1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/machsystm.h> 27 #include <sys/archsystm.h> 28 #include <sys/vm.h> 29 #include <sys/cpu.h> 30 #include <sys/atomic.h> 31 #include <sys/reboot.h> 32 #include <sys/kdi.h> 33 #include <sys/bootconf.h> 34 #include <sys/memlist_plat.h> 35 #include <sys/memlist_impl.h> 36 #include <sys/prom_plat.h> 37 #include <sys/prom_isa.h> 38 #include <sys/autoconf.h> 39 #include <sys/ivintr.h> 40 #include <sys/fpu/fpusystm.h> 41 #include <sys/iommutsb.h> 42 #include <vm/vm_dep.h> 43 #include <vm/seg_dev.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/seg_kpm.h> 46 #include <vm/seg_map.h> 47 #include <vm/seg_kp.h> 48 #include <sys/sysconf.h> 49 #include <vm/hat_sfmmu.h> 50 #include <sys/kobj.h> 51 #include <sys/sun4asi.h> 52 #include <sys/clconf.h> 53 #include <sys/platform_module.h> 54 #include <sys/panic.h> 55 #include <sys/cpu_sgnblk_defs.h> 56 #include <sys/clock.h> 57 #include <sys/cmn_err.h> 58 #include <sys/promif.h> 59 #include <sys/prom_debug.h> 60 #include <sys/traptrace.h> 61 #include <sys/memnode.h> 62 #include <sys/mem_cage.h> 63 #include <sys/mmu.h> 64 #include <sys/swap.h> 65 66 extern void setup_trap_table(void); 67 extern int cpu_intrq_setup(struct cpu *); 68 extern void cpu_intrq_register(struct cpu *); 69 extern void contig_mem_init(void); 70 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 71 extern void mach_dump_buffer_init(void); 72 extern void mach_descrip_init(void); 73 extern void mach_descrip_startup_fini(void); 74 extern void mach_memscrub(void); 75 extern void mach_fpras(void); 76 extern void mach_cpu_halt_idle(void); 77 extern void mach_hw_copy_limit(void); 78 extern void load_mach_drivers(void); 79 extern void load_tod_module(void); 80 #pragma weak load_tod_module 81 82 extern int ndata_alloc_mmfsa(struct memlist *ndata); 83 #pragma weak ndata_alloc_mmfsa 84 85 extern void cif_init(void); 86 #pragma weak cif_init 87 88 extern void parse_idprom(void); 89 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 90 extern void mem_config_init(void); 91 extern void memseg_remap_init(void); 92 93 extern void mach_kpm_init(void); 94 extern void pcf_init(); 95 extern int size_pse_array(pgcnt_t, int); 96 extern void pg_init(); 97 98 /* 99 * External Data: 100 */ 101 extern int vac_size; /* cache size in bytes */ 102 extern uint_t vac_mask; /* VAC alignment consistency mask */ 103 extern uint_t vac_colors; 104 105 /* 106 * Global Data Definitions: 107 */ 108 109 /* 110 * XXX - Don't port this to new architectures 111 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 112 * 'romp' has no use with a prom with an IEEE 1275 client interface. 113 * The driver doesn't use the value, but it depends on the symbol. 114 */ 115 void *romp; /* veritas driver won't load without romp 4154976 */ 116 /* 117 * Declare these as initialized data so we can patch them. 118 */ 119 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 120 pgcnt_t segkpsize = 121 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 122 uint_t segmap_percent = 6; /* Size of segmap segment */ 123 124 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 125 int vac_copyback = 1; 126 char *cache_mode = NULL; 127 int use_mix = 1; 128 int prom_debug = 0; 129 130 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 131 uint_t tba_taken_over = 0; 132 133 caddr_t s_text; /* start of kernel text segment */ 134 caddr_t e_text; /* end of kernel text segment */ 135 caddr_t s_data; /* start of kernel data segment */ 136 caddr_t e_data; /* end of kernel data segment */ 137 138 caddr_t modtext; /* beginning of module text */ 139 size_t modtext_sz; /* size of module text */ 140 caddr_t moddata; /* beginning of module data reserve */ 141 caddr_t e_moddata; /* end of module data reserve */ 142 143 /* 144 * End of first block of contiguous kernel in 32-bit virtual address space 145 */ 146 caddr_t econtig32; /* end of first blk of contiguous kernel */ 147 148 caddr_t ncbase; /* beginning of non-cached segment */ 149 caddr_t ncend; /* end of non-cached segment */ 150 151 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 152 caddr_t nalloc_base; /* beginning of nucleus allocation */ 153 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 154 caddr_t valloc_base; /* beginning of kvalloc segment */ 155 156 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 157 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 158 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 159 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 160 int kmem64_szc; /* page size code */ 161 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 162 163 uintptr_t shm_alignment; /* VAC address consistency modulus */ 164 struct memlist *phys_install; /* Total installed physical memory */ 165 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 166 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 167 struct memlist *nopp_list; /* pages with no backing page structs */ 168 struct memlist ndata; /* memlist of nucleus allocatable memory */ 169 int memexp_flag; /* memory expansion card flag */ 170 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 171 pgcnt_t obp_pages; /* Physical pages used by OBP */ 172 173 /* 174 * VM data structures 175 */ 176 long page_hashsz; /* Size of page hash table (power of two) */ 177 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 178 struct page *pp_base; /* Base of system page struct array */ 179 size_t pp_sz; /* Size in bytes of page struct array */ 180 struct page **page_hash; /* Page hash table */ 181 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 182 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 183 int pse_shift; /* log2(pse_table_size) */ 184 struct seg ktextseg; /* Segment used for kernel executable image */ 185 struct seg kvalloc; /* Segment used for "valloc" mapping */ 186 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 187 struct seg ktexthole; /* Segment used for nucleus text hole */ 188 struct seg kmapseg; /* Segment used for generic kernel mappings */ 189 struct seg kpmseg; /* Segment used for physical mapping */ 190 struct seg kdebugseg; /* Segment used for the kernel debugger */ 191 192 void *kpm_pp_base; /* Base of system kpm_page array */ 193 size_t kpm_pp_sz; /* Size of system kpm_page array */ 194 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 195 196 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 197 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 198 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 199 200 int segzio_fromheap = 0; /* zio allocations occur from heap */ 201 caddr_t segzio_base; /* Base address of segzio */ 202 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 203 204 /* 205 * A static DR page_t VA map is reserved that can map the page structures 206 * for a domain's entire RA space. The pages that backs this space are 207 * dynamically allocated and need not be physically contiguous. The DR 208 * map size is derived from KPM size. 209 */ 210 int ppvm_enable = 0; /* Static virtual map for page structs */ 211 page_t *ppvm_base; /* Base of page struct map */ 212 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 213 214 /* 215 * debugger pages (if allocated) 216 */ 217 struct vnode kdebugvp; 218 219 /* 220 * VA range available to the debugger 221 */ 222 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 223 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 224 225 /* 226 * Segment for relocated kernel structures in 64-bit large RAM kernels 227 */ 228 struct seg kmem64; 229 230 struct memseg *memseg_free; 231 232 struct vnode unused_pages_vp; 233 234 /* 235 * VM data structures allocated early during boot. 236 */ 237 size_t pagehash_sz; 238 uint64_t memlist_sz; 239 240 char tbr_wr_addr_inited = 0; 241 242 caddr_t mpo_heap32_buf = NULL; 243 size_t mpo_heap32_bufsz = 0; 244 245 /* 246 * Static Routines: 247 */ 248 static int ndata_alloc_memseg(struct memlist *, size_t); 249 static void memlist_new(uint64_t, uint64_t, struct memlist **); 250 static void memlist_add(uint64_t, uint64_t, 251 struct memlist **, struct memlist **); 252 static void kphysm_init(void); 253 static void kvm_init(void); 254 static void install_kmem64_tte(void); 255 256 static void startup_init(void); 257 static void startup_memlist(void); 258 static void startup_modules(void); 259 static void startup_bop_gone(void); 260 static void startup_vm(void); 261 static void startup_end(void); 262 static void setup_cage_params(void); 263 static void startup_create_io_node(void); 264 265 static pgcnt_t npages; 266 static struct memlist *memlist; 267 void *memlist_end; 268 269 static pgcnt_t bop_alloc_pages; 270 static caddr_t hblk_base; 271 uint_t hblk_alloc_dynamic = 0; 272 uint_t hblk1_min = H1MIN; 273 274 275 /* 276 * Hooks for unsupported platforms and down-rev firmware 277 */ 278 int iam_positron(void); 279 #pragma weak iam_positron 280 static void do_prom_version_check(void); 281 282 /* 283 * After receiving a thermal interrupt, this is the number of seconds 284 * to delay before shutting off the system, assuming 285 * shutdown fails. Use /etc/system to change the delay if this isn't 286 * large enough. 287 */ 288 int thermal_powerdown_delay = 1200; 289 290 /* 291 * Used to hold off page relocations into the cage until OBP has completed 292 * its boot-time handoff of its resources to the kernel. 293 */ 294 int page_relocate_ready = 0; 295 296 /* 297 * Indicate if kmem64 allocation was done in small chunks 298 */ 299 int kmem64_smchunks = 0; 300 301 /* 302 * Enable some debugging messages concerning memory usage... 303 */ 304 #ifdef DEBUGGING_MEM 305 static int debugging_mem; 306 static void 307 printmemlist(char *title, struct memlist *list) 308 { 309 if (!debugging_mem) 310 return; 311 312 printf("%s\n", title); 313 314 while (list) { 315 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 316 (uint32_t)(list->ml_address >> 32), 317 (uint32_t)list->ml_address, 318 (uint32_t)(list->ml_size >> 32), 319 (uint32_t)(list->ml_size)); 320 list = list->ml_next; 321 } 322 } 323 324 void 325 printmemseg(struct memseg *memseg) 326 { 327 if (!debugging_mem) 328 return; 329 330 printf("memseg\n"); 331 332 while (memseg) { 333 prom_printf("\tpage = 0x%p, epage = 0x%p, " 334 "pfn = 0x%x, epfn = 0x%x\n", 335 memseg->pages, memseg->epages, 336 memseg->pages_base, memseg->pages_end); 337 memseg = memseg->next; 338 } 339 } 340 341 #define debug_pause(str) halt((str)) 342 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 343 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 344 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 345 #define MPRINTF3(str, a, b, c) \ 346 if (debugging_mem) prom_printf((str), (a), (b), (c)) 347 #else /* DEBUGGING_MEM */ 348 #define MPRINTF(str) 349 #define MPRINTF1(str, a) 350 #define MPRINTF2(str, a, b) 351 #define MPRINTF3(str, a, b, c) 352 #endif /* DEBUGGING_MEM */ 353 354 355 /* 356 * 357 * Kernel's Virtual Memory Layout. 358 * /-----------------------\ 359 * 0xFFFFFFFF.FFFFFFFF -| |- 360 * | OBP's virtual page | 361 * | tables | 362 * 0xFFFFFFFC.00000000 -|-----------------------|- 363 * : : 364 * : : 365 * -|-----------------------|- 366 * | segzio | (base and size vary) 367 * 0xFFFFFE00.00000000 -|-----------------------|- 368 * | | Ultrasparc I/II support 369 * | segkpm segment | up to 2TB of physical 370 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 371 * | | 372 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 373 * : : 374 * : : 375 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 376 * | | ^ 377 * | UltraSPARC I/II call | | 378 * | bug requires an extra | | 379 * | 4 GB of space between | | 380 * | hole and used RAM | | 381 * | | | 382 * 0xFFFFF800.00000000 -|-----------------------|- | 383 * | | | 384 * | Virtual Address Hole | UltraSPARC 385 * | on UltraSPARC I/II | I/II * ONLY * 386 * | | | 387 * 0x00000800.00000000 -|-----------------------|- | 388 * | | | 389 * | UltraSPARC I/II call | | 390 * | bug requires an extra | | 391 * | 4 GB of space between | | 392 * | hole and used RAM | | 393 * | | v 394 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 395 * : : ^ 396 * : : | 397 * |-----------------------| | 398 * | | | 399 * | ecache flush area | | 400 * | (twice largest e$) | | 401 * | | | 402 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 403 * | overmapped area | alignend_end | 404 * | (kmem64_alignsize | | 405 * | boundary) | | 406 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 407 * | | | 408 * | 64-bit kernel ONLY | | 409 * | | | 410 * | kmem64 segment | | 411 * | | | 412 * | (Relocated extra HME | Approximately 413 * | block allocations, | 1 TB of virtual 414 * | memnode freelists, | address space 415 * | HME hash buckets, | | 416 * | mml_table, kpmp_table,| | 417 * | page_t array and | | 418 * | hashblock pool to | | 419 * | avoid hard-coded | | 420 * | 32-bit vaddr | | 421 * | limitations) | | 422 * | | v 423 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 424 * | | 425 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 426 * | | 427 * 0x00000300.00000000 -|-----------------------|- SYSBASE 428 * : : 429 * : : 430 * -|-----------------------|- 431 * | | 432 * | segmap segment | SEGMAPSIZE (1/8th physmem, 433 * | | 256G MAX) 434 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 435 * : : 436 * : : 437 * -|-----------------------|- 438 * | | 439 * | segkp | SEGKPSIZE (2GB) 440 * | | 441 * | | 442 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 443 * | | 444 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 445 * | | (SEGKPBASE - 0x400000) 446 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 447 * | | (MEMSCRUBBASE - NCARGS) 448 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 449 * | | (ARGSBASE - PPMAPSIZE) 450 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 451 * | | 452 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 453 * | | 454 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 455 * : : 456 * : : 457 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 458 * | | 459 * | OBP | 460 * | | 461 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 462 * | kmdb | 463 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 464 * : : 465 * : : 466 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 467 * | | 468 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 469 * | | ~64MB) 470 * -|-----------------------| 471 * | IVSIZE | 472 * 0x00000000.70004000 -|-----------------------| 473 * | panicbuf | 474 * 0x00000000.70002000 -|-----------------------| 475 * | PAGESIZE | 476 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 477 * | boot-time | 478 * | temporary space | 479 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 480 * : : 481 * : : 482 * | | 483 * |-----------------------|- econtig32 484 * | vm structures | 485 * 0x00000000.01C00000 |-----------------------|- nalloc_end 486 * | TSBs | 487 * |-----------------------|- end/nalloc_base 488 * | kernel data & bss | 489 * 0x00000000.01800000 -|-----------------------| 490 * : nucleus text hole : 491 * 0x00000000.01400000 -|-----------------------| 492 * : : 493 * |-----------------------| 494 * | module text | 495 * |-----------------------|- e_text/modtext 496 * | kernel text | 497 * |-----------------------| 498 * | trap table (48k) | 499 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 500 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 501 * |-----------------------| 502 * | | 503 * | invalid | 504 * | | 505 * 0x00000000.00000000 _|_______________________| 506 * 507 * 508 * 509 * 32-bit User Virtual Memory Layout. 510 * /-----------------------\ 511 * | | 512 * | invalid | 513 * | | 514 * 0xFFC00000 -|-----------------------|- USERLIMIT 515 * | user stack | 516 * : : 517 * : : 518 * : : 519 * | user data | 520 * -|-----------------------|- 521 * | user text | 522 * 0x00002000 -|-----------------------|- 523 * | invalid | 524 * 0x00000000 _|_______________________| 525 * 526 * 527 * 528 * 64-bit User Virtual Memory Layout. 529 * /-----------------------\ 530 * | | 531 * | invalid | 532 * | | 533 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 534 * | user stack | 535 * : : 536 * : : 537 * : : 538 * | user data | 539 * -|-----------------------|- 540 * | user text | 541 * 0x00000000.01000000 -|-----------------------|- 542 * | invalid | 543 * 0x00000000.00000000 _|_______________________| 544 */ 545 546 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 547 extern uint64_t ecache_flush_address(void); 548 549 #pragma weak load_platform_modules 550 #pragma weak plat_startup_memlist 551 #pragma weak ecache_init_scrub_flush_area 552 #pragma weak ecache_flush_address 553 554 555 /* 556 * By default the DR Cage is enabled for maximum OS 557 * MPSS performance. Users needing to disable the cage mechanism 558 * can set this variable to zero via /etc/system. 559 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 560 * will result in loss of DR functionality. 561 * Platforms wishing to disable kernel Cage by default 562 * should do so in their set_platform_defaults() routine. 563 */ 564 int kernel_cage_enable = 1; 565 566 static void 567 setup_cage_params(void) 568 { 569 void (*func)(void); 570 571 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 572 if (func != NULL) { 573 (*func)(); 574 return; 575 } 576 577 if (kernel_cage_enable == 0) { 578 return; 579 } 580 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 581 582 if (kcage_on) { 583 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 584 } else { 585 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 586 } 587 588 } 589 590 /* 591 * Machine-dependent startup code 592 */ 593 void 594 startup(void) 595 { 596 startup_init(); 597 if (&startup_platform) 598 startup_platform(); 599 startup_memlist(); 600 startup_modules(); 601 setup_cage_params(); 602 startup_bop_gone(); 603 startup_vm(); 604 startup_end(); 605 } 606 607 struct regs sync_reg_buf; 608 uint64_t sync_tt; 609 610 void 611 sync_handler(void) 612 { 613 struct panic_trap_info ti; 614 int i; 615 616 /* 617 * Prevent trying to talk to the other CPUs since they are 618 * sitting in the prom and won't reply. 619 */ 620 for (i = 0; i < NCPU; i++) { 621 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 622 cpu[i]->cpu_flags &= ~CPU_READY; 623 cpu[i]->cpu_flags |= CPU_QUIESCED; 624 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 625 } 626 } 627 628 /* 629 * We've managed to get here without going through the 630 * normal panic code path. Try and save some useful 631 * information. 632 */ 633 if (!panicstr && (curthread->t_panic_trap == NULL)) { 634 ti.trap_type = sync_tt; 635 ti.trap_regs = &sync_reg_buf; 636 ti.trap_addr = NULL; 637 ti.trap_mmu_fsr = 0x0; 638 639 curthread->t_panic_trap = &ti; 640 } 641 642 /* 643 * If we're re-entering the panic path, update the signature 644 * block so that the SC knows we're in the second part of panic. 645 */ 646 if (panicstr) 647 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 648 649 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 650 panic("sync initiated"); 651 } 652 653 654 static void 655 startup_init(void) 656 { 657 /* 658 * We want to save the registers while we're still in OBP 659 * so that we know they haven't been fiddled with since. 660 * (In principle, OBP can't change them just because it 661 * makes a callback, but we'd rather not depend on that 662 * behavior.) 663 */ 664 char sync_str[] = 665 "warning @ warning off : sync " 666 "%%tl-c %%tstate h# %p x! " 667 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 668 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 669 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 670 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 671 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 672 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 673 "%%y h# %p l! %%tl-c %%tt h# %p x! " 674 "sync ; warning !"; 675 676 /* 677 * 20 == num of %p substrings 678 * 16 == max num of chars %p will expand to. 679 */ 680 char bp[sizeof (sync_str) + 16 * 20]; 681 682 /* 683 * Initialize ptl1 stack for the 1st CPU. 684 */ 685 ptl1_init_cpu(&cpu0); 686 687 /* 688 * Initialize the address map for cache consistent mappings 689 * to random pages; must be done after vac_size is set. 690 */ 691 ppmapinit(); 692 693 /* 694 * Initialize the PROM callback handler. 695 */ 696 init_vx_handler(); 697 698 /* 699 * have prom call sync_callback() to handle the sync and 700 * save some useful information which will be stored in the 701 * core file later. 702 */ 703 (void) sprintf((char *)bp, sync_str, 704 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 705 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 706 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 707 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 708 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 709 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 710 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 711 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 712 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 713 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 714 prom_interpret(bp, 0, 0, 0, 0, 0); 715 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 716 } 717 718 719 size_t 720 calc_pp_sz(pgcnt_t npages) 721 { 722 723 return (npages * sizeof (struct page)); 724 } 725 726 size_t 727 calc_kpmpp_sz(pgcnt_t npages) 728 { 729 730 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 731 kpm_pgsz = 1ull << kpm_pgshft; 732 kpm_pgoff = kpm_pgsz - 1; 733 kpmp2pshft = kpm_pgshft - PAGESHIFT; 734 kpmpnpgs = 1 << kpmp2pshft; 735 736 if (kpm_smallpages == 0) { 737 /* 738 * Avoid fragmentation problems in kphysm_init() 739 * by allocating for all of physical memory 740 */ 741 kpm_npages = ptokpmpr(physinstalled); 742 return (kpm_npages * sizeof (kpm_page_t)); 743 } else { 744 kpm_npages = npages; 745 return (kpm_npages * sizeof (kpm_spage_t)); 746 } 747 } 748 749 size_t 750 calc_pagehash_sz(pgcnt_t npages) 751 { 752 /* LINTED */ 753 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page)))); 754 /* 755 * The page structure hash table size is a power of 2 756 * such that the average hash chain length is PAGE_HASHAVELEN. 757 */ 758 page_hashsz = npages / PAGE_HASHAVELEN; 759 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1), 760 highbit(page_hashsz)); 761 page_hashsz = 1 << page_hashsz_shift; 762 return (page_hashsz * sizeof (struct page *)); 763 } 764 765 int testkmem64_smchunks = 0; 766 767 int 768 alloc_kmem64(caddr_t base, caddr_t end) 769 { 770 int i; 771 caddr_t aligned_end = NULL; 772 773 if (testkmem64_smchunks) 774 return (1); 775 776 /* 777 * Make one large memory alloc after figuring out the 64-bit size. This 778 * will enable use of the largest page size appropriate for the system 779 * architecture. 780 */ 781 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 782 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 783 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 784 size_t alloc_size, alignsize; 785 #if !defined(C_OBP) 786 unsigned long long pa; 787 #endif /* !C_OBP */ 788 789 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 790 continue; 791 alignsize = TTEBYTES(i); 792 kmem64_szc = i; 793 794 /* limit page size for small memory */ 795 if (mmu_btop(alignsize) > (npages >> 2)) 796 continue; 797 798 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 799 alloc_size = aligned_end - base; 800 #if !defined(C_OBP) 801 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 802 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 803 kmem64_pabase = pa; 804 kmem64_aligned_end = aligned_end; 805 install_kmem64_tte(); 806 break; 807 } else { 808 prom_free_phys(alloc_size, pa); 809 } 810 } 811 #else /* !C_OBP */ 812 if (prom_alloc(base, alloc_size, alignsize) == base) { 813 kmem64_pabase = va_to_pa(kmem64_base); 814 kmem64_aligned_end = aligned_end; 815 break; 816 } 817 #endif /* !C_OBP */ 818 if (i == TTE8K) { 819 #ifdef sun4v 820 /* return failure to try small allocations */ 821 return (1); 822 #else 823 prom_panic("kmem64 allocation failure"); 824 #endif 825 } 826 } 827 ASSERT(aligned_end != NULL); 828 return (0); 829 } 830 831 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 832 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 833 834 #if !defined(C_OBP) 835 /* 836 * Install a temporary tte handler in OBP for kmem64 area. 837 * 838 * We map kmem64 area with large pages before the trap table is taken 839 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 840 * the same area. Duplicate tlb entries with different page sizes 841 * cause unpredicatble behavior. To avoid this, we don't create 842 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 843 * OBP). Instead, we manage translations with a temporary va>tte-data 844 * handler (kmem64-tte). This handler is replaced by unix-tte when 845 * the trap table is taken over. 846 * 847 * The temporary handler knows the physical address of the kmem64 848 * area. It uses the prom's pgmap@ Forth word for other addresses. 849 * 850 * We have to use BOP_ALLOC() method for C-OBP platforms because 851 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 852 * sun4u platforms. On sun4u we flush tlb after trap table is taken 853 * over if we use large pages for kernel heap and kmem64. Since sun4u 854 * prom (unlike sun4v) calls va>tte-data first for client address 855 * translation prom's ttes for kmem64 can't get into TLB even if we 856 * later switch to prom's trap table again. C-OBP uses 4M pages for 857 * client mappings when possible so on all platforms we get the 858 * benefit from large mappings for kmem64 area immediately during 859 * boot. 860 * 861 * pseudo code: 862 * if (context != 0) { 863 * return false 864 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 865 * tte = tte_template + 866 * (((miss_va & pagemask) - kmem64_base)); 867 * return tte, true 868 * } else { 869 * return pgmap@ result 870 * } 871 */ 872 char kmem64_obp_str[] = 873 "h# %lx constant kmem64-base " 874 "h# %lx constant kmem64-end " 875 "h# %lx constant kmem64-pagemask " 876 "h# %lx constant kmem64-template " 877 878 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 879 " if ( addr ) " 880 " drop false exit then ( false ) " 881 " dup kmem64-base kmem64-end within if ( addr ) " 882 " kmem64-pagemask and ( addr' ) " 883 " kmem64-base - ( addr' ) " 884 " kmem64-template + ( tte ) " 885 " true ( tte true ) " 886 " else ( addr ) " 887 " pgmap@ ( tte ) " 888 " dup 0< if true else drop false then ( tte true | false ) " 889 " then ( tte true | false ) " 890 "; " 891 892 "' kmem64-tte is va>tte-data " 893 ; 894 895 static void 896 install_kmem64_tte() 897 { 898 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 899 tte_t tte; 900 901 PRM_DEBUG(kmem64_pabase); 902 PRM_DEBUG(kmem64_szc); 903 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 904 PROC_DATA | HAT_NOSYNC, kmem64_szc); 905 PRM_DEBUG(tte.ll); 906 (void) sprintf(b, kmem64_obp_str, 907 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 908 ASSERT(strlen(b) < sizeof (b)); 909 prom_interpret(b, 0, 0, 0, 0, 0); 910 } 911 #endif /* !C_OBP */ 912 913 /* 914 * As OBP takes up some RAM when the system boots, pages will already be "lost" 915 * to the system and reflected in npages by the time we see it. 916 * 917 * We only want to allocate kernel structures in the 64-bit virtual address 918 * space on systems with enough RAM to make the overhead of keeping track of 919 * an extra kernel memory segment worthwhile. 920 * 921 * Since OBP has already performed its memory allocations by this point, if we 922 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 923 * memory in the 64-bit virtual address space; otherwise keep allocations 924 * contiguous with we've mapped so far in the 32-bit virtual address space. 925 */ 926 #define MINMOVE_RAM_MB ((size_t)1900) 927 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 928 #define BYTES_TO_MB(b) ((b) / 1048576ul) 929 930 pgcnt_t tune_npages = (pgcnt_t) 931 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 932 933 #pragma weak page_set_colorequiv_arr_cpu 934 extern void page_set_colorequiv_arr_cpu(void); 935 extern void page_set_colorequiv_arr(void); 936 937 static pgcnt_t ramdisk_npages; 938 static struct memlist *old_phys_avail; 939 940 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 941 942 static void 943 startup_memlist(void) 944 { 945 size_t hmehash_sz, pagelist_sz, tt_sz; 946 size_t psetable_sz; 947 caddr_t alloc_base; 948 caddr_t memspace; 949 struct memlist *cur; 950 size_t syslimit = (size_t)SYSLIMIT; 951 size_t sysbase = (size_t)SYSBASE; 952 953 /* 954 * Initialize enough of the system to allow kmem_alloc to work by 955 * calling boot to allocate its memory until the time that 956 * kvm_init is completed. The page structs are allocated after 957 * rounding up end to the nearest page boundary; the memsegs are 958 * initialized and the space they use comes from the kernel heap. 959 * With appropriate initialization, they can be reallocated later 960 * to a size appropriate for the machine's configuration. 961 * 962 * At this point, memory is allocated for things that will never 963 * need to be freed, this used to be "valloced". This allows a 964 * savings as the pages don't need page structures to describe 965 * them because them will not be managed by the vm system. 966 */ 967 968 /* 969 * We're loaded by boot with the following configuration (as 970 * specified in the sun4u/conf/Mapfile): 971 * 972 * text: 4 MB chunk aligned on a 4MB boundary 973 * data & bss: 4 MB chunk aligned on a 4MB boundary 974 * 975 * These two chunks will eventually be mapped by 2 locked 4MB 976 * ttes and will represent the nucleus of the kernel. This gives 977 * us some free space that is already allocated, some or all of 978 * which is made available to kernel module text. 979 * 980 * The free space in the data-bss chunk is used for nucleus 981 * allocatable data structures and we reserve it using the 982 * nalloc_base and nalloc_end variables. This space is currently 983 * being used for hat data structures required for tlb miss 984 * handling operations. We align nalloc_base to a l2 cache 985 * linesize because this is the line size the hardware uses to 986 * maintain cache coherency. 987 * 512K is carved out for module data. 988 */ 989 990 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 991 e_moddata = moddata + MODDATA; 992 nalloc_base = e_moddata; 993 994 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 995 valloc_base = nalloc_base; 996 997 /* 998 * Calculate the start of the data segment. 999 */ 1000 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 1001 prom_panic("nucleus data overflow"); 1002 1003 PRM_DEBUG(moddata); 1004 PRM_DEBUG(nalloc_base); 1005 PRM_DEBUG(nalloc_end); 1006 1007 /* 1008 * Remember any slop after e_text so we can give it to the modules. 1009 */ 1010 PRM_DEBUG(e_text); 1011 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 1012 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 1013 prom_panic("nucleus text overflow"); 1014 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 1015 modtext; 1016 PRM_DEBUG(modtext); 1017 PRM_DEBUG(modtext_sz); 1018 1019 init_boot_memlists(); 1020 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1021 &boot_physavail, &boot_physavail_len, 1022 &boot_virtavail, &boot_virtavail_len); 1023 1024 /* 1025 * Remember what the physically available highest page is 1026 * so that dumpsys works properly, and find out how much 1027 * memory is installed. 1028 */ 1029 installed_top_size_memlist_array(boot_physinstalled, 1030 boot_physinstalled_len, &physmax, &physinstalled); 1031 PRM_DEBUG(physinstalled); 1032 PRM_DEBUG(physmax); 1033 1034 /* Fill out memory nodes config structure */ 1035 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1036 1037 /* 1038 * npages is the maximum of available physical memory possible. 1039 * (ie. it will never be more than this) 1040 * 1041 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1042 * using phys_avail will underestimate what will end up being freed. 1043 * A better initial guess is just total memory minus the kernel text 1044 */ 1045 npages = physinstalled - btop(MMU_PAGESIZE4M); 1046 1047 /* 1048 * First allocate things that can go in the nucleus data page 1049 * (fault status, TSBs, dmv, CPUs) 1050 */ 1051 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1052 1053 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1054 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1055 1056 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1057 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1058 1059 if (ndata_alloc_dmv(&ndata) != 0) 1060 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1061 1062 if (ndata_alloc_page_mutexs(&ndata) != 0) 1063 cmn_err(CE_PANIC, 1064 "no more nucleus memory after page free lists alloc"); 1065 1066 if (ndata_alloc_hat(&ndata) != 0) 1067 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1068 1069 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1070 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1071 1072 /* 1073 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1074 * 1075 * There are comments all over the SFMMU code warning of dire 1076 * consequences if the TSBs are moved out of 32-bit space. This 1077 * is largely because the asm code uses "sethi %hi(addr)"-type 1078 * instructions which will not provide the expected result if the 1079 * address is a 64-bit one. 1080 * 1081 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1082 */ 1083 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1084 PRM_DEBUG(alloc_base); 1085 1086 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1087 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1088 PRM_DEBUG(alloc_base); 1089 1090 /* 1091 * Allocate IOMMU TSB array. We do this here so that the physical 1092 * memory gets deducted from the PROM's physical memory list. 1093 */ 1094 alloc_base = iommu_tsb_init(alloc_base); 1095 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1096 PRM_DEBUG(alloc_base); 1097 1098 /* 1099 * Allow for an early allocation of physically contiguous memory. 1100 */ 1101 alloc_base = contig_mem_prealloc(alloc_base, npages); 1102 1103 /* 1104 * Platforms like Starcat and OPL need special structures assigned in 1105 * 32-bit virtual address space because their probing routines execute 1106 * FCode, and FCode can't handle 64-bit virtual addresses... 1107 */ 1108 if (&plat_startup_memlist) { 1109 alloc_base = plat_startup_memlist(alloc_base); 1110 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1111 ecache_alignsize); 1112 PRM_DEBUG(alloc_base); 1113 } 1114 1115 /* 1116 * Save off where the contiguous allocations to date have ended 1117 * in econtig32. 1118 */ 1119 econtig32 = alloc_base; 1120 PRM_DEBUG(econtig32); 1121 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1122 cmn_err(CE_PANIC, "econtig32 too big"); 1123 1124 pp_sz = calc_pp_sz(npages); 1125 PRM_DEBUG(pp_sz); 1126 if (kpm_enable) { 1127 kpm_pp_sz = calc_kpmpp_sz(npages); 1128 PRM_DEBUG(kpm_pp_sz); 1129 } 1130 1131 hmehash_sz = calc_hmehash_sz(npages); 1132 PRM_DEBUG(hmehash_sz); 1133 1134 pagehash_sz = calc_pagehash_sz(npages); 1135 PRM_DEBUG(pagehash_sz); 1136 1137 pagelist_sz = calc_free_pagelist_sz(); 1138 PRM_DEBUG(pagelist_sz); 1139 1140 #ifdef TRAPTRACE 1141 tt_sz = calc_traptrace_sz(); 1142 PRM_DEBUG(tt_sz); 1143 #else 1144 tt_sz = 0; 1145 #endif /* TRAPTRACE */ 1146 1147 /* 1148 * Place the array that protects pp->p_selock in the kmem64 wad. 1149 */ 1150 pse_shift = size_pse_array(npages, max_ncpus); 1151 PRM_DEBUG(pse_shift); 1152 pse_table_size = 1 << pse_shift; 1153 PRM_DEBUG(pse_table_size); 1154 psetable_sz = roundup( 1155 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1156 PRM_DEBUG(psetable_sz); 1157 1158 /* 1159 * Now allocate the whole wad 1160 */ 1161 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1162 pagelist_sz + tt_sz + psetable_sz; 1163 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1164 kmem64_base = (caddr_t)syslimit; 1165 kmem64_end = kmem64_base + kmem64_sz; 1166 if (alloc_kmem64(kmem64_base, kmem64_end)) { 1167 /* 1168 * Attempt for kmem64 to allocate one big 1169 * contiguous chunk of memory failed. 1170 * We get here because we are sun4v. 1171 * We will proceed by breaking up 1172 * the allocation into two attempts. 1173 * First, we allocate kpm_pp_sz, hmehash_sz, 1174 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as 1175 * one contiguous chunk. This is a much smaller 1176 * chunk and we should get it, if not we panic. 1177 * Note that hmehash and tt need to be physically 1178 * (in the real address sense) contiguous. 1179 * Next, we use bop_alloc_chunk() to 1180 * to allocate the page_t structures. 1181 * This will allow the page_t to be allocated 1182 * in multiple smaller chunks. 1183 * In doing so, the assumption that page_t is 1184 * physically contiguous no longer hold, this is ok 1185 * for sun4v but not for sun4u. 1186 */ 1187 size_t tmp_size; 1188 caddr_t tmp_base; 1189 1190 pp_sz = roundup(pp_sz, PAGESIZE); 1191 1192 /* 1193 * Allocate kpm_pp_sz, hmehash_sz, 1194 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz 1195 */ 1196 tmp_base = kmem64_base + pp_sz; 1197 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + 1198 pagelist_sz + tt_sz + psetable_sz, PAGESIZE); 1199 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) 1200 prom_panic("kmem64 prom_alloc contig failed"); 1201 PRM_DEBUG(tmp_base); 1202 PRM_DEBUG(tmp_size); 1203 1204 /* 1205 * Allocate the page_ts 1206 */ 1207 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) 1208 prom_panic("kmem64 bop_alloc_chunk page_t failed"); 1209 PRM_DEBUG(kmem64_base); 1210 PRM_DEBUG(pp_sz); 1211 1212 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; 1213 ASSERT(kmem64_aligned_end >= kmem64_end); 1214 1215 kmem64_smchunks = 1; 1216 } else { 1217 1218 /* 1219 * We need to adjust pp_sz for the normal 1220 * case where kmem64 can allocate one large chunk 1221 */ 1222 if (kpm_smallpages == 0) { 1223 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1224 } else { 1225 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1226 sizeof (kpm_spage_t)); 1227 } 1228 pp_sz = npages * sizeof (struct page); 1229 } 1230 1231 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1232 cmn_err(CE_PANIC, "not enough kmem64 space"); 1233 PRM_DEBUG(kmem64_base); 1234 PRM_DEBUG(kmem64_end); 1235 PRM_DEBUG(kmem64_aligned_end); 1236 1237 /* 1238 * ... and divy it up 1239 */ 1240 alloc_base = kmem64_base; 1241 1242 pp_base = (page_t *)alloc_base; 1243 alloc_base += pp_sz; 1244 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1245 PRM_DEBUG(pp_base); 1246 PRM_DEBUG(npages); 1247 1248 if (kpm_enable) { 1249 kpm_pp_base = alloc_base; 1250 if (kpm_smallpages == 0) { 1251 /* kpm_npages based on physinstalled, don't reset */ 1252 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1253 } else { 1254 kpm_npages = ptokpmpr(npages); 1255 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1256 } 1257 alloc_base += kpm_pp_sz; 1258 alloc_base = 1259 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1260 PRM_DEBUG(kpm_pp_base); 1261 } 1262 1263 alloc_base = alloc_hmehash(alloc_base); 1264 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1265 PRM_DEBUG(alloc_base); 1266 1267 page_hash = (page_t **)alloc_base; 1268 alloc_base += pagehash_sz; 1269 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1270 PRM_DEBUG(page_hash); 1271 1272 alloc_base = alloc_page_freelists(alloc_base); 1273 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1274 PRM_DEBUG(alloc_base); 1275 1276 #ifdef TRAPTRACE 1277 ttrace_buf = alloc_base; 1278 alloc_base += tt_sz; 1279 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1280 PRM_DEBUG(alloc_base); 1281 #endif /* TRAPTRACE */ 1282 1283 pse_mutex = (pad_mutex_t *)alloc_base; 1284 alloc_base += psetable_sz; 1285 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1286 PRM_DEBUG(alloc_base); 1287 1288 /* 1289 * Note that if we use small chunk allocations for 1290 * kmem64, we need to ensure kmem64_end is the same as 1291 * kmem64_aligned_end to prevent subsequent logic from 1292 * trying to reuse the overmapping. 1293 * Otherwise we adjust kmem64_end to what we really allocated. 1294 */ 1295 if (kmem64_smchunks) { 1296 kmem64_end = kmem64_aligned_end; 1297 } else { 1298 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1299 } 1300 kmem64_sz = kmem64_end - kmem64_base; 1301 1302 if (&ecache_init_scrub_flush_area) { 1303 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1304 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1305 } 1306 1307 /* 1308 * If physmem is patched to be non-zero, use it instead of 1309 * the monitor value unless physmem is larger than the total 1310 * amount of memory on hand. 1311 */ 1312 if (physmem == 0 || physmem > npages) 1313 physmem = npages; 1314 1315 /* 1316 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1317 * is mounted as root. This memory is held down by OBP and unlike 1318 * the stub boot_archive is never released. 1319 * 1320 * In order to get things sized correctly on lower memory 1321 * machines (where the memory used by the ramdisk represents 1322 * a significant portion of memory), physmem is adjusted. 1323 * 1324 * This is done by subtracting the ramdisk_size which is set 1325 * to the size of the ramdisk (in Kb) in /etc/system at the 1326 * time the miniroot archive is constructed. 1327 */ 1328 if (root_is_ramdisk == B_TRUE) { 1329 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1330 physmem -= ramdisk_npages; 1331 } 1332 1333 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1334 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1335 1336 /* 1337 * Allocate space for the interrupt vector table. 1338 */ 1339 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1340 if (memspace != (caddr_t)intr_vec_table) 1341 prom_panic("interrupt vector table allocation failure"); 1342 1343 /* 1344 * Between now and when we finish copying in the memory lists, 1345 * allocations happen so the space gets fragmented and the 1346 * lists longer. Leave enough space for lists twice as 1347 * long as we have now; then roundup to a pagesize. 1348 */ 1349 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1350 prom_phys_avail_len() + prom_virt_avail_len()); 1351 memlist_sz *= 2; 1352 memlist_sz = roundup(memlist_sz, PAGESIZE); 1353 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1354 if (memspace == NULL) 1355 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1356 1357 memlist = (struct memlist *)memspace; 1358 memlist_end = (char *)memspace + memlist_sz; 1359 PRM_DEBUG(memlist); 1360 PRM_DEBUG(memlist_end); 1361 1362 PRM_DEBUG(sysbase); 1363 PRM_DEBUG(syslimit); 1364 kernelheap_init((void *)sysbase, (void *)syslimit, 1365 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1366 1367 /* 1368 * Take the most current snapshot we can by calling mem-update. 1369 */ 1370 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1371 &boot_physavail, &boot_physavail_len, 1372 &boot_virtavail, &boot_virtavail_len); 1373 1374 /* 1375 * Remove the space used by prom_alloc from the kernel heap 1376 * plus the area actually used by the OBP (if any) 1377 * ignoring virtual addresses in virt_avail, above syslimit. 1378 */ 1379 virt_avail = memlist; 1380 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1381 1382 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) { 1383 uint64_t range_base, range_size; 1384 1385 if ((range_base = cur->ml_address + cur->ml_size) < 1386 (uint64_t)sysbase) 1387 continue; 1388 if (range_base >= (uint64_t)syslimit) 1389 break; 1390 /* 1391 * Limit the range to end at syslimit. 1392 */ 1393 range_size = MIN(cur->ml_next->ml_address, 1394 (uint64_t)syslimit) - range_base; 1395 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1396 0, 0, (void *)range_base, (void *)(range_base + range_size), 1397 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1398 } 1399 1400 phys_avail = memlist; 1401 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1402 1403 /* 1404 * Add any extra memory at the end of the ndata region if there's at 1405 * least a page to add. There might be a few more pages available in 1406 * the middle of the ndata region, but for now they are ignored. 1407 */ 1408 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1409 if (nalloc_base == NULL) 1410 nalloc_base = nalloc_end; 1411 ndata_remain_sz = nalloc_end - nalloc_base; 1412 1413 /* 1414 * Copy physinstalled list into kernel space. 1415 */ 1416 phys_install = memlist; 1417 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1418 1419 /* 1420 * Create list of physical addrs we don't need pp's for: 1421 * kernel text 4M page 1422 * kernel data 4M page - ndata_remain_sz 1423 * kmem64 pages 1424 * 1425 * NB if adding any pages here, make sure no kpm page 1426 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1427 */ 1428 nopp_list = memlist; 1429 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1430 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1431 &memlist, &nopp_list); 1432 1433 /* Don't add to nopp_list if kmem64 was allocated in smchunks */ 1434 if (!kmem64_smchunks) 1435 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1436 1437 if ((caddr_t)memlist > (memspace + memlist_sz)) 1438 prom_panic("memlist overflow"); 1439 1440 /* 1441 * Size the pcf array based on the number of cpus in the box at 1442 * boot time. 1443 */ 1444 pcf_init(); 1445 1446 /* 1447 * Initialize the page structures from the memory lists. 1448 */ 1449 kphysm_init(); 1450 1451 availrmem_initial = availrmem = freemem; 1452 PRM_DEBUG(availrmem); 1453 1454 /* 1455 * Some of the locks depend on page_hashsz being set! 1456 * kmem_init() depends on this; so, keep it here. 1457 */ 1458 page_lock_init(); 1459 1460 /* 1461 * Initialize kernel memory allocator. 1462 */ 1463 kmem_init(); 1464 1465 /* 1466 * Factor in colorequiv to check additional 'equivalent' bins 1467 */ 1468 if (&page_set_colorequiv_arr_cpu != NULL) 1469 page_set_colorequiv_arr_cpu(); 1470 else 1471 page_set_colorequiv_arr(); 1472 1473 /* 1474 * Initialize bp_mapin(). 1475 */ 1476 bp_init(shm_alignment, HAT_STRICTORDER); 1477 1478 /* 1479 * Reserve space for MPO mblock structs from the 32-bit heap. 1480 */ 1481 1482 if (mpo_heap32_bufsz > (size_t)0) { 1483 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1484 PAGESIZE, 0, 0, mpo_heap32_buf, 1485 mpo_heap32_buf + mpo_heap32_bufsz, 1486 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1487 } 1488 mem_config_init(); 1489 } 1490 1491 static void 1492 startup_modules(void) 1493 { 1494 int nhblk1, nhblk8; 1495 size_t nhblksz; 1496 pgcnt_t pages_per_hblk; 1497 size_t hme8blk_sz, hme1blk_sz; 1498 1499 /* 1500 * Let the platforms have a chance to change default 1501 * values before reading system file. 1502 */ 1503 if (&set_platform_defaults) 1504 set_platform_defaults(); 1505 1506 /* 1507 * Calculate default settings of system parameters based upon 1508 * maxusers, yet allow to be overridden via the /etc/system file. 1509 */ 1510 param_calc(0); 1511 1512 mod_setup(); 1513 1514 /* 1515 * If this is a positron, complain and halt. 1516 */ 1517 if (&iam_positron && iam_positron()) { 1518 cmn_err(CE_WARN, "This hardware platform is not supported" 1519 " by this release of Solaris.\n"); 1520 #ifdef DEBUG 1521 prom_enter_mon(); /* Type 'go' to resume */ 1522 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1523 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1524 1525 #else /* DEBUG */ 1526 halt(0); 1527 #endif /* DEBUG */ 1528 } 1529 1530 /* 1531 * If we are running firmware that isn't 64-bit ready 1532 * then complain and halt. 1533 */ 1534 do_prom_version_check(); 1535 1536 /* 1537 * Initialize system parameters 1538 */ 1539 param_init(); 1540 1541 /* 1542 * maxmem is the amount of physical memory we're playing with. 1543 */ 1544 maxmem = physmem; 1545 1546 /* Set segkp limits. */ 1547 ncbase = kdi_segdebugbase; 1548 ncend = kdi_segdebugbase; 1549 1550 /* 1551 * Initialize the hat layer. 1552 */ 1553 hat_init(); 1554 1555 /* 1556 * Initialize segment management stuff. 1557 */ 1558 seg_init(); 1559 1560 /* 1561 * Create the va>tte handler, so the prom can understand 1562 * kernel translations. The handler is installed later, just 1563 * as we are about to take over the trap table from the prom. 1564 */ 1565 create_va_to_tte(); 1566 1567 /* 1568 * Load the forthdebugger (optional) 1569 */ 1570 forthdebug_init(); 1571 1572 /* 1573 * Create OBP node for console input callbacks 1574 * if it is needed. 1575 */ 1576 startup_create_io_node(); 1577 1578 if (modloadonly("fs", "specfs") == -1) 1579 halt("Can't load specfs"); 1580 1581 if (modloadonly("fs", "devfs") == -1) 1582 halt("Can't load devfs"); 1583 1584 if (modloadonly("fs", "procfs") == -1) 1585 halt("Can't load procfs"); 1586 1587 if (modloadonly("misc", "swapgeneric") == -1) 1588 halt("Can't load swapgeneric"); 1589 1590 (void) modloadonly("sys", "lbl_edition"); 1591 1592 dispinit(); 1593 1594 /* 1595 * Infer meanings to the members of the idprom buffer. 1596 */ 1597 parse_idprom(); 1598 1599 /* Read cluster configuration data. */ 1600 clconf_init(); 1601 1602 setup_ddi(); 1603 1604 /* 1605 * Lets take this opportunity to load the root device. 1606 */ 1607 if (loadrootmodules() != 0) 1608 debug_enter("Can't load the root filesystem"); 1609 1610 /* 1611 * Load tod driver module for the tod part found on this system. 1612 * Recompute the cpu frequency/delays based on tod as tod part 1613 * tends to keep time more accurately. 1614 */ 1615 if (&load_tod_module) 1616 load_tod_module(); 1617 1618 /* 1619 * Allow platforms to load modules which might 1620 * be needed after bootops are gone. 1621 */ 1622 if (&load_platform_modules) 1623 load_platform_modules(); 1624 1625 setcpudelay(); 1626 1627 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1628 &boot_physavail, &boot_physavail_len, 1629 &boot_virtavail, &boot_virtavail_len); 1630 1631 /* 1632 * Calculation and allocation of hmeblks needed to remap 1633 * the memory allocated by PROM till now. 1634 * Overestimate the number of hblk1 elements by assuming 1635 * worst case of TTE64K mappings. 1636 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1637 */ 1638 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1639 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1640 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1641 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1642 1643 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1644 1645 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1646 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1647 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1648 1649 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1650 1651 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1652 nhblk8 = 0; 1653 while (bop_alloc_pages > 1) { 1654 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1655 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1656 bop_alloc_pages *= hme8blk_sz; 1657 bop_alloc_pages = btopr(bop_alloc_pages); 1658 } 1659 nhblk8 += 2; 1660 1661 /* 1662 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1663 * boundary, the number of hblk8's needed to map the entries in the 1664 * boot_virtavail list needs to be adjusted to take this into 1665 * consideration. Thus, we need to add additional hblk8's since it 1666 * is possible that an hblk8 will not have all 8 slots used due to 1667 * alignment constraints. Since there were boot_virtavail_len entries 1668 * in that list, we need to add that many hblk8's to the number 1669 * already calculated to make sure we don't underestimate. 1670 */ 1671 nhblk8 += boot_virtavail_len; 1672 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1673 1674 /* Allocate in pagesize chunks */ 1675 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1676 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1677 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1678 } 1679 1680 static void 1681 startup_bop_gone(void) 1682 { 1683 1684 /* 1685 * Destroy the MD initialized at startup 1686 * The startup initializes the MD framework 1687 * using prom and BOP alloc free it now. 1688 */ 1689 mach_descrip_startup_fini(); 1690 1691 /* 1692 * We're done with prom allocations. 1693 */ 1694 bop_fini(); 1695 1696 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1697 &boot_physavail, &boot_physavail_len, 1698 &boot_virtavail, &boot_virtavail_len); 1699 1700 /* 1701 * setup physically contiguous area twice as large as the ecache. 1702 * this is used while doing displacement flush of ecaches 1703 */ 1704 if (&ecache_flush_address) { 1705 ecache_flushaddr = ecache_flush_address(); 1706 if (ecache_flushaddr == (uint64_t)-1) { 1707 cmn_err(CE_PANIC, 1708 "startup: no memory to set ecache_flushaddr"); 1709 } 1710 } 1711 1712 /* 1713 * Virtual available next. 1714 */ 1715 ASSERT(virt_avail != NULL); 1716 memlist_free_list(virt_avail); 1717 virt_avail = memlist; 1718 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1719 1720 } 1721 1722 1723 /* 1724 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1725 * allocations have been performed. We can't call it in startup_bop_gone 1726 * since later operations can cause obp to allocate more memory. 1727 */ 1728 void 1729 startup_fixup_physavail(void) 1730 { 1731 struct memlist *cur; 1732 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1733 1734 PRM_DEBUG(kmem64_overmap_size); 1735 1736 /* 1737 * take the most current snapshot we can by calling mem-update 1738 */ 1739 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1740 &boot_physavail, &boot_physavail_len, 1741 &boot_virtavail, &boot_virtavail_len); 1742 1743 /* 1744 * Copy phys_avail list, again. 1745 * Both the kernel/boot and the prom have been allocating 1746 * from the original list we copied earlier. 1747 */ 1748 cur = memlist; 1749 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1750 1751 /* 1752 * Add any unused kmem64 memory from overmapped page 1753 * (Note: va_to_pa does not work for kmem64_end) 1754 */ 1755 if (kmem64_overmap_size) { 1756 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1757 kmem64_overmap_size, &memlist, &cur); 1758 } 1759 1760 /* 1761 * Add any extra memory after e_data we added to the phys_avail list 1762 * back to the old list. 1763 */ 1764 if (ndata_remain_sz >= MMU_PAGESIZE) 1765 memlist_add(va_to_pa(nalloc_base), 1766 (uint64_t)ndata_remain_sz, &memlist, &cur); 1767 1768 /* 1769 * There isn't any bounds checking on the memlist area 1770 * so ensure it hasn't overgrown. 1771 */ 1772 if ((caddr_t)memlist > (caddr_t)memlist_end) 1773 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1774 1775 /* 1776 * The kernel removes the pages that were allocated for it from 1777 * the freelist, but we now have to find any -extra- pages that 1778 * the prom has allocated for it's own book-keeping, and remove 1779 * them from the freelist too. sigh. 1780 */ 1781 sync_memlists(phys_avail, cur); 1782 1783 ASSERT(phys_avail != NULL); 1784 1785 old_phys_avail = phys_avail; 1786 phys_avail = cur; 1787 } 1788 1789 void 1790 update_kcage_ranges(uint64_t addr, uint64_t len) 1791 { 1792 pfn_t base = btop(addr); 1793 pgcnt_t num = btop(len); 1794 int rv; 1795 1796 rv = kcage_range_add(base, num, kcage_startup_dir); 1797 1798 if (rv == ENOMEM) { 1799 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1800 (len == 0 ? 0 : BYTES_TO_MB(len))); 1801 } else if (rv != 0) { 1802 /* catch this in debug kernels */ 1803 ASSERT(0); 1804 1805 cmn_err(CE_WARN, "unexpected kcage_range_add" 1806 " return value %d", rv); 1807 } 1808 } 1809 1810 static void 1811 startup_vm(void) 1812 { 1813 size_t i; 1814 struct segmap_crargs a; 1815 struct segkpm_crargs b; 1816 1817 uint64_t avmem; 1818 caddr_t va; 1819 pgcnt_t max_phys_segkp; 1820 int mnode; 1821 1822 extern int use_brk_lpg, use_stk_lpg; 1823 1824 /* 1825 * get prom's mappings, create hments for them and switch 1826 * to the kernel context. 1827 */ 1828 hat_kern_setup(); 1829 1830 /* 1831 * Take over trap table 1832 */ 1833 setup_trap_table(); 1834 1835 /* 1836 * Install the va>tte handler, so that the prom can handle 1837 * misses and understand the kernel table layout in case 1838 * we need call into the prom. 1839 */ 1840 install_va_to_tte(); 1841 1842 /* 1843 * Set a flag to indicate that the tba has been taken over. 1844 */ 1845 tba_taken_over = 1; 1846 1847 /* initialize MMU primary context register */ 1848 mmu_init_kcontext(); 1849 1850 /* 1851 * The boot cpu can now take interrupts, x-calls, x-traps 1852 */ 1853 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1854 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1855 1856 /* 1857 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1858 */ 1859 tbr_wr_addr_inited = 1; 1860 1861 /* 1862 * Initialize VM system, and map kernel address space. 1863 */ 1864 kvm_init(); 1865 1866 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1867 if (kernel_cage_enable) { 1868 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1869 } 1870 memlist_free_list(old_phys_avail); 1871 1872 /* 1873 * If the following is true, someone has patched 1874 * phsymem to be less than the number of pages that 1875 * the system actually has. Remove pages until system 1876 * memory is limited to the requested amount. Since we 1877 * have allocated page structures for all pages, we 1878 * correct the amount of memory we want to remove 1879 * by the size of the memory used to hold page structures 1880 * for the non-used pages. 1881 */ 1882 if (physmem + ramdisk_npages < npages) { 1883 pgcnt_t diff, off; 1884 struct page *pp; 1885 struct seg kseg; 1886 1887 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1888 1889 off = 0; 1890 diff = npages - (physmem + ramdisk_npages); 1891 diff -= mmu_btopr(diff * sizeof (struct page)); 1892 kseg.s_as = &kas; 1893 while (diff--) { 1894 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1895 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1896 &kseg, (caddr_t)off); 1897 if (pp == NULL) 1898 cmn_err(CE_PANIC, "limited physmem too much!"); 1899 page_io_unlock(pp); 1900 page_downgrade(pp); 1901 availrmem--; 1902 off += MMU_PAGESIZE; 1903 } 1904 } 1905 1906 /* 1907 * When printing memory, show the total as physmem less 1908 * that stolen by a debugger. 1909 */ 1910 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1911 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1912 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1913 1914 avmem = (uint64_t)freemem << PAGESHIFT; 1915 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1916 1917 /* 1918 * For small memory systems disable automatic large pages. 1919 */ 1920 if (physmem < privm_lpg_min_physmem) { 1921 use_brk_lpg = 0; 1922 use_stk_lpg = 0; 1923 } 1924 1925 /* 1926 * Perform platform specific freelist processing 1927 */ 1928 if (&plat_freelist_process) { 1929 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1930 if (mem_node_config[mnode].exists) 1931 plat_freelist_process(mnode); 1932 } 1933 1934 /* 1935 * Initialize the segkp segment type. We position it 1936 * after the configured tables and buffers (whose end 1937 * is given by econtig) and before V_WKBASE_ADDR. 1938 * Also in this area is segkmap (size SEGMAPSIZE). 1939 */ 1940 1941 /* XXX - cache alignment? */ 1942 va = (caddr_t)SEGKPBASE; 1943 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1944 1945 max_phys_segkp = (physmem * 2); 1946 1947 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1948 segkpsize = btop(SEGKPDEFSIZE); 1949 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1950 "segkpsize has been reset to %ld pages", segkpsize); 1951 } 1952 1953 i = ptob(MIN(segkpsize, max_phys_segkp)); 1954 1955 rw_enter(&kas.a_lock, RW_WRITER); 1956 if (seg_attach(&kas, va, i, segkp) < 0) 1957 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1958 if (segkp_create(segkp) != 0) 1959 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1960 rw_exit(&kas.a_lock); 1961 1962 /* 1963 * kpm segment 1964 */ 1965 segmap_kpm = kpm_enable && 1966 segmap_kpm && PAGESIZE == MAXBSIZE; 1967 1968 if (kpm_enable) { 1969 rw_enter(&kas.a_lock, RW_WRITER); 1970 1971 /* 1972 * The segkpm virtual range range is larger than the 1973 * actual physical memory size and also covers gaps in 1974 * the physical address range for the following reasons: 1975 * . keep conversion between segkpm and physical addresses 1976 * simple, cheap and unambiguous. 1977 * . avoid extension/shrink of the the segkpm in case of DR. 1978 * . avoid complexity for handling of virtual addressed 1979 * caches, segkpm and the regular mapping scheme must be 1980 * kept in sync wrt. the virtual color of mapped pages. 1981 * Any accesses to virtual segkpm ranges not backed by 1982 * physical memory will fall through the memseg pfn hash 1983 * and will be handled in segkpm_fault. 1984 * Additional kpm_size spaces needed for vac alias prevention. 1985 */ 1986 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1987 segkpm) < 0) 1988 cmn_err(CE_PANIC, "cannot attach segkpm"); 1989 1990 b.prot = PROT_READ | PROT_WRITE; 1991 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1992 1993 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 1994 panic("segkpm_create segkpm"); 1995 1996 rw_exit(&kas.a_lock); 1997 1998 mach_kpm_init(); 1999 } 2000 2001 va = kpm_vbase + (kpm_size * vac_colors); 2002 2003 if (!segzio_fromheap) { 2004 size_t size; 2005 size_t physmem_b = mmu_ptob(physmem); 2006 2007 /* size is in bytes, segziosize is in pages */ 2008 if (segziosize == 0) { 2009 size = physmem_b; 2010 } else { 2011 size = mmu_ptob(segziosize); 2012 } 2013 2014 if (size < SEGZIOMINSIZE) { 2015 size = SEGZIOMINSIZE; 2016 } else if (size > SEGZIOMAXSIZE) { 2017 size = SEGZIOMAXSIZE; 2018 /* 2019 * On 64-bit x86, we only have 2TB of KVA. This exists 2020 * for parity with x86. 2021 * 2022 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2023 * doesn't consume all of KVA. However, if we have a 2024 * system that has more thant 512gb of physical memory, 2025 * we can actually consume about half of the difference 2026 * between 512gb and the rest of the available physical 2027 * memory. 2028 */ 2029 if (physmem_b > SEGZIOMAXSIZE) { 2030 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2031 } 2032 } 2033 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2034 /* put the base of the ZIO segment after the kpm segment */ 2035 segzio_base = va; 2036 va += mmu_ptob(segziosize); 2037 PRM_DEBUG(segziosize); 2038 PRM_DEBUG(segzio_base); 2039 2040 /* 2041 * On some platforms, kvm_init is called after the kpm 2042 * sizes have been determined. On SPARC, kvm_init is called 2043 * before, so we have to attach the kzioseg after kvm is 2044 * initialized, otherwise we'll try to allocate from the boot 2045 * area since the kernel heap hasn't yet been configured. 2046 */ 2047 rw_enter(&kas.a_lock, RW_WRITER); 2048 2049 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2050 &kzioseg); 2051 (void) segkmem_zio_create(&kzioseg); 2052 2053 /* create zio area covering new segment */ 2054 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2055 2056 rw_exit(&kas.a_lock); 2057 } 2058 2059 if (ppvm_enable) { 2060 caddr_t ppvm_max; 2061 2062 /* 2063 * ppvm refers to the static VA space used to map 2064 * the page_t's for dynamically added memory. 2065 * 2066 * ppvm_base should not cross a potential VA hole. 2067 * 2068 * ppvm_size should be large enough to map the 2069 * page_t's needed to manage all of KPM range. 2070 */ 2071 ppvm_size = 2072 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t), 2073 MMU_PAGESIZE); 2074 ppvm_max = (caddr_t)(0ull - ppvm_size); 2075 ppvm_base = (page_t *)va; 2076 2077 if ((caddr_t)ppvm_base <= hole_end) { 2078 cmn_err(CE_WARN, 2079 "Memory DR disabled: invalid DR map base: 0x%p\n", 2080 (void *)ppvm_base); 2081 ppvm_enable = 0; 2082 } else if ((caddr_t)ppvm_base > ppvm_max) { 2083 uint64_t diff = (caddr_t)ppvm_base - ppvm_max; 2084 2085 cmn_err(CE_WARN, 2086 "Memory DR disabled: insufficient DR map size:" 2087 " 0x%lx (needed 0x%lx)\n", 2088 ppvm_size - diff, ppvm_size); 2089 ppvm_enable = 0; 2090 } 2091 PRM_DEBUG(ppvm_size); 2092 PRM_DEBUG(ppvm_base); 2093 } 2094 2095 /* 2096 * Now create generic mapping segment. This mapping 2097 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2098 * virtual address is greater than the amount of free 2099 * memory that is available, then we trim back the 2100 * segment size to that amount 2101 */ 2102 va = (caddr_t)SEGMAPBASE; 2103 2104 /* 2105 * 1201049: segkmap base address must be MAXBSIZE aligned 2106 */ 2107 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2108 2109 /* 2110 * Set size of segmap to percentage of freemem at boot, 2111 * but stay within the allowable range 2112 * Note we take percentage before converting from pages 2113 * to bytes to avoid an overflow on 32-bit kernels. 2114 */ 2115 i = mmu_ptob((freemem * segmap_percent) / 100); 2116 2117 if (i < MINMAPSIZE) 2118 i = MINMAPSIZE; 2119 2120 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2121 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2122 2123 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2124 2125 rw_enter(&kas.a_lock, RW_WRITER); 2126 if (seg_attach(&kas, va, i, segkmap) < 0) 2127 cmn_err(CE_PANIC, "cannot attach segkmap"); 2128 2129 a.prot = PROT_READ | PROT_WRITE; 2130 a.shmsize = shm_alignment; 2131 a.nfreelist = 0; /* use segmap driver defaults */ 2132 2133 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2134 panic("segmap_create segkmap"); 2135 rw_exit(&kas.a_lock); 2136 2137 segdev_init(); 2138 } 2139 2140 static void 2141 startup_end(void) 2142 { 2143 if ((caddr_t)memlist > (caddr_t)memlist_end) 2144 panic("memlist overflow 2"); 2145 memlist_free_block((caddr_t)memlist, 2146 ((caddr_t)memlist_end - (caddr_t)memlist)); 2147 memlist = NULL; 2148 2149 /* enable page_relocation since OBP is now done */ 2150 page_relocate_ready = 1; 2151 2152 /* 2153 * Perform tasks that get done after most of the VM 2154 * initialization has been done but before the clock 2155 * and other devices get started. 2156 */ 2157 kern_setup1(); 2158 2159 /* 2160 * Perform CPC initialization for this CPU. 2161 */ 2162 kcpc_hw_init(); 2163 2164 /* 2165 * Intialize the VM arenas for allocating physically 2166 * contiguus memory chunk for interrupt queues snd 2167 * allocate/register boot cpu's queues, if any and 2168 * allocate dump buffer for sun4v systems to store 2169 * extra crash information during crash dump 2170 */ 2171 contig_mem_init(); 2172 mach_descrip_init(); 2173 2174 if (cpu_intrq_setup(CPU)) { 2175 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2176 } 2177 cpu_intrq_register(CPU); 2178 mach_htraptrace_setup(CPU->cpu_id); 2179 mach_htraptrace_configure(CPU->cpu_id); 2180 mach_dump_buffer_init(); 2181 2182 /* 2183 * Initialize interrupt related stuff 2184 */ 2185 cpu_intr_alloc(CPU, NINTR_THREADS); 2186 2187 (void) splzs(); /* allow hi clock ints but not zs */ 2188 2189 /* 2190 * Initialize errors. 2191 */ 2192 error_init(); 2193 2194 /* 2195 * Note that we may have already used kernel bcopy before this 2196 * point - but if you really care about this, adb the use_hw_* 2197 * variables to 0 before rebooting. 2198 */ 2199 mach_hw_copy_limit(); 2200 2201 /* 2202 * Install the "real" preemption guards before DDI services 2203 * are available. 2204 */ 2205 (void) prom_set_preprom(kern_preprom); 2206 (void) prom_set_postprom(kern_postprom); 2207 CPU->cpu_m.mutex_ready = 1; 2208 2209 /* 2210 * Initialize segnf (kernel support for non-faulting loads). 2211 */ 2212 segnf_init(); 2213 2214 /* 2215 * Configure the root devinfo node. 2216 */ 2217 configure(); /* set up devices */ 2218 mach_cpu_halt_idle(); 2219 } 2220 2221 2222 void 2223 post_startup(void) 2224 { 2225 #ifdef PTL1_PANIC_DEBUG 2226 extern void init_ptl1_thread(void); 2227 #endif /* PTL1_PANIC_DEBUG */ 2228 extern void abort_sequence_init(void); 2229 2230 /* 2231 * Set the system wide, processor-specific flags to be passed 2232 * to userland via the aux vector for performance hints and 2233 * instruction set extensions. 2234 */ 2235 bind_hwcap(); 2236 2237 /* 2238 * Startup memory scrubber (if any) 2239 */ 2240 mach_memscrub(); 2241 2242 /* 2243 * Allocate soft interrupt to handle abort sequence. 2244 */ 2245 abort_sequence_init(); 2246 2247 /* 2248 * Configure the rest of the system. 2249 * Perform forceloading tasks for /etc/system. 2250 */ 2251 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2252 /* 2253 * ON4.0: Force /proc module in until clock interrupt handle fixed 2254 * ON4.0: This must be fixed or restated in /etc/systems. 2255 */ 2256 (void) modload("fs", "procfs"); 2257 2258 /* load machine class specific drivers */ 2259 load_mach_drivers(); 2260 2261 /* load platform specific drivers */ 2262 if (&load_platform_drivers) 2263 load_platform_drivers(); 2264 2265 /* load vis simulation module, if we are running w/fpu off */ 2266 if (!fpu_exists) { 2267 if (modload("misc", "vis") == -1) 2268 halt("Can't load vis"); 2269 } 2270 2271 mach_fpras(); 2272 2273 maxmem = freemem; 2274 2275 pg_init(); 2276 2277 #ifdef PTL1_PANIC_DEBUG 2278 init_ptl1_thread(); 2279 #endif /* PTL1_PANIC_DEBUG */ 2280 } 2281 2282 #ifdef PTL1_PANIC_DEBUG 2283 int ptl1_panic_test = 0; 2284 int ptl1_panic_xc_one_test = 0; 2285 int ptl1_panic_xc_all_test = 0; 2286 int ptl1_panic_xt_one_test = 0; 2287 int ptl1_panic_xt_all_test = 0; 2288 kthread_id_t ptl1_thread_p = NULL; 2289 kcondvar_t ptl1_cv; 2290 kmutex_t ptl1_mutex; 2291 int ptl1_recurse_count_threshold = 0x40; 2292 int ptl1_recurse_trap_threshold = 0x3d; 2293 extern void ptl1_recurse(int, int); 2294 extern void ptl1_panic_xt(int, int); 2295 2296 /* 2297 * Called once per second by timeout() to wake up 2298 * the ptl1_panic thread to see if it should cause 2299 * a trap to the ptl1_panic() code. 2300 */ 2301 /* ARGSUSED */ 2302 static void 2303 ptl1_wakeup(void *arg) 2304 { 2305 mutex_enter(&ptl1_mutex); 2306 cv_signal(&ptl1_cv); 2307 mutex_exit(&ptl1_mutex); 2308 } 2309 2310 /* 2311 * ptl1_panic cross call function: 2312 * Needed because xc_one() and xc_some() can pass 2313 * 64 bit args but ptl1_recurse() expects ints. 2314 */ 2315 static void 2316 ptl1_panic_xc(void) 2317 { 2318 ptl1_recurse(ptl1_recurse_count_threshold, 2319 ptl1_recurse_trap_threshold); 2320 } 2321 2322 /* 2323 * The ptl1 thread waits for a global flag to be set 2324 * and uses the recurse thresholds to set the stack depth 2325 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2326 * or indirectly via the cross call and cross trap functions. 2327 * 2328 * This is useful testing stack overflows and normal 2329 * ptl1_panic() states with a know stack frame. 2330 * 2331 * ptl1_recurse() is an asm function in ptl1_panic.s that 2332 * sets the {In, Local, Out, and Global} registers to a 2333 * know state on the stack and just prior to causing a 2334 * test ptl1_panic trap. 2335 */ 2336 static void 2337 ptl1_thread(void) 2338 { 2339 mutex_enter(&ptl1_mutex); 2340 while (ptl1_thread_p) { 2341 cpuset_t other_cpus; 2342 int cpu_id; 2343 int my_cpu_id; 2344 int target_cpu_id; 2345 int target_found; 2346 2347 if (ptl1_panic_test) { 2348 ptl1_recurse(ptl1_recurse_count_threshold, 2349 ptl1_recurse_trap_threshold); 2350 } 2351 2352 /* 2353 * Find potential targets for x-call and x-trap, 2354 * if any exist while preempt is disabled we 2355 * start a ptl1_panic if requested via a 2356 * globals. 2357 */ 2358 kpreempt_disable(); 2359 my_cpu_id = CPU->cpu_id; 2360 other_cpus = cpu_ready_set; 2361 CPUSET_DEL(other_cpus, CPU->cpu_id); 2362 target_found = 0; 2363 if (!CPUSET_ISNULL(other_cpus)) { 2364 /* 2365 * Pick the first one 2366 */ 2367 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2368 if (cpu_id == my_cpu_id) 2369 continue; 2370 2371 if (CPU_XCALL_READY(cpu_id)) { 2372 target_cpu_id = cpu_id; 2373 target_found = 1; 2374 break; 2375 } 2376 } 2377 ASSERT(target_found); 2378 2379 if (ptl1_panic_xc_one_test) { 2380 xc_one(target_cpu_id, 2381 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2382 } 2383 if (ptl1_panic_xc_all_test) { 2384 xc_some(other_cpus, 2385 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2386 } 2387 if (ptl1_panic_xt_one_test) { 2388 xt_one(target_cpu_id, 2389 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2390 } 2391 if (ptl1_panic_xt_all_test) { 2392 xt_some(other_cpus, 2393 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2394 } 2395 } 2396 kpreempt_enable(); 2397 (void) timeout(ptl1_wakeup, NULL, hz); 2398 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2399 } 2400 mutex_exit(&ptl1_mutex); 2401 } 2402 2403 /* 2404 * Called during early startup to create the ptl1_thread 2405 */ 2406 void 2407 init_ptl1_thread(void) 2408 { 2409 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2410 &p0, TS_RUN, 0); 2411 } 2412 #endif /* PTL1_PANIC_DEBUG */ 2413 2414 2415 static void 2416 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2417 { 2418 struct memlist *new; 2419 2420 new = *memlistp; 2421 new->ml_address = start; 2422 new->ml_size = len; 2423 *memlistp = new + 1; 2424 } 2425 2426 /* 2427 * Add to a memory list. 2428 * start = start of new memory segment 2429 * len = length of new memory segment in bytes 2430 * memlistp = pointer to array of available memory segment structures 2431 * curmemlistp = memory list to which to add segment. 2432 */ 2433 static void 2434 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2435 struct memlist **curmemlistp) 2436 { 2437 struct memlist *new = *memlistp; 2438 2439 memlist_new(start, len, memlistp); 2440 memlist_insert(new, curmemlistp); 2441 } 2442 2443 static int 2444 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2445 { 2446 int nseg; 2447 size_t memseg_sz; 2448 struct memseg *msp; 2449 2450 /* 2451 * The memseg list is for the chunks of physical memory that 2452 * will be managed by the vm system. The number calculated is 2453 * a guess as boot may fragment it more when memory allocations 2454 * are made before kphysm_init(). 2455 */ 2456 memseg_sz = (avail + 10) * sizeof (struct memseg); 2457 memseg_sz = roundup(memseg_sz, PAGESIZE); 2458 nseg = memseg_sz / sizeof (struct memseg); 2459 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2460 if (msp == NULL) 2461 return (1); 2462 PRM_DEBUG(memseg_free); 2463 2464 while (nseg--) { 2465 msp->next = memseg_free; 2466 memseg_free = msp; 2467 msp++; 2468 } 2469 return (0); 2470 } 2471 2472 /* 2473 * In the case of architectures that support dynamic addition of 2474 * memory at run-time there are two cases where memsegs need to 2475 * be initialized and added to the memseg list. 2476 * 1) memsegs that are constructed at startup. 2477 * 2) memsegs that are constructed at run-time on 2478 * hot-plug capable architectures. 2479 * This code was originally part of the function kphysm_init(). 2480 */ 2481 2482 static void 2483 memseg_list_add(struct memseg *memsegp) 2484 { 2485 struct memseg **prev_memsegp; 2486 pgcnt_t num; 2487 2488 /* insert in memseg list, decreasing number of pages order */ 2489 2490 num = MSEG_NPAGES(memsegp); 2491 2492 for (prev_memsegp = &memsegs; *prev_memsegp; 2493 prev_memsegp = &((*prev_memsegp)->next)) { 2494 if (num > MSEG_NPAGES(*prev_memsegp)) 2495 break; 2496 } 2497 2498 memsegp->next = *prev_memsegp; 2499 *prev_memsegp = memsegp; 2500 2501 if (kpm_enable) { 2502 memsegp->nextpa = (memsegp->next) ? 2503 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2504 2505 if (prev_memsegp != &memsegs) { 2506 struct memseg *msp; 2507 msp = (struct memseg *)((caddr_t)prev_memsegp - 2508 offsetof(struct memseg, next)); 2509 msp->nextpa = va_to_pa(memsegp); 2510 } else { 2511 memsegspa = va_to_pa(memsegs); 2512 } 2513 } 2514 } 2515 2516 /* 2517 * PSM add_physmem_cb(). US-II and newer processors have some 2518 * flavor of the prefetch capability implemented. We exploit 2519 * this capability for optimum performance. 2520 */ 2521 #define PREFETCH_BYTES 64 2522 2523 void 2524 add_physmem_cb(page_t *pp, pfn_t pnum) 2525 { 2526 extern void prefetch_page_w(void *); 2527 2528 pp->p_pagenum = pnum; 2529 2530 /* 2531 * Prefetch one more page_t into E$. To prevent future 2532 * mishaps with the sizeof(page_t) changing on us, we 2533 * catch this on debug kernels if we can't bring in the 2534 * entire hpage with 2 PREFETCH_BYTES reads. See 2535 * also, sun4u/cpu/cpu_module.c 2536 */ 2537 /*LINTED*/ 2538 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2539 prefetch_page_w((char *)pp); 2540 } 2541 2542 /* 2543 * Find memseg with given pfn 2544 */ 2545 static struct memseg * 2546 memseg_find(pfn_t base, pfn_t *next) 2547 { 2548 struct memseg *seg; 2549 2550 if (next != NULL) 2551 *next = LONG_MAX; 2552 for (seg = memsegs; seg != NULL; seg = seg->next) { 2553 if (base >= seg->pages_base && base < seg->pages_end) 2554 return (seg); 2555 if (next != NULL && seg->pages_base > base && 2556 seg->pages_base < *next) 2557 *next = seg->pages_base; 2558 } 2559 return (NULL); 2560 } 2561 2562 /* 2563 * Put page allocated by OBP on prom_ppages 2564 */ 2565 static void 2566 kphysm_erase(uint64_t addr, uint64_t len) 2567 { 2568 struct page *pp; 2569 struct memseg *seg; 2570 pfn_t base = btop(addr), next; 2571 pgcnt_t num = btop(len); 2572 2573 while (num != 0) { 2574 pgcnt_t off, left; 2575 2576 seg = memseg_find(base, &next); 2577 if (seg == NULL) { 2578 if (next == LONG_MAX) 2579 break; 2580 left = MIN(next - base, num); 2581 base += left, num -= left; 2582 continue; 2583 } 2584 off = base - seg->pages_base; 2585 pp = seg->pages + off; 2586 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2587 while (num != left) { 2588 /* 2589 * init it, lock it, and hashin on prom_pages vp. 2590 * 2591 * Mark it as NONRELOC to let DR know the page 2592 * is locked long term, otherwise DR hangs when 2593 * trying to remove those pages. 2594 * 2595 * XXX vnode offsets on the prom_ppages vnode 2596 * are page numbers (gack) for >32 bit 2597 * physical memory machines. 2598 */ 2599 PP_SETNORELOC(pp); 2600 add_physmem_cb(pp, base); 2601 if (page_trylock(pp, SE_EXCL) == 0) 2602 cmn_err(CE_PANIC, "prom page locked"); 2603 (void) page_hashin(pp, &promvp, 2604 (offset_t)base, NULL); 2605 (void) page_pp_lock(pp, 0, 1); 2606 pp++, base++, num--; 2607 } 2608 } 2609 } 2610 2611 static page_t *ppnext; 2612 static pgcnt_t ppleft; 2613 2614 static void *kpm_ppnext; 2615 static pgcnt_t kpm_ppleft; 2616 2617 /* 2618 * Create a memseg 2619 */ 2620 static void 2621 kphysm_memseg(uint64_t addr, uint64_t len) 2622 { 2623 pfn_t base = btop(addr); 2624 pgcnt_t num = btop(len); 2625 struct memseg *seg; 2626 2627 seg = memseg_free; 2628 memseg_free = seg->next; 2629 ASSERT(seg != NULL); 2630 2631 seg->pages = ppnext; 2632 seg->epages = ppnext + num; 2633 seg->pages_base = base; 2634 seg->pages_end = base + num; 2635 ppnext += num; 2636 ppleft -= num; 2637 2638 if (kpm_enable) { 2639 pgcnt_t kpnum = ptokpmpr(num); 2640 2641 if (kpnum > kpm_ppleft) 2642 panic("kphysm_memseg: kpm_pp overflow"); 2643 seg->pagespa = va_to_pa(seg->pages); 2644 seg->epagespa = va_to_pa(seg->epages); 2645 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2646 seg->kpm_nkpmpgs = kpnum; 2647 /* 2648 * In the kpm_smallpage case, the kpm array 2649 * is 1-1 wrt the page array 2650 */ 2651 if (kpm_smallpages) { 2652 kpm_spage_t *kpm_pp = kpm_ppnext; 2653 2654 kpm_ppnext = kpm_pp + kpnum; 2655 seg->kpm_spages = kpm_pp; 2656 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2657 } else { 2658 kpm_page_t *kpm_pp = kpm_ppnext; 2659 2660 kpm_ppnext = kpm_pp + kpnum; 2661 seg->kpm_pages = kpm_pp; 2662 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2663 /* ASSERT no kpm overlaps */ 2664 ASSERT( 2665 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2666 ASSERT(memseg_find( 2667 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2668 } 2669 kpm_ppleft -= kpnum; 2670 } 2671 2672 memseg_list_add(seg); 2673 } 2674 2675 /* 2676 * Add range to free list 2677 */ 2678 void 2679 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2680 { 2681 struct page *pp; 2682 struct memseg *seg; 2683 pfn_t base = btop(addr); 2684 pgcnt_t num = btop(len); 2685 2686 seg = memseg_find(base, NULL); 2687 ASSERT(seg != NULL); 2688 pp = seg->pages + (base - seg->pages_base); 2689 2690 if (reclaim) { 2691 struct page *rpp = pp; 2692 struct page *lpp = pp + num; 2693 2694 /* 2695 * page should be locked on prom_ppages 2696 * unhash and unlock it 2697 */ 2698 while (rpp < lpp) { 2699 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp); 2700 ASSERT(PP_ISNORELOC(rpp)); 2701 PP_CLRNORELOC(rpp); 2702 page_pp_unlock(rpp, 0, 1); 2703 page_hashout(rpp, NULL); 2704 page_unlock(rpp); 2705 rpp++; 2706 } 2707 } 2708 2709 /* 2710 * add_physmem() initializes the PSM part of the page 2711 * struct by calling the PSM back with add_physmem_cb(). 2712 * In addition it coalesces pages into larger pages as 2713 * it initializes them. 2714 */ 2715 add_physmem(pp, num, base); 2716 } 2717 2718 /* 2719 * kphysm_init() tackles the problem of initializing physical memory. 2720 */ 2721 static void 2722 kphysm_init(void) 2723 { 2724 struct memlist *pmem; 2725 2726 ASSERT(page_hash != NULL && page_hashsz != 0); 2727 2728 ppnext = pp_base; 2729 ppleft = npages; 2730 kpm_ppnext = kpm_pp_base; 2731 kpm_ppleft = kpm_npages; 2732 2733 /* 2734 * installed pages not on nopp_memlist go in memseg list 2735 */ 2736 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2737 2738 /* 2739 * Free the avail list 2740 */ 2741 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next) 2742 kphysm_add(pmem->ml_address, pmem->ml_size, 0); 2743 2744 /* 2745 * Erase pages that aren't available 2746 */ 2747 diff_memlists(phys_install, phys_avail, kphysm_erase); 2748 2749 build_pfn_hash(); 2750 } 2751 2752 /* 2753 * Kernel VM initialization. 2754 * Assumptions about kernel address space ordering: 2755 * (1) gap (user space) 2756 * (2) kernel text 2757 * (3) kernel data/bss 2758 * (4) gap 2759 * (5) kernel data structures 2760 * (6) gap 2761 * (7) debugger (optional) 2762 * (8) monitor 2763 * (9) gap (possibly null) 2764 * (10) dvma 2765 * (11) devices 2766 */ 2767 static void 2768 kvm_init(void) 2769 { 2770 /* 2771 * Put the kernel segments in kernel address space. 2772 */ 2773 rw_enter(&kas.a_lock, RW_WRITER); 2774 as_avlinit(&kas); 2775 2776 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2777 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2778 (void) segkmem_create(&ktextseg); 2779 2780 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2781 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2782 (void) segkmem_create(&ktexthole); 2783 2784 (void) seg_attach(&kas, (caddr_t)valloc_base, 2785 (size_t)(econtig32 - valloc_base), &kvalloc); 2786 (void) segkmem_create(&kvalloc); 2787 2788 if (kmem64_base) { 2789 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2790 (size_t)(kmem64_end - kmem64_base), &kmem64); 2791 (void) segkmem_create(&kmem64); 2792 } 2793 2794 /* 2795 * We're about to map out /boot. This is the beginning of the 2796 * system resource management transition. We can no longer 2797 * call into /boot for I/O or memory allocations. 2798 */ 2799 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2800 (void) segkmem_create(&kvseg); 2801 hblk_alloc_dynamic = 1; 2802 2803 /* 2804 * we need to preallocate pages for DR operations before enabling large 2805 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2806 */ 2807 memseg_remap_init(); 2808 2809 /* at this point we are ready to use large page heap */ 2810 segkmem_heap_lp_init(); 2811 2812 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2813 &kvseg32); 2814 (void) segkmem_create(&kvseg32); 2815 2816 /* 2817 * Create a segment for the debugger. 2818 */ 2819 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2820 (void) segkmem_create(&kdebugseg); 2821 2822 rw_exit(&kas.a_lock); 2823 } 2824 2825 char obp_tte_str[] = 2826 "h# %x constant MMU_PAGESHIFT " 2827 "h# %x constant TTE8K " 2828 "h# %x constant SFHME_SIZE " 2829 "h# %x constant SFHME_TTE " 2830 "h# %x constant HMEBLK_TAG " 2831 "h# %x constant HMEBLK_NEXT " 2832 "h# %x constant HMEBLK_MISC " 2833 "h# %x constant HMEBLK_HME1 " 2834 "h# %x constant NHMENTS " 2835 "h# %x constant HBLK_SZMASK " 2836 "h# %x constant HBLK_RANGE_SHIFT " 2837 "h# %x constant HMEBP_HBLK " 2838 "h# %x constant HMEBLK_ENDPA " 2839 "h# %x constant HMEBUCKET_SIZE " 2840 "h# %x constant HTAG_SFMMUPSZ " 2841 "h# %x constant HTAG_BSPAGE_SHIFT " 2842 "h# %x constant HTAG_REHASH_SHIFT " 2843 "h# %x constant SFMMU_INVALID_SHMERID " 2844 "h# %x constant mmu_hashcnt " 2845 "h# %p constant uhme_hash " 2846 "h# %p constant khme_hash " 2847 "h# %x constant UHMEHASH_SZ " 2848 "h# %x constant KHMEHASH_SZ " 2849 "h# %p constant KCONTEXT " 2850 "h# %p constant KHATID " 2851 "h# %x constant ASI_MEM " 2852 2853 ": PHYS-X@ ( phys -- data ) " 2854 " ASI_MEM spacex@ " 2855 "; " 2856 2857 ": PHYS-W@ ( phys -- data ) " 2858 " ASI_MEM spacew@ " 2859 "; " 2860 2861 ": PHYS-L@ ( phys -- data ) " 2862 " ASI_MEM spaceL@ " 2863 "; " 2864 2865 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2866 " 3 * MMU_PAGESHIFT + " 2867 "; " 2868 2869 ": TTE_IS_VALID ( ttep -- flag ) " 2870 " PHYS-X@ 0< " 2871 "; " 2872 2873 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2874 " dup TTE8K = if " 2875 " drop HBLK_RANGE_SHIFT " 2876 " else " 2877 " TTE_PAGE_SHIFT " 2878 " then " 2879 "; " 2880 2881 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2882 " tuck >> swap MMU_PAGESHIFT - << " 2883 "; " 2884 2885 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2886 " >> over xor swap ( hash sfmmup ) " 2887 " KHATID <> if ( hash ) " 2888 " UHMEHASH_SZ and ( bucket ) " 2889 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2890 " else ( hash ) " 2891 " KHMEHASH_SZ and ( bucket ) " 2892 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2893 " then ( hmebp ) " 2894 "; " 2895 2896 ": HME_HASH_TABLE_SEARCH " 2897 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2898 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2899 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " 2900 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2901 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2902 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2903 " else " 2904 " hmeblk_next + phys-x@ false " 2905 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2906 " then " 2907 " else " 2908 " hmeblk_next + phys-x@ false " 2909 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2910 " then " 2911 " else " 2912 " drop 0 true " 2913 " then " 2914 " until r> drop " 2915 "; " 2916 2917 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2918 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2919 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2920 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2921 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2922 "; " 2923 2924 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2925 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2926 " TTE8K = if ( hmeblkp addr ) " 2927 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2928 " else ( hmeblkp addr ) " 2929 " drop 0 ( hmeblkp 0 ) " 2930 " then ( hmeblkp hme-index ) " 2931 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2932 " SFHME_TTE + ( ttep ) " 2933 "; " 2934 2935 ": unix-tte ( addr cnum -- false | tte-data true ) " 2936 " KCONTEXT = if ( addr ) " 2937 " KHATID ( addr khatid ) " 2938 " else ( addr ) " 2939 " drop false exit ( false ) " 2940 " then " 2941 " ( addr khatid ) " 2942 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2943 " 2dup swap i HME_HASH_SHIFT " 2944 "( addr sfmmup sfmmup addr hmeshift ) " 2945 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2946 " over i 4 pick " 2947 "( addr sfmmup hmebp sfmmup rehash addr ) " 2948 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2949 " HME_HASH_TABLE_SEARCH " 2950 "( addr sfmmup { null | hmeblkp } ) " 2951 " ?dup if ( addr sfmmup hmeblkp ) " 2952 " nip swap HBLK_TO_TTEP ( ttep ) " 2953 " dup TTE_IS_VALID if ( valid-ttep ) " 2954 " PHYS-X@ true ( tte-data true ) " 2955 " else ( invalid-tte ) " 2956 " drop false ( false ) " 2957 " then ( false | tte-data true ) " 2958 " unloop exit ( false | tte-data true ) " 2959 " then ( addr sfmmup ) " 2960 " loop ( addr sfmmup ) " 2961 " 2drop false ( false ) " 2962 "; " 2963 ; 2964 2965 void 2966 create_va_to_tte(void) 2967 { 2968 char *bp; 2969 extern int khmehash_num, uhmehash_num; 2970 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2971 2972 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2973 2974 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2975 2976 /* 2977 * Teach obp how to parse our sw ttes. 2978 */ 2979 (void) sprintf(bp, obp_tte_str, 2980 MMU_PAGESHIFT, 2981 TTE8K, 2982 sizeof (struct sf_hment), 2983 OFFSET(struct sf_hment, hme_tte), 2984 OFFSET(struct hme_blk, hblk_tag), 2985 OFFSET(struct hme_blk, hblk_nextpa), 2986 OFFSET(struct hme_blk, hblk_misc), 2987 OFFSET(struct hme_blk, hblk_hme), 2988 NHMENTS, 2989 HBLK_SZMASK, 2990 HBLK_RANGE_SHIFT, 2991 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2992 HMEBLK_ENDPA, 2993 sizeof (struct hmehash_bucket), 2994 HTAG_SFMMUPSZ, 2995 HTAG_BSPAGE_SHIFT, 2996 HTAG_REHASH_SHIFT, 2997 SFMMU_INVALID_SHMERID, 2998 mmu_hashcnt, 2999 (caddr_t)va_to_pa((caddr_t)uhme_hash), 3000 (caddr_t)va_to_pa((caddr_t)khme_hash), 3001 UHMEHASH_SZ, 3002 KHMEHASH_SZ, 3003 KCONTEXT, 3004 KHATID, 3005 ASI_MEM); 3006 prom_interpret(bp, 0, 0, 0, 0, 0); 3007 3008 kobj_free(bp, MMU_PAGESIZE); 3009 } 3010 3011 void 3012 install_va_to_tte(void) 3013 { 3014 /* 3015 * advise prom that he can use unix-tte 3016 */ 3017 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 3018 } 3019 3020 /* 3021 * Here we add "device-type=console" for /os-io node, for currently 3022 * our kernel console output only supports displaying text and 3023 * performing cursor-positioning operations (through kernel framebuffer 3024 * driver) and it doesn't support other functionalities required for a 3025 * standard "display" device as specified in 1275 spec. The main missing 3026 * interface defined by the 1275 spec is "draw-logo". 3027 * also see the comments above prom_stdout_is_framebuffer(). 3028 */ 3029 static char *create_node = 3030 "\" /\" find-device " 3031 "new-device " 3032 "\" os-io\" device-name " 3033 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 3034 ": cb-r/w ( adr,len method$ -- #read/#written ) " 3035 " 2>r swap 2 2r> ['] $callback catch if " 3036 " 2drop 3drop 0 " 3037 " then " 3038 "; " 3039 ": read ( adr,len -- #read ) " 3040 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 3041 " ( retN ... ret1 N ) " 3042 " ?dup if " 3043 " swap >r 1- 0 ?do drop loop r> " 3044 " else " 3045 " -2 " 3046 " then " 3047 "; " 3048 ": write ( adr,len -- #written ) " 3049 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3050 " ( retN ... ret1 N ) " 3051 " ?dup if " 3052 " swap >r 1- 0 ?do drop loop r> " 3053 " else " 3054 " 0 " 3055 " then " 3056 "; " 3057 ": poll-tty ( -- ) ; " 3058 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3059 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3060 ": cb-give/take ( $method -- ) " 3061 " 0 -rot ['] $callback catch ?dup if " 3062 " >r 2drop 2drop r> throw " 3063 " else " 3064 " 0 ?do drop loop " 3065 " then " 3066 "; " 3067 ": give ( -- ) \" exit-input\" cb-give/take ; " 3068 ": take ( -- ) \" enter-input\" cb-give/take ; " 3069 ": open ( -- ok? ) true ; " 3070 ": close ( -- ) ; " 3071 "finish-device " 3072 "device-end "; 3073 3074 /* 3075 * Create the OBP input/output node (FCode serial driver). 3076 * It is needed for both USB console keyboard and for 3077 * the kernel terminal emulator. It is too early to check for a 3078 * kernel console compatible framebuffer now, so we create this 3079 * so that we're ready if we need to enable kernel terminal emulation. 3080 * 3081 * When the USB software takes over the input device at the time 3082 * consconfig runs, OBP's stdin is redirected to this node. 3083 * Whenever the FORTH user interface is used after this switch, 3084 * the node will call back into the kernel for console input. 3085 * If a serial device such as ttya or a UART with a Type 5 keyboard 3086 * attached is used, OBP takes over the serial device when the system 3087 * goes to the debugger after the system is booted. This sharing 3088 * of the relatively simple serial device is difficult but possible. 3089 * Sharing the USB host controller is impossible due its complexity. 3090 * 3091 * Similarly to USB keyboard input redirection, after consconfig_dacf 3092 * configures a kernel console framebuffer as the standard output 3093 * device, OBP's stdout is switched to to vector through the 3094 * /os-io node into the kernel terminal emulator. 3095 */ 3096 static void 3097 startup_create_io_node(void) 3098 { 3099 prom_interpret(create_node, 0, 0, 0, 0, 0); 3100 } 3101 3102 3103 static void 3104 do_prom_version_check(void) 3105 { 3106 int i; 3107 pnode_t node; 3108 char buf[64]; 3109 static char drev[] = "Down-rev firmware detected%s\n" 3110 "\tPlease upgrade to the following minimum version:\n" 3111 "\t\t%s\n"; 3112 3113 i = prom_version_check(buf, sizeof (buf), &node); 3114 3115 if (i == PROM_VER64_OK) 3116 return; 3117 3118 if (i == PROM_VER64_UPGRADE) { 3119 cmn_err(CE_WARN, drev, "", buf); 3120 3121 #ifdef DEBUG 3122 prom_enter_mon(); /* Type 'go' to continue */ 3123 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 3124 return; 3125 #else 3126 halt(0); 3127 #endif 3128 } 3129 3130 /* 3131 * The other possibility is that this is a server running 3132 * good firmware, but down-rev firmware was detected on at 3133 * least one other cpu board. We just complain if we see 3134 * that. 3135 */ 3136 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 3137 } 3138 3139 3140 /* 3141 * Must be defined in platform dependent code. 3142 */ 3143 extern caddr_t modtext; 3144 extern size_t modtext_sz; 3145 extern caddr_t moddata; 3146 3147 #define HEAPTEXT_ARENA(addr) \ 3148 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3149 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3150 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3151 3152 #define HEAPTEXT_OVERSIZED(addr) \ 3153 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3154 3155 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ 3156 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ 3157 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) 3158 3159 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3160 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3161 kmutex_t texthole_lock; 3162 3163 char kern_bootargs[OBP_MAXPATHLEN]; 3164 char kern_bootfile[OBP_MAXPATHLEN]; 3165 3166 void 3167 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3168 { 3169 uintptr_t addr, limit; 3170 3171 addr = HEAPTEXT_BASE; 3172 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3173 3174 /* 3175 * Before we initialize the text_arena, we want to punch holes in the 3176 * underlying heaptext_arena. This guarantees that for any text 3177 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3178 */ 3179 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3180 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3181 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3182 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3183 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3184 } 3185 3186 /* 3187 * Allocate one page at the oversize to break up the text region 3188 * from the oversized region. 3189 */ 3190 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3191 (void *)limit, (void *)(limit + PAGESIZE), 3192 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3193 3194 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3195 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3196 heaptext_arena, 0, VM_SLEEP); 3197 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3198 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3199 } 3200 3201 caddr_t 3202 kobj_text_alloc(vmem_t *arena, size_t size) 3203 { 3204 caddr_t rval, better; 3205 3206 /* 3207 * First, try a sleeping allocation. 3208 */ 3209 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3210 3211 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3212 return (rval); 3213 3214 /* 3215 * We didn't get the area that we wanted. We're going to try to do an 3216 * allocation with explicit constraints. 3217 */ 3218 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3219 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3220 VM_NOSLEEP | VM_BESTFIT); 3221 3222 if (better != NULL) { 3223 /* 3224 * That worked. Free our first attempt and return. 3225 */ 3226 vmem_free(arena, rval, size); 3227 return (better); 3228 } 3229 3230 /* 3231 * That didn't work; we'll have to return our first attempt. 3232 */ 3233 return (rval); 3234 } 3235 3236 caddr_t 3237 kobj_texthole_alloc(caddr_t addr, size_t size) 3238 { 3239 int arena = HEAPTEXT_ARENA(addr); 3240 char c[30]; 3241 uintptr_t base; 3242 3243 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { 3244 /* 3245 * If this is an oversized allocation or it is allocated in 3246 * the nucleus data page, there is no text hole available for 3247 * it; return NULL. 3248 */ 3249 return (NULL); 3250 } 3251 3252 mutex_enter(&texthole_lock); 3253 3254 if (texthole_arena[arena] == NULL) { 3255 ASSERT(texthole_source[arena] == NULL); 3256 3257 if (arena == 0) { 3258 texthole_source[0] = vmem_create("module_text_holesrc", 3259 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3260 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3261 0, VM_SLEEP); 3262 } else { 3263 base = HEAPTEXT_BASE + 3264 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3265 3266 (void) snprintf(c, sizeof (c), 3267 "heaptext_holesrc_%d", arena); 3268 3269 texthole_source[arena] = vmem_create(c, (void *)base, 3270 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3271 0, VM_SLEEP); 3272 } 3273 3274 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3275 3276 texthole_arena[arena] = vmem_create(c, NULL, 0, 3277 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3278 texthole_source[arena], 0, VM_SLEEP); 3279 } 3280 3281 mutex_exit(&texthole_lock); 3282 3283 ASSERT(texthole_arena[arena] != NULL); 3284 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3285 return (vmem_alloc(texthole_arena[arena], size, 3286 VM_BESTFIT | VM_NOSLEEP)); 3287 } 3288 3289 void 3290 kobj_texthole_free(caddr_t addr, size_t size) 3291 { 3292 int arena = HEAPTEXT_ARENA(addr); 3293 3294 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3295 ASSERT(texthole_arena[arena] != NULL); 3296 vmem_free(texthole_arena[arena], addr, size); 3297 } 3298 3299 void 3300 release_bootstrap(void) 3301 { 3302 if (&cif_init) 3303 cif_init(); 3304 } 3305