
910 	size_t	mml_alloc_sz;
911 	size_t	cb_alloc_sz;
912 
913 	/*
914 	 * For the page mapping list mutex array we allocate one mutex
915 	 * for every 128 pages (1 MB) with a minimum of 64 entries and
916 	 * a maximum of 8K entries. For the initial computation npages
917 	 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128))
918 	 *
919 	 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH
920 	 */
921 	mml_table_sz = 1 << highbit((npages * 3) / 256);
922 	if (mml_table_sz < 64)
923 		mml_table_sz = 64;
924 	else if (mml_table_sz > 8192)
925 		mml_table_sz = 8192;
926 	mml_shift = highbit(mml_table_sz) + 3;
927 
928 	PRM_DEBUG(mml_table_sz);
929 	PRM_DEBUG(mml_shift);
930 
931 	mml_alloc_sz = mml_table_sz * sizeof (kmutex_t);
932 
933 	mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize);
934 	if (mml_table == NULL)
935 		return (-1);
936 	PRM_DEBUG(mml_table);
937 
938 	cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback);
939 	PRM_DEBUG(cb_alloc_sz);
940 	sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize);
941 	if (sfmmu_cb_table == NULL)
942 		return (-1);
943 	PRM_DEBUG(sfmmu_cb_table);
944 
945 	return (0);
946 }
947 
948 int
949 ndata_alloc_kpm(struct memlist *ndata, pgcnt_t kpm_npages)
950 {
951 	size_t	kpmp_alloc_sz;
952 
953 	/*
954 	 * For the kpm_page mutex array we allocate one mutex every 16
955 	 * kpm pages (64MB). In smallpage mode we allocate one mutex
956 	 * every 8K pages. The minimum is set to 64 entries and the
957 	 * maximum to 8K entries.
958 	 */
959 	if (kpm_smallpages == 0) {
960 		kpmp_shift = highbit(sizeof (kpm_page_t)) - 1;
961 		kpmp_table_sz = 1 << highbit(kpm_npages / 16);
962 		kpmp_table_sz = (kpmp_table_sz < 64) ? 64 :
963 		    ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz);
964 		kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t);
965 
966 		kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz,
967 		    ecache_alignsize);
968 		if (kpmp_table == NULL)
969 			return (-1);
970 
971 		PRM_DEBUG(kpmp_table);
972 		PRM_DEBUG(kpmp_table_sz);
973 
974 		kpmp_stable_sz = 0;
975 		kpmp_stable = NULL;
976 	} else {
977 		ASSERT(kpm_pgsz == PAGESIZE);
978 		kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1;
979 		kpmp_stable_sz = 1 << highbit(kpm_npages / 8192);
980 		kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 :
981 		    ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz);
982 		kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t);
983 
984 		kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz,
985 		    ecache_alignsize);
986 		if (kpmp_stable == NULL)
987 			return (-1);
988 
989 		PRM_DEBUG(kpmp_stable);
990 		PRM_DEBUG(kpmp_stable_sz);
991 
992 		kpmp_table_sz = 0;
993 		kpmp_table = NULL;
994 	}
995 	PRM_DEBUG(kpmp_shift);
996 
997 	return (0);
998 }
999 
1000 /*
1001  * This function bop allocs kernel TSBs.
1002  */
1003 caddr_t
1004 sfmmu_ktsb_alloc(caddr_t tsbbase)
1005 {
1006 	caddr_t vaddr;
1007 
1008 	if (enable_bigktsb) {
1009 		ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz);
1010 		vaddr = prom_alloc(ktsb_base, ktsb_sz, ktsb_sz);
1011 		if (vaddr != ktsb_base)
1012 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1013 			    " 8K bigktsb");
1014 		ktsb_base = vaddr;
1015 		tsbbase = ktsb_base + ktsb_sz;
1016 		PRM_DEBUG(ktsb_base);
1017 		PRM_DEBUG(tsbbase);
1018 	}
1019 
1020 	if (ktsb4m_szcode > TSB_64K_SZCODE) {
1021 		ASSERT(ktsb_phys && enable_bigktsb);
1022 		ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz);
1023 		vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz,
1024 		    ktsb4m_sz);
1025 		if (vaddr != ktsb4m_base)
1026 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1027 			    " 4M bigktsb");
1028 		ktsb4m_base = vaddr;
1029 		tsbbase = ktsb4m_base + ktsb4m_sz;
1030 		PRM_DEBUG(ktsb4m_base);
1031 		PRM_DEBUG(tsbbase);
1032 	}
1033 	return (tsbbase);
1034 }
1035 
1036 /*
1037  * Moves code assembled outside of the trap table into the trap
1038  * table taking care to relocate relative branches to code outside
1039  * of the trap handler.
1040  */
1041 static void
1042 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count)
1043 {
1044 	size_t i;
1045 	uint32_t *src;
1046 	uint32_t *dst;
1047 	uint32_t inst;
1048 	int op, op2;
1049 	int32_t offset;
1050 	int disp;
1051 
1052 	src = start;
1053 	dst = tablep;
1054 	offset = src - dst;
1055 	for (src = start, i = 0; i < count; i++, src++, dst++) {
1056 		inst = *dst = *src;
1057 		op = (inst >> 30) & 0x2;
1058 		if (op == 1) {
1059 			/* call */
1060 			disp = ((int32_t)inst << 2) >> 2; /* sign-extend */
1061 			if (disp + i >= 0 && disp + i < count)
1062 				continue;
1063 			disp += offset;
1064 			inst = 0x40000000u | (disp & 0x3fffffffu);
1065 			*dst = inst;
1066 		} else if (op == 0) {
1067 			/* branch or sethi */
1068 			op2 = (inst >> 22) & 0x7;
1069 
1070 			switch (op2) {
1071 			case 0x3: /* BPr */
1072 				disp = (((inst >> 20) & 0x3) << 14) |
1073 				    (inst & 0x3fff);
1074 				disp = (disp << 16) >> 16; /* sign-extend */
1075 				if (disp + i >= 0 && disp + i < count)
1076 					continue;
1077 				disp += offset;
1078 				if (((disp << 16) >> 16) != disp)
1079 					cmn_err(CE_PANIC, "bad reloc");
1080 				inst &= ~0x303fff;
1081 				inst |= (disp & 0x3fff);
1082 				inst |= (disp & 0xc000) << 6;
1083 				break;
1084 
1085 			case 0x2: /* Bicc */
1086 				disp = ((int32_t)inst << 10) >> 10;
1087 				if (disp + i >= 0 && disp + i < count)
1088 					continue;
1089 				disp += offset;
1090 				if (((disp << 10) >> 10) != disp)
1091 					cmn_err(CE_PANIC, "bad reloc");
1092 				inst &= ~0x3fffff;
1093 				inst |= (disp & 0x3fffff);
1094 				break;
1095 
1096 			case 0x1: /* Bpcc */
1097 				disp = ((int32_t)inst << 13) >> 13;
1098 				if (disp + i >= 0 && disp + i < count)
1099 					continue;
1100 				disp += offset;
1101 				if (((disp << 13) >> 13) != disp)
1102 					cmn_err(CE_PANIC, "bad reloc");
1103 				inst &= ~0x7ffff;
1104 				inst |= (disp & 0x7ffffu);
1105 				break;
1106 			}
1107 			*dst = inst;
1108 		}
1109 	}
1110 	flush_instr_mem(tablep, count * sizeof (uint32_t));
1111 }
1112 
1113 /*
1114  * Routine to allocate a large page to use in the TSB caches.
1115  */
1116 /*ARGSUSED*/
1117 static page_t *
1118 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg)
1119 {
1120 	int pgflags;
1121 
1122 	pgflags = PG_EXCL;
1123 	if ((vmflag & VM_NOSLEEP) == 0)
1124 		pgflags |= PG_WAIT;
1125 	if (vmflag & VM_PANIC)
1126 		pgflags |= PG_PANIC;
1127 	if (vmflag & VM_PUSHPAGE)
1128 		pgflags |= PG_PUSHPAGE;
1129 
1130 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1131 	    pgflags, &kvseg, addr, arg));
1132 }
1133 
1134 /*
1135  * Allocate a large page to back the virtual address range
1136  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1137  * space as well.
1138  */
1139 static void *
1140 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1141     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1142     void *pcarg)
1143 {
1144 	page_t *ppl;
1145 	page_t *rootpp;
1146 	caddr_t addr = inaddr;
1147 	pgcnt_t npages = btopr(size);
1148 	page_t **ppa;
1149 	int i = 0;
1150 
1151 	/*
1152 	 * Assuming that only TSBs will call this with size > PAGESIZE
1153 	 * There is no reason why this couldn't be expanded to 8k pages as
1154 	 * well, or other page sizes in the future .... but for now, we
1155 	 * only support fixed sized page requests.
1156 	 */
1157 	if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0,
1158 	    NULL, NULL, vmflag)) == NULL))
1159 		return (NULL);
1160 
1161 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1162 		if (inaddr == NULL)
1163 			vmem_xfree(vmp, addr, size);
1164 		return (NULL);
1165 	}
1166 
1167 	ppl = page_create_func(addr, size, vmflag, pcarg);
1168 	if (ppl == NULL) {
1169 		if (inaddr == NULL)
1170 			vmem_xfree(vmp, addr, size);
1171 		page_unresv(npages);
1172 		return (NULL);
1173 	}
1174 
1175 	rootpp = ppl;
1176 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1177 	while (ppl != NULL) {
1178 		page_t *pp = ppl;
1179 		ppa[i++] = pp;
1180 		page_sub(&ppl, pp);
1181 		ASSERT(page_iolock_assert(pp));
1182 		page_io_unlock(pp);
1183 	}
1184 
1185 	/*
1186 	 * Load the locked entry.  It's OK to preload the entry into
1187 	 * the TSB since we now support large mappings in the kernel TSB.
1188 	 */
1189 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
1190 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK);
1191 
1192 	for (--i; i >= 0; --i) {
1193 		(void) page_pp_lock(ppa[i], 0, 1);
1194 		page_unlock(ppa[i]);
1195 	}
1196 
1197 	kmem_free(ppa, npages * sizeof (page_t *));
1198 	return (addr);
1199 }
1200 
1201 /* Called to import new spans into the TSB vmem arenas */
1202 void *
1203 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1204 {
1205 	lgrp_id_t lgrpid = LGRP_NONE;
1206 
1207 	if (tsb_lgrp_affinity) {
1208 		/*
1209 		 * Search for the vmp->lgrpid mapping by brute force;
1210 		 * some day vmp will have an lgrp, until then we have
1211 		 * to do this the hard way.
1212 		 */
1213 		for (lgrpid = 0; lgrpid < NLGRPS_MAX &&
1214 		    vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++)
1215 			;
1216 		if (lgrpid == NLGRPS_MAX)
1217 			lgrpid = LGRP_NONE;
1218 	}
1219 
1220 	return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0,
1221 	    sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL));
1222 }
1223 
1224 /* Called to free spans from the TSB vmem arenas */
1225 void
1226 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1227 {
1228 	page_t *pp;
1229 	caddr_t addr = inaddr;
1230 	caddr_t eaddr;
1231 	pgcnt_t npages = btopr(size);
1232 	pgcnt_t pgs_left = npages;
1233 	page_t *rootpp = NULL;
1234 
1235 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1236 
1237 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1238 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1239 		if (pp == NULL)
1240 			panic("sfmmu_tsb_segkmem_free: page not found");
1241 
1242 		ASSERT(PAGE_EXCL(pp));
1243 		page_pp_unlock(pp, 0, 1);
1244 
1245 		if (rootpp == NULL)
1246 			rootpp = pp;
1247 		if (--pgs_left == 0) {
1248 			/*
1249 			 * similar logic to segspt_free_pages, but we know we
1250 			 * have one large page.
1251 			 */
1252 			page_destroy_pages(rootpp);
1253 		}
1254 	}
1255 	page_unresv(npages);
1256 
1257 	if (vmp != NULL)
1258 		vmem_xfree(vmp, inaddr, size);
1259 }
1260