xref: /titanic_51/usr/src/uts/sun4/io/efcode/fc_subr.c (revision 381a2a9a387f449fab7d0c7e97c4184c26963abf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Kernel framework functions for the fcode interpreter
31  */
32 
33 #include <sys/types.h>
34 #include <sys/conf.h>
35 #include <sys/debug.h>
36 #include <sys/kmem.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/sunndi.h>
40 #include <sys/esunddi.h>
41 #include <sys/ksynch.h>
42 #include <sys/modctl.h>
43 #include <sys/errno.h>
44 #include <sys/fcode.h>
45 
46 #ifdef	DEBUG
47 int fcode_debug = 0;
48 #else
49 int fcode_debug = 0;
50 #endif
51 
52 static kmutex_t fc_request_lock;
53 static kmutex_t fc_resource_lock;
54 static kmutex_t fc_hash_lock;
55 static kmutex_t fc_device_tree_lock;
56 static kmutex_t fc_phandle_lock;
57 static kcondvar_t fc_request_cv;
58 static struct fc_request *fc_request_head;
59 static int fc_initialized;
60 
61 static void fcode_timer(void *);
62 
63 int fcode_timeout = 300;	/* seconds */
64 
65 int fcodem_unloadable;
66 
67 extern int hz;
68 
69 /*
70  * Initialize the fcode interpreter framework ... must be called
71  * prior to activating any of the fcode interpreter framework including
72  * the driver.
73  */
74 static void
75 fcode_init(void)
76 {
77 	if (fc_initialized)
78 		return;
79 
80 	mutex_init(&fc_request_lock, NULL, MUTEX_DRIVER, NULL);
81 	mutex_init(&fc_resource_lock, NULL, MUTEX_DRIVER, NULL);
82 	mutex_init(&fc_hash_lock, NULL, MUTEX_DRIVER, NULL);
83 	mutex_init(&fc_device_tree_lock, NULL, MUTEX_DRIVER, NULL);
84 	mutex_init(&fc_phandle_lock, NULL, MUTEX_DRIVER, NULL);
85 	cv_init(&fc_request_cv, NULL, CV_DRIVER, NULL);
86 	++fc_initialized;
87 }
88 
89 static void
90 fcode_fini(void)
91 {
92 	mutex_destroy(&fc_request_lock);
93 	mutex_destroy(&fc_resource_lock);
94 	mutex_destroy(&fc_hash_lock);
95 	cv_destroy(&fc_request_cv);
96 	fc_initialized = 0;
97 }
98 
99 /*
100  * Module linkage information for the kernel.
101  */
102 static struct modlmisc modlmisc = {
103 	&mod_miscops, "FCode framework 1.13"
104 };
105 
106 static struct modlinkage modlinkage = {
107 	MODREV_1, (void *)&modlmisc, NULL
108 };
109 
110 int
111 _init(void)
112 {
113 	int error;
114 
115 	fcode_init();
116 	if ((error = mod_install(&modlinkage)) != 0)
117 		fcode_fini();
118 	return (error);
119 }
120 
121 int
122 _fini(void)
123 {
124 	int error = EBUSY;
125 
126 	if (fcodem_unloadable)
127 		if ((error = mod_remove(&modlinkage)) == 0)
128 			fcode_fini();
129 
130 	return (error);
131 }
132 
133 int
134 _info(struct modinfo *modinfop)
135 {
136 	return (mod_info(&modlinkage, modinfop));
137 }
138 
139 /*
140  * Framework function to invoke the interpreter. Wait and return when the
141  * interpreter is done. See fcode.h for details.
142  */
143 int
144 fcode_interpreter(dev_info_t *ap, fc_ops_t *ops, fco_handle_t handle)
145 {
146 	struct fc_request *fp, *qp;
147 	int error;
148 
149 	ASSERT(fc_initialized);
150 	ASSERT(ap);
151 	ASSERT(ops);
152 	ASSERT(handle);
153 
154 	/*
155 	 * Create a request structure
156 	 */
157 	fp = kmem_zalloc(sizeof (struct fc_request), KM_SLEEP);
158 
159 	fp->next = NULL;
160 	fp->busy = FC_R_INIT;
161 	fp->error = FC_SUCCESS;
162 	fp->ap_dip = ap;
163 	fp->ap_ops = ops;
164 	fp->handle = handle;
165 
166 	/*
167 	 * Add the request to the end of the request list.
168 	 */
169 	mutex_enter(&fc_request_lock);
170 
171 	if (fc_request_head == NULL)
172 		fc_request_head = fp;
173 	else {
174 		for (qp = fc_request_head; qp->next != NULL; qp = qp->next)
175 			/* empty */;
176 		qp->next = fp;
177 	}
178 	mutex_exit(&fc_request_lock);
179 
180 	/*
181 	 * log a message (ie: i_ddi_log_event) indicating that a request
182 	 * has been queued to start the userland fcode interpreter.
183 	 * This call is the glue to the eventd and automates the process.
184 	 */
185 
186 	/*
187 	 * Signal the driver if it's waiting for a request to be queued.
188 	 */
189 	cv_broadcast(&fc_request_cv);
190 
191 	/*
192 	 * Wait for the request to be serviced
193 	 */
194 	mutex_enter(&fc_request_lock);
195 	fp->timeout = timeout(fcode_timer, fp, hz * fcode_timeout);
196 	while (fp->busy != FC_R_DONE)
197 		cv_wait(&fc_request_cv, &fc_request_lock);
198 
199 	if (fp->timeout) {
200 		(void) untimeout(fp->timeout);
201 		fp->timeout = NULL;
202 	}
203 
204 	/*
205 	 * Remove the request from the queue (while still holding the lock)
206 	 */
207 	if (fc_request_head == fp)
208 		fc_request_head = fp->next;
209 	else {
210 		for (qp = fc_request_head; qp->next != fp; qp = qp->next)
211 			/* empty */;
212 		qp->next = fp->next;
213 	}
214 	mutex_exit(&fc_request_lock);
215 
216 	FC_DEBUG1(2, CE_CONT, "fcode_interpreter: request finished, fp %p\n",
217 	    fp);
218 
219 	/*
220 	 * Free the request structure and return any errors.
221 	 */
222 	error = fp->error;
223 	kmem_free(fp, sizeof (struct fc_request));
224 	return (error);
225 }
226 
227 /*
228  * Timeout requests thet don't get picked up by the interpreter.  This
229  * would happen if the daemon is not running.  If the timer goes off
230  * and it's state is not FC_R_INIT, then the interpreter has picked up the
231  * request.
232  */
233 static void
234 fcode_timer(void *arg)
235 {
236 	struct fc_request *fp = arg;
237 
238 	mutex_enter(&fc_request_lock);
239 	fp->timeout = 0;
240 	if (fp->busy == FC_R_INIT) {
241 		cmn_err(CE_WARN, "fcode_timer: Timeout waiting for "
242 		    "interpreter - Interpreter did not pick up request\n");
243 		fp->busy = FC_R_DONE;
244 		fp->error = FC_TIMEOUT;
245 		mutex_exit(&fc_request_lock);
246 		cv_broadcast(&fc_request_cv);
247 		return;
248 	} else if (fp->error != FC_SUCCESS) {
249 		/*
250 		 * An error was detected, but didn't close the driver.
251 		 * This will allow the process to error out, returning
252 		 * the interpreter error code instead of FC_TIMEOUT.
253 		 */
254 		fp->busy = FC_R_DONE;
255 		cv_broadcast(&fc_request_cv);
256 		mutex_exit(&fc_request_lock);
257 		return;
258 	} else {
259 		cmn_err(CE_WARN, "fcode_timer: Timeout waiting for "
260 		    "interpreter - Interpreter is executing request\n");
261 	}
262 	mutex_exit(&fc_request_lock);
263 }
264 
265 /*
266  * This is the function the driver calls to wait for and get
267  * a request.  The call should be interruptable since it's done
268  * at read(2) time, so allow for signals to interrupt us.
269  *
270  * Return NULL if the wait was interrupted, else return a pointer
271  * to the fc_request structure (marked as busy).
272  *
273  * Note that we have to check for a request first, before waiting,
274  * in case the request is already queued. In this case, the signal
275  * may have already been delivered.
276  */
277 struct fc_request *
278 fc_get_request(void)
279 {
280 	struct fc_request *fp;
281 
282 	ASSERT(fc_initialized);
283 
284 	mutex_enter(&fc_request_lock);
285 
286 	/*CONSTANTCONDITION*/
287 	while (1) {
288 		for (fp = fc_request_head; fp != NULL; fp = fp->next) {
289 			if (fp->busy == FC_R_INIT) {
290 				fp->busy = FC_R_BUSY;
291 				mutex_exit(&fc_request_lock);
292 				return (fp);
293 			}
294 		}
295 		if (cv_wait_sig(&fc_request_cv, &fc_request_lock) == 0) {
296 			mutex_exit(&fc_request_lock);
297 			return (NULL);
298 		}
299 	}
300 	/*NOTREACHED*/
301 }
302 
303 /*
304  * This is the function the driver calls when it's finished with
305  * a request.  Mark the request as done and signal the thread that
306  * enqueued the request.
307  */
308 void
309 fc_finish_request(struct fc_request *fp)
310 {
311 	ASSERT(fc_initialized);
312 	ASSERT(fp);
313 	ASSERT(fp->busy == FC_R_BUSY);
314 
315 	mutex_enter(&fc_request_lock);
316 	fp->busy = FC_R_DONE;
317 	mutex_exit(&fc_request_lock);
318 
319 	cv_broadcast(&fc_request_cv);
320 }
321 
322 /*
323  * Generic resource list management subroutines
324  */
325 void
326 fc_add_resource(fco_handle_t rp, struct fc_resource *ip)
327 {
328 	ASSERT(rp);
329 	ASSERT(ip);
330 
331 	mutex_enter(&fc_resource_lock);
332 	ip->next = NULL;
333 	if (rp->head != NULL)
334 		ip->next = rp->head;
335 	rp->head = ip;
336 	mutex_exit(&fc_resource_lock);
337 }
338 
339 void
340 fc_rem_resource(fco_handle_t rp, struct fc_resource *ip)
341 {
342 	struct fc_resource *fp;
343 
344 	ASSERT(rp);
345 	ASSERT(ip);
346 
347 	if (rp->head == NULL)  {
348 		cmn_err(CE_CONT, "fc_rem_resource: NULL list head!\n");
349 		return;
350 	}
351 
352 	mutex_enter(&fc_resource_lock);
353 	if (rp->head == ip) {
354 		rp->head = ip->next;
355 		mutex_exit(&fc_resource_lock);
356 		return;
357 	}
358 
359 	for (fp = rp->head; fp && (fp->next != ip); fp = fp->next)
360 		/* empty */;
361 
362 	if (fp == NULL)  {
363 		mutex_exit(&fc_resource_lock);
364 		cmn_err(CE_CONT, "fc_rem_resource: Item not on list!\n");
365 		return;
366 	}
367 
368 	fp->next = ip->next;
369 	mutex_exit(&fc_resource_lock);
370 }
371 
372 /*ARGSUSED*/
373 void
374 fc_lock_resource_list(fco_handle_t rp)
375 {
376 	mutex_enter(&fc_resource_lock);
377 }
378 
379 /*ARGSUSED*/
380 void
381 fc_unlock_resource_list(fco_handle_t rp)
382 {
383 	mutex_exit(&fc_resource_lock);
384 }
385 
386 /*
387  * Common helper ops and subroutines
388  */
389 /*ARGSUSED*/
390 int
391 fc_syntax_error(fc_ci_t *cp, char *msg)
392 {
393 	cp->error = fc_int2cell(-1);
394 	cp->nresults = fc_int2cell(0);
395 	return (0);
396 }
397 
398 /*ARGSUSED*/
399 int
400 fc_priv_error(fc_ci_t *cp, char *msg)
401 {
402 	cp->priv_error = fc_int2cell(-1);
403 	cp->error = fc_int2cell(0);
404 	cp->nresults = fc_int2cell(0);
405 	return (0);
406 }
407 
408 /*ARGSUSED*/
409 int
410 fc_success_op(dev_info_t *ap, fco_handle_t handle, fc_ci_t *cp)
411 {
412 	cp->priv_error = cp->error = fc_int2cell(0);
413 	return (0);
414 }
415 
416 /*
417  * fc_fail_op: This 'handles' a request by specifically failing it,
418  * as opposed to not handling it and returning '-1' to indicate
419  * 'service unknown' and allowing somebody else in the chain to
420  * handle it.
421  */
422 /*ARGSUSED*/
423 int
424 fc_fail_op(dev_info_t *ap, fco_handle_t handle, fc_ci_t *cp)
425 {
426 	cmn_err(CE_CONT, "fcode ops: fail service name <%s>\n",
427 	    (char *)fc_cell2ptr(cp->svc_name));
428 
429 	cp->nresults = fc_int2cell(0);
430 	cp->error = fc_int2cell(-1);
431 	return (0);
432 }
433 
434 /*
435  * Functions to manage the set of handles we give to the interpreter.
436  * The handles are opaque and internally represent dev_info_t pointers.
437  */
438 struct fc_phandle_entry **
439 fc_handle_to_phandle_head(fco_handle_t rp)
440 {
441 	while (rp->next_handle)
442 		rp = rp->next_handle;
443 
444 	return (&rp->ptable);
445 }
446 
447 /*ARGSUSED*/
448 void
449 fc_phandle_table_alloc(struct fc_phandle_entry **head)
450 {
451 }
452 
453 void
454 fc_phandle_table_free(struct fc_phandle_entry **head)
455 {
456 	struct fc_phandle_entry *ip, *np;
457 
458 	/*
459 	 * Free each entry in the table.
460 	 */
461 	for (ip = *head; ip; ip = np) {
462 		np = ip->next;
463 		kmem_free(ip, sizeof (struct fc_phandle_entry));
464 	}
465 	*head = NULL;
466 }
467 
468 dev_info_t *
469 fc_phandle_to_dip(struct fc_phandle_entry **head, fc_phandle_t handle)
470 {
471 	struct fc_phandle_entry *ip;
472 
473 	mutex_enter(&fc_hash_lock);
474 
475 	for (ip = *head; ip; ip = ip->next)
476 		if (ip->h == handle)
477 			break;
478 
479 	mutex_exit(&fc_hash_lock);
480 
481 	return (ip ? ip->dip : NULL);
482 }
483 
484 fc_phandle_t
485 fc_dip_to_phandle(struct fc_phandle_entry **head, dev_info_t *dip)
486 {
487 	struct fc_phandle_entry *hp, *np;
488 	fc_phandle_t h;
489 
490 	ASSERT(dip);
491 	h = (fc_phandle_t)ddi_get_nodeid(dip);
492 
493 	/*
494 	 * Just in case, allocate a new entry ...
495 	 */
496 	np = kmem_zalloc(sizeof (struct fc_phandle_entry), KM_SLEEP);
497 
498 	mutex_enter(&fc_hash_lock);
499 
500 	/*
501 	 * If we already have this dip in the table, just return the handle
502 	 */
503 	for (hp = *head; hp; hp = hp->next) {
504 		if (hp->dip == dip) {
505 			mutex_exit(&fc_hash_lock);
506 			kmem_free(np, sizeof (struct fc_phandle_entry));
507 			return (h);
508 		}
509 	}
510 
511 	/*
512 	 * Insert this entry to the list of known entries
513 	 */
514 	np->next = *head;
515 	np->dip = dip;
516 	np->h = h;
517 	*head = np;
518 	mutex_exit(&fc_hash_lock);
519 	return (h);
520 }
521 
522 /*
523  * We won't need this function once the ddi is modified to handle
524  * unique non-prom nodeids.  For now, this allows us to add a given
525  * nodeid to the device tree without dereferencing the value in the
526  * devinfo node, so we have a parallel mechanism.
527  */
528 void
529 fc_add_dip_to_phandle(struct fc_phandle_entry **head, dev_info_t *dip,
530     fc_phandle_t h)
531 {
532 	struct fc_phandle_entry *hp, *np;
533 
534 	ASSERT(dip);
535 
536 	/*
537 	 * Just in case, allocate a new entry ...
538 	 */
539 	np = kmem_zalloc(sizeof (struct fc_phandle_entry), KM_SLEEP);
540 
541 	mutex_enter(&fc_hash_lock);
542 
543 	/*
544 	 * If we already have this dip in the table, just return the handle
545 	 */
546 	for (hp = *head; hp; hp = hp->next) {
547 		if (hp->dip == dip) {
548 			mutex_exit(&fc_hash_lock);
549 			kmem_free(np, sizeof (struct fc_phandle_entry));
550 			return;
551 		}
552 	}
553 
554 	/*
555 	 * Insert this entry to the list of known entries
556 	 */
557 	np->next = *head;
558 	np->dip = dip;
559 	np->h = h;
560 	*head = np;
561 	mutex_exit(&fc_hash_lock);
562 }
563 
564 /*
565  * Functions to manage our copy of our subtree.
566  *
567  * The head of the device tree is always stored in the last 'handle'
568  * in the handle chain.
569  */
570 struct fc_device_tree **
571 fc_handle_to_dtree_head(fco_handle_t rp)
572 {
573 	while (rp->next_handle)
574 		rp = rp->next_handle;
575 
576 	return (&rp->dtree);
577 }
578 
579 struct fc_device_tree *
580 fc_handle_to_dtree(fco_handle_t rp)
581 {
582 	struct fc_device_tree **head = fc_handle_to_dtree_head(rp);
583 
584 	return (*head);
585 }
586 
587 /*
588  * The root of the subtree is the attachment point ...
589  * Thus, there is never an empty device tree.
590  */
591 void
592 fc_create_device_tree(dev_info_t *ap, struct fc_device_tree **head)
593 {
594 	struct fc_device_tree *dp;
595 
596 	dp = kmem_zalloc(sizeof (struct fc_device_tree), KM_SLEEP);
597 	dp->dip = ap;
598 	*head = dp;
599 }
600 
601 #ifdef	notdef
602 static void
603 fc_remove_subtree(struct fc_device_tree *dp)
604 {
605 	struct fc_device_tree *np;
606 
607 	if (dp->child) {
608 		fc_remove_subtree(dp->child);
609 		dp->child = NULL;
610 	}
611 
612 	/*
613 	 * Remove each peer node, working our way backwards from the
614 	 * last peer node to the first peer node.
615 	 */
616 	if (dp->peer != NULL) {
617 		for (np = dp->peer; np->peer; np = dp->peer) {
618 			for (/* empty */; np->peer; np = np->peer)
619 				/* empty */;
620 			fc_remove_subtree(np->peer);
621 			np->peer = NULL;
622 		}
623 		fc_remove_subtree(dp->peer)
624 		dp->peer = NULL;
625 	}
626 
627 	ASSERT((dp->child == NULL) && (dp->peer == NULL));
628 	kmem_free(dp, sizeof (struct fc_device_tree));
629 }
630 
631 void
632 fc_remove_device_tree(struct fc_device_tree **head)
633 {
634 	ASSERT(head && (*head != NULL));
635 
636 	fc_remove_subtree(*head);
637 	*head = NULL;
638 }
639 #endif	/* notdef */
640 
641 void
642 fc_remove_device_tree(struct fc_device_tree **head)
643 {
644 	struct fc_device_tree *dp;
645 
646 	ASSERT(head && (*head != NULL));
647 
648 	dp = *head;
649 
650 	if (dp->child)
651 		fc_remove_device_tree(&dp->child);
652 
653 	if (dp->peer)
654 		fc_remove_device_tree(&dp->peer);
655 
656 	ASSERT((dp->child == NULL) && (dp->peer == NULL));
657 
658 	kmem_free(dp, sizeof (struct fc_device_tree));
659 	*head = NULL;
660 }
661 
662 struct fc_device_tree *
663 fc_find_node(dev_info_t *dip, struct fc_device_tree *hp)
664 {
665 	struct fc_device_tree *p;
666 
667 	while (hp) {
668 		if (hp->dip == dip)
669 			return (hp);
670 
671 		if (hp->child)
672 			if ((p = fc_find_node(dip, hp->child)) != NULL)
673 				return (p);
674 
675 		hp = hp->peer;
676 	}
677 	return (NULL);
678 }
679 
680 void
681 fc_add_child(dev_info_t *child, dev_info_t *parent, struct fc_device_tree *hp)
682 {
683 	struct fc_device_tree *p, *q;
684 
685 	q = kmem_zalloc(sizeof (struct fc_device_tree), KM_SLEEP);
686 	q->dip = child;
687 
688 	mutex_enter(&fc_device_tree_lock);
689 
690 #ifdef	DEBUG
691 	/* XXX: Revisit ASSERT vs PANIC */
692 	p = fc_find_node(child, hp);
693 	ASSERT(p == NULL);
694 #endif
695 
696 	p = fc_find_node(parent, hp);
697 	ASSERT(p != NULL);
698 
699 	q->peer = p->child;
700 	p->child = q;
701 
702 	mutex_exit(&fc_device_tree_lock);
703 }
704 
705 void
706 fc_remove_child(dev_info_t *child, struct fc_device_tree *head)
707 {
708 	struct fc_device_tree *p, *c, *n;
709 	dev_info_t *parent = ddi_get_parent(child);
710 
711 	mutex_enter(&fc_device_tree_lock);
712 
713 	p = fc_find_node(parent, head);
714 	ASSERT(p != NULL);
715 
716 	/*
717 	 * Find the child within the parent's subtree ...
718 	 */
719 	c = fc_find_node(child, p);
720 	ASSERT(c != NULL);
721 	ASSERT(c->child == NULL);
722 
723 	/*
724 	 * If it's the first child, remove it, otherwise
725 	 * remove it from the child's peer list.
726 	 */
727 	if (p->child == c) {
728 		p->child = c->peer;
729 	} else {
730 		int found = 0;
731 		for (n = p->child; n->peer; n = n->peer) {
732 			if (n->peer == c) {
733 				n->peer = c->peer;
734 				found = 1;
735 				break;
736 			}
737 		}
738 		if (!found)
739 			cmn_err(CE_PANIC, "fc_remove_child: not found\n");
740 	}
741 	mutex_exit(&fc_device_tree_lock);
742 
743 	kmem_free(c, sizeof (struct fc_device_tree));
744 }
745 
746 dev_info_t *
747 fc_child_node(dev_info_t *parent, struct fc_device_tree *hp)
748 {
749 	struct fc_device_tree *p;
750 	dev_info_t *dip = NULL;
751 
752 	mutex_enter(&fc_device_tree_lock);
753 	p = fc_find_node(parent, hp);
754 	if (p && p->child)
755 		dip = p->child->dip;
756 	mutex_exit(&fc_device_tree_lock);
757 
758 	return (dip);
759 }
760 
761 dev_info_t *
762 fc_peer_node(dev_info_t *devi, struct fc_device_tree *hp)
763 {
764 	struct fc_device_tree *p;
765 	dev_info_t *dip = NULL;
766 
767 	mutex_enter(&fc_device_tree_lock);
768 	p = fc_find_node(devi, hp);
769 	if (p && p->peer)
770 		dip = p->peer->dip;
771 	mutex_exit(&fc_device_tree_lock);
772 
773 	return (dip);
774 }
775