1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * PX nexus interrupt handling: 30 * PX device interrupt handler wrapper 31 * PIL lookup routine 32 * PX device interrupt related initchild code 33 */ 34 35 #include <sys/types.h> 36 #include <sys/kmem.h> 37 #include <sys/async.h> 38 #include <sys/spl.h> 39 #include <sys/sunddi.h> 40 #include <sys/fm/protocol.h> 41 #include <sys/fm/util.h> 42 #include <sys/machsystm.h> /* e_ddi_nodeid_to_dip() */ 43 #include <sys/ddi_impldefs.h> 44 #include <sys/sdt.h> 45 #include <sys/atomic.h> 46 #include "px_obj.h" 47 #include <sys/ontrap.h> 48 #include <sys/membar.h> 49 #include <sys/clock.h> 50 51 /* 52 * interrupt jabber: 53 * 54 * When an interrupt line is jabbering, every time the state machine for the 55 * associated ino is idled, a new mondo will be sent and the ino will go into 56 * the pending state again. The mondo will cause a new call to 57 * px_intr_wrapper() which normally idles the ino's state machine which would 58 * precipitate another trip round the loop. 59 * 60 * The loop can be broken by preventing the ino's state machine from being 61 * idled when an interrupt line is jabbering. See the comment at the 62 * beginning of px_intr_wrapper() explaining how the 'interrupt jabber 63 * protection' code does this. 64 */ 65 66 /*LINTLIBRARY*/ 67 68 /* 69 * If the unclaimed interrupt count has reached the limit set by 70 * pci_unclaimed_intr_max within the time limit, then all interrupts 71 * on this ino is blocked by not idling the interrupt state machine. 72 */ 73 static int 74 px_spurintr(px_ib_ino_info_t *ino_p) 75 { 76 px_ih_t *ih_p = ino_p->ino_ih_start; 77 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 78 char *err_fmt_str; 79 int i; 80 81 if (ino_p->ino_unclaimed > px_unclaimed_intr_max) 82 return (DDI_INTR_CLAIMED); 83 84 if (!ino_p->ino_unclaimed) 85 ino_p->ino_spurintr_begin = ddi_get_lbolt(); 86 87 ino_p->ino_unclaimed++; 88 89 if (ino_p->ino_unclaimed <= px_unclaimed_intr_max) 90 goto clear; 91 92 if (drv_hztousec(ddi_get_lbolt() - ino_p->ino_spurintr_begin) 93 > px_spurintr_duration) { 94 ino_p->ino_unclaimed = 0; 95 goto clear; 96 } 97 err_fmt_str = "%s%d: ino 0x%x blocked"; 98 goto warn; 99 clear: 100 /* Clear the pending state */ 101 if (px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 102 INTR_IDLE_STATE) != DDI_SUCCESS) 103 return (DDI_INTR_UNCLAIMED); 104 105 err_fmt_str = "!%s%d: spurious interrupt from ino 0x%x"; 106 warn: 107 cmn_err(CE_WARN, err_fmt_str, NAMEINST(px_p->px_dip), ino_p->ino_ino); 108 for (i = 0; i < ino_p->ino_ih_size; i++, ih_p = ih_p->ih_next) 109 cmn_err(CE_CONT, "!%s-%d#%x ", NAMEINST(ih_p->ih_dip), 110 ih_p->ih_inum); 111 cmn_err(CE_CONT, "!\n"); 112 return (DDI_INTR_CLAIMED); 113 } 114 115 extern uint64_t intr_get_time(void); 116 117 /* 118 * px_intx_intr (INTx or legacy interrupt handler) 119 * 120 * This routine is used as wrapper around interrupt handlers installed by child 121 * device drivers. This routine invokes the driver interrupt handlers and 122 * examines the return codes. 123 * 124 * There is a count of unclaimed interrupts kept on a per-ino basis. If at 125 * least one handler claims the interrupt then the counter is halved and the 126 * interrupt state machine is idled. If no handler claims the interrupt then 127 * the counter is incremented by one and the state machine is idled. 128 * If the count ever reaches the limit value set by pci_unclaimed_intr_max 129 * then the interrupt state machine is not idled thus preventing any further 130 * interrupts on that ino. The state machine will only be idled again if a 131 * handler is subsequently added or removed. 132 * 133 * return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt, 134 * DDI_INTR_UNCLAIMED otherwise. 135 */ 136 uint_t 137 px_intx_intr(caddr_t arg) 138 { 139 px_ib_ino_info_t *ino_p = (px_ib_ino_info_t *)arg; 140 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 141 px_ih_t *ih_p = ino_p->ino_ih_start; 142 uint_t result = 0, r; 143 int i; 144 145 DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:" 146 "ino=%x sysino=%llx pil=%x ih_size=%x ih_lst=%x\n", 147 ino_p->ino_ino, ino_p->ino_sysino, ino_p->ino_pil, 148 ino_p->ino_ih_size, ino_p->ino_ih_head); 149 150 for (i = 0; i < ino_p->ino_ih_size; i++, ih_p = ih_p->ih_next) { 151 dev_info_t *dip = ih_p->ih_dip; 152 uint_t (*handler)() = ih_p->ih_handler; 153 caddr_t arg1 = ih_p->ih_handler_arg1; 154 caddr_t arg2 = ih_p->ih_handler_arg2; 155 156 if (ih_p->ih_intr_state == PX_INTR_STATE_DISABLE) { 157 DBG(DBG_INTX_INTR, px_p->px_dip, 158 "px_intx_intr: %s%d interrupt %d is disabled\n", 159 ddi_driver_name(dip), ddi_get_instance(dip), 160 ino_p->ino_ino); 161 162 continue; 163 } 164 165 DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:" 166 "ino=%x handler=%p arg1 =%p arg2 = %p\n", 167 ino_p->ino_ino, handler, arg1, arg2); 168 169 DTRACE_PROBE4(interrupt__start, dev_info_t, dip, 170 void *, handler, caddr_t, arg1, caddr_t, arg2); 171 172 r = (*handler)(arg1, arg2); 173 174 /* 175 * Account for time used by this interrupt. Protect against 176 * conflicting writes to ih_ticks from ib_intr_dist_all() by 177 * using atomic ops. 178 */ 179 180 if (ino_p->ino_pil <= LOCK_LEVEL) 181 atomic_add_64(&ih_p->ih_ticks, intr_get_time()); 182 183 DTRACE_PROBE4(interrupt__complete, dev_info_t, dip, 184 void *, handler, caddr_t, arg1, int, r); 185 186 result += r; 187 188 if (px_check_all_handlers) 189 continue; 190 if (result) 191 break; 192 } 193 194 if (!result && px_unclaimed_intr_block) 195 return (px_spurintr(ino_p)); 196 197 ino_p->ino_unclaimed = 0; 198 199 /* Clear the pending state */ 200 if (px_lib_intr_setstate(ino_p->ino_ib_p->ib_px_p->px_dip, 201 ino_p->ino_sysino, INTR_IDLE_STATE) != DDI_SUCCESS) 202 return (DDI_INTR_UNCLAIMED); 203 204 return (DDI_INTR_CLAIMED); 205 } 206 207 /* 208 * px_msiq_intr (MSI/X or PCIe MSG interrupt handler) 209 * 210 * This routine is used as wrapper around interrupt handlers installed by child 211 * device drivers. This routine invokes the driver interrupt handlers and 212 * examines the return codes. 213 * 214 * There is a count of unclaimed interrupts kept on a per-ino basis. If at 215 * least one handler claims the interrupt then the counter is halved and the 216 * interrupt state machine is idled. If no handler claims the interrupt then 217 * the counter is incremented by one and the state machine is idled. 218 * If the count ever reaches the limit value set by pci_unclaimed_intr_max 219 * then the interrupt state machine is not idled thus preventing any further 220 * interrupts on that ino. The state machine will only be idled again if a 221 * handler is subsequently added or removed. 222 * 223 * return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt, 224 * DDI_INTR_UNCLAIMED otherwise. 225 */ 226 uint_t 227 px_msiq_intr(caddr_t arg) 228 { 229 px_ib_ino_info_t *ino_p = (px_ib_ino_info_t *)arg; 230 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 231 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 232 px_msiq_t *msiq_p = ino_p->ino_msiq_p; 233 dev_info_t *dip = px_p->px_dip; 234 msiq_rec_t msiq_rec, *msiq_rec_p = &msiq_rec; 235 msiqhead_t new_head_index = msiq_p->msiq_curr_head_idx; 236 msiqhead_t *curr_head_p; 237 msiqtail_t curr_tail_index; 238 msgcode_t msg_code; 239 px_ih_t *ih_p; 240 int i, ret; 241 ushort_t msiq_recs2process; 242 243 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: msiq_id =%x ino=%x pil=%x " 244 "ih_size=%x ih_lst=%x\n", msiq_p->msiq_id, ino_p->ino_ino, 245 ino_p->ino_pil, ino_p->ino_ih_size, ino_p->ino_ih_head); 246 247 /* Read current MSIQ tail index */ 248 px_lib_msiq_gettail(dip, msiq_p->msiq_id, &curr_tail_index); 249 250 if (curr_tail_index < new_head_index) 251 curr_tail_index += msiq_state_p->msiq_rec_cnt; 252 253 /* 254 * Calculate the number of recs to process by taking the difference 255 * between the head and tail pointers. For all records we always 256 * verify that we have a valid record type before we do any processing. 257 * If triggered, we should always have at least 1 valid record. 258 */ 259 msiq_recs2process = curr_tail_index - new_head_index; 260 261 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: curr_head %x " 262 "rec2process %x\n", new_head_index, msiq_recs2process); 263 264 curr_head_p = (msiqhead_t *)((caddr_t)msiq_p->msiq_base_p + 265 new_head_index * sizeof (msiq_rec_t)); 266 267 for (i = 0; i < msiq_recs2process; i++) { 268 /* Read MSIQ record */ 269 px_lib_get_msiq_rec(dip, curr_head_p, msiq_rec_p); 270 271 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSIQ RECORD, " 272 "msiq_rec_type 0x%llx msiq_rec_rid 0x%llx\n", 273 msiq_rec_p->msiq_rec_type, msiq_rec_p->msiq_rec_rid); 274 275 if (!msiq_rec_p->msiq_rec_type) 276 break; 277 278 /* Check MSIQ record type */ 279 switch (msiq_rec_p->msiq_rec_type) { 280 case MSG_REC: 281 msg_code = msiq_rec_p->msiq_rec_data.msg.msg_code; 282 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: PCIE MSG " 283 "record, msg type 0x%x\n", msg_code); 284 break; 285 case MSI32_REC: 286 case MSI64_REC: 287 msg_code = msiq_rec_p->msiq_rec_data.msi.msi_data; 288 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSI record, " 289 "msi 0x%x\n", msg_code); 290 291 /* Clear MSI state */ 292 px_lib_msi_setstate(dip, (msinum_t)msg_code, 293 PCI_MSI_STATE_IDLE); 294 break; 295 default: 296 msg_code = 0; 297 cmn_err(CE_WARN, "%s%d: px_msiq_intr: 0x%x MSIQ " 298 "record type is not supported", 299 ddi_driver_name(dip), ddi_get_instance(dip), 300 msiq_rec_p->msiq_rec_type); 301 goto next_rec; 302 } 303 304 /* 305 * Scan through px_ih_t linked list, searching for the 306 * right px_ih_t, matching MSIQ record data. 307 */ 308 for (i = 0, ih_p = ino_p->ino_ih_start; 309 ih_p && (i < ino_p->ino_ih_size) && 310 ((ih_p->ih_msg_code != msg_code) || 311 (ih_p->ih_rec_type != msiq_rec_p->msiq_rec_type)); 312 ih_p = ih_p->ih_next, i++); 313 314 if ((ih_p->ih_msg_code == msg_code) && 315 (ih_p->ih_rec_type == msiq_rec_p->msiq_rec_type)) { 316 dev_info_t *dip = ih_p->ih_dip; 317 uint_t (*handler)() = ih_p->ih_handler; 318 caddr_t arg1 = ih_p->ih_handler_arg1; 319 caddr_t arg2 = ih_p->ih_handler_arg2; 320 321 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: ino=%x data=%x " 322 "handler=%p arg1 =%p arg2=%p\n", ino_p->ino_ino, 323 msg_code, handler, arg1, arg2); 324 325 DTRACE_PROBE4(interrupt__start, dev_info_t, dip, 326 void *, handler, caddr_t, arg1, caddr_t, arg2); 327 328 /* 329 * Special case for PCIE Error Messages. 330 * The current frame work doesn't fit PCIE Err Msgs 331 * This should be fixed when PCIE MESSAGES as a whole 332 * is architected correctly. 333 */ 334 if ((msg_code == PCIE_MSG_CODE_ERR_COR) || 335 (msg_code == PCIE_MSG_CODE_ERR_NONFATAL) || 336 (msg_code == PCIE_MSG_CODE_ERR_FATAL)) { 337 ret = px_err_fabric_intr(px_p, msg_code, 338 msiq_rec_p->msiq_rec_rid); 339 } else 340 ret = (*handler)(arg1, arg2); 341 342 /* 343 * Account for time used by this interrupt. Protect 344 * against conflicting writes to ih_ticks from 345 * ib_intr_dist_all() by using atomic ops. 346 */ 347 348 if (ino_p->ino_pil <= LOCK_LEVEL) 349 atomic_add_64(&ih_p->ih_ticks, intr_get_time()); 350 351 DTRACE_PROBE4(interrupt__complete, dev_info_t, dip, 352 void *, handler, caddr_t, arg1, int, ret); 353 354 new_head_index++; 355 } else { 356 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr:" 357 "No matching MSIQ record found\n"); 358 } 359 next_rec: 360 /* Get the pointer next EQ record */ 361 curr_head_p = (msiqhead_t *) 362 ((caddr_t)curr_head_p + sizeof (msiq_rec_t)); 363 364 /* Check for overflow condition */ 365 if (curr_head_p >= (msiqhead_t *)((caddr_t)msiq_p->msiq_base_p 366 + msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t))) 367 curr_head_p = (msiqhead_t *)msiq_p->msiq_base_p; 368 369 /* Zero out msiq_rec_type field */ 370 msiq_rec_p->msiq_rec_type = 0; 371 } 372 373 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: # of MSIQ recs processed %x\n", 374 (new_head_index - msiq_p->msiq_curr_head_idx)); 375 376 if (new_head_index <= msiq_p->msiq_curr_head_idx) { 377 if (px_unclaimed_intr_block) { 378 return (px_spurintr(ino_p)); 379 } 380 } 381 382 /* Update MSIQ head index with no of MSIQ records processed */ 383 if (new_head_index >= msiq_state_p->msiq_rec_cnt) 384 new_head_index -= msiq_state_p->msiq_rec_cnt; 385 386 msiq_p->msiq_curr_head_idx = new_head_index; 387 px_lib_msiq_sethead(dip, msiq_p->msiq_id, new_head_index); 388 389 /* Clear the pending state */ 390 if (px_lib_intr_setstate(dip, ino_p->ino_sysino, 391 INTR_IDLE_STATE) != DDI_SUCCESS) 392 return (DDI_INTR_UNCLAIMED); 393 394 return (DDI_INTR_CLAIMED); 395 } 396 397 dev_info_t * 398 px_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip) 399 { 400 dev_info_t *cdip = rdip; 401 402 for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip)) 403 ; 404 405 return (cdip); 406 } 407 408 /* Default class to pil value mapping */ 409 px_class_val_t px_default_pil [] = { 410 {0x000000, 0xff0000, 0x1}, /* Class code for pre-2.0 devices */ 411 {0x010000, 0xff0000, 0x4}, /* Mass Storage Controller */ 412 {0x020000, 0xff0000, 0x6}, /* Network Controller */ 413 {0x030000, 0xff0000, 0x9}, /* Display Controller */ 414 {0x040000, 0xff0000, 0x9}, /* Multimedia Controller */ 415 {0x050000, 0xff0000, 0x9}, /* Memory Controller */ 416 {0x060000, 0xff0000, 0x9}, /* Bridge Controller */ 417 {0x0c0000, 0xffff00, 0x9}, /* Serial Bus, FireWire (IEEE 1394) */ 418 {0x0c0100, 0xffff00, 0x4}, /* Serial Bus, ACCESS.bus */ 419 {0x0c0200, 0xffff00, 0x4}, /* Serial Bus, SSA */ 420 {0x0c0300, 0xffff00, 0x9}, /* Serial Bus Universal Serial Bus */ 421 {0x0c0400, 0xffff00, 0x6}, /* Serial Bus, Fibre Channel */ 422 {0x0c0600, 0xffff00, 0x6} /* Serial Bus, Infiniband */ 423 }; 424 425 /* 426 * Default class to intr_weight value mapping (% of CPU). A driver.conf 427 * entry on or above the pci node like 428 * 429 * pci-class-intr-weights= 0x020000, 0xff0000, 30; 430 * 431 * can be used to augment or override entries in the default table below. 432 * 433 * NB: The values below give NICs preference on redistribution, and provide 434 * NICs some isolation from other interrupt sources. We need better interfaces 435 * that allow the NIC driver to identify a specific NIC instance as high 436 * bandwidth, and thus deserving of separation from other low bandwidth 437 * NICs additional isolation from other interrupt sources. 438 * 439 * NB: We treat Infiniband like a NIC. 440 */ 441 px_class_val_t px_default_intr_weight [] = { 442 {0x020000, 0xff0000, 35}, /* Network Controller */ 443 {0x010000, 0xff0000, 10}, /* Mass Storage Controller */ 444 {0x0c0400, 0xffff00, 10}, /* Serial Bus, Fibre Channel */ 445 {0x0c0600, 0xffff00, 50} /* Serial Bus, Infiniband */ 446 }; 447 448 static uint32_t 449 px_match_class_val(uint32_t key, px_class_val_t *rec_p, int nrec, 450 uint32_t default_val) 451 { 452 int i; 453 454 for (i = 0; i < nrec; rec_p++, i++) { 455 if ((rec_p->class_code & rec_p->class_mask) == 456 (key & rec_p->class_mask)) 457 return (rec_p->class_val); 458 } 459 460 return (default_val); 461 } 462 463 /* 464 * px_class_to_val 465 * 466 * Return the configuration value, based on class code and sub class code, 467 * from the specified property based or default px_class_val_t table. 468 */ 469 uint32_t 470 px_class_to_val(dev_info_t *rdip, char *property_name, px_class_val_t *rec_p, 471 int nrec, uint32_t default_val) 472 { 473 int property_len; 474 uint32_t class_code; 475 px_class_val_t *conf; 476 uint32_t val = default_val; 477 478 /* 479 * Use the "class-code" property to get the base and sub class 480 * codes for the requesting device. 481 */ 482 class_code = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, rdip, 483 DDI_PROP_DONTPASS, "class-code", -1); 484 485 if (class_code == -1) 486 return (val); 487 488 /* look up the val from the default table */ 489 val = px_match_class_val(class_code, rec_p, nrec, val); 490 491 /* see if there is a more specific property specified value */ 492 if (ddi_getlongprop(DDI_DEV_T_ANY, rdip, DDI_PROP_NOTPROM, 493 property_name, (caddr_t)&conf, &property_len)) 494 return (val); 495 496 if ((property_len % sizeof (px_class_val_t)) == 0) 497 val = px_match_class_val(class_code, conf, 498 property_len / sizeof (px_class_val_t), val); 499 kmem_free(conf, property_len); 500 return (val); 501 } 502 503 /* px_class_to_pil: return the pil for a given device. */ 504 uint32_t 505 px_class_to_pil(dev_info_t *rdip) 506 { 507 uint32_t pil; 508 509 /* default pil is 0 (uninitialized) */ 510 pil = px_class_to_val(rdip, 511 "pci-class-priorities", px_default_pil, 512 sizeof (px_default_pil) / sizeof (px_class_val_t), 0); 513 514 /* range check the result */ 515 if (pil >= 0xf) 516 pil = 0; 517 518 return (pil); 519 } 520 521 /* px_class_to_intr_weight: return the intr_weight for a given device. */ 522 static int32_t 523 px_class_to_intr_weight(dev_info_t *rdip) 524 { 525 int32_t intr_weight; 526 527 /* default weight is 0% */ 528 intr_weight = px_class_to_val(rdip, 529 "pci-class-intr-weights", px_default_intr_weight, 530 sizeof (px_default_intr_weight) / sizeof (px_class_val_t), 0); 531 532 /* range check the result */ 533 if (intr_weight < 0) 534 intr_weight = 0; 535 if (intr_weight > 1000) 536 intr_weight = 1000; 537 538 return (intr_weight); 539 } 540 541 /* ARGSUSED */ 542 int 543 px_intx_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 544 ddi_intr_handle_impl_t *hdlp, void *result) 545 { 546 px_t *px_p = DIP_TO_STATE(dip); 547 int ret = DDI_SUCCESS; 548 549 DBG(DBG_INTROPS, dip, "px_intx_ops: dip=%x rdip=%x intr_op=%x " 550 "handle=%p\n", dip, rdip, intr_op, hdlp); 551 552 switch (intr_op) { 553 case DDI_INTROP_GETCAP: 554 ret = pci_intx_get_cap(rdip, (int *)result); 555 break; 556 case DDI_INTROP_SETCAP: 557 DBG(DBG_INTROPS, dip, "px_intx_ops: SetCap is not supported\n"); 558 ret = DDI_ENOTSUP; 559 break; 560 case DDI_INTROP_ALLOC: 561 *(int *)result = hdlp->ih_scratch1; 562 break; 563 case DDI_INTROP_FREE: 564 break; 565 case DDI_INTROP_GETPRI: 566 *(int *)result = hdlp->ih_pri ? 567 hdlp->ih_pri : px_class_to_pil(rdip); 568 break; 569 case DDI_INTROP_SETPRI: 570 break; 571 case DDI_INTROP_ADDISR: 572 ret = px_add_intx_intr(dip, rdip, hdlp); 573 break; 574 case DDI_INTROP_REMISR: 575 ret = px_rem_intx_intr(dip, rdip, hdlp); 576 break; 577 case DDI_INTROP_ENABLE: 578 ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum, 579 hdlp->ih_vector, PX_INTR_STATE_ENABLE, 0, 0); 580 break; 581 case DDI_INTROP_DISABLE: 582 ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum, 583 hdlp->ih_vector, PX_INTR_STATE_DISABLE, 0, 0); 584 break; 585 case DDI_INTROP_SETMASK: 586 ret = pci_intx_set_mask(rdip); 587 break; 588 case DDI_INTROP_CLRMASK: 589 ret = pci_intx_clr_mask(rdip); 590 break; 591 case DDI_INTROP_GETPENDING: 592 ret = pci_intx_get_pending(rdip, (int *)result); 593 break; 594 case DDI_INTROP_NINTRS: 595 case DDI_INTROP_NAVAIL: 596 *(int *)result = i_ddi_get_intx_nintrs(rdip); 597 break; 598 default: 599 ret = DDI_ENOTSUP; 600 break; 601 } 602 603 return (ret); 604 } 605 606 /* ARGSUSED */ 607 int 608 px_msix_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 609 ddi_intr_handle_impl_t *hdlp, void *result) 610 { 611 px_t *px_p = DIP_TO_STATE(dip); 612 px_msi_state_t *msi_state_p = &px_p->px_ib_p->ib_msi_state; 613 msiq_rec_type_t msiq_rec_type; 614 msi_type_t msi_type; 615 uint64_t msi_addr; 616 msinum_t msi_num; 617 msiqid_t msiq_id; 618 uint_t nintrs; 619 int i, ret = DDI_SUCCESS; 620 621 DBG(DBG_INTROPS, dip, "px_msix_ops: dip=%x rdip=%x intr_op=%x " 622 "handle=%p\n", dip, rdip, intr_op, hdlp); 623 624 /* Check for MSI64 support */ 625 if ((hdlp->ih_cap & DDI_INTR_FLAG_MSI64) && msi_state_p->msi_addr64) { 626 msiq_rec_type = MSI64_REC; 627 msi_type = MSI64_TYPE; 628 msi_addr = msi_state_p->msi_addr64; 629 } else { 630 msiq_rec_type = MSI32_REC; 631 msi_type = MSI32_TYPE; 632 msi_addr = msi_state_p->msi_addr32; 633 } 634 635 switch (intr_op) { 636 case DDI_INTROP_GETCAP: 637 ret = pci_msi_get_cap(rdip, hdlp->ih_type, (int *)result); 638 break; 639 case DDI_INTROP_SETCAP: 640 DBG(DBG_INTROPS, dip, "px_msix_ops: SetCap is not supported\n"); 641 ret = DDI_ENOTSUP; 642 break; 643 case DDI_INTROP_ALLOC: 644 /* 645 * We need to restrict this allocation in future 646 * based on Resource Management policies. 647 */ 648 if ((ret = px_msi_alloc(px_p, rdip, hdlp->ih_inum, 649 hdlp->ih_scratch1, (uintptr_t)hdlp->ih_scratch2, &msi_num, 650 (int *)result)) != DDI_SUCCESS) { 651 DBG(DBG_INTROPS, dip, "px_msix_ops: allocation " 652 "failed, rdip 0x%p type 0x%d inum 0x%x " 653 "count 0x%x\n", rdip, hdlp->ih_type, hdlp->ih_inum, 654 hdlp->ih_scratch1); 655 656 return (ret); 657 } 658 659 if ((hdlp->ih_type == DDI_INTR_TYPE_MSIX) && 660 (i_ddi_get_msix(rdip) == NULL)) { 661 ddi_intr_msix_t *msix_p; 662 663 if (msix_p = pci_msix_init(rdip)) { 664 i_ddi_set_msix(rdip, msix_p); 665 break; 666 } 667 668 DBG(DBG_INTROPS, dip, "px_msix_ops: MSI-X allocation " 669 "failed, rdip 0x%p inum 0x%x\n", rdip, 670 hdlp->ih_inum); 671 672 (void) px_msi_free(px_p, rdip, hdlp->ih_inum, 673 hdlp->ih_scratch1); 674 675 return (DDI_FAILURE); 676 } 677 678 break; 679 case DDI_INTROP_FREE: 680 (void) pci_msi_disable_mode(rdip, hdlp->ih_type, hdlp->ih_inum); 681 (void) pci_msi_unconfigure(rdip, hdlp->ih_type, hdlp->ih_inum); 682 683 if (hdlp->ih_type == DDI_INTR_TYPE_MSI) 684 goto msi_free; 685 686 if (hdlp->ih_flags & DDI_INTR_MSIX_DUP) 687 break; 688 689 if (((i_ddi_intr_get_current_nintrs(hdlp->ih_dip) - 1) == 0) && 690 (i_ddi_get_msix(rdip))) { 691 pci_msix_fini(i_ddi_get_msix(rdip)); 692 i_ddi_set_msix(rdip, NULL); 693 } 694 msi_free: 695 (void) px_msi_free(px_p, rdip, hdlp->ih_inum, 696 hdlp->ih_scratch1); 697 break; 698 case DDI_INTROP_GETPRI: 699 *(int *)result = hdlp->ih_pri ? 700 hdlp->ih_pri : px_class_to_pil(rdip); 701 break; 702 case DDI_INTROP_SETPRI: 703 break; 704 case DDI_INTROP_ADDISR: 705 if ((ret = px_msi_get_msinum(px_p, hdlp->ih_dip, 706 hdlp->ih_inum, &msi_num)) != DDI_SUCCESS) 707 return (ret); 708 709 if ((ret = px_add_msiq_intr(dip, rdip, hdlp, 710 msiq_rec_type, msi_num, &msiq_id)) != DDI_SUCCESS) { 711 DBG(DBG_INTROPS, dip, "px_msix_ops: Add MSI handler " 712 "failed, rdip 0x%p msi 0x%x\n", rdip, msi_num); 713 return (ret); 714 } 715 716 DBG(DBG_INTROPS, dip, "px_msix_ops: msiq used 0x%x\n", msiq_id); 717 718 if ((ret = px_lib_msi_setmsiq(dip, msi_num, 719 msiq_id, msi_type)) != DDI_SUCCESS) { 720 (void) px_rem_msiq_intr(dip, rdip, 721 hdlp, msiq_rec_type, msi_num, msiq_id); 722 return (ret); 723 } 724 725 if ((ret = px_lib_msi_setstate(dip, msi_num, 726 PCI_MSI_STATE_IDLE)) != DDI_SUCCESS) { 727 (void) px_rem_msiq_intr(dip, rdip, 728 hdlp, msiq_rec_type, msi_num, msiq_id); 729 return (ret); 730 } 731 732 hdlp->ih_vector = msi_num; 733 break; 734 case DDI_INTROP_DUPVEC: 735 DBG(DBG_INTROPS, dip, "px_msix_ops: dupisr - inum: %x, " 736 "new_vector: %x\n", hdlp->ih_inum, hdlp->ih_scratch1); 737 738 ret = pci_msix_dup(hdlp->ih_dip, hdlp->ih_inum, 739 hdlp->ih_scratch1); 740 break; 741 case DDI_INTROP_REMISR: 742 msi_num = hdlp->ih_vector; 743 744 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 745 &msiq_id)) != DDI_SUCCESS) 746 return (ret); 747 748 if ((ret = px_lib_msi_setstate(dip, msi_num, 749 PCI_MSI_STATE_IDLE)) != DDI_SUCCESS) 750 return (ret); 751 752 ret = px_rem_msiq_intr(dip, rdip, 753 hdlp, msiq_rec_type, msi_num, msiq_id); 754 755 hdlp->ih_vector = 0; 756 break; 757 case DDI_INTROP_ENABLE: 758 msi_num = hdlp->ih_vector; 759 760 if ((ret = px_lib_msi_setvalid(dip, msi_num, 761 PCI_MSI_VALID)) != DDI_SUCCESS) 762 return (ret); 763 764 if (pci_is_msi_enabled(rdip, hdlp->ih_type) != DDI_SUCCESS) { 765 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 766 767 if ((ret = pci_msi_configure(rdip, hdlp->ih_type, 768 nintrs, hdlp->ih_inum, msi_addr, 769 msi_num & ~(nintrs - 1))) != DDI_SUCCESS) 770 return (ret); 771 772 if ((ret = pci_msi_enable_mode(rdip, hdlp->ih_type, 773 hdlp->ih_inum)) != DDI_SUCCESS) 774 return (ret); 775 } 776 777 if ((ret = pci_msi_clr_mask(rdip, hdlp->ih_type, 778 hdlp->ih_inum)) != DDI_SUCCESS) 779 return (ret); 780 781 if (hdlp->ih_flags & DDI_INTR_MSIX_DUP) 782 break; 783 784 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 785 &msiq_id)) != DDI_SUCCESS) 786 return (ret); 787 788 ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum, 789 px_msiqid_to_devino(px_p, msiq_id), PX_INTR_STATE_ENABLE, 790 msiq_rec_type, msi_num); 791 792 break; 793 case DDI_INTROP_DISABLE: 794 msi_num = hdlp->ih_vector; 795 796 if ((ret = pci_msi_set_mask(rdip, hdlp->ih_type, 797 hdlp->ih_inum)) != DDI_SUCCESS) 798 return (ret); 799 800 if ((ret = px_lib_msi_setvalid(dip, msi_num, 801 PCI_MSI_INVALID)) != DDI_SUCCESS) 802 return (ret); 803 804 if (hdlp->ih_flags & DDI_INTR_MSIX_DUP) 805 break; 806 807 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 808 &msiq_id)) != DDI_SUCCESS) 809 return (ret); 810 811 ret = px_ib_update_intr_state(px_p, rdip, 812 hdlp->ih_inum, px_msiqid_to_devino(px_p, msiq_id), 813 PX_INTR_STATE_DISABLE, msiq_rec_type, msi_num); 814 815 break; 816 case DDI_INTROP_BLOCKENABLE: 817 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 818 msi_num = hdlp->ih_vector; 819 820 if ((ret = pci_msi_configure(rdip, hdlp->ih_type, 821 nintrs, hdlp->ih_inum, msi_addr, 822 msi_num & ~(nintrs - 1))) != DDI_SUCCESS) 823 return (ret); 824 825 for (i = 0; i < nintrs; i++, msi_num++) { 826 if ((ret = px_lib_msi_setvalid(dip, msi_num, 827 PCI_MSI_VALID)) != DDI_SUCCESS) 828 return (ret); 829 830 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 831 &msiq_id)) != DDI_SUCCESS) 832 return (ret); 833 834 if ((ret = px_ib_update_intr_state(px_p, rdip, 835 hdlp->ih_inum + i, px_msiqid_to_devino(px_p, 836 msiq_id), PX_INTR_STATE_ENABLE, msiq_rec_type, 837 msi_num)) != DDI_SUCCESS) 838 return (ret); 839 } 840 841 ret = pci_msi_enable_mode(rdip, hdlp->ih_type, hdlp->ih_inum); 842 break; 843 case DDI_INTROP_BLOCKDISABLE: 844 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 845 msi_num = hdlp->ih_vector; 846 847 if ((ret = pci_msi_disable_mode(rdip, hdlp->ih_type, 848 hdlp->ih_inum)) != DDI_SUCCESS) 849 return (ret); 850 851 for (i = 0; i < nintrs; i++, msi_num++) { 852 if ((ret = px_lib_msi_setvalid(dip, msi_num, 853 PCI_MSI_INVALID)) != DDI_SUCCESS) 854 return (ret); 855 856 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 857 &msiq_id)) != DDI_SUCCESS) 858 return (ret); 859 860 if ((ret = px_ib_update_intr_state(px_p, rdip, 861 hdlp->ih_inum + i, px_msiqid_to_devino(px_p, 862 msiq_id), PX_INTR_STATE_DISABLE, msiq_rec_type, 863 msi_num)) != DDI_SUCCESS) 864 return (ret); 865 } 866 867 break; 868 case DDI_INTROP_SETMASK: 869 ret = pci_msi_set_mask(rdip, hdlp->ih_type, hdlp->ih_inum); 870 break; 871 case DDI_INTROP_CLRMASK: 872 ret = pci_msi_clr_mask(rdip, hdlp->ih_type, hdlp->ih_inum); 873 break; 874 case DDI_INTROP_GETPENDING: 875 ret = pci_msi_get_pending(rdip, hdlp->ih_type, 876 hdlp->ih_inum, (int *)result); 877 break; 878 case DDI_INTROP_NINTRS: 879 ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result); 880 break; 881 case DDI_INTROP_NAVAIL: 882 /* XXX - a new interface may be needed */ 883 ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result); 884 break; 885 default: 886 ret = DDI_ENOTSUP; 887 break; 888 } 889 890 return (ret); 891 } 892 893 static struct { 894 kstat_named_t pxintr_ks_name; 895 kstat_named_t pxintr_ks_type; 896 kstat_named_t pxintr_ks_cpu; 897 kstat_named_t pxintr_ks_pil; 898 kstat_named_t pxintr_ks_time; 899 kstat_named_t pxintr_ks_ino; 900 kstat_named_t pxintr_ks_cookie; 901 kstat_named_t pxintr_ks_devpath; 902 kstat_named_t pxintr_ks_buspath; 903 } pxintr_ks_template = { 904 { "name", KSTAT_DATA_CHAR }, 905 { "type", KSTAT_DATA_CHAR }, 906 { "cpu", KSTAT_DATA_UINT64 }, 907 { "pil", KSTAT_DATA_UINT64 }, 908 { "time", KSTAT_DATA_UINT64 }, 909 { "ino", KSTAT_DATA_UINT64 }, 910 { "cookie", KSTAT_DATA_UINT64 }, 911 { "devpath", KSTAT_DATA_STRING }, 912 { "buspath", KSTAT_DATA_STRING }, 913 }; 914 915 static uint32_t pxintr_ks_instance; 916 static char ih_devpath[MAXPATHLEN]; 917 static char ih_buspath[MAXPATHLEN]; 918 kmutex_t pxintr_ks_template_lock; 919 920 int 921 px_ks_update(kstat_t *ksp, int rw) 922 { 923 px_ih_t *ih_p = ksp->ks_private; 924 int maxlen = sizeof (pxintr_ks_template.pxintr_ks_name.value.c); 925 px_ib_t *ib_p = ih_p->ih_ino_p->ino_ib_p; 926 px_t *px_p = ib_p->ib_px_p; 927 devino_t ino; 928 sysino_t sysino; 929 930 ino = ih_p->ih_ino_p->ino_ino; 931 (void) px_lib_intr_devino_to_sysino(px_p->px_dip, ino, &sysino); 932 933 (void) snprintf(pxintr_ks_template.pxintr_ks_name.value.c, maxlen, 934 "%s%d", ddi_driver_name(ih_p->ih_dip), 935 ddi_get_instance(ih_p->ih_dip)); 936 937 (void) ddi_pathname(ih_p->ih_dip, ih_devpath); 938 (void) ddi_pathname(px_p->px_dip, ih_buspath); 939 kstat_named_setstr(&pxintr_ks_template.pxintr_ks_devpath, ih_devpath); 940 kstat_named_setstr(&pxintr_ks_template.pxintr_ks_buspath, ih_buspath); 941 942 if (ih_p->ih_intr_state == PX_INTR_STATE_ENABLE) { 943 944 (void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c, 945 (ih_p->ih_rec_type == 0) ? "fixed" : "msi"); 946 pxintr_ks_template.pxintr_ks_cpu.value.ui64 = 947 ih_p->ih_ino_p->ino_cpuid; 948 pxintr_ks_template.pxintr_ks_pil.value.ui64 = 949 ih_p->ih_ino_p->ino_pil; 950 pxintr_ks_template.pxintr_ks_time.value.ui64 = ih_p->ih_nsec + 951 (uint64_t)tick2ns((hrtime_t)ih_p->ih_ticks, 952 ih_p->ih_ino_p->ino_cpuid); 953 pxintr_ks_template.pxintr_ks_ino.value.ui64 = ino; 954 pxintr_ks_template.pxintr_ks_cookie.value.ui64 = sysino; 955 } else { 956 (void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c, 957 "disabled"); 958 pxintr_ks_template.pxintr_ks_cpu.value.ui64 = 0; 959 pxintr_ks_template.pxintr_ks_pil.value.ui64 = 0; 960 pxintr_ks_template.pxintr_ks_time.value.ui64 = 0; 961 pxintr_ks_template.pxintr_ks_ino.value.ui64 = 0; 962 pxintr_ks_template.pxintr_ks_cookie.value.ui64 = 0; 963 } 964 return (0); 965 } 966 967 void 968 px_create_intr_kstats(px_ih_t *ih_p) 969 { 970 msiq_rec_type_t rec_type = ih_p->ih_rec_type; 971 972 ASSERT(ih_p->ih_ksp == NULL); 973 974 /* 975 * Create pci_intrs::: kstats for all ih types except messages, 976 * which represent unusual conditions and don't need to be tracked. 977 */ 978 if (rec_type == 0 || rec_type == MSI32_REC || rec_type == MSI64_REC) { 979 ih_p->ih_ksp = kstat_create("pci_intrs", 980 atomic_inc_32_nv(&pxintr_ks_instance), "config", 981 "interrupts", KSTAT_TYPE_NAMED, 982 sizeof (pxintr_ks_template) / sizeof (kstat_named_t), 983 KSTAT_FLAG_VIRTUAL); 984 } 985 if (ih_p->ih_ksp != NULL) { 986 ih_p->ih_ksp->ks_data_size += MAXPATHLEN * 2; 987 ih_p->ih_ksp->ks_lock = &pxintr_ks_template_lock; 988 ih_p->ih_ksp->ks_data = &pxintr_ks_template; 989 ih_p->ih_ksp->ks_private = ih_p; 990 ih_p->ih_ksp->ks_update = px_ks_update; 991 } 992 } 993 994 /* 995 * px_add_intx_intr: 996 * 997 * This function is called to register INTx and legacy hardware 998 * interrupt pins interrupts. 999 */ 1000 int 1001 px_add_intx_intr(dev_info_t *dip, dev_info_t *rdip, 1002 ddi_intr_handle_impl_t *hdlp) 1003 { 1004 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1005 px_ib_t *ib_p = px_p->px_ib_p; 1006 devino_t ino; 1007 px_ih_t *ih_p; 1008 px_ib_ino_info_t *ino_p; 1009 int32_t weight; 1010 int ret = DDI_SUCCESS; 1011 1012 ino = hdlp->ih_vector; 1013 1014 DBG(DBG_A_INTX, dip, "px_add_intx_intr: rdip=%s%d ino=%x " 1015 "handler=%x arg1=%x arg2=%x\n", ddi_driver_name(rdip), 1016 ddi_get_instance(rdip), ino, hdlp->ih_cb_func, 1017 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 1018 1019 ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum, 1020 hdlp->ih_cb_func, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, 0, 0); 1021 1022 mutex_enter(&ib_p->ib_ino_lst_mutex); 1023 1024 if (ino_p = px_ib_locate_ino(ib_p, ino)) { /* sharing ino */ 1025 uint32_t intr_index = hdlp->ih_inum; 1026 if (px_ib_ino_locate_intr(ino_p, rdip, intr_index, 0, 0)) { 1027 DBG(DBG_A_INTX, dip, "px_add_intx_intr: " 1028 "dup intr #%d\n", intr_index); 1029 1030 ret = DDI_FAILURE; 1031 goto fail1; 1032 } 1033 1034 /* Save mondo value in hdlp */ 1035 hdlp->ih_vector = ino_p->ino_sysino; 1036 1037 if ((ret = px_ib_ino_add_intr(px_p, ino_p, ih_p)) 1038 != DDI_SUCCESS) 1039 goto fail1; 1040 } else { 1041 ino_p = px_ib_new_ino(ib_p, ino, ih_p); 1042 1043 if (hdlp->ih_pri == 0) 1044 hdlp->ih_pri = px_class_to_pil(rdip); 1045 1046 /* Save mondo value in hdlp */ 1047 hdlp->ih_vector = ino_p->ino_sysino; 1048 1049 DBG(DBG_A_INTX, dip, "px_add_intx_intr: pil=0x%x mondo=0x%x\n", 1050 hdlp->ih_pri, hdlp->ih_vector); 1051 1052 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, 1053 (ddi_intr_handler_t *)px_intx_intr, (caddr_t)ino_p, NULL); 1054 1055 ret = i_ddi_add_ivintr(hdlp); 1056 1057 /* 1058 * Restore original interrupt handler 1059 * and arguments in interrupt handle. 1060 */ 1061 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler, 1062 ih_p->ih_handler_arg1, ih_p->ih_handler_arg2); 1063 1064 if (ret != DDI_SUCCESS) 1065 goto fail2; 1066 1067 /* Save the pil for this ino */ 1068 ino_p->ino_pil = hdlp->ih_pri; 1069 1070 /* select cpu, saving it for sharing and removal */ 1071 ino_p->ino_cpuid = intr_dist_cpuid(); 1072 1073 /* Enable interrupt */ 1074 px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino); 1075 } 1076 1077 /* add weight to the cpu that we are already targeting */ 1078 weight = px_class_to_intr_weight(rdip); 1079 intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight); 1080 1081 ih_p->ih_ino_p = ino_p; 1082 px_create_intr_kstats(ih_p); 1083 if (ih_p->ih_ksp) 1084 kstat_install(ih_p->ih_ksp); 1085 mutex_exit(&ib_p->ib_ino_lst_mutex); 1086 1087 DBG(DBG_A_INTX, dip, "px_add_intx_intr: done! Interrupt 0x%x pil=%x\n", 1088 ino_p->ino_sysino, hdlp->ih_pri); 1089 1090 return (ret); 1091 fail2: 1092 px_ib_delete_ino(ib_p, ino_p); 1093 fail1: 1094 if (ih_p->ih_config_handle) 1095 pci_config_teardown(&ih_p->ih_config_handle); 1096 1097 mutex_exit(&ib_p->ib_ino_lst_mutex); 1098 kmem_free(ih_p, sizeof (px_ih_t)); 1099 1100 DBG(DBG_A_INTX, dip, "px_add_intx_intr: Failed! Interrupt 0x%x " 1101 "pil=%x\n", ino_p->ino_sysino, hdlp->ih_pri); 1102 1103 return (ret); 1104 } 1105 1106 /* 1107 * px_rem_intx_intr: 1108 * 1109 * This function is called to unregister INTx and legacy hardware 1110 * interrupt pins interrupts. 1111 */ 1112 int 1113 px_rem_intx_intr(dev_info_t *dip, dev_info_t *rdip, 1114 ddi_intr_handle_impl_t *hdlp) 1115 { 1116 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1117 px_ib_t *ib_p = px_p->px_ib_p; 1118 devino_t ino; 1119 cpuid_t curr_cpu; 1120 px_ib_ino_info_t *ino_p; 1121 px_ih_t *ih_p; 1122 int ret = DDI_SUCCESS; 1123 1124 ino = hdlp->ih_vector; 1125 1126 DBG(DBG_R_INTX, dip, "px_rem_intx_intr: rdip=%s%d ino=%x\n", 1127 ddi_driver_name(rdip), ddi_get_instance(rdip), ino); 1128 1129 mutex_enter(&ib_p->ib_ino_lst_mutex); 1130 1131 ino_p = px_ib_locate_ino(ib_p, ino); 1132 ih_p = px_ib_ino_locate_intr(ino_p, rdip, hdlp->ih_inum, 0, 0); 1133 1134 /* Get the current cpu */ 1135 if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino, 1136 &curr_cpu)) != DDI_SUCCESS) 1137 goto fail; 1138 1139 if ((ret = px_ib_ino_rem_intr(px_p, ino_p, ih_p)) != DDI_SUCCESS) 1140 goto fail; 1141 1142 intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip); 1143 1144 if (ino_p->ino_ih_size == 0) { 1145 if ((ret = px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 1146 INTR_DELIVERED_STATE)) != DDI_SUCCESS) 1147 goto fail; 1148 1149 hdlp->ih_vector = ino_p->ino_sysino; 1150 i_ddi_rem_ivintr(hdlp); 1151 1152 px_ib_delete_ino(ib_p, ino_p); 1153 kmem_free(ino_p, sizeof (px_ib_ino_info_t)); 1154 } else { 1155 /* Re-enable interrupt only if mapping regsiter still shared */ 1156 PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu); 1157 } 1158 1159 fail: 1160 mutex_exit(&ib_p->ib_ino_lst_mutex); 1161 return (ret); 1162 } 1163 1164 /* 1165 * px_add_msiq_intr: 1166 * 1167 * This function is called to register MSI/Xs and PCIe message interrupts. 1168 */ 1169 int 1170 px_add_msiq_intr(dev_info_t *dip, dev_info_t *rdip, 1171 ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type, 1172 msgcode_t msg_code, msiqid_t *msiq_id_p) 1173 { 1174 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1175 px_ib_t *ib_p = px_p->px_ib_p; 1176 px_msiq_state_t *msiq_state_p = &ib_p->ib_msiq_state; 1177 devino_t ino; 1178 px_ih_t *ih_p; 1179 px_ib_ino_info_t *ino_p; 1180 int32_t weight; 1181 int ret = DDI_SUCCESS; 1182 1183 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: rdip=%s%d handler=%x " 1184 "arg1=%x arg2=%x\n", ddi_driver_name(rdip), ddi_get_instance(rdip), 1185 hdlp->ih_cb_func, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 1186 1187 if ((ret = px_msiq_alloc(px_p, rec_type, msiq_id_p)) != DDI_SUCCESS) { 1188 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: " 1189 "msiq allocation failed\n"); 1190 return (ret); 1191 } 1192 1193 ino = px_msiqid_to_devino(px_p, *msiq_id_p); 1194 1195 ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum, hdlp->ih_cb_func, 1196 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, rec_type, msg_code); 1197 1198 mutex_enter(&ib_p->ib_ino_lst_mutex); 1199 1200 if (ino_p = px_ib_locate_ino(ib_p, ino)) { /* sharing ino */ 1201 uint32_t intr_index = hdlp->ih_inum; 1202 if (px_ib_ino_locate_intr(ino_p, rdip, 1203 intr_index, rec_type, msg_code)) { 1204 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: " 1205 "dup intr #%d\n", intr_index); 1206 1207 ret = DDI_FAILURE; 1208 goto fail1; 1209 } 1210 1211 if ((ret = px_ib_ino_add_intr(px_p, ino_p, ih_p)) 1212 != DDI_SUCCESS) 1213 goto fail1; 1214 } else { 1215 ino_p = px_ib_new_ino(ib_p, ino, ih_p); 1216 1217 ino_p->ino_msiq_p = msiq_state_p->msiq_p + 1218 (*msiq_id_p - msiq_state_p->msiq_1st_msiq_id); 1219 1220 if (hdlp->ih_pri == 0) 1221 hdlp->ih_pri = px_class_to_pil(rdip); 1222 1223 /* Save mondo value in hdlp */ 1224 hdlp->ih_vector = ino_p->ino_sysino; 1225 1226 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: pil=0x%x mondo=0x%x\n", 1227 hdlp->ih_pri, hdlp->ih_vector); 1228 1229 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, 1230 (ddi_intr_handler_t *)px_msiq_intr, (caddr_t)ino_p, NULL); 1231 1232 ret = i_ddi_add_ivintr(hdlp); 1233 1234 /* 1235 * Restore original interrupt handler 1236 * and arguments in interrupt handle. 1237 */ 1238 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler, 1239 ih_p->ih_handler_arg1, ih_p->ih_handler_arg2); 1240 1241 if (ret != DDI_SUCCESS) 1242 goto fail2; 1243 1244 /* Save the pil for this ino */ 1245 ino_p->ino_pil = hdlp->ih_pri; 1246 1247 /* Enable MSIQ */ 1248 px_lib_msiq_setstate(dip, *msiq_id_p, PCI_MSIQ_STATE_IDLE); 1249 px_lib_msiq_setvalid(dip, *msiq_id_p, PCI_MSIQ_VALID); 1250 1251 /* select cpu, saving it for sharing and removal */ 1252 ino_p->ino_cpuid = intr_dist_cpuid(); 1253 1254 /* Enable interrupt */ 1255 px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino_p->ino_ino); 1256 } 1257 1258 /* add weight to the cpu that we are already targeting */ 1259 weight = px_class_to_intr_weight(rdip); 1260 intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight); 1261 1262 ih_p->ih_ino_p = ino_p; 1263 px_create_intr_kstats(ih_p); 1264 if (ih_p->ih_ksp) 1265 kstat_install(ih_p->ih_ksp); 1266 mutex_exit(&ib_p->ib_ino_lst_mutex); 1267 1268 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: done! Interrupt 0x%x pil=%x\n", 1269 ino_p->ino_sysino, hdlp->ih_pri); 1270 1271 return (ret); 1272 fail2: 1273 px_ib_delete_ino(ib_p, ino_p); 1274 fail1: 1275 if (ih_p->ih_config_handle) 1276 pci_config_teardown(&ih_p->ih_config_handle); 1277 1278 mutex_exit(&ib_p->ib_ino_lst_mutex); 1279 kmem_free(ih_p, sizeof (px_ih_t)); 1280 1281 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: Failed! Interrupt 0x%x pil=%x\n", 1282 ino_p->ino_sysino, hdlp->ih_pri); 1283 1284 return (ret); 1285 } 1286 1287 /* 1288 * px_rem_msiq_intr: 1289 * 1290 * This function is called to unregister MSI/Xs and PCIe message interrupts. 1291 */ 1292 int 1293 px_rem_msiq_intr(dev_info_t *dip, dev_info_t *rdip, 1294 ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type, 1295 msgcode_t msg_code, msiqid_t msiq_id) 1296 { 1297 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1298 px_ib_t *ib_p = px_p->px_ib_p; 1299 devino_t ino = px_msiqid_to_devino(px_p, msiq_id); 1300 cpuid_t curr_cpu; 1301 px_ib_ino_info_t *ino_p; 1302 px_ih_t *ih_p; 1303 int ret = DDI_SUCCESS; 1304 1305 DBG(DBG_MSIQ, dip, "px_rem_msiq_intr: rdip=%s%d msiq_id=%x ino=%x\n", 1306 ddi_driver_name(rdip), ddi_get_instance(rdip), msiq_id, ino); 1307 1308 mutex_enter(&ib_p->ib_ino_lst_mutex); 1309 1310 ino_p = px_ib_locate_ino(ib_p, ino); 1311 ih_p = px_ib_ino_locate_intr(ino_p, rdip, hdlp->ih_inum, 1312 rec_type, msg_code); 1313 1314 /* Get the current cpu */ 1315 if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino, 1316 &curr_cpu)) != DDI_SUCCESS) 1317 goto fail; 1318 1319 if ((ret = px_ib_ino_rem_intr(px_p, ino_p, ih_p)) != DDI_SUCCESS) 1320 goto fail; 1321 1322 intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip); 1323 1324 if (ino_p->ino_ih_size == 0) { 1325 if ((ret = px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 1326 INTR_DELIVERED_STATE)) != DDI_SUCCESS) 1327 goto fail; 1328 1329 px_lib_msiq_setvalid(dip, px_devino_to_msiqid(px_p, ino), 1330 PCI_MSIQ_INVALID); 1331 1332 hdlp->ih_vector = ino_p->ino_sysino; 1333 i_ddi_rem_ivintr(hdlp); 1334 1335 px_ib_delete_ino(ib_p, ino_p); 1336 1337 (void) px_msiq_free(px_p, msiq_id); 1338 kmem_free(ino_p, sizeof (px_ib_ino_info_t)); 1339 } else { 1340 /* Re-enable interrupt only if mapping regsiter still shared */ 1341 PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu); 1342 } 1343 1344 fail: 1345 mutex_exit(&ib_p->ib_ino_lst_mutex); 1346 return (ret); 1347 } 1348