1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/vm.h> 32 #include <sys/cpu.h> 33 #include <sys/atomic.h> 34 #include <sys/reboot.h> 35 #include <sys/kdi.h> 36 #include <sys/bootconf.h> 37 #include <sys/memlist_plat.h> 38 #include <sys/memlist_impl.h> 39 #include <sys/prom_plat.h> 40 #include <sys/prom_isa.h> 41 #include <sys/autoconf.h> 42 #include <sys/intreg.h> 43 #include <sys/ivintr.h> 44 #include <sys/fpu/fpusystm.h> 45 #include <sys/iommutsb.h> 46 #include <vm/vm_dep.h> 47 #include <vm/seg_dev.h> 48 #include <vm/seg_kmem.h> 49 #include <vm/seg_kpm.h> 50 #include <vm/seg_map.h> 51 #include <vm/seg_kp.h> 52 #include <sys/sysconf.h> 53 #include <vm/hat_sfmmu.h> 54 #include <sys/kobj.h> 55 #include <sys/sun4asi.h> 56 #include <sys/clconf.h> 57 #include <sys/platform_module.h> 58 #include <sys/panic.h> 59 #include <sys/cpu_sgnblk_defs.h> 60 #include <sys/clock.h> 61 #include <sys/cmn_err.h> 62 #include <sys/promif.h> 63 #include <sys/prom_debug.h> 64 #include <sys/traptrace.h> 65 #include <sys/memnode.h> 66 #include <sys/mem_cage.h> 67 #include <sys/mmu.h> 68 69 extern void setup_trap_table(void); 70 extern int cpu_intrq_setup(struct cpu *); 71 extern void cpu_intrq_register(struct cpu *); 72 extern void contig_mem_init(void); 73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 74 extern void mach_dump_buffer_init(void); 75 extern void mach_descrip_init(void); 76 extern void mach_descrip_startup_fini(void); 77 extern void mach_memscrub(void); 78 extern void mach_fpras(void); 79 extern void mach_cpu_halt_idle(void); 80 extern void mach_hw_copy_limit(void); 81 extern void load_mach_drivers(void); 82 extern void load_tod_module(void); 83 #pragma weak load_tod_module 84 85 extern int ndata_alloc_mmfsa(struct memlist *ndata); 86 #pragma weak ndata_alloc_mmfsa 87 88 extern void cif_init(void); 89 #pragma weak cif_init 90 91 extern void parse_idprom(void); 92 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 93 extern void mem_config_init(void); 94 extern void memseg_remap_init(void); 95 96 extern void mach_kpm_init(void); 97 extern int size_pse_array(pgcnt_t, int); 98 99 /* 100 * External Data: 101 */ 102 extern int vac_size; /* cache size in bytes */ 103 extern uint_t vac_mask; /* VAC alignment consistency mask */ 104 extern uint_t vac_colors; 105 106 /* 107 * Global Data Definitions: 108 */ 109 110 /* 111 * XXX - Don't port this to new architectures 112 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 113 * 'romp' has no use with a prom with an IEEE 1275 client interface. 114 * The driver doesn't use the value, but it depends on the symbol. 115 */ 116 void *romp; /* veritas driver won't load without romp 4154976 */ 117 /* 118 * Declare these as initialized data so we can patch them. 119 */ 120 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 121 pgcnt_t segkpsize = 122 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 123 uint_t segmap_percent = 12; /* Size of segmap segment */ 124 125 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 126 int vac_copyback = 1; 127 char *cache_mode = NULL; 128 int use_mix = 1; 129 int prom_debug = 0; 130 131 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 132 uint_t tba_taken_over = 0; 133 134 caddr_t s_text; /* start of kernel text segment */ 135 caddr_t e_text; /* end of kernel text segment */ 136 caddr_t s_data; /* start of kernel data segment */ 137 caddr_t e_data; /* end of kernel data segment */ 138 139 caddr_t modtext; /* beginning of module text */ 140 size_t modtext_sz; /* size of module text */ 141 caddr_t moddata; /* beginning of module data reserve */ 142 caddr_t e_moddata; /* end of module data reserve */ 143 144 /* 145 * End of first block of contiguous kernel in 32-bit virtual address space 146 */ 147 caddr_t econtig32; /* end of first blk of contiguous kernel */ 148 149 caddr_t ncbase; /* beginning of non-cached segment */ 150 caddr_t ncend; /* end of non-cached segment */ 151 152 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 153 caddr_t nalloc_base; /* beginning of nucleus allocation */ 154 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 155 caddr_t valloc_base; /* beginning of kvalloc segment */ 156 157 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 158 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 159 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 160 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 161 int kmem64_szc; /* page size code */ 162 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 163 164 uintptr_t shm_alignment; /* VAC address consistency modulus */ 165 struct memlist *phys_install; /* Total installed physical memory */ 166 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 167 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 168 struct memlist *nopp_list; /* pages with no backing page structs */ 169 struct memlist ndata; /* memlist of nucleus allocatable memory */ 170 int memexp_flag; /* memory expansion card flag */ 171 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 172 pgcnt_t obp_pages; /* Physical pages used by OBP */ 173 174 /* 175 * VM data structures 176 */ 177 long page_hashsz; /* Size of page hash table (power of two) */ 178 struct page *pp_base; /* Base of system page struct array */ 179 size_t pp_sz; /* Size in bytes of page struct array */ 180 struct page **page_hash; /* Page hash table */ 181 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 182 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 183 int pse_shift; /* log2(pse_table_size) */ 184 struct seg ktextseg; /* Segment used for kernel executable image */ 185 struct seg kvalloc; /* Segment used for "valloc" mapping */ 186 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 187 struct seg ktexthole; /* Segment used for nucleus text hole */ 188 struct seg kmapseg; /* Segment used for generic kernel mappings */ 189 struct seg kpmseg; /* Segment used for physical mapping */ 190 struct seg kdebugseg; /* Segment used for the kernel debugger */ 191 192 void *kpm_pp_base; /* Base of system kpm_page array */ 193 size_t kpm_pp_sz; /* Size of system kpm_page array */ 194 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 195 196 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 197 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 198 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 199 200 int segzio_fromheap = 0; /* zio allocations occur from heap */ 201 caddr_t segzio_base; /* Base address of segzio */ 202 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 203 204 /* 205 * debugger pages (if allocated) 206 */ 207 struct vnode kdebugvp; 208 209 /* 210 * VA range available to the debugger 211 */ 212 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 213 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 214 215 /* 216 * Segment for relocated kernel structures in 64-bit large RAM kernels 217 */ 218 struct seg kmem64; 219 220 struct memseg *memseg_free; 221 222 struct vnode unused_pages_vp; 223 224 /* 225 * VM data structures allocated early during boot. 226 */ 227 size_t pagehash_sz; 228 uint64_t memlist_sz; 229 230 char tbr_wr_addr_inited = 0; 231 232 caddr_t mpo_heap32_buf = NULL; 233 size_t mpo_heap32_bufsz = 0; 234 235 /* 236 * Static Routines: 237 */ 238 static int ndata_alloc_memseg(struct memlist *, size_t); 239 static void memlist_new(uint64_t, uint64_t, struct memlist **); 240 static void memlist_add(uint64_t, uint64_t, 241 struct memlist **, struct memlist **); 242 static void kphysm_init(void); 243 static void kvm_init(void); 244 static void install_kmem64_tte(void); 245 246 static void startup_init(void); 247 static void startup_memlist(void); 248 static void startup_modules(void); 249 static void startup_bop_gone(void); 250 static void startup_vm(void); 251 static void startup_end(void); 252 static void setup_cage_params(void); 253 static void startup_create_io_node(void); 254 255 static pgcnt_t npages; 256 static struct memlist *memlist; 257 void *memlist_end; 258 259 static pgcnt_t bop_alloc_pages; 260 static caddr_t hblk_base; 261 uint_t hblk_alloc_dynamic = 0; 262 uint_t hblk1_min = H1MIN; 263 264 265 /* 266 * Hooks for unsupported platforms and down-rev firmware 267 */ 268 int iam_positron(void); 269 #pragma weak iam_positron 270 static void do_prom_version_check(void); 271 272 /* 273 * After receiving a thermal interrupt, this is the number of seconds 274 * to delay before shutting off the system, assuming 275 * shutdown fails. Use /etc/system to change the delay if this isn't 276 * large enough. 277 */ 278 int thermal_powerdown_delay = 1200; 279 280 /* 281 * Used to hold off page relocations into the cage until OBP has completed 282 * its boot-time handoff of its resources to the kernel. 283 */ 284 int page_relocate_ready = 0; 285 286 /* 287 * Enable some debugging messages concerning memory usage... 288 */ 289 #ifdef DEBUGGING_MEM 290 static int debugging_mem; 291 static void 292 printmemlist(char *title, struct memlist *list) 293 { 294 if (!debugging_mem) 295 return; 296 297 printf("%s\n", title); 298 299 while (list) { 300 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 301 (uint32_t)(list->address >> 32), (uint32_t)list->address, 302 (uint32_t)(list->size >> 32), (uint32_t)(list->size)); 303 list = list->next; 304 } 305 } 306 307 void 308 printmemseg(struct memseg *memseg) 309 { 310 if (!debugging_mem) 311 return; 312 313 printf("memseg\n"); 314 315 while (memseg) { 316 prom_printf("\tpage = 0x%p, epage = 0x%p, " 317 "pfn = 0x%x, epfn = 0x%x\n", 318 memseg->pages, memseg->epages, 319 memseg->pages_base, memseg->pages_end); 320 memseg = memseg->next; 321 } 322 } 323 324 #define debug_pause(str) halt((str)) 325 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 326 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 327 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 328 #define MPRINTF3(str, a, b, c) \ 329 if (debugging_mem) prom_printf((str), (a), (b), (c)) 330 #else /* DEBUGGING_MEM */ 331 #define MPRINTF(str) 332 #define MPRINTF1(str, a) 333 #define MPRINTF2(str, a, b) 334 #define MPRINTF3(str, a, b, c) 335 #endif /* DEBUGGING_MEM */ 336 337 338 /* 339 * 340 * Kernel's Virtual Memory Layout. 341 * /-----------------------\ 342 * 0xFFFFFFFF.FFFFFFFF -| |- 343 * | OBP's virtual page | 344 * | tables | 345 * 0xFFFFFFFC.00000000 -|-----------------------|- 346 * : : 347 * : : 348 * -|-----------------------|- 349 * | segzio | (base and size vary) 350 * 0xFFFFFE00.00000000 -|-----------------------|- 351 * | | Ultrasparc I/II support 352 * | segkpm segment | up to 2TB of physical 353 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 354 * | | 355 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 356 * : : 357 * : : 358 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 359 * | | ^ 360 * | UltraSPARC I/II call | | 361 * | bug requires an extra | | 362 * | 4 GB of space between | | 363 * | hole and used RAM | | 364 * | | | 365 * 0xFFFFF800.00000000 -|-----------------------|- | 366 * | | | 367 * | Virtual Address Hole | UltraSPARC 368 * | on UltraSPARC I/II | I/II * ONLY * 369 * | | | 370 * 0x00000800.00000000 -|-----------------------|- | 371 * | | | 372 * | UltraSPARC I/II call | | 373 * | bug requires an extra | | 374 * | 4 GB of space between | | 375 * | hole and used RAM | | 376 * | | v 377 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 378 * : : ^ 379 * : : | 380 * |-----------------------| | 381 * | | | 382 * | ecache flush area | | 383 * | (twice largest e$) | | 384 * | | | 385 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 386 * | overmapped area | alignend_end | 387 * | (kmem64_alignsize | | 388 * | boundary) | | 389 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 390 * | | | 391 * | 64-bit kernel ONLY | | 392 * | | | 393 * | kmem64 segment | | 394 * | | | 395 * | (Relocated extra HME | Approximately 396 * | block allocations, | 1 TB of virtual 397 * | memnode freelists, | address space 398 * | HME hash buckets, | | 399 * | mml_table, kpmp_table,| | 400 * | page_t array and | | 401 * | hashblock pool to | | 402 * | avoid hard-coded | | 403 * | 32-bit vaddr | | 404 * | limitations) | | 405 * | | v 406 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 407 * | | 408 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 409 * | | 410 * 0x00000300.00000000 -|-----------------------|- SYSBASE 411 * : : 412 * : : 413 * -|-----------------------|- 414 * | | 415 * | segmap segment | SEGMAPSIZE (1/8th physmem, 416 * | | 256G MAX) 417 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 418 * : : 419 * : : 420 * -|-----------------------|- 421 * | | 422 * | segkp | SEGKPSIZE (2GB) 423 * | | 424 * | | 425 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 426 * | | 427 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 428 * | | (SEGKPBASE - 0x400000) 429 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 430 * | | (MEMSCRUBBASE - NCARGS) 431 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 432 * | | (ARGSBASE - PPMAPSIZE) 433 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 434 * | | 435 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 436 * | | 437 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 438 * : : 439 * : : 440 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 441 * | | 442 * | OBP | 443 * | | 444 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 445 * | kmdb | 446 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 447 * : : 448 * : : 449 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 450 * | | 451 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 452 * | | ~64MB) 453 * 0x00000000.70002000 -|-----------------------| 454 * | panicbuf | 455 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 456 * | boot-time | 457 * | temporary space | 458 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 459 * : : 460 * : : 461 * | | 462 * |-----------------------|- econtig32 463 * | vm structures | 464 * 0x00000000.01C00000 |-----------------------|- nalloc_end 465 * | TSBs | 466 * |-----------------------|- end/nalloc_base 467 * | kernel data & bss | 468 * 0x00000000.01800000 -|-----------------------| 469 * : nucleus text hole : 470 * 0x00000000.01400000 -|-----------------------| 471 * : : 472 * |-----------------------| 473 * | module text | 474 * |-----------------------|- e_text/modtext 475 * | kernel text | 476 * |-----------------------| 477 * | trap table (48k) | 478 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 479 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 480 * |-----------------------| 481 * | | 482 * | invalid | 483 * | | 484 * 0x00000000.00000000 _|_______________________| 485 * 486 * 487 * 488 * 32-bit User Virtual Memory Layout. 489 * /-----------------------\ 490 * | | 491 * | invalid | 492 * | | 493 * 0xFFC00000 -|-----------------------|- USERLIMIT 494 * | user stack | 495 * : : 496 * : : 497 * : : 498 * | user data | 499 * -|-----------------------|- 500 * | user text | 501 * 0x00002000 -|-----------------------|- 502 * | invalid | 503 * 0x00000000 _|_______________________| 504 * 505 * 506 * 507 * 64-bit User Virtual Memory Layout. 508 * /-----------------------\ 509 * | | 510 * | invalid | 511 * | | 512 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 513 * | user stack | 514 * : : 515 * : : 516 * : : 517 * | user data | 518 * -|-----------------------|- 519 * | user text | 520 * 0x00000000.01000000 -|-----------------------|- 521 * | invalid | 522 * 0x00000000.00000000 _|_______________________| 523 */ 524 525 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 526 extern uint64_t ecache_flush_address(void); 527 528 #pragma weak load_platform_modules 529 #pragma weak plat_startup_memlist 530 #pragma weak ecache_init_scrub_flush_area 531 #pragma weak ecache_flush_address 532 533 534 /* 535 * By default the DR Cage is enabled for maximum OS 536 * MPSS performance. Users needing to disable the cage mechanism 537 * can set this variable to zero via /etc/system. 538 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 539 * will result in loss of DR functionality. 540 * Platforms wishing to disable kernel Cage by default 541 * should do so in their set_platform_defaults() routine. 542 */ 543 int kernel_cage_enable = 1; 544 545 static void 546 setup_cage_params(void) 547 { 548 void (*func)(void); 549 550 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 551 if (func != NULL) { 552 (*func)(); 553 return; 554 } 555 556 if (kernel_cage_enable == 0) { 557 return; 558 } 559 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 560 561 if (kcage_on) { 562 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 563 } else { 564 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 565 } 566 567 } 568 569 /* 570 * Machine-dependent startup code 571 */ 572 void 573 startup(void) 574 { 575 startup_init(); 576 if (&startup_platform) 577 startup_platform(); 578 startup_memlist(); 579 startup_modules(); 580 setup_cage_params(); 581 startup_bop_gone(); 582 startup_vm(); 583 startup_end(); 584 } 585 586 struct regs sync_reg_buf; 587 uint64_t sync_tt; 588 589 void 590 sync_handler(void) 591 { 592 struct panic_trap_info ti; 593 int i; 594 595 /* 596 * Prevent trying to talk to the other CPUs since they are 597 * sitting in the prom and won't reply. 598 */ 599 for (i = 0; i < NCPU; i++) { 600 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 601 cpu[i]->cpu_flags &= ~CPU_READY; 602 cpu[i]->cpu_flags |= CPU_QUIESCED; 603 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 604 } 605 } 606 607 /* 608 * We've managed to get here without going through the 609 * normal panic code path. Try and save some useful 610 * information. 611 */ 612 if (!panicstr && (curthread->t_panic_trap == NULL)) { 613 ti.trap_type = sync_tt; 614 ti.trap_regs = &sync_reg_buf; 615 ti.trap_addr = NULL; 616 ti.trap_mmu_fsr = 0x0; 617 618 curthread->t_panic_trap = &ti; 619 } 620 621 /* 622 * If we're re-entering the panic path, update the signature 623 * block so that the SC knows we're in the second part of panic. 624 */ 625 if (panicstr) 626 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 627 628 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 629 panic("sync initiated"); 630 } 631 632 633 static void 634 startup_init(void) 635 { 636 /* 637 * We want to save the registers while we're still in OBP 638 * so that we know they haven't been fiddled with since. 639 * (In principle, OBP can't change them just because it 640 * makes a callback, but we'd rather not depend on that 641 * behavior.) 642 */ 643 char sync_str[] = 644 "warning @ warning off : sync " 645 "%%tl-c %%tstate h# %p x! " 646 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 647 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 648 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 649 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 650 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 651 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 652 "%%y h# %p l! %%tl-c %%tt h# %p x! " 653 "sync ; warning !"; 654 655 /* 656 * 20 == num of %p substrings 657 * 16 == max num of chars %p will expand to. 658 */ 659 char bp[sizeof (sync_str) + 16 * 20]; 660 661 /* 662 * Initialize ptl1 stack for the 1st CPU. 663 */ 664 ptl1_init_cpu(&cpu0); 665 666 /* 667 * Initialize the address map for cache consistent mappings 668 * to random pages; must be done after vac_size is set. 669 */ 670 ppmapinit(); 671 672 /* 673 * Initialize the PROM callback handler. 674 */ 675 init_vx_handler(); 676 677 /* 678 * have prom call sync_callback() to handle the sync and 679 * save some useful information which will be stored in the 680 * core file later. 681 */ 682 (void) sprintf((char *)bp, sync_str, 683 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 684 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 685 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 686 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 687 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 688 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 689 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 690 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 691 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 692 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 693 prom_interpret(bp, 0, 0, 0, 0, 0); 694 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 695 } 696 697 698 size_t 699 calc_pp_sz(pgcnt_t npages) 700 { 701 702 return (npages * sizeof (struct page)); 703 } 704 705 size_t 706 calc_kpmpp_sz(pgcnt_t npages) 707 { 708 709 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 710 kpm_pgsz = 1ull << kpm_pgshft; 711 kpm_pgoff = kpm_pgsz - 1; 712 kpmp2pshft = kpm_pgshft - PAGESHIFT; 713 kpmpnpgs = 1 << kpmp2pshft; 714 715 if (kpm_smallpages == 0) { 716 /* 717 * Avoid fragmentation problems in kphysm_init() 718 * by allocating for all of physical memory 719 */ 720 kpm_npages = ptokpmpr(physinstalled); 721 return (kpm_npages * sizeof (kpm_page_t)); 722 } else { 723 kpm_npages = npages; 724 return (kpm_npages * sizeof (kpm_spage_t)); 725 } 726 } 727 728 size_t 729 calc_pagehash_sz(pgcnt_t npages) 730 { 731 732 /* 733 * The page structure hash table size is a power of 2 734 * such that the average hash chain length is PAGE_HASHAVELEN. 735 */ 736 page_hashsz = npages / PAGE_HASHAVELEN; 737 page_hashsz = 1 << highbit(page_hashsz); 738 return (page_hashsz * sizeof (struct page *)); 739 } 740 741 void 742 alloc_kmem64(caddr_t base, caddr_t end) 743 { 744 int i; 745 caddr_t aligned_end = NULL; 746 747 /* 748 * Make one large memory alloc after figuring out the 64-bit size. This 749 * will enable use of the largest page size appropriate for the system 750 * architecture. 751 */ 752 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 753 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 754 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 755 size_t alloc_size, alignsize; 756 #if !defined(C_OBP) 757 unsigned long long pa; 758 #endif /* !C_OBP */ 759 760 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 761 continue; 762 alignsize = TTEBYTES(i); 763 kmem64_szc = i; 764 765 /* limit page size for small memory */ 766 if (mmu_btop(alignsize) > (npages >> 2)) 767 continue; 768 769 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 770 alloc_size = aligned_end - base; 771 #if !defined(C_OBP) 772 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 773 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 774 kmem64_pabase = pa; 775 kmem64_aligned_end = aligned_end; 776 install_kmem64_tte(); 777 break; 778 } else { 779 prom_free_phys(alloc_size, pa); 780 } 781 } 782 #else /* !C_OBP */ 783 if (prom_alloc(base, alloc_size, alignsize) == base) { 784 kmem64_pabase = va_to_pa(kmem64_base); 785 kmem64_aligned_end = aligned_end; 786 break; 787 } 788 #endif /* !C_OBP */ 789 if (i == TTE8K) { 790 prom_panic("kmem64 allocation failure"); 791 } 792 } 793 ASSERT(aligned_end != NULL); 794 } 795 796 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 797 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 798 799 #define IVSIZE roundup(((MAXIVNUM * sizeof (intr_vec_t *)) + \ 800 (MAX_RSVD_IV * sizeof (intr_vec_t)) + \ 801 (MAX_RSVD_IVX * sizeof (intr_vecx_t))), PAGESIZE) 802 803 #if !defined(C_OBP) 804 /* 805 * Install a temporary tte handler in OBP for kmem64 area. 806 * 807 * We map kmem64 area with large pages before the trap table is taken 808 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 809 * the same area. Duplicate tlb entries with different page sizes 810 * cause unpredicatble behavior. To avoid this, we don't create 811 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 812 * OBP). Instead, we manage translations with a temporary va>tte-data 813 * handler (kmem64-tte). This handler is replaced by unix-tte when 814 * the trap table is taken over. 815 * 816 * The temporary handler knows the physical address of the kmem64 817 * area. It uses the prom's pgmap@ Forth word for other addresses. 818 * 819 * We have to use BOP_ALLOC() method for C-OBP platforms because 820 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 821 * sun4u platforms. On sun4u we flush tlb after trap table is taken 822 * over if we use large pages for kernel heap and kmem64. Since sun4u 823 * prom (unlike sun4v) calls va>tte-data first for client address 824 * translation prom's ttes for kmem64 can't get into TLB even if we 825 * later switch to prom's trap table again. C-OBP uses 4M pages for 826 * client mappings when possible so on all platforms we get the 827 * benefit from large mappings for kmem64 area immediately during 828 * boot. 829 * 830 * pseudo code: 831 * if (context != 0) { 832 * return false 833 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 834 * tte = tte_template + 835 * (((miss_va & pagemask) - kmem64_base)); 836 * return tte, true 837 * } else { 838 * return pgmap@ result 839 * } 840 */ 841 char kmem64_obp_str[] = 842 "h# %lx constant kmem64-base " 843 "h# %lx constant kmem64-end " 844 "h# %lx constant kmem64-pagemask " 845 "h# %lx constant kmem64-template " 846 847 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 848 " if ( addr ) " 849 " drop false exit then ( false ) " 850 " dup kmem64-base kmem64-end within if ( addr ) " 851 " kmem64-pagemask and ( addr' ) " 852 " kmem64-base - ( addr' ) " 853 " kmem64-template + ( tte ) " 854 " true ( tte true ) " 855 " else ( addr ) " 856 " pgmap@ ( tte ) " 857 " dup 0< if true else drop false then ( tte true | false ) " 858 " then ( tte true | false ) " 859 "; " 860 861 "' kmem64-tte is va>tte-data " 862 ; 863 864 static void 865 install_kmem64_tte() 866 { 867 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 868 tte_t tte; 869 870 PRM_DEBUG(kmem64_pabase); 871 PRM_DEBUG(kmem64_szc); 872 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 873 PROC_DATA | HAT_NOSYNC, kmem64_szc); 874 PRM_DEBUG(tte.ll); 875 (void) sprintf(b, kmem64_obp_str, 876 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 877 ASSERT(strlen(b) < sizeof (b)); 878 prom_interpret(b, 0, 0, 0, 0, 0); 879 } 880 #endif /* !C_OBP */ 881 882 /* 883 * As OBP takes up some RAM when the system boots, pages will already be "lost" 884 * to the system and reflected in npages by the time we see it. 885 * 886 * We only want to allocate kernel structures in the 64-bit virtual address 887 * space on systems with enough RAM to make the overhead of keeping track of 888 * an extra kernel memory segment worthwhile. 889 * 890 * Since OBP has already performed its memory allocations by this point, if we 891 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 892 * memory in the 64-bit virtual address space; otherwise keep allocations 893 * contiguous with we've mapped so far in the 32-bit virtual address space. 894 */ 895 #define MINMOVE_RAM_MB ((size_t)1900) 896 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 897 #define BYTES_TO_MB(b) ((b) / 1048576ul) 898 899 pgcnt_t tune_npages = (pgcnt_t) 900 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 901 902 #pragma weak page_set_colorequiv_arr_cpu 903 extern void page_set_colorequiv_arr_cpu(void); 904 extern void page_set_colorequiv_arr(void); 905 906 static pgcnt_t ramdisk_npages; 907 static struct memlist *old_phys_avail; 908 909 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 910 911 static void 912 startup_memlist(void) 913 { 914 size_t hmehash_sz, pagelist_sz, tt_sz; 915 size_t psetable_sz; 916 caddr_t alloc_base; 917 caddr_t memspace; 918 struct memlist *cur; 919 size_t syslimit = (size_t)SYSLIMIT; 920 size_t sysbase = (size_t)SYSBASE; 921 922 /* 923 * Initialize enough of the system to allow kmem_alloc to work by 924 * calling boot to allocate its memory until the time that 925 * kvm_init is completed. The page structs are allocated after 926 * rounding up end to the nearest page boundary; the memsegs are 927 * initialized and the space they use comes from the kernel heap. 928 * With appropriate initialization, they can be reallocated later 929 * to a size appropriate for the machine's configuration. 930 * 931 * At this point, memory is allocated for things that will never 932 * need to be freed, this used to be "valloced". This allows a 933 * savings as the pages don't need page structures to describe 934 * them because them will not be managed by the vm system. 935 */ 936 937 /* 938 * We're loaded by boot with the following configuration (as 939 * specified in the sun4u/conf/Mapfile): 940 * 941 * text: 4 MB chunk aligned on a 4MB boundary 942 * data & bss: 4 MB chunk aligned on a 4MB boundary 943 * 944 * These two chunks will eventually be mapped by 2 locked 4MB 945 * ttes and will represent the nucleus of the kernel. This gives 946 * us some free space that is already allocated, some or all of 947 * which is made available to kernel module text. 948 * 949 * The free space in the data-bss chunk is used for nucleus 950 * allocatable data structures and we reserve it using the 951 * nalloc_base and nalloc_end variables. This space is currently 952 * being used for hat data structures required for tlb miss 953 * handling operations. We align nalloc_base to a l2 cache 954 * linesize because this is the line size the hardware uses to 955 * maintain cache coherency. 956 * 512K is carved out for module data. 957 */ 958 959 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 960 e_moddata = moddata + MODDATA; 961 nalloc_base = e_moddata; 962 963 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 964 valloc_base = nalloc_base; 965 966 /* 967 * Calculate the start of the data segment. 968 */ 969 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 970 prom_panic("nucleus data overflow"); 971 972 PRM_DEBUG(moddata); 973 PRM_DEBUG(nalloc_base); 974 PRM_DEBUG(nalloc_end); 975 976 /* 977 * Remember any slop after e_text so we can give it to the modules. 978 */ 979 PRM_DEBUG(e_text); 980 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 981 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 982 prom_panic("nucleus text overflow"); 983 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 984 modtext; 985 PRM_DEBUG(modtext); 986 PRM_DEBUG(modtext_sz); 987 988 init_boot_memlists(); 989 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 990 &boot_physavail, &boot_physavail_len, 991 &boot_virtavail, &boot_virtavail_len); 992 993 /* 994 * Remember what the physically available highest page is 995 * so that dumpsys works properly, and find out how much 996 * memory is installed. 997 */ 998 installed_top_size_memlist_array(boot_physinstalled, 999 boot_physinstalled_len, &physmax, &physinstalled); 1000 PRM_DEBUG(physinstalled); 1001 PRM_DEBUG(physmax); 1002 1003 /* Fill out memory nodes config structure */ 1004 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1005 1006 /* 1007 * npages is the maximum of available physical memory possible. 1008 * (ie. it will never be more than this) 1009 * 1010 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1011 * using phys_avail will underestimate what will end up being freed. 1012 * A better initial guess is just total memory minus the kernel text 1013 */ 1014 npages = physinstalled - btop(MMU_PAGESIZE4M); 1015 1016 /* 1017 * First allocate things that can go in the nucleus data page 1018 * (fault status, TSBs, dmv, CPUs) 1019 */ 1020 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1021 1022 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1023 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1024 1025 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1026 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1027 1028 if (ndata_alloc_dmv(&ndata) != 0) 1029 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1030 1031 if (ndata_alloc_page_mutexs(&ndata) != 0) 1032 cmn_err(CE_PANIC, 1033 "no more nucleus memory after page free lists alloc"); 1034 1035 if (ndata_alloc_hat(&ndata, npages) != 0) 1036 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1037 1038 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1039 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1040 1041 /* 1042 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1043 * 1044 * There are comments all over the SFMMU code warning of dire 1045 * consequences if the TSBs are moved out of 32-bit space. This 1046 * is largely because the asm code uses "sethi %hi(addr)"-type 1047 * instructions which will not provide the expected result if the 1048 * address is a 64-bit one. 1049 * 1050 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1051 */ 1052 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1053 PRM_DEBUG(alloc_base); 1054 1055 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1056 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1057 PRM_DEBUG(alloc_base); 1058 1059 /* 1060 * Allocate IOMMU TSB array. We do this here so that the physical 1061 * memory gets deducted from the PROM's physical memory list. 1062 */ 1063 alloc_base = iommu_tsb_init(alloc_base); 1064 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1065 PRM_DEBUG(alloc_base); 1066 1067 /* 1068 * Allow for an early allocation of physically contiguous memory. 1069 */ 1070 alloc_base = contig_mem_prealloc(alloc_base, npages); 1071 1072 /* 1073 * Platforms like Starcat and OPL need special structures assigned in 1074 * 32-bit virtual address space because their probing routines execute 1075 * FCode, and FCode can't handle 64-bit virtual addresses... 1076 */ 1077 if (&plat_startup_memlist) { 1078 alloc_base = plat_startup_memlist(alloc_base); 1079 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1080 ecache_alignsize); 1081 PRM_DEBUG(alloc_base); 1082 } 1083 1084 /* 1085 * Save off where the contiguous allocations to date have ended 1086 * in econtig32. 1087 */ 1088 econtig32 = alloc_base; 1089 PRM_DEBUG(econtig32); 1090 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1091 cmn_err(CE_PANIC, "econtig32 too big"); 1092 1093 pp_sz = calc_pp_sz(npages); 1094 PRM_DEBUG(pp_sz); 1095 if (kpm_enable) { 1096 kpm_pp_sz = calc_kpmpp_sz(npages); 1097 PRM_DEBUG(kpm_pp_sz); 1098 } 1099 1100 hmehash_sz = calc_hmehash_sz(npages); 1101 PRM_DEBUG(hmehash_sz); 1102 1103 pagehash_sz = calc_pagehash_sz(npages); 1104 PRM_DEBUG(pagehash_sz); 1105 1106 pagelist_sz = calc_free_pagelist_sz(); 1107 PRM_DEBUG(pagelist_sz); 1108 1109 #ifdef TRAPTRACE 1110 tt_sz = calc_traptrace_sz(); 1111 PRM_DEBUG(tt_sz); 1112 #else 1113 tt_sz = 0; 1114 #endif /* TRAPTRACE */ 1115 1116 /* 1117 * Place the array that protects pp->p_selock in the kmem64 wad. 1118 */ 1119 pse_shift = size_pse_array(npages, max_ncpus); 1120 PRM_DEBUG(pse_shift); 1121 pse_table_size = 1 << pse_shift; 1122 PRM_DEBUG(pse_table_size); 1123 psetable_sz = roundup( 1124 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1125 PRM_DEBUG(psetable_sz); 1126 1127 /* 1128 * Now allocate the whole wad 1129 */ 1130 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1131 pagelist_sz + tt_sz + psetable_sz; 1132 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1133 kmem64_base = (caddr_t)syslimit; 1134 kmem64_end = kmem64_base + kmem64_sz; 1135 alloc_kmem64(kmem64_base, kmem64_end); 1136 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1137 cmn_err(CE_PANIC, "not enough kmem64 space"); 1138 PRM_DEBUG(kmem64_base); 1139 PRM_DEBUG(kmem64_end); 1140 PRM_DEBUG(kmem64_aligned_end); 1141 1142 /* 1143 * ... and divy it up 1144 */ 1145 alloc_base = kmem64_base; 1146 1147 if (kpm_smallpages == 0) { 1148 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1149 } else { 1150 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1151 sizeof (kpm_spage_t)); 1152 } 1153 1154 pp_base = (page_t *)alloc_base; 1155 pp_sz = npages * sizeof (struct page); 1156 alloc_base += pp_sz; 1157 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1158 PRM_DEBUG(pp_base); 1159 PRM_DEBUG(npages); 1160 1161 if (kpm_enable) { 1162 kpm_pp_base = alloc_base; 1163 if (kpm_smallpages == 0) { 1164 /* kpm_npages based on physinstalled, don't reset */ 1165 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1166 } else { 1167 kpm_npages = ptokpmpr(npages); 1168 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1169 } 1170 alloc_base += kpm_pp_sz; 1171 alloc_base = 1172 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1173 PRM_DEBUG(kpm_pp_base); 1174 } 1175 1176 alloc_base = alloc_hmehash(alloc_base); 1177 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1178 PRM_DEBUG(alloc_base); 1179 1180 page_hash = (page_t **)alloc_base; 1181 alloc_base += pagehash_sz; 1182 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1183 PRM_DEBUG(page_hash); 1184 1185 alloc_base = alloc_page_freelists(alloc_base); 1186 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1187 PRM_DEBUG(alloc_base); 1188 1189 #ifdef TRAPTRACE 1190 ttrace_buf = alloc_base; 1191 alloc_base += tt_sz; 1192 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1193 PRM_DEBUG(alloc_base); 1194 #endif /* TRAPTRACE */ 1195 1196 pse_mutex = (pad_mutex_t *)alloc_base; 1197 alloc_base += psetable_sz; 1198 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1199 PRM_DEBUG(alloc_base); 1200 1201 /* adjust kmem64_end to what we really allocated */ 1202 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1203 kmem64_sz = kmem64_end - kmem64_base; 1204 1205 if (&ecache_init_scrub_flush_area) { 1206 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1207 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1208 } 1209 1210 /* 1211 * If physmem is patched to be non-zero, use it instead of 1212 * the monitor value unless physmem is larger than the total 1213 * amount of memory on hand. 1214 */ 1215 if (physmem == 0 || physmem > npages) 1216 physmem = npages; 1217 1218 /* 1219 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1220 * is mounted as root. This memory is held down by OBP and unlike 1221 * the stub boot_archive is never released. 1222 * 1223 * In order to get things sized correctly on lower memory 1224 * machines (where the memory used by the ramdisk represents 1225 * a significant portion of memory), physmem is adjusted. 1226 * 1227 * This is done by subtracting the ramdisk_size which is set 1228 * to the size of the ramdisk (in Kb) in /etc/system at the 1229 * time the miniroot archive is constructed. 1230 */ 1231 if (root_is_ramdisk == B_TRUE) { 1232 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1233 physmem -= ramdisk_npages; 1234 } 1235 1236 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1237 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1238 1239 /* 1240 * Allocate space for the interrupt vector table. 1241 */ 1242 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1243 if (memspace != (caddr_t)intr_vec_table) 1244 prom_panic("interrupt vector table allocation failure"); 1245 1246 /* 1247 * Between now and when we finish copying in the memory lists, 1248 * allocations happen so the space gets fragmented and the 1249 * lists longer. Leave enough space for lists twice as 1250 * long as we have now; then roundup to a pagesize. 1251 */ 1252 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1253 prom_phys_avail_len() + prom_virt_avail_len()); 1254 memlist_sz *= 2; 1255 memlist_sz = roundup(memlist_sz, PAGESIZE); 1256 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1257 if (memspace == NULL) 1258 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1259 1260 memlist = (struct memlist *)memspace; 1261 memlist_end = (char *)memspace + memlist_sz; 1262 PRM_DEBUG(memlist); 1263 PRM_DEBUG(memlist_end); 1264 1265 PRM_DEBUG(sysbase); 1266 PRM_DEBUG(syslimit); 1267 kernelheap_init((void *)sysbase, (void *)syslimit, 1268 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1269 1270 /* 1271 * Take the most current snapshot we can by calling mem-update. 1272 */ 1273 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1274 &boot_physavail, &boot_physavail_len, 1275 &boot_virtavail, &boot_virtavail_len); 1276 1277 /* 1278 * Remove the space used by prom_alloc from the kernel heap 1279 * plus the area actually used by the OBP (if any) 1280 * ignoring virtual addresses in virt_avail, above syslimit. 1281 */ 1282 virt_avail = memlist; 1283 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1284 1285 for (cur = virt_avail; cur->next; cur = cur->next) { 1286 uint64_t range_base, range_size; 1287 1288 if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) 1289 continue; 1290 if (range_base >= (uint64_t)syslimit) 1291 break; 1292 /* 1293 * Limit the range to end at syslimit. 1294 */ 1295 range_size = MIN(cur->next->address, 1296 (uint64_t)syslimit) - range_base; 1297 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1298 0, 0, (void *)range_base, (void *)(range_base + range_size), 1299 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1300 } 1301 1302 phys_avail = memlist; 1303 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1304 1305 /* 1306 * Add any extra memory at the end of the ndata region if there's at 1307 * least a page to add. There might be a few more pages available in 1308 * the middle of the ndata region, but for now they are ignored. 1309 */ 1310 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1311 if (nalloc_base == NULL) 1312 nalloc_base = nalloc_end; 1313 ndata_remain_sz = nalloc_end - nalloc_base; 1314 1315 /* 1316 * Copy physinstalled list into kernel space. 1317 */ 1318 phys_install = memlist; 1319 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1320 1321 /* 1322 * Create list of physical addrs we don't need pp's for: 1323 * kernel text 4M page 1324 * kernel data 4M page - ndata_remain_sz 1325 * kmem64 pages 1326 * 1327 * NB if adding any pages here, make sure no kpm page 1328 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1329 */ 1330 nopp_list = memlist; 1331 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1332 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1333 &memlist, &nopp_list); 1334 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1335 1336 if ((caddr_t)memlist > (memspace + memlist_sz)) 1337 prom_panic("memlist overflow"); 1338 1339 /* 1340 * Initialize the page structures from the memory lists. 1341 */ 1342 kphysm_init(); 1343 1344 availrmem_initial = availrmem = freemem; 1345 PRM_DEBUG(availrmem); 1346 1347 /* 1348 * Some of the locks depend on page_hashsz being set! 1349 * kmem_init() depends on this; so, keep it here. 1350 */ 1351 page_lock_init(); 1352 1353 /* 1354 * Initialize kernel memory allocator. 1355 */ 1356 kmem_init(); 1357 1358 /* 1359 * Factor in colorequiv to check additional 'equivalent' bins 1360 */ 1361 if (&page_set_colorequiv_arr_cpu != NULL) 1362 page_set_colorequiv_arr_cpu(); 1363 else 1364 page_set_colorequiv_arr(); 1365 1366 /* 1367 * Initialize bp_mapin(). 1368 */ 1369 bp_init(shm_alignment, HAT_STRICTORDER); 1370 1371 /* 1372 * Reserve space for panicbuf, intr_vec_table, reserved interrupt 1373 * vector data structures and MPO mblock structs from the 32-bit heap. 1374 */ 1375 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 1376 panicbuf, panicbuf + PANICBUFSIZE, 1377 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1378 1379 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 1380 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 1381 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1382 1383 if (mpo_heap32_bufsz > (size_t)0) { 1384 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1385 PAGESIZE, 0, 0, mpo_heap32_buf, 1386 mpo_heap32_buf + mpo_heap32_bufsz, 1387 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1388 } 1389 mem_config_init(); 1390 } 1391 1392 static void 1393 startup_modules(void) 1394 { 1395 int nhblk1, nhblk8; 1396 size_t nhblksz; 1397 pgcnt_t pages_per_hblk; 1398 size_t hme8blk_sz, hme1blk_sz; 1399 1400 /* 1401 * Let the platforms have a chance to change default 1402 * values before reading system file. 1403 */ 1404 if (&set_platform_defaults) 1405 set_platform_defaults(); 1406 1407 /* 1408 * Calculate default settings of system parameters based upon 1409 * maxusers, yet allow to be overridden via the /etc/system file. 1410 */ 1411 param_calc(0); 1412 1413 mod_setup(); 1414 1415 /* 1416 * If this is a positron, complain and halt. 1417 */ 1418 if (&iam_positron && iam_positron()) { 1419 cmn_err(CE_WARN, "This hardware platform is not supported" 1420 " by this release of Solaris.\n"); 1421 #ifdef DEBUG 1422 prom_enter_mon(); /* Type 'go' to resume */ 1423 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1424 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1425 1426 #else /* DEBUG */ 1427 halt(0); 1428 #endif /* DEBUG */ 1429 } 1430 1431 /* 1432 * If we are running firmware that isn't 64-bit ready 1433 * then complain and halt. 1434 */ 1435 do_prom_version_check(); 1436 1437 /* 1438 * Initialize system parameters 1439 */ 1440 param_init(); 1441 1442 /* 1443 * maxmem is the amount of physical memory we're playing with. 1444 */ 1445 maxmem = physmem; 1446 1447 /* Set segkp limits. */ 1448 ncbase = kdi_segdebugbase; 1449 ncend = kdi_segdebugbase; 1450 1451 /* 1452 * Initialize the hat layer. 1453 */ 1454 hat_init(); 1455 1456 /* 1457 * Initialize segment management stuff. 1458 */ 1459 seg_init(); 1460 1461 /* 1462 * Create the va>tte handler, so the prom can understand 1463 * kernel translations. The handler is installed later, just 1464 * as we are about to take over the trap table from the prom. 1465 */ 1466 create_va_to_tte(); 1467 1468 /* 1469 * Load the forthdebugger (optional) 1470 */ 1471 forthdebug_init(); 1472 1473 /* 1474 * Create OBP node for console input callbacks 1475 * if it is needed. 1476 */ 1477 startup_create_io_node(); 1478 1479 if (modloadonly("fs", "specfs") == -1) 1480 halt("Can't load specfs"); 1481 1482 if (modloadonly("fs", "devfs") == -1) 1483 halt("Can't load devfs"); 1484 1485 if (modloadonly("misc", "swapgeneric") == -1) 1486 halt("Can't load swapgeneric"); 1487 1488 (void) modloadonly("sys", "lbl_edition"); 1489 1490 dispinit(); 1491 1492 /* 1493 * Infer meanings to the members of the idprom buffer. 1494 */ 1495 parse_idprom(); 1496 1497 /* Read cluster configuration data. */ 1498 clconf_init(); 1499 1500 setup_ddi(); 1501 1502 /* 1503 * Lets take this opportunity to load the root device. 1504 */ 1505 if (loadrootmodules() != 0) 1506 debug_enter("Can't load the root filesystem"); 1507 1508 /* 1509 * Load tod driver module for the tod part found on this system. 1510 * Recompute the cpu frequency/delays based on tod as tod part 1511 * tends to keep time more accurately. 1512 */ 1513 if (&load_tod_module) 1514 load_tod_module(); 1515 1516 /* 1517 * Allow platforms to load modules which might 1518 * be needed after bootops are gone. 1519 */ 1520 if (&load_platform_modules) 1521 load_platform_modules(); 1522 1523 setcpudelay(); 1524 1525 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1526 &boot_physavail, &boot_physavail_len, 1527 &boot_virtavail, &boot_virtavail_len); 1528 1529 /* 1530 * Calculation and allocation of hmeblks needed to remap 1531 * the memory allocated by PROM till now. 1532 * Overestimate the number of hblk1 elements by assuming 1533 * worst case of TTE64K mappings. 1534 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1535 */ 1536 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1537 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1538 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1539 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1540 1541 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1542 1543 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1544 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1545 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1546 1547 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1548 1549 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1550 nhblk8 = 0; 1551 while (bop_alloc_pages > 1) { 1552 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1553 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1554 bop_alloc_pages *= hme8blk_sz; 1555 bop_alloc_pages = btopr(bop_alloc_pages); 1556 } 1557 nhblk8 += 2; 1558 1559 /* 1560 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1561 * boundary, the number of hblk8's needed to map the entries in the 1562 * boot_virtavail list needs to be adjusted to take this into 1563 * consideration. Thus, we need to add additional hblk8's since it 1564 * is possible that an hblk8 will not have all 8 slots used due to 1565 * alignment constraints. Since there were boot_virtavail_len entries 1566 * in that list, we need to add that many hblk8's to the number 1567 * already calculated to make sure we don't underestimate. 1568 */ 1569 nhblk8 += boot_virtavail_len; 1570 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1571 1572 /* Allocate in pagesize chunks */ 1573 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1574 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1575 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1576 } 1577 1578 static void 1579 startup_bop_gone(void) 1580 { 1581 1582 /* 1583 * Destroy the MD initialized at startup 1584 * The startup initializes the MD framework 1585 * using prom and BOP alloc free it now. 1586 */ 1587 mach_descrip_startup_fini(); 1588 1589 /* 1590 * We're done with prom allocations. 1591 */ 1592 bop_fini(); 1593 1594 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1595 &boot_physavail, &boot_physavail_len, 1596 &boot_virtavail, &boot_virtavail_len); 1597 1598 /* 1599 * setup physically contiguous area twice as large as the ecache. 1600 * this is used while doing displacement flush of ecaches 1601 */ 1602 if (&ecache_flush_address) { 1603 ecache_flushaddr = ecache_flush_address(); 1604 if (ecache_flushaddr == (uint64_t)-1) { 1605 cmn_err(CE_PANIC, 1606 "startup: no memory to set ecache_flushaddr"); 1607 } 1608 } 1609 1610 /* 1611 * Virtual available next. 1612 */ 1613 ASSERT(virt_avail != NULL); 1614 memlist_free_list(virt_avail); 1615 virt_avail = memlist; 1616 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1617 1618 } 1619 1620 1621 /* 1622 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1623 * allocations have been performed. We can't call it in startup_bop_gone 1624 * since later operations can cause obp to allocate more memory. 1625 */ 1626 void 1627 startup_fixup_physavail(void) 1628 { 1629 struct memlist *cur; 1630 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1631 1632 PRM_DEBUG(kmem64_overmap_size); 1633 1634 /* 1635 * take the most current snapshot we can by calling mem-update 1636 */ 1637 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1638 &boot_physavail, &boot_physavail_len, 1639 &boot_virtavail, &boot_virtavail_len); 1640 1641 /* 1642 * Copy phys_avail list, again. 1643 * Both the kernel/boot and the prom have been allocating 1644 * from the original list we copied earlier. 1645 */ 1646 cur = memlist; 1647 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1648 1649 /* 1650 * Add any unused kmem64 memory from overmapped page 1651 * (Note: va_to_pa does not work for kmem64_end) 1652 */ 1653 if (kmem64_overmap_size) { 1654 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1655 kmem64_overmap_size, &memlist, &cur); 1656 } 1657 1658 /* 1659 * Add any extra memory after e_data we added to the phys_avail list 1660 * back to the old list. 1661 */ 1662 if (ndata_remain_sz >= MMU_PAGESIZE) 1663 memlist_add(va_to_pa(nalloc_base), 1664 (uint64_t)ndata_remain_sz, &memlist, &cur); 1665 1666 /* 1667 * There isn't any bounds checking on the memlist area 1668 * so ensure it hasn't overgrown. 1669 */ 1670 if ((caddr_t)memlist > (caddr_t)memlist_end) 1671 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1672 1673 /* 1674 * The kernel removes the pages that were allocated for it from 1675 * the freelist, but we now have to find any -extra- pages that 1676 * the prom has allocated for it's own book-keeping, and remove 1677 * them from the freelist too. sigh. 1678 */ 1679 sync_memlists(phys_avail, cur); 1680 1681 ASSERT(phys_avail != NULL); 1682 1683 old_phys_avail = phys_avail; 1684 phys_avail = cur; 1685 } 1686 1687 void 1688 update_kcage_ranges(uint64_t addr, uint64_t len) 1689 { 1690 pfn_t base = btop(addr); 1691 pgcnt_t num = btop(len); 1692 int rv; 1693 1694 rv = kcage_range_add(base, num, kcage_startup_dir); 1695 1696 if (rv == ENOMEM) { 1697 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1698 (len == 0 ? 0 : BYTES_TO_MB(len))); 1699 } else if (rv != 0) { 1700 /* catch this in debug kernels */ 1701 ASSERT(0); 1702 1703 cmn_err(CE_WARN, "unexpected kcage_range_add" 1704 " return value %d", rv); 1705 } 1706 } 1707 1708 static void 1709 startup_vm(void) 1710 { 1711 size_t i; 1712 struct segmap_crargs a; 1713 struct segkpm_crargs b; 1714 1715 uint64_t avmem; 1716 caddr_t va; 1717 pgcnt_t max_phys_segkp; 1718 int mnode; 1719 1720 extern int use_brk_lpg, use_stk_lpg; 1721 1722 /* 1723 * get prom's mappings, create hments for them and switch 1724 * to the kernel context. 1725 */ 1726 hat_kern_setup(); 1727 1728 /* 1729 * Take over trap table 1730 */ 1731 setup_trap_table(); 1732 1733 /* 1734 * Install the va>tte handler, so that the prom can handle 1735 * misses and understand the kernel table layout in case 1736 * we need call into the prom. 1737 */ 1738 install_va_to_tte(); 1739 1740 /* 1741 * Set a flag to indicate that the tba has been taken over. 1742 */ 1743 tba_taken_over = 1; 1744 1745 /* initialize MMU primary context register */ 1746 mmu_init_kcontext(); 1747 1748 /* 1749 * The boot cpu can now take interrupts, x-calls, x-traps 1750 */ 1751 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1752 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1753 1754 /* 1755 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1756 */ 1757 tbr_wr_addr_inited = 1; 1758 1759 /* 1760 * Initialize VM system, and map kernel address space. 1761 */ 1762 kvm_init(); 1763 1764 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1765 if (kernel_cage_enable) { 1766 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1767 } 1768 memlist_free_list(old_phys_avail); 1769 1770 /* 1771 * If the following is true, someone has patched 1772 * phsymem to be less than the number of pages that 1773 * the system actually has. Remove pages until system 1774 * memory is limited to the requested amount. Since we 1775 * have allocated page structures for all pages, we 1776 * correct the amount of memory we want to remove 1777 * by the size of the memory used to hold page structures 1778 * for the non-used pages. 1779 */ 1780 if (physmem + ramdisk_npages < npages) { 1781 pgcnt_t diff, off; 1782 struct page *pp; 1783 struct seg kseg; 1784 1785 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1786 1787 off = 0; 1788 diff = npages - (physmem + ramdisk_npages); 1789 diff -= mmu_btopr(diff * sizeof (struct page)); 1790 kseg.s_as = &kas; 1791 while (diff--) { 1792 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1793 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1794 &kseg, (caddr_t)off); 1795 if (pp == NULL) 1796 cmn_err(CE_PANIC, "limited physmem too much!"); 1797 page_io_unlock(pp); 1798 page_downgrade(pp); 1799 availrmem--; 1800 off += MMU_PAGESIZE; 1801 } 1802 } 1803 1804 /* 1805 * When printing memory, show the total as physmem less 1806 * that stolen by a debugger. 1807 */ 1808 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1809 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1810 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1811 1812 avmem = (uint64_t)freemem << PAGESHIFT; 1813 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1814 1815 /* 1816 * For small memory systems disable automatic large pages. 1817 */ 1818 if (physmem < privm_lpg_min_physmem) { 1819 use_brk_lpg = 0; 1820 use_stk_lpg = 0; 1821 } 1822 1823 /* 1824 * Perform platform specific freelist processing 1825 */ 1826 if (&plat_freelist_process) { 1827 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1828 if (mem_node_config[mnode].exists) 1829 plat_freelist_process(mnode); 1830 } 1831 1832 /* 1833 * Initialize the segkp segment type. We position it 1834 * after the configured tables and buffers (whose end 1835 * is given by econtig) and before V_WKBASE_ADDR. 1836 * Also in this area is segkmap (size SEGMAPSIZE). 1837 */ 1838 1839 /* XXX - cache alignment? */ 1840 va = (caddr_t)SEGKPBASE; 1841 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1842 1843 max_phys_segkp = (physmem * 2); 1844 1845 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1846 segkpsize = btop(SEGKPDEFSIZE); 1847 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1848 "segkpsize has been reset to %ld pages", segkpsize); 1849 } 1850 1851 i = ptob(MIN(segkpsize, max_phys_segkp)); 1852 1853 rw_enter(&kas.a_lock, RW_WRITER); 1854 if (seg_attach(&kas, va, i, segkp) < 0) 1855 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1856 if (segkp_create(segkp) != 0) 1857 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1858 rw_exit(&kas.a_lock); 1859 1860 /* 1861 * kpm segment 1862 */ 1863 segmap_kpm = kpm_enable && 1864 segmap_kpm && PAGESIZE == MAXBSIZE; 1865 1866 if (kpm_enable) { 1867 rw_enter(&kas.a_lock, RW_WRITER); 1868 1869 /* 1870 * The segkpm virtual range range is larger than the 1871 * actual physical memory size and also covers gaps in 1872 * the physical address range for the following reasons: 1873 * . keep conversion between segkpm and physical addresses 1874 * simple, cheap and unambiguous. 1875 * . avoid extension/shrink of the the segkpm in case of DR. 1876 * . avoid complexity for handling of virtual addressed 1877 * caches, segkpm and the regular mapping scheme must be 1878 * kept in sync wrt. the virtual color of mapped pages. 1879 * Any accesses to virtual segkpm ranges not backed by 1880 * physical memory will fall through the memseg pfn hash 1881 * and will be handled in segkpm_fault. 1882 * Additional kpm_size spaces needed for vac alias prevention. 1883 */ 1884 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1885 segkpm) < 0) 1886 cmn_err(CE_PANIC, "cannot attach segkpm"); 1887 1888 b.prot = PROT_READ | PROT_WRITE; 1889 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1890 1891 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 1892 panic("segkpm_create segkpm"); 1893 1894 rw_exit(&kas.a_lock); 1895 1896 mach_kpm_init(); 1897 } 1898 1899 if (!segzio_fromheap) { 1900 size_t size; 1901 size_t physmem_b = mmu_ptob(physmem); 1902 1903 /* size is in bytes, segziosize is in pages */ 1904 if (segziosize == 0) { 1905 size = physmem_b; 1906 } else { 1907 size = mmu_ptob(segziosize); 1908 } 1909 1910 if (size < SEGZIOMINSIZE) { 1911 size = SEGZIOMINSIZE; 1912 } else if (size > SEGZIOMAXSIZE) { 1913 size = SEGZIOMAXSIZE; 1914 /* 1915 * On 64-bit x86, we only have 2TB of KVA. This exists 1916 * for parity with x86. 1917 * 1918 * SEGZIOMAXSIZE is capped at 512gb so that segzio 1919 * doesn't consume all of KVA. However, if we have a 1920 * system that has more thant 512gb of physical memory, 1921 * we can actually consume about half of the difference 1922 * between 512gb and the rest of the available physical 1923 * memory. 1924 */ 1925 if (physmem_b > SEGZIOMAXSIZE) { 1926 size += (physmem_b - SEGZIOMAXSIZE) / 2; 1927 } 1928 } 1929 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 1930 /* put the base of the ZIO segment after the kpm segment */ 1931 segzio_base = kpm_vbase + (kpm_size * vac_colors); 1932 PRM_DEBUG(segziosize); 1933 PRM_DEBUG(segzio_base); 1934 1935 /* 1936 * On some platforms, kvm_init is called after the kpm 1937 * sizes have been determined. On SPARC, kvm_init is called 1938 * before, so we have to attach the kzioseg after kvm is 1939 * initialized, otherwise we'll try to allocate from the boot 1940 * area since the kernel heap hasn't yet been configured. 1941 */ 1942 rw_enter(&kas.a_lock, RW_WRITER); 1943 1944 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 1945 &kzioseg); 1946 (void) segkmem_zio_create(&kzioseg); 1947 1948 /* create zio area covering new segment */ 1949 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 1950 1951 rw_exit(&kas.a_lock); 1952 } 1953 1954 1955 /* 1956 * Now create generic mapping segment. This mapping 1957 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 1958 * virtual address is greater than the amount of free 1959 * memory that is available, then we trim back the 1960 * segment size to that amount 1961 */ 1962 va = (caddr_t)SEGMAPBASE; 1963 1964 /* 1965 * 1201049: segkmap base address must be MAXBSIZE aligned 1966 */ 1967 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 1968 1969 /* 1970 * Set size of segmap to percentage of freemem at boot, 1971 * but stay within the allowable range 1972 * Note we take percentage before converting from pages 1973 * to bytes to avoid an overflow on 32-bit kernels. 1974 */ 1975 i = mmu_ptob((freemem * segmap_percent) / 100); 1976 1977 if (i < MINMAPSIZE) 1978 i = MINMAPSIZE; 1979 1980 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 1981 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 1982 1983 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 1984 1985 rw_enter(&kas.a_lock, RW_WRITER); 1986 if (seg_attach(&kas, va, i, segkmap) < 0) 1987 cmn_err(CE_PANIC, "cannot attach segkmap"); 1988 1989 a.prot = PROT_READ | PROT_WRITE; 1990 a.shmsize = shm_alignment; 1991 a.nfreelist = 0; /* use segmap driver defaults */ 1992 1993 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1994 panic("segmap_create segkmap"); 1995 rw_exit(&kas.a_lock); 1996 1997 segdev_init(); 1998 } 1999 2000 static void 2001 startup_end(void) 2002 { 2003 if ((caddr_t)memlist > (caddr_t)memlist_end) 2004 panic("memlist overflow 2"); 2005 memlist_free_block((caddr_t)memlist, 2006 ((caddr_t)memlist_end - (caddr_t)memlist)); 2007 memlist = NULL; 2008 2009 /* enable page_relocation since OBP is now done */ 2010 page_relocate_ready = 1; 2011 2012 /* 2013 * Perform tasks that get done after most of the VM 2014 * initialization has been done but before the clock 2015 * and other devices get started. 2016 */ 2017 kern_setup1(); 2018 2019 /* 2020 * Intialize the VM arenas for allocating physically 2021 * contiguus memory chunk for interrupt queues snd 2022 * allocate/register boot cpu's queues, if any and 2023 * allocate dump buffer for sun4v systems to store 2024 * extra crash information during crash dump 2025 */ 2026 contig_mem_init(); 2027 mach_descrip_init(); 2028 2029 if (cpu_intrq_setup(CPU)) { 2030 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2031 } 2032 cpu_intrq_register(CPU); 2033 mach_htraptrace_setup(CPU->cpu_id); 2034 mach_htraptrace_configure(CPU->cpu_id); 2035 mach_dump_buffer_init(); 2036 2037 /* 2038 * Initialize interrupt related stuff 2039 */ 2040 cpu_intr_alloc(CPU, NINTR_THREADS); 2041 2042 (void) splzs(); /* allow hi clock ints but not zs */ 2043 2044 /* 2045 * Initialize errors. 2046 */ 2047 error_init(); 2048 2049 /* 2050 * Note that we may have already used kernel bcopy before this 2051 * point - but if you really care about this, adb the use_hw_* 2052 * variables to 0 before rebooting. 2053 */ 2054 mach_hw_copy_limit(); 2055 2056 /* 2057 * Install the "real" preemption guards before DDI services 2058 * are available. 2059 */ 2060 (void) prom_set_preprom(kern_preprom); 2061 (void) prom_set_postprom(kern_postprom); 2062 CPU->cpu_m.mutex_ready = 1; 2063 2064 /* 2065 * Initialize segnf (kernel support for non-faulting loads). 2066 */ 2067 segnf_init(); 2068 2069 /* 2070 * Configure the root devinfo node. 2071 */ 2072 configure(); /* set up devices */ 2073 mach_cpu_halt_idle(); 2074 } 2075 2076 2077 void 2078 post_startup(void) 2079 { 2080 #ifdef PTL1_PANIC_DEBUG 2081 extern void init_ptl1_thread(void); 2082 #endif /* PTL1_PANIC_DEBUG */ 2083 extern void abort_sequence_init(void); 2084 2085 /* 2086 * Set the system wide, processor-specific flags to be passed 2087 * to userland via the aux vector for performance hints and 2088 * instruction set extensions. 2089 */ 2090 bind_hwcap(); 2091 2092 /* 2093 * Startup memory scrubber (if any) 2094 */ 2095 mach_memscrub(); 2096 2097 /* 2098 * Allocate soft interrupt to handle abort sequence. 2099 */ 2100 abort_sequence_init(); 2101 2102 /* 2103 * Configure the rest of the system. 2104 * Perform forceloading tasks for /etc/system. 2105 */ 2106 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2107 /* 2108 * ON4.0: Force /proc module in until clock interrupt handle fixed 2109 * ON4.0: This must be fixed or restated in /etc/systems. 2110 */ 2111 (void) modload("fs", "procfs"); 2112 2113 /* load machine class specific drivers */ 2114 load_mach_drivers(); 2115 2116 /* load platform specific drivers */ 2117 if (&load_platform_drivers) 2118 load_platform_drivers(); 2119 2120 /* load vis simulation module, if we are running w/fpu off */ 2121 if (!fpu_exists) { 2122 if (modload("misc", "vis") == -1) 2123 halt("Can't load vis"); 2124 } 2125 2126 mach_fpras(); 2127 2128 maxmem = freemem; 2129 2130 #ifdef PTL1_PANIC_DEBUG 2131 init_ptl1_thread(); 2132 #endif /* PTL1_PANIC_DEBUG */ 2133 } 2134 2135 #ifdef PTL1_PANIC_DEBUG 2136 int ptl1_panic_test = 0; 2137 int ptl1_panic_xc_one_test = 0; 2138 int ptl1_panic_xc_all_test = 0; 2139 int ptl1_panic_xt_one_test = 0; 2140 int ptl1_panic_xt_all_test = 0; 2141 kthread_id_t ptl1_thread_p = NULL; 2142 kcondvar_t ptl1_cv; 2143 kmutex_t ptl1_mutex; 2144 int ptl1_recurse_count_threshold = 0x40; 2145 int ptl1_recurse_trap_threshold = 0x3d; 2146 extern void ptl1_recurse(int, int); 2147 extern void ptl1_panic_xt(int, int); 2148 2149 /* 2150 * Called once per second by timeout() to wake up 2151 * the ptl1_panic thread to see if it should cause 2152 * a trap to the ptl1_panic() code. 2153 */ 2154 /* ARGSUSED */ 2155 static void 2156 ptl1_wakeup(void *arg) 2157 { 2158 mutex_enter(&ptl1_mutex); 2159 cv_signal(&ptl1_cv); 2160 mutex_exit(&ptl1_mutex); 2161 } 2162 2163 /* 2164 * ptl1_panic cross call function: 2165 * Needed because xc_one() and xc_some() can pass 2166 * 64 bit args but ptl1_recurse() expects ints. 2167 */ 2168 static void 2169 ptl1_panic_xc(void) 2170 { 2171 ptl1_recurse(ptl1_recurse_count_threshold, 2172 ptl1_recurse_trap_threshold); 2173 } 2174 2175 /* 2176 * The ptl1 thread waits for a global flag to be set 2177 * and uses the recurse thresholds to set the stack depth 2178 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2179 * or indirectly via the cross call and cross trap functions. 2180 * 2181 * This is useful testing stack overflows and normal 2182 * ptl1_panic() states with a know stack frame. 2183 * 2184 * ptl1_recurse() is an asm function in ptl1_panic.s that 2185 * sets the {In, Local, Out, and Global} registers to a 2186 * know state on the stack and just prior to causing a 2187 * test ptl1_panic trap. 2188 */ 2189 static void 2190 ptl1_thread(void) 2191 { 2192 mutex_enter(&ptl1_mutex); 2193 while (ptl1_thread_p) { 2194 cpuset_t other_cpus; 2195 int cpu_id; 2196 int my_cpu_id; 2197 int target_cpu_id; 2198 int target_found; 2199 2200 if (ptl1_panic_test) { 2201 ptl1_recurse(ptl1_recurse_count_threshold, 2202 ptl1_recurse_trap_threshold); 2203 } 2204 2205 /* 2206 * Find potential targets for x-call and x-trap, 2207 * if any exist while preempt is disabled we 2208 * start a ptl1_panic if requested via a 2209 * globals. 2210 */ 2211 kpreempt_disable(); 2212 my_cpu_id = CPU->cpu_id; 2213 other_cpus = cpu_ready_set; 2214 CPUSET_DEL(other_cpus, CPU->cpu_id); 2215 target_found = 0; 2216 if (!CPUSET_ISNULL(other_cpus)) { 2217 /* 2218 * Pick the first one 2219 */ 2220 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2221 if (cpu_id == my_cpu_id) 2222 continue; 2223 2224 if (CPU_XCALL_READY(cpu_id)) { 2225 target_cpu_id = cpu_id; 2226 target_found = 1; 2227 break; 2228 } 2229 } 2230 ASSERT(target_found); 2231 2232 if (ptl1_panic_xc_one_test) { 2233 xc_one(target_cpu_id, 2234 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2235 } 2236 if (ptl1_panic_xc_all_test) { 2237 xc_some(other_cpus, 2238 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2239 } 2240 if (ptl1_panic_xt_one_test) { 2241 xt_one(target_cpu_id, 2242 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2243 } 2244 if (ptl1_panic_xt_all_test) { 2245 xt_some(other_cpus, 2246 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2247 } 2248 } 2249 kpreempt_enable(); 2250 (void) timeout(ptl1_wakeup, NULL, hz); 2251 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2252 } 2253 mutex_exit(&ptl1_mutex); 2254 } 2255 2256 /* 2257 * Called during early startup to create the ptl1_thread 2258 */ 2259 void 2260 init_ptl1_thread(void) 2261 { 2262 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2263 &p0, TS_RUN, 0); 2264 } 2265 #endif /* PTL1_PANIC_DEBUG */ 2266 2267 2268 static void 2269 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2270 { 2271 struct memlist *new; 2272 2273 new = *memlistp; 2274 new->address = start; 2275 new->size = len; 2276 *memlistp = new + 1; 2277 } 2278 2279 /* 2280 * Add to a memory list. 2281 * start = start of new memory segment 2282 * len = length of new memory segment in bytes 2283 * memlistp = pointer to array of available memory segment structures 2284 * curmemlistp = memory list to which to add segment. 2285 */ 2286 static void 2287 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2288 struct memlist **curmemlistp) 2289 { 2290 struct memlist *new = *memlistp; 2291 2292 memlist_new(start, len, memlistp); 2293 memlist_insert(new, curmemlistp); 2294 } 2295 2296 static int 2297 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2298 { 2299 int nseg; 2300 size_t memseg_sz; 2301 struct memseg *msp; 2302 2303 /* 2304 * The memseg list is for the chunks of physical memory that 2305 * will be managed by the vm system. The number calculated is 2306 * a guess as boot may fragment it more when memory allocations 2307 * are made before kphysm_init(). 2308 */ 2309 memseg_sz = (avail + 10) * sizeof (struct memseg); 2310 memseg_sz = roundup(memseg_sz, PAGESIZE); 2311 nseg = memseg_sz / sizeof (struct memseg); 2312 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2313 if (msp == NULL) 2314 return (1); 2315 PRM_DEBUG(memseg_free); 2316 2317 while (nseg--) { 2318 msp->next = memseg_free; 2319 memseg_free = msp; 2320 msp++; 2321 } 2322 return (0); 2323 } 2324 2325 /* 2326 * In the case of architectures that support dynamic addition of 2327 * memory at run-time there are two cases where memsegs need to 2328 * be initialized and added to the memseg list. 2329 * 1) memsegs that are constructed at startup. 2330 * 2) memsegs that are constructed at run-time on 2331 * hot-plug capable architectures. 2332 * This code was originally part of the function kphysm_init(). 2333 */ 2334 2335 static void 2336 memseg_list_add(struct memseg *memsegp) 2337 { 2338 struct memseg **prev_memsegp; 2339 pgcnt_t num; 2340 2341 /* insert in memseg list, decreasing number of pages order */ 2342 2343 num = MSEG_NPAGES(memsegp); 2344 2345 for (prev_memsegp = &memsegs; *prev_memsegp; 2346 prev_memsegp = &((*prev_memsegp)->next)) { 2347 if (num > MSEG_NPAGES(*prev_memsegp)) 2348 break; 2349 } 2350 2351 memsegp->next = *prev_memsegp; 2352 *prev_memsegp = memsegp; 2353 2354 if (kpm_enable) { 2355 memsegp->nextpa = (memsegp->next) ? 2356 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2357 2358 if (prev_memsegp != &memsegs) { 2359 struct memseg *msp; 2360 msp = (struct memseg *)((caddr_t)prev_memsegp - 2361 offsetof(struct memseg, next)); 2362 msp->nextpa = va_to_pa(memsegp); 2363 } else { 2364 memsegspa = va_to_pa(memsegs); 2365 } 2366 } 2367 } 2368 2369 /* 2370 * PSM add_physmem_cb(). US-II and newer processors have some 2371 * flavor of the prefetch capability implemented. We exploit 2372 * this capability for optimum performance. 2373 */ 2374 #define PREFETCH_BYTES 64 2375 2376 void 2377 add_physmem_cb(page_t *pp, pfn_t pnum) 2378 { 2379 extern void prefetch_page_w(void *); 2380 2381 pp->p_pagenum = pnum; 2382 2383 /* 2384 * Prefetch one more page_t into E$. To prevent future 2385 * mishaps with the sizeof(page_t) changing on us, we 2386 * catch this on debug kernels if we can't bring in the 2387 * entire hpage with 2 PREFETCH_BYTES reads. See 2388 * also, sun4u/cpu/cpu_module.c 2389 */ 2390 /*LINTED*/ 2391 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2392 prefetch_page_w((char *)pp); 2393 } 2394 2395 /* 2396 * Find memseg with given pfn 2397 */ 2398 static struct memseg * 2399 memseg_find(pfn_t base, pfn_t *next) 2400 { 2401 struct memseg *seg; 2402 2403 if (next != NULL) 2404 *next = LONG_MAX; 2405 for (seg = memsegs; seg != NULL; seg = seg->next) { 2406 if (base >= seg->pages_base && base < seg->pages_end) 2407 return (seg); 2408 if (next != NULL && seg->pages_base > base && 2409 seg->pages_base < *next) 2410 *next = seg->pages_base; 2411 } 2412 return (NULL); 2413 } 2414 2415 extern struct vnode prom_ppages; 2416 2417 /* 2418 * Put page allocated by OBP on prom_ppages 2419 */ 2420 static void 2421 kphysm_erase(uint64_t addr, uint64_t len) 2422 { 2423 struct page *pp; 2424 struct memseg *seg; 2425 pfn_t base = btop(addr), next; 2426 pgcnt_t num = btop(len); 2427 2428 while (num != 0) { 2429 pgcnt_t off, left; 2430 2431 seg = memseg_find(base, &next); 2432 if (seg == NULL) { 2433 if (next == LONG_MAX) 2434 break; 2435 left = MIN(next - base, num); 2436 base += left, num -= left; 2437 continue; 2438 } 2439 off = base - seg->pages_base; 2440 pp = seg->pages + off; 2441 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2442 while (num != left) { 2443 /* 2444 * init it, lock it, and hashin on prom_pages vp. 2445 * 2446 * XXX vnode offsets on the prom_ppages vnode 2447 * are page numbers (gack) for >32 bit 2448 * physical memory machines. 2449 */ 2450 add_physmem_cb(pp, base); 2451 if (page_trylock(pp, SE_EXCL) == 0) 2452 cmn_err(CE_PANIC, "prom page locked"); 2453 (void) page_hashin(pp, &prom_ppages, 2454 (offset_t)base, NULL); 2455 (void) page_pp_lock(pp, 0, 1); 2456 pp++, base++, num--; 2457 } 2458 } 2459 } 2460 2461 static page_t *ppnext; 2462 static pgcnt_t ppleft; 2463 2464 static void *kpm_ppnext; 2465 static pgcnt_t kpm_ppleft; 2466 2467 /* 2468 * Create a memseg 2469 */ 2470 static void 2471 kphysm_memseg(uint64_t addr, uint64_t len) 2472 { 2473 pfn_t base = btop(addr); 2474 pgcnt_t num = btop(len); 2475 struct memseg *seg; 2476 2477 seg = memseg_free; 2478 memseg_free = seg->next; 2479 ASSERT(seg != NULL); 2480 2481 seg->pages = ppnext; 2482 seg->epages = ppnext + num; 2483 seg->pages_base = base; 2484 seg->pages_end = base + num; 2485 ppnext += num; 2486 ppleft -= num; 2487 2488 if (kpm_enable) { 2489 pgcnt_t kpnum = ptokpmpr(num); 2490 2491 if (kpnum > kpm_ppleft) 2492 panic("kphysm_memseg: kpm_pp overflow"); 2493 seg->pagespa = va_to_pa(seg->pages); 2494 seg->epagespa = va_to_pa(seg->epages); 2495 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2496 seg->kpm_nkpmpgs = kpnum; 2497 /* 2498 * In the kpm_smallpage case, the kpm array 2499 * is 1-1 wrt the page array 2500 */ 2501 if (kpm_smallpages) { 2502 kpm_spage_t *kpm_pp = kpm_ppnext; 2503 2504 kpm_ppnext = kpm_pp + kpnum; 2505 seg->kpm_spages = kpm_pp; 2506 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2507 } else { 2508 kpm_page_t *kpm_pp = kpm_ppnext; 2509 2510 kpm_ppnext = kpm_pp + kpnum; 2511 seg->kpm_pages = kpm_pp; 2512 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2513 /* ASSERT no kpm overlaps */ 2514 ASSERT( 2515 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2516 ASSERT(memseg_find( 2517 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2518 } 2519 kpm_ppleft -= num; 2520 } 2521 2522 memseg_list_add(seg); 2523 } 2524 2525 /* 2526 * Add range to free list 2527 */ 2528 void 2529 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2530 { 2531 struct page *pp; 2532 struct memseg *seg; 2533 pfn_t base = btop(addr); 2534 pgcnt_t num = btop(len); 2535 2536 seg = memseg_find(base, NULL); 2537 ASSERT(seg != NULL); 2538 pp = seg->pages + (base - seg->pages_base); 2539 2540 if (reclaim) { 2541 struct page *rpp = pp; 2542 struct page *lpp = pp + num; 2543 2544 /* 2545 * page should be locked on prom_ppages 2546 * unhash and unlock it 2547 */ 2548 while (rpp < lpp) { 2549 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &prom_ppages); 2550 page_pp_unlock(rpp, 0, 1); 2551 page_hashout(rpp, NULL); 2552 page_unlock(rpp); 2553 rpp++; 2554 } 2555 } 2556 2557 /* 2558 * add_physmem() initializes the PSM part of the page 2559 * struct by calling the PSM back with add_physmem_cb(). 2560 * In addition it coalesces pages into larger pages as 2561 * it initializes them. 2562 */ 2563 add_physmem(pp, num, base); 2564 } 2565 2566 /* 2567 * kphysm_init() tackles the problem of initializing physical memory. 2568 */ 2569 static void 2570 kphysm_init(void) 2571 { 2572 struct memlist *pmem; 2573 2574 ASSERT(page_hash != NULL && page_hashsz != 0); 2575 2576 ppnext = pp_base; 2577 ppleft = npages; 2578 kpm_ppnext = kpm_pp_base; 2579 kpm_ppleft = kpm_npages; 2580 2581 /* 2582 * installed pages not on nopp_memlist go in memseg list 2583 */ 2584 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2585 2586 /* 2587 * Free the avail list 2588 */ 2589 for (pmem = phys_avail; pmem != NULL; pmem = pmem->next) 2590 kphysm_add(pmem->address, pmem->size, 0); 2591 2592 /* 2593 * Erase pages that aren't available 2594 */ 2595 diff_memlists(phys_install, phys_avail, kphysm_erase); 2596 2597 build_pfn_hash(); 2598 } 2599 2600 /* 2601 * Kernel VM initialization. 2602 * Assumptions about kernel address space ordering: 2603 * (1) gap (user space) 2604 * (2) kernel text 2605 * (3) kernel data/bss 2606 * (4) gap 2607 * (5) kernel data structures 2608 * (6) gap 2609 * (7) debugger (optional) 2610 * (8) monitor 2611 * (9) gap (possibly null) 2612 * (10) dvma 2613 * (11) devices 2614 */ 2615 static void 2616 kvm_init(void) 2617 { 2618 /* 2619 * Put the kernel segments in kernel address space. 2620 */ 2621 rw_enter(&kas.a_lock, RW_WRITER); 2622 as_avlinit(&kas); 2623 2624 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2625 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2626 (void) segkmem_create(&ktextseg); 2627 2628 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2629 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2630 (void) segkmem_create(&ktexthole); 2631 2632 (void) seg_attach(&kas, (caddr_t)valloc_base, 2633 (size_t)(econtig32 - valloc_base), &kvalloc); 2634 (void) segkmem_create(&kvalloc); 2635 2636 if (kmem64_base) { 2637 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2638 (size_t)(kmem64_end - kmem64_base), &kmem64); 2639 (void) segkmem_create(&kmem64); 2640 } 2641 2642 /* 2643 * We're about to map out /boot. This is the beginning of the 2644 * system resource management transition. We can no longer 2645 * call into /boot for I/O or memory allocations. 2646 */ 2647 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2648 (void) segkmem_create(&kvseg); 2649 hblk_alloc_dynamic = 1; 2650 2651 /* 2652 * we need to preallocate pages for DR operations before enabling large 2653 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2654 */ 2655 memseg_remap_init(); 2656 2657 /* at this point we are ready to use large page heap */ 2658 segkmem_heap_lp_init(); 2659 2660 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2661 &kvseg32); 2662 (void) segkmem_create(&kvseg32); 2663 2664 /* 2665 * Create a segment for the debugger. 2666 */ 2667 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2668 (void) segkmem_create(&kdebugseg); 2669 2670 rw_exit(&kas.a_lock); 2671 } 2672 2673 char obp_tte_str[] = 2674 "h# %x constant MMU_PAGESHIFT " 2675 "h# %x constant TTE8K " 2676 "h# %x constant SFHME_SIZE " 2677 "h# %x constant SFHME_TTE " 2678 "h# %x constant HMEBLK_TAG " 2679 "h# %x constant HMEBLK_NEXT " 2680 "h# %x constant HMEBLK_MISC " 2681 "h# %x constant HMEBLK_HME1 " 2682 "h# %x constant NHMENTS " 2683 "h# %x constant HBLK_SZMASK " 2684 "h# %x constant HBLK_RANGE_SHIFT " 2685 "h# %x constant HMEBP_HBLK " 2686 "h# %x constant HMEBUCKET_SIZE " 2687 "h# %x constant HTAG_SFMMUPSZ " 2688 "h# %x constant HTAG_BSPAGE_SHIFT " 2689 "h# %x constant HTAG_REHASH_SHIFT " 2690 "h# %x constant SFMMU_INVALID_SHMERID " 2691 "h# %x constant mmu_hashcnt " 2692 "h# %p constant uhme_hash " 2693 "h# %p constant khme_hash " 2694 "h# %x constant UHMEHASH_SZ " 2695 "h# %x constant KHMEHASH_SZ " 2696 "h# %p constant KCONTEXT " 2697 "h# %p constant KHATID " 2698 "h# %x constant ASI_MEM " 2699 2700 ": PHYS-X@ ( phys -- data ) " 2701 " ASI_MEM spacex@ " 2702 "; " 2703 2704 ": PHYS-W@ ( phys -- data ) " 2705 " ASI_MEM spacew@ " 2706 "; " 2707 2708 ": PHYS-L@ ( phys -- data ) " 2709 " ASI_MEM spaceL@ " 2710 "; " 2711 2712 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2713 " 3 * MMU_PAGESHIFT + " 2714 "; " 2715 2716 ": TTE_IS_VALID ( ttep -- flag ) " 2717 " PHYS-X@ 0< " 2718 "; " 2719 2720 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2721 " dup TTE8K = if " 2722 " drop HBLK_RANGE_SHIFT " 2723 " else " 2724 " TTE_PAGE_SHIFT " 2725 " then " 2726 "; " 2727 2728 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2729 " tuck >> swap MMU_PAGESHIFT - << " 2730 "; " 2731 2732 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2733 " >> over xor swap ( hash sfmmup ) " 2734 " KHATID <> if ( hash ) " 2735 " UHMEHASH_SZ and ( bucket ) " 2736 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2737 " else ( hash ) " 2738 " KHMEHASH_SZ and ( bucket ) " 2739 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2740 " then ( hmebp ) " 2741 "; " 2742 2743 ": HME_HASH_TABLE_SEARCH " 2744 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2745 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2746 " dup if ( sfmmup hmeblkp ) ( r: hblktag ) " 2747 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2748 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2749 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2750 " else " 2751 " hmeblk_next + phys-x@ false " 2752 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2753 " then " 2754 " else " 2755 " hmeblk_next + phys-x@ false " 2756 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2757 " then " 2758 " else " 2759 " true " 2760 " then " 2761 " until r> drop " 2762 "; " 2763 2764 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2765 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2766 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2767 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2768 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2769 "; " 2770 2771 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2772 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2773 " TTE8K = if ( hmeblkp addr ) " 2774 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2775 " else ( hmeblkp addr ) " 2776 " drop 0 ( hmeblkp 0 ) " 2777 " then ( hmeblkp hme-index ) " 2778 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2779 " SFHME_TTE + ( ttep ) " 2780 "; " 2781 2782 ": unix-tte ( addr cnum -- false | tte-data true ) " 2783 " KCONTEXT = if ( addr ) " 2784 " KHATID ( addr khatid ) " 2785 " else ( addr ) " 2786 " drop false exit ( false ) " 2787 " then " 2788 " ( addr khatid ) " 2789 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2790 " 2dup swap i HME_HASH_SHIFT " 2791 "( addr sfmmup sfmmup addr hmeshift ) " 2792 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2793 " over i 4 pick " 2794 "( addr sfmmup hmebp sfmmup rehash addr ) " 2795 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2796 " HME_HASH_TABLE_SEARCH " 2797 "( addr sfmmup { null | hmeblkp } ) " 2798 " ?dup if ( addr sfmmup hmeblkp ) " 2799 " nip swap HBLK_TO_TTEP ( ttep ) " 2800 " dup TTE_IS_VALID if ( valid-ttep ) " 2801 " PHYS-X@ true ( tte-data true ) " 2802 " else ( invalid-tte ) " 2803 " drop false ( false ) " 2804 " then ( false | tte-data true ) " 2805 " unloop exit ( false | tte-data true ) " 2806 " then ( addr sfmmup ) " 2807 " loop ( addr sfmmup ) " 2808 " 2drop false ( false ) " 2809 "; " 2810 ; 2811 2812 void 2813 create_va_to_tte(void) 2814 { 2815 char *bp; 2816 extern int khmehash_num, uhmehash_num; 2817 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2818 2819 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2820 2821 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2822 2823 /* 2824 * Teach obp how to parse our sw ttes. 2825 */ 2826 (void) sprintf(bp, obp_tte_str, 2827 MMU_PAGESHIFT, 2828 TTE8K, 2829 sizeof (struct sf_hment), 2830 OFFSET(struct sf_hment, hme_tte), 2831 OFFSET(struct hme_blk, hblk_tag), 2832 OFFSET(struct hme_blk, hblk_nextpa), 2833 OFFSET(struct hme_blk, hblk_misc), 2834 OFFSET(struct hme_blk, hblk_hme), 2835 NHMENTS, 2836 HBLK_SZMASK, 2837 HBLK_RANGE_SHIFT, 2838 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2839 sizeof (struct hmehash_bucket), 2840 HTAG_SFMMUPSZ, 2841 HTAG_BSPAGE_SHIFT, 2842 HTAG_REHASH_SHIFT, 2843 SFMMU_INVALID_SHMERID, 2844 mmu_hashcnt, 2845 (caddr_t)va_to_pa((caddr_t)uhme_hash), 2846 (caddr_t)va_to_pa((caddr_t)khme_hash), 2847 UHMEHASH_SZ, 2848 KHMEHASH_SZ, 2849 KCONTEXT, 2850 KHATID, 2851 ASI_MEM); 2852 prom_interpret(bp, 0, 0, 0, 0, 0); 2853 2854 kobj_free(bp, MMU_PAGESIZE); 2855 } 2856 2857 void 2858 install_va_to_tte(void) 2859 { 2860 /* 2861 * advise prom that he can use unix-tte 2862 */ 2863 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 2864 } 2865 2866 /* 2867 * Here we add "device-type=console" for /os-io node, for currently 2868 * our kernel console output only supports displaying text and 2869 * performing cursor-positioning operations (through kernel framebuffer 2870 * driver) and it doesn't support other functionalities required for a 2871 * standard "display" device as specified in 1275 spec. The main missing 2872 * interface defined by the 1275 spec is "draw-logo". 2873 * also see the comments above prom_stdout_is_framebuffer(). 2874 */ 2875 static char *create_node = 2876 "\" /\" find-device " 2877 "new-device " 2878 "\" os-io\" device-name " 2879 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 2880 ": cb-r/w ( adr,len method$ -- #read/#written ) " 2881 " 2>r swap 2 2r> ['] $callback catch if " 2882 " 2drop 3drop 0 " 2883 " then " 2884 "; " 2885 ": read ( adr,len -- #read ) " 2886 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 2887 " ( retN ... ret1 N ) " 2888 " ?dup if " 2889 " swap >r 1- 0 ?do drop loop r> " 2890 " else " 2891 " -2 " 2892 " then " 2893 "; " 2894 ": write ( adr,len -- #written ) " 2895 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 2896 " ( retN ... ret1 N ) " 2897 " ?dup if " 2898 " swap >r 1- 0 ?do drop loop r> " 2899 " else " 2900 " 0 " 2901 " then " 2902 "; " 2903 ": poll-tty ( -- ) ; " 2904 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 2905 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 2906 ": cb-give/take ( $method -- ) " 2907 " 0 -rot ['] $callback catch ?dup if " 2908 " >r 2drop 2drop r> throw " 2909 " else " 2910 " 0 ?do drop loop " 2911 " then " 2912 "; " 2913 ": give ( -- ) \" exit-input\" cb-give/take ; " 2914 ": take ( -- ) \" enter-input\" cb-give/take ; " 2915 ": open ( -- ok? ) true ; " 2916 ": close ( -- ) ; " 2917 "finish-device " 2918 "device-end "; 2919 2920 /* 2921 * Create the OBP input/output node (FCode serial driver). 2922 * It is needed for both USB console keyboard and for 2923 * the kernel terminal emulator. It is too early to check for a 2924 * kernel console compatible framebuffer now, so we create this 2925 * so that we're ready if we need to enable kernel terminal emulation. 2926 * 2927 * When the USB software takes over the input device at the time 2928 * consconfig runs, OBP's stdin is redirected to this node. 2929 * Whenever the FORTH user interface is used after this switch, 2930 * the node will call back into the kernel for console input. 2931 * If a serial device such as ttya or a UART with a Type 5 keyboard 2932 * attached is used, OBP takes over the serial device when the system 2933 * goes to the debugger after the system is booted. This sharing 2934 * of the relatively simple serial device is difficult but possible. 2935 * Sharing the USB host controller is impossible due its complexity. 2936 * 2937 * Similarly to USB keyboard input redirection, after consconfig_dacf 2938 * configures a kernel console framebuffer as the standard output 2939 * device, OBP's stdout is switched to to vector through the 2940 * /os-io node into the kernel terminal emulator. 2941 */ 2942 static void 2943 startup_create_io_node(void) 2944 { 2945 prom_interpret(create_node, 0, 0, 0, 0, 0); 2946 } 2947 2948 2949 static void 2950 do_prom_version_check(void) 2951 { 2952 int i; 2953 pnode_t node; 2954 char buf[64]; 2955 static char drev[] = "Down-rev firmware detected%s\n" 2956 "\tPlease upgrade to the following minimum version:\n" 2957 "\t\t%s\n"; 2958 2959 i = prom_version_check(buf, sizeof (buf), &node); 2960 2961 if (i == PROM_VER64_OK) 2962 return; 2963 2964 if (i == PROM_VER64_UPGRADE) { 2965 cmn_err(CE_WARN, drev, "", buf); 2966 2967 #ifdef DEBUG 2968 prom_enter_mon(); /* Type 'go' to continue */ 2969 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 2970 return; 2971 #else 2972 halt(0); 2973 #endif 2974 } 2975 2976 /* 2977 * The other possibility is that this is a server running 2978 * good firmware, but down-rev firmware was detected on at 2979 * least one other cpu board. We just complain if we see 2980 * that. 2981 */ 2982 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 2983 } 2984 2985 2986 /* 2987 * Must be defined in platform dependent code. 2988 */ 2989 extern caddr_t modtext; 2990 extern size_t modtext_sz; 2991 extern caddr_t moddata; 2992 2993 #define HEAPTEXT_ARENA(addr) \ 2994 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 2995 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 2996 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 2997 2998 #define HEAPTEXT_OVERSIZED(addr) \ 2999 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3000 3001 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3002 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3003 kmutex_t texthole_lock; 3004 3005 char kern_bootargs[OBP_MAXPATHLEN]; 3006 3007 void 3008 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3009 { 3010 uintptr_t addr, limit; 3011 3012 addr = HEAPTEXT_BASE; 3013 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3014 3015 /* 3016 * Before we initialize the text_arena, we want to punch holes in the 3017 * underlying heaptext_arena. This guarantees that for any text 3018 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3019 */ 3020 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3021 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3022 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3023 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3024 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3025 } 3026 3027 /* 3028 * Allocate one page at the oversize to break up the text region 3029 * from the oversized region. 3030 */ 3031 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3032 (void *)limit, (void *)(limit + PAGESIZE), 3033 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3034 3035 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3036 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3037 heaptext_arena, 0, VM_SLEEP); 3038 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3039 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3040 } 3041 3042 caddr_t 3043 kobj_text_alloc(vmem_t *arena, size_t size) 3044 { 3045 caddr_t rval, better; 3046 3047 /* 3048 * First, try a sleeping allocation. 3049 */ 3050 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3051 3052 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3053 return (rval); 3054 3055 /* 3056 * We didn't get the area that we wanted. We're going to try to do an 3057 * allocation with explicit constraints. 3058 */ 3059 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3060 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3061 VM_NOSLEEP | VM_BESTFIT); 3062 3063 if (better != NULL) { 3064 /* 3065 * That worked. Free our first attempt and return. 3066 */ 3067 vmem_free(arena, rval, size); 3068 return (better); 3069 } 3070 3071 /* 3072 * That didn't work; we'll have to return our first attempt. 3073 */ 3074 return (rval); 3075 } 3076 3077 caddr_t 3078 kobj_texthole_alloc(caddr_t addr, size_t size) 3079 { 3080 int arena = HEAPTEXT_ARENA(addr); 3081 char c[30]; 3082 uintptr_t base; 3083 3084 if (HEAPTEXT_OVERSIZED(addr)) { 3085 /* 3086 * If this is an oversized allocation, there is no text hole 3087 * available for it; return NULL. 3088 */ 3089 return (NULL); 3090 } 3091 3092 mutex_enter(&texthole_lock); 3093 3094 if (texthole_arena[arena] == NULL) { 3095 ASSERT(texthole_source[arena] == NULL); 3096 3097 if (arena == 0) { 3098 texthole_source[0] = vmem_create("module_text_holesrc", 3099 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3100 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3101 0, VM_SLEEP); 3102 } else { 3103 base = HEAPTEXT_BASE + 3104 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3105 3106 (void) snprintf(c, sizeof (c), 3107 "heaptext_holesrc_%d", arena); 3108 3109 texthole_source[arena] = vmem_create(c, (void *)base, 3110 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3111 0, VM_SLEEP); 3112 } 3113 3114 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3115 3116 texthole_arena[arena] = vmem_create(c, NULL, 0, 3117 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3118 texthole_source[arena], 0, VM_SLEEP); 3119 } 3120 3121 mutex_exit(&texthole_lock); 3122 3123 ASSERT(texthole_arena[arena] != NULL); 3124 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3125 return (vmem_alloc(texthole_arena[arena], size, 3126 VM_BESTFIT | VM_NOSLEEP)); 3127 } 3128 3129 void 3130 kobj_texthole_free(caddr_t addr, size_t size) 3131 { 3132 int arena = HEAPTEXT_ARENA(addr); 3133 3134 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3135 ASSERT(texthole_arena[arena] != NULL); 3136 vmem_free(texthole_arena[arena], addr, size); 3137 } 3138 3139 void 3140 release_bootstrap(void) 3141 { 3142 if (&cif_init) 3143 cif_init(); 3144 } 3145