xref: /titanic_51/usr/src/uts/sun4/os/startup.c (revision 9a09d68d9dc5e0bdb1fbc9945e1091efa737f98f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern int cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
74 extern void mach_dump_buffer_init(void);
75 extern void mach_descrip_init(void);
76 extern void mach_descrip_startup_fini(void);
77 extern void mach_memscrub(void);
78 extern void mach_fpras(void);
79 extern void mach_cpu_halt_idle(void);
80 extern void mach_hw_copy_limit(void);
81 extern void load_mach_drivers(void);
82 extern void load_tod_module(void);
83 #pragma weak load_tod_module
84 
85 extern int ndata_alloc_mmfsa(struct memlist *ndata);
86 #pragma weak ndata_alloc_mmfsa
87 
88 extern void cif_init(void);
89 #pragma weak cif_init
90 
91 extern void parse_idprom(void);
92 extern void add_vx_handler(char *, int, void (*)(cell_t *));
93 extern void mem_config_init(void);
94 extern void memseg_remap_init(void);
95 
96 extern void mach_kpm_init(void);
97 extern int size_pse_array(pgcnt_t, int);
98 
99 /*
100  * External Data:
101  */
102 extern int vac_size;	/* cache size in bytes */
103 extern uint_t vac_mask;	/* VAC alignment consistency mask */
104 extern uint_t vac_colors;
105 
106 /*
107  * Global Data Definitions:
108  */
109 
110 /*
111  * XXX - Don't port this to new architectures
112  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
113  * 'romp' has no use with a prom with an IEEE 1275 client interface.
114  * The driver doesn't use the value, but it depends on the symbol.
115  */
116 void *romp;		/* veritas driver won't load without romp 4154976 */
117 /*
118  * Declare these as initialized data so we can patch them.
119  */
120 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
121 pgcnt_t segkpsize =
122     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
123 uint_t segmap_percent = 12; /* Size of segmap segment */
124 
125 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
126 int vac_copyback = 1;
127 char *cache_mode = NULL;
128 int use_mix = 1;
129 int prom_debug = 0;
130 
131 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
132 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
133 uint_t	tba_taken_over = 0;
134 
135 caddr_t s_text;			/* start of kernel text segment */
136 caddr_t e_text;			/* end of kernel text segment */
137 caddr_t s_data;			/* start of kernel data segment */
138 caddr_t e_data;			/* end of kernel data segment */
139 
140 caddr_t modtext;		/* beginning of module text */
141 size_t	modtext_sz;		/* size of module text */
142 caddr_t moddata;		/* beginning of module data reserve */
143 caddr_t e_moddata;		/* end of module data reserve */
144 
145 /*
146  * End of first block of contiguous kernel in 32-bit virtual address space
147  */
148 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
149 
150 caddr_t		ncbase;		/* beginning of non-cached segment */
151 caddr_t		ncend;		/* end of non-cached segment */
152 caddr_t		sdata;		/* beginning of data segment */
153 
154 caddr_t		extra_etva;	/* beginning of unused nucleus text */
155 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
156 
157 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
158 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
159 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
160 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
161 
162 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
163 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
164 caddr_t kmem64_aligned_end;	/* end of large page, overmaps 64-bit space */
165 int	kmem64_alignsize;	/* page size for mem segment in 64-bit space */
166 int	kmem64_szc;		/* page size code */
167 uint64_t kmem64_pabase = (uint64_t)-1;	/* physical address of kmem64_base */
168 
169 uintptr_t shm_alignment;	/* VAC address consistency modulus */
170 struct memlist *phys_install;	/* Total installed physical memory */
171 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
172 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
173 struct memlist ndata;		/* memlist of nucleus allocatable memory */
174 int memexp_flag;		/* memory expansion card flag */
175 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
176 pgcnt_t obp_pages;		/* Physical pages used by OBP */
177 
178 /*
179  * VM data structures
180  */
181 long page_hashsz;		/* Size of page hash table (power of two) */
182 struct page *pp_base;		/* Base of system page struct array */
183 size_t pp_sz;			/* Size in bytes of page struct array */
184 struct page **page_hash;	/* Page hash table */
185 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
186 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
187 int pse_shift;			/* log2(pse_table_size) */
188 struct seg ktextseg;		/* Segment used for kernel executable image */
189 struct seg kvalloc;		/* Segment used for "valloc" mapping */
190 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
191 struct seg ktexthole;		/* Segment used for nucleus text hole */
192 struct seg kmapseg;		/* Segment used for generic kernel mappings */
193 struct seg kpmseg;		/* Segment used for physical mapping */
194 struct seg kdebugseg;		/* Segment used for the kernel debugger */
195 
196 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
197 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
198 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
199 
200 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
201 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
202 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
203 
204 int segzio_fromheap = 0;	/* zio allocations occur from heap */
205 caddr_t segzio_base;		/* Base address of segzio */
206 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
207 
208 /*
209  * debugger pages (if allocated)
210  */
211 struct vnode kdebugvp;
212 
213 /*
214  * VA range available to the debugger
215  */
216 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
217 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
218 
219 /*
220  * Segment for relocated kernel structures in 64-bit large RAM kernels
221  */
222 struct seg kmem64;
223 
224 struct memseg *memseg_base;
225 size_t memseg_sz;		/* Used to translate a va to page */
226 struct vnode unused_pages_vp;
227 
228 /*
229  * VM data structures allocated early during boot.
230  */
231 size_t pagehash_sz;
232 uint64_t memlist_sz;
233 
234 char tbr_wr_addr_inited = 0;
235 
236 caddr_t	mpo_heap32_buf = NULL;
237 size_t	mpo_heap32_bufsz = 0;
238 
239 /*
240  * Static Routines:
241  */
242 static void memlist_add(uint64_t, uint64_t, struct memlist **,
243 	struct memlist **);
244 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
245 	pgcnt_t);
246 static void kvm_init(void);
247 
248 static void startup_init(void);
249 static void startup_memlist(void);
250 static void startup_modules(void);
251 static void startup_bop_gone(void);
252 static void startup_vm(void);
253 static void startup_end(void);
254 static void setup_cage_params(void);
255 static void startup_create_io_node(void);
256 
257 static pgcnt_t npages;
258 static struct memlist *memlist;
259 void *memlist_end;
260 
261 static pgcnt_t bop_alloc_pages;
262 static caddr_t hblk_base;
263 uint_t hblk_alloc_dynamic = 0;
264 uint_t hblk1_min = H1MIN;
265 
266 
267 /*
268  * Hooks for unsupported platforms and down-rev firmware
269  */
270 int iam_positron(void);
271 #pragma weak iam_positron
272 static void do_prom_version_check(void);
273 static void kpm_init(void);
274 static void kpm_npages_setup(int);
275 static void kpm_memseg_init(void);
276 
277 /*
278  * After receiving a thermal interrupt, this is the number of seconds
279  * to delay before shutting off the system, assuming
280  * shutdown fails.  Use /etc/system to change the delay if this isn't
281  * large enough.
282  */
283 int thermal_powerdown_delay = 1200;
284 
285 /*
286  * Used to hold off page relocations into the cage until OBP has completed
287  * its boot-time handoff of its resources to the kernel.
288  */
289 int page_relocate_ready = 0;
290 
291 /*
292  * Enable some debugging messages concerning memory usage...
293  */
294 #ifdef  DEBUGGING_MEM
295 static int debugging_mem;
296 static void
297 printmemlist(char *title, struct memlist *list)
298 {
299 	if (!debugging_mem)
300 		return;
301 
302 	printf("%s\n", title);
303 
304 	while (list) {
305 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
306 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
307 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
308 		list = list->next;
309 	}
310 }
311 
312 void
313 printmemseg(struct memseg *memseg)
314 {
315 	if (!debugging_mem)
316 		return;
317 
318 	printf("memseg\n");
319 
320 	while (memseg) {
321 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
322 		    "pfn = 0x%x, epfn = 0x%x\n",
323 		    memseg->pages, memseg->epages,
324 		    memseg->pages_base, memseg->pages_end);
325 		memseg = memseg->next;
326 	}
327 }
328 
329 #define	debug_pause(str)	halt((str))
330 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
331 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
332 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
333 #define	MPRINTF3(str, a, b, c) \
334 	if (debugging_mem) prom_printf((str), (a), (b), (c))
335 #else	/* DEBUGGING_MEM */
336 #define	MPRINTF(str)
337 #define	MPRINTF1(str, a)
338 #define	MPRINTF2(str, a, b)
339 #define	MPRINTF3(str, a, b, c)
340 #endif	/* DEBUGGING_MEM */
341 
342 /* Simple message to indicate that the bootops pointer has been zeroed */
343 #ifdef DEBUG
344 static int bootops_gone_on = 0;
345 #define	BOOTOPS_GONE() \
346 	if (bootops_gone_on) \
347 		prom_printf("The bootops vec is zeroed now!\n");
348 #else
349 #define	BOOTOPS_GONE()
350 #endif /* DEBUG */
351 
352 /*
353  * Monitor pages may not be where this says they are.
354  * and the debugger may not be there either.
355  *
356  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
357  *
358  *                        Physical memory layout
359  *                     (not necessarily contiguous)
360  *                       (THIS IS SOMEWHAT WRONG)
361  *                       /-----------------------\
362  *                       |       monitor pages   |
363  *             availmem -|-----------------------|
364  *                       |                       |
365  *                       |       page pool       |
366  *                       |                       |
367  *                       |-----------------------|
368  *                       |   configured tables   |
369  *                       |       buffers         |
370  *            firstaddr -|-----------------------|
371  *                       |   hat data structures |
372  *                       |-----------------------|
373  *                       |    kernel data, bss   |
374  *                       |-----------------------|
375  *                       |    interrupt stack    |
376  *                       |-----------------------|
377  *                       |    kernel text (RO)   |
378  *                       |-----------------------|
379  *                       |    trap table (4k)    |
380  *                       |-----------------------|
381  *               page 1  |      panicbuf         |
382  *                       |-----------------------|
383  *               page 0  |       reclaimed       |
384  *                       |_______________________|
385  *
386  *
387  *
388  *                    Kernel's Virtual Memory Layout.
389  *                       /-----------------------\
390  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
391  *                       |   OBP's virtual page  |
392  *                       |        tables         |
393  * 0xFFFFFFFC.00000000  -|-----------------------|-
394  *                       :                       :
395  *                       :                       :
396  *                      -|-----------------------|-
397  *                       |       segzio          | (base and size vary)
398  * 0xFFFFFE00.00000000  -|-----------------------|-
399  *                       |                       |  Ultrasparc I/II support
400  *                       |    segkpm segment     |  up to 2TB of physical
401  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
402  *                       |                       |
403  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
404  *                       :                       :
405  *                       :                       :
406  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
407  *                       |                       |      ^
408  *                       |  UltraSPARC I/II call |      |
409  *                       | bug requires an extra |      |
410  *                       | 4 GB of space between |      |
411  *                       |   hole and used RAM   |	|
412  *                       |                       |      |
413  * 0xFFFFF800.00000000  -|-----------------------|-     |
414  *                       |                       |      |
415  *                       | Virtual Address Hole  |   UltraSPARC
416  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
417  *                       |                       |      |
418  * 0x00000800.00000000  -|-----------------------|-     |
419  *                       |                       |      |
420  *                       |  UltraSPARC I/II call |      |
421  *                       | bug requires an extra |      |
422  *                       | 4 GB of space between |      |
423  *                       |   hole and used RAM   |      |
424  *                       |                       |      v
425  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
426  *                       :                       :		   ^
427  *                       :                       :		   |
428  * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_	   |
429  *                       | overmapped area       |   alignend_end  |
430  *                       | (kmem64_alignsize     |		   |
431  *                       |  boundary)            |		   |
432  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
433  *                       |                       |		   |
434  *                       |   64-bit kernel ONLY  |		   |
435  *                       |                       |		   |
436  *                       |    kmem64 segment     |		   |
437  *                       |                       |		   |
438  *                       | (Relocated extra HME  |	     Approximately
439  *                       |   block allocations,  |	    1 TB of virtual
440  *                       |   memnode freelists,  |	     address space
441  *                       |    HME hash buckets,  |		   |
442  *                       | mml_table, kpmp_table,|		   |
443  *                       |  page_t array and     |		   |
444  *                       |  hashblock pool to    |		   |
445  *                       |   avoid hard-coded    |		   |
446  *                       |     32-bit vaddr      |		   |
447  *                       |     limitations)      |		   |
448  *                       |                       |		   v
449  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
450  *                       |                       |
451  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
452  *                       |                       |
453  * 0x00000300.00000000  -|-----------------------|- SYSBASE
454  *                       :                       :
455  *                       :                       :
456  *                      -|-----------------------|-
457  *                       |                       |
458  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
459  *                       |                       |               256G MAX)
460  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
461  *                       :                       :
462  *                       :                       :
463  *                      -|-----------------------|-
464  *                       |                       |
465  *                       |       segkp           |    SEGKPSIZE (2GB)
466  *                       |                       |
467  *                       |                       |
468  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
469  *                       |                       |
470  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
471  *                       |                       |       (SEGKPBASE - 0x400000)
472  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
473  *                       |                       |       (MEMSCRUBBASE - NCARGS)
474  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
475  *                       |                       |       (ARGSBASE - PPMAPSIZE)
476  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
477  *                       |                       |
478  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
479  *                       |                       |
480  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
481  *                       :                       :
482  *                       :                       :
483  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
484  *                       |                       |
485  *                       |         OBP           |
486  *                       |                       |
487  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
488  *                       |         kmdb          |
489  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
490  *                       :                       :
491  *                       :                       :
492  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
493  *                       |                       |
494  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
495  *                       |                       |    ~64MB)
496  * 0x00000000.78002000  -|-----------------------|
497  *                       |     panicbuf          |
498  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
499  *                       :                       :
500  *                       :                       :
501  *                       |                       |
502  *                       |-----------------------|- econtig32
503  *                       |    vm structures      |
504  * 0x00000000.01C00000   |-----------------------|- nalloc_end
505  *                       |         TSBs          |
506  *                       |-----------------------|- end/nalloc_base
507  *                       |   kernel data & bss   |
508  * 0x00000000.01800000  -|-----------------------|
509  *                       :   nucleus text hole   :
510  * 0x00000000.01400000  -|-----------------------|
511  *                       :                       :
512  *                       |-----------------------|
513  *                       |      module text      |
514  *                       |-----------------------|- e_text/modtext
515  *                       |      kernel text      |
516  *                       |-----------------------|
517  *                       |    trap table (48k)   |
518  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
519  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
520  *                       |-----------------------|
521  *                       |                       |
522  *                       |        invalid        |
523  *                       |                       |
524  * 0x00000000.00000000  _|_______________________|
525  *
526  *
527  *
528  *                   32-bit User Virtual Memory Layout.
529  *                       /-----------------------\
530  *                       |                       |
531  *                       |        invalid        |
532  *                       |                       |
533  *          0xFFC00000  -|-----------------------|- USERLIMIT
534  *                       |       user stack      |
535  *                       :                       :
536  *                       :                       :
537  *                       :                       :
538  *                       |       user data       |
539  *                      -|-----------------------|-
540  *                       |       user text       |
541  *          0x00002000  -|-----------------------|-
542  *                       |       invalid         |
543  *          0x00000000  _|_______________________|
544  *
545  *
546  *
547  *                   64-bit User Virtual Memory Layout.
548  *                       /-----------------------\
549  *                       |                       |
550  *                       |        invalid        |
551  *                       |                       |
552  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
553  *                       |       user stack      |
554  *                       :                       :
555  *                       :                       :
556  *                       :                       :
557  *                       |       user data       |
558  *                      -|-----------------------|-
559  *                       |       user text       |
560  *  0x00000000.00100000 -|-----------------------|-
561  *                       |       invalid         |
562  *  0x00000000.00000000 _|_______________________|
563  */
564 
565 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
566 extern uint64_t ecache_flush_address(void);
567 
568 #pragma weak load_platform_modules
569 #pragma weak plat_startup_memlist
570 #pragma weak ecache_init_scrub_flush_area
571 #pragma weak ecache_flush_address
572 
573 
574 /*
575  * By default the DR Cage is enabled for maximum OS
576  * MPSS performance.  Users needing to disable the cage mechanism
577  * can set this variable to zero via /etc/system.
578  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
579  * will result in loss of DR functionality.
580  * Platforms wishing to disable kernel Cage by default
581  * should do so in their set_platform_defaults() routine.
582  */
583 int	kernel_cage_enable = 1;
584 
585 static void
586 setup_cage_params(void)
587 {
588 	void (*func)(void);
589 
590 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
591 	if (func != NULL) {
592 		(*func)();
593 		return;
594 	}
595 
596 	if (kernel_cage_enable == 0) {
597 		return;
598 	}
599 	kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
600 
601 	if (kcage_on) {
602 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
603 	} else {
604 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
605 	}
606 
607 }
608 
609 /*
610  * Machine-dependent startup code
611  */
612 void
613 startup(void)
614 {
615 	startup_init();
616 	if (&startup_platform)
617 		startup_platform();
618 	startup_memlist();
619 	startup_modules();
620 	setup_cage_params();
621 	startup_bop_gone();
622 	startup_vm();
623 	startup_end();
624 }
625 
626 struct regs sync_reg_buf;
627 uint64_t sync_tt;
628 
629 void
630 sync_handler(void)
631 {
632 	struct  panic_trap_info 	ti;
633 	int i;
634 
635 	/*
636 	 * Prevent trying to talk to the other CPUs since they are
637 	 * sitting in the prom and won't reply.
638 	 */
639 	for (i = 0; i < NCPU; i++) {
640 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
641 			cpu[i]->cpu_flags &= ~CPU_READY;
642 			cpu[i]->cpu_flags |= CPU_QUIESCED;
643 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
644 		}
645 	}
646 
647 	/*
648 	 * We've managed to get here without going through the
649 	 * normal panic code path. Try and save some useful
650 	 * information.
651 	 */
652 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
653 		ti.trap_type = sync_tt;
654 		ti.trap_regs = &sync_reg_buf;
655 		ti.trap_addr = NULL;
656 		ti.trap_mmu_fsr = 0x0;
657 
658 		curthread->t_panic_trap = &ti;
659 	}
660 
661 	/*
662 	 * If we're re-entering the panic path, update the signature
663 	 * block so that the SC knows we're in the second part of panic.
664 	 */
665 	if (panicstr)
666 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
667 
668 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
669 	panic("sync initiated");
670 }
671 
672 
673 static void
674 startup_init(void)
675 {
676 	/*
677 	 * We want to save the registers while we're still in OBP
678 	 * so that we know they haven't been fiddled with since.
679 	 * (In principle, OBP can't change them just because it
680 	 * makes a callback, but we'd rather not depend on that
681 	 * behavior.)
682 	 */
683 	char		sync_str[] =
684 	    "warning @ warning off : sync "
685 	    "%%tl-c %%tstate h# %p x! "
686 	    "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
687 	    "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
688 	    "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
689 	    "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
690 	    "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
691 	    "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
692 	    "%%y h# %p l! %%tl-c %%tt h# %p x! "
693 	    "sync ; warning !";
694 
695 	/*
696 	 * 20 == num of %p substrings
697 	 * 16 == max num of chars %p will expand to.
698 	 */
699 	char 		bp[sizeof (sync_str) + 16 * 20];
700 
701 	(void) check_boot_version(BOP_GETVERSION(bootops));
702 
703 	/*
704 	 * Initialize ptl1 stack for the 1st CPU.
705 	 */
706 	ptl1_init_cpu(&cpu0);
707 
708 	/*
709 	 * Initialize the address map for cache consistent mappings
710 	 * to random pages; must be done after vac_size is set.
711 	 */
712 	ppmapinit();
713 
714 	/*
715 	 * Initialize the PROM callback handler.
716 	 */
717 	init_vx_handler();
718 
719 	/*
720 	 * have prom call sync_callback() to handle the sync and
721 	 * save some useful information which will be stored in the
722 	 * core file later.
723 	 */
724 	(void) sprintf((char *)bp, sync_str,
725 	    (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
726 	    (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
727 	    (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
728 	    (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
729 	    (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
730 	    (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
731 	    (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
732 	    (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
733 	    (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
734 	    (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
735 	prom_interpret(bp, 0, 0, 0, 0, 0);
736 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
737 }
738 
739 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
740 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
741 
742 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
743 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
744 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
745 
746 #if !defined(C_OBP)
747 /*
748  * Install a temporary tte handler in OBP for kmem64 area.
749  *
750  * We map kmem64 area with large pages before the trap table is taken
751  * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
752  * the same area. Duplicate tlb entries with different page sizes
753  * cause unpredicatble behavior.  To avoid this, we don't create
754  * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
755  * OBP).  Instead, we manage translations with a temporary va>tte-data
756  * handler (kmem64-tte).  This handler is replaced by unix-tte when
757  * the trap table is taken over.
758  *
759  * The temporary handler knows the physical address of the kmem64
760  * area. It uses the prom's pgmap@ Forth word for other addresses.
761  *
762  * We have to use BOP_ALLOC() method for C-OBP platforms because
763  * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
764  * sun4u platforms. On sun4u we flush tlb after trap table is taken
765  * over if we use large pages for kernel heap and kmem64. Since sun4u
766  * prom (unlike sun4v) calls va>tte-data first for client address
767  * translation prom's ttes for kmem64 can't get into TLB even if we
768  * later switch to prom's trap table again. C-OBP uses 4M pages for
769  * client mappings when possible so on all platforms we get the
770  * benefit from large mappings for kmem64 area immediately during
771  * boot.
772  *
773  * pseudo code:
774  * if (context != 0) {
775  * 	return false
776  * } else if (miss_va in range[kmem64_base, kmem64_end)) {
777  *	tte = tte_template +
778  *		(((miss_va & pagemask) - kmem64_base));
779  *	return tte, true
780  * } else {
781  *	return pgmap@ result
782  * }
783  */
784 char kmem64_obp_str[] =
785 	"h# %lx constant kmem64_base "
786 	"h# %lx constant kmem64_end "
787 	"h# %lx constant kmem64_pagemask "
788 	"h# %lx constant kmem64_template "
789 
790 	": kmem64-tte ( addr cnum -- false | tte-data true ) "
791 	"    if                                       ( addr ) "
792 	"       drop false exit then                  ( false ) "
793 	"    dup  kmem64_base kmem64_end  within  if  ( addr ) "
794 	"	kmem64_pagemask and                   ( addr' ) "
795 	"	kmem64_base -                         ( addr' ) "
796 	"	kmem64_template +                     ( tte ) "
797 	"	true                                  ( tte true ) "
798 	"    else                                     ( addr ) "
799 	"	pgmap@                                ( tte ) "
800 	"       dup 0< if true else drop false then   ( tte true  |  false ) "
801 	"    then                                     ( tte true  |  false ) "
802 	"; "
803 
804 	"' kmem64-tte is va>tte-data "
805 ;
806 
807 void
808 install_kmem64_tte()
809 {
810 	char b[sizeof (kmem64_obp_str) + (4 * 16)];
811 	tte_t tte;
812 
813 	PRM_DEBUG(kmem64_pabase);
814 	PRM_DEBUG(kmem64_szc);
815 	sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
816 	    PROC_DATA | HAT_NOSYNC, kmem64_szc);
817 	PRM_DEBUG(tte.ll);
818 	(void) sprintf(b, kmem64_obp_str,
819 	    kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
820 	ASSERT(strlen(b) < sizeof (b));
821 	prom_interpret(b, 0, 0, 0, 0, 0);
822 }
823 #endif	/* !C_OBP */
824 
825 /*
826  * As OBP takes up some RAM when the system boots, pages will already be "lost"
827  * to the system and reflected in npages by the time we see it.
828  *
829  * We only want to allocate kernel structures in the 64-bit virtual address
830  * space on systems with enough RAM to make the overhead of keeping track of
831  * an extra kernel memory segment worthwhile.
832  *
833  * Since OBP has already performed its memory allocations by this point, if we
834  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
835  * memory in the 64-bit virtual address space; otherwise keep allocations
836  * contiguous with we've mapped so far in the 32-bit virtual address space.
837  */
838 #define	MINMOVE_RAM_MB	((size_t)1900)
839 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
840 
841 pgcnt_t	tune_npages = (pgcnt_t)
842 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
843 
844 #pragma weak page_set_colorequiv_arr_cpu
845 extern void page_set_colorequiv_arr_cpu(void);
846 
847 static void
848 startup_memlist(void)
849 {
850 	size_t alloc_sz;
851 	size_t ctrs_sz;
852 	caddr_t alloc_base;
853 	caddr_t ctrs_base, ctrs_end;
854 	caddr_t memspace;
855 	caddr_t va;
856 	int memblocks = 0;
857 	struct memlist *cur;
858 	size_t syslimit = (size_t)SYSLIMIT;
859 	size_t sysbase = (size_t)SYSBASE;
860 	int alloc_alignsize = ecache_alignsize;
861 	int i;
862 	extern void page_coloring_init(void);
863 	extern void page_set_colorequiv_arr(void);
864 
865 	/*
866 	 * Initialize enough of the system to allow kmem_alloc to work by
867 	 * calling boot to allocate its memory until the time that
868 	 * kvm_init is completed.  The page structs are allocated after
869 	 * rounding up end to the nearest page boundary; the memsegs are
870 	 * initialized and the space they use comes from the kernel heap.
871 	 * With appropriate initialization, they can be reallocated later
872 	 * to a size appropriate for the machine's configuration.
873 	 *
874 	 * At this point, memory is allocated for things that will never
875 	 * need to be freed, this used to be "valloced".  This allows a
876 	 * savings as the pages don't need page structures to describe
877 	 * them because them will not be managed by the vm system.
878 	 */
879 
880 	/*
881 	 * We're loaded by boot with the following configuration (as
882 	 * specified in the sun4u/conf/Mapfile):
883 	 *
884 	 * 	text:		4 MB chunk aligned on a 4MB boundary
885 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
886 	 *
887 	 * These two chunks will eventually be mapped by 2 locked 4MB
888 	 * ttes and will represent the nucleus of the kernel.  This gives
889 	 * us some free space that is already allocated, some or all of
890 	 * which is made available to kernel module text.
891 	 *
892 	 * The free space in the data-bss chunk is used for nucleus
893 	 * allocatable data structures and we reserve it using the
894 	 * nalloc_base and nalloc_end variables.  This space is currently
895 	 * being used for hat data structures required for tlb miss
896 	 * handling operations.  We align nalloc_base to a l2 cache
897 	 * linesize because this is the line size the hardware uses to
898 	 * maintain cache coherency.
899 	 * 256K is carved out for module data.
900 	 */
901 
902 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
903 	moddata = nalloc_base;
904 	e_moddata = nalloc_base + MODDATA;
905 	nalloc_base = e_moddata;
906 
907 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
908 	valloc_base = nalloc_base;
909 
910 	/*
911 	 * Calculate the start of the data segment.
912 	 */
913 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
914 
915 	PRM_DEBUG(moddata);
916 	PRM_DEBUG(nalloc_base);
917 	PRM_DEBUG(nalloc_end);
918 	PRM_DEBUG(sdata);
919 
920 	/*
921 	 * Remember any slop after e_text so we can give it to the modules.
922 	 */
923 	PRM_DEBUG(e_text);
924 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
925 	if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
926 		prom_panic("nucleus text overflow");
927 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
928 	    modtext;
929 	PRM_DEBUG(modtext);
930 	PRM_DEBUG(modtext_sz);
931 
932 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
933 	    &boot_physavail, &boot_physavail_len,
934 	    &boot_virtavail, &boot_virtavail_len);
935 	/*
936 	 * Remember what the physically available highest page is
937 	 * so that dumpsys works properly, and find out how much
938 	 * memory is installed.
939 	 */
940 	installed_top_size_memlist_array(boot_physinstalled,
941 	    boot_physinstalled_len, &physmax, &physinstalled);
942 	PRM_DEBUG(physinstalled);
943 	PRM_DEBUG(physmax);
944 
945 	/* Fill out memory nodes config structure */
946 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
947 
948 	/*
949 	 * Get the list of physically available memory to size
950 	 * the number of page structures needed.
951 	 */
952 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
953 	/*
954 	 * This first snap shot of npages can represent the pages used
955 	 * by OBP's text and data approximately. This is used in the
956 	 * the calculation of the kernel size
957 	 */
958 	obp_pages = physinstalled - npages;
959 
960 
961 	/*
962 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
963 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
964 	 * 2MB) and any excess pages are put on physavail.  The assumption is
965 	 * that small-memory systems will need more pages more than they'll
966 	 * need efficiently-mapped module texts.
967 	 */
968 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
969 	    modtext_sz > MODTEXT_SM_CAP) {
970 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
971 		modtext_sz = MODTEXT_SM_CAP;
972 		extra_etva = modtext + modtext_sz;
973 	}
974 
975 	PRM_DEBUG(extra_etpg);
976 	PRM_DEBUG(modtext_sz);
977 	PRM_DEBUG(extra_etva);
978 
979 	/*
980 	 * Account for any pages after e_text and e_data.
981 	 */
982 	npages += extra_etpg;
983 	npages += mmu_btopr(nalloc_end - nalloc_base);
984 	PRM_DEBUG(npages);
985 
986 	/*
987 	 * npages is the maximum of available physical memory possible.
988 	 * (ie. it will never be more than this)
989 	 */
990 
991 	/*
992 	 * initialize the nucleus memory allocator.
993 	 */
994 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
995 
996 	/*
997 	 * Allocate mmu fault status area from the nucleus data area.
998 	 */
999 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1000 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1001 
1002 	/*
1003 	 * Allocate kernel TSBs from the nucleus data area.
1004 	 */
1005 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
1006 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1007 
1008 	/*
1009 	 * Allocate dmv dispatch table from the nucleus data area.
1010 	 */
1011 	if (ndata_alloc_dmv(&ndata) != 0)
1012 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1013 
1014 
1015 	page_coloring_init();
1016 
1017 	/*
1018 	 * Allocate page_freelists bin headers for memnode 0 from the
1019 	 * nucleus data area.
1020 	 */
1021 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
1022 		cmn_err(CE_PANIC,
1023 		    "no more nucleus memory after page free lists alloc");
1024 
1025 	if (kpm_enable) {
1026 		kpm_init();
1027 		/*
1028 		 * kpm page space -- Update kpm_npages and make the
1029 		 * same assumption about fragmenting as it is done
1030 		 * for memseg_sz.
1031 		 */
1032 		kpm_npages_setup(memblocks + 4);
1033 	}
1034 
1035 	/*
1036 	 * Allocate hat related structs from the nucleus data area.
1037 	 */
1038 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
1039 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1040 
1041 	/*
1042 	 * We want to do the BOP_ALLOCs before the real allocation of page
1043 	 * structs in order to not have to allocate page structs for this
1044 	 * memory.  We need to calculate a virtual address because we want
1045 	 * the page structs to come before other allocations in virtual address
1046 	 * space.  This is so some (if not all) of page structs can actually
1047 	 * live in the nucleus.
1048 	 */
1049 
1050 	/*
1051 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1052 	 *
1053 	 * There are comments all over the SFMMU code warning of dire
1054 	 * consequences if the TSBs are moved out of 32-bit space.  This
1055 	 * is largely because the asm code uses "sethi %hi(addr)"-type
1056 	 * instructions which will not provide the expected result if the
1057 	 * address is a 64-bit one.
1058 	 *
1059 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1060 	 */
1061 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1062 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
1063 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1064 	PRM_DEBUG(alloc_base);
1065 
1066 	/*
1067 	 * Allocate IOMMU TSB array.  We do this here so that the physical
1068 	 * memory gets deducted from the PROM's physical memory list.
1069 	 */
1070 	alloc_base = iommu_tsb_init(alloc_base);
1071 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1072 	    ecache_alignsize);
1073 	PRM_DEBUG(alloc_base);
1074 
1075 	/*
1076 	 * Platforms like Starcat and OPL need special structures assigned in
1077 	 * 32-bit virtual address space because their probing routines execute
1078 	 * FCode, and FCode can't handle 64-bit virtual addresses...
1079 	 */
1080 	if (&plat_startup_memlist) {
1081 		alloc_base = plat_startup_memlist(alloc_base);
1082 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1083 		    ecache_alignsize);
1084 		PRM_DEBUG(alloc_base);
1085 	}
1086 
1087 	/*
1088 	 * Save off where the contiguous allocations to date have ended
1089 	 * in econtig32.
1090 	 */
1091 	econtig32 = alloc_base;
1092 	PRM_DEBUG(econtig32);
1093 
1094 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1095 		cmn_err(CE_PANIC, "econtig32 too big");
1096 
1097 	/*
1098 	 * To avoid memory allocation collisions in the 32-bit virtual address
1099 	 * space, make allocations from this point forward in 64-bit virtual
1100 	 * address space starting at syslimit and working up.
1101 	 *
1102 	 * All this is needed because on large memory systems, the default
1103 	 * Solaris allocations will collide with SYSBASE32, which is hard
1104 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1105 	 * kernels, move the allocations to a location in the 64-bit virtual
1106 	 * address space space, allowing those structures to grow without
1107 	 * worry.
1108 	 *
1109 	 * On current CPUs we'll run out of physical memory address bits before
1110 	 * we need to worry about the allocations running into anything else in
1111 	 * VM or the virtual address holes on US-I and II, as there's currently
1112 	 * about 1 TB of addressable space before the US-I/II VA hole.
1113 	 */
1114 	kmem64_base = (caddr_t)syslimit;
1115 	PRM_DEBUG(kmem64_base);
1116 
1117 	/*
1118 	 * Allocate addresses, but not physical memory. None of these locations
1119 	 * can be touched until physical memory is allocated below.
1120 	 */
1121 	alloc_base = kmem64_base;
1122 
1123 	/*
1124 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1125 	 * them here.
1126 	 */
1127 	if (khme_hash == NULL || uhme_hash == NULL) {
1128 		/*
1129 		 * alloc_hme_buckets() will align alloc_base properly before
1130 		 * assigning the hash buckets, so we don't need to do it
1131 		 * before the call...
1132 		 */
1133 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1134 
1135 		PRM_DEBUG(alloc_base);
1136 		PRM_DEBUG(khme_hash);
1137 		PRM_DEBUG(uhme_hash);
1138 	}
1139 
1140 	/*
1141 	 * Allow for an early allocation of physically contiguous memory.
1142 	 */
1143 	alloc_base = contig_mem_prealloc(alloc_base, npages);
1144 
1145 	/*
1146 	 * Allocate the remaining page freelists.  NUMA systems can
1147 	 * have lots of page freelists, one per node, which quickly
1148 	 * outgrow the amount of nucleus memory available.
1149 	 */
1150 	if (max_mem_nodes > 1) {
1151 		int mnode;
1152 
1153 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1154 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1155 			    ecache_alignsize);
1156 		}
1157 		PRM_DEBUG(alloc_base);
1158 	}
1159 
1160 	if (!mml_table) {
1161 		size_t mmltable_sz;
1162 
1163 		/*
1164 		 * We need to allocate the mml_table here because there
1165 		 * was not enough space within the nucleus.
1166 		 */
1167 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1168 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1169 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1170 		    alloc_alignsize);
1171 		mml_table = (kmutex_t *)alloc_base;
1172 		alloc_base += alloc_sz;
1173 		PRM_DEBUG(mml_table);
1174 		PRM_DEBUG(alloc_base);
1175 	}
1176 
1177 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1178 		size_t kpmptable_sz;
1179 		caddr_t table;
1180 
1181 		/*
1182 		 * We need to allocate either kpmp_table or kpmp_stable here
1183 		 * because there was not enough space within the nucleus.
1184 		 */
1185 		kpmptable_sz = (kpm_smallpages == 0) ?
1186 		    sizeof (kpm_hlk_t) * kpmp_table_sz :
1187 		    sizeof (kpm_shlk_t) * kpmp_stable_sz;
1188 
1189 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1190 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1191 		    alloc_alignsize);
1192 
1193 		table = alloc_base;
1194 
1195 		if (kpm_smallpages == 0) {
1196 			kpmp_table = (kpm_hlk_t *)table;
1197 			PRM_DEBUG(kpmp_table);
1198 		} else {
1199 			kpmp_stable = (kpm_shlk_t *)table;
1200 			PRM_DEBUG(kpmp_stable);
1201 		}
1202 
1203 		alloc_base += alloc_sz;
1204 		PRM_DEBUG(alloc_base);
1205 	}
1206 
1207 	if (&ecache_init_scrub_flush_area) {
1208 		/*
1209 		 * Pass alloc_base directly, as the routine itself is
1210 		 * responsible for any special alignment requirements...
1211 		 */
1212 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1213 		PRM_DEBUG(alloc_base);
1214 	}
1215 
1216 	/*
1217 	 * Take the most current snapshot we can by calling mem-update.
1218 	 */
1219 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1220 	    &boot_physavail, &boot_physavail_len,
1221 	    &boot_virtavail, &boot_virtavail_len);
1222 
1223 	/*
1224 	 * Reset npages and memblocks based on boot_physavail list.
1225 	 */
1226 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1227 	PRM_DEBUG(npages);
1228 
1229 	/*
1230 	 * Account for extra memory after e_text.
1231 	 */
1232 	npages += extra_etpg;
1233 
1234 	/*
1235 	 * Calculate the largest free memory chunk in the nucleus data area.
1236 	 * We need to figure out if page structs can fit in there or not.
1237 	 * We also make sure enough page structs get created for any physical
1238 	 * memory we might be returning to the system.
1239 	 */
1240 	ndata_remain_sz = ndata_maxsize(&ndata);
1241 	PRM_DEBUG(ndata_remain_sz);
1242 
1243 	pp_sz = sizeof (struct page) * npages;
1244 
1245 	/*
1246 	 * Here's a nice bit of code based on somewhat recursive logic:
1247 	 *
1248 	 * If the page array would fit within the nucleus, we want to
1249 	 * add npages to cover any extra memory we may be returning back
1250 	 * to the system.
1251 	 *
1252 	 * HOWEVER, the page array is sized by calculating the size of
1253 	 * (struct page * npages), as are the pagehash table, ctrs and
1254 	 * memseg_list, so the very act of performing the calculation below may
1255 	 * in fact make the array large enough that it no longer fits in the
1256 	 * nucleus, meaning there would now be a much larger area of the
1257 	 * nucleus free that should really be added to npages, which would
1258 	 * make the page array that much larger, and so on.
1259 	 *
1260 	 * This also ignores the memory possibly used in the nucleus for the
1261 	 * the page hash, ctrs and memseg list and the fact that whether they
1262 	 * fit there or not varies with the npages calculation below, but we
1263 	 * don't even factor them into the equation at this point; perhaps we
1264 	 * should or perhaps we should just take the approach that the few
1265 	 * extra pages we could add via this calculation REALLY aren't worth
1266 	 * the hassle...
1267 	 */
1268 	if (ndata_remain_sz > pp_sz) {
1269 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1270 
1271 		npages += mmu_btop(spare);
1272 
1273 		pp_sz = npages * sizeof (struct page);
1274 
1275 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1276 	}
1277 
1278 	/*
1279 	 * If physmem is patched to be non-zero, use it instead of
1280 	 * the monitor value unless physmem is larger than the total
1281 	 * amount of memory on hand.
1282 	 */
1283 	if (physmem == 0 || physmem > npages)
1284 		physmem = npages;
1285 
1286 	/*
1287 	 * If pp_base is NULL that means the routines above have determined
1288 	 * the page array will not fit in the nucleus; we'll have to
1289 	 * BOP_ALLOC() ourselves some space for them.
1290 	 */
1291 	if (pp_base == NULL) {
1292 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1293 		    alloc_alignsize);
1294 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1295 
1296 		pp_base = (struct page *)alloc_base;
1297 
1298 		alloc_base += alloc_sz;
1299 	}
1300 
1301 	/*
1302 	 * The page structure hash table size is a power of 2
1303 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1304 	 */
1305 	page_hashsz = npages / PAGE_HASHAVELEN;
1306 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1307 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1308 
1309 	/*
1310 	 * We want to TRY to fit the page structure hash table,
1311 	 * the page size free list counters, the memseg list and
1312 	 * and the kpm page space in the nucleus if possible.
1313 	 *
1314 	 * alloc_sz counts how much memory needs to be allocated by
1315 	 * BOP_ALLOC().
1316 	 */
1317 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1318 
1319 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1320 
1321 	/*
1322 	 * Size up per page size free list counters.
1323 	 */
1324 	ctrs_sz = page_ctrs_sz();
1325 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1326 
1327 	if (ctrs_base == NULL)
1328 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1329 
1330 	/*
1331 	 * The memseg list is for the chunks of physical memory that
1332 	 * will be managed by the vm system.  The number calculated is
1333 	 * a guess as boot may fragment it more when memory allocations
1334 	 * are made before kphysm_init().  Currently, there are two
1335 	 * allocations before then, so we assume each causes fragmen-
1336 	 * tation, and add a couple more for good measure.
1337 	 */
1338 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1339 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1340 
1341 	if (memseg_base == NULL)
1342 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1343 
1344 
1345 	if (kpm_enable) {
1346 		/*
1347 		 * kpm page space -- Update kpm_npages and make the
1348 		 * same assumption about fragmenting as it is done
1349 		 * for memseg_sz above.
1350 		 */
1351 		kpm_npages_setup(memblocks + 4);
1352 		kpm_pp_sz = (kpm_smallpages == 0) ?
1353 		    kpm_npages * sizeof (kpm_page_t):
1354 		    kpm_npages * sizeof (kpm_spage_t);
1355 
1356 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1357 		    ecache_alignsize);
1358 
1359 		if (kpm_pp_base == NULL)
1360 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1361 			    kpm_pp_sz;
1362 	}
1363 
1364 	/*
1365 	 * Allocate the array that protects pp->p_selock.
1366 	 */
1367 	pse_shift = size_pse_array(physmem, max_ncpus);
1368 	pse_table_size = 1 << pse_shift;
1369 	pse_mutex = ndata_alloc(&ndata, pse_table_size * sizeof (pad_mutex_t),
1370 	    ecache_alignsize);
1371 	if (pse_mutex == NULL)
1372 		alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1373 		    pse_table_size * sizeof (pad_mutex_t);
1374 
1375 	if (alloc_sz > 0) {
1376 		uintptr_t bop_base;
1377 
1378 		/*
1379 		 * We need extra memory allocated through BOP_ALLOC.
1380 		 */
1381 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1382 		    alloc_alignsize);
1383 
1384 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1385 
1386 		bop_base = (uintptr_t)alloc_base;
1387 
1388 		alloc_base += alloc_sz;
1389 
1390 		if (page_hash == NULL) {
1391 			page_hash = (struct page **)bop_base;
1392 			bop_base = roundup(bop_base + pagehash_sz,
1393 			    ecache_alignsize);
1394 		}
1395 
1396 		if (ctrs_base == NULL) {
1397 			ctrs_base = (caddr_t)bop_base;
1398 			bop_base = roundup(bop_base + ctrs_sz,
1399 			    ecache_alignsize);
1400 		}
1401 
1402 		if (memseg_base == NULL) {
1403 			memseg_base = (struct memseg *)bop_base;
1404 			bop_base = roundup(bop_base + memseg_sz,
1405 			    ecache_alignsize);
1406 		}
1407 
1408 		if (kpm_enable && kpm_pp_base == NULL) {
1409 			kpm_pp_base = (uintptr_t)bop_base;
1410 			bop_base = roundup(bop_base + kpm_pp_sz,
1411 			    ecache_alignsize);
1412 		}
1413 
1414 		if (pse_mutex == NULL) {
1415 			pse_mutex = (pad_mutex_t *)bop_base;
1416 			bop_base = roundup(bop_base +
1417 			    pse_table_size * sizeof (pad_mutex_t),
1418 			    ecache_alignsize);
1419 		}
1420 
1421 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1422 	}
1423 
1424 	PRM_DEBUG(page_hash);
1425 	PRM_DEBUG(memseg_base);
1426 	PRM_DEBUG(kpm_pp_base);
1427 	PRM_DEBUG(kpm_pp_sz);
1428 	PRM_DEBUG(pp_base);
1429 	PRM_DEBUG(pp_sz);
1430 	PRM_DEBUG(alloc_base);
1431 
1432 #ifdef	TRAPTRACE
1433 	alloc_base = trap_trace_alloc(alloc_base);
1434 	PRM_DEBUG(alloc_base);
1435 #endif	/* TRAPTRACE */
1436 
1437 	/*
1438 	 * In theory it's possible that kmem64 chunk is 0 sized
1439 	 * (on very small machines). Check for that.
1440 	 */
1441 	if (alloc_base == kmem64_base) {
1442 		kmem64_base = NULL;
1443 		kmem64_end = NULL;
1444 		kmem64_aligned_end = NULL;
1445 		goto kmem64_alloced;
1446 	}
1447 
1448 	/*
1449 	 * Allocate kmem64 memory.
1450 	 * Round up to end of large page and overmap.
1451 	 * kmem64_end..kmem64_aligned_end is added to memory list for reuse
1452 	 */
1453 	kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1454 	    MMU_PAGESIZE);
1455 
1456 	/*
1457 	 * Make one large memory alloc after figuring out the 64-bit size. This
1458 	 * will enable use of the largest page size appropriate for the system
1459 	 * architecture.
1460 	 */
1461 	ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
1462 	ASSERT(IS_P2ALIGNED(kmem64_base, TTEBYTES(max_bootlp_tteszc)));
1463 	for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
1464 		size_t asize;
1465 #if !defined(C_OBP)
1466 		unsigned long long pa;
1467 #endif	/* !C_OBP */
1468 
1469 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
1470 			continue;
1471 		kmem64_alignsize = TTEBYTES(i);
1472 		kmem64_szc = i;
1473 
1474 		/* limit page size for small memory */
1475 		if (mmu_btop(kmem64_alignsize) > (npages >> 2))
1476 			continue;
1477 
1478 		kmem64_aligned_end = (caddr_t)roundup((uintptr_t)kmem64_end,
1479 		    kmem64_alignsize);
1480 		asize = kmem64_aligned_end - kmem64_base;
1481 #if !defined(C_OBP)
1482 		if (prom_allocate_phys(asize, kmem64_alignsize, &pa) == 0) {
1483 			if (prom_claim_virt(asize, kmem64_base) !=
1484 			    (caddr_t)-1) {
1485 				kmem64_pabase = pa;
1486 				install_kmem64_tte();
1487 				break;
1488 			} else {
1489 				prom_free_phys(asize, pa);
1490 			}
1491 		}
1492 #else	/* !C_OBP */
1493 		if ((caddr_t)BOP_ALLOC(bootops, kmem64_base, asize,
1494 		    kmem64_alignsize) == kmem64_base) {
1495 			kmem64_pabase = va_to_pa(kmem64_base);
1496 			break;
1497 		}
1498 #endif	/* !C_OBP */
1499 		if (i == TTE8K) {
1500 			prom_panic("kmem64 allocation failure");
1501 		}
1502 	}
1503 
1504 	PRM_DEBUG(kmem64_base);
1505 	PRM_DEBUG(kmem64_end);
1506 	PRM_DEBUG(kmem64_aligned_end);
1507 	PRM_DEBUG(kmem64_alignsize);
1508 
1509 	/*
1510 	 * Now set pa using saved va from above.
1511 	 */
1512 	if (&ecache_init_scrub_flush_area) {
1513 		(void) ecache_init_scrub_flush_area(NULL);
1514 	}
1515 
1516 kmem64_alloced:
1517 
1518 	/*
1519 	 * Initialize per page size free list counters.
1520 	 */
1521 	ctrs_end = page_ctrs_alloc(ctrs_base);
1522 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1523 
1524 	/*
1525 	 * Allocate space for the interrupt vector table and also for the
1526 	 * reserved interrupt vector data structures.
1527 	 */
1528 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1529 	    IVSIZE, MMU_PAGESIZE);
1530 	if (memspace != (caddr_t)intr_vec_table)
1531 		prom_panic("interrupt vector table allocation failure");
1532 
1533 	/*
1534 	 * The memory lists from boot are allocated from the heap arena
1535 	 * so that later they can be freed and/or reallocated.
1536 	 */
1537 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1538 		prom_panic("could not retrieve property \"extent\"");
1539 
1540 	/*
1541 	 * Between now and when we finish copying in the memory lists,
1542 	 * allocations happen so the space gets fragmented and the
1543 	 * lists longer.  Leave enough space for lists twice as long
1544 	 * as what boot says it has now; roundup to a pagesize.
1545 	 * Also add space for the final phys-avail copy in the fixup
1546 	 * routine.
1547 	 */
1548 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1549 	    roundup(IVSIZE, MMU_PAGESIZE));
1550 	memlist_sz *= 4;
1551 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1552 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1553 	if (memspace == NULL)
1554 		halt("Boot allocation failed.");
1555 
1556 	memlist = (struct memlist *)memspace;
1557 	memlist_end = (char *)memspace + memlist_sz;
1558 
1559 	PRM_DEBUG(memlist);
1560 	PRM_DEBUG(memlist_end);
1561 	PRM_DEBUG(sysbase);
1562 	PRM_DEBUG(syslimit);
1563 
1564 	kernelheap_init((void *)sysbase, (void *)syslimit,
1565 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1566 
1567 	/*
1568 	 * Take the most current snapshot we can by calling mem-update.
1569 	 */
1570 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1571 	    &boot_physavail, &boot_physavail_len,
1572 	    &boot_virtavail, &boot_virtavail_len);
1573 
1574 	/*
1575 	 * Remove the space used by BOP_ALLOC from the kernel heap
1576 	 * plus the area actually used by the OBP (if any)
1577 	 * ignoring virtual addresses in virt_avail, above syslimit.
1578 	 */
1579 	virt_avail = memlist;
1580 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1581 
1582 	for (cur = virt_avail; cur->next; cur = cur->next) {
1583 		uint64_t range_base, range_size;
1584 
1585 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1586 			continue;
1587 		if (range_base >= (uint64_t)syslimit)
1588 			break;
1589 		/*
1590 		 * Limit the range to end at syslimit.
1591 		 */
1592 		range_size = MIN(cur->next->address,
1593 		    (uint64_t)syslimit) - range_base;
1594 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1595 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1596 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1597 	}
1598 
1599 	phys_avail = memlist;
1600 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1601 	    &memlist, 0, 0);
1602 
1603 	/*
1604 	 * Add any unused kmem64 memory from overmapped page
1605 	 * (Note: va_to_pa does not work for kmem64_end)
1606 	 */
1607 	if (kmem64_end < kmem64_aligned_end) {
1608 		uint64_t overlap_size = kmem64_aligned_end - kmem64_end;
1609 		uint64_t overlap_pa = kmem64_pabase +
1610 		    (kmem64_end - kmem64_base);
1611 
1612 		PRM_DEBUG(overlap_pa);
1613 		PRM_DEBUG(overlap_size);
1614 		memlist_add(overlap_pa, overlap_size, &memlist, &phys_avail);
1615 	}
1616 
1617 	/*
1618 	 * Add any extra memory after e_text to the phys_avail list, as long
1619 	 * as there's at least a page to add.
1620 	 */
1621 	if (extra_etpg)
1622 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1623 		    &memlist, &phys_avail);
1624 
1625 	/*
1626 	 * Add any extra memory at the end of the ndata region if there's at
1627 	 * least a page to add.  There might be a few more pages available in
1628 	 * the middle of the ndata region, but for now they are ignored.
1629 	 */
1630 	nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1631 	if (nalloc_base == NULL)
1632 		nalloc_base = nalloc_end;
1633 	ndata_remain_sz = nalloc_end - nalloc_base;
1634 
1635 	if (ndata_remain_sz >= MMU_PAGESIZE)
1636 		memlist_add(va_to_pa(nalloc_base),
1637 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1638 
1639 	PRM_DEBUG(memlist);
1640 	PRM_DEBUG(memlist_sz);
1641 	PRM_DEBUG(memspace);
1642 
1643 	if ((caddr_t)memlist > (memspace + memlist_sz))
1644 		prom_panic("memlist overflow");
1645 
1646 	PRM_DEBUG(pp_base);
1647 	PRM_DEBUG(memseg_base);
1648 	PRM_DEBUG(npages);
1649 
1650 	/*
1651 	 * Initialize the page structures from the memory lists.
1652 	 */
1653 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1654 
1655 	availrmem_initial = availrmem = freemem;
1656 	PRM_DEBUG(availrmem);
1657 
1658 	/*
1659 	 * Some of the locks depend on page_hashsz being set!
1660 	 * kmem_init() depends on this; so, keep it here.
1661 	 */
1662 	page_lock_init();
1663 
1664 	/*
1665 	 * Initialize kernel memory allocator.
1666 	 */
1667 	kmem_init();
1668 
1669 	/*
1670 	 * Factor in colorequiv to check additional 'equivalent' bins
1671 	 */
1672 	if (&page_set_colorequiv_arr_cpu != NULL)
1673 		page_set_colorequiv_arr_cpu();
1674 	else
1675 		page_set_colorequiv_arr();
1676 
1677 	/*
1678 	 * Initialize bp_mapin().
1679 	 */
1680 	bp_init(shm_alignment, HAT_STRICTORDER);
1681 
1682 	/*
1683 	 * Reserve space for panicbuf, intr_vec_table, reserved interrupt
1684 	 * vector data structures and MPO mblock structs from the 32-bit heap.
1685 	 */
1686 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1687 	    panicbuf, panicbuf + PANICBUFSIZE,
1688 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1689 
1690 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1691 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1692 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1693 
1694 	if (mpo_heap32_bufsz > (size_t)0) {
1695 		(void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1696 		    PAGESIZE, 0, 0, mpo_heap32_buf,
1697 		    mpo_heap32_buf + mpo_heap32_bufsz,
1698 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1699 	}
1700 	mem_config_init();
1701 }
1702 
1703 static void
1704 startup_modules(void)
1705 {
1706 	int proplen, nhblk1, nhblk8;
1707 	size_t  nhblksz;
1708 	pgcnt_t pages_per_hblk;
1709 	size_t hme8blk_sz, hme1blk_sz;
1710 
1711 	/*
1712 	 * Log any optional messages from the boot program
1713 	 */
1714 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1715 	if (proplen > 0) {
1716 		char *msg;
1717 		size_t len = (size_t)proplen;
1718 
1719 		msg = kmem_zalloc(len, KM_SLEEP);
1720 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1721 		cmn_err(CE_CONT, "?%s\n", msg);
1722 		kmem_free(msg, len);
1723 	}
1724 
1725 	/*
1726 	 * Let the platforms have a chance to change default
1727 	 * values before reading system file.
1728 	 */
1729 	if (&set_platform_defaults)
1730 		set_platform_defaults();
1731 
1732 	/*
1733 	 * Calculate default settings of system parameters based upon
1734 	 * maxusers, yet allow to be overridden via the /etc/system file.
1735 	 */
1736 	param_calc(0);
1737 
1738 	mod_setup();
1739 
1740 	/*
1741 	 * If this is a positron, complain and halt.
1742 	 */
1743 	if (&iam_positron && iam_positron()) {
1744 		cmn_err(CE_WARN, "This hardware platform is not supported"
1745 		    " by this release of Solaris.\n");
1746 #ifdef DEBUG
1747 		prom_enter_mon();	/* Type 'go' to resume */
1748 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1749 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1750 
1751 #else /* DEBUG */
1752 		halt(0);
1753 #endif /* DEBUG */
1754 	}
1755 
1756 	/*
1757 	 * If we are running firmware that isn't 64-bit ready
1758 	 * then complain and halt.
1759 	 */
1760 	do_prom_version_check();
1761 
1762 	/*
1763 	 * Initialize system parameters
1764 	 */
1765 	param_init();
1766 
1767 	/*
1768 	 * maxmem is the amount of physical memory we're playing with.
1769 	 */
1770 	maxmem = physmem;
1771 
1772 	/* Set segkp limits. */
1773 	ncbase = kdi_segdebugbase;
1774 	ncend = kdi_segdebugbase;
1775 
1776 	/*
1777 	 * Initialize the hat layer.
1778 	 */
1779 	hat_init();
1780 
1781 	/*
1782 	 * Initialize segment management stuff.
1783 	 */
1784 	seg_init();
1785 
1786 	/*
1787 	 * Create the va>tte handler, so the prom can understand
1788 	 * kernel translations.  The handler is installed later, just
1789 	 * as we are about to take over the trap table from the prom.
1790 	 */
1791 	create_va_to_tte();
1792 
1793 	/*
1794 	 * Load the forthdebugger (optional)
1795 	 */
1796 	forthdebug_init();
1797 
1798 	/*
1799 	 * Create OBP node for console input callbacks
1800 	 * if it is needed.
1801 	 */
1802 	startup_create_io_node();
1803 
1804 	if (modloadonly("fs", "specfs") == -1)
1805 		halt("Can't load specfs");
1806 
1807 	if (modloadonly("fs", "devfs") == -1)
1808 		halt("Can't load devfs");
1809 
1810 	if (modloadonly("misc", "swapgeneric") == -1)
1811 		halt("Can't load swapgeneric");
1812 
1813 	(void) modloadonly("sys", "lbl_edition");
1814 
1815 	dispinit();
1816 
1817 	/*
1818 	 * Infer meanings to the members of the idprom buffer.
1819 	 */
1820 	parse_idprom();
1821 
1822 	/* Read cluster configuration data. */
1823 	clconf_init();
1824 
1825 	setup_ddi();
1826 
1827 	/*
1828 	 * Lets take this opportunity to load the root device.
1829 	 */
1830 	if (loadrootmodules() != 0)
1831 		debug_enter("Can't load the root filesystem");
1832 
1833 	/*
1834 	 * Load tod driver module for the tod part found on this system.
1835 	 * Recompute the cpu frequency/delays based on tod as tod part
1836 	 * tends to keep time more accurately.
1837 	 */
1838 	if (&load_tod_module)
1839 		load_tod_module();
1840 
1841 	/*
1842 	 * Allow platforms to load modules which might
1843 	 * be needed after bootops are gone.
1844 	 */
1845 	if (&load_platform_modules)
1846 		load_platform_modules();
1847 
1848 	setcpudelay();
1849 
1850 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1851 	    &boot_physavail, &boot_physavail_len,
1852 	    &boot_virtavail, &boot_virtavail_len);
1853 
1854 	/*
1855 	 * Calculation and allocation of hmeblks needed to remap
1856 	 * the memory allocated by PROM till now.
1857 	 * Overestimate the number of hblk1 elements by assuming
1858 	 * worst case of TTE64K mappings.
1859 	 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1860 	 */
1861 	bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1862 	pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1863 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1864 	nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1865 
1866 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1867 
1868 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1869 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1870 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1871 
1872 	bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1873 
1874 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1875 	nhblk8 = 0;
1876 	while (bop_alloc_pages > 1) {
1877 		bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1878 		nhblk8 += bop_alloc_pages /= pages_per_hblk;
1879 		bop_alloc_pages *= hme8blk_sz;
1880 		bop_alloc_pages = btopr(bop_alloc_pages);
1881 	}
1882 	nhblk8 += 2;
1883 
1884 	/*
1885 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1886 	 * boundary, the number of hblk8's needed to map the entries in the
1887 	 * boot_virtavail list needs to be adjusted to take this into
1888 	 * consideration.  Thus, we need to add additional hblk8's since it
1889 	 * is possible that an hblk8 will not have all 8 slots used due to
1890 	 * alignment constraints.  Since there were boot_virtavail_len entries
1891 	 * in that list, we need to add that many hblk8's to the number
1892 	 * already calculated to make sure we don't underestimate.
1893 	 */
1894 	nhblk8 += boot_virtavail_len;
1895 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1896 
1897 	/* Allocate in pagesize chunks */
1898 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1899 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1900 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1901 }
1902 
1903 static void
1904 startup_bop_gone(void)
1905 {
1906 	extern int bop_io_quiesced;
1907 
1908 	/*
1909 	 * Destroy the MD initialized at startup
1910 	 * The startup initializes the MD framework
1911 	 * using prom and BOP alloc free it now.
1912 	 */
1913 	mach_descrip_startup_fini();
1914 
1915 	/*
1916 	 * Call back into boot and release boots resources.
1917 	 */
1918 	BOP_QUIESCE_IO(bootops);
1919 	bop_io_quiesced = 1;
1920 
1921 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1922 	    &boot_physavail, &boot_physavail_len,
1923 	    &boot_virtavail, &boot_virtavail_len);
1924 	/*
1925 	 * Copy physinstalled list into kernel space.
1926 	 */
1927 	phys_install = memlist;
1928 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1929 
1930 	/*
1931 	 * setup physically contiguous area twice as large as the ecache.
1932 	 * this is used while doing displacement flush of ecaches
1933 	 */
1934 	if (&ecache_flush_address) {
1935 		ecache_flushaddr = ecache_flush_address();
1936 		if (ecache_flushaddr == (uint64_t)-1) {
1937 			cmn_err(CE_PANIC,
1938 			    "startup: no memory to set ecache_flushaddr");
1939 		}
1940 	}
1941 
1942 	/*
1943 	 * Virtual available next.
1944 	 */
1945 	ASSERT(virt_avail != NULL);
1946 	memlist_free_list(virt_avail);
1947 	virt_avail = memlist;
1948 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1949 
1950 	/*
1951 	 * Last chance to ask our booter questions ..
1952 	 */
1953 }
1954 
1955 
1956 /*
1957  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1958  * allocations have been performed.  We can't call it in startup_bop_gone
1959  * since later operations can cause obp to allocate more memory.
1960  */
1961 void
1962 startup_fixup_physavail(void)
1963 {
1964 	struct memlist *cur;
1965 	size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1966 
1967 	PRM_DEBUG(kmem64_overmap_size);
1968 
1969 	/*
1970 	 * take the most current snapshot we can by calling mem-update
1971 	 */
1972 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1973 	    &boot_physavail, &boot_physavail_len,
1974 	    &boot_virtavail, &boot_virtavail_len);
1975 
1976 	/*
1977 	 * Copy phys_avail list, again.
1978 	 * Both the kernel/boot and the prom have been allocating
1979 	 * from the original list we copied earlier.
1980 	 */
1981 	cur = memlist;
1982 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1983 	    &memlist, 0, 0);
1984 
1985 	/*
1986 	 * Add any unused kmem64 memory from overmapped page
1987 	 * (Note: va_to_pa does not work for kmem64_end)
1988 	 */
1989 	if (kmem64_overmap_size) {
1990 		memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1991 		    kmem64_overmap_size,
1992 		    &memlist, &cur);
1993 	}
1994 
1995 	/*
1996 	 * Add any extra memory after e_text we added to the phys_avail list
1997 	 * back to the old list.
1998 	 */
1999 	if (extra_etpg)
2000 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
2001 		    &memlist, &cur);
2002 	if (ndata_remain_sz >= MMU_PAGESIZE)
2003 		memlist_add(va_to_pa(nalloc_base),
2004 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
2005 
2006 	/*
2007 	 * There isn't any bounds checking on the memlist area
2008 	 * so ensure it hasn't overgrown.
2009 	 */
2010 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2011 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
2012 
2013 	/*
2014 	 * The kernel removes the pages that were allocated for it from
2015 	 * the freelist, but we now have to find any -extra- pages that
2016 	 * the prom has allocated for it's own book-keeping, and remove
2017 	 * them from the freelist too. sigh.
2018 	 */
2019 	fix_prom_pages(phys_avail, cur);
2020 
2021 	ASSERT(phys_avail != NULL);
2022 	memlist_free_list(phys_avail);
2023 	phys_avail = cur;
2024 
2025 	/*
2026 	 * We're done with boot.  Just after this point in time, boot
2027 	 * gets unmapped, so we can no longer rely on its services.
2028 	 * Zero the bootops to indicate this fact.
2029 	 */
2030 	bootops = (struct bootops *)NULL;
2031 	BOOTOPS_GONE();
2032 }
2033 
2034 static void
2035 startup_vm(void)
2036 {
2037 	size_t	i;
2038 	struct segmap_crargs a;
2039 	struct segkpm_crargs b;
2040 
2041 	uint64_t avmem;
2042 	caddr_t va;
2043 	pgcnt_t	max_phys_segkp;
2044 	int	mnode;
2045 
2046 	extern int use_brk_lpg, use_stk_lpg;
2047 
2048 	/*
2049 	 * get prom's mappings, create hments for them and switch
2050 	 * to the kernel context.
2051 	 */
2052 	hat_kern_setup();
2053 
2054 	/*
2055 	 * Take over trap table
2056 	 */
2057 	setup_trap_table();
2058 
2059 	/*
2060 	 * Install the va>tte handler, so that the prom can handle
2061 	 * misses and understand the kernel table layout in case
2062 	 * we need call into the prom.
2063 	 */
2064 	install_va_to_tte();
2065 
2066 	/*
2067 	 * Set a flag to indicate that the tba has been taken over.
2068 	 */
2069 	tba_taken_over = 1;
2070 
2071 	/* initialize MMU primary context register */
2072 	mmu_init_kcontext();
2073 
2074 	/*
2075 	 * The boot cpu can now take interrupts, x-calls, x-traps
2076 	 */
2077 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
2078 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
2079 
2080 	/*
2081 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
2082 	 */
2083 	tbr_wr_addr_inited = 1;
2084 
2085 	/*
2086 	 * Initialize VM system, and map kernel address space.
2087 	 */
2088 	kvm_init();
2089 
2090 	/*
2091 	 * XXX4U: previously, we initialized and turned on
2092 	 * the caches at this point. But of course we have
2093 	 * nothing to do, as the prom has already done this
2094 	 * for us -- main memory must be E$able at all times.
2095 	 */
2096 
2097 	/*
2098 	 * If the following is true, someone has patched
2099 	 * phsymem to be less than the number of pages that
2100 	 * the system actually has.  Remove pages until system
2101 	 * memory is limited to the requested amount.  Since we
2102 	 * have allocated page structures for all pages, we
2103 	 * correct the amount of memory we want to remove
2104 	 * by the size of the memory used to hold page structures
2105 	 * for the non-used pages.
2106 	 */
2107 	if (physmem < npages) {
2108 		pgcnt_t diff, off;
2109 		struct page *pp;
2110 		struct seg kseg;
2111 
2112 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
2113 
2114 		off = 0;
2115 		diff = npages - physmem;
2116 		diff -= mmu_btopr(diff * sizeof (struct page));
2117 		kseg.s_as = &kas;
2118 		while (diff--) {
2119 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
2120 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
2121 			    &kseg, (caddr_t)off);
2122 			if (pp == NULL)
2123 				cmn_err(CE_PANIC, "limited physmem too much!");
2124 			page_io_unlock(pp);
2125 			page_downgrade(pp);
2126 			availrmem--;
2127 			off += MMU_PAGESIZE;
2128 		}
2129 	}
2130 
2131 	/*
2132 	 * When printing memory, show the total as physmem less
2133 	 * that stolen by a debugger.
2134 	 */
2135 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
2136 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
2137 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
2138 
2139 	avmem = (uint64_t)freemem << PAGESHIFT;
2140 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
2141 
2142 	/*
2143 	 * For small memory systems disable automatic large pages.
2144 	 */
2145 	if (physmem < privm_lpg_min_physmem) {
2146 		use_brk_lpg = 0;
2147 		use_stk_lpg = 0;
2148 	}
2149 
2150 	/*
2151 	 * Perform platform specific freelist processing
2152 	 */
2153 	if (&plat_freelist_process) {
2154 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
2155 			if (mem_node_config[mnode].exists)
2156 				plat_freelist_process(mnode);
2157 	}
2158 
2159 	/*
2160 	 * Initialize the segkp segment type.  We position it
2161 	 * after the configured tables and buffers (whose end
2162 	 * is given by econtig) and before V_WKBASE_ADDR.
2163 	 * Also in this area is segkmap (size SEGMAPSIZE).
2164 	 */
2165 
2166 	/* XXX - cache alignment? */
2167 	va = (caddr_t)SEGKPBASE;
2168 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2169 
2170 	max_phys_segkp = (physmem * 2);
2171 
2172 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2173 		segkpsize = btop(SEGKPDEFSIZE);
2174 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2175 		    "segkpsize has been reset to %ld pages", segkpsize);
2176 	}
2177 
2178 	i = ptob(MIN(segkpsize, max_phys_segkp));
2179 
2180 	rw_enter(&kas.a_lock, RW_WRITER);
2181 	if (seg_attach(&kas, va, i, segkp) < 0)
2182 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2183 	if (segkp_create(segkp) != 0)
2184 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2185 	rw_exit(&kas.a_lock);
2186 
2187 	/*
2188 	 * kpm segment
2189 	 */
2190 	segmap_kpm = kpm_enable &&
2191 	    segmap_kpm && PAGESIZE == MAXBSIZE;
2192 
2193 	if (kpm_enable) {
2194 		rw_enter(&kas.a_lock, RW_WRITER);
2195 
2196 		/*
2197 		 * The segkpm virtual range range is larger than the
2198 		 * actual physical memory size and also covers gaps in
2199 		 * the physical address range for the following reasons:
2200 		 * . keep conversion between segkpm and physical addresses
2201 		 *   simple, cheap and unambiguous.
2202 		 * . avoid extension/shrink of the the segkpm in case of DR.
2203 		 * . avoid complexity for handling of virtual addressed
2204 		 *   caches, segkpm and the regular mapping scheme must be
2205 		 *   kept in sync wrt. the virtual color of mapped pages.
2206 		 * Any accesses to virtual segkpm ranges not backed by
2207 		 * physical memory will fall through the memseg pfn hash
2208 		 * and will be handled in segkpm_fault.
2209 		 * Additional kpm_size spaces needed for vac alias prevention.
2210 		 */
2211 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2212 		    segkpm) < 0)
2213 			cmn_err(CE_PANIC, "cannot attach segkpm");
2214 
2215 		b.prot = PROT_READ | PROT_WRITE;
2216 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2217 
2218 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2219 			panic("segkpm_create segkpm");
2220 
2221 		rw_exit(&kas.a_lock);
2222 
2223 		mach_kpm_init();
2224 	}
2225 
2226 	if (!segzio_fromheap) {
2227 		size_t size;
2228 		size_t physmem_b = mmu_ptob(physmem);
2229 
2230 		/* size is in bytes, segziosize is in pages */
2231 		if (segziosize == 0) {
2232 			size = physmem_b;
2233 		} else {
2234 			size = mmu_ptob(segziosize);
2235 		}
2236 
2237 		if (size < SEGZIOMINSIZE) {
2238 			size = SEGZIOMINSIZE;
2239 		} else if (size > SEGZIOMAXSIZE) {
2240 			size = SEGZIOMAXSIZE;
2241 			/*
2242 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2243 			 * for parity with x86.
2244 			 *
2245 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2246 			 * doesn't consume all of KVA.  However, if we have a
2247 			 * system that has more thant 512gb of physical memory,
2248 			 * we can actually consume about half of the difference
2249 			 * between 512gb and the rest of the available physical
2250 			 * memory.
2251 			 */
2252 			if (physmem_b > SEGZIOMAXSIZE) {
2253 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2254 		}
2255 		}
2256 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2257 		/* put the base of the ZIO segment after the kpm segment */
2258 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2259 		PRM_DEBUG(segziosize);
2260 		PRM_DEBUG(segzio_base);
2261 
2262 		/*
2263 		 * On some platforms, kvm_init is called after the kpm
2264 		 * sizes have been determined.  On SPARC, kvm_init is called
2265 		 * before, so we have to attach the kzioseg after kvm is
2266 		 * initialized, otherwise we'll try to allocate from the boot
2267 		 * area since the kernel heap hasn't yet been configured.
2268 		 */
2269 		rw_enter(&kas.a_lock, RW_WRITER);
2270 
2271 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2272 		    &kzioseg);
2273 		(void) segkmem_zio_create(&kzioseg);
2274 
2275 		/* create zio area covering new segment */
2276 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2277 
2278 		rw_exit(&kas.a_lock);
2279 	}
2280 
2281 
2282 	/*
2283 	 * Now create generic mapping segment.  This mapping
2284 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2285 	 * virtual address is greater than the amount of free
2286 	 * memory that is available, then we trim back the
2287 	 * segment size to that amount
2288 	 */
2289 	va = (caddr_t)SEGMAPBASE;
2290 
2291 	/*
2292 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2293 	 */
2294 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2295 
2296 	/*
2297 	 * Set size of segmap to percentage of freemem at boot,
2298 	 * but stay within the allowable range
2299 	 * Note we take percentage  before converting from pages
2300 	 * to bytes to avoid an overflow on 32-bit kernels.
2301 	 */
2302 	i = mmu_ptob((freemem * segmap_percent) / 100);
2303 
2304 	if (i < MINMAPSIZE)
2305 		i = MINMAPSIZE;
2306 
2307 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2308 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2309 
2310 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2311 
2312 	rw_enter(&kas.a_lock, RW_WRITER);
2313 	if (seg_attach(&kas, va, i, segkmap) < 0)
2314 		cmn_err(CE_PANIC, "cannot attach segkmap");
2315 
2316 	a.prot = PROT_READ | PROT_WRITE;
2317 	a.shmsize = shm_alignment;
2318 	a.nfreelist = 0;	/* use segmap driver defaults */
2319 
2320 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2321 		panic("segmap_create segkmap");
2322 	rw_exit(&kas.a_lock);
2323 
2324 	segdev_init();
2325 }
2326 
2327 static void
2328 startup_end(void)
2329 {
2330 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2331 		panic("memlist overflow 2");
2332 	memlist_free_block((caddr_t)memlist,
2333 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2334 	memlist = NULL;
2335 
2336 	/* enable page_relocation since OBP is now done */
2337 	page_relocate_ready = 1;
2338 
2339 	/*
2340 	 * Perform tasks that get done after most of the VM
2341 	 * initialization has been done but before the clock
2342 	 * and other devices get started.
2343 	 */
2344 	kern_setup1();
2345 
2346 	/*
2347 	 * Intialize the VM arenas for allocating physically
2348 	 * contiguus memory chunk for interrupt queues snd
2349 	 * allocate/register boot cpu's queues, if any and
2350 	 * allocate dump buffer for sun4v systems to store
2351 	 * extra crash information during crash dump
2352 	 */
2353 	contig_mem_init();
2354 	mach_descrip_init();
2355 
2356 	if (cpu_intrq_setup(CPU)) {
2357 		cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2358 	}
2359 	cpu_intrq_register(CPU);
2360 	mach_htraptrace_setup(CPU->cpu_id);
2361 	mach_htraptrace_configure(CPU->cpu_id);
2362 	mach_dump_buffer_init();
2363 
2364 	/*
2365 	 * Initialize interrupt related stuff
2366 	 */
2367 	cpu_intr_alloc(CPU, NINTR_THREADS);
2368 
2369 	(void) splzs();			/* allow hi clock ints but not zs */
2370 
2371 	/*
2372 	 * Initialize errors.
2373 	 */
2374 	error_init();
2375 
2376 	/*
2377 	 * Note that we may have already used kernel bcopy before this
2378 	 * point - but if you really care about this, adb the use_hw_*
2379 	 * variables to 0 before rebooting.
2380 	 */
2381 	mach_hw_copy_limit();
2382 
2383 	/*
2384 	 * Install the "real" preemption guards before DDI services
2385 	 * are available.
2386 	 */
2387 	(void) prom_set_preprom(kern_preprom);
2388 	(void) prom_set_postprom(kern_postprom);
2389 	CPU->cpu_m.mutex_ready = 1;
2390 
2391 	/*
2392 	 * Initialize segnf (kernel support for non-faulting loads).
2393 	 */
2394 	segnf_init();
2395 
2396 	/*
2397 	 * Configure the root devinfo node.
2398 	 */
2399 	configure();		/* set up devices */
2400 	mach_cpu_halt_idle();
2401 }
2402 
2403 
2404 void
2405 post_startup(void)
2406 {
2407 #ifdef	PTL1_PANIC_DEBUG
2408 	extern void init_ptl1_thread(void);
2409 #endif	/* PTL1_PANIC_DEBUG */
2410 	extern void abort_sequence_init(void);
2411 
2412 	/*
2413 	 * Set the system wide, processor-specific flags to be passed
2414 	 * to userland via the aux vector for performance hints and
2415 	 * instruction set extensions.
2416 	 */
2417 	bind_hwcap();
2418 
2419 	/*
2420 	 * Startup memory scrubber (if any)
2421 	 */
2422 	mach_memscrub();
2423 
2424 	/*
2425 	 * Allocate soft interrupt to handle abort sequence.
2426 	 */
2427 	abort_sequence_init();
2428 
2429 	/*
2430 	 * Configure the rest of the system.
2431 	 * Perform forceloading tasks for /etc/system.
2432 	 */
2433 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2434 	/*
2435 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2436 	 * ON4.0: This must be fixed or restated in /etc/systems.
2437 	 */
2438 	(void) modload("fs", "procfs");
2439 
2440 	/* load machine class specific drivers */
2441 	load_mach_drivers();
2442 
2443 	/* load platform specific drivers */
2444 	if (&load_platform_drivers)
2445 		load_platform_drivers();
2446 
2447 	/* load vis simulation module, if we are running w/fpu off */
2448 	if (!fpu_exists) {
2449 		if (modload("misc", "vis") == -1)
2450 			halt("Can't load vis");
2451 	}
2452 
2453 	mach_fpras();
2454 
2455 	maxmem = freemem;
2456 
2457 #ifdef	PTL1_PANIC_DEBUG
2458 	init_ptl1_thread();
2459 #endif	/* PTL1_PANIC_DEBUG */
2460 
2461 	if (&cif_init)
2462 		cif_init();
2463 }
2464 
2465 #ifdef	PTL1_PANIC_DEBUG
2466 int		ptl1_panic_test = 0;
2467 int		ptl1_panic_xc_one_test = 0;
2468 int		ptl1_panic_xc_all_test = 0;
2469 int		ptl1_panic_xt_one_test = 0;
2470 int		ptl1_panic_xt_all_test = 0;
2471 kthread_id_t	ptl1_thread_p = NULL;
2472 kcondvar_t	ptl1_cv;
2473 kmutex_t	ptl1_mutex;
2474 int		ptl1_recurse_count_threshold = 0x40;
2475 int		ptl1_recurse_trap_threshold = 0x3d;
2476 extern void	ptl1_recurse(int, int);
2477 extern void	ptl1_panic_xt(int, int);
2478 
2479 /*
2480  * Called once per second by timeout() to wake up
2481  * the ptl1_panic thread to see if it should cause
2482  * a trap to the ptl1_panic() code.
2483  */
2484 /* ARGSUSED */
2485 static void
2486 ptl1_wakeup(void *arg)
2487 {
2488 	mutex_enter(&ptl1_mutex);
2489 	cv_signal(&ptl1_cv);
2490 	mutex_exit(&ptl1_mutex);
2491 }
2492 
2493 /*
2494  * ptl1_panic cross call function:
2495  *     Needed because xc_one() and xc_some() can pass
2496  *	64 bit args but ptl1_recurse() expects ints.
2497  */
2498 static void
2499 ptl1_panic_xc(void)
2500 {
2501 	ptl1_recurse(ptl1_recurse_count_threshold,
2502 	    ptl1_recurse_trap_threshold);
2503 }
2504 
2505 /*
2506  * The ptl1 thread waits for a global flag to be set
2507  * and uses the recurse thresholds to set the stack depth
2508  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2509  * or indirectly via the cross call and cross trap functions.
2510  *
2511  * This is useful testing stack overflows and normal
2512  * ptl1_panic() states with a know stack frame.
2513  *
2514  * ptl1_recurse() is an asm function in ptl1_panic.s that
2515  * sets the {In, Local, Out, and Global} registers to a
2516  * know state on the stack and just prior to causing a
2517  * test ptl1_panic trap.
2518  */
2519 static void
2520 ptl1_thread(void)
2521 {
2522 	mutex_enter(&ptl1_mutex);
2523 	while (ptl1_thread_p) {
2524 		cpuset_t	other_cpus;
2525 		int		cpu_id;
2526 		int		my_cpu_id;
2527 		int		target_cpu_id;
2528 		int		target_found;
2529 
2530 		if (ptl1_panic_test) {
2531 			ptl1_recurse(ptl1_recurse_count_threshold,
2532 			    ptl1_recurse_trap_threshold);
2533 		}
2534 
2535 		/*
2536 		 * Find potential targets for x-call and x-trap,
2537 		 * if any exist while preempt is disabled we
2538 		 * start a ptl1_panic if requested via a
2539 		 * globals.
2540 		 */
2541 		kpreempt_disable();
2542 		my_cpu_id = CPU->cpu_id;
2543 		other_cpus = cpu_ready_set;
2544 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2545 		target_found = 0;
2546 		if (!CPUSET_ISNULL(other_cpus)) {
2547 			/*
2548 			 * Pick the first one
2549 			 */
2550 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2551 				if (cpu_id == my_cpu_id)
2552 					continue;
2553 
2554 				if (CPU_XCALL_READY(cpu_id)) {
2555 					target_cpu_id = cpu_id;
2556 					target_found = 1;
2557 					break;
2558 				}
2559 			}
2560 			ASSERT(target_found);
2561 
2562 			if (ptl1_panic_xc_one_test) {
2563 				xc_one(target_cpu_id,
2564 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2565 			}
2566 			if (ptl1_panic_xc_all_test) {
2567 				xc_some(other_cpus,
2568 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2569 			}
2570 			if (ptl1_panic_xt_one_test) {
2571 				xt_one(target_cpu_id,
2572 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2573 			}
2574 			if (ptl1_panic_xt_all_test) {
2575 				xt_some(other_cpus,
2576 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2577 			}
2578 		}
2579 		kpreempt_enable();
2580 		(void) timeout(ptl1_wakeup, NULL, hz);
2581 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2582 	}
2583 	mutex_exit(&ptl1_mutex);
2584 }
2585 
2586 /*
2587  * Called during early startup to create the ptl1_thread
2588  */
2589 void
2590 init_ptl1_thread(void)
2591 {
2592 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2593 	    &p0, TS_RUN, 0);
2594 }
2595 #endif	/* PTL1_PANIC_DEBUG */
2596 
2597 
2598 /*
2599  * Add to a memory list.
2600  * start = start of new memory segment
2601  * len = length of new memory segment in bytes
2602  * memlistp = pointer to array of available memory segment structures
2603  * curmemlistp = memory list to which to add segment.
2604  */
2605 static void
2606 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2607 	struct memlist **curmemlistp)
2608 {
2609 	struct memlist *new;
2610 
2611 	new = *memlistp;
2612 	new->address = start;
2613 	new->size = len;
2614 	*memlistp = new + 1;
2615 
2616 	memlist_insert(new, curmemlistp);
2617 }
2618 
2619 /*
2620  * In the case of architectures that support dynamic addition of
2621  * memory at run-time there are two cases where memsegs need to
2622  * be initialized and added to the memseg list.
2623  * 1) memsegs that are constructed at startup.
2624  * 2) memsegs that are constructed at run-time on
2625  *    hot-plug capable architectures.
2626  * This code was originally part of the function kphysm_init().
2627  */
2628 
2629 static void
2630 memseg_list_add(struct memseg *memsegp)
2631 {
2632 	struct memseg **prev_memsegp;
2633 	pgcnt_t num;
2634 
2635 	/* insert in memseg list, decreasing number of pages order */
2636 
2637 	num = MSEG_NPAGES(memsegp);
2638 
2639 	for (prev_memsegp = &memsegs; *prev_memsegp;
2640 	    prev_memsegp = &((*prev_memsegp)->next)) {
2641 		if (num > MSEG_NPAGES(*prev_memsegp))
2642 			break;
2643 	}
2644 
2645 	memsegp->next = *prev_memsegp;
2646 	*prev_memsegp = memsegp;
2647 
2648 	if (kpm_enable) {
2649 		memsegp->nextpa = (memsegp->next) ?
2650 		    va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2651 
2652 		if (prev_memsegp != &memsegs) {
2653 			struct memseg *msp;
2654 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2655 			    offsetof(struct memseg, next));
2656 			msp->nextpa = va_to_pa(memsegp);
2657 		} else {
2658 			memsegspa = va_to_pa(memsegs);
2659 		}
2660 	}
2661 }
2662 
2663 /*
2664  * PSM add_physmem_cb(). US-II and newer processors have some
2665  * flavor of the prefetch capability implemented. We exploit
2666  * this capability for optimum performance.
2667  */
2668 #define	PREFETCH_BYTES	64
2669 
2670 void
2671 add_physmem_cb(page_t *pp, pfn_t pnum)
2672 {
2673 	extern void	 prefetch_page_w(void *);
2674 
2675 	pp->p_pagenum = pnum;
2676 
2677 	/*
2678 	 * Prefetch one more page_t into E$. To prevent future
2679 	 * mishaps with the sizeof(page_t) changing on us, we
2680 	 * catch this on debug kernels if we can't bring in the
2681 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2682 	 * also, sun4u/cpu/cpu_module.c
2683 	 */
2684 	/*LINTED*/
2685 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2686 	prefetch_page_w((char *)pp);
2687 }
2688 
2689 /*
2690  * kphysm_init() tackles the problem of initializing physical memory.
2691  * The old startup made some assumptions about the kernel living in
2692  * physically contiguous space which is no longer valid.
2693  */
2694 static void
2695 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2696 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2697 {
2698 	struct memlist	*pmem;
2699 	struct memseg	*msp;
2700 	pfn_t		 base;
2701 	pgcnt_t		 num;
2702 	pfn_t		 lastseg_pages_end = 0;
2703 	pgcnt_t		 nelem_used = 0;
2704 
2705 	ASSERT(page_hash != NULL && page_hashsz != 0);
2706 
2707 	msp = memsegp;
2708 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2709 
2710 		/*
2711 		 * Build the memsegs entry
2712 		 */
2713 		num = btop(pmem->size);
2714 		if (num > npages)
2715 			num = npages;
2716 		npages -= num;
2717 		base = btop(pmem->address);
2718 
2719 		msp->pages = pp;
2720 		msp->epages = pp + num;
2721 		msp->pages_base = base;
2722 		msp->pages_end = base + num;
2723 
2724 		if (kpm_enable) {
2725 			pfn_t pbase_a;
2726 			pfn_t pend_a;
2727 			pfn_t prev_pend_a;
2728 			pgcnt_t	nelem;
2729 
2730 			msp->pagespa = va_to_pa(pp);
2731 			msp->epagespa = va_to_pa(pp + num);
2732 			pbase_a = kpmptop(ptokpmp(base));
2733 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2734 			nelem = ptokpmp(pend_a - pbase_a);
2735 			msp->kpm_nkpmpgs = nelem;
2736 			msp->kpm_pbase = pbase_a;
2737 			if (lastseg_pages_end) {
2738 				/*
2739 				 * Assume phys_avail is in ascending order
2740 				 * of physical addresses.
2741 				 */
2742 				ASSERT(base + num > lastseg_pages_end);
2743 				prev_pend_a = kpmptop(
2744 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2745 
2746 				if (prev_pend_a > pbase_a) {
2747 					/*
2748 					 * Overlap, more than one memseg may
2749 					 * point to the same kpm_page range.
2750 					 */
2751 					if (kpm_smallpages == 0) {
2752 						msp->kpm_pages =
2753 						    (kpm_page_t *)kpm_pp - 1;
2754 						kpm_pp = (uintptr_t)
2755 						    ((kpm_page_t *)kpm_pp
2756 						    + nelem - 1);
2757 					} else {
2758 						msp->kpm_spages =
2759 						    (kpm_spage_t *)kpm_pp - 1;
2760 						kpm_pp = (uintptr_t)
2761 						    ((kpm_spage_t *)kpm_pp
2762 						    + nelem - 1);
2763 					}
2764 					nelem_used += nelem - 1;
2765 
2766 				} else {
2767 					if (kpm_smallpages == 0) {
2768 						msp->kpm_pages =
2769 						    (kpm_page_t *)kpm_pp;
2770 						kpm_pp = (uintptr_t)
2771 						    ((kpm_page_t *)kpm_pp
2772 						    + nelem);
2773 					} else {
2774 						msp->kpm_spages =
2775 						    (kpm_spage_t *)kpm_pp;
2776 						kpm_pp = (uintptr_t)
2777 						    ((kpm_spage_t *)
2778 						    kpm_pp + nelem);
2779 					}
2780 					nelem_used += nelem;
2781 				}
2782 
2783 			} else {
2784 				if (kpm_smallpages == 0) {
2785 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2786 					kpm_pp = (uintptr_t)
2787 					    ((kpm_page_t *)kpm_pp + nelem);
2788 				} else {
2789 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2790 					kpm_pp = (uintptr_t)
2791 					    ((kpm_spage_t *)kpm_pp + nelem);
2792 				}
2793 				nelem_used = nelem;
2794 			}
2795 
2796 			if (nelem_used > kpm_npages)
2797 				panic("kphysm_init: kpm_pp overflow\n");
2798 
2799 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2800 			lastseg_pages_end = msp->pages_end;
2801 		}
2802 
2803 		memseg_list_add(msp);
2804 
2805 		/*
2806 		 * add_physmem() initializes the PSM part of the page
2807 		 * struct by calling the PSM back with add_physmem_cb().
2808 		 * In addition it coalesces pages into larger pages as
2809 		 * it initializes them.
2810 		 */
2811 		add_physmem(pp, num, base);
2812 		pp += num;
2813 		msp++;
2814 	}
2815 
2816 	build_pfn_hash();
2817 }
2818 
2819 /*
2820  * Kernel VM initialization.
2821  * Assumptions about kernel address space ordering:
2822  *	(1) gap (user space)
2823  *	(2) kernel text
2824  *	(3) kernel data/bss
2825  *	(4) gap
2826  *	(5) kernel data structures
2827  *	(6) gap
2828  *	(7) debugger (optional)
2829  *	(8) monitor
2830  *	(9) gap (possibly null)
2831  *	(10) dvma
2832  *	(11) devices
2833  */
2834 static void
2835 kvm_init(void)
2836 {
2837 	/*
2838 	 * Put the kernel segments in kernel address space.
2839 	 */
2840 	rw_enter(&kas.a_lock, RW_WRITER);
2841 	as_avlinit(&kas);
2842 
2843 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2844 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2845 	(void) segkmem_create(&ktextseg);
2846 
2847 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2848 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2849 	(void) segkmem_create(&ktexthole);
2850 
2851 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2852 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2853 	(void) segkmem_create(&kvalloc);
2854 
2855 	if (kmem64_base) {
2856 		(void) seg_attach(&kas, (caddr_t)kmem64_base,
2857 		    (size_t)(kmem64_end - kmem64_base), &kmem64);
2858 		(void) segkmem_create(&kmem64);
2859 	}
2860 
2861 	/*
2862 	 * We're about to map out /boot.  This is the beginning of the
2863 	 * system resource management transition. We can no longer
2864 	 * call into /boot for I/O or memory allocations.
2865 	 */
2866 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2867 	(void) segkmem_create(&kvseg);
2868 	hblk_alloc_dynamic = 1;
2869 
2870 	/*
2871 	 * we need to preallocate pages for DR operations before enabling large
2872 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2873 	 */
2874 	memseg_remap_init();
2875 
2876 	/* at this point we are ready to use large page heap */
2877 	segkmem_heap_lp_init();
2878 
2879 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2880 	    &kvseg32);
2881 	(void) segkmem_create(&kvseg32);
2882 
2883 	/*
2884 	 * Create a segment for the debugger.
2885 	 */
2886 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2887 	(void) segkmem_create(&kdebugseg);
2888 
2889 	rw_exit(&kas.a_lock);
2890 }
2891 
2892 char obp_tte_str[] =
2893 	"h# %x constant MMU_PAGESHIFT "
2894 	"h# %x constant TTE8K "
2895 	"h# %x constant SFHME_SIZE "
2896 	"h# %x constant SFHME_TTE "
2897 	"h# %x constant HMEBLK_TAG "
2898 	"h# %x constant HMEBLK_NEXT "
2899 	"h# %x constant HMEBLK_MISC "
2900 	"h# %x constant HMEBLK_HME1 "
2901 	"h# %x constant NHMENTS "
2902 	"h# %x constant HBLK_SZMASK "
2903 	"h# %x constant HBLK_RANGE_SHIFT "
2904 	"h# %x constant HMEBP_HBLK "
2905 	"h# %x constant HMEBUCKET_SIZE "
2906 	"h# %x constant HTAG_SFMMUPSZ "
2907 	"h# %x constant HTAG_BSPAGE_SHIFT "
2908 	"h# %x constant HTAG_REHASH_SHIFT "
2909 	"h# %x constant SFMMU_INVALID_SHMERID "
2910 	"h# %x constant mmu_hashcnt "
2911 	"h# %p constant uhme_hash "
2912 	"h# %p constant khme_hash "
2913 	"h# %x constant UHMEHASH_SZ "
2914 	"h# %x constant KHMEHASH_SZ "
2915 	"h# %p constant KCONTEXT "
2916 	"h# %p constant KHATID "
2917 	"h# %x constant ASI_MEM "
2918 
2919 	": PHYS-X@ ( phys -- data ) "
2920 	"   ASI_MEM spacex@ "
2921 	"; "
2922 
2923 	": PHYS-W@ ( phys -- data ) "
2924 	"   ASI_MEM spacew@ "
2925 	"; "
2926 
2927 	": PHYS-L@ ( phys -- data ) "
2928 	"   ASI_MEM spaceL@ "
2929 	"; "
2930 
2931 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2932 	"   3 * MMU_PAGESHIFT + "
2933 	"; "
2934 
2935 	": TTE_IS_VALID ( ttep -- flag ) "
2936 	"   PHYS-X@ 0< "
2937 	"; "
2938 
2939 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2940 	"   dup TTE8K =  if "
2941 	"      drop HBLK_RANGE_SHIFT "
2942 	"   else "
2943 	"      TTE_PAGE_SHIFT "
2944 	"   then "
2945 	"; "
2946 
2947 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2948 	"   tuck >> swap MMU_PAGESHIFT - << "
2949 	"; "
2950 
2951 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2952 	"   >> over xor swap                    ( hash sfmmup ) "
2953 	"   KHATID <>  if                       ( hash ) "
2954 	"      UHMEHASH_SZ and                  ( bucket ) "
2955 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2956 	"   else                                ( hash ) "
2957 	"      KHMEHASH_SZ and                  ( bucket ) "
2958 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2959 	"   then                                ( hmebp ) "
2960 	"; "
2961 
2962 	": HME_HASH_TABLE_SEARCH "
2963 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2964 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2965 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2966 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2967 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2968 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2969 	"	     else						  "
2970 	"	     	  hmeblk_next + phys-x@ false 			  "
2971 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2972 	"	     then  						  "
2973 	"	  else							  "
2974 	"	     hmeblk_next + phys-x@ false 			  "
2975 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2976 	"	  then 							  "
2977 	"      else							  "
2978 	"         true 							  "
2979 	"      then  							  "
2980 	"   until r> drop 						  "
2981 	"; "
2982 
2983 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2984 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE  ( sfmmup rehash bspage ) "
2985 	"   HTAG_BSPAGE_SHIFT <<		 ( sfmmup rehash htag-bspage )"
2986 	"   swap HTAG_REHASH_SHIFT << or	 ( sfmmup htag-bspage-rehash )"
2987 	"   SFMMU_INVALID_SHMERID or nip	 ( hblktag ) "
2988 	"; "
2989 
2990 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2991 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2992 	"   TTE8K =  if                            ( hmeblkp addr ) "
2993 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2994 	"   else                                   ( hmeblkp addr ) "
2995 	"      drop 0                              ( hmeblkp 0 ) "
2996 	"   then                                   ( hmeblkp hme-index ) "
2997 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2998 	"   SFHME_TTE +                            ( ttep ) "
2999 	"; "
3000 
3001 	": unix-tte ( addr cnum -- false | tte-data true ) "
3002 	"    KCONTEXT = if                   ( addr ) "
3003 	"	KHATID                       ( addr khatid ) "
3004 	"    else                            ( addr ) "
3005 	"       drop false exit              ( false ) "
3006 	"    then "
3007 	"      ( addr khatid ) "
3008 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
3009 	"         2dup swap i HME_HASH_SHIFT  "
3010 					"( addr sfmmup sfmmup addr hmeshift ) "
3011 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
3012 	"         over i 4 pick               "
3013 				"( addr sfmmup hmebp sfmmup rehash addr ) "
3014 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
3015 	"         HME_HASH_TABLE_SEARCH       "
3016 					"( addr sfmmup { null | hmeblkp } ) "
3017 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
3018 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
3019 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
3020 	"               PHYS-X@ true          ( tte-data true ) "
3021 	"            else                     ( invalid-tte ) "
3022 	"               drop false            ( false ) "
3023 	"            then                     ( false | tte-data true ) "
3024 	"            unloop exit              ( false | tte-data true ) "
3025 	"         then                        ( addr sfmmup ) "
3026 	"      loop                           ( addr sfmmup ) "
3027 	"      2drop false                    ( false ) "
3028 	"; "
3029 ;
3030 
3031 void
3032 create_va_to_tte(void)
3033 {
3034 	char *bp;
3035 	extern int khmehash_num, uhmehash_num;
3036 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
3037 
3038 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
3039 
3040 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
3041 
3042 	/*
3043 	 * Teach obp how to parse our sw ttes.
3044 	 */
3045 	(void) sprintf(bp, obp_tte_str,
3046 	    MMU_PAGESHIFT,
3047 	    TTE8K,
3048 	    sizeof (struct sf_hment),
3049 	    OFFSET(struct sf_hment, hme_tte),
3050 	    OFFSET(struct hme_blk, hblk_tag),
3051 	    OFFSET(struct hme_blk, hblk_nextpa),
3052 	    OFFSET(struct hme_blk, hblk_misc),
3053 	    OFFSET(struct hme_blk, hblk_hme),
3054 	    NHMENTS,
3055 	    HBLK_SZMASK,
3056 	    HBLK_RANGE_SHIFT,
3057 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
3058 	    sizeof (struct hmehash_bucket),
3059 	    HTAG_SFMMUPSZ,
3060 	    HTAG_BSPAGE_SHIFT,
3061 	    HTAG_REHASH_SHIFT,
3062 	    SFMMU_INVALID_SHMERID,
3063 	    mmu_hashcnt,
3064 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
3065 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
3066 	    UHMEHASH_SZ,
3067 	    KHMEHASH_SZ,
3068 	    KCONTEXT,
3069 	    KHATID,
3070 	    ASI_MEM);
3071 	prom_interpret(bp, 0, 0, 0, 0, 0);
3072 
3073 	kobj_free(bp, MMU_PAGESIZE);
3074 }
3075 
3076 void
3077 install_va_to_tte(void)
3078 {
3079 	/*
3080 	 * advise prom that he can use unix-tte
3081 	 */
3082 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3083 }
3084 
3085 /*
3086  * Here we add "device-type=console" for /os-io node, for currently
3087  * our kernel console output only supports displaying text and
3088  * performing cursor-positioning operations (through kernel framebuffer
3089  * driver) and it doesn't support other functionalities required for a
3090  * standard "display" device as specified in 1275 spec. The main missing
3091  * interface defined by the 1275 spec is "draw-logo".
3092  * also see the comments above prom_stdout_is_framebuffer().
3093  */
3094 static char *create_node =
3095 	"\" /\" find-device "
3096 	"new-device "
3097 	"\" os-io\" device-name "
3098 	"\" "OBP_DISPLAY_CONSOLE"\" device-type "
3099 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
3100 	"   2>r swap 2 2r> ['] $callback  catch  if "
3101 	"      2drop 3drop 0 "
3102 	"   then "
3103 	"; "
3104 	": read ( adr,len -- #read ) "
3105 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
3106 	"       ( retN ... ret1 N ) "
3107 	"       ?dup  if "
3108 	"               swap >r 1-  0  ?do  drop  loop  r> "
3109 	"       else "
3110 	"               -2 "
3111 	"       then "
3112 	";    "
3113 	": write ( adr,len -- #written ) "
3114 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
3115 	"       ( retN ... ret1 N ) "
3116 	"       ?dup  if "
3117 	"               swap >r 1-  0  ?do  drop  loop  r> "
3118 	"        else "
3119 	"               0 "
3120 	"       then "
3121 	"; "
3122 	": poll-tty ( -- ) ; "
3123 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3124 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3125 	": cb-give/take ( $method -- ) "
3126 	"       0 -rot ['] $callback catch  ?dup  if "
3127 	"               >r 2drop 2drop r> throw "
3128 	"       else "
3129 	"               0  ?do  drop  loop "
3130 	"       then "
3131 	"; "
3132 	": give ( -- )  \" exit-input\" cb-give/take ; "
3133 	": take ( -- )  \" enter-input\" cb-give/take ; "
3134 	": open ( -- ok? )  true ; "
3135 	": close ( -- ) ; "
3136 	"finish-device "
3137 	"device-end ";
3138 
3139 /*
3140  * Create the OBP input/output node (FCode serial driver).
3141  * It is needed for both USB console keyboard and for
3142  * the kernel terminal emulator.  It is too early to check for a
3143  * kernel console compatible framebuffer now, so we create this
3144  * so that we're ready if we need to enable kernel terminal emulation.
3145  *
3146  * When the USB software takes over the input device at the time
3147  * consconfig runs, OBP's stdin is redirected to this node.
3148  * Whenever the FORTH user interface is used after this switch,
3149  * the node will call back into the kernel for console input.
3150  * If a serial device such as ttya or a UART with a Type 5 keyboard
3151  * attached is used, OBP takes over the serial device when the system
3152  * goes to the debugger after the system is booted.  This sharing
3153  * of the relatively simple serial device is difficult but possible.
3154  * Sharing the USB host controller is impossible due its complexity.
3155  *
3156  * Similarly to USB keyboard input redirection, after consconfig_dacf
3157  * configures a kernel console framebuffer as the standard output
3158  * device, OBP's stdout is switched to to vector through the
3159  * /os-io node into the kernel terminal emulator.
3160  */
3161 static void
3162 startup_create_io_node(void)
3163 {
3164 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3165 }
3166 
3167 
3168 static void
3169 do_prom_version_check(void)
3170 {
3171 	int i;
3172 	pnode_t node;
3173 	char buf[64];
3174 	static char drev[] = "Down-rev firmware detected%s\n"
3175 	    "\tPlease upgrade to the following minimum version:\n"
3176 	    "\t\t%s\n";
3177 
3178 	i = prom_version_check(buf, sizeof (buf), &node);
3179 
3180 	if (i == PROM_VER64_OK)
3181 		return;
3182 
3183 	if (i == PROM_VER64_UPGRADE) {
3184 		cmn_err(CE_WARN, drev, "", buf);
3185 
3186 #ifdef	DEBUG
3187 		prom_enter_mon();	/* Type 'go' to continue */
3188 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3189 		return;
3190 #else
3191 		halt(0);
3192 #endif
3193 	}
3194 
3195 	/*
3196 	 * The other possibility is that this is a server running
3197 	 * good firmware, but down-rev firmware was detected on at
3198 	 * least one other cpu board. We just complain if we see
3199 	 * that.
3200 	 */
3201 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3202 }
3203 
3204 static void
3205 kpm_init()
3206 {
3207 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
3208 	kpm_pgsz = 1ull << kpm_pgshft;
3209 	kpm_pgoff = kpm_pgsz - 1;
3210 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
3211 	kpmpnpgs = 1 << kpmp2pshft;
3212 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
3213 }
3214 
3215 void
3216 kpm_npages_setup(int memblocks)
3217 {
3218 	/*
3219 	 * npages can be scattered in a maximum of 'memblocks'
3220 	 */
3221 	kpm_npages = ptokpmpr(npages) + memblocks;
3222 }
3223 
3224 /*
3225  * Must be defined in platform dependent code.
3226  */
3227 extern caddr_t modtext;
3228 extern size_t modtext_sz;
3229 extern caddr_t moddata;
3230 
3231 #define	HEAPTEXT_ARENA(addr)	\
3232 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3233 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3234 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3235 
3236 #define	HEAPTEXT_OVERSIZED(addr)	\
3237 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3238 
3239 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3240 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3241 kmutex_t texthole_lock;
3242 
3243 char kern_bootargs[OBP_MAXPATHLEN];
3244 
3245 void
3246 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3247 {
3248 	uintptr_t addr, limit;
3249 
3250 	addr = HEAPTEXT_BASE;
3251 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3252 
3253 	/*
3254 	 * Before we initialize the text_arena, we want to punch holes in the
3255 	 * underlying heaptext_arena.  This guarantees that for any text
3256 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3257 	 */
3258 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3259 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3260 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3261 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3262 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3263 	}
3264 
3265 	/*
3266 	 * Allocate one page at the oversize to break up the text region
3267 	 * from the oversized region.
3268 	 */
3269 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3270 	    (void *)limit, (void *)(limit + PAGESIZE),
3271 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3272 
3273 	*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3274 	    modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3275 	    heaptext_arena, 0, VM_SLEEP);
3276 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3277 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3278 }
3279 
3280 caddr_t
3281 kobj_text_alloc(vmem_t *arena, size_t size)
3282 {
3283 	caddr_t rval, better;
3284 
3285 	/*
3286 	 * First, try a sleeping allocation.
3287 	 */
3288 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3289 
3290 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3291 		return (rval);
3292 
3293 	/*
3294 	 * We didn't get the area that we wanted.  We're going to try to do an
3295 	 * allocation with explicit constraints.
3296 	 */
3297 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3298 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3299 	    VM_NOSLEEP | VM_BESTFIT);
3300 
3301 	if (better != NULL) {
3302 		/*
3303 		 * That worked.  Free our first attempt and return.
3304 		 */
3305 		vmem_free(arena, rval, size);
3306 		return (better);
3307 	}
3308 
3309 	/*
3310 	 * That didn't work; we'll have to return our first attempt.
3311 	 */
3312 	return (rval);
3313 }
3314 
3315 caddr_t
3316 kobj_texthole_alloc(caddr_t addr, size_t size)
3317 {
3318 	int arena = HEAPTEXT_ARENA(addr);
3319 	char c[30];
3320 	uintptr_t base;
3321 
3322 	if (HEAPTEXT_OVERSIZED(addr)) {
3323 		/*
3324 		 * If this is an oversized allocation, there is no text hole
3325 		 * available for it; return NULL.
3326 		 */
3327 		return (NULL);
3328 	}
3329 
3330 	mutex_enter(&texthole_lock);
3331 
3332 	if (texthole_arena[arena] == NULL) {
3333 		ASSERT(texthole_source[arena] == NULL);
3334 
3335 		if (arena == 0) {
3336 			texthole_source[0] = vmem_create("module_text_holesrc",
3337 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3338 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3339 			    0, VM_SLEEP);
3340 		} else {
3341 			base = HEAPTEXT_BASE +
3342 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3343 
3344 			(void) snprintf(c, sizeof (c),
3345 			    "heaptext_holesrc_%d", arena);
3346 
3347 			texthole_source[arena] = vmem_create(c, (void *)base,
3348 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3349 			    0, VM_SLEEP);
3350 		}
3351 
3352 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3353 
3354 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3355 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3356 		    texthole_source[arena], 0, VM_SLEEP);
3357 	}
3358 
3359 	mutex_exit(&texthole_lock);
3360 
3361 	ASSERT(texthole_arena[arena] != NULL);
3362 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3363 	return (vmem_alloc(texthole_arena[arena], size,
3364 	    VM_BESTFIT | VM_NOSLEEP));
3365 }
3366 
3367 void
3368 kobj_texthole_free(caddr_t addr, size_t size)
3369 {
3370 	int arena = HEAPTEXT_ARENA(addr);
3371 
3372 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3373 	ASSERT(texthole_arena[arena] != NULL);
3374 	vmem_free(texthole_arena[arena], addr, size);
3375 }
3376