xref: /titanic_51/usr/src/uts/sun4/os/ddi_impl.c (revision da83352438a4a62b87fcb6fd1583e3a70aa31bb8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * sun4 specific DDI implementation
31  */
32 #include <sys/cpuvar.h>
33 #include <sys/ddi_subrdefs.h>
34 #include <sys/machsystm.h>
35 #include <sys/sunndi.h>
36 #include <sys/sysmacros.h>
37 #include <sys/ontrap.h>
38 #include <vm/seg_kmem.h>
39 #include <sys/membar.h>
40 #include <sys/dditypes.h>
41 #include <sys/ndifm.h>
42 #include <sys/fm/io/ddi.h>
43 #include <sys/ivintr.h>
44 #include <sys/bootconf.h>
45 #include <sys/conf.h>
46 #include <sys/ethernet.h>
47 #include <sys/idprom.h>
48 #include <sys/promif.h>
49 #include <sys/prom_plat.h>
50 #include <sys/systeminfo.h>
51 #include <sys/fpu/fpusystm.h>
52 #include <sys/vm.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/fs/snode.h>
55 #include <sys/ddi_isa.h>
56 
57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
58     ddi_intr_handle_impl_t *);
59 #pragma weak get_intr_parent
60 
61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
62     ddi_intr_handle_impl_t *, void *);
63 #pragma weak process_intr_ops
64 
65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
66     prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
67     int32_t len);
68 #pragma weak cells_1275_copy
69 
70 /*
71  * Wrapper for ddi_prop_lookup_int_array().
72  * This is handy because it returns the prop length in
73  * bytes which is what most of the callers require.
74  */
75 
76 static int
77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
78 {
79 	int ret;
80 
81 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
82 	    DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
83 		*plen = (*plen) * (uint_t)sizeof (int);
84 	}
85 	return (ret);
86 }
87 
88 /*
89  * SECTION: DDI Node Configuration
90  */
91 
92 /*
93  * init_regspec_64:
94  *
95  * If the parent #size-cells is 2, convert the upa-style or
96  * safari-style reg property from 2-size cells to 1 size cell
97  * format, ignoring the size_hi, which must be zero for devices.
98  * (It won't be zero in the memory list properties in the memory
99  * nodes, but that doesn't matter here.)
100  */
101 struct ddi_parent_private_data *
102 init_regspec_64(dev_info_t *dip)
103 {
104 	struct ddi_parent_private_data *pd;
105 	dev_info_t *parent;
106 	int size_cells;
107 
108 	/*
109 	 * If there are no "reg"s in the child node, return.
110 	 */
111 	pd = ddi_get_parent_data(dip);
112 	if ((pd == NULL) || (pd->par_nreg == 0)) {
113 		return (pd);
114 	}
115 	parent = ddi_get_parent(dip);
116 
117 	size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
118 	    DDI_PROP_DONTPASS, "#size-cells", 1);
119 
120 	if (size_cells != 1)  {
121 
122 		int n, j;
123 		struct regspec *irp;
124 		struct reg_64 {
125 			uint_t addr_hi, addr_lo, size_hi, size_lo;
126 		};
127 		struct reg_64 *r64_rp;
128 		struct regspec *rp;
129 		uint_t len = 0;
130 		int *reg_prop;
131 
132 		ASSERT(size_cells == 2);
133 
134 		/*
135 		 * We already looked the property up once before if
136 		 * pd is non-NULL.
137 		 */
138 		(void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
139 		    DDI_PROP_DONTPASS, OBP_REG, &reg_prop, &len);
140 		ASSERT(len != 0);
141 
142 		n = sizeof (struct reg_64) / sizeof (int);
143 		n = len / n;
144 
145 		/*
146 		 * We're allocating a buffer the size of the PROM's property,
147 		 * but we're only using a smaller portion when we assign it
148 		 * to a regspec.  We do this so that in the
149 		 * impl_ddi_sunbus_removechild function, we will
150 		 * always free the right amount of memory.
151 		 */
152 		irp = rp = (struct regspec *)reg_prop;
153 		r64_rp = (struct reg_64 *)pd->par_reg;
154 
155 		for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
156 			ASSERT(r64_rp->size_hi == 0);
157 			rp->regspec_bustype = r64_rp->addr_hi;
158 			rp->regspec_addr = r64_rp->addr_lo;
159 			rp->regspec_size = r64_rp->size_lo;
160 		}
161 
162 		ddi_prop_free((void *)pd->par_reg);
163 		pd->par_nreg = n;
164 		pd->par_reg = irp;
165 	}
166 	return (pd);
167 }
168 
169 /*
170  * Create a ddi_parent_private_data structure from the ddi properties of
171  * the dev_info node.
172  *
173  * The "reg" is required if the driver wishes to create mappings on behalf
174  * of the device. The "reg" property is assumed to be a list of at least
175  * one triplet
176  *
177  *	<bustype, address, size>*1
178  *
179  * The "interrupt" property is no longer part of parent private data on
180  * sun4u. The interrupt parent is may not be the device tree parent.
181  *
182  * The "ranges" property describes the mapping of child addresses to parent
183  * addresses.
184  *
185  * N.B. struct rangespec is defined for the following default values:
186  *			parent  child
187  *	#address-cells	2	2
188  *	#size-cells	1	1
189  * This function doesn't deal with non-default cells and will not create
190  * ranges in such cases.
191  */
192 void
193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
194 {
195 	struct ddi_parent_private_data *pdptr;
196 	int *reg_prop, *rng_prop;
197 	uint_t reg_len = 0, rng_len = 0;
198 	dev_info_t *parent;
199 	int parent_addr_cells, parent_size_cells;
200 	int child_addr_cells, child_size_cells;
201 
202 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
203 
204 	/*
205 	 * root node has no parent private data, so *ppd should
206 	 * be initialized for naming to work properly.
207 	 */
208 	if ((parent = ddi_get_parent(child)) == NULL)
209 		return;
210 
211 	/*
212 	 * Set reg field of parent data from "reg" property
213 	 */
214 	if ((get_prop_int_array(child, OBP_REG, &reg_prop, &reg_len)
215 	    == DDI_PROP_SUCCESS) && (reg_len != 0)) {
216 		pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
217 		pdptr->par_reg = (struct regspec *)reg_prop;
218 	}
219 
220 	/*
221 	 * "ranges" property ...
222 	 *
223 	 * This function does not handle cases where #address-cells != 2
224 	 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
225 	 *
226 	 * Nexus drivers with such exceptions (e.g. pci ranges)
227 	 * should either create a separate function for handling
228 	 * ranges or not use parent private data to store ranges.
229 	 */
230 
231 	/* root node has no ranges */
232 	if ((parent = ddi_get_parent(child)) == NULL)
233 		return;
234 
235 	child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
236 	    DDI_PROP_DONTPASS, "#address-cells", 2);
237 	child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
238 	    DDI_PROP_DONTPASS, "#size-cells", 1);
239 	parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
240 	    DDI_PROP_DONTPASS, "#address-cells", 2);
241 	parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
242 	    DDI_PROP_DONTPASS, "#size-cells", 1);
243 	if (child_addr_cells != 2 || parent_addr_cells != 2 ||
244 	    (child_size_cells != 1 && parent_size_cells != 1)) {
245 		NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
246 		    "#address-cells or #size-cells have non-default value"));
247 		return;
248 	}
249 
250 	if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
251 	    == DDI_PROP_SUCCESS) {
252 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
253 		pdptr->par_rng = (struct rangespec *)rng_prop;
254 	}
255 }
256 
257 /*
258  * Free ddi_parent_private_data structure
259  */
260 void
261 impl_free_ddi_ppd(dev_info_t *dip)
262 {
263 	struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
264 
265 	if (pdptr == NULL)
266 		return;
267 
268 	if (pdptr->par_nrng != 0)
269 		ddi_prop_free((void *)pdptr->par_rng);
270 
271 	if (pdptr->par_nreg != 0)
272 		ddi_prop_free((void *)pdptr->par_reg);
273 
274 	kmem_free(pdptr, sizeof (*pdptr));
275 	ddi_set_parent_data(dip, NULL);
276 }
277 
278 /*
279  * Name a child of sun busses based on the reg spec.
280  * Handles the following properties:
281  *
282  *	Property	value
283  *	Name		type
284  *
285  *	reg		register spec
286  *	interrupts	new (bus-oriented) interrupt spec
287  *	ranges		range spec
288  *
289  * This may be called multiple times, independent of
290  * initchild calls.
291  */
292 static int
293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
294 {
295 	struct ddi_parent_private_data *pdptr;
296 	struct regspec *rp;
297 
298 	/*
299 	 * Fill in parent-private data and this function returns to us
300 	 * an indication if it used "registers" to fill in the data.
301 	 */
302 	if (ddi_get_parent_data(child) == NULL) {
303 		make_ddi_ppd(child, &pdptr);
304 		ddi_set_parent_data(child, pdptr);
305 	}
306 
307 	/*
308 	 * No reg property, return null string as address
309 	 * (e.g. root node)
310 	 */
311 	name[0] = '\0';
312 	if (sparc_pd_getnreg(child) == 0) {
313 		return (DDI_SUCCESS);
314 	}
315 
316 	rp = sparc_pd_getreg(child, 0);
317 	(void) snprintf(name, namelen, "%x,%x",
318 	    rp->regspec_bustype, rp->regspec_addr);
319 	return (DDI_SUCCESS);
320 }
321 
322 
323 /*
324  * Called from the bus_ctl op of some drivers.
325  * to implement the DDI_CTLOPS_INITCHILD operation.
326  *
327  * NEW drivers should NOT use this function, but should declare
328  * there own initchild/uninitchild handlers. (This function assumes
329  * the layout of the parent private data and the format of "reg",
330  * "ranges", "interrupts" properties and that #address-cells and
331  * #size-cells of the parent bus are defined to be default values.)
332  */
333 int
334 impl_ddi_sunbus_initchild(dev_info_t *child)
335 {
336 	char name[MAXNAMELEN];
337 
338 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
339 	ddi_set_name_addr(child, name);
340 
341 	/*
342 	 * Try to merge .conf node. If successful, return failure to
343 	 * remove this child.
344 	 */
345 	if ((ndi_dev_is_persistent_node(child) == 0) &&
346 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
347 		impl_ddi_sunbus_removechild(child);
348 		return (DDI_FAILURE);
349 	}
350 	return (DDI_SUCCESS);
351 }
352 
353 /*
354  * A better name for this function would be impl_ddi_sunbus_uninitchild()
355  * It does not remove the child, it uninitializes it, reclaiming the
356  * resources taken by impl_ddi_sunbus_initchild.
357  */
358 void
359 impl_ddi_sunbus_removechild(dev_info_t *dip)
360 {
361 	impl_free_ddi_ppd(dip);
362 	ddi_set_name_addr(dip, NULL);
363 	/*
364 	 * Strip the node to properly convert it back to prototype form
365 	 */
366 	impl_rem_dev_props(dip);
367 }
368 
369 /*
370  * SECTION: DDI Interrupt
371  */
372 
373 void
374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
375 {
376 	int i;
377 	for (i = 0; i < len; i++)
378 		*to = *from;
379 }
380 
381 prop_1275_cell_t *
382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
383 {
384 	prop_1275_cell_t *match_cell = 0;
385 	int32_t i;
386 
387 	for (i = 0; i < len; i++)
388 		if (cell1[i] != cell2[i]) {
389 			match_cell = &cell1[i];
390 			break;
391 		}
392 
393 	return (match_cell);
394 }
395 
396 /*
397  * get_intr_parent() is a generic routine that process a 1275 interrupt
398  * map (imap) property.  This function returns a dev_info_t structure
399  * which claims ownership of the interrupt domain.
400  * It also returns the new interrupt translation within this new domain.
401  * If an interrupt-parent or interrupt-map property are not found,
402  * then we fallback to using the device tree's parent.
403  *
404  * imap entry format:
405  * <reg>,<interrupt>,<phandle>,<translated interrupt>
406  * reg - The register specification in the interrupts domain
407  * interrupt - The interrupt specification
408  * phandle - PROM handle of the device that owns the xlated interrupt domain
409  * translated interrupt - interrupt specifier in the parents domain
410  * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
411  *	a unique entry called a unit interrupt specifier.
412  *
413  * Here's the processing steps:
414  * step1 - If the interrupt-parent property exists, create the ispec and
415  *	return the dip of the interrupt parent.
416  * step2 - Extract the interrupt-map property and the interrupt-map-mask
417  *	If these don't exist, just return the device tree parent.
418  * step3 - build up the unit interrupt specifier to match against the
419  *	interrupt map property
420  * step4 - Scan the interrupt-map property until a match is found
421  * step4a - Extract the interrupt parent
422  * step4b - Compare the unit interrupt specifier
423  */
424 dev_info_t *
425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
426 {
427 	prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
428 	int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
429 	    addr_cells, intr_cells, reg_len, i, j;
430 	int32_t match_found = 0;
431 	dev_info_t *intr_parent_dip = NULL;
432 	uint32_t *intr = &hdlp->ih_vector;
433 	uint32_t nodeid;
434 #ifdef DEBUG
435 	static int debug = 0;
436 #endif
437 
438 	/*
439 	 * step1
440 	 * If we have an interrupt-parent property, this property represents
441 	 * the nodeid of our interrupt parent.
442 	 */
443 	if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
444 	    "interrupt-parent", -1)) != -1) {
445 		intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
446 		ASSERT(intr_parent_dip);
447 
448 		/*
449 		 * Attach the interrupt parent.
450 		 *
451 		 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
452 		 *	Also, interrupt parent isn't held. This needs
453 		 *	to be revisited if DR-capable platforms implement
454 		 *	interrupt redirection.
455 		 */
456 		if (i_ddi_attach_node_hierarchy(intr_parent_dip)
457 		    != DDI_SUCCESS) {
458 			ndi_rele_devi(intr_parent_dip);
459 			return (NULL);
460 		}
461 
462 		return (intr_parent_dip);
463 	}
464 
465 	/*
466 	 * step2
467 	 * Get interrupt map structure from PROM property
468 	 */
469 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
470 	    "interrupt-map", (caddr_t)&imap, &imap_sz)
471 	    != DDI_PROP_SUCCESS) {
472 		/*
473 		 * If we don't have an imap property, default to using the
474 		 * device tree.
475 		 */
476 
477 		ndi_hold_devi(pdip);
478 		return (pdip);
479 	}
480 
481 	/* Get the interrupt mask property */
482 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
483 	    "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
484 	    != DDI_PROP_SUCCESS) {
485 		/*
486 		 * If we don't find this property, we have to fail the request
487 		 * because the 1275 imap property wasn't defined correctly.
488 		 */
489 		ASSERT(intr_parent_dip == NULL);
490 		goto exit2;
491 	}
492 
493 	/* Get the address cell size */
494 	addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
495 	    "#address-cells", 2);
496 
497 	/* Get the interrupts cell size */
498 	intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
499 	    "#interrupt-cells", 1);
500 
501 	/*
502 	 * step3
503 	 * Now lets build up the unit interrupt specifier e.g. reg,intr
504 	 * and apply the imap mask.  match_req will hold this when we're
505 	 * through.
506 	 */
507 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
508 	    (caddr_t)&reg_p, &reg_len) != DDI_SUCCESS) {
509 		ASSERT(intr_parent_dip == NULL);
510 		goto exit3;
511 	}
512 
513 	match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
514 	    CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
515 
516 	for (i = 0; i < addr_cells; i++)
517 		match_req[i] = (reg_p[i] & imap_mask[i]);
518 
519 	for (j = 0; j < intr_cells; i++, j++)
520 		match_req[i] = (intr[j] & imap_mask[i]);
521 
522 	/* Calculate the imap size in cells */
523 	imap_cells = BYTES_TO_1275_CELLS(imap_sz);
524 
525 #ifdef DEBUG
526 	if (debug)
527 		prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
528 		    "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
529 		    match_req, imap);
530 #endif
531 
532 	/*
533 	 * Scan the imap property looking for a match of the interrupt unit
534 	 * specifier.  This loop is rather complex since the data within the
535 	 * imap property may vary in size.
536 	 */
537 	for (scan = imap, imap_scan_cells = i = 0;
538 	    imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
539 		int new_intr_cells;
540 
541 		/* Set the index to the nodeid field */
542 		i = addr_cells + intr_cells;
543 
544 		/*
545 		 * step4a
546 		 * Translate the nodeid field to a dip
547 		 */
548 		ASSERT(intr_parent_dip == NULL);
549 		intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
550 
551 		ASSERT(intr_parent_dip != 0);
552 #ifdef DEBUG
553 		if (debug)
554 			prom_printf("scan 0x%p\n", scan);
555 #endif
556 		/*
557 		 * The tmp_dip describes the new domain, get it's interrupt
558 		 * cell size
559 		 */
560 		new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
561 		    "#interrupts-cells", 1);
562 
563 		/*
564 		 * step4b
565 		 * See if we have a match on the interrupt unit specifier
566 		 */
567 		if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
568 		    == 0) {
569 			uint32_t *intr;
570 
571 			match_found = 1;
572 
573 			/*
574 			 * If we have an imap parent whose not in our device
575 			 * tree path, we need to hold and install that driver.
576 			 */
577 			if (i_ddi_attach_node_hierarchy(intr_parent_dip)
578 			    != DDI_SUCCESS) {
579 				ndi_rele_devi(intr_parent_dip);
580 				intr_parent_dip = (dev_info_t *)NULL;
581 				goto exit4;
582 			}
583 
584 			/*
585 			 * We need to handcraft an ispec along with a bus
586 			 * interrupt value, so we can dup it into our
587 			 * standard ispec structure.
588 			 */
589 			/* Extract the translated interrupt information */
590 			intr = kmem_alloc(
591 			    CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
592 
593 			for (j = 0; j < new_intr_cells; j++, i++)
594 				intr[j] = scan[i];
595 
596 			cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
597 
598 			kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
599 
600 #ifdef DEBUG
601 			if (debug)
602 				prom_printf("dip 0x%p\n", intr_parent_dip);
603 #endif
604 			break;
605 		} else {
606 #ifdef DEBUG
607 			if (debug)
608 				prom_printf("dip 0x%p\n", intr_parent_dip);
609 #endif
610 			ndi_rele_devi(intr_parent_dip);
611 			intr_parent_dip = NULL;
612 			i += new_intr_cells;
613 		}
614 	}
615 
616 	/*
617 	 * If we haven't found our interrupt parent at this point, fallback
618 	 * to using the device tree.
619 	 */
620 	if (!match_found) {
621 		ndi_hold_devi(pdip);
622 		ASSERT(intr_parent_dip == NULL);
623 		intr_parent_dip = pdip;
624 	}
625 
626 	ASSERT(intr_parent_dip != NULL);
627 
628 exit4:
629 	kmem_free(reg_p, reg_len);
630 	kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
631 	    CELLS_1275_TO_BYTES(intr_cells));
632 
633 exit3:
634 	kmem_free(imap_mask, imap_mask_sz);
635 
636 exit2:
637 	kmem_free(imap, imap_sz);
638 
639 	return (intr_parent_dip);
640 }
641 
642 /*
643  * process_intr_ops:
644  *
645  * Process the interrupt op via the interrupt parent.
646  */
647 int
648 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
649     ddi_intr_handle_impl_t *hdlp, void *result)
650 {
651 	int		ret = DDI_FAILURE;
652 
653 	if (NEXUS_HAS_INTR_OP(pdip)) {
654 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
655 		    bus_intr_op)) (pdip, rdip, op, hdlp, result);
656 	} else {
657 		cmn_err(CE_WARN, "Failed to process interrupt "
658 		    "for %s%d due to down-rev nexus driver %s%d",
659 		    ddi_get_name(rdip), ddi_get_instance(rdip),
660 		    ddi_get_name(pdip), ddi_get_instance(pdip));
661 	}
662 
663 	return (ret);
664 }
665 
666 /*ARGSUSED*/
667 uint_t
668 softlevel1(caddr_t arg)
669 {
670 	softint();
671 	return (1);
672 }
673 
674 /*
675  * indirection table, to save us some large switch statements
676  * NOTE: This must agree with "INTLEVEL_foo" constants in
677  *	<sys/avintr.h>
678  */
679 struct autovec *const vectorlist[] = { 0 };
680 
681 /*
682  * This value is exported here for the functions in avintr.c
683  */
684 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
685 
686 /*
687  * Check for machine specific interrupt levels which cannot be reassigned by
688  * settrap(), sun4u version.
689  *
690  * sun4u does not support V8 SPARC "fast trap" handlers.
691  */
692 /*ARGSUSED*/
693 int
694 exclude_settrap(int lvl)
695 {
696 	return (1);
697 }
698 
699 /*
700  * Check for machine specific interrupt levels which cannot have interrupt
701  * handlers added. We allow levels 1 through 15; level 0 is nonsense.
702  */
703 /*ARGSUSED*/
704 int
705 exclude_level(int lvl)
706 {
707 	return ((lvl < 1) || (lvl > 15));
708 }
709 
710 /*
711  * Wrapper functions used by New DDI interrupt framework.
712  */
713 
714 /*
715  * i_ddi_intr_ops:
716  */
717 int
718 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
719     ddi_intr_handle_impl_t *hdlp, void *result)
720 {
721 	dev_info_t	*pdip = ddi_get_parent(dip);
722 	int		ret = DDI_FAILURE;
723 
724 	/*
725 	 * The following check is required to address
726 	 * one of the test case of ADDI test suite.
727 	 */
728 	if (pdip == NULL)
729 		return (DDI_FAILURE);
730 
731 	if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
732 		return (process_intr_ops(pdip, rdip, op, hdlp, result));
733 
734 	if (hdlp->ih_vector == 0)
735 		hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
736 
737 	if (hdlp->ih_pri == 0)
738 		hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
739 
740 	switch (op) {
741 	case DDI_INTROP_ADDISR:
742 	case DDI_INTROP_REMISR:
743 	case DDI_INTROP_ENABLE:
744 	case DDI_INTROP_DISABLE:
745 	case DDI_INTROP_BLOCKENABLE:
746 	case DDI_INTROP_BLOCKDISABLE:
747 		/*
748 		 * Try and determine our parent and possibly an interrupt
749 		 * translation. intr parent dip returned held
750 		 */
751 		if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
752 			goto done;
753 	}
754 
755 	ret = process_intr_ops(pdip, rdip, op, hdlp, result);
756 
757 done:
758 	switch (op) {
759 	case DDI_INTROP_ADDISR:
760 	case DDI_INTROP_REMISR:
761 	case DDI_INTROP_ENABLE:
762 	case DDI_INTROP_DISABLE:
763 	case DDI_INTROP_BLOCKENABLE:
764 	case DDI_INTROP_BLOCKDISABLE:
765 		/* Release hold acquired in get_intr_parent() */
766 		if (pdip)
767 			ndi_rele_devi(pdip);
768 	}
769 
770 	hdlp->ih_vector = 0;
771 
772 	return (ret);
773 }
774 
775 /*
776  * i_ddi_add_ivintr:
777  */
778 /*ARGSUSED*/
779 int
780 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
781 {
782 	/* Sanity check the entry we're about to add */
783 	if (GET_IVINTR(hdlp->ih_vector)) {
784 		cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector);
785 		return (DDI_FAILURE);
786 	}
787 
788 	/*
789 	 * If the PIL was set and is valid use it, otherwise
790 	 * default it to 1
791 	 */
792 	if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
793 		hdlp->ih_pri = 1;
794 
795 	VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
796 	    (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0);
797 
798 	return (DDI_SUCCESS);
799 }
800 
801 /*
802  * i_ddi_rem_ivintr:
803  */
804 /*ARGSUSED*/
805 void
806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
807 {
808 	rem_ivintr(hdlp->ih_vector, NULL);
809 }
810 
811 /*
812  * i_ddi_get_inum - Get the interrupt number property from the
813  * specified device. Note that this function is called only for
814  * the FIXED interrupt type.
815  */
816 uint32_t
817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
818 {
819 	int32_t			intrlen, intr_cells, max_intrs;
820 	prop_1275_cell_t	*ip, intr_sz;
821 	uint32_t		intr = 0;
822 
823 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
824 	    DDI_PROP_CANSLEEP,
825 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
826 
827 		intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
828 		    "#interrupt-cells", 1);
829 
830 		/* adjust for number of bytes */
831 		intr_sz = CELLS_1275_TO_BYTES(intr_cells);
832 
833 		/* Calculate the number of interrupts */
834 		max_intrs = intrlen / intr_sz;
835 
836 		if (inumber < max_intrs) {
837 			prop_1275_cell_t *intrp = ip;
838 
839 			/* Index into interrupt property */
840 			intrp += (inumber * intr_cells);
841 
842 			cells_1275_copy(intrp, &intr, intr_cells);
843 		}
844 
845 		kmem_free(ip, intrlen);
846 	}
847 
848 	return (intr);
849 }
850 
851 /*
852  * i_ddi_get_intr_pri - Get the interrupt-priorities property from
853  * the specified device. Note that this function is called only for
854  * the FIXED interrupt type.
855  */
856 uint32_t
857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
858 {
859 	uint32_t	*intr_prio_p;
860 	uint32_t	pri = 0;
861 	int32_t		i;
862 
863 	/*
864 	 * Use the "interrupt-priorities" property to determine the
865 	 * the pil/ipl for the interrupt handler.
866 	 */
867 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
868 	    "interrupt-priorities", (caddr_t)&intr_prio_p,
869 	    &i) == DDI_SUCCESS) {
870 		if (inumber < (i / sizeof (int32_t)))
871 			pri = intr_prio_p[inumber];
872 		kmem_free(intr_prio_p, i);
873 	}
874 
875 	return (pri);
876 }
877 
878 int
879 i_ddi_get_nintrs(dev_info_t *dip)
880 {
881 	int32_t intrlen;
882 	prop_1275_cell_t intr_sz;
883 	prop_1275_cell_t *ip;
884 	int32_t ret = 0;
885 
886 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
887 	    DDI_PROP_CANSLEEP,
888 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
889 
890 		intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
891 		    "#interrupt-cells", 1);
892 		/* adjust for number of bytes */
893 		intr_sz = CELLS_1275_TO_BYTES(intr_sz);
894 
895 		ret = intrlen / intr_sz;
896 
897 		kmem_free(ip, intrlen);
898 	}
899 
900 	return (ret);
901 }
902 
903 /*
904  * i_ddi_add_softint - allocate and add a soft interrupt to the system
905  */
906 int
907 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
908 {
909 	uint_t		rval;
910 
911 	if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func,
912 	    hdlp->ih_cb_arg1)) == 0) {
913 
914 		return (DDI_FAILURE);
915 	}
916 
917 	/* use uintptr_t to suppress the gcc warning */
918 	hdlp->ih_private = (void *)(uintptr_t)rval;
919 
920 	return (DDI_SUCCESS);
921 }
922 
923 void
924 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
925 {
926 	uint_t		intr_id;
927 
928 	/* disable */
929 	ASSERT(hdlp->ih_private != NULL);
930 
931 	/* use uintptr_t to suppress the gcc warning */
932 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
933 
934 	rem_softintr(intr_id);
935 	hdlp->ih_private = NULL;
936 }
937 
938 int
939 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
940 {
941 	uint_t		intr_id;
942 	int		ret;
943 
944 	ASSERT(hdlp != NULL);
945 	ASSERT(hdlp->ih_private != NULL);
946 
947 	/* use uintptr_t to suppress the gcc warning */
948 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
949 
950 	/* update the vector table for the 2nd arg */
951 	ret = update_softint_arg2(intr_id, arg2);
952 	if (ret == DDI_SUCCESS)
953 		setsoftint(intr_id);
954 
955 	return (ret);
956 }
957 
958 /* ARGSUSED */
959 int
960 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
961 {
962 	uint_t		intr_id;
963 	int		ret;
964 
965 	ASSERT(hdlp != NULL);
966 	ASSERT(hdlp->ih_private != NULL);
967 
968 	/* use uintptr_t to suppress the gcc warning */
969 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
970 
971 	/* update the vector table for the new priority */
972 	ret = update_softint_pri(intr_id, hdlp->ih_pri);
973 
974 	return (ret);
975 }
976 
977 /*ARGSUSED*/
978 void
979 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
980 {
981 }
982 
983 /*ARGSUSED*/
984 void
985 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
986 {
987 }
988 
989 /*
990  * SECTION: DDI Memory/DMA
991  */
992 
993 /* set HAT endianess attributes from ddi_device_acc_attr */
994 void
995 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
996 {
997 	if (devaccp != NULL) {
998 		if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
999 			*hataccp &= ~HAT_ENDIAN_MASK;
1000 			*hataccp |= HAT_STRUCTURE_LE;
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Check if the specified cache attribute is supported on the platform.
1007  * This function must be called before i_ddi_cacheattr_to_hatacc().
1008  */
1009 boolean_t
1010 i_ddi_check_cache_attr(uint_t flags)
1011 {
1012 	/*
1013 	 * The cache attributes are mutually exclusive. Any combination of
1014 	 * the attributes leads to a failure.
1015 	 */
1016 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1017 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1018 		return (B_FALSE);
1019 
1020 	/*
1021 	 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1022 	 * but others lead to a failure.
1023 	 */
1024 	if (cache_attr & IOMEM_DATA_CACHED)
1025 		return (B_TRUE);
1026 	else
1027 		return (B_FALSE);
1028 }
1029 
1030 /* set HAT cache attributes from the cache attributes */
1031 void
1032 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1033 {
1034 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1035 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1036 #if defined(lint)
1037 	*hataccp = *hataccp;
1038 #endif
1039 	/*
1040 	 * set HAT attrs according to the cache attrs.
1041 	 */
1042 	switch (cache_attr) {
1043 	/*
1044 	 * The cache coherency is always maintained on SPARC, and
1045 	 * nothing is required.
1046 	 */
1047 	case IOMEM_DATA_CACHED:
1048 		break;
1049 	/*
1050 	 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1051 	 * not supported on SPARC -- this case must not occur because the
1052 	 * cache attribute is scrutinized before this function is called.
1053 	 */
1054 	case IOMEM_DATA_UNCACHED:
1055 	case IOMEM_DATA_UC_WR_COMBINE:
1056 	default:
1057 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1058 		    fname, cache_attr);
1059 	}
1060 }
1061 
1062 static vmem_t *little_endian_arena;
1063 static vmem_t *big_endian_arena;
1064 
1065 static void *
1066 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1067 {
1068 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1069 	    segkmem_page_create, NULL));
1070 }
1071 
1072 static void *
1073 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1074 {
1075 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1076 	    segkmem_page_create, NULL));
1077 }
1078 
1079 void
1080 ka_init(void)
1081 {
1082 	little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1083 	    segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1084 	big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1085 	    segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1086 }
1087 
1088 /*
1089  * Allocate from the system, aligned on a specific boundary.
1090  * The alignment, if non-zero, must be a power of 2.
1091  */
1092 static void *
1093 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1094 {
1095 	size_t *addr, *raddr, rsize;
1096 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1097 
1098 	align = MAX(align, hdrsize);
1099 	ASSERT((align & (align - 1)) == 0);
1100 
1101 	/*
1102 	 * We need to allocate
1103 	 *    rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1104 	 * bytes to be sure we have enough freedom to satisfy the request.
1105 	 * Since the buffer alignment depends on the request size, this is
1106 	 * not straightforward to use directly.
1107 	 *
1108 	 * kmem guarantees that any allocation of a 64-byte multiple will be
1109 	 * 64-byte aligned.  Since rounding up the request could add more
1110 	 * than we save, we compute the size with and without alignment, and
1111 	 * use the smaller of the two.
1112 	 */
1113 	rsize = size + hdrsize + align;
1114 
1115 	if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1116 		raddr = vmem_alloc(little_endian_arena, rsize,
1117 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1118 	} else {
1119 		raddr = vmem_alloc(big_endian_arena, rsize,
1120 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1121 	}
1122 
1123 	if (raddr == NULL)
1124 		return (NULL);
1125 
1126 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1127 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1128 
1129 	addr[-3] = (size_t)endian_flags;
1130 	addr[-2] = (size_t)raddr;
1131 	addr[-1] = rsize;
1132 
1133 	return (addr);
1134 }
1135 
1136 static void
1137 kfreea(void *addr)
1138 {
1139 	size_t *saddr = addr;
1140 
1141 	if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1142 		vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1143 	else
1144 		vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1145 }
1146 
1147 int
1148 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1149     size_t length, int cansleep, int flags,
1150     ddi_device_acc_attr_t *accattrp,
1151     caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1152 {
1153 	caddr_t a;
1154 	int iomin, align, streaming;
1155 	uint_t endian_flags = DDI_NEVERSWAP_ACC;
1156 
1157 #if defined(lint)
1158 	*handlep = *handlep;
1159 #endif
1160 
1161 	/*
1162 	 * Check legality of arguments
1163 	 */
1164 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1165 		return (DDI_FAILURE);
1166 	}
1167 
1168 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1169 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1170 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1171 		return (DDI_FAILURE);
1172 	}
1173 
1174 	/*
1175 	 * check if a streaming sequential xfer is requested.
1176 	 */
1177 	streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1178 
1179 	/*
1180 	 * Drivers for 64-bit capable SBus devices will encode
1181 	 * the burtsizes for 64-bit xfers in the upper 16-bits.
1182 	 * For DMA alignment, we use the most restrictive
1183 	 * alignment of 32-bit and 64-bit xfers.
1184 	 */
1185 	iomin = (attr->dma_attr_burstsizes & 0xffff) |
1186 	    ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1187 	/*
1188 	 * If a driver set burtsizes to 0, we give him byte alignment.
1189 	 * Otherwise align at the burtsizes boundary.
1190 	 */
1191 	if (iomin == 0)
1192 		iomin = 1;
1193 	else
1194 		iomin = 1 << (ddi_fls(iomin) - 1);
1195 	iomin = maxbit(iomin, attr->dma_attr_minxfer);
1196 	iomin = maxbit(iomin, attr->dma_attr_align);
1197 	iomin = ddi_iomin(dip, iomin, streaming);
1198 	if (iomin == 0)
1199 		return (DDI_FAILURE);
1200 
1201 	ASSERT((iomin & (iomin - 1)) == 0);
1202 	ASSERT(iomin >= attr->dma_attr_minxfer);
1203 	ASSERT(iomin >= attr->dma_attr_align);
1204 
1205 	length = P2ROUNDUP(length, iomin);
1206 	align = iomin;
1207 
1208 	if (accattrp != NULL)
1209 		endian_flags = accattrp->devacc_attr_endian_flags;
1210 
1211 	a = kalloca(length, align, cansleep, endian_flags);
1212 	if ((*kaddrp = a) == 0) {
1213 		return (DDI_FAILURE);
1214 	} else {
1215 		if (real_length) {
1216 			*real_length = length;
1217 		}
1218 		if (handlep) {
1219 			/*
1220 			 * assign handle information
1221 			 */
1222 			impl_acc_hdl_init(handlep);
1223 		}
1224 		return (DDI_SUCCESS);
1225 	}
1226 }
1227 
1228 /*
1229  * covert old DMA limits structure to DMA attribute structure
1230  * and continue
1231  */
1232 int
1233 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1234     size_t length, int cansleep, int streaming,
1235     ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1236     uint_t *real_length, ddi_acc_hdl_t *ap)
1237 {
1238 	ddi_dma_attr_t dma_attr, *attrp;
1239 	size_t rlen;
1240 	int ret;
1241 
1242 	ASSERT(limits);
1243 	attrp = &dma_attr;
1244 	attrp->dma_attr_version = DMA_ATTR_V0;
1245 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1246 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1247 	attrp->dma_attr_count_max = (uint64_t)-1;
1248 	attrp->dma_attr_align = 1;
1249 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1250 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1251 	attrp->dma_attr_maxxfer = (uint64_t)-1;
1252 	attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1253 	attrp->dma_attr_sgllen = 1;
1254 	attrp->dma_attr_granular = 1;
1255 	attrp->dma_attr_flags = 0;
1256 
1257 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1258 	    accattrp, kaddrp, &rlen, ap);
1259 	if (ret == DDI_SUCCESS) {
1260 		if (real_length)
1261 			*real_length = (uint_t)rlen;
1262 	}
1263 	return (ret);
1264 }
1265 
1266 /* ARGSUSED */
1267 void
1268 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1269 {
1270 	kfreea(kaddr);
1271 }
1272 
1273 /*
1274  * SECTION: DDI Data Access
1275  */
1276 
1277 static uintptr_t impl_acc_hdl_id = 0;
1278 
1279 /*
1280  * access handle allocator
1281  */
1282 ddi_acc_hdl_t *
1283 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1284 {
1285 	/*
1286 	 * Extract the access handle address from the DDI implemented
1287 	 * access handle
1288 	 */
1289 	return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1290 }
1291 
1292 ddi_acc_handle_t
1293 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1294 {
1295 	ddi_acc_impl_t *hp;
1296 	on_trap_data_t *otp;
1297 	int sleepflag;
1298 
1299 	sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1300 
1301 	/*
1302 	 * Allocate and initialize the data access handle and error status.
1303 	 */
1304 	if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1305 		goto fail;
1306 	if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1307 	    sizeof (ndi_err_t), sleepflag)) == NULL) {
1308 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1309 		goto fail;
1310 	}
1311 	if ((otp = (on_trap_data_t *)kmem_zalloc(
1312 	    sizeof (on_trap_data_t), sleepflag)) == NULL) {
1313 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1314 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1315 		goto fail;
1316 	}
1317 	hp->ahi_err->err_ontrap = otp;
1318 	hp->ahi_common.ah_platform_private = (void *)hp;
1319 
1320 	return ((ddi_acc_handle_t)hp);
1321 fail:
1322 	if ((waitfp != (int (*)())KM_SLEEP) &&
1323 	    (waitfp != (int (*)())KM_NOSLEEP))
1324 		ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1325 	return (NULL);
1326 }
1327 
1328 void
1329 impl_acc_hdl_free(ddi_acc_handle_t handle)
1330 {
1331 	ddi_acc_impl_t *hp;
1332 
1333 	/*
1334 	 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1335 	 * because that's what we allocated in impl_acc_hdl_alloc() above.
1336 	 */
1337 	hp = (ddi_acc_impl_t *)handle;
1338 	if (hp) {
1339 		kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1340 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1341 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1342 		if (impl_acc_hdl_id)
1343 			ddi_run_callback(&impl_acc_hdl_id);
1344 	}
1345 }
1346 
1347 #define	PCI_GET_MP_PFN(mp, page_no)	((mp)->dmai_ndvmapages == 1 ? \
1348 	(pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1349 
1350 /*
1351  * Function called after a dma fault occurred to find out whether the
1352  * fault address is associated with a driver that is able to handle faults
1353  * and recover from faults.
1354  */
1355 /* ARGSUSED */
1356 int
1357 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1358     const void *not_used)
1359 {
1360 	ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1361 	pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1362 	pfn_t comp_pfn;
1363 
1364 	/*
1365 	 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1366 	 */
1367 	int page;
1368 
1369 	ASSERT(mp);
1370 	for (page = 0; page < mp->dmai_ndvmapages; page++) {
1371 		comp_pfn = PCI_GET_MP_PFN(mp, page);
1372 		if (fault_pfn == comp_pfn)
1373 			return (DDI_FM_NONFATAL);
1374 	}
1375 	return (DDI_FM_UNKNOWN);
1376 }
1377 
1378 /*
1379  * Function used to check if a given access handle owns the failing address.
1380  * Called by ndi_fmc_error, when we detect a PIO error.
1381  */
1382 /* ARGSUSED */
1383 static int
1384 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1385     const void *not_used)
1386 {
1387 	pfn_t pfn, fault_pfn;
1388 	ddi_acc_hdl_t *hp;
1389 
1390 	hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1391 
1392 	ASSERT(hp);
1393 
1394 	if (addr != NULL) {
1395 		pfn = hp->ah_pfn;
1396 		fault_pfn = mmu_btop(*(uint64_t *)addr);
1397 		if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1398 			return (DDI_FM_NONFATAL);
1399 	}
1400 	return (DDI_FM_UNKNOWN);
1401 }
1402 
1403 void
1404 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1405 {
1406 	int fmcap;
1407 	ndi_err_t *errp;
1408 	on_trap_data_t *otp;
1409 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1410 
1411 	fmcap = ddi_fm_capable(handlep->ah_dip);
1412 
1413 	if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1414 	    !DDI_FM_ACC_ERR_CAP(fmcap)) {
1415 		handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1416 	} else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1417 		if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1418 			i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1419 			    NULL, DDI_NOSLEEP);
1420 		} else {
1421 			errp = hp->ahi_err;
1422 			otp = (on_trap_data_t *)errp->err_ontrap;
1423 			otp->ot_handle = (void *)(hp);
1424 			otp->ot_prot = OT_DATA_ACCESS;
1425 			if (handlep->ah_acc.devacc_attr_access ==
1426 			    DDI_CAUTIOUS_ACC)
1427 				otp->ot_trampoline =
1428 				    (uintptr_t)&i_ddi_caut_trampoline;
1429 			else
1430 				otp->ot_trampoline =
1431 				    (uintptr_t)&i_ddi_prot_trampoline;
1432 			errp->err_status = DDI_FM_OK;
1433 			errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1434 			errp->err_cf = impl_acc_check;
1435 		}
1436 	}
1437 }
1438 
1439 void
1440 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1441 {
1442 	ddi_acc_impl_t *hp;
1443 
1444 	ASSERT(handlep);
1445 
1446 	hp = (ddi_acc_impl_t *)handlep;
1447 
1448 	/*
1449 	 * check for SW byte-swapping
1450 	 */
1451 	hp->ahi_get8 = i_ddi_get8;
1452 	hp->ahi_put8 = i_ddi_put8;
1453 	hp->ahi_rep_get8 = i_ddi_rep_get8;
1454 	hp->ahi_rep_put8 = i_ddi_rep_put8;
1455 	if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1456 		hp->ahi_get16 = i_ddi_swap_get16;
1457 		hp->ahi_get32 = i_ddi_swap_get32;
1458 		hp->ahi_get64 = i_ddi_swap_get64;
1459 		hp->ahi_put16 = i_ddi_swap_put16;
1460 		hp->ahi_put32 = i_ddi_swap_put32;
1461 		hp->ahi_put64 = i_ddi_swap_put64;
1462 		hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1463 		hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1464 		hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1465 		hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1466 		hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1467 		hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1468 	} else {
1469 		hp->ahi_get16 = i_ddi_get16;
1470 		hp->ahi_get32 = i_ddi_get32;
1471 		hp->ahi_get64 = i_ddi_get64;
1472 		hp->ahi_put16 = i_ddi_put16;
1473 		hp->ahi_put32 = i_ddi_put32;
1474 		hp->ahi_put64 = i_ddi_put64;
1475 		hp->ahi_rep_get16 = i_ddi_rep_get16;
1476 		hp->ahi_rep_get32 = i_ddi_rep_get32;
1477 		hp->ahi_rep_get64 = i_ddi_rep_get64;
1478 		hp->ahi_rep_put16 = i_ddi_rep_put16;
1479 		hp->ahi_rep_put32 = i_ddi_rep_put32;
1480 		hp->ahi_rep_put64 = i_ddi_rep_put64;
1481 	}
1482 
1483 	/* Legacy fault flags and support */
1484 	hp->ahi_fault_check = i_ddi_acc_fault_check;
1485 	hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1486 	hp->ahi_fault = 0;
1487 	impl_acc_err_init(handlep);
1488 }
1489 
1490 void
1491 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1492 {
1493 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1494 
1495 	if (!hp->ahi_fault) {
1496 		hp->ahi_fault = 1;
1497 			(*hp->ahi_fault_notify)(hp);
1498 	}
1499 }
1500 
1501 void
1502 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1503 {
1504 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1505 
1506 	if (hp->ahi_fault) {
1507 		hp->ahi_fault = 0;
1508 			(*hp->ahi_fault_notify)(hp);
1509 	}
1510 }
1511 
1512 /* ARGSUSED */
1513 void
1514 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1515 {
1516 	/* Default version, does nothing */
1517 }
1518 
1519 /*
1520  * SECTION: Misc functions
1521  */
1522 
1523 /*
1524  * instance wrappers
1525  */
1526 /*ARGSUSED*/
1527 uint_t
1528 impl_assign_instance(dev_info_t *dip)
1529 {
1530 	return ((uint_t)-1);
1531 }
1532 
1533 /*ARGSUSED*/
1534 int
1535 impl_keep_instance(dev_info_t *dip)
1536 {
1537 	return (DDI_FAILURE);
1538 }
1539 
1540 /*ARGSUSED*/
1541 int
1542 impl_free_instance(dev_info_t *dip)
1543 {
1544 	return (DDI_FAILURE);
1545 }
1546 
1547 /*ARGSUSED*/
1548 int
1549 impl_check_cpu(dev_info_t *devi)
1550 {
1551 	return (DDI_SUCCESS);
1552 }
1553 
1554 
1555 static const char *nocopydevs[] = {
1556 	"SUNW,ffb",
1557 	"SUNW,afb",
1558 	NULL
1559 };
1560 
1561 /*
1562  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1563  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1564  */
1565 /*ARGSUSED*/
1566 int
1567 e_ddi_copyfromdev(dev_info_t *devi,
1568     off_t off, const void *devaddr, void *kaddr, size_t len)
1569 {
1570 	const char **argv;
1571 
1572 	for (argv = nocopydevs; *argv; argv++)
1573 		if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1574 			bzero(kaddr, len);
1575 			return (0);
1576 		}
1577 
1578 	bcopy(devaddr, kaddr, len);
1579 	return (0);
1580 }
1581 
1582 /*
1583  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1584  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1585  */
1586 /*ARGSUSED*/
1587 int
1588 e_ddi_copytodev(dev_info_t *devi,
1589     off_t off, const void *kaddr, void *devaddr, size_t len)
1590 {
1591 	const char **argv;
1592 
1593 	for (argv = nocopydevs; *argv; argv++)
1594 		if (strcmp(ddi_binding_name(devi), *argv) == 0)
1595 			return (1);
1596 
1597 	bcopy(kaddr, devaddr, len);
1598 	return (0);
1599 }
1600 
1601 /*
1602  * Boot Configuration
1603  */
1604 idprom_t idprom;
1605 
1606 /*
1607  * Configure the hardware on the system.
1608  * Called before the rootfs is mounted
1609  */
1610 void
1611 configure(void)
1612 {
1613 	extern void i_ddi_init_root();
1614 
1615 	/* We better have released boot by this time! */
1616 	ASSERT(!bootops);
1617 
1618 	/*
1619 	 * Determine whether or not to use the fpu, V9 SPARC cpus
1620 	 * always have one. Could check for existence of a fp queue,
1621 	 * Ultra I, II and IIa do not have a fp queue.
1622 	 */
1623 	if (fpu_exists)
1624 		fpu_probe();
1625 	else
1626 		cmn_err(CE_CONT, "FPU not in use\n");
1627 
1628 #if 0 /* XXXQ - not necessary for sun4u */
1629 	/*
1630 	 * This following line fixes bugid 1041296; we need to do a
1631 	 * prom_nextnode(0) because this call ALSO patches the DMA+
1632 	 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1633 	 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1634 	 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1635 	 */
1636 	(void) prom_nextnode((pnode_t)0);
1637 #endif
1638 
1639 	/*
1640 	 * Initialize devices on the machine.
1641 	 * Uses configuration tree built by the PROMs to determine what
1642 	 * is present, and builds a tree of prototype dev_info nodes
1643 	 * corresponding to the hardware which identified itself.
1644 	 */
1645 	i_ddi_init_root();
1646 
1647 #ifdef	DDI_PROP_DEBUG
1648 	(void) ddi_prop_debug(1);	/* Enable property debugging */
1649 #endif	/* DDI_PROP_DEBUG */
1650 }
1651 
1652 /*
1653  * The "status" property indicates the operational status of a device.
1654  * If this property is present, the value is a string indicating the
1655  * status of the device as follows:
1656  *
1657  *	"okay"		operational.
1658  *	"disabled"	not operational, but might become operational.
1659  *	"fail"		not operational because a fault has been detected,
1660  *			and it is unlikely that the device will become
1661  *			operational without repair. no additional details
1662  *			are available.
1663  *	"fail-xxx"	not operational because a fault has been detected,
1664  *			and it is unlikely that the device will become
1665  *			operational without repair. "xxx" is additional
1666  *			human-readable information about the particular
1667  *			fault condition that was detected.
1668  *
1669  * The absence of this property means that the operational status is
1670  * unknown or okay.
1671  *
1672  * This routine checks the status property of the specified device node
1673  * and returns 0 if the operational status indicates failure, and 1 otherwise.
1674  *
1675  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1676  * And, in that case, the property may not even be a string. So we carefully
1677  * check for the value "fail", in the beginning of the string, noting
1678  * the property length.
1679  */
1680 int
1681 status_okay(int id, char *buf, int buflen)
1682 {
1683 	char status_buf[OBP_MAXPROPNAME];
1684 	char *bufp = buf;
1685 	int len = buflen;
1686 	int proplen;
1687 	static const char *status = "status";
1688 	static const char *fail = "fail";
1689 	size_t fail_len = strlen(fail);
1690 
1691 	/*
1692 	 * Get the proplen ... if it's smaller than "fail",
1693 	 * or doesn't exist ... then we don't care, since
1694 	 * the value can't begin with the char string "fail".
1695 	 *
1696 	 * NB: proplen, if it's a string, includes the NULL in the
1697 	 * the size of the property, and fail_len does not.
1698 	 */
1699 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1700 	if (proplen <= fail_len)	/* nonexistent or uninteresting len */
1701 		return (1);
1702 
1703 	/*
1704 	 * if a buffer was provided, use it
1705 	 */
1706 	if ((buf == (char *)NULL) || (buflen <= 0)) {
1707 		bufp = status_buf;
1708 		len = sizeof (status_buf);
1709 	}
1710 	*bufp = (char)0;
1711 
1712 	/*
1713 	 * Get the property into the buffer, to the extent of the buffer,
1714 	 * and in case the buffer is smaller than the property size,
1715 	 * NULL terminate the buffer. (This handles the case where
1716 	 * a buffer was passed in and the caller wants to print the
1717 	 * value, but the buffer was too small).
1718 	 */
1719 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1720 	    (caddr_t)bufp, len);
1721 	*(bufp + len - 1) = (char)0;
1722 
1723 	/*
1724 	 * If the value begins with the char string "fail",
1725 	 * then it means the node is failed. We don't care
1726 	 * about any other values. We assume the node is ok
1727 	 * although it might be 'disabled'.
1728 	 */
1729 	if (strncmp(bufp, fail, fail_len) == 0)
1730 		return (0);
1731 
1732 	return (1);
1733 }
1734 
1735 
1736 /*
1737  * We set the cpu type from the idprom, if we can.
1738  * Note that we just read out the contents of it, for the most part.
1739  */
1740 void
1741 setcputype(void)
1742 {
1743 	/*
1744 	 * We cache the idprom info early on so that we don't
1745 	 * rummage through the NVRAM unnecessarily later.
1746 	 */
1747 	(void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1748 }
1749 
1750 /*
1751  *  Here is where we actually infer meanings to the members of idprom_t
1752  */
1753 void
1754 parse_idprom(void)
1755 {
1756 	if (idprom.id_format == IDFORM_1) {
1757 		uint_t i;
1758 
1759 		(void) localetheraddr((struct ether_addr *)idprom.id_ether,
1760 		    (struct ether_addr *)NULL);
1761 
1762 		i = idprom.id_machine << 24;
1763 		i = i + idprom.id_serial;
1764 		numtos((ulong_t)i, hw_serial);
1765 	} else
1766 		prom_printf("Invalid format code in IDprom.\n");
1767 }
1768 
1769 /*
1770  * Allow for implementation specific correction of PROM property values.
1771  */
1772 /*ARGSUSED*/
1773 void
1774 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1775     caddr_t buffer)
1776 {
1777 	/*
1778 	 * There are no adjustments needed in this implementation.
1779 	 */
1780 }
1781 
1782 /*
1783  * The following functions ready a cautious request to go up to the nexus
1784  * driver.  It is up to the nexus driver to decide how to process the request.
1785  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1786  * differently.
1787  */
1788 
1789 static void
1790 i_ddi_caut_getput_ctlops(
1791     ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1792     size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1793 {
1794 	peekpoke_ctlops_t	cautacc_ctlops_arg;
1795 
1796 	cautacc_ctlops_arg.size = size;
1797 	cautacc_ctlops_arg.dev_addr = dev_addr;
1798 	cautacc_ctlops_arg.host_addr = host_addr;
1799 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1800 	cautacc_ctlops_arg.repcount = repcount;
1801 	cautacc_ctlops_arg.flags = flags;
1802 
1803 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1804 	    &cautacc_ctlops_arg, NULL);
1805 }
1806 
1807 uint8_t
1808 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1809 {
1810 	uint8_t value;
1811 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1812 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1813 
1814 	return (value);
1815 }
1816 
1817 uint16_t
1818 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1819 {
1820 	uint16_t value;
1821 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1822 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1823 
1824 	return (value);
1825 }
1826 
1827 uint32_t
1828 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1829 {
1830 	uint32_t value;
1831 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1832 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1833 
1834 	return (value);
1835 }
1836 
1837 uint64_t
1838 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1839 {
1840 	uint64_t value;
1841 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1842 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1843 
1844 	return (value);
1845 }
1846 
1847 void
1848 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1849 {
1850 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1851 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1852 }
1853 
1854 void
1855 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1856 {
1857 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1858 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1859 }
1860 
1861 void
1862 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1863 {
1864 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1865 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1866 }
1867 
1868 void
1869 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1870 {
1871 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1872 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1873 }
1874 
1875 void
1876 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1877 	size_t repcount, uint_t flags)
1878 {
1879 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1880 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1881 }
1882 
1883 void
1884 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1885     uint16_t *dev_addr, size_t repcount, uint_t flags)
1886 {
1887 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1888 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1889 }
1890 
1891 void
1892 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1893     uint32_t *dev_addr, size_t repcount, uint_t flags)
1894 {
1895 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1896 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1897 }
1898 
1899 void
1900 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1901     uint64_t *dev_addr, size_t repcount, uint_t flags)
1902 {
1903 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1904 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1905 }
1906 
1907 void
1908 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1909 	size_t repcount, uint_t flags)
1910 {
1911 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1912 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1913 }
1914 
1915 void
1916 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1917     uint16_t *dev_addr, size_t repcount, uint_t flags)
1918 {
1919 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1920 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1921 }
1922 
1923 void
1924 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1925     uint32_t *dev_addr, size_t repcount, uint_t flags)
1926 {
1927 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1928 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1929 }
1930 
1931 void
1932 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1933     uint64_t *dev_addr, size_t repcount, uint_t flags)
1934 {
1935 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1936 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1937 }
1938 
1939 /*
1940  * This is called only to process peek/poke when the DIP is NULL.
1941  * Assume that this is for memory, as nexi take care of device safe accesses.
1942  */
1943 int
1944 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1945 {
1946 	int err = DDI_SUCCESS;
1947 	on_trap_data_t otd;
1948 
1949 	/* Set up protected environment. */
1950 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1951 		uintptr_t tramp = otd.ot_trampoline;
1952 
1953 		if (cmd == DDI_CTLOPS_POKE) {
1954 			otd.ot_trampoline = (uintptr_t)&poke_fault;
1955 			err = do_poke(in_args->size, (void *)in_args->dev_addr,
1956 			    (void *)in_args->host_addr);
1957 		} else {
1958 			otd.ot_trampoline = (uintptr_t)&peek_fault;
1959 			err = do_peek(in_args->size, (void *)in_args->dev_addr,
1960 			    (void *)in_args->host_addr);
1961 		}
1962 		otd.ot_trampoline = tramp;
1963 	} else
1964 		err = DDI_FAILURE;
1965 
1966 	/* Take down protected environment. */
1967 	no_trap();
1968 
1969 	return (err);
1970 }
1971