1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 23 /* All Rights Reserved */ 24 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Serial I/O driver for 82510/8250/16450/16550AF chips. 34 * Modified as sparc keyboard/mouse driver. 35 */ 36 #define SU_REGISTER_FILE_NO 0 37 #define SU_REGOFFSET 0 38 #define SU_REGISTER_LEN 8 39 40 #include <sys/param.h> 41 #include <sys/types.h> 42 #include <sys/signal.h> 43 #include <sys/stream.h> 44 #include <sys/termio.h> 45 #include <sys/errno.h> 46 #include <sys/file.h> 47 #include <sys/cmn_err.h> 48 #include <sys/stropts.h> 49 #include <sys/strsubr.h> 50 #include <sys/strsun.h> 51 #include <sys/strtty.h> 52 #include <sys/debug.h> 53 #include <sys/kbio.h> 54 #include <sys/cred.h> 55 #include <sys/modctl.h> 56 #include <sys/stat.h> 57 #include <sys/consdev.h> 58 #include <sys/mkdev.h> 59 #include <sys/kmem.h> 60 #include <sys/cred.h> 61 #ifdef DEBUG 62 #include <sys/promif.h> 63 #endif 64 #include <sys/ddi.h> 65 #include <sys/sunddi.h> 66 #include <sys/sudev.h> 67 #include <sys/note.h> 68 #include <sys/timex.h> 69 #include <sys/policy.h> 70 71 #define async_stopc async_ttycommon.t_stopc 72 #define async_startc async_ttycommon.t_startc 73 74 #define ASY_INIT 1 75 #define ASY_NOINIT 0 76 77 #ifdef DEBUG 78 #define ASY_DEBUG_INIT 0x001 79 #define ASY_DEBUG_INPUT 0x002 80 #define ASY_DEBUG_EOT 0x004 81 #define ASY_DEBUG_CLOSE 0x008 82 #define ASY_DEBUG_HFLOW 0x010 83 #define ASY_DEBUG_PROCS 0x020 84 #define ASY_DEBUG_STATE 0x040 85 #define ASY_DEBUG_INTR 0x080 86 static int asydebug = 0; 87 #endif 88 static int su_log = 0; 89 90 int su_drain_check = 15000000; /* tunable: exit drain check time */ 91 92 static struct ppsclockev asy_ppsev; 93 94 static int max_asy_instance = -1; 95 static void *su_asycom; /* soft state asycom pointer */ 96 static void *su_asyncline; /* soft state asyncline pointer */ 97 static boolean_t abort_charseq_recognize(uchar_t ch); 98 99 static uint_t asysoftintr(caddr_t intarg); 100 static uint_t asyintr(caddr_t argasy); 101 102 /* The async interrupt entry points */ 103 static void async_txint(struct asycom *asy, uchar_t lsr); 104 static void async_rxint(struct asycom *asy, uchar_t lsr); 105 static void async_msint(struct asycom *asy); 106 static int async_softint(struct asycom *asy); 107 108 static void async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp, 109 boolean_t iswput); 110 static void async_reioctl(void *); 111 static void async_iocdata(queue_t *q, mblk_t *mp); 112 static void async_restart(void *); 113 static void async_start(struct asyncline *async); 114 static void async_nstart(struct asyncline *async, int mode); 115 static void async_resume(struct asyncline *async); 116 static int asy_program(struct asycom *asy, int mode); 117 118 static int asymctl(struct asycom *, int, int); 119 static int asytodm(int, int); 120 static int dmtoasy(int); 121 static void asycheckflowcontrol_hw(struct asycom *asy); 122 static boolean_t asycheckflowcontrol_sw(struct asycom *asy); 123 static void asy_ppsevent(struct asycom *asy, int msr); 124 125 extern kcondvar_t lbolt_cv; 126 extern int ddi_create_internal_pathname(dev_info_t *dip, char *name, 127 int spec_type, minor_t minor_num); 128 129 130 /* 131 * Baud rate table. Indexed by #defines found in sys/termios.h 132 */ 133 ushort_t asyspdtab[] = { 134 0, /* 0 baud rate */ 135 0x900, /* 50 baud rate */ 136 0x600, /* 75 baud rate */ 137 0x417, /* 110 baud rate (%0.026) */ 138 0x359, /* 134 baud rate (%0.058) */ 139 0x300, /* 150 baud rate */ 140 0x240, /* 200 baud rate */ 141 0x180, /* 300 baud rate */ 142 0x0c0, /* 600 baud rate */ 143 0x060, /* 1200 baud rate */ 144 0x040, /* 1800 baud rate */ 145 0x030, /* 2400 baud rate */ 146 0x018, /* 4800 baud rate */ 147 0x00c, /* 9600 baud rate */ 148 0x006, /* 19200 baud rate */ 149 0x003, /* 38400 baud rate */ 150 0x002, /* 57600 baud rate */ 151 0, /* 76800 baud rate - not supported */ 152 0x001, /* 115200 baud rate */ 153 0, /* 153600 baud rate - not supported */ 154 0x8002, /* 230400 baud rate - supported on specific platforms */ 155 0, /* 307200 baud rate - not supported */ 156 0x8001 /* 460800 baud rate - supported on specific platforms */ 157 }; 158 159 /* 160 * Number of speeds supported is the number of entries in 161 * the above table. 162 */ 163 #define N_SU_SPEEDS (sizeof (asyspdtab)/sizeof (ushort_t)) 164 165 /* 166 * Human-readable baud rate table. 167 * Indexed by #defines found in sys/termios.h 168 */ 169 int baudtable[] = { 170 0, /* 0 baud rate */ 171 50, /* 50 baud rate */ 172 75, /* 75 baud rate */ 173 110, /* 110 baud rate */ 174 134, /* 134 baud rate */ 175 150, /* 150 baud rate */ 176 200, /* 200 baud rate */ 177 300, /* 300 baud rate */ 178 600, /* 600 baud rate */ 179 1200, /* 1200 baud rate */ 180 1800, /* 1800 baud rate */ 181 2400, /* 2400 baud rate */ 182 4800, /* 4800 baud rate */ 183 9600, /* 9600 baud rate */ 184 19200, /* 19200 baud rate */ 185 38400, /* 38400 baud rate */ 186 57600, /* 57600 baud rate */ 187 76800, /* 76800 baud rate */ 188 115200, /* 115200 baud rate */ 189 153600, /* 153600 baud rate */ 190 230400, /* 230400 baud rate */ 191 307200, /* 307200 baud rate */ 192 460800 /* 460800 baud rate */ 193 }; 194 195 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr); 196 static int asyclose(queue_t *q, int flag); 197 static void asywput(queue_t *q, mblk_t *mp); 198 static void asyrsrv(queue_t *q); 199 200 struct module_info asy_info = { 201 0, 202 "su", 203 0, 204 INFPSZ, 205 32*4096, 206 4096 207 }; 208 209 static struct qinit asy_rint = { 210 putq, 211 (int (*)())asyrsrv, 212 asyopen, 213 asyclose, 214 NULL, 215 &asy_info, 216 NULL 217 }; 218 219 static struct qinit asy_wint = { 220 (int (*)())asywput, 221 NULL, 222 NULL, 223 NULL, 224 NULL, 225 &asy_info, 226 NULL 227 }; 228 229 struct streamtab asy_str_info = { 230 &asy_rint, 231 &asy_wint, 232 NULL, 233 NULL 234 }; 235 236 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 237 void **result); 238 static int asyprobe(dev_info_t *); 239 static int asyattach(dev_info_t *, ddi_attach_cmd_t); 240 static int asydetach(dev_info_t *, ddi_detach_cmd_t); 241 242 static struct cb_ops cb_asy_ops = { 243 nodev, /* cb_open */ 244 nodev, /* cb_close */ 245 nodev, /* cb_strategy */ 246 nodev, /* cb_print */ 247 nodev, /* cb_dump */ 248 nodev, /* cb_read */ 249 nodev, /* cb_write */ 250 nodev, /* cb_ioctl */ 251 nodev, /* cb_devmap */ 252 nodev, /* cb_mmap */ 253 nodev, /* cb_segmap */ 254 nochpoll, /* cb_chpoll */ 255 ddi_prop_op, /* cb_prop_op */ 256 &asy_str_info, /* cb_stream */ 257 D_MP /* cb_flag */ 258 }; 259 260 struct dev_ops asy_ops = { 261 DEVO_REV, /* devo_rev */ 262 0, /* devo_refcnt */ 263 asyinfo, /* devo_getinfo */ 264 nulldev, /* devo_identify */ 265 asyprobe, /* devo_probe */ 266 asyattach, /* devo_attach */ 267 asydetach, /* devo_detach */ 268 nodev, /* devo_reset */ 269 &cb_asy_ops, /* devo_cb_ops */ 270 }; 271 272 /* 273 * Module linkage information for the kernel. 274 */ 275 276 static struct modldrv modldrv = { 277 &mod_driverops, /* Type of module. This one is a driver */ 278 "su driver %I%", 279 &asy_ops, /* driver ops */ 280 }; 281 282 static struct modlinkage modlinkage = { 283 MODREV_1, 284 &modldrv, 285 NULL 286 }; 287 288 int 289 _init(void) 290 { 291 int status; 292 293 status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom), 294 SU_INITIAL_SOFT_ITEMS); 295 if (status != 0) 296 return (status); 297 status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline), 298 SU_INITIAL_SOFT_ITEMS); 299 if (status != 0) { 300 ddi_soft_state_fini(&su_asycom); 301 return (status); 302 } 303 304 if ((status = mod_install(&modlinkage)) != 0) { 305 ddi_soft_state_fini(&su_asycom); 306 ddi_soft_state_fini(&su_asyncline); 307 } 308 309 return (status); 310 } 311 312 int 313 _fini(void) 314 { 315 int i; 316 317 i = mod_remove(&modlinkage); 318 if (i == 0) { 319 ddi_soft_state_fini(&su_asycom); 320 ddi_soft_state_fini(&su_asyncline); 321 } 322 323 return (i); 324 } 325 326 int 327 _info(struct modinfo *modinfop) 328 { 329 return (mod_info(&modlinkage, modinfop)); 330 } 331 332 static int 333 asyprobe(dev_info_t *devi) 334 { 335 int instance; 336 ddi_acc_handle_t handle; 337 uchar_t *addr; 338 ddi_device_acc_attr_t attr; 339 340 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 341 attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 342 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 343 344 if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr, 345 SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) { 346 cmn_err(CE_WARN, "asyprobe regs map setup failed"); 347 return (DDI_PROBE_FAILURE); 348 } 349 #ifdef DEBUG 350 if (asydebug) 351 printf("Probe address mapped %p\n", (void *)addr); 352 #endif 353 354 /* 355 * Probe for the device: 356 * Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low. 357 * If bit 4 or 5 appears on inb() ISR, board is not there. 358 */ 359 if (ddi_get8(handle, addr+ISR) & 0x30) 360 return (DDI_PROBE_FAILURE); 361 instance = ddi_get_instance(devi); 362 if (max_asy_instance < instance) 363 max_asy_instance = instance; 364 ddi_regs_map_free(&handle); 365 366 return (DDI_PROBE_SUCCESS); /* hw is present */ 367 } 368 369 static int 370 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 371 { 372 register int instance; 373 struct asycom *asy; 374 struct asyncline *async; 375 char name[16]; 376 377 instance = ddi_get_instance(devi); /* find out which unit */ 378 379 asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance); 380 async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance); 381 382 switch (cmd) { 383 case DDI_DETACH: 384 break; 385 case DDI_SUSPEND: 386 /* grab both mutex locks */ 387 mutex_enter(asy->asy_excl); 388 mutex_enter(asy->asy_excl_hi); 389 if (asy->suspended) { 390 mutex_exit(asy->asy_excl_hi); 391 mutex_exit(asy->asy_excl); 392 return (DDI_SUCCESS); 393 } 394 asy->suspended = B_TRUE; 395 396 /* 397 * The quad UART ST16C554D, version D2 (made by EXAR) has an 398 * anomaly of generating spurious interrups when the ICR is 399 * loaded with zero. The workaround would be to read any of 400 * status registers/SPR/ICR before such write. This anomaly 401 * will be fixed in future versions of the chip. 402 */ 403 (void) INB(ICR); 404 405 /* Disable further interrupts */ 406 OUTB(ICR, 0); 407 mutex_exit(asy->asy_excl_hi); 408 mutex_exit(asy->asy_excl); 409 return (DDI_SUCCESS); 410 411 default: 412 return (DDI_FAILURE); 413 } 414 415 #ifdef DEBUG 416 if (asydebug & ASY_DEBUG_INIT) 417 cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance, 418 asy->asy_hwtype == ASY82510 ? "82510" : 419 asy->asy_hwtype == ASY16550AF ? "16550AF" : 420 "8250"); 421 #endif 422 /* 423 * Before removing interrupts it is always better to disable 424 * interrupts if the chip gives a provision to disable the 425 * serial port interrupts. 426 */ 427 mutex_enter(asy->asy_excl); 428 mutex_enter(asy->asy_excl_hi); 429 /* disable interrupts, see EXAR bug */ 430 (void) INB(ICR); 431 OUTB(ICR, 0); 432 mutex_exit(asy->asy_excl_hi); 433 mutex_exit(asy->asy_excl); 434 435 /* remove minor device node(s) for this device */ 436 (void) sprintf(name, "%c", (instance+'a')); /* serial-port */ 437 ddi_remove_minor_node(devi, name); 438 (void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */ 439 ddi_remove_minor_node(devi, name); 440 441 mutex_destroy(asy->asy_excl); 442 mutex_destroy(asy->asy_excl_hi); 443 kmem_free(asy->asy_excl, sizeof (kmutex_t)); 444 kmem_free(asy->asy_excl_hi, sizeof (kmutex_t)); 445 cv_destroy(&async->async_flags_cv); 446 kstat_delete(asy->sukstat); 447 ddi_remove_intr(devi, 0, asy->asy_iblock); 448 ddi_regs_map_free(&asy->asy_handle); 449 ddi_remove_softintr(asy->asy_softintr_id); 450 mutex_destroy(asy->asy_soft_lock); 451 kmem_free(asy->asy_soft_lock, sizeof (kmutex_t)); 452 ddi_soft_state_free(su_asycom, instance); 453 ddi_soft_state_free(su_asyncline, instance); 454 return (DDI_SUCCESS); 455 } 456 457 static int 458 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 459 { 460 register int instance; 461 struct asycom *asy; 462 struct asyncline *async; 463 char name[40]; 464 ddi_device_acc_attr_t attr; 465 enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR, 466 SOFTINTR, ASYINIT, KSTAT, MINORNODE }; 467 enum states state = EMPTY; 468 469 instance = ddi_get_instance(devi); /* find out which unit */ 470 471 /* cannot attach a device that has not been probed first */ 472 if (instance > max_asy_instance) 473 return (DDI_FAILURE); 474 475 if (cmd != DDI_RESUME) { 476 /* Allocate soft state space */ 477 if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) { 478 cmn_err(CE_WARN, "su%d: cannot allocate soft state", 479 instance); 480 goto error; 481 } 482 } 483 state = SOFTSTATE; 484 485 asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance); 486 487 if (asy == NULL) { 488 cmn_err(CE_WARN, "su%d: cannot get soft state", instance); 489 goto error; 490 } 491 492 switch (cmd) { 493 case DDI_ATTACH: 494 break; 495 case DDI_RESUME: { 496 struct asyncline *async; 497 498 /* grab both mutex locks */ 499 mutex_enter(asy->asy_excl); 500 mutex_enter(asy->asy_excl_hi); 501 if (!asy->suspended) { 502 mutex_exit(asy->asy_excl_hi); 503 mutex_exit(asy->asy_excl); 504 return (DDI_SUCCESS); 505 } 506 /* re-setup all the registers and enable interrupts if needed */ 507 async = (struct asyncline *)asy->asy_priv; 508 if ((async) && (async->async_flags & ASYNC_ISOPEN)) 509 (void) asy_program(asy, ASY_INIT); 510 asy->suspended = B_FALSE; 511 mutex_exit(asy->asy_excl_hi); 512 mutex_exit(asy->asy_excl); 513 return (DDI_SUCCESS); 514 } 515 default: 516 goto error; 517 } 518 519 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 520 attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 521 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 522 523 if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, 524 (caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN, 525 &attr, &asy->asy_handle) != DDI_SUCCESS) { 526 cmn_err(CE_WARN, "asyprobe regs map setup failed"); 527 goto error; 528 } 529 state = REGSMAP; 530 531 #ifdef DEBUG 532 if (asydebug) 533 printf("su attach mapped %p\n", (void *)asy->asy_ioaddr); 534 #endif 535 536 /* 537 * Initialize the port with default settings. 538 */ 539 asy->asy_fifo_buf = 1; 540 asy->asy_use_fifo = FIFO_OFF; 541 542 /* 543 * Check for baudrate generator's "baud-divisor-factor" property setup 544 * by OBP, since different UART chips might have different baudrate 545 * generator divisor. e.g., in case of NSPG's Sputnik platform, the 546 * baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip 547 * instead of SuperIO. Since the baud-divisor-factor must be a positive 548 * integer, the divisors will always be at least as large as the values 549 * in asyspdtab[]. Make the default factor 1. 550 */ 551 asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 552 DDI_PROP_DONTPASS, "baud-divisor-factor", 1); 553 554 /* set speed cap */ 555 asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 556 DDI_PROP_DONTPASS, "serial-speed-cap", 115200); 557 558 /* check for ASY82510 chip */ 559 OUTB(ISR, 0x20); 560 if (INB(ISR) & 0x20) { /* 82510 chip is present */ 561 /* 562 * Since most of the general operation of the 82510 chip 563 * can be done from BANK 0 (8250A/16450 compatable mode) 564 * we will default to BANK 0. 565 */ 566 asy->asy_hwtype = ASY82510; 567 OUTB(DAT+7, 0x04); /* clear status */ 568 OUTB(ISR, 0x40); /* set to bank 2 */ 569 OUTB(MCR, 0x08); /* IMD */ 570 OUTB(DAT, 0x21); /* FMD */ 571 OUTB(ISR, 0x00); /* set to bank 0 */ 572 asy->asy_trig_level = 0; 573 } else { /* Set the UART in FIFO mode if it has FIFO buffers */ 574 asy->asy_hwtype = ASY16550AF; 575 OUTB(FIFOR, 0x00); /* clear fifo register */ 576 asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */ 577 578 /* set/Enable FIFO */ 579 OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH | 580 (asy->asy_trig_level & 0xff)); 581 582 if ((INB(ISR) & 0xc0) == 0xc0) 583 asy->asy_use_fifo = FIFO_ON; 584 else { 585 asy->asy_hwtype = ASY8250; 586 OUTB(FIFOR, 0x00); /* NO FIFOs */ 587 asy->asy_trig_level = 0; 588 } 589 } 590 591 /* disable interrupts, see EXAR bug */ 592 (void) INB(ICR); 593 OUTB(ICR, 0); 594 OUTB(LCR, DLAB); /* select baud rate generator */ 595 /* Set the baud rate to 9600 */ 596 OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff); 597 OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff); 598 OUTB(LCR, STOP1|BITS8); 599 OUTB(MCR, (DTR | RTS| OUT2)); 600 601 /* 602 * Set up the other components of the asycom structure for this port. 603 */ 604 asy->asy_excl = (kmutex_t *) 605 kmem_zalloc(sizeof (kmutex_t), KM_SLEEP); 606 asy->asy_excl_hi = (kmutex_t *) 607 kmem_zalloc(sizeof (kmutex_t), KM_SLEEP); 608 asy->asy_soft_lock = (kmutex_t *) 609 kmem_zalloc(sizeof (kmutex_t), KM_SLEEP); 610 asy->asy_unit = instance; 611 asy->asy_dip = devi; 612 613 if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) { 614 cmn_err(CE_NOTE, 615 "Get iblock_cookie failed-Device interrupt%x\n", instance); 616 goto error; 617 } 618 619 if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH, 620 &asy->asy_soft_iblock) != DDI_SUCCESS) { 621 cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n", 622 instance); 623 goto error; 624 } 625 626 mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER, 627 (void *)asy->asy_soft_iblock); 628 mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL); 629 mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER, 630 (void *)asy->asy_iblock); 631 state = MUTEXES; 632 633 /* 634 * Install interrupt handlers for this device. 635 */ 636 if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr, 637 (caddr_t)asy) != DDI_SUCCESS) { 638 cmn_err(CE_CONT, 639 "Cannot set device interrupt for su driver\n"); 640 goto error; 641 } 642 state = ADDINTR; 643 644 if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id), 645 &asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy) 646 != DDI_SUCCESS) { 647 cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n"); 648 goto error; 649 } 650 state = SOFTINTR; 651 652 /* initialize the asyncline structure */ 653 if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) { 654 cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance); 655 goto error; 656 } 657 state = ASYINIT; 658 659 async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance); 660 661 mutex_enter(asy->asy_excl); 662 async->async_common = asy; 663 cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL); 664 mutex_exit(asy->asy_excl); 665 666 if ((asy->sukstat = kstat_create("su", instance, "serialstat", 667 "misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) { 668 asy->sukstat->ks_data = &asy->kstats; 669 kstat_named_init(&asy->kstats.ringover, "ring buffer overflow", 670 KSTAT_DATA_UINT64); 671 kstat_named_init(&asy->kstats.siloover, "silo overflow", 672 KSTAT_DATA_UINT64); 673 kstat_install(asy->sukstat); 674 } 675 state = KSTAT; 676 677 if (strcmp(ddi_node_name(devi), "rsc-console") == 0) { 678 /* 679 * If the device is configured as the 'rsc-console' 680 * create the minor device for this node. 681 */ 682 if (ddi_create_minor_node(devi, "ssp", S_IFCHR, 683 asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL) 684 == DDI_FAILURE) { 685 cmn_err(CE_WARN, 686 "%s%d: Failed to create node rsc-console", 687 ddi_get_name(devi), ddi_get_instance(devi)); 688 goto error; 689 } 690 691 asy->asy_lom_console = 0; 692 asy->asy_rsc_console = 1; 693 asy->asy_rsc_control = 0; 694 asy->asy_device_type = ASY_SERIAL; 695 asy->asy_flags |= ASY_IGNORE_CD; 696 697 } else if (strcmp(ddi_node_name(devi), "lom-console") == 0) { 698 /* 699 * If the device is configured as the 'lom-console' 700 * create the minor device for this node. 701 * Do not create a dialout device. 702 * Use the same minor numbers as would be used for standard 703 * serial instances. 704 */ 705 if (ddi_create_minor_node(devi, "lom-console", S_IFCHR, 706 instance, DDI_NT_SERIAL_LOMCON, NULL) == DDI_FAILURE) { 707 cmn_err(CE_WARN, 708 "%s%d: Failed to create node lom-console", 709 ddi_get_name(devi), ddi_get_instance(devi)); 710 goto error; 711 } 712 asy->asy_lom_console = 1; 713 asy->asy_rsc_console = 0; 714 asy->asy_rsc_control = 0; 715 asy->asy_device_type = ASY_SERIAL; 716 asy->asy_flags |= ASY_IGNORE_CD; 717 718 } else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) { 719 /* 720 * If the device is configured as the 'rsc-control' 721 * create the minor device for this node. 722 */ 723 if (ddi_create_minor_node(devi, "sspctl", S_IFCHR, 724 asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL) 725 == DDI_FAILURE) { 726 cmn_err(CE_WARN, "%s%d: Failed to create rsc-control", 727 ddi_get_name(devi), ddi_get_instance(devi)); 728 goto error; 729 } 730 731 asy->asy_lom_console = 0; 732 asy->asy_rsc_console = 0; 733 asy->asy_rsc_control = 1; 734 asy->asy_device_type = ASY_SERIAL; 735 asy->asy_flags |= ASY_IGNORE_CD; 736 737 } else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 738 "keyboard", 0)) { 739 /* 740 * If the device is a keyboard, then create an internal 741 * pathname so that the dacf code will link the node into 742 * the keyboard console stream. See dacf.conf. 743 */ 744 if (ddi_create_internal_pathname(devi, "keyboard", 745 S_IFCHR, instance) == DDI_FAILURE) { 746 goto error; 747 } 748 asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */ 749 asy->asy_device_type = ASY_KEYBOARD; /* Device type */ 750 } else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 751 "mouse", 0)) { 752 /* 753 * If the device is a mouse, then create an internal 754 * pathname so that the dacf code will link the node into 755 * the mouse stream. See dacf.conf. 756 */ 757 if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR, 758 instance) == DDI_FAILURE) { 759 goto error; 760 } 761 asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */ 762 asy->asy_device_type = ASY_MOUSE; 763 } else { 764 /* 765 * If not used for keyboard/mouse, create minor devices nodes 766 * for this device 767 */ 768 /* serial-port */ 769 (void) sprintf(name, "%c", (instance+'a')); 770 if (ddi_create_minor_node(devi, name, S_IFCHR, instance, 771 DDI_NT_SERIAL_MB, NULL) == DDI_FAILURE) { 772 goto error; 773 } 774 state = MINORNODE; 775 /* serial-port:dailout */ 776 (void) sprintf(name, "%c,cu", (instance+'a')); 777 if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE, 778 DDI_NT_SERIAL_MB_DO, NULL) == DDI_FAILURE) { 779 goto error; 780 } 781 /* Property for ignoring DCD */ 782 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 783 "ignore-cd", 0)) { 784 asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */ 785 } else { 786 asy->asy_flags &= ~ASY_IGNORE_CD; 787 /* 788 * if ignore-cd is not available it could be 789 * some old legacy platform, try to see 790 * whether the old legacy property exists 791 */ 792 (void) sprintf(name, 793 "port-%c-ignore-cd", (instance+ 'a')); 794 if (ddi_getprop(DDI_DEV_T_ANY, devi, 795 DDI_PROP_DONTPASS, name, 0)) 796 asy->asy_flags |= ASY_IGNORE_CD; 797 } 798 asy->asy_device_type = ASY_SERIAL; 799 } 800 ddi_report_dev(devi); 801 return (DDI_SUCCESS); 802 803 error: 804 if (state == MINORNODE) { 805 (void) sprintf(name, "%c", (instance+'a')); 806 ddi_remove_minor_node(devi, name); 807 } 808 if (state >= KSTAT) 809 kstat_delete(asy->sukstat); 810 if (state >= ASYINIT) { 811 cv_destroy(&async->async_flags_cv); 812 ddi_soft_state_free(su_asyncline, instance); 813 } 814 if (state >= SOFTINTR) 815 ddi_remove_softintr(asy->asy_softintr_id); 816 if (state >= ADDINTR) 817 ddi_remove_intr(devi, 0, asy->asy_iblock); 818 if (state >= MUTEXES) { 819 mutex_destroy(asy->asy_excl_hi); 820 mutex_destroy(asy->asy_excl); 821 mutex_destroy(asy->asy_soft_lock); 822 kmem_free(asy->asy_excl_hi, sizeof (kmutex_t)); 823 kmem_free(asy->asy_excl, sizeof (kmutex_t)); 824 kmem_free(asy->asy_soft_lock, sizeof (kmutex_t)); 825 } 826 if (state >= REGSMAP) 827 ddi_regs_map_free(&asy->asy_handle); 828 if (state >= SOFTSTATE) 829 ddi_soft_state_free(su_asycom, instance); 830 /* no action for EMPTY state */ 831 return (DDI_FAILURE); 832 } 833 834 static int 835 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 836 void **result) 837 { 838 _NOTE(ARGUNUSED(dip)) 839 register dev_t dev = (dev_t)arg; 840 register int instance, error; 841 struct asycom *asy; 842 843 if ((instance = UNIT(dev)) > max_asy_instance) 844 return (DDI_FAILURE); 845 846 switch (infocmd) { 847 case DDI_INFO_DEVT2DEVINFO: 848 asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance); 849 if (asy->asy_dip == NULL) 850 error = DDI_FAILURE; 851 else { 852 *result = (void *) asy->asy_dip; 853 error = DDI_SUCCESS; 854 } 855 break; 856 case DDI_INFO_DEVT2INSTANCE: 857 *result = (void *)(uintptr_t)instance; 858 error = DDI_SUCCESS; 859 break; 860 default: 861 error = DDI_FAILURE; 862 } 863 return (error); 864 } 865 866 static int 867 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr) 868 { 869 _NOTE(ARGUNUSED(sflag)) 870 struct asycom *asy; 871 struct asyncline *async; 872 int mcr; 873 int unit; 874 int len; 875 struct termios *termiosp; 876 877 #ifdef DEBUG 878 if (asydebug & ASY_DEBUG_CLOSE) 879 printf("open\n"); 880 #endif 881 unit = UNIT(*dev); 882 if (unit > max_asy_instance) 883 return (ENXIO); /* unit not configured */ 884 885 async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit); 886 if (async == NULL) 887 return (ENXIO); 888 889 asy = async->async_common; 890 if (asy == NULL) 891 return (ENXIO); /* device not found by autoconfig */ 892 893 mutex_enter(asy->asy_excl); 894 asy->asy_priv = (caddr_t)async; 895 896 again: 897 mutex_enter(asy->asy_excl_hi); 898 /* 899 * Block waiting for carrier to come up, unless this is a no-delay open. 900 */ 901 if (!(async->async_flags & ASYNC_ISOPEN)) { 902 /* 903 * If this port is for a RSC console or control 904 * use the following termio info 905 */ 906 if (asy->asy_rsc_console || asy->asy_rsc_control) { 907 async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT | 908 (B115200 & CBAUD); 909 async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT) 910 & CIBAUD); 911 async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL; 912 } else if (asy->asy_lom_console) { 913 async->async_ttycommon.t_cflag = B9600 & CBAUD; 914 async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT) 915 & CIBAUD); 916 async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL; 917 } else { 918 919 /* 920 * Set the default termios settings (cflag). 921 * Others are set in ldterm. Release the spin 922 * mutex as we can block here, reaquire before 923 * calling asy_program. 924 */ 925 mutex_exit(asy->asy_excl_hi); 926 if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(), 927 0, "ttymodes", (caddr_t)&termiosp, &len) 928 == DDI_PROP_SUCCESS && 929 len == sizeof (struct termios)) { 930 async->async_ttycommon.t_cflag = 931 termiosp->c_cflag; 932 kmem_free(termiosp, len); 933 } else { 934 cmn_err(CE_WARN, 935 "su: couldn't get ttymodes property!"); 936 } 937 mutex_enter(asy->asy_excl_hi); 938 } 939 async->async_ttycommon.t_iflag = 0; 940 async->async_ttycommon.t_iocpending = NULL; 941 async->async_ttycommon.t_size.ws_row = 0; 942 async->async_ttycommon.t_size.ws_col = 0; 943 async->async_ttycommon.t_size.ws_xpixel = 0; 944 async->async_ttycommon.t_size.ws_ypixel = 0; 945 async->async_dev = *dev; 946 async->async_wbufcid = 0; 947 948 async->async_startc = CSTART; 949 async->async_stopc = CSTOP; 950 (void) asy_program(asy, ASY_INIT); 951 } else if ((async->async_ttycommon.t_flags & TS_XCLUDE) && 952 secpolicy_excl_open(cr) != 0) { 953 mutex_exit(asy->asy_excl_hi); 954 mutex_exit(asy->asy_excl); 955 return (EBUSY); 956 } else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) { 957 mutex_exit(asy->asy_excl_hi); 958 mutex_exit(asy->asy_excl); 959 return (EBUSY); 960 } 961 962 if (*dev & OUTLINE) 963 async->async_flags |= ASYNC_OUT; 964 965 /* Raise DTR on every open */ 966 mcr = INB(MCR); 967 OUTB(MCR, mcr|DTR); 968 969 /* 970 * Check carrier. 971 */ 972 if (asy->asy_flags & ASY_IGNORE_CD) 973 async->async_ttycommon.t_flags |= TS_SOFTCAR; 974 if ((async->async_ttycommon.t_flags & TS_SOFTCAR) || 975 (INB(MSR) & DCD)) 976 async->async_flags |= ASYNC_CARR_ON; 977 else 978 async->async_flags &= ~ASYNC_CARR_ON; 979 mutex_exit(asy->asy_excl_hi); 980 981 /* 982 * If FNDELAY and FNONBLOCK are clear, block until carrier up. 983 * Quit on interrupt. 984 */ 985 if (!(flag & (FNDELAY|FNONBLOCK)) && 986 !(async->async_ttycommon.t_cflag & CLOCAL)) { 987 if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) || 988 ((async->async_flags & ASYNC_OUT) && 989 !(*dev & OUTLINE))) { 990 async->async_flags |= ASYNC_WOPEN; 991 if (cv_wait_sig(&async->async_flags_cv, 992 asy->asy_excl) == 0) { 993 async->async_flags &= ~ASYNC_WOPEN; 994 mutex_exit(asy->asy_excl); 995 return (EINTR); 996 } 997 async->async_flags &= ~ASYNC_WOPEN; 998 goto again; 999 } 1000 } else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) { 1001 mutex_exit(asy->asy_excl); 1002 return (EBUSY); 1003 } 1004 1005 if (asy->suspended) { 1006 mutex_exit(asy->asy_excl); 1007 (void) ddi_dev_is_needed(asy->asy_dip, 0, 1); 1008 mutex_enter(asy->asy_excl); 1009 } 1010 1011 async->async_ttycommon.t_readq = rq; 1012 async->async_ttycommon.t_writeq = WR(rq); 1013 rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async; 1014 mutex_exit(asy->asy_excl); 1015 qprocson(rq); 1016 async->async_flags |= ASYNC_ISOPEN; 1017 async->async_polltid = 0; 1018 return (0); 1019 } 1020 1021 static void 1022 async_progress_check(void *arg) 1023 { 1024 struct asyncline *async = arg; 1025 struct asycom *asy = async->async_common; 1026 mblk_t *bp; 1027 1028 /* 1029 * We define "progress" as either waiting on a timed break or delay, or 1030 * having had at least one transmitter interrupt. If none of these are 1031 * true, then just terminate the output and wake up that close thread. 1032 */ 1033 mutex_enter(asy->asy_excl); 1034 mutex_enter(asy->asy_excl_hi); 1035 if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) { 1036 async->async_ocnt = 0; 1037 async->async_flags &= ~ASYNC_BUSY; 1038 async->async_timer = 0; 1039 bp = async->async_xmitblk; 1040 async->async_xmitblk = NULL; 1041 mutex_exit(asy->asy_excl_hi); 1042 if (bp != NULL) 1043 freeb(bp); 1044 /* 1045 * Since this timer is running, we know that we're in exit(2). 1046 * That means that the user can't possibly be waiting on any 1047 * valid ioctl(2) completion anymore, and we should just flush 1048 * everything. 1049 */ 1050 flushq(async->async_ttycommon.t_writeq, FLUSHALL); 1051 cv_broadcast(&async->async_flags_cv); 1052 } else { 1053 async->async_flags &= ~ASYNC_PROGRESS; 1054 async->async_timer = timeout(async_progress_check, async, 1055 drv_usectohz(su_drain_check)); 1056 mutex_exit(asy->asy_excl_hi); 1057 } 1058 mutex_exit(asy->asy_excl); 1059 } 1060 1061 /* 1062 * Close routine. 1063 */ 1064 static int 1065 asyclose(queue_t *q, int flag) 1066 { 1067 struct asyncline *async; 1068 struct asycom *asy; 1069 int icr, lcr; 1070 int nohupcl; 1071 1072 1073 #ifdef DEBUG 1074 if (asydebug & ASY_DEBUG_CLOSE) 1075 printf("close\n"); 1076 #endif 1077 async = q->q_ptr; 1078 ASSERT(async != NULL); 1079 asy = async->async_common; 1080 1081 /* get the nohupcl OBP property of this device */ 1082 nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS, 1083 "nohupcl", 0); 1084 1085 mutex_enter(asy->asy_excl); 1086 async->async_flags |= ASYNC_CLOSING; 1087 1088 /* 1089 * Turn off PPS handling early to avoid events occuring during 1090 * close. Also reset the DCD edge monitoring bit. 1091 */ 1092 mutex_enter(asy->asy_excl_hi); 1093 asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE); 1094 mutex_exit(asy->asy_excl_hi); 1095 1096 /* 1097 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and 1098 * untimed (TIOCSBRK). For the timed case, these are enqueued on our 1099 * write queue and there's a timer running, so we don't have to worry 1100 * about them. For the untimed case, though, the user obviously made a 1101 * mistake, because these are handled immediately. We'll terminate the 1102 * break now and honor his implicit request by discarding the rest of 1103 * the data. 1104 */ 1105 if (!(async->async_flags & ASYNC_BREAK)) { 1106 mutex_enter(asy->asy_excl_hi); 1107 lcr = INB(LCR); 1108 if (lcr & SETBREAK) { 1109 OUTB(LCR, (lcr & ~SETBREAK)); 1110 } 1111 mutex_exit(asy->asy_excl_hi); 1112 if (lcr & SETBREAK) 1113 goto nodrain; 1114 } 1115 1116 /* 1117 * If the user told us not to delay the close ("non-blocking"), then 1118 * don't bother trying to drain. 1119 * 1120 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever 1121 * getting an M_START (since these messages aren't enqueued), and the 1122 * only other way to clear the stop condition is by loss of DCD, which 1123 * would discard the queue data. Thus, we drop the output data if 1124 * ASYNC_STOPPED is set. 1125 */ 1126 if ((flag & (FNDELAY|FNONBLOCK)) || 1127 (async->async_flags & ASYNC_STOPPED)) { 1128 goto nodrain; 1129 } 1130 1131 /* 1132 * If there's any pending output, then we have to try to drain it. 1133 * There are two main cases to be handled: 1134 * - called by close(2): need to drain until done or until 1135 * a signal is received. No timeout. 1136 * - called by exit(2): need to drain while making progress 1137 * or until a timeout occurs. No signals. 1138 * 1139 * If we can't rely on receiving a signal to get us out of a hung 1140 * session, then we have to use a timer. In this case, we set a timer 1141 * to check for progress in sending the output data -- all that we ask 1142 * (at each interval) is that there's been some progress made. Since 1143 * the interrupt routine grabs buffers from the write queue, we can't 1144 * trust async_ocnt. Instead, we use a flag. 1145 * 1146 * Note that loss of carrier will cause the output queue to be flushed, 1147 * and we'll wake up again and finish normally. 1148 */ 1149 if (!ddi_can_receive_sig() && su_drain_check != 0) { 1150 async->async_flags &= ~ASYNC_PROGRESS; 1151 async->async_timer = timeout(async_progress_check, async, 1152 drv_usectohz(su_drain_check)); 1153 } 1154 1155 while (async->async_ocnt > 0 || 1156 async->async_ttycommon.t_writeq->q_first != NULL || 1157 (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) { 1158 if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0) 1159 break; 1160 } 1161 if (async->async_timer != 0) { 1162 (void) untimeout(async->async_timer); 1163 async->async_timer = 0; 1164 } 1165 1166 nodrain: 1167 mutex_enter(asy->asy_excl_hi); 1168 1169 /* turn off the loopback mode */ 1170 if ((async->async_dev != rconsdev) && 1171 (async->async_dev != kbddev) && 1172 (async->async_dev != stdindev)) { 1173 OUTB(MCR, INB(MCR) & ~ ASY_LOOP); 1174 } 1175 1176 async->async_ocnt = 0; 1177 if (async->async_xmitblk != NULL) 1178 freeb(async->async_xmitblk); 1179 async->async_xmitblk = NULL; 1180 1181 /* 1182 * If the "nohupcl" OBP property is set for this device, do 1183 * not turn off DTR and RTS no matter what. Otherwise, if the 1184 * line has HUPCL set or is incompletely opened, turn off DTR 1185 * and RTS to fix the modem line. 1186 */ 1187 if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) || 1188 (async->async_flags & ASYNC_WOPEN))) { 1189 /* turn off DTR, RTS but NOT interrupt to 386 */ 1190 OUTB(MCR, OUT2); 1191 mutex_exit(asy->asy_excl_hi); 1192 /* 1193 * Don't let an interrupt in the middle of close 1194 * bounce us back to the top; just continue closing 1195 * as if nothing had happened. 1196 */ 1197 if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0) 1198 goto out; 1199 mutex_enter(asy->asy_excl_hi); 1200 } 1201 1202 /* 1203 * If nobody's using it now, turn off receiver interrupts. 1204 */ 1205 if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) { 1206 icr = INB(ICR); 1207 OUTB(ICR, (icr & ~RIEN)); 1208 } 1209 mutex_exit(asy->asy_excl_hi); 1210 out: 1211 /* 1212 * Clear out device state. 1213 */ 1214 async->async_flags = 0; 1215 ttycommon_close(&async->async_ttycommon); 1216 cv_broadcast(&async->async_flags_cv); 1217 1218 /* 1219 * Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in 1220 * async_softint or an interrupt was pending when the process 1221 * using the port exited. 1222 */ 1223 asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT; 1224 1225 /* 1226 * Cancel outstanding "bufcall" request. 1227 */ 1228 if (async->async_wbufcid) { 1229 unbufcall(async->async_wbufcid); 1230 async->async_wbufcid = 0; 1231 } 1232 1233 /* 1234 * If inperim is true, it means the port is closing while there's 1235 * a pending software interrupt. async_flags has been zeroed out, 1236 * so this instance of leaveq() needs to be called before we call 1237 * qprocsoff() to disable services on the q. If inperim is false, 1238 * leaveq() has already been called or we're not in a perimeter. 1239 */ 1240 if (asy->inperim == B_TRUE) { 1241 asy->inperim = B_FALSE; 1242 mutex_exit(asy->asy_excl); 1243 leaveq(q); 1244 } else { 1245 mutex_exit(asy->asy_excl); 1246 } 1247 1248 /* Note that qprocsoff can't be done until after interrupts are off */ 1249 qprocsoff(q); 1250 q->q_ptr = WR(q)->q_ptr = NULL; 1251 async->async_ttycommon.t_readq = NULL; 1252 async->async_ttycommon.t_writeq = NULL; 1253 1254 return (0); 1255 } 1256 1257 /* 1258 * Checks to see if the serial port is still transmitting 1259 * characters. It returns true when there are characters 1260 * queued to transmit, when the holding register contains 1261 * a byte, or when the shifting register still contains 1262 * data to send. 1263 * 1264 */ 1265 static boolean_t 1266 asy_isbusy(struct asycom *asy) 1267 { 1268 struct asyncline *async; 1269 1270 #ifdef DEBUG 1271 if (asydebug & ASY_DEBUG_EOT) 1272 printf("isbusy\n"); 1273 #endif 1274 async = (struct asyncline *)asy->asy_priv; 1275 ASSERT(mutex_owned(asy->asy_excl)); 1276 ASSERT(mutex_owned(asy->asy_excl_hi)); 1277 return ((async->async_ocnt > 0) || 1278 ((INB(LSR) & XSRE) == 0)); 1279 } 1280 1281 /* 1282 * Program the ASY port. Most of the async operation is based on the values 1283 * of 'c_iflag' and 'c_cflag'. 1284 */ 1285 static int 1286 asy_program(struct asycom *asy, int mode) 1287 { 1288 struct asyncline *async; 1289 int baudrate, c_flag; 1290 int icr, lcr; 1291 int ocflags; 1292 int error = 0; 1293 1294 ASSERT(mutex_owned(asy->asy_excl)); 1295 ASSERT(mutex_owned(asy->asy_excl_hi)); 1296 1297 #ifdef DEBUG 1298 if (asydebug & ASY_DEBUG_PROCS) 1299 printf("program\n"); 1300 #endif 1301 async = (struct asyncline *)asy->asy_priv; 1302 1303 baudrate = async->async_ttycommon.t_cflag & CBAUD; 1304 if (async->async_ttycommon.t_cflag & CBAUDEXT) 1305 baudrate += 16; 1306 1307 /* Limit baudrate so it can't index out of baudtable */ 1308 if (baudrate >= N_SU_SPEEDS) baudrate = B9600; 1309 1310 /* 1311 * If baud rate requested is greater than the speed cap 1312 * or is an unsupported baud rate then reset t_cflag baud 1313 * to the last valid baud rate. If this is the initial 1314 * pass through asy_program then set it to 9600. 1315 */ 1316 if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) || 1317 (baudtable[baudrate] > asy->asy_speed_cap)) { 1318 async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT & 1319 ~CIBAUD & ~CIBAUDEXT; 1320 if (mode == ASY_INIT) { 1321 async->async_ttycommon.t_cflag |= B9600; 1322 baudrate = B9600; 1323 } else { 1324 async->async_ttycommon.t_cflag |= 1325 (asy->asy_ocflags & (CBAUD | CBAUDEXT | 1326 CIBAUD | CIBAUDEXT)); 1327 } 1328 error = EINVAL; 1329 goto end; 1330 } 1331 1332 /* set the baud rate */ 1333 if (async->async_ttycommon.t_cflag & (CIBAUD|CIBAUDEXT)) { 1334 async->async_ttycommon.t_cflag &= ~(CIBAUD); 1335 if (baudrate > CBAUD) { 1336 async->async_ttycommon.t_cflag |= CIBAUDEXT; 1337 async->async_ttycommon.t_cflag |= 1338 (((baudrate - CBAUD -1)<< IBSHIFT) & CIBAUD); 1339 } else { 1340 async->async_ttycommon.t_cflag &= ~CIBAUDEXT; 1341 async->async_ttycommon.t_cflag |= 1342 ((baudrate << IBSHIFT) & CIBAUD); 1343 } 1344 } 1345 1346 c_flag = async->async_ttycommon.t_cflag & 1347 (CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD | 1348 CBAUDEXT | CIBAUD | CIBAUDEXT); 1349 1350 /* disable interrupts, see EXAR bug */ 1351 (void) INB(ICR); 1352 OUTB(ICR, 0); 1353 1354 ocflags = asy->asy_ocflags; 1355 1356 /* flush/reset the status registers */ 1357 if (mode == ASY_INIT) { 1358 (void) INB(DAT); 1359 (void) INB(ISR); 1360 (void) INB(LSR); 1361 (void) INB(MSR); 1362 } 1363 1364 if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) { 1365 /* Set line control */ 1366 lcr = INB(LCR); 1367 lcr &= ~(WLS0|WLS1|STB|PEN|EPS); 1368 1369 if (c_flag & CSTOPB) 1370 lcr |= STB; /* 2 stop bits */ 1371 1372 if (c_flag & PARENB) 1373 lcr |= PEN; 1374 1375 if ((c_flag & PARODD) == 0) 1376 lcr |= EPS; 1377 1378 switch (c_flag & CSIZE) { 1379 case CS5: 1380 lcr |= BITS5; 1381 break; 1382 case CS6: 1383 lcr |= BITS6; 1384 break; 1385 case CS7: 1386 lcr |= BITS7; 1387 break; 1388 case CS8: 1389 lcr |= BITS8; 1390 break; 1391 } 1392 1393 /* set the baud rate when the rate is NOT B0 */ 1394 if (baudrate != 0) { 1395 OUTB(LCR, DLAB); 1396 OUTB(DAT, (asyspdtab[baudrate] * 1397 asy->asy_baud_divisor_factor) & 0xff); 1398 OUTB(ICR, ((asyspdtab[baudrate] * 1399 asy->asy_baud_divisor_factor) >> 8) & 0xff); 1400 } 1401 /* set the line control modes */ 1402 OUTB(LCR, lcr); 1403 1404 /* 1405 * if transitioning from CREAD off to CREAD on, 1406 * flush the FIFO buffer if we have one. 1407 */ 1408 if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) { 1409 if (asy->asy_use_fifo == FIFO_ON) { 1410 OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH | 1411 (asy->asy_trig_level & 0xff)); 1412 } 1413 } 1414 1415 /* remember the new cflags */ 1416 asy->asy_ocflags = c_flag & ~CLOCAL; 1417 } 1418 1419 /* whether or not CLOCAL is set, modify the modem control lines */ 1420 if (baudrate == 0) 1421 /* B0 has been issued, lower DTR */ 1422 OUTB(MCR, RTS|OUT2); 1423 else 1424 /* raise DTR */ 1425 OUTB(MCR, DTR|RTS|OUT2); 1426 1427 /* 1428 * Call the modem status interrupt handler to check for the carrier 1429 * in case CLOCAL was turned off after the carrier came on. 1430 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.) 1431 */ 1432 async_msint(asy); 1433 1434 /* Set interrupt control */ 1435 if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS)) 1436 /* 1437 * direct-wired line ignores DCD, so we don't enable modem 1438 * status interrupts. 1439 */ 1440 icr = (TIEN | SIEN); 1441 else 1442 icr = (TIEN | SIEN | MIEN); 1443 1444 if (c_flag & CREAD) 1445 icr |= RIEN; 1446 1447 OUTB(ICR, icr); 1448 end: 1449 return (error); 1450 } 1451 1452 /* 1453 * asyintr() is the High Level Interrupt Handler. 1454 * 1455 * There are four different interrupt types indexed by ISR register values: 1456 * 0: modem 1457 * 1: Tx holding register is empty, ready for next char 1458 * 2: Rx register now holds a char to be picked up 1459 * 3: error or break on line 1460 * This routine checks the Bit 0 (interrupt-not-pending) to determine if 1461 * the interrupt is from this port. 1462 */ 1463 uint_t 1464 asyintr(caddr_t argasy) 1465 { 1466 struct asycom *asy = (struct asycom *)argasy; 1467 struct asyncline *async; 1468 int ret_status = DDI_INTR_UNCLAIMED; 1469 uchar_t interrupt_id, lsr; 1470 1471 interrupt_id = INB(ISR) & 0x0F; 1472 async = (struct asyncline *)asy->asy_priv; 1473 if ((async == NULL) || 1474 !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) { 1475 if (interrupt_id & NOINTERRUPT) { 1476 return (DDI_INTR_UNCLAIMED); 1477 } else { 1478 lsr = INB(LSR); 1479 if ((lsr & BRKDET) && 1480 ((abort_enable == KIOCABORTENABLE) && 1481 (async->async_dev == rconsdev))) 1482 abort_sequence_enter((char *)NULL); 1483 else { 1484 /* reset line status */ 1485 (void) INB(LSR); 1486 /* discard any data */ 1487 (void) INB(DAT); 1488 /* reset modem status */ 1489 (void) INB(MSR); 1490 return (DDI_INTR_CLAIMED); 1491 } 1492 } 1493 } 1494 /* 1495 * Spurious interrupts happen in this driver 1496 * because of the transmission on serial port not handled 1497 * properly. 1498 * 1499 * The reasons for Spurious interrupts are: 1500 * 1. There is a path in async_nstart which transmits 1501 * characters without going through interrupt services routine 1502 * which causes spurious interrupts to happen. 1503 * 2. In the async_txint more than one character is sent 1504 * in one interrupt service. 1505 * 3. In async_rxint more than one characters are received in 1506 * in one interrupt service. 1507 * 1508 * Hence we have flags to indicate that such scenerio has happened. 1509 * and claim only such interrupts and others we donot claim it 1510 * as it could be a indicator of some hardware problem. 1511 * 1512 */ 1513 if (interrupt_id & NOINTERRUPT) { 1514 mutex_enter(asy->asy_excl_hi); 1515 if ((asy->asy_xmit_count > 1) || 1516 (asy->asy_out_of_band_xmit > 0) || 1517 (asy->asy_rx_count > 1)) { 1518 asy->asy_xmit_count = 0; 1519 asy->asy_out_of_band_xmit = 0; 1520 asy->asy_rx_count = 0; 1521 mutex_exit(asy->asy_excl_hi); 1522 return (DDI_INTR_CLAIMED); 1523 } else { 1524 mutex_exit(asy->asy_excl_hi); 1525 return (DDI_INTR_UNCLAIMED); 1526 } 1527 } 1528 ret_status = DDI_INTR_CLAIMED; 1529 mutex_enter(asy->asy_excl_hi); 1530 if (asy->asy_hwtype == ASY82510) 1531 OUTB(ISR, 0x00); /* set bank 0 */ 1532 1533 #ifdef DEBUG 1534 if (asydebug & ASY_DEBUG_INTR) 1535 prom_printf("l"); 1536 #endif 1537 lsr = INB(LSR); 1538 switch (interrupt_id) { 1539 case RxRDY: 1540 case RSTATUS: 1541 case FFTMOUT: 1542 /* receiver interrupt or receiver errors */ 1543 async_rxint(asy, lsr); 1544 break; 1545 case TxRDY: 1546 /* transmit interrupt */ 1547 async_txint(asy, lsr); 1548 break; 1549 case MSTATUS: 1550 /* modem status interrupt */ 1551 async_msint(asy); 1552 break; 1553 } 1554 mutex_exit(asy->asy_excl_hi); 1555 return (ret_status); 1556 } 1557 1558 /* 1559 * Transmitter interrupt service routine. 1560 * If there is more data to transmit in the current pseudo-DMA block, 1561 * send the next character if output is not stopped or draining. 1562 * Otherwise, queue up a soft interrupt. 1563 * 1564 * XXX - Needs review for HW FIFOs. 1565 */ 1566 static void 1567 async_txint(struct asycom *asy, uchar_t lsr) 1568 { 1569 struct asyncline *async = (struct asyncline *)asy->asy_priv; 1570 int fifo_len; 1571 int xmit_progress; 1572 1573 asycheckflowcontrol_hw(asy); 1574 1575 /* 1576 * If ASYNC_BREAK has been set, return to asyintr()'s context to 1577 * claim the interrupt without performing any action. 1578 */ 1579 if (async->async_flags & ASYNC_BREAK) 1580 return; 1581 1582 fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */ 1583 1584 /* 1585 * Check for flow control and do the needed action. 1586 */ 1587 if (asycheckflowcontrol_sw(asy)) { 1588 return; 1589 } 1590 1591 if (async->async_ocnt > 0 && 1592 !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) { 1593 xmit_progress = 0; 1594 while (fifo_len > 0 && async->async_ocnt > 0) { 1595 if (lsr & XHRE) { 1596 OUTB(DAT, *async->async_optr++); 1597 fifo_len--; 1598 async->async_ocnt--; 1599 xmit_progress++; 1600 } 1601 /* 1602 * Reading the lsr, (moved reading at the end of 1603 * while loop) as already we have read once at 1604 * the beginning of interrupt service 1605 */ 1606 lsr = INB(LSR); 1607 } 1608 asy->asy_xmit_count = xmit_progress; 1609 if (xmit_progress > 0) 1610 async->async_flags |= ASYNC_PROGRESS; 1611 } 1612 1613 if (fifo_len == 0) { 1614 return; 1615 } 1616 1617 1618 ASYSETSOFT(asy); 1619 } 1620 1621 /* 1622 * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive 1623 * error interrupt. 1624 * Try to put the character into the circular buffer for this line; if it 1625 * overflows, indicate a circular buffer overrun. If this port is always 1626 * to be serviced immediately, or the character is a STOP character, or 1627 * more than 15 characters have arrived, queue up a soft interrupt to 1628 * drain the circular buffer. 1629 * XXX - needs review for hw FIFOs support. 1630 */ 1631 1632 static void 1633 async_rxint(struct asycom *asy, uchar_t lsr) 1634 { 1635 struct asyncline *async = (struct asyncline *)asy->asy_priv; 1636 uchar_t c = 0; 1637 uint_t s = 0, needsoft = 0; 1638 register tty_common_t *tp; 1639 1640 tp = &async->async_ttycommon; 1641 if (!(tp->t_cflag & CREAD)) { 1642 if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) { 1643 (void) (INB(DAT) & 0xff); 1644 } 1645 return; /* line is not open for read? */ 1646 } 1647 asy->asy_rx_count = 0; 1648 while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) { 1649 c = 0; 1650 s = 0; 1651 asy->asy_rx_count++; 1652 if (lsr & RCA) { 1653 c = INB(DAT) & 0xff; 1654 /* 1655 * Even a single character is received 1656 * we need Soft interrupt to pass it to 1657 * higher layers. 1658 */ 1659 needsoft = 1; 1660 } 1661 1662 /* Check for character break sequence */ 1663 if ((abort_enable == KIOCABORTALTERNATE) && 1664 (async->async_dev == rconsdev)) { 1665 if (abort_charseq_recognize(c)) 1666 abort_sequence_enter((char *)NULL); 1667 } 1668 1669 /* Handle framing errors */ 1670 if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) { 1671 if (lsr & PARERR) { 1672 if (tp->t_iflag & INPCK) /* parity enabled */ 1673 s |= PERROR; 1674 } 1675 if (lsr & (FRMERR|BRKDET)) 1676 s |= FRERROR; 1677 if (lsr & OVRRUN) { 1678 async->async_hw_overrun = 1; 1679 s |= OVERRUN; 1680 } 1681 } 1682 1683 if (s == 0) 1684 if ((tp->t_iflag & PARMRK) && 1685 !(tp->t_iflag & (IGNPAR|ISTRIP)) && 1686 (c == 0377)) 1687 if (RING_POK(async, 2)) { 1688 RING_PUT(async, 0377); 1689 RING_PUT(async, c); 1690 } else 1691 async->async_sw_overrun = 1; 1692 else 1693 if (RING_POK(async, 1)) 1694 RING_PUT(async, c); 1695 else 1696 async->async_sw_overrun = 1; 1697 else 1698 if (s & FRERROR) { /* Handle framing errors */ 1699 if (c == 0) { 1700 /* Look for break on kbd, stdin, or rconsdev */ 1701 if ((async->async_dev == kbddev) || 1702 ((async->async_dev == rconsdev) || 1703 (async->async_dev == stdindev)) && 1704 (abort_enable != 1705 KIOCABORTALTERNATE)) 1706 abort_sequence_enter((char *)0); 1707 else 1708 async->async_break++; 1709 } else { 1710 if (RING_POK(async, 1)) 1711 RING_MARK(async, c, s); 1712 else 1713 async->async_sw_overrun = 1; 1714 } 1715 } else { /* Parity errors handled by ldterm */ 1716 if (RING_POK(async, 1)) 1717 RING_MARK(async, c, s); 1718 else 1719 async->async_sw_overrun = 1; 1720 } 1721 lsr = INB(LSR); 1722 if (asy->asy_rx_count > 16) break; 1723 } 1724 /* Check whether there is a request for hw/sw inbound/input flow ctrl */ 1725 if ((async->async_ttycommon.t_cflag & CRTSXOFF) || 1726 (async->async_ttycommon.t_iflag & IXOFF)) 1727 if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) { 1728 #ifdef DEBUG 1729 if (asydebug & ASY_DEBUG_HFLOW) 1730 printf("asy%d: hardware flow stop input.\n", 1731 UNIT(async->async_dev)); 1732 #endif 1733 async->async_flags |= ASYNC_HW_IN_FLOW; 1734 async->async_flowc = async->async_stopc; 1735 async->async_ringbuf_overflow = 1; 1736 } 1737 1738 if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft || 1739 (RING_FRAC(async)) || (async->async_polltid == 0)) 1740 ASYSETSOFT(asy); /* need a soft interrupt */ 1741 } 1742 1743 /* 1744 * Interrupt on port: handle PPS event. This function is only called 1745 * for a port on which PPS event handling has been enabled. 1746 */ 1747 static void 1748 asy_ppsevent(struct asycom *asy, int msr) 1749 { 1750 if (asy->asy_flags & ASY_PPS_EDGE) { 1751 /* Have seen leading edge, now look for and record drop */ 1752 if ((msr & DCD) == 0) 1753 asy->asy_flags &= ~ASY_PPS_EDGE; 1754 /* 1755 * Waiting for leading edge, look for rise; stamp event and 1756 * calibrate kernel clock. 1757 */ 1758 } else if (msr & DCD) { 1759 /* 1760 * This code captures a timestamp at the designated 1761 * transition of the PPS signal (DCD asserted). The 1762 * code provides a pointer to the timestamp, as well 1763 * as the hardware counter value at the capture. 1764 * 1765 * Note: the kernel has nano based time values while 1766 * NTP requires micro based, an in-line fast algorithm 1767 * to convert nsec to usec is used here -- see hrt2ts() 1768 * in common/os/timers.c for a full description. 1769 */ 1770 struct timeval *tvp = &asy_ppsev.tv; 1771 timestruc_t ts; 1772 long nsec, usec; 1773 1774 asy->asy_flags |= ASY_PPS_EDGE; 1775 gethrestime(&ts); 1776 nsec = ts.tv_nsec; 1777 usec = nsec + (nsec >> 2); 1778 usec = nsec + (usec >> 1); 1779 usec = nsec + (usec >> 2); 1780 usec = nsec + (usec >> 4); 1781 usec = nsec - (usec >> 3); 1782 usec = nsec + (usec >> 2); 1783 usec = nsec + (usec >> 3); 1784 usec = nsec + (usec >> 4); 1785 usec = nsec + (usec >> 1); 1786 usec = nsec + (usec >> 6); 1787 tvp->tv_usec = usec >> 10; 1788 tvp->tv_sec = ts.tv_sec; 1789 1790 ++asy_ppsev.serial; 1791 1792 /* 1793 * Because the kernel keeps a high-resolution time, 1794 * pass the current highres timestamp in tvp and zero 1795 * in usec. 1796 */ 1797 ddi_hardpps(tvp, 0); 1798 } 1799 } 1800 1801 /* 1802 * Modem status interrupt. 1803 * 1804 * (Note: It is assumed that the MSR hasn't been read by asyintr().) 1805 */ 1806 1807 static void 1808 async_msint(struct asycom *asy) 1809 { 1810 struct asyncline *async = (struct asyncline *)asy->asy_priv; 1811 int msr; 1812 1813 msr = INB(MSR); /* this resets the interrupt */ 1814 asy->asy_cached_msr = msr; 1815 #ifdef DEBUG 1816 if (asydebug & ASY_DEBUG_STATE) { 1817 printf(" transition: %3s %3s %3s %3s\n" 1818 "current state: %3s %3s %3s %3s\n", 1819 (msr & DCTS) ? "CTS" : " ", 1820 (msr & DDSR) ? "DSR" : " ", 1821 (msr & DRI) ? "RI " : " ", 1822 (msr & DDCD) ? "DCD" : " ", 1823 (msr & CTS) ? "CTS" : " ", 1824 (msr & DSR) ? "DSR" : " ", 1825 (msr & RI) ? "RI " : " ", 1826 (msr & DCD) ? "DCD" : " "); 1827 } 1828 #endif 1829 if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) { 1830 #ifdef DEBUG 1831 if (asydebug & ASY_DEBUG_HFLOW) 1832 printf("asy%d: hflow start\n", 1833 UNIT(async->async_dev)); 1834 #endif 1835 async->async_flags |= ASYNC_HW_OUT_FLW; 1836 } 1837 if (asy->asy_hwtype == ASY82510) 1838 OUTB(MSR, (msr & 0xF0)); 1839 1840 /* Handle PPS event */ 1841 if (asy->asy_flags & ASY_PPS) 1842 asy_ppsevent(asy, msr); 1843 1844 async->async_ext++; 1845 ASYSETSOFT(asy); 1846 } 1847 1848 /* 1849 * Handle a second-stage interrupt. 1850 */ 1851 uint_t 1852 asysoftintr(caddr_t intarg) 1853 { 1854 struct asycom *asy = (struct asycom *)intarg; 1855 struct asyncline *async; 1856 int rv; 1857 int cc; 1858 /* 1859 * Test and clear soft interrupt. 1860 */ 1861 mutex_enter(asy->asy_soft_lock); 1862 #ifdef DEBUG 1863 if (asydebug & ASY_DEBUG_PROCS) 1864 printf("softintr\n"); 1865 #endif 1866 rv = asy->asysoftpend; 1867 if (rv != 0) 1868 asy->asysoftpend = 0; 1869 mutex_exit(asy->asy_soft_lock); 1870 1871 if (rv) { 1872 if (asy->asy_priv == NULL) 1873 return (rv); 1874 async = (struct asyncline *)asy->asy_priv; 1875 mutex_enter(asy->asy_excl_hi); 1876 if (asy->asy_flags & ASY_NEEDSOFT) { 1877 asy->asy_flags &= ~ASY_NEEDSOFT; 1878 mutex_exit(asy->asy_excl_hi); 1879 (void) async_softint(asy); 1880 mutex_enter(asy->asy_excl_hi); 1881 } 1882 /* 1883 * There are some instances where the softintr is not 1884 * scheduled and hence not called. It so happened that makes 1885 * the last few characters to be stuck in ringbuffer. 1886 * Hence, call once again the handler so that the last few 1887 * characters are cleared. 1888 */ 1889 cc = RING_CNT(async); 1890 mutex_exit(asy->asy_excl_hi); 1891 if (cc > 0) { 1892 (void) async_softint(asy); 1893 } 1894 } 1895 return (rv); 1896 } 1897 1898 /* 1899 * Handle a software interrupt. 1900 */ 1901 static int 1902 async_softint(struct asycom *asy) 1903 { 1904 struct asyncline *async = (struct asyncline *)asy->asy_priv; 1905 uint_t cc; 1906 mblk_t *bp; 1907 queue_t *q; 1908 uchar_t val; 1909 uchar_t c; 1910 tty_common_t *tp; 1911 1912 #ifdef DEBUG 1913 if (asydebug & ASY_DEBUG_PROCS) 1914 printf("process\n"); 1915 #endif 1916 mutex_enter(asy->asy_excl); 1917 if (asy->asy_flags & ASY_DOINGSOFT) { 1918 mutex_exit(asy->asy_excl); 1919 return (0); 1920 } 1921 tp = &async->async_ttycommon; 1922 q = tp->t_readq; 1923 if (q != NULL) { 1924 mutex_exit(asy->asy_excl); 1925 enterq(q); 1926 mutex_enter(asy->asy_excl); 1927 } 1928 mutex_enter(asy->asy_excl_hi); 1929 asy->asy_flags |= ASY_DOINGSOFT; 1930 1931 if (INB(ICR) & MIEN) 1932 val = asy->asy_cached_msr & 0xFF; 1933 else 1934 val = INB(MSR) & 0xFF; 1935 1936 if (async->async_ttycommon.t_cflag & CRTSCTS) { 1937 if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) { 1938 #ifdef DEBUG 1939 if (asydebug & ASY_DEBUG_HFLOW) 1940 printf("asy%d: hflow start\n", 1941 UNIT(async->async_dev)); 1942 #endif 1943 async->async_flags &= ~ASYNC_HW_OUT_FLW; 1944 mutex_exit(asy->asy_excl_hi); 1945 if (async->async_ocnt > 0) { 1946 mutex_enter(asy->asy_excl_hi); 1947 async_resume(async); 1948 mutex_exit(asy->asy_excl_hi); 1949 } else { 1950 async_start(async); 1951 } 1952 mutex_enter(asy->asy_excl_hi); 1953 } 1954 } 1955 if (async->async_ext) { 1956 async->async_ext = 0; 1957 /* check for carrier up */ 1958 if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) { 1959 /* carrier present */ 1960 if ((async->async_flags & ASYNC_CARR_ON) == 0) { 1961 async->async_flags |= ASYNC_CARR_ON; 1962 mutex_exit(asy->asy_excl_hi); 1963 mutex_exit(asy->asy_excl); 1964 if (async->async_flags & ASYNC_ISOPEN) 1965 (void) putctl(q, M_UNHANGUP); 1966 cv_broadcast(&async->async_flags_cv); 1967 mutex_enter(asy->asy_excl); 1968 mutex_enter(asy->asy_excl_hi); 1969 } 1970 } else { 1971 if ((async->async_flags & ASYNC_CARR_ON) && 1972 !(tp->t_cflag & CLOCAL)) { 1973 int flushflag; 1974 1975 /* 1976 * Carrier went away. 1977 * Drop DTR, abort any output in 1978 * progress, indicate that output is 1979 * not stopped, and send a hangup 1980 * notification upstream. 1981 * 1982 * If we're in the midst of close, then flush 1983 * everything. Don't leave stale ioctls lying 1984 * about. 1985 */ 1986 val = INB(MCR); 1987 OUTB(MCR, (val & ~DTR)); 1988 flushflag = (async->async_flags & 1989 ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA; 1990 flushq(tp->t_writeq, flushflag); 1991 if (async->async_xmitblk != NULL) { 1992 freeb(async->async_xmitblk); 1993 async->async_xmitblk = NULL; 1994 } 1995 if (async->async_flags & ASYNC_BUSY) { 1996 async->async_ocnt = 0; 1997 async->async_flags &= ~ASYNC_BUSY; 1998 } 1999 async->async_flags &= ~ASYNC_STOPPED; 2000 if (async->async_flags & ASYNC_ISOPEN) { 2001 mutex_exit(asy->asy_excl_hi); 2002 mutex_exit(asy->asy_excl); 2003 (void) putctl(q, M_HANGUP); 2004 mutex_enter(asy->asy_excl); 2005 mutex_enter(asy->asy_excl_hi); 2006 } 2007 async->async_flags &= ~ASYNC_CARR_ON; 2008 mutex_exit(asy->asy_excl_hi); 2009 cv_broadcast(&async->async_flags_cv); 2010 mutex_enter(asy->asy_excl_hi); 2011 } 2012 } 2013 } 2014 2015 /* 2016 * If data has been added to the circular buffer, remove 2017 * it from the buffer, and send it up the stream if there's 2018 * somebody listening. Try to do it 16 bytes at a time. If we 2019 * have more than 16 bytes to move, move 16 byte chunks and 2020 * leave the rest for next time around (maybe it will grow). 2021 */ 2022 if (!(async->async_flags & ASYNC_ISOPEN)) { 2023 RING_INIT(async); 2024 goto rv; 2025 } 2026 if ((cc = RING_CNT(async)) == 0) { 2027 goto rv; 2028 } 2029 mutex_exit(asy->asy_excl_hi); 2030 2031 if (!canput(q)) { 2032 if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) { 2033 #ifdef DEBUG 2034 if (!(asydebug & ASY_DEBUG_HFLOW)) { 2035 printf("asy%d: hflow stop input.\n", 2036 UNIT(async->async_dev)); 2037 if (canputnext(q)) 2038 printf("asy%d: next queue is " 2039 "ready\n", 2040 UNIT(async->async_dev)); 2041 } 2042 #endif 2043 mutex_enter(asy->asy_excl_hi); 2044 async->async_flags |= ASYNC_HW_IN_FLOW; 2045 async->async_flowc = async->async_stopc; 2046 } else mutex_enter(asy->asy_excl_hi); 2047 goto rv; 2048 } 2049 2050 if (async->async_ringbuf_overflow) { 2051 if ((async->async_flags & ASYNC_HW_IN_FLOW) && 2052 ((int)(RING_CNT(async)) < (RINGSIZE/4))) { 2053 #ifdef DEBUG 2054 if (asydebug & ASY_DEBUG_HFLOW) 2055 printf("asy%d: hflow start input.\n", 2056 UNIT(async->async_dev)); 2057 #endif 2058 mutex_enter(asy->asy_excl_hi); 2059 async->async_flags &= ~ASYNC_HW_IN_FLOW; 2060 async->async_flowc = async->async_startc; 2061 async->async_ringbuf_overflow = 0; 2062 goto rv; 2063 } 2064 } 2065 #ifdef DEBUG 2066 if (asydebug & ASY_DEBUG_INPUT) 2067 printf("asy%d: %d char(s) in queue.\n", 2068 UNIT(async->async_dev), cc); 2069 #endif 2070 /* 2071 * Before you pull the characters from the RING BUF 2072 * Check whether you can put into the queue again 2073 */ 2074 if ((!canputnext(q)) || (!canput(q))) { 2075 mutex_enter(asy->asy_excl_hi); 2076 if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) { 2077 async->async_flags |= ASYNC_HW_IN_FLOW; 2078 async->async_flowc = async->async_stopc; 2079 async->async_queue_full = 1; 2080 } 2081 goto rv; 2082 } 2083 mutex_enter(asy->asy_excl_hi); 2084 if (async->async_queue_full) { 2085 /* 2086 * Last time the Stream queue didnot allow 2087 * now it allows so, relax, the flow control 2088 */ 2089 if (async->async_flags & ASYNC_HW_IN_FLOW) { 2090 async->async_flags &= ~ASYNC_HW_IN_FLOW; 2091 async->async_queue_full = 0; 2092 async->async_flowc = async->async_startc; 2093 goto rv; 2094 } else 2095 async->async_queue_full = 0; 2096 } 2097 mutex_exit(asy->asy_excl_hi); 2098 if (!(bp = allocb(cc, BPRI_MED))) { 2099 ttycommon_qfull(&async->async_ttycommon, q); 2100 mutex_enter(asy->asy_excl_hi); 2101 goto rv; 2102 } 2103 mutex_enter(asy->asy_excl_hi); 2104 do { 2105 if (RING_ERR(async, S_ERRORS)) { 2106 RING_UNMARK(async); 2107 c = RING_GET(async); 2108 break; 2109 } else { 2110 *bp->b_wptr++ = RING_GET(async); 2111 } 2112 } while (--cc); 2113 2114 mutex_exit(asy->asy_excl_hi); 2115 mutex_exit(asy->asy_excl); 2116 if (bp->b_wptr > bp->b_rptr) { 2117 if (!canputnext(q)) { 2118 if (!canput(q)) { 2119 /* 2120 * Even after taking all precautions that 2121 * Still we are unable to queue, then we 2122 * cannot do anything, just drop the block 2123 */ 2124 cmn_err(CE_NOTE, 2125 "su%d: local queue full\n", 2126 UNIT(async->async_dev)); 2127 freemsg(bp); 2128 mutex_enter(asy->asy_excl_hi); 2129 if ((async->async_flags & 2130 ASYNC_HW_IN_FLOW) == 0) { 2131 async->async_flags |= 2132 ASYNC_HW_IN_FLOW; 2133 async->async_flowc = 2134 async->async_stopc; 2135 async->async_queue_full = 1; 2136 } 2137 mutex_exit(asy->asy_excl_hi); 2138 } else { 2139 (void) putq(q, bp); 2140 } 2141 } else { 2142 putnext(q, bp); 2143 } 2144 } else { 2145 freemsg(bp); 2146 } 2147 /* 2148 * If we have a parity error, then send 2149 * up an M_BREAK with the "bad" 2150 * character as an argument. Let ldterm 2151 * figure out what to do with the error. 2152 */ 2153 if (cc) 2154 (void) putctl1(q, M_BREAK, c); 2155 mutex_enter(asy->asy_excl); 2156 mutex_enter(asy->asy_excl_hi); 2157 rv: 2158 /* 2159 * If a transmission has finished, indicate that it's finished, 2160 * and start that line up again. 2161 */ 2162 if (async->async_break) { 2163 async->async_break = 0; 2164 if (async->async_flags & ASYNC_ISOPEN) { 2165 mutex_exit(asy->asy_excl_hi); 2166 mutex_exit(asy->asy_excl); 2167 (void) putctl(q, M_BREAK); 2168 mutex_enter(asy->asy_excl); 2169 mutex_enter(asy->asy_excl_hi); 2170 } 2171 } 2172 if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) || 2173 (async->async_flowc != '\0')) { 2174 async->async_flags &= ~ASYNC_BUSY; 2175 mutex_exit(asy->asy_excl_hi); 2176 if (async->async_xmitblk) 2177 freeb(async->async_xmitblk); 2178 async->async_xmitblk = NULL; 2179 if (async->async_flags & ASYNC_ISOPEN) { 2180 asy->inperim = B_TRUE; 2181 mutex_exit(asy->asy_excl); 2182 enterq(async->async_ttycommon.t_writeq); 2183 mutex_enter(asy->asy_excl); 2184 } 2185 async_start(async); 2186 /* 2187 * We need to check for inperim and ISOPEN due to 2188 * multi-threading implications; it's possible to close the 2189 * port and nullify async_flags while completing the software 2190 * interrupt. If the port is closed, leaveq() will have already 2191 * been called. We don't want to call it twice. 2192 */ 2193 if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) { 2194 mutex_exit(asy->asy_excl); 2195 leaveq(async->async_ttycommon.t_writeq); 2196 mutex_enter(asy->asy_excl); 2197 asy->inperim = B_FALSE; 2198 } 2199 if (!(async->async_flags & ASYNC_BUSY)) 2200 cv_broadcast(&async->async_flags_cv); 2201 mutex_enter(asy->asy_excl_hi); 2202 } 2203 /* 2204 * A note about these overrun bits: all they do is *tell* someone 2205 * about an error- They do not track multiple errors. In fact, 2206 * you could consider them latched register bits if you like. 2207 * We are only interested in printing the error message once for 2208 * any cluster of overrun errrors. 2209 */ 2210 if (async->async_hw_overrun) { 2211 if (async->async_flags & ASYNC_ISOPEN) { 2212 if (su_log > 0) { 2213 mutex_exit(asy->asy_excl_hi); 2214 mutex_exit(asy->asy_excl); 2215 cmn_err(CE_NOTE, "su%d: silo overflow\n", 2216 UNIT(async->async_dev)); 2217 mutex_enter(asy->asy_excl); 2218 mutex_enter(asy->asy_excl_hi); 2219 } 2220 INC64_KSTAT(asy, siloover); 2221 } 2222 async->async_hw_overrun = 0; 2223 } 2224 if (async->async_sw_overrun) { 2225 if (async->async_flags & ASYNC_ISOPEN) { 2226 if (su_log > 0) { 2227 mutex_exit(asy->asy_excl_hi); 2228 mutex_exit(asy->asy_excl); 2229 cmn_err(CE_NOTE, "su%d: ring buffer overflow\n", 2230 UNIT(async->async_dev)); 2231 mutex_enter(asy->asy_excl); 2232 mutex_enter(asy->asy_excl_hi); 2233 } 2234 INC64_KSTAT(asy, ringover); 2235 } 2236 async->async_sw_overrun = 0; 2237 } 2238 asy->asy_flags &= ~ASY_DOINGSOFT; 2239 mutex_exit(asy->asy_excl_hi); 2240 mutex_exit(asy->asy_excl); 2241 if (q != NULL) 2242 leaveq(q); 2243 return (0); 2244 } 2245 2246 /* 2247 * Restart output on a line after a delay or break timer expired. 2248 */ 2249 static void 2250 async_restart(void *arg) 2251 { 2252 struct asyncline *async = arg; 2253 struct asycom *asy = async->async_common; 2254 queue_t *q; 2255 uchar_t lcr; 2256 2257 /* 2258 * If break timer expired, turn off the break bit. 2259 */ 2260 #ifdef DEBUG 2261 if (asydebug & ASY_DEBUG_PROCS) 2262 printf("restart\n"); 2263 #endif 2264 mutex_enter(asy->asy_excl); 2265 if (async->async_flags & ASYNC_BREAK) { 2266 unsigned int rate; 2267 2268 mutex_enter(asy->asy_excl_hi); 2269 lcr = INB(LCR); 2270 OUTB(LCR, (lcr & ~SETBREAK)); 2271 2272 /* 2273 * Go to sleep for the time it takes for at least one 2274 * stop bit to be received by the device at the other 2275 * end of the line as stated in the RS-232 specification. 2276 * The wait period is equal to: 2277 * 2 clock cycles * (1 MICROSEC / baud rate) 2278 */ 2279 rate = async->async_ttycommon.t_cflag & CBAUD; 2280 if (async->async_ttycommon.t_cflag & CBAUDEXT) 2281 rate += 16; 2282 if (rate >= N_SU_SPEEDS || rate == B0) { 2283 rate = B9600; 2284 } 2285 2286 mutex_exit(asy->asy_excl_hi); 2287 mutex_exit(asy->asy_excl); 2288 drv_usecwait(2 * MICROSEC / baudtable[rate]); 2289 mutex_enter(asy->asy_excl); 2290 } 2291 async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING); 2292 if ((q = async->async_ttycommon.t_writeq) != NULL) { 2293 mutex_exit(asy->asy_excl); 2294 enterq(q); 2295 mutex_enter(asy->asy_excl); 2296 } 2297 async_start(async); 2298 mutex_exit(asy->asy_excl); 2299 if (q != NULL) 2300 leaveq(q); 2301 2302 /* cleared break or delay flag; may have made some output progress */ 2303 cv_broadcast(&async->async_flags_cv); 2304 } 2305 2306 static void 2307 async_start(struct asyncline *async) 2308 { 2309 async_nstart(async, 0); 2310 } 2311 2312 /* 2313 * Start output on a line, unless it's busy, frozen, or otherwise. 2314 */ 2315 static void 2316 async_nstart(struct asyncline *async, int mode) 2317 { 2318 register struct asycom *asy = async->async_common; 2319 register int cc; 2320 register queue_t *q; 2321 mblk_t *bp, *nbp; 2322 uchar_t *xmit_addr; 2323 uchar_t val; 2324 int fifo_len = 1; 2325 int xmit_progress; 2326 2327 #ifdef DEBUG 2328 if (asydebug & ASY_DEBUG_PROCS) 2329 printf("start\n"); 2330 #endif 2331 if (asy->asy_use_fifo == FIFO_ON) 2332 fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */ 2333 2334 ASSERT(mutex_owned(asy->asy_excl)); 2335 mutex_enter(asy->asy_excl_hi); 2336 asycheckflowcontrol_hw(asy); 2337 2338 /* 2339 * If the chip is busy (i.e., we're waiting for a break timeout 2340 * to expire, or for the current transmission to finish, or for 2341 * output to finish draining from chip), don't grab anything new. 2342 */ 2343 if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) { 2344 mutex_exit(asy->asy_excl_hi); 2345 #ifdef DEBUG 2346 if (mode && asydebug & ASY_DEBUG_CLOSE) 2347 printf("asy%d: start %s.\n", 2348 UNIT(async->async_dev), 2349 async->async_flags & ASYNC_BREAK 2350 ? "break" : "busy"); 2351 #endif 2352 return; 2353 } 2354 2355 /* 2356 * If we have a flow-control character to transmit, do it now. 2357 */ 2358 if (asycheckflowcontrol_sw(asy)) { 2359 mutex_exit(asy->asy_excl_hi); 2360 return; 2361 } 2362 mutex_exit(asy->asy_excl_hi); 2363 /* 2364 * If we're waiting for a delay timeout to expire, don't grab 2365 * anything new. 2366 */ 2367 if (async->async_flags & ASYNC_DELAY) { 2368 #ifdef DEBUG 2369 if (mode && asydebug & ASY_DEBUG_CLOSE) 2370 printf("asy%d: start ASYNC_DELAY.\n", 2371 UNIT(async->async_dev)); 2372 #endif 2373 return; 2374 } 2375 2376 if ((q = async->async_ttycommon.t_writeq) == NULL) { 2377 #ifdef DEBUG 2378 if (mode && asydebug & ASY_DEBUG_CLOSE) 2379 printf("asy%d: start writeq is null.\n", 2380 UNIT(async->async_dev)); 2381 #endif 2382 return; /* not attached to a stream */ 2383 } 2384 2385 for (;;) { 2386 if ((bp = getq(q)) == NULL) 2387 return; /* no data to transmit */ 2388 2389 /* 2390 * We have a message block to work on. 2391 * Check whether it's a break, a delay, or an ioctl (the latter 2392 * occurs if the ioctl in question was waiting for the output 2393 * to drain). If it's one of those, process it immediately. 2394 */ 2395 switch (bp->b_datap->db_type) { 2396 2397 case M_BREAK: 2398 /* 2399 * Set the break bit, and arrange for "async_restart" 2400 * to be called in 1/4 second; it will turn the 2401 * break bit off, and call "async_start" to grab 2402 * the next message. 2403 */ 2404 mutex_enter(asy->asy_excl_hi); 2405 val = INB(LCR); 2406 OUTB(LCR, (val | SETBREAK)); 2407 mutex_exit(asy->asy_excl_hi); 2408 async->async_flags |= ASYNC_BREAK; 2409 (void) timeout(async_restart, async, hz / 4); 2410 freemsg(bp); 2411 return; /* wait for this to finish */ 2412 2413 case M_DELAY: 2414 /* 2415 * Arrange for "async_restart" to be called when the 2416 * delay expires; it will turn ASYNC_DELAY off, 2417 * and call "async_start" to grab the next message. 2418 */ 2419 (void) timeout(async_restart, async, 2420 (clock_t)(*(unsigned char *)bp->b_rptr + 6)); 2421 async->async_flags |= ASYNC_DELAY; 2422 freemsg(bp); 2423 return; /* wait for this to finish */ 2424 2425 case M_IOCTL: 2426 /* 2427 * This ioctl needs to wait for the output ahead of 2428 * it to drain. Try to do it, and then either 2429 * redo the ioctl at a later time or grab the next 2430 * message after it. 2431 */ 2432 2433 mutex_enter(asy->asy_excl_hi); 2434 if (asy_isbusy(asy)) { 2435 /* 2436 * Get the divisor by calculating the rate 2437 */ 2438 unsigned int rate; 2439 2440 mutex_exit(asy->asy_excl_hi); 2441 rate = async->async_ttycommon.t_cflag & CBAUD; 2442 if (async->async_ttycommon.t_cflag & CBAUDEXT) 2443 rate += 16; 2444 if (rate >= N_SU_SPEEDS || rate == B0) { 2445 rate = B9600; 2446 } 2447 2448 /* 2449 * We need to do a callback as the port will 2450 * be set to drain 2451 */ 2452 async->async_flags |= ASYNC_DRAINING; 2453 2454 /* 2455 * Put the message we just processed back onto 2456 * the end of the queue 2457 */ 2458 if (putq(q, bp) == 0) 2459 freemsg(bp); 2460 2461 /* 2462 * We need to delay until the TSR and THR 2463 * have been exhausted. We base the delay on 2464 * the amount of time it takes to transmit 2465 * 2 chars at the current baud rate in 2466 * microseconds. 2467 * 2468 * Therefore, the wait period is: 2469 * 2470 * (#TSR bits + #THR bits) * 2471 * 1 MICROSEC / baud rate 2472 */ 2473 (void) timeout(async_restart, async, 2474 drv_usectohz(16 * MICROSEC / 2475 baudtable[rate])); 2476 return; 2477 } 2478 mutex_exit(asy->asy_excl_hi); 2479 mutex_exit(asy->asy_excl); 2480 async_ioctl(async, q, bp, B_FALSE); 2481 mutex_enter(asy->asy_excl); 2482 continue; 2483 } 2484 2485 while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) { 2486 nbp = bp->b_cont; 2487 freeb(bp); 2488 bp = nbp; 2489 } 2490 if (bp != NULL) 2491 break; 2492 } 2493 2494 /* 2495 * We have data to transmit. If output is stopped, put 2496 * it back and try again later. 2497 */ 2498 if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) { 2499 #ifdef DEBUG 2500 if (asydebug & ASY_DEBUG_HFLOW && 2501 async->async_flags & ASYNC_HW_OUT_FLW) 2502 printf("asy%d: output hflow in effect.\n", 2503 UNIT(async->async_dev)); 2504 #endif 2505 mutex_exit(asy->asy_excl); 2506 (void) putbq(q, bp); 2507 /* 2508 * We entered the routine owning the lock, we need to 2509 * exit the routine owning the lock. 2510 */ 2511 mutex_enter(asy->asy_excl); 2512 return; 2513 } 2514 2515 async->async_xmitblk = bp; 2516 xmit_addr = bp->b_rptr; 2517 bp = bp->b_cont; 2518 if (bp != NULL) { 2519 mutex_exit(asy->asy_excl); 2520 (void) putbq(q, bp); /* not done with this message yet */ 2521 mutex_enter(asy->asy_excl); 2522 } 2523 2524 /* 2525 * In 5-bit mode, the high order bits are used 2526 * to indicate character sizes less than five, 2527 * so we need to explicitly mask before transmitting 2528 */ 2529 if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) { 2530 register unsigned char *p = xmit_addr; 2531 register int cnt = cc; 2532 2533 while (cnt--) 2534 *p++ &= (unsigned char) 0x1f; 2535 } 2536 2537 /* 2538 * Set up this block for pseudo-DMA. 2539 */ 2540 mutex_enter(asy->asy_excl_hi); 2541 async->async_optr = xmit_addr; 2542 async->async_ocnt = cc; 2543 /* 2544 * If the transmitter is ready, shove some 2545 * characters out. 2546 */ 2547 xmit_progress = 0; 2548 while (fifo_len-- && async->async_ocnt) { 2549 if (INB(LSR) & XHRE) { 2550 OUTB(DAT, *async->async_optr++); 2551 async->async_ocnt--; 2552 xmit_progress++; 2553 } 2554 } 2555 asy->asy_out_of_band_xmit = xmit_progress; 2556 if (xmit_progress > 0) 2557 async->async_flags |= ASYNC_PROGRESS; 2558 async->async_flags |= ASYNC_BUSY; 2559 mutex_exit(asy->asy_excl_hi); 2560 } 2561 2562 /* 2563 * Resume output by poking the transmitter. 2564 */ 2565 static void 2566 async_resume(struct asyncline *async) 2567 { 2568 register struct asycom *asy = async->async_common; 2569 2570 ASSERT(mutex_owned(asy->asy_excl_hi)); 2571 #ifdef DEBUG 2572 if (asydebug & ASY_DEBUG_PROCS) 2573 printf("resume\n"); 2574 #endif 2575 2576 asycheckflowcontrol_hw(asy); 2577 2578 if (INB(LSR) & XHRE) { 2579 if (asycheckflowcontrol_sw(asy)) { 2580 return; 2581 } else if (async->async_ocnt > 0) { 2582 OUTB(DAT, *async->async_optr++); 2583 async->async_ocnt--; 2584 async->async_flags |= ASYNC_PROGRESS; 2585 } 2586 } 2587 } 2588 2589 /* 2590 * Process an "ioctl" message sent down to us. 2591 * Note that we don't need to get any locks until we are ready to access 2592 * the hardware. Nothing we access until then is going to be altered 2593 * outside of the STREAMS framework, so we should be safe. 2594 */ 2595 static void 2596 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput) 2597 { 2598 register struct asycom *asy = async->async_common; 2599 register tty_common_t *tp = &async->async_ttycommon; 2600 register struct iocblk *iocp; 2601 register unsigned datasize; 2602 mblk_t *datamp; 2603 int error = 0; 2604 uchar_t val, icr; 2605 #ifdef DEBUG 2606 if (asydebug & ASY_DEBUG_PROCS) 2607 printf("ioctl\n"); 2608 #endif 2609 2610 if (tp->t_iocpending != NULL) { 2611 /* 2612 * We were holding an "ioctl" response pending the 2613 * availability of an "mblk" to hold data to be passed up; 2614 * another "ioctl" came through, which means that "ioctl" 2615 * must have timed out or been aborted. 2616 */ 2617 freemsg(async->async_ttycommon.t_iocpending); 2618 async->async_ttycommon.t_iocpending = NULL; 2619 } 2620 2621 iocp = (struct iocblk *)mp->b_rptr; 2622 2623 /* 2624 * For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call 2625 * ttycommon_ioctl() because this function frees up the message block 2626 * (mp->b_cont) that contains the address of the user variable where 2627 * we need to pass back the bit array. 2628 */ 2629 if (iocp->ioc_cmd == TIOCMGET || 2630 iocp->ioc_cmd == TIOCMBIC || 2631 iocp->ioc_cmd == TIOCMBIS || 2632 iocp->ioc_cmd == TIOCMSET || 2633 iocp->ioc_cmd == TIOCGPPS || 2634 iocp->ioc_cmd == TIOCSPPS || 2635 iocp->ioc_cmd == TIOCGPPSEV) 2636 error = -1; /* Do Nothing */ 2637 else 2638 2639 /* 2640 * The only way in which "ttycommon_ioctl" can fail is if the "ioctl" 2641 * requires a response containing data to be returned to the user, 2642 * and no mblk could be allocated for the data. 2643 * No such "ioctl" alters our state. Thus, we always go ahead and 2644 * do any state-changes the "ioctl" calls for. If we couldn't allocate 2645 * the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so 2646 * we just call "bufcall" to request that we be called back when we 2647 * stand a better chance of allocating the data. 2648 */ 2649 if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) { 2650 if (async->async_wbufcid) 2651 unbufcall(async->async_wbufcid); 2652 async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl, 2653 async); 2654 return; 2655 } 2656 2657 mutex_enter(asy->asy_excl); 2658 2659 if (error == 0) { 2660 /* 2661 * "ttycommon_ioctl" did most of the work; we just use the 2662 * data it set up. 2663 */ 2664 switch (iocp->ioc_cmd) { 2665 2666 case TCSETS: 2667 if (!(asy->asy_rsc_console || asy->asy_rsc_control || 2668 asy->asy_lom_console)) { 2669 mutex_enter(asy->asy_excl_hi); 2670 error = asy_program(asy, ASY_NOINIT); 2671 mutex_exit(asy->asy_excl_hi); 2672 } 2673 break; 2674 case TCSETSF: 2675 case TCSETSW: 2676 case TCSETA: 2677 case TCSETAW: 2678 case TCSETAF: 2679 if (!(asy->asy_rsc_console || asy->asy_rsc_control || 2680 asy->asy_lom_console)) { 2681 mutex_enter(asy->asy_excl_hi); 2682 if (iswput && asy_isbusy(asy)) { 2683 if (putq(wq, mp) == 0) 2684 freemsg(mp); 2685 mutex_exit(asy->asy_excl_hi); 2686 mutex_exit(asy->asy_excl); 2687 return; 2688 } 2689 error = asy_program(asy, ASY_NOINIT); 2690 mutex_exit(asy->asy_excl_hi); 2691 } 2692 break; 2693 case TIOCSSOFTCAR: 2694 /* Set the driver state appropriately */ 2695 mutex_enter(asy->asy_excl_hi); 2696 if (tp->t_flags & TS_SOFTCAR) 2697 asy->asy_flags |= ASY_IGNORE_CD; 2698 else 2699 asy->asy_flags &= ~ASY_IGNORE_CD; 2700 mutex_exit(asy->asy_excl_hi); 2701 break; 2702 } 2703 } else if (error < 0) { 2704 /* 2705 * "ttycommon_ioctl" didn't do anything; we process it here. 2706 */ 2707 error = 0; 2708 switch (iocp->ioc_cmd) { 2709 2710 case TIOCGPPS: 2711 /* 2712 * Get PPS on/off. 2713 */ 2714 if (mp->b_cont != NULL) 2715 freemsg(mp->b_cont); 2716 2717 mp->b_cont = allocb(sizeof (int), BPRI_HI); 2718 if (mp->b_cont == NULL) { 2719 error = ENOMEM; 2720 break; 2721 } 2722 if (asy->asy_flags & ASY_PPS) 2723 *(int *)mp->b_cont->b_wptr = 1; 2724 else 2725 *(int *)mp->b_cont->b_wptr = 0; 2726 mp->b_cont->b_wptr += sizeof (int); 2727 mp->b_datap->db_type = M_IOCACK; 2728 iocp->ioc_count = sizeof (int); 2729 break; 2730 2731 case TIOCSPPS: 2732 /* 2733 * Set PPS on/off. 2734 */ 2735 error = miocpullup(mp, sizeof (int)); 2736 if (error != 0) 2737 break; 2738 2739 mutex_enter(asy->asy_excl_hi); 2740 if (*(int *)mp->b_cont->b_rptr) 2741 asy->asy_flags |= ASY_PPS; 2742 else 2743 asy->asy_flags &= ~ASY_PPS; 2744 /* Reset edge sense */ 2745 asy->asy_flags &= ~ASY_PPS_EDGE; 2746 mutex_exit(asy->asy_excl_hi); 2747 mp->b_datap->db_type = M_IOCACK; 2748 break; 2749 2750 case TIOCGPPSEV: { 2751 /* 2752 * Get PPS event data. 2753 */ 2754 mblk_t *bp; 2755 void *buf; 2756 #ifdef _SYSCALL32_IMPL 2757 struct ppsclockev32 p32; 2758 #endif 2759 struct ppsclockev ppsclockev; 2760 2761 if (mp->b_cont != NULL) { 2762 freemsg(mp->b_cont); 2763 mp->b_cont = NULL; 2764 } 2765 2766 if ((asy->asy_flags & ASY_PPS) == 0) { 2767 error = ENXIO; 2768 break; 2769 } 2770 2771 /* Protect from incomplete asy_ppsev */ 2772 mutex_enter(asy->asy_excl_hi); 2773 ppsclockev = asy_ppsev; 2774 mutex_exit(asy->asy_excl_hi); 2775 2776 #ifdef _SYSCALL32_IMPL 2777 if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { 2778 TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv); 2779 p32.serial = ppsclockev.serial; 2780 buf = &p32; 2781 iocp->ioc_count = sizeof (struct ppsclockev32); 2782 } else 2783 #endif 2784 { 2785 buf = &ppsclockev; 2786 iocp->ioc_count = sizeof (struct ppsclockev); 2787 } 2788 2789 if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) { 2790 error = ENOMEM; 2791 break; 2792 } 2793 mp->b_cont = bp; 2794 2795 bcopy(buf, bp->b_wptr, iocp->ioc_count); 2796 bp->b_wptr += iocp->ioc_count; 2797 mp->b_datap->db_type = M_IOCACK; 2798 break; 2799 } 2800 2801 case TCSBRK: 2802 error = miocpullup(mp, sizeof (int)); 2803 if (error != 0) 2804 break; 2805 2806 mutex_enter(asy->asy_excl_hi); 2807 if (*(int *)mp->b_cont->b_rptr == 0) { 2808 /* 2809 * Get the divisor by calculating the rate 2810 */ 2811 unsigned int rate, divisor; 2812 rate = async->async_ttycommon.t_cflag & CBAUD; 2813 if (async->async_ttycommon.t_cflag & CBAUDEXT) 2814 rate += 16; 2815 if (rate >= N_SU_SPEEDS) rate = B9600; 2816 divisor = asyspdtab[rate] & 0xfff; 2817 2818 /* 2819 * To ensure that erroneous characters are 2820 * not sent out when the break is set, SB 2821 * recommends three steps: 2822 * 2823 * 1) pad the TSR with 0 bits 2824 * 2) When the TSR is full, set break 2825 * 3) When the TSR has been flushed, unset 2826 * the break when transmission must be 2827 * restored. 2828 * 2829 * We loop until the TSR is empty and then 2830 * set the break. ASYNC_BREAK has been set 2831 * to ensure that no characters are 2832 * transmitted while the TSR is being 2833 * flushed and SOUT is being used for the 2834 * break signal. 2835 * 2836 * The wait period is equal to 2837 * clock / (baud * 16) * 16 * 2. 2838 */ 2839 async->async_flags |= ASYNC_BREAK; 2840 while ((INB(LSR) & XSRE) == 0) { 2841 mutex_exit(asy->asy_excl_hi); 2842 mutex_exit(asy->asy_excl); 2843 drv_usecwait(32*divisor); 2844 mutex_enter(asy->asy_excl); 2845 mutex_enter(asy->asy_excl_hi); 2846 } 2847 2848 /* 2849 * Set the break bit, and arrange for 2850 * "async_restart" to be called in 1/4 second; 2851 * it will turn the break bit off, and call 2852 * "async_start" to grab the next message. 2853 */ 2854 val = INB(LCR); 2855 OUTB(LCR, (val | SETBREAK)); 2856 mutex_exit(asy->asy_excl_hi); 2857 (void) timeout(async_restart, async, hz / 4); 2858 } else { 2859 #ifdef DEBUG 2860 if (asydebug & ASY_DEBUG_CLOSE) 2861 printf("asy%d: wait for flush.\n", 2862 UNIT(async->async_dev)); 2863 #endif 2864 if (iswput && asy_isbusy(asy)) { 2865 if (putq(wq, mp) == 0) 2866 freemsg(mp); 2867 mutex_exit(asy->asy_excl_hi); 2868 mutex_exit(asy->asy_excl); 2869 return; 2870 } 2871 mutex_exit(asy->asy_excl_hi); 2872 #ifdef DEBUG 2873 if (asydebug & ASY_DEBUG_CLOSE) 2874 printf("asy%d: ldterm satisfied.\n", 2875 UNIT(async->async_dev)); 2876 #endif 2877 } 2878 break; 2879 2880 case TIOCSBRK: 2881 mutex_enter(asy->asy_excl_hi); 2882 val = INB(LCR); 2883 OUTB(LCR, (val | SETBREAK)); 2884 mutex_exit(asy->asy_excl_hi); 2885 mutex_exit(asy->asy_excl); 2886 miocack(wq, mp, 0, 0); 2887 return; 2888 2889 case TIOCCBRK: 2890 mutex_enter(asy->asy_excl_hi); 2891 val = INB(LCR); 2892 OUTB(LCR, (val & ~SETBREAK)); 2893 mutex_exit(asy->asy_excl_hi); 2894 mutex_exit(asy->asy_excl); 2895 miocack(wq, mp, 0, 0); 2896 return; 2897 2898 case TIOCMSET: 2899 case TIOCMBIS: 2900 case TIOCMBIC: 2901 if (iocp->ioc_count == TRANSPARENT) 2902 mcopyin(mp, NULL, sizeof (int), NULL); 2903 else { 2904 error = miocpullup(mp, sizeof (int)); 2905 if (error != 0) 2906 break; 2907 2908 mutex_enter(asy->asy_excl_hi); 2909 2910 (void) asymctl(asy, 2911 dmtoasy(*(int *)mp->b_cont->b_rptr), 2912 iocp->ioc_cmd); 2913 2914 mutex_exit(asy->asy_excl_hi); 2915 iocp->ioc_error = 0; 2916 mp->b_datap->db_type = M_IOCACK; 2917 } 2918 break; 2919 2920 case TIOCSILOOP: 2921 mutex_enter(asy->asy_excl_hi); 2922 /* 2923 * If somebody misues this Ioctl when used for 2924 * driving keyboard and mouse indicate not supported 2925 */ 2926 if ((asy->asy_device_type == ASY_KEYBOARD) || 2927 (asy->asy_device_type == ASY_MOUSE)) { 2928 mutex_exit(asy->asy_excl_hi); 2929 error = ENOTTY; 2930 break; 2931 } 2932 2933 /* should not use when we're the console */ 2934 if ((async->async_dev == kbddev) || 2935 (async->async_dev == rconsdev) || 2936 (async->async_dev == stdindev)) { 2937 mutex_exit(asy->asy_excl_hi); 2938 error = EINVAL; 2939 break; 2940 } 2941 2942 val = INB(MCR); 2943 icr = INB(ICR); 2944 /* 2945 * Disable the Modem Status Interrupt 2946 * The reason for disabling is the status of 2947 * modem signal are in the higher 4 bits instead of 2948 * lower four bits when in loopback mode, 2949 * so, donot worry about Modem interrupt when 2950 * you are planning to set 2951 * this in loopback mode until it is cleared by 2952 * another ioctl to get out of the loopback mode 2953 */ 2954 OUTB(ICR, icr & ~ MIEN); 2955 OUTB(MCR, val | ASY_LOOP); 2956 mutex_exit(asy->asy_excl_hi); 2957 iocp->ioc_error = 0; 2958 mp->b_datap->db_type = M_IOCACK; 2959 break; 2960 2961 case TIOCMGET: 2962 datamp = allocb(sizeof (int), BPRI_MED); 2963 if (datamp == NULL) { 2964 error = EAGAIN; 2965 break; 2966 } 2967 2968 mutex_enter(asy->asy_excl_hi); 2969 *(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET); 2970 mutex_exit(asy->asy_excl_hi); 2971 2972 if (iocp->ioc_count == TRANSPARENT) { 2973 mcopyout(mp, NULL, sizeof (int), NULL, datamp); 2974 } else { 2975 if (mp->b_cont != NULL) 2976 freemsg(mp->b_cont); 2977 mp->b_cont = datamp; 2978 mp->b_cont->b_wptr += sizeof (int); 2979 mp->b_datap->db_type = M_IOCACK; 2980 iocp->ioc_count = sizeof (int); 2981 } 2982 break; 2983 2984 default: /* unexpected ioctl type */ 2985 /* 2986 * If we don't understand it, it's an error. NAK it. 2987 */ 2988 error = EINVAL; 2989 break; 2990 } 2991 } 2992 if (error != 0) { 2993 iocp->ioc_error = error; 2994 mp->b_datap->db_type = M_IOCNAK; 2995 } 2996 mutex_exit(asy->asy_excl); 2997 qreply(wq, mp); 2998 } 2999 3000 static void 3001 asyrsrv(queue_t *q) 3002 { 3003 mblk_t *bp; 3004 struct asyncline *async; 3005 3006 async = (struct asyncline *)q->q_ptr; 3007 3008 while (canputnext(q) && (bp = getq(q))) 3009 putnext(q, bp); 3010 ASYSETSOFT(async->async_common); 3011 async->async_polltid = 0; 3012 } 3013 3014 /* 3015 * Put procedure for write queue. 3016 * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here; 3017 * set the flow control character for M_STOPI and M_STARTI messages; 3018 * queue up M_BREAK, M_DELAY, and M_DATA messages for processing 3019 * by the start routine, and then call the start routine; discard 3020 * everything else. Note that this driver does not incorporate any 3021 * mechanism to negotiate to handle the canonicalization process. 3022 * It expects that these functions are handled in upper module(s), 3023 * as we do in ldterm. 3024 */ 3025 static void 3026 asywput(queue_t *q, mblk_t *mp) 3027 { 3028 register struct asyncline *async; 3029 register struct asycom *asy; 3030 int error; 3031 3032 async = (struct asyncline *)q->q_ptr; 3033 asy = async->async_common; 3034 3035 switch (mp->b_datap->db_type) { 3036 3037 case M_STOP: 3038 /* 3039 * Since we don't do real DMA, we can just let the 3040 * chip coast to a stop after applying the brakes. 3041 */ 3042 mutex_enter(asy->asy_excl); 3043 async->async_flags |= ASYNC_STOPPED; 3044 mutex_exit(asy->asy_excl); 3045 freemsg(mp); 3046 break; 3047 3048 case M_START: 3049 mutex_enter(asy->asy_excl); 3050 if (async->async_flags & ASYNC_STOPPED) { 3051 async->async_flags &= ~ASYNC_STOPPED; 3052 /* 3053 * If an output operation is in progress, 3054 * resume it. Otherwise, prod the start 3055 * routine. 3056 */ 3057 if (async->async_ocnt > 0) { 3058 mutex_enter(asy->asy_excl_hi); 3059 async_resume(async); 3060 mutex_exit(asy->asy_excl_hi); 3061 } else { 3062 async_start(async); 3063 } 3064 } 3065 mutex_exit(asy->asy_excl); 3066 freemsg(mp); 3067 break; 3068 3069 case M_IOCTL: 3070 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 3071 3072 case TCSBRK: 3073 error = miocpullup(mp, sizeof (int)); 3074 if (error != 0) { 3075 miocnak(q, mp, 0, error); 3076 return; 3077 } 3078 3079 if (*(int *)mp->b_cont->b_rptr != 0) { 3080 #ifdef DEBUG 3081 if (asydebug & ASY_DEBUG_CLOSE) 3082 printf("asy%d: flush request.\n", 3083 UNIT(async->async_dev)); 3084 #endif 3085 (void) putq(q, mp); 3086 mutex_enter(asy->asy_excl); 3087 async_nstart(async, 1); 3088 mutex_exit(asy->asy_excl); 3089 break; 3090 } 3091 /*FALLTHROUGH*/ 3092 case TCSETSW: 3093 case TCSETSF: 3094 case TCSETAW: 3095 case TCSETAF: 3096 /* 3097 * The changes do not take effect until all 3098 * output queued before them is drained. 3099 * Put this message on the queue, so that 3100 * "async_start" will see it when it's done 3101 * with the output before it. Poke the 3102 * start routine, just in case. 3103 */ 3104 (void) putq(q, mp); 3105 mutex_enter(asy->asy_excl); 3106 async_start(async); 3107 mutex_exit(asy->asy_excl); 3108 break; 3109 3110 default: 3111 /* 3112 * Do it now. 3113 */ 3114 async_ioctl(async, q, mp, B_TRUE); 3115 break; 3116 } 3117 break; 3118 3119 case M_FLUSH: 3120 if (*mp->b_rptr & FLUSHW) { 3121 mutex_enter(asy->asy_excl); 3122 3123 /* 3124 * Abort any output in progress. 3125 */ 3126 mutex_enter(asy->asy_excl_hi); 3127 if (async->async_flags & ASYNC_BUSY) { 3128 async->async_ocnt = 0; 3129 async->async_flags &= ~ASYNC_BUSY; 3130 } 3131 mutex_exit(asy->asy_excl_hi); 3132 3133 /* Flush FIFO buffers */ 3134 if (asy->asy_use_fifo == FIFO_ON) { 3135 OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | 3136 (asy->asy_trig_level & 0xff)); 3137 } 3138 3139 /* 3140 * Flush our write queue. 3141 */ 3142 flushq(q, FLUSHDATA); /* XXX doesn't flush M_DELAY */ 3143 if (async->async_xmitblk != NULL) { 3144 freeb(async->async_xmitblk); 3145 async->async_xmitblk = NULL; 3146 } 3147 3148 mutex_exit(asy->asy_excl); 3149 *mp->b_rptr &= ~FLUSHW; /* it has been flushed */ 3150 } 3151 if (*mp->b_rptr & FLUSHR) { 3152 /* Flush FIFO buffers */ 3153 if (asy->asy_use_fifo == FIFO_ON) { 3154 OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH | 3155 (asy->asy_trig_level & 0xff)); 3156 } 3157 flushq(RD(q), FLUSHDATA); 3158 qreply(q, mp); /* give the read queues a crack at it */ 3159 } else { 3160 freemsg(mp); 3161 } 3162 3163 /* 3164 * We must make sure we process messages that survive the 3165 * write-side flush. Without this call, the close protocol 3166 * with ldterm can hang forever. (ldterm will have sent us a 3167 * TCSBRK ioctl that it expects a response to.) 3168 */ 3169 mutex_enter(asy->asy_excl); 3170 async_start(async); 3171 mutex_exit(asy->asy_excl); 3172 break; 3173 case M_BREAK: 3174 case M_DELAY: 3175 case M_DATA: 3176 /* 3177 * Queue the message up to be transmitted, 3178 * and poke the start routine. 3179 */ 3180 (void) putq(q, mp); 3181 mutex_enter(asy->asy_excl); 3182 async_start(async); 3183 mutex_exit(asy->asy_excl); 3184 break; 3185 3186 case M_STOPI: 3187 mutex_enter(asy->asy_excl); 3188 async->async_flowc = async->async_stopc; 3189 async_start(async); /* poke the start routine */ 3190 mutex_exit(asy->asy_excl); 3191 freemsg(mp); 3192 break; 3193 3194 case M_STARTI: 3195 mutex_enter(asy->asy_excl); 3196 async->async_flowc = async->async_startc; 3197 async_start(async); /* poke the start routine */ 3198 mutex_exit(asy->asy_excl); 3199 freemsg(mp); 3200 break; 3201 3202 case M_CTL: 3203 if (MBLKL(mp) >= sizeof (struct iocblk) && 3204 ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) { 3205 ((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX; 3206 qreply(q, mp); 3207 } else { 3208 /* 3209 * These MC_SERVICE type messages are used by upper 3210 * modules to tell this driver to send input up 3211 * immediately, or that it can wait for normal 3212 * processing that may or may not be done. Sun 3213 * requires these for the mouse module. 3214 * (XXX - for x86?) 3215 */ 3216 mutex_enter(asy->asy_excl); 3217 switch (*mp->b_rptr) { 3218 3219 case MC_SERVICEIMM: 3220 async->async_flags |= ASYNC_SERVICEIMM; 3221 break; 3222 3223 case MC_SERVICEDEF: 3224 async->async_flags &= ~ASYNC_SERVICEIMM; 3225 break; 3226 } 3227 mutex_exit(asy->asy_excl); 3228 freemsg(mp); 3229 } 3230 break; 3231 3232 case M_IOCDATA: 3233 async_iocdata(q, mp); 3234 break; 3235 3236 default: 3237 freemsg(mp); 3238 break; 3239 } 3240 } 3241 3242 /* 3243 * Retry an "ioctl", now that "bufcall" claims we may be able to allocate 3244 * the buffer we need. 3245 */ 3246 static void 3247 async_reioctl(void *arg) 3248 { 3249 struct asyncline *async = arg; 3250 struct asycom *asy = async->async_common; 3251 queue_t *q; 3252 mblk_t *mp; 3253 3254 /* 3255 * The bufcall is no longer pending. 3256 */ 3257 mutex_enter(asy->asy_excl); 3258 async->async_wbufcid = 0; 3259 if ((q = async->async_ttycommon.t_writeq) == NULL) { 3260 mutex_exit(asy->asy_excl); 3261 return; 3262 } 3263 if ((mp = async->async_ttycommon.t_iocpending) != NULL) { 3264 /* not pending any more */ 3265 async->async_ttycommon.t_iocpending = NULL; 3266 mutex_exit(asy->asy_excl); 3267 /* not in STREAMS queue; we no longer know if we're in wput */ 3268 async_ioctl(async, q, mp, B_TRUE); 3269 } else 3270 mutex_exit(asy->asy_excl); 3271 } 3272 3273 static void 3274 async_iocdata(queue_t *q, mblk_t *mp) 3275 { 3276 struct asyncline *async = (struct asyncline *)q->q_ptr; 3277 struct asycom *asy; 3278 struct copyresp *csp; 3279 3280 asy = async->async_common; 3281 csp = (struct copyresp *)mp->b_rptr; 3282 3283 if (csp->cp_rval != 0) { 3284 freemsg(mp); 3285 return; 3286 } 3287 3288 mutex_enter(asy->asy_excl); 3289 3290 switch (csp->cp_cmd) { 3291 case TIOCMSET: 3292 case TIOCMBIS: 3293 case TIOCMBIC: 3294 if (mp->b_cont == NULL) { 3295 mutex_exit(asy->asy_excl); 3296 miocnak(q, mp, 0, EINVAL); 3297 break; 3298 } 3299 3300 mutex_enter(asy->asy_excl_hi); 3301 (void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr), 3302 csp->cp_cmd); 3303 mutex_exit(asy->asy_excl_hi); 3304 3305 freemsg(mp->b_cont); 3306 mp->b_cont = NULL; 3307 mutex_exit(asy->asy_excl); 3308 miocack(q, mp, 0, 0); 3309 break; 3310 3311 case TIOCMGET: 3312 if (mp->b_cont != NULL) { 3313 freemsg(mp->b_cont); 3314 mp->b_cont = NULL; 3315 } 3316 mutex_exit(asy->asy_excl); 3317 miocack(q, mp, 0, 0); 3318 break; 3319 3320 default: 3321 mutex_exit(asy->asy_excl); 3322 miocnak(q, mp, 0, EINVAL); 3323 break; 3324 } 3325 } 3326 3327 3328 /* 3329 * Set or get the modem control status. 3330 */ 3331 static int 3332 asymctl(struct asycom *asy, int bits, int how) 3333 { 3334 register int mcr_r, msr_r; 3335 3336 ASSERT(mutex_owned(asy->asy_excl_hi)); 3337 ASSERT(mutex_owned(asy->asy_excl)); 3338 3339 /* Read Modem Control Registers */ 3340 mcr_r = INB(MCR); 3341 3342 switch (how) { 3343 3344 case TIOCMSET: 3345 mcr_r = bits; 3346 break; 3347 3348 case TIOCMBIS: 3349 mcr_r |= bits; /* Set bits from input */ 3350 break; 3351 3352 case TIOCMBIC: 3353 mcr_r &= ~bits; /* Set ~bits from input */ 3354 break; 3355 3356 case TIOCMGET: 3357 /* Read Modem Status Registers */ 3358 if (INB(ICR) & MIEN) 3359 msr_r = asy->asy_cached_msr; 3360 else 3361 msr_r = INB(MSR); 3362 return (asytodm(mcr_r, msr_r)); 3363 } 3364 3365 OUTB(MCR, mcr_r); 3366 3367 return (mcr_r); 3368 } 3369 3370 static int 3371 asytodm(int mcr_r, int msr_r) 3372 { 3373 register int b = 0; 3374 3375 3376 /* MCR registers */ 3377 if (mcr_r & RTS) 3378 b |= TIOCM_RTS; 3379 3380 if (mcr_r & DTR) 3381 b |= TIOCM_DTR; 3382 3383 /* MSR registers */ 3384 if (msr_r & DCD) 3385 b |= TIOCM_CAR; 3386 3387 if (msr_r & CTS) 3388 b |= TIOCM_CTS; 3389 3390 if (msr_r & DSR) 3391 b |= TIOCM_DSR; 3392 3393 if (msr_r & RI) 3394 b |= TIOCM_RNG; 3395 3396 return (b); 3397 } 3398 3399 static int 3400 dmtoasy(int bits) 3401 { 3402 register int b = 0; 3403 3404 #ifdef CAN_NOT_SET /* only DTR and RTS can be set */ 3405 if (bits & TIOCM_CAR) 3406 b |= DCD; 3407 if (bits & TIOCM_CTS) 3408 b |= CTS; 3409 if (bits & TIOCM_DSR) 3410 b |= DSR; 3411 if (bits & TIOCM_RNG) 3412 b |= RI; 3413 #endif 3414 3415 if (bits & TIOCM_RTS) 3416 b |= RTS; 3417 if (bits & TIOCM_DTR) 3418 b |= DTR; 3419 3420 return (b); 3421 } 3422 3423 static void 3424 asycheckflowcontrol_hw(struct asycom *asy) 3425 { 3426 struct asyncline *async; 3427 uchar_t mcr, flag; 3428 3429 ASSERT(mutex_owned(asy->asy_excl_hi)); 3430 3431 async = (struct asyncline *)asy->asy_priv; 3432 ASSERT(async != NULL); 3433 3434 if (async->async_ttycommon.t_cflag & CRTSXOFF) { 3435 mcr = INB(MCR); 3436 flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS; 3437 if (((mcr ^ flag) & RTS) != 0) { 3438 OUTB(MCR, (mcr ^ RTS)); 3439 } 3440 } 3441 } 3442 3443 static boolean_t 3444 asycheckflowcontrol_sw(struct asycom *asy) 3445 { 3446 uchar_t ss; 3447 struct asyncline *async; 3448 int rval = B_FALSE; 3449 3450 ASSERT(mutex_owned(asy->asy_excl_hi)); 3451 3452 async = (struct asyncline *)asy->asy_priv; 3453 ASSERT(async != NULL); 3454 3455 if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) { 3456 /* 3457 * If we get this far, then we know that flowc is non-zero and 3458 * that there's transmit room available. We've "handled" the 3459 * request now, so clear it. If the user didn't ask for IXOFF, 3460 * then don't actually send anything, but wait for the next 3461 * opportunity. 3462 */ 3463 async->async_flowc = '\0'; 3464 if (async->async_ttycommon.t_iflag & IXOFF) { 3465 async->async_flags |= ASYNC_BUSY; 3466 OUTB(DAT, ss); 3467 rval = B_TRUE; 3468 } 3469 } 3470 3471 return (rval); 3472 } 3473 3474 /* 3475 * Check for abort character sequence 3476 */ 3477 static boolean_t 3478 abort_charseq_recognize(uchar_t ch) 3479 { 3480 static int state = 0; 3481 #define CNTRL(c) ((c)&037) 3482 static char sequence[] = { '\r', '~', CNTRL('b') }; 3483 3484 if (ch == sequence[state]) { 3485 if (++state >= sizeof (sequence)) { 3486 state = 0; 3487 return (B_TRUE); 3488 } 3489 } else { 3490 state = (ch == sequence[0]) ? 1 : 0; 3491 } 3492 return (B_FALSE); 3493 } 3494