xref: /titanic_51/usr/src/uts/sun4/os/ddi_impl.c (revision 8ec5a1426a1784db6978a9712f6228fc7fb382c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * sun4 specific DDI implementation
31  */
32 #include <sys/cpuvar.h>
33 #include <sys/ddi_subrdefs.h>
34 #include <sys/machsystm.h>
35 #include <sys/sunndi.h>
36 #include <sys/sysmacros.h>
37 #include <sys/ontrap.h>
38 #include <vm/seg_kmem.h>
39 #include <sys/membar.h>
40 #include <sys/dditypes.h>
41 #include <sys/ndifm.h>
42 #include <sys/fm/io/ddi.h>
43 #include <sys/ivintr.h>
44 #include <sys/bootconf.h>
45 #include <sys/conf.h>
46 #include <sys/ethernet.h>
47 #include <sys/idprom.h>
48 #include <sys/promif.h>
49 #include <sys/prom_plat.h>
50 #include <sys/systeminfo.h>
51 #include <sys/fpu/fpusystm.h>
52 #include <sys/vm.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/fs/snode.h>
55 #include <sys/ddi_isa.h>
56 
57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
58     ddi_intr_handle_impl_t *);
59 #pragma weak get_intr_parent
60 
61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
62     ddi_intr_handle_impl_t *, void *);
63 #pragma weak process_intr_ops
64 
65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
66     prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
67     int32_t len);
68 #pragma weak cells_1275_copy
69 
70 /*
71  * Wrapper for ddi_prop_lookup_int_array().
72  * This is handy because it returns the prop length in
73  * bytes which is what most of the callers require.
74  */
75 
76 static int
77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
78 {
79 	int ret;
80 
81 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
82 	    DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
83 		*plen = (*plen) * (uint_t)sizeof (int);
84 	}
85 	return (ret);
86 }
87 
88 /*
89  * SECTION: DDI Node Configuration
90  */
91 
92 /*
93  * init_regspec_64:
94  *
95  * If the parent #size-cells is 2, convert the upa-style or
96  * safari-style reg property from 2-size cells to 1 size cell
97  * format, ignoring the size_hi, which must be zero for devices.
98  * (It won't be zero in the memory list properties in the memory
99  * nodes, but that doesn't matter here.)
100  */
101 struct ddi_parent_private_data *
102 init_regspec_64(dev_info_t *dip)
103 {
104 	struct ddi_parent_private_data *pd;
105 	dev_info_t *parent;
106 	int size_cells;
107 
108 	/*
109 	 * If there are no "reg"s in the child node, return.
110 	 */
111 	pd = ddi_get_parent_data(dip);
112 	if ((pd == NULL) || (pd->par_nreg == 0)) {
113 		return (pd);
114 	}
115 	parent = ddi_get_parent(dip);
116 
117 	size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
118 	    DDI_PROP_DONTPASS, "#size-cells", 1);
119 
120 	if (size_cells != 1)  {
121 
122 		int n, j;
123 		struct regspec *irp;
124 		struct reg_64 {
125 			uint_t addr_hi, addr_lo, size_hi, size_lo;
126 		};
127 		struct reg_64 *r64_rp;
128 		struct regspec *rp;
129 		uint_t len = 0;
130 		int *reg_prop;
131 
132 		ASSERT(size_cells == 2);
133 
134 		/*
135 		 * We already looked the property up once before if
136 		 * pd is non-NULL.
137 		 */
138 		(void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
139 		    DDI_PROP_DONTPASS, OBP_REG, &reg_prop, &len);
140 		ASSERT(len != 0);
141 
142 		n = sizeof (struct reg_64) / sizeof (int);
143 		n = len / n;
144 
145 		/*
146 		 * We're allocating a buffer the size of the PROM's property,
147 		 * but we're only using a smaller portion when we assign it
148 		 * to a regspec.  We do this so that in the
149 		 * impl_ddi_sunbus_removechild function, we will
150 		 * always free the right amount of memory.
151 		 */
152 		irp = rp = (struct regspec *)reg_prop;
153 		r64_rp = (struct reg_64 *)pd->par_reg;
154 
155 		for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
156 			ASSERT(r64_rp->size_hi == 0);
157 			rp->regspec_bustype = r64_rp->addr_hi;
158 			rp->regspec_addr = r64_rp->addr_lo;
159 			rp->regspec_size = r64_rp->size_lo;
160 		}
161 
162 		ddi_prop_free((void *)pd->par_reg);
163 		pd->par_nreg = n;
164 		pd->par_reg = irp;
165 	}
166 	return (pd);
167 }
168 
169 /*
170  * Create a ddi_parent_private_data structure from the ddi properties of
171  * the dev_info node.
172  *
173  * The "reg" is required if the driver wishes to create mappings on behalf
174  * of the device. The "reg" property is assumed to be a list of at least
175  * one triplet
176  *
177  *	<bustype, address, size>*1
178  *
179  * The "interrupt" property is no longer part of parent private data on
180  * sun4u. The interrupt parent is may not be the device tree parent.
181  *
182  * The "ranges" property describes the mapping of child addresses to parent
183  * addresses.
184  *
185  * N.B. struct rangespec is defined for the following default values:
186  *			parent  child
187  *	#address-cells	2	2
188  *	#size-cells	1	1
189  * This function doesn't deal with non-default cells and will not create
190  * ranges in such cases.
191  */
192 void
193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
194 {
195 	struct ddi_parent_private_data *pdptr;
196 	int *reg_prop, *rng_prop;
197 	uint_t reg_len = 0, rng_len = 0;
198 	dev_info_t *parent;
199 	int parent_addr_cells, parent_size_cells;
200 	int child_addr_cells, child_size_cells;
201 
202 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
203 
204 	/*
205 	 * root node has no parent private data, so *ppd should
206 	 * be initialized for naming to work properly.
207 	 */
208 	if ((parent = ddi_get_parent(child)) == NULL)
209 		return;
210 
211 	/*
212 	 * Set reg field of parent data from "reg" property
213 	 */
214 	if ((get_prop_int_array(child, OBP_REG, &reg_prop, &reg_len)
215 	    == DDI_PROP_SUCCESS) && (reg_len != 0)) {
216 		pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
217 		pdptr->par_reg = (struct regspec *)reg_prop;
218 	}
219 
220 	/*
221 	 * "ranges" property ...
222 	 *
223 	 * This function does not handle cases where #address-cells != 2
224 	 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
225 	 *
226 	 * Nexus drivers with such exceptions (e.g. pci ranges)
227 	 * should either create a separate function for handling
228 	 * ranges or not use parent private data to store ranges.
229 	 */
230 
231 	/* root node has no ranges */
232 	if ((parent = ddi_get_parent(child)) == NULL)
233 		return;
234 
235 	child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
236 	    DDI_PROP_DONTPASS, "#address-cells", 2);
237 	child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
238 	    DDI_PROP_DONTPASS, "#size-cells", 1);
239 	parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
240 	    DDI_PROP_DONTPASS, "#address-cells", 2);
241 	parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
242 	    DDI_PROP_DONTPASS, "#size-cells", 1);
243 	if (child_addr_cells != 2 || parent_addr_cells != 2 ||
244 	    (child_size_cells != 1 && parent_size_cells != 1)) {
245 		NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
246 		    "#address-cells or #size-cells have non-default value"));
247 		return;
248 	}
249 
250 	if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
251 	    == DDI_PROP_SUCCESS) {
252 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
253 		pdptr->par_rng = (struct rangespec *)rng_prop;
254 	}
255 }
256 
257 /*
258  * Free ddi_parent_private_data structure
259  */
260 void
261 impl_free_ddi_ppd(dev_info_t *dip)
262 {
263 	struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
264 
265 	if (pdptr == NULL)
266 		return;
267 
268 	if (pdptr->par_nrng != 0)
269 		ddi_prop_free((void *)pdptr->par_rng);
270 
271 	if (pdptr->par_nreg != 0)
272 		ddi_prop_free((void *)pdptr->par_reg);
273 
274 	kmem_free(pdptr, sizeof (*pdptr));
275 	ddi_set_parent_data(dip, NULL);
276 }
277 
278 /*
279  * Name a child of sun busses based on the reg spec.
280  * Handles the following properties:
281  *
282  *	Property	value
283  *	Name		type
284  *
285  *	reg		register spec
286  *	interrupts	new (bus-oriented) interrupt spec
287  *	ranges		range spec
288  *
289  * This may be called multiple times, independent of
290  * initchild calls.
291  */
292 static int
293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
294 {
295 	struct ddi_parent_private_data *pdptr;
296 	struct regspec *rp;
297 
298 	/*
299 	 * Fill in parent-private data and this function returns to us
300 	 * an indication if it used "registers" to fill in the data.
301 	 */
302 	if (ddi_get_parent_data(child) == NULL) {
303 		make_ddi_ppd(child, &pdptr);
304 		ddi_set_parent_data(child, pdptr);
305 	}
306 
307 	/*
308 	 * No reg property, return null string as address
309 	 * (e.g. root node)
310 	 */
311 	name[0] = '\0';
312 	if (sparc_pd_getnreg(child) == 0) {
313 		return (DDI_SUCCESS);
314 	}
315 
316 	rp = sparc_pd_getreg(child, 0);
317 	(void) snprintf(name, namelen, "%x,%x",
318 	    rp->regspec_bustype, rp->regspec_addr);
319 	return (DDI_SUCCESS);
320 }
321 
322 
323 /*
324  * Called from the bus_ctl op of some drivers.
325  * to implement the DDI_CTLOPS_INITCHILD operation.
326  *
327  * NEW drivers should NOT use this function, but should declare
328  * there own initchild/uninitchild handlers. (This function assumes
329  * the layout of the parent private data and the format of "reg",
330  * "ranges", "interrupts" properties and that #address-cells and
331  * #size-cells of the parent bus are defined to be default values.)
332  */
333 int
334 impl_ddi_sunbus_initchild(dev_info_t *child)
335 {
336 	char name[MAXNAMELEN];
337 
338 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
339 	ddi_set_name_addr(child, name);
340 
341 	/*
342 	 * Try to merge .conf node. If successful, return failure to
343 	 * remove this child.
344 	 */
345 	if ((ndi_dev_is_persistent_node(child) == 0) &&
346 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
347 		impl_ddi_sunbus_removechild(child);
348 		return (DDI_FAILURE);
349 	}
350 	return (DDI_SUCCESS);
351 }
352 
353 /*
354  * A better name for this function would be impl_ddi_sunbus_uninitchild()
355  * It does not remove the child, it uninitializes it, reclaiming the
356  * resources taken by impl_ddi_sunbus_initchild.
357  */
358 void
359 impl_ddi_sunbus_removechild(dev_info_t *dip)
360 {
361 	impl_free_ddi_ppd(dip);
362 	ddi_set_name_addr(dip, NULL);
363 	/*
364 	 * Strip the node to properly convert it back to prototype form
365 	 */
366 	impl_rem_dev_props(dip);
367 }
368 
369 /*
370  * SECTION: DDI Interrupt
371  */
372 
373 void
374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
375 {
376 	int i;
377 	for (i = 0; i < len; i++)
378 		*to = *from;
379 }
380 
381 prop_1275_cell_t *
382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
383 {
384 	prop_1275_cell_t *match_cell = 0;
385 	int32_t i;
386 
387 	for (i = 0; i < len; i++)
388 		if (cell1[i] != cell2[i]) {
389 			match_cell = &cell1[i];
390 			break;
391 		}
392 
393 	return (match_cell);
394 }
395 
396 /*
397  * get_intr_parent() is a generic routine that process a 1275 interrupt
398  * map (imap) property.  This function returns a dev_info_t structure
399  * which claims ownership of the interrupt domain.
400  * It also returns the new interrupt translation within this new domain.
401  * If an interrupt-parent or interrupt-map property are not found,
402  * then we fallback to using the device tree's parent.
403  *
404  * imap entry format:
405  * <reg>,<interrupt>,<phandle>,<translated interrupt>
406  * reg - The register specification in the interrupts domain
407  * interrupt - The interrupt specification
408  * phandle - PROM handle of the device that owns the xlated interrupt domain
409  * translated interrupt - interrupt specifier in the parents domain
410  * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
411  *	a unique entry called a unit interrupt specifier.
412  *
413  * Here's the processing steps:
414  * step1 - If the interrupt-parent property exists, create the ispec and
415  *	return the dip of the interrupt parent.
416  * step2 - Extract the interrupt-map property and the interrupt-map-mask
417  *	If these don't exist, just return the device tree parent.
418  * step3 - build up the unit interrupt specifier to match against the
419  *	interrupt map property
420  * step4 - Scan the interrupt-map property until a match is found
421  * step4a - Extract the interrupt parent
422  * step4b - Compare the unit interrupt specifier
423  */
424 dev_info_t *
425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
426 {
427 	prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
428 	int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
429 	    addr_cells, intr_cells, reg_len, i, j;
430 	int32_t match_found = 0;
431 	dev_info_t *intr_parent_dip = NULL;
432 	uint32_t *intr = &hdlp->ih_vector;
433 	uint32_t nodeid;
434 #ifdef DEBUG
435 	static int debug = 0;
436 #endif
437 
438 	/*
439 	 * step1
440 	 * If we have an interrupt-parent property, this property represents
441 	 * the nodeid of our interrupt parent.
442 	 */
443 	if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
444 	    "interrupt-parent", -1)) != -1) {
445 		intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
446 		ASSERT(intr_parent_dip);
447 
448 		/*
449 		 * Attach the interrupt parent.
450 		 *
451 		 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
452 		 *	Also, interrupt parent isn't held. This needs
453 		 *	to be revisited if DR-capable platforms implement
454 		 *	interrupt redirection.
455 		 */
456 		if (i_ddi_attach_node_hierarchy(intr_parent_dip)
457 		    != DDI_SUCCESS) {
458 			ndi_rele_devi(intr_parent_dip);
459 			return (NULL);
460 		}
461 
462 		return (intr_parent_dip);
463 	}
464 
465 	/*
466 	 * step2
467 	 * Get interrupt map structure from PROM property
468 	 */
469 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
470 	    "interrupt-map", (caddr_t)&imap, &imap_sz)
471 	    != DDI_PROP_SUCCESS) {
472 		/*
473 		 * If we don't have an imap property, default to using the
474 		 * device tree.
475 		 */
476 
477 		ndi_hold_devi(pdip);
478 		return (pdip);
479 	}
480 
481 	/* Get the interrupt mask property */
482 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
483 	    "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
484 	    != DDI_PROP_SUCCESS) {
485 		/*
486 		 * If we don't find this property, we have to fail the request
487 		 * because the 1275 imap property wasn't defined correctly.
488 		 */
489 		ASSERT(intr_parent_dip == NULL);
490 		goto exit2;
491 	}
492 
493 	/* Get the address cell size */
494 	addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
495 	    "#address-cells", 2);
496 
497 	/* Get the interrupts cell size */
498 	intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
499 	    "#interrupt-cells", 1);
500 
501 	/*
502 	 * step3
503 	 * Now lets build up the unit interrupt specifier e.g. reg,intr
504 	 * and apply the imap mask.  match_req will hold this when we're
505 	 * through.
506 	 */
507 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
508 	    (caddr_t)&reg_p, &reg_len) != DDI_SUCCESS) {
509 		ASSERT(intr_parent_dip == NULL);
510 		goto exit3;
511 	}
512 
513 	match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
514 	    CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
515 
516 	for (i = 0; i < addr_cells; i++)
517 		match_req[i] = (reg_p[i] & imap_mask[i]);
518 
519 	for (j = 0; j < intr_cells; i++, j++)
520 		match_req[i] = (intr[j] & imap_mask[i]);
521 
522 	/* Calculate the imap size in cells */
523 	imap_cells = BYTES_TO_1275_CELLS(imap_sz);
524 
525 #ifdef DEBUG
526 	if (debug)
527 		prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
528 		    "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
529 		    match_req, imap);
530 #endif
531 
532 	/*
533 	 * Scan the imap property looking for a match of the interrupt unit
534 	 * specifier.  This loop is rather complex since the data within the
535 	 * imap property may vary in size.
536 	 */
537 	for (scan = imap, imap_scan_cells = i = 0;
538 	    imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
539 		int new_intr_cells;
540 
541 		/* Set the index to the nodeid field */
542 		i = addr_cells + intr_cells;
543 
544 		/*
545 		 * step4a
546 		 * Translate the nodeid field to a dip
547 		 */
548 		ASSERT(intr_parent_dip == NULL);
549 		intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
550 
551 		ASSERT(intr_parent_dip != 0);
552 #ifdef DEBUG
553 		if (debug)
554 			prom_printf("scan 0x%p\n", scan);
555 #endif
556 		/*
557 		 * The tmp_dip describes the new domain, get it's interrupt
558 		 * cell size
559 		 */
560 		new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
561 		    "#interrupts-cells", 1);
562 
563 		/*
564 		 * step4b
565 		 * See if we have a match on the interrupt unit specifier
566 		 */
567 		if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
568 		    == 0) {
569 			uint32_t *intr;
570 
571 			match_found = 1;
572 
573 			/*
574 			 * If we have an imap parent whose not in our device
575 			 * tree path, we need to hold and install that driver.
576 			 */
577 			if (i_ddi_attach_node_hierarchy(intr_parent_dip)
578 			    != DDI_SUCCESS) {
579 				ndi_rele_devi(intr_parent_dip);
580 				intr_parent_dip = (dev_info_t *)NULL;
581 				goto exit4;
582 			}
583 
584 			/*
585 			 * We need to handcraft an ispec along with a bus
586 			 * interrupt value, so we can dup it into our
587 			 * standard ispec structure.
588 			 */
589 			/* Extract the translated interrupt information */
590 			intr = kmem_alloc(
591 			    CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
592 
593 			for (j = 0; j < new_intr_cells; j++, i++)
594 				intr[j] = scan[i];
595 
596 			cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
597 
598 			kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
599 
600 #ifdef DEBUG
601 			if (debug)
602 				prom_printf("dip 0x%p\n", intr_parent_dip);
603 #endif
604 			break;
605 		} else {
606 #ifdef DEBUG
607 			if (debug)
608 				prom_printf("dip 0x%p\n", intr_parent_dip);
609 #endif
610 			ndi_rele_devi(intr_parent_dip);
611 			intr_parent_dip = NULL;
612 			i += new_intr_cells;
613 		}
614 	}
615 
616 	/*
617 	 * If we haven't found our interrupt parent at this point, fallback
618 	 * to using the device tree.
619 	 */
620 	if (!match_found) {
621 		ndi_hold_devi(pdip);
622 		ASSERT(intr_parent_dip == NULL);
623 		intr_parent_dip = pdip;
624 	}
625 
626 	ASSERT(intr_parent_dip != NULL);
627 
628 exit4:
629 	kmem_free(reg_p, reg_len);
630 	kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
631 	    CELLS_1275_TO_BYTES(intr_cells));
632 
633 exit3:
634 	kmem_free(imap_mask, imap_mask_sz);
635 
636 exit2:
637 	kmem_free(imap, imap_sz);
638 
639 	return (intr_parent_dip);
640 }
641 
642 /*
643  * process_intr_ops:
644  *
645  * Process the interrupt op via the interrupt parent.
646  */
647 int
648 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
649     ddi_intr_handle_impl_t *hdlp, void *result)
650 {
651 	int		ret = DDI_FAILURE;
652 
653 	if (NEXUS_HAS_INTR_OP(pdip)) {
654 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
655 		    bus_intr_op)) (pdip, rdip, op, hdlp, result);
656 	} else {
657 		cmn_err(CE_WARN, "Failed to process interrupt "
658 		    "for %s%d due to down-rev nexus driver %s%d",
659 		    ddi_get_name(rdip), ddi_get_instance(rdip),
660 		    ddi_get_name(pdip), ddi_get_instance(pdip));
661 	}
662 
663 	return (ret);
664 }
665 
666 /*ARGSUSED*/
667 uint_t
668 softlevel1(caddr_t arg)
669 {
670 	softint();
671 	return (1);
672 }
673 
674 /*
675  * indirection table, to save us some large switch statements
676  * NOTE: This must agree with "INTLEVEL_foo" constants in
677  *	<sys/avintr.h>
678  */
679 struct autovec *const vectorlist[] = { 0 };
680 
681 /*
682  * This value is exported here for the functions in avintr.c
683  */
684 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
685 
686 /*
687  * Check for machine specific interrupt levels which cannot be reassigned by
688  * settrap(), sun4u version.
689  *
690  * sun4u does not support V8 SPARC "fast trap" handlers.
691  */
692 /*ARGSUSED*/
693 int
694 exclude_settrap(int lvl)
695 {
696 	return (1);
697 }
698 
699 /*
700  * Check for machine specific interrupt levels which cannot have interrupt
701  * handlers added. We allow levels 1 through 15; level 0 is nonsense.
702  */
703 /*ARGSUSED*/
704 int
705 exclude_level(int lvl)
706 {
707 	return ((lvl < 1) || (lvl > 15));
708 }
709 
710 /*
711  * Wrapper functions used by New DDI interrupt framework.
712  */
713 
714 /*
715  * i_ddi_intr_ops:
716  */
717 int
718 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
719     ddi_intr_handle_impl_t *hdlp, void *result)
720 {
721 	dev_info_t	*pdip = ddi_get_parent(dip);
722 	int		ret = DDI_FAILURE;
723 
724 	/*
725 	 * The following check is required to address
726 	 * one of the test case of ADDI test suite.
727 	 */
728 	if (pdip == NULL)
729 		return (DDI_FAILURE);
730 
731 	if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
732 		return (process_intr_ops(pdip, rdip, op, hdlp, result));
733 
734 	if (hdlp->ih_vector == 0)
735 		hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
736 
737 	if (hdlp->ih_pri == 0)
738 		hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
739 
740 	switch (op) {
741 	case DDI_INTROP_ADDISR:
742 	case DDI_INTROP_REMISR:
743 	case DDI_INTROP_ENABLE:
744 	case DDI_INTROP_DISABLE:
745 	case DDI_INTROP_BLOCKENABLE:
746 	case DDI_INTROP_BLOCKDISABLE:
747 		/*
748 		 * Try and determine our parent and possibly an interrupt
749 		 * translation. intr parent dip returned held
750 		 */
751 		if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
752 			goto done;
753 	}
754 
755 	ret = process_intr_ops(pdip, rdip, op, hdlp, result);
756 
757 done:
758 	switch (op) {
759 	case DDI_INTROP_ADDISR:
760 	case DDI_INTROP_REMISR:
761 	case DDI_INTROP_ENABLE:
762 	case DDI_INTROP_DISABLE:
763 	case DDI_INTROP_BLOCKENABLE:
764 	case DDI_INTROP_BLOCKDISABLE:
765 		/* Release hold acquired in get_intr_parent() */
766 		if (pdip)
767 			ndi_rele_devi(pdip);
768 	}
769 
770 	hdlp->ih_vector = 0;
771 
772 	return (ret);
773 }
774 
775 /*
776  * i_ddi_add_ivintr:
777  */
778 /*ARGSUSED*/
779 int
780 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
781 {
782 	/* Sanity check the entry we're about to add */
783 	if (GET_IVINTR(hdlp->ih_vector)) {
784 		cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector);
785 		return (DDI_FAILURE);
786 	}
787 
788 	/*
789 	 * If the PIL was set and is valid use it, otherwise
790 	 * default it to 1
791 	 */
792 	if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
793 		hdlp->ih_pri = 1;
794 
795 	VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
796 	    (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0);
797 
798 	return (DDI_SUCCESS);
799 }
800 
801 /*
802  * i_ddi_rem_ivintr:
803  */
804 /*ARGSUSED*/
805 void
806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
807 {
808 	rem_ivintr(hdlp->ih_vector, NULL);
809 }
810 
811 /*
812  * i_ddi_get_inum - Get the interrupt number property from the
813  * specified device. Note that this function is called only for
814  * the FIXED interrupt type.
815  */
816 uint32_t
817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
818 {
819 	int32_t			intrlen, intr_cells, max_intrs;
820 	prop_1275_cell_t	*ip, intr_sz;
821 	uint32_t		intr = 0;
822 
823 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
824 	    DDI_PROP_CANSLEEP,
825 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
826 
827 		intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
828 		    "#interrupt-cells", 1);
829 
830 		/* adjust for number of bytes */
831 		intr_sz = CELLS_1275_TO_BYTES(intr_cells);
832 
833 		/* Calculate the number of interrupts */
834 		max_intrs = intrlen / intr_sz;
835 
836 		if (inumber < max_intrs) {
837 			prop_1275_cell_t *intrp = ip;
838 
839 			/* Index into interrupt property */
840 			intrp += (inumber * intr_cells);
841 
842 			cells_1275_copy(intrp, &intr, intr_cells);
843 		}
844 
845 		kmem_free(ip, intrlen);
846 	}
847 
848 	return (intr);
849 }
850 
851 /*
852  * i_ddi_get_intr_pri - Get the interrupt-priorities property from
853  * the specified device. Note that this function is called only for
854  * the FIXED interrupt type.
855  */
856 uint32_t
857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
858 {
859 	uint32_t	*intr_prio_p;
860 	uint32_t	pri = 0;
861 	int32_t		i;
862 
863 	/*
864 	 * Use the "interrupt-priorities" property to determine the
865 	 * the pil/ipl for the interrupt handler.
866 	 */
867 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
868 	    "interrupt-priorities", (caddr_t)&intr_prio_p,
869 	    &i) == DDI_SUCCESS) {
870 		if (inumber < (i / sizeof (int32_t)))
871 			pri = intr_prio_p[inumber];
872 		kmem_free(intr_prio_p, i);
873 	}
874 
875 	return (pri);
876 }
877 
878 int
879 i_ddi_get_nintrs(dev_info_t *dip)
880 {
881 	int32_t intrlen;
882 	prop_1275_cell_t intr_sz;
883 	prop_1275_cell_t *ip;
884 	int32_t ret = 0;
885 
886 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
887 	    DDI_PROP_CANSLEEP,
888 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
889 
890 		intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
891 		    "#interrupt-cells", 1);
892 		/* adjust for number of bytes */
893 		intr_sz = CELLS_1275_TO_BYTES(intr_sz);
894 
895 		ret = intrlen / intr_sz;
896 
897 		kmem_free(ip, intrlen);
898 	}
899 
900 	return (ret);
901 }
902 
903 /*
904  * i_ddi_add_softint - allocate and add a soft interrupt to the system
905  */
906 int
907 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
908 {
909 	uint_t		rval;
910 
911 	if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func,
912 	    hdlp->ih_cb_arg1)) == 0) {
913 
914 		return (DDI_FAILURE);
915 	}
916 
917 	/* use uintptr_t to suppress the gcc warning */
918 	hdlp->ih_private = (void *)(uintptr_t)rval;
919 
920 	return (DDI_SUCCESS);
921 }
922 
923 void
924 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
925 {
926 	uint_t		intr_id;
927 
928 	/* disable */
929 	ASSERT(hdlp->ih_private != NULL);
930 
931 	/* use uintptr_t to suppress the gcc warning */
932 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
933 
934 	rem_softintr(intr_id);
935 	hdlp->ih_private = NULL;
936 }
937 
938 int
939 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
940 {
941 	uint_t		intr_id;
942 	int		ret;
943 
944 	ASSERT(hdlp != NULL);
945 	ASSERT(hdlp->ih_private != NULL);
946 
947 	/* use uintptr_t to suppress the gcc warning */
948 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
949 
950 	/* update the vector table for the 2nd arg */
951 	ret = update_softint_arg2(intr_id, arg2);
952 	if (ret == DDI_SUCCESS)
953 		setsoftint(intr_id);
954 
955 	return (ret);
956 }
957 
958 /* ARGSUSED */
959 int
960 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
961 {
962 	uint_t		intr_id;
963 	int		ret;
964 
965 	ASSERT(hdlp != NULL);
966 	ASSERT(hdlp->ih_private != NULL);
967 
968 	/* use uintptr_t to suppress the gcc warning */
969 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
970 
971 	/* update the vector table for the new priority */
972 	ret = update_softint_pri(intr_id, hdlp->ih_pri);
973 
974 	return (ret);
975 }
976 
977 /*ARGSUSED*/
978 void
979 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
980 {
981 }
982 
983 /*ARGSUSED*/
984 void
985 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
986 {
987 }
988 
989 /*
990  * SECTION: DDI Memory/DMA
991  */
992 
993 /*
994  * Check if the endianess attribute is supported on the platform.
995  * This function must be called before i_ddi_devacc_to_hatacc().
996  */
997 boolean_t
998 i_ddi_check_endian_attr(ddi_device_acc_attr_t *devaccp)
999 {
1000 #if defined(lint)
1001 	*devaccp = *devaccp;
1002 #endif
1003 	/*
1004 	 * All kinds of endianess is supported on SPARC.
1005 	 */
1006 	return (B_TRUE);
1007 }
1008 
1009 /* set HAT endianess attributes from ddi_device_acc_attr */
1010 void
1011 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1012 {
1013 	if (devaccp != NULL) {
1014 		if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
1015 			*hataccp &= ~HAT_ENDIAN_MASK;
1016 			*hataccp |= HAT_STRUCTURE_LE;
1017 		}
1018 	}
1019 }
1020 
1021 /*
1022  * Check if the specified cache attribute is supported on the platform.
1023  * This function must be called before i_ddi_cacheattr_to_hatacc().
1024  */
1025 boolean_t
1026 i_ddi_check_cache_attr(uint_t flags)
1027 {
1028 	/*
1029 	 * The cache attributes are mutually exclusive. Any combination of
1030 	 * the attributes leads to a failure.
1031 	 */
1032 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1033 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1034 		return (B_FALSE);
1035 
1036 	/*
1037 	 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1038 	 * but others lead to a failure.
1039 	 */
1040 	if (cache_attr & IOMEM_DATA_CACHED)
1041 		return (B_TRUE);
1042 	else
1043 		return (B_FALSE);
1044 }
1045 
1046 /* set HAT cache attributes from the cache attributes */
1047 void
1048 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1049 {
1050 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1051 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1052 #if defined(lint)
1053 	*hataccp = *hataccp;
1054 #endif
1055 	/*
1056 	 * set HAT attrs according to the cache attrs.
1057 	 */
1058 	switch (cache_attr) {
1059 	/*
1060 	 * The cache coherency is always maintained on SPARC, and
1061 	 * nothing is required.
1062 	 */
1063 	case IOMEM_DATA_CACHED:
1064 		break;
1065 	/*
1066 	 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1067 	 * not supported on SPARC -- this case must not occur because the
1068 	 * cache attribute is scrutinized before this function is called.
1069 	 */
1070 	case IOMEM_DATA_UNCACHED:
1071 	case IOMEM_DATA_UC_WR_COMBINE:
1072 	default:
1073 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1074 		    fname, cache_attr);
1075 	}
1076 }
1077 
1078 static vmem_t *little_endian_arena;
1079 static vmem_t *big_endian_arena;
1080 
1081 static void *
1082 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1083 {
1084 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1085 	    segkmem_page_create, NULL));
1086 }
1087 
1088 static void *
1089 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1090 {
1091 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1092 	    segkmem_page_create, NULL));
1093 }
1094 
1095 void
1096 ka_init(void)
1097 {
1098 	little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1099 	    segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1100 	big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1101 	    segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1102 }
1103 
1104 /*
1105  * Allocate from the system, aligned on a specific boundary.
1106  * The alignment, if non-zero, must be a power of 2.
1107  */
1108 static void *
1109 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1110 {
1111 	size_t *addr, *raddr, rsize;
1112 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1113 
1114 	align = MAX(align, hdrsize);
1115 	ASSERT((align & (align - 1)) == 0);
1116 
1117 	/*
1118 	 * We need to allocate
1119 	 *    rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1120 	 * bytes to be sure we have enough freedom to satisfy the request.
1121 	 * Since the buffer alignment depends on the request size, this is
1122 	 * not straightforward to use directly.
1123 	 *
1124 	 * kmem guarantees that any allocation of a 64-byte multiple will be
1125 	 * 64-byte aligned.  Since rounding up the request could add more
1126 	 * than we save, we compute the size with and without alignment, and
1127 	 * use the smaller of the two.
1128 	 */
1129 	rsize = size + hdrsize + align;
1130 
1131 	if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1132 		raddr = vmem_alloc(little_endian_arena, rsize,
1133 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1134 	} else {
1135 		raddr = vmem_alloc(big_endian_arena, rsize,
1136 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1137 	}
1138 
1139 	if (raddr == NULL)
1140 		return (NULL);
1141 
1142 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1143 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1144 
1145 	addr[-3] = (size_t)endian_flags;
1146 	addr[-2] = (size_t)raddr;
1147 	addr[-1] = rsize;
1148 
1149 	return (addr);
1150 }
1151 
1152 static void
1153 kfreea(void *addr)
1154 {
1155 	size_t *saddr = addr;
1156 
1157 	if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1158 		vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1159 	else
1160 		vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1161 }
1162 
1163 int
1164 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1165     size_t length, int cansleep, int flags,
1166     ddi_device_acc_attr_t *accattrp,
1167     caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1168 {
1169 	caddr_t a;
1170 	int iomin, align, streaming;
1171 	uint_t endian_flags = DDI_NEVERSWAP_ACC;
1172 
1173 #if defined(lint)
1174 	*handlep = *handlep;
1175 #endif
1176 
1177 	/*
1178 	 * Check legality of arguments
1179 	 */
1180 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1181 		return (DDI_FAILURE);
1182 	}
1183 
1184 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1185 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1186 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1187 		return (DDI_FAILURE);
1188 	}
1189 
1190 	/*
1191 	 * check if a streaming sequential xfer is requested.
1192 	 */
1193 	streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1194 
1195 	/*
1196 	 * Drivers for 64-bit capable SBus devices will encode
1197 	 * the burtsizes for 64-bit xfers in the upper 16-bits.
1198 	 * For DMA alignment, we use the most restrictive
1199 	 * alignment of 32-bit and 64-bit xfers.
1200 	 */
1201 	iomin = (attr->dma_attr_burstsizes & 0xffff) |
1202 	    ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1203 	/*
1204 	 * If a driver set burtsizes to 0, we give him byte alignment.
1205 	 * Otherwise align at the burtsizes boundary.
1206 	 */
1207 	if (iomin == 0)
1208 		iomin = 1;
1209 	else
1210 		iomin = 1 << (ddi_fls(iomin) - 1);
1211 	iomin = maxbit(iomin, attr->dma_attr_minxfer);
1212 	iomin = maxbit(iomin, attr->dma_attr_align);
1213 	iomin = ddi_iomin(dip, iomin, streaming);
1214 	if (iomin == 0)
1215 		return (DDI_FAILURE);
1216 
1217 	ASSERT((iomin & (iomin - 1)) == 0);
1218 	ASSERT(iomin >= attr->dma_attr_minxfer);
1219 	ASSERT(iomin >= attr->dma_attr_align);
1220 
1221 	length = P2ROUNDUP(length, iomin);
1222 	align = iomin;
1223 
1224 	if (accattrp != NULL)
1225 		endian_flags = accattrp->devacc_attr_endian_flags;
1226 
1227 	a = kalloca(length, align, cansleep, endian_flags);
1228 	if ((*kaddrp = a) == 0) {
1229 		return (DDI_FAILURE);
1230 	} else {
1231 		if (real_length) {
1232 			*real_length = length;
1233 		}
1234 		if (handlep) {
1235 			/*
1236 			 * assign handle information
1237 			 */
1238 			impl_acc_hdl_init(handlep);
1239 		}
1240 		return (DDI_SUCCESS);
1241 	}
1242 }
1243 
1244 /*
1245  * covert old DMA limits structure to DMA attribute structure
1246  * and continue
1247  */
1248 int
1249 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1250     size_t length, int cansleep, int streaming,
1251     ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1252     uint_t *real_length, ddi_acc_hdl_t *ap)
1253 {
1254 	ddi_dma_attr_t dma_attr, *attrp;
1255 	size_t rlen;
1256 	int ret;
1257 
1258 	ASSERT(limits);
1259 	attrp = &dma_attr;
1260 	attrp->dma_attr_version = DMA_ATTR_V0;
1261 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1262 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1263 	attrp->dma_attr_count_max = (uint64_t)-1;
1264 	attrp->dma_attr_align = 1;
1265 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1266 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1267 	attrp->dma_attr_maxxfer = (uint64_t)-1;
1268 	attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1269 	attrp->dma_attr_sgllen = 1;
1270 	attrp->dma_attr_granular = 1;
1271 	attrp->dma_attr_flags = 0;
1272 
1273 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1274 	    accattrp, kaddrp, &rlen, ap);
1275 	if (ret == DDI_SUCCESS) {
1276 		if (real_length)
1277 			*real_length = (uint_t)rlen;
1278 	}
1279 	return (ret);
1280 }
1281 
1282 /* ARGSUSED */
1283 void
1284 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1285 {
1286 	kfreea(kaddr);
1287 }
1288 
1289 /*
1290  * SECTION: DDI Data Access
1291  */
1292 
1293 static uintptr_t impl_acc_hdl_id = 0;
1294 
1295 /*
1296  * access handle allocator
1297  */
1298 ddi_acc_hdl_t *
1299 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1300 {
1301 	/*
1302 	 * Extract the access handle address from the DDI implemented
1303 	 * access handle
1304 	 */
1305 	return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1306 }
1307 
1308 ddi_acc_handle_t
1309 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1310 {
1311 	ddi_acc_impl_t *hp;
1312 	on_trap_data_t *otp;
1313 	int sleepflag;
1314 
1315 	sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1316 
1317 	/*
1318 	 * Allocate and initialize the data access handle and error status.
1319 	 */
1320 	if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1321 		goto fail;
1322 	if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1323 	    sizeof (ndi_err_t), sleepflag)) == NULL) {
1324 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1325 		goto fail;
1326 	}
1327 	if ((otp = (on_trap_data_t *)kmem_zalloc(
1328 	    sizeof (on_trap_data_t), sleepflag)) == NULL) {
1329 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1330 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1331 		goto fail;
1332 	}
1333 	hp->ahi_err->err_ontrap = otp;
1334 	hp->ahi_common.ah_platform_private = (void *)hp;
1335 
1336 	return ((ddi_acc_handle_t)hp);
1337 fail:
1338 	if ((waitfp != (int (*)())KM_SLEEP) &&
1339 	    (waitfp != (int (*)())KM_NOSLEEP))
1340 		ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1341 	return (NULL);
1342 }
1343 
1344 void
1345 impl_acc_hdl_free(ddi_acc_handle_t handle)
1346 {
1347 	ddi_acc_impl_t *hp;
1348 
1349 	/*
1350 	 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1351 	 * because that's what we allocated in impl_acc_hdl_alloc() above.
1352 	 */
1353 	hp = (ddi_acc_impl_t *)handle;
1354 	if (hp) {
1355 		kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1356 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1357 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1358 		if (impl_acc_hdl_id)
1359 			ddi_run_callback(&impl_acc_hdl_id);
1360 	}
1361 }
1362 
1363 #define	PCI_GET_MP_PFN(mp, page_no)	((mp)->dmai_ndvmapages == 1 ? \
1364 	(pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1365 
1366 /*
1367  * Function called after a dma fault occurred to find out whether the
1368  * fault address is associated with a driver that is able to handle faults
1369  * and recover from faults.
1370  */
1371 /* ARGSUSED */
1372 int
1373 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1374     const void *not_used)
1375 {
1376 	ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1377 	pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1378 	pfn_t comp_pfn;
1379 
1380 	/*
1381 	 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1382 	 */
1383 	int page;
1384 
1385 	ASSERT(mp);
1386 	for (page = 0; page < mp->dmai_ndvmapages; page++) {
1387 		comp_pfn = PCI_GET_MP_PFN(mp, page);
1388 		if (fault_pfn == comp_pfn)
1389 			return (DDI_FM_NONFATAL);
1390 	}
1391 	return (DDI_FM_UNKNOWN);
1392 }
1393 
1394 /*
1395  * Function used to check if a given access handle owns the failing address.
1396  * Called by ndi_fmc_error, when we detect a PIO error.
1397  */
1398 /* ARGSUSED */
1399 static int
1400 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1401     const void *not_used)
1402 {
1403 	pfn_t pfn, fault_pfn;
1404 	ddi_acc_hdl_t *hp;
1405 
1406 	hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1407 
1408 	ASSERT(hp);
1409 
1410 	if (addr != NULL) {
1411 		pfn = hp->ah_pfn;
1412 		fault_pfn = mmu_btop(*(uint64_t *)addr);
1413 		if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1414 			return (DDI_FM_NONFATAL);
1415 	}
1416 	return (DDI_FM_UNKNOWN);
1417 }
1418 
1419 void
1420 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1421 {
1422 	int fmcap;
1423 	ndi_err_t *errp;
1424 	on_trap_data_t *otp;
1425 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1426 
1427 	fmcap = ddi_fm_capable(handlep->ah_dip);
1428 
1429 	if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1430 	    !DDI_FM_ACC_ERR_CAP(fmcap)) {
1431 		handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1432 	} else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1433 		if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1434 			i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1435 			    NULL, DDI_NOSLEEP);
1436 		} else {
1437 			errp = hp->ahi_err;
1438 			otp = (on_trap_data_t *)errp->err_ontrap;
1439 			otp->ot_handle = (void *)(hp);
1440 			otp->ot_prot = OT_DATA_ACCESS;
1441 			if (handlep->ah_acc.devacc_attr_access ==
1442 			    DDI_CAUTIOUS_ACC)
1443 				otp->ot_trampoline =
1444 				    (uintptr_t)&i_ddi_caut_trampoline;
1445 			else
1446 				otp->ot_trampoline =
1447 				    (uintptr_t)&i_ddi_prot_trampoline;
1448 			errp->err_status = DDI_FM_OK;
1449 			errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1450 			errp->err_cf = impl_acc_check;
1451 		}
1452 	}
1453 }
1454 
1455 void
1456 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1457 {
1458 	ddi_acc_impl_t *hp;
1459 
1460 	ASSERT(handlep);
1461 
1462 	hp = (ddi_acc_impl_t *)handlep;
1463 
1464 	/*
1465 	 * check for SW byte-swapping
1466 	 */
1467 	hp->ahi_get8 = i_ddi_get8;
1468 	hp->ahi_put8 = i_ddi_put8;
1469 	hp->ahi_rep_get8 = i_ddi_rep_get8;
1470 	hp->ahi_rep_put8 = i_ddi_rep_put8;
1471 	if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1472 		hp->ahi_get16 = i_ddi_swap_get16;
1473 		hp->ahi_get32 = i_ddi_swap_get32;
1474 		hp->ahi_get64 = i_ddi_swap_get64;
1475 		hp->ahi_put16 = i_ddi_swap_put16;
1476 		hp->ahi_put32 = i_ddi_swap_put32;
1477 		hp->ahi_put64 = i_ddi_swap_put64;
1478 		hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1479 		hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1480 		hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1481 		hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1482 		hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1483 		hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1484 	} else {
1485 		hp->ahi_get16 = i_ddi_get16;
1486 		hp->ahi_get32 = i_ddi_get32;
1487 		hp->ahi_get64 = i_ddi_get64;
1488 		hp->ahi_put16 = i_ddi_put16;
1489 		hp->ahi_put32 = i_ddi_put32;
1490 		hp->ahi_put64 = i_ddi_put64;
1491 		hp->ahi_rep_get16 = i_ddi_rep_get16;
1492 		hp->ahi_rep_get32 = i_ddi_rep_get32;
1493 		hp->ahi_rep_get64 = i_ddi_rep_get64;
1494 		hp->ahi_rep_put16 = i_ddi_rep_put16;
1495 		hp->ahi_rep_put32 = i_ddi_rep_put32;
1496 		hp->ahi_rep_put64 = i_ddi_rep_put64;
1497 	}
1498 
1499 	/* Legacy fault flags and support */
1500 	hp->ahi_fault_check = i_ddi_acc_fault_check;
1501 	hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1502 	hp->ahi_fault = 0;
1503 	impl_acc_err_init(handlep);
1504 }
1505 
1506 void
1507 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1508 {
1509 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1510 
1511 	if (!hp->ahi_fault) {
1512 		hp->ahi_fault = 1;
1513 			(*hp->ahi_fault_notify)(hp);
1514 	}
1515 }
1516 
1517 void
1518 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1519 {
1520 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1521 
1522 	if (hp->ahi_fault) {
1523 		hp->ahi_fault = 0;
1524 			(*hp->ahi_fault_notify)(hp);
1525 	}
1526 }
1527 
1528 /* ARGSUSED */
1529 void
1530 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1531 {
1532 	/* Default version, does nothing */
1533 }
1534 
1535 /*
1536  * SECTION: Misc functions
1537  */
1538 
1539 /*
1540  * instance wrappers
1541  */
1542 /*ARGSUSED*/
1543 uint_t
1544 impl_assign_instance(dev_info_t *dip)
1545 {
1546 	return ((uint_t)-1);
1547 }
1548 
1549 /*ARGSUSED*/
1550 int
1551 impl_keep_instance(dev_info_t *dip)
1552 {
1553 	return (DDI_FAILURE);
1554 }
1555 
1556 /*ARGSUSED*/
1557 int
1558 impl_free_instance(dev_info_t *dip)
1559 {
1560 	return (DDI_FAILURE);
1561 }
1562 
1563 /*ARGSUSED*/
1564 int
1565 impl_check_cpu(dev_info_t *devi)
1566 {
1567 	return (DDI_SUCCESS);
1568 }
1569 
1570 
1571 static const char *nocopydevs[] = {
1572 	"SUNW,ffb",
1573 	"SUNW,afb",
1574 	NULL
1575 };
1576 
1577 /*
1578  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1579  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1580  */
1581 /*ARGSUSED*/
1582 int
1583 e_ddi_copyfromdev(dev_info_t *devi,
1584     off_t off, const void *devaddr, void *kaddr, size_t len)
1585 {
1586 	const char **argv;
1587 
1588 	for (argv = nocopydevs; *argv; argv++)
1589 		if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1590 			bzero(kaddr, len);
1591 			return (0);
1592 		}
1593 
1594 	bcopy(devaddr, kaddr, len);
1595 	return (0);
1596 }
1597 
1598 /*
1599  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1600  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1601  */
1602 /*ARGSUSED*/
1603 int
1604 e_ddi_copytodev(dev_info_t *devi,
1605     off_t off, const void *kaddr, void *devaddr, size_t len)
1606 {
1607 	const char **argv;
1608 
1609 	for (argv = nocopydevs; *argv; argv++)
1610 		if (strcmp(ddi_binding_name(devi), *argv) == 0)
1611 			return (1);
1612 
1613 	bcopy(kaddr, devaddr, len);
1614 	return (0);
1615 }
1616 
1617 /*
1618  * Boot Configuration
1619  */
1620 idprom_t idprom;
1621 
1622 /*
1623  * Configure the hardware on the system.
1624  * Called before the rootfs is mounted
1625  */
1626 void
1627 configure(void)
1628 {
1629 	extern void i_ddi_init_root();
1630 
1631 	/* We better have released boot by this time! */
1632 	ASSERT(!bootops);
1633 
1634 	/*
1635 	 * Determine whether or not to use the fpu, V9 SPARC cpus
1636 	 * always have one. Could check for existence of a fp queue,
1637 	 * Ultra I, II and IIa do not have a fp queue.
1638 	 */
1639 	if (fpu_exists)
1640 		fpu_probe();
1641 	else
1642 		cmn_err(CE_CONT, "FPU not in use\n");
1643 
1644 #if 0 /* XXXQ - not necessary for sun4u */
1645 	/*
1646 	 * This following line fixes bugid 1041296; we need to do a
1647 	 * prom_nextnode(0) because this call ALSO patches the DMA+
1648 	 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1649 	 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1650 	 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1651 	 */
1652 	(void) prom_nextnode((pnode_t)0);
1653 #endif
1654 
1655 	/*
1656 	 * Initialize devices on the machine.
1657 	 * Uses configuration tree built by the PROMs to determine what
1658 	 * is present, and builds a tree of prototype dev_info nodes
1659 	 * corresponding to the hardware which identified itself.
1660 	 */
1661 	i_ddi_init_root();
1662 
1663 #ifdef	DDI_PROP_DEBUG
1664 	(void) ddi_prop_debug(1);	/* Enable property debugging */
1665 #endif	/* DDI_PROP_DEBUG */
1666 }
1667 
1668 /*
1669  * The "status" property indicates the operational status of a device.
1670  * If this property is present, the value is a string indicating the
1671  * status of the device as follows:
1672  *
1673  *	"okay"		operational.
1674  *	"disabled"	not operational, but might become operational.
1675  *	"fail"		not operational because a fault has been detected,
1676  *			and it is unlikely that the device will become
1677  *			operational without repair. no additional details
1678  *			are available.
1679  *	"fail-xxx"	not operational because a fault has been detected,
1680  *			and it is unlikely that the device will become
1681  *			operational without repair. "xxx" is additional
1682  *			human-readable information about the particular
1683  *			fault condition that was detected.
1684  *
1685  * The absence of this property means that the operational status is
1686  * unknown or okay.
1687  *
1688  * This routine checks the status property of the specified device node
1689  * and returns 0 if the operational status indicates failure, and 1 otherwise.
1690  *
1691  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1692  * And, in that case, the property may not even be a string. So we carefully
1693  * check for the value "fail", in the beginning of the string, noting
1694  * the property length.
1695  */
1696 int
1697 status_okay(int id, char *buf, int buflen)
1698 {
1699 	char status_buf[OBP_MAXPROPNAME];
1700 	char *bufp = buf;
1701 	int len = buflen;
1702 	int proplen;
1703 	static const char *status = "status";
1704 	static const char *fail = "fail";
1705 	size_t fail_len = strlen(fail);
1706 
1707 	/*
1708 	 * Get the proplen ... if it's smaller than "fail",
1709 	 * or doesn't exist ... then we don't care, since
1710 	 * the value can't begin with the char string "fail".
1711 	 *
1712 	 * NB: proplen, if it's a string, includes the NULL in the
1713 	 * the size of the property, and fail_len does not.
1714 	 */
1715 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1716 	if (proplen <= fail_len)	/* nonexistent or uninteresting len */
1717 		return (1);
1718 
1719 	/*
1720 	 * if a buffer was provided, use it
1721 	 */
1722 	if ((buf == (char *)NULL) || (buflen <= 0)) {
1723 		bufp = status_buf;
1724 		len = sizeof (status_buf);
1725 	}
1726 	*bufp = (char)0;
1727 
1728 	/*
1729 	 * Get the property into the buffer, to the extent of the buffer,
1730 	 * and in case the buffer is smaller than the property size,
1731 	 * NULL terminate the buffer. (This handles the case where
1732 	 * a buffer was passed in and the caller wants to print the
1733 	 * value, but the buffer was too small).
1734 	 */
1735 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1736 	    (caddr_t)bufp, len);
1737 	*(bufp + len - 1) = (char)0;
1738 
1739 	/*
1740 	 * If the value begins with the char string "fail",
1741 	 * then it means the node is failed. We don't care
1742 	 * about any other values. We assume the node is ok
1743 	 * although it might be 'disabled'.
1744 	 */
1745 	if (strncmp(bufp, fail, fail_len) == 0)
1746 		return (0);
1747 
1748 	return (1);
1749 }
1750 
1751 
1752 /*
1753  * We set the cpu type from the idprom, if we can.
1754  * Note that we just read out the contents of it, for the most part.
1755  */
1756 void
1757 setcputype(void)
1758 {
1759 	/*
1760 	 * We cache the idprom info early on so that we don't
1761 	 * rummage through the NVRAM unnecessarily later.
1762 	 */
1763 	(void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1764 }
1765 
1766 /*
1767  *  Here is where we actually infer meanings to the members of idprom_t
1768  */
1769 void
1770 parse_idprom(void)
1771 {
1772 	if (idprom.id_format == IDFORM_1) {
1773 		uint_t i;
1774 
1775 		(void) localetheraddr((struct ether_addr *)idprom.id_ether,
1776 		    (struct ether_addr *)NULL);
1777 
1778 		i = idprom.id_machine << 24;
1779 		i = i + idprom.id_serial;
1780 		numtos((ulong_t)i, hw_serial);
1781 	} else
1782 		prom_printf("Invalid format code in IDprom.\n");
1783 }
1784 
1785 /*
1786  * Allow for implementation specific correction of PROM property values.
1787  */
1788 /*ARGSUSED*/
1789 void
1790 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1791     caddr_t buffer)
1792 {
1793 	/*
1794 	 * There are no adjustments needed in this implementation.
1795 	 */
1796 }
1797 
1798 /*
1799  * The following functions ready a cautious request to go up to the nexus
1800  * driver.  It is up to the nexus driver to decide how to process the request.
1801  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1802  * differently.
1803  */
1804 
1805 static void
1806 i_ddi_caut_getput_ctlops(
1807     ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1808     size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1809 {
1810 	peekpoke_ctlops_t	cautacc_ctlops_arg;
1811 
1812 	cautacc_ctlops_arg.size = size;
1813 	cautacc_ctlops_arg.dev_addr = dev_addr;
1814 	cautacc_ctlops_arg.host_addr = host_addr;
1815 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1816 	cautacc_ctlops_arg.repcount = repcount;
1817 	cautacc_ctlops_arg.flags = flags;
1818 
1819 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1820 	    &cautacc_ctlops_arg, NULL);
1821 }
1822 
1823 uint8_t
1824 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1825 {
1826 	uint8_t value;
1827 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1828 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1829 
1830 	return (value);
1831 }
1832 
1833 uint16_t
1834 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1835 {
1836 	uint16_t value;
1837 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1838 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1839 
1840 	return (value);
1841 }
1842 
1843 uint32_t
1844 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1845 {
1846 	uint32_t value;
1847 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1848 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1849 
1850 	return (value);
1851 }
1852 
1853 uint64_t
1854 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1855 {
1856 	uint64_t value;
1857 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1858 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1859 
1860 	return (value);
1861 }
1862 
1863 void
1864 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1865 {
1866 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1867 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1868 }
1869 
1870 void
1871 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1872 {
1873 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1874 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1875 }
1876 
1877 void
1878 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1879 {
1880 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1881 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1882 }
1883 
1884 void
1885 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1886 {
1887 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1888 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1889 }
1890 
1891 void
1892 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1893 	size_t repcount, uint_t flags)
1894 {
1895 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1896 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1897 }
1898 
1899 void
1900 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1901     uint16_t *dev_addr, size_t repcount, uint_t flags)
1902 {
1903 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1904 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1905 }
1906 
1907 void
1908 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1909     uint32_t *dev_addr, size_t repcount, uint_t flags)
1910 {
1911 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1912 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1913 }
1914 
1915 void
1916 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1917     uint64_t *dev_addr, size_t repcount, uint_t flags)
1918 {
1919 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1920 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1921 }
1922 
1923 void
1924 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1925 	size_t repcount, uint_t flags)
1926 {
1927 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1928 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1929 }
1930 
1931 void
1932 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1933     uint16_t *dev_addr, size_t repcount, uint_t flags)
1934 {
1935 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1936 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1937 }
1938 
1939 void
1940 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1941     uint32_t *dev_addr, size_t repcount, uint_t flags)
1942 {
1943 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1944 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1945 }
1946 
1947 void
1948 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1949     uint64_t *dev_addr, size_t repcount, uint_t flags)
1950 {
1951 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1952 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1953 }
1954 
1955 /*
1956  * This is called only to process peek/poke when the DIP is NULL.
1957  * Assume that this is for memory, as nexi take care of device safe accesses.
1958  */
1959 int
1960 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1961 {
1962 	int err = DDI_SUCCESS;
1963 	on_trap_data_t otd;
1964 
1965 	/* Set up protected environment. */
1966 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1967 		uintptr_t tramp = otd.ot_trampoline;
1968 
1969 		if (cmd == DDI_CTLOPS_POKE) {
1970 			otd.ot_trampoline = (uintptr_t)&poke_fault;
1971 			err = do_poke(in_args->size, (void *)in_args->dev_addr,
1972 			    (void *)in_args->host_addr);
1973 		} else {
1974 			otd.ot_trampoline = (uintptr_t)&peek_fault;
1975 			err = do_peek(in_args->size, (void *)in_args->dev_addr,
1976 			    (void *)in_args->host_addr);
1977 		}
1978 		otd.ot_trampoline = tramp;
1979 	} else
1980 		err = DDI_FAILURE;
1981 
1982 	/* Take down protected environment. */
1983 	no_trap();
1984 
1985 	return (err);
1986 }
1987