1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * VM - Hardware Address Translation management. 27 * 28 * This file describes the contents of the sun-reference-mmu(sfmmu)- 29 * specific hat data structures and the sfmmu-specific hat procedures. 30 * The machine-independent interface is described in <vm/hat.h>. 31 */ 32 33 #ifndef _VM_HAT_SFMMU_H 34 #define _VM_HAT_SFMMU_H 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #ifndef _ASM 41 42 #include <sys/types.h> 43 44 #endif /* _ASM */ 45 46 #ifdef _KERNEL 47 48 #include <sys/pte.h> 49 #include <vm/mach_sfmmu.h> 50 #include <sys/mmu.h> 51 52 /* 53 * Don't alter these without considering changes to ism_map_t. 54 */ 55 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 56 #define DEFAULT_ISM_PAGESZC TTE4M 57 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 58 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 59 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 60 61 #ifndef _ASM 62 63 #include <sys/t_lock.h> 64 #include <vm/hat.h> 65 #include <vm/seg.h> 66 #include <sys/machparam.h> 67 #include <sys/systm.h> 68 #include <sys/x_call.h> 69 #include <vm/page.h> 70 #include <sys/ksynch.h> 71 72 typedef struct hat sfmmu_t; 73 typedef struct sf_scd sf_scd_t; 74 75 /* 76 * SFMMU attributes for hat_memload/hat_devload 77 */ 78 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 79 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 80 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 81 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 82 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 83 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 84 85 86 /* 87 * sfmmu flags for hat_memload/hat_devload 88 */ 89 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 90 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 91 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 92 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 93 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 94 95 /* 96 * sfmmu internal flag to hat_pageunload that spares locked mappings 97 */ 98 #define SFMMU_KERNEL_RELOC 0x8000 99 100 /* 101 * mode for sfmmu_chgattr 102 */ 103 #define SFMMU_SETATTR 0x0 104 #define SFMMU_CLRATTR 0x1 105 #define SFMMU_CHGATTR 0x2 106 107 /* 108 * sfmmu specific flags for page_t 109 */ 110 #define P_PNC 0x8 /* non-caching is permanent bit */ 111 #define P_TNC 0x10 /* non-caching is temporary bit */ 112 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 113 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 114 115 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 116 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 117 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 118 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 119 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 120 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 121 #ifdef VAC 122 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 123 #endif 124 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 125 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 126 127 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 128 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 129 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 130 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 131 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 132 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 133 #ifdef VAC 134 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 135 #endif 136 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 137 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 138 139 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 140 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 141 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 142 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 143 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 144 #ifdef VAC 145 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 146 #endif 147 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 148 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 149 150 /* 151 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 152 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 153 * created ISM segment is created out of a new address space at base va 154 * of 0 we don't need to store it. 155 */ 156 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 157 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 158 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 159 160 /* 161 * Pad locks out to cache sub-block boundaries to prevent 162 * false sharing, so several processes don't contend for 163 * the same line if they aren't using the same lock. Since 164 * this is a typedef we also have a bit of freedom in 165 * changing lock implementations later if we decide it 166 * is necessary. 167 */ 168 typedef struct hat_lock { 169 kmutex_t hl_mutex; 170 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 171 } hatlock_t; 172 173 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 174 175 /* 176 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 177 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 178 * ism_seg consists of the following members: 179 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 180 * caddr_t is 64 bits or 32 bits. 181 * [21..0] size of segment. 182 * 183 * NOTE: Don't alter this structure without changing defines above and 184 * the tsb_miss and protection handlers. 185 */ 186 typedef struct ism_map { 187 uintptr_t imap_seg; /* base va + sz of ISM segment */ 188 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 189 uchar_t imap_rid; /* region id for ism */ 190 ushort_t imap_hatflags; /* primary ism page size */ 191 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 192 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 193 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 194 } ism_map_t; 195 196 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 197 ~ISM_SZ_MASK((map).imap_vb_shift))) 198 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 199 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 200 ISM_PG_SIZE((map).imap_vb_shift)))) 201 /* 202 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 203 * Same function as the p_mapping list for a page. 204 */ 205 typedef struct ism_ment { 206 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 207 caddr_t iment_base_va; /* hat's va base for this ism seg */ 208 struct ism_ment *iment_next; /* next ism map entry */ 209 struct ism_ment *iment_prev; /* prev ism map entry */ 210 } ism_ment_t; 211 212 /* 213 * ISM segment block. One will be hung off the sfmmu structure if a 214 * a process uses ISM. More will be linked using ismblk_next if more 215 * than ISM_MAP_SLOTS segments are attached to this proc. 216 * 217 * All modifications to fields in this structure will be protected 218 * by the hat mutex. In order to avoid grabbing this lock in low level 219 * routines (tsb miss/protection handlers and vatopfn) while not 220 * introducing any race conditions with hat_unshare, we will set 221 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 222 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 223 * where it will synchronize behind the hat mutex. 224 */ 225 typedef struct ism_blk { 226 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 227 struct ism_blk *iblk_next; 228 uint64_t iblk_nextpa; 229 } ism_blk_t; 230 231 /* 232 * TSB access information. All fields are protected by the process's 233 * hat lock. 234 */ 235 236 struct tsb_info { 237 caddr_t tsb_va; /* tsb base virtual address */ 238 uint64_t tsb_pa; /* tsb base physical address */ 239 struct tsb_info *tsb_next; /* next tsb used by this process */ 240 uint16_t tsb_szc; /* tsb size code */ 241 uint16_t tsb_flags; /* flags for this tsb; see below */ 242 uint_t tsb_ttesz_mask; /* page size masks; see below */ 243 244 tte_t tsb_tte; /* tte to lock into DTLB */ 245 sfmmu_t *tsb_sfmmu; /* sfmmu */ 246 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 247 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 248 }; 249 250 /* 251 * Values for "tsb_ttesz_mask" bitmask. 252 */ 253 #define TSB8K (1 << TTE8K) 254 #define TSB64K (1 << TTE64K) 255 #define TSB512K (1 << TTE512K) 256 #define TSB4M (1 << TTE4M) 257 #define TSB32M (1 << TTE32M) 258 #define TSB256M (1 << TTE256M) 259 260 /* 261 * Values for "tsb_flags" field. 262 */ 263 #define TSB_RELOC_FLAG 0x1 264 #define TSB_FLUSH_NEEDED 0x2 265 #define TSB_SWAPPED 0x4 266 #define TSB_SHAREDCTX 0x8 267 268 #endif /* !_ASM */ 269 270 /* 271 * Data structures for shared hmeblk support. 272 */ 273 274 /* 275 * Do not increase the maximum number of ism/hme regions without checking first 276 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 277 * sf_region structure. 278 * Initially, shared hmes will only be used for the main text segment 279 * therefore this value will be set to 64, it will be increased when shared 280 * libraries are included. 281 */ 282 283 #define SFMMU_MAX_HME_REGIONS (64) 284 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 285 286 #define SFMMU_PRIVATE 0 287 #define SFMMU_SHARED 1 288 289 #define HMEBLK_ENDPA 1 290 291 #ifndef _ASM 292 293 #define SFMMU_MAX_ISM_REGIONS (64) 294 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 295 296 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 297 298 #define SFMMU_MAX_REGION_BUCKETS (128) 299 #define SFMMU_MAX_SRD_BUCKETS (2048) 300 301 typedef struct sf_hmeregion_map { 302 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 303 } sf_hmeregion_map_t; 304 305 typedef struct sf_ismregion_map { 306 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 307 } sf_ismregion_map_t; 308 309 typedef union sf_region_map_u { 310 struct _h_rmap_s { 311 sf_hmeregion_map_t hmeregion_map; 312 sf_ismregion_map_t ismregion_map; 313 } h_rmap_s; 314 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 315 } sf_region_map_t; 316 317 #define SF_RGNMAP_ZERO(map) { \ 318 int _i; \ 319 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 320 (map).bitmap[_i] = 0; \ 321 } \ 322 } 323 324 /* 325 * Returns 1 if map1 and map2 are equal. 326 */ 327 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 328 int _i; \ 329 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 330 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 331 break; \ 332 } \ 333 if (_i < SFMMU_RGNMAP_WORDS) \ 334 rval = 0; \ 335 else \ 336 rval = 1; \ 337 } 338 339 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 340 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 341 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 342 343 /* 344 * Tests whether map2 is a subset of map1, returns 1 if 345 * this assertion is true. 346 */ 347 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 348 int _i; \ 349 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 350 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 351 != (map2)->bitmap[_i]) { \ 352 break; \ 353 } \ 354 } \ 355 if (_i < SFMMU_RGNMAP_WORDS) \ 356 rval = 0; \ 357 else \ 358 rval = 1; \ 359 } 360 361 #define SF_SCD_INCR_REF(scdp) { \ 362 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 363 } 364 365 #define SF_SCD_DECR_REF(srdp, scdp) { \ 366 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 367 if (!atomic_add_32_nv( \ 368 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 369 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 370 } \ 371 } 372 373 /* 374 * A sfmmup link in the link list of sfmmups that share the same region. 375 */ 376 typedef struct sf_rgn_link { 377 sfmmu_t *next; 378 sfmmu_t *prev; 379 } sf_rgn_link_t; 380 381 /* 382 * rgn_flags values. 383 */ 384 #define SFMMU_REGION_HME 0x1 385 #define SFMMU_REGION_ISM 0x2 386 #define SFMMU_REGION_FREE 0x8 387 388 #define SFMMU_REGION_TYPE_MASK (0x3) 389 390 /* 391 * sf_region defines a text or (D)ISM segment which map 392 * the same underlying physical object. 393 */ 394 typedef struct sf_region { 395 caddr_t rgn_saddr; /* base addr of attached seg */ 396 size_t rgn_size; /* size of attached seg */ 397 void *rgn_obj; /* the underlying object id */ 398 u_offset_t rgn_objoff; /* offset in the object mapped */ 399 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 400 uchar_t rgn_pgszc; /* page size of the region */ 401 uchar_t rgn_flags; /* region type, free flag */ 402 uchar_t rgn_id; 403 int rgn_refcnt; /* # of hats sharing the region */ 404 /* callback function for hat_unload_callback */ 405 hat_rgn_cb_func_t rgn_cb_function; 406 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 407 kmutex_t rgn_mutex; /* protect region sfmmu list */ 408 /* A link list of processes attached to this region */ 409 sfmmu_t *rgn_sfmmu_head; 410 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 411 uint16_t rgn_hmeflags; /* rgn tte size flags */ 412 } sf_region_t; 413 414 #define rgn_next rgn_hash 415 416 /* srd */ 417 typedef struct sf_shared_region_domain { 418 vnode_t *srd_evp; /* executable vnode */ 419 /* hme region table */ 420 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 421 /* ism region table */ 422 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 423 /* hash chain linking srds */ 424 struct sf_shared_region_domain *srd_hash; 425 /* pointer to the next free hme region */ 426 sf_region_t *srd_hmergnfree; 427 /* pointer to the next free ism region */ 428 sf_region_t *srd_ismrgnfree; 429 /* id of next ism region created */ 430 uint16_t srd_next_ismrid; 431 /* id of next hme region created */ 432 uint16_t srd_next_hmerid; 433 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 434 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 435 int srd_refcnt; /* # of procs in the srd */ 436 kmutex_t srd_mutex; /* sync add/remove rgns */ 437 kmutex_t srd_scd_mutex; 438 sf_scd_t *srd_scdp; /* list of scds in srd */ 439 /* hash of regions associated with the same executable */ 440 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 441 } sf_srd_t; 442 443 typedef struct sf_srd_bucket { 444 kmutex_t srdb_lock; 445 sf_srd_t *srdb_srdp; 446 } sf_srd_bucket_t; 447 448 /* 449 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 450 * to 16 when the use of shared hmes for shared libraries is enabled. 451 */ 452 453 #define SFMMU_L1_HMERLINKS (8) 454 #define SFMMU_L2_HMERLINKS (8) 455 #define SFMMU_L1_HMERLINKS_SHIFT (3) 456 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 457 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 458 #define SFMMU_L1_HMERLINKS_SIZE \ 459 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 460 #define SFMMU_L2_HMERLINKS_SIZE \ 461 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 462 463 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 464 #error Not Enough HMERLINKS 465 #endif 466 467 /* 468 * This macro grabs hat lock and allocates level 2 hat chain 469 * associated with a shme rgn. In the majority of cases, the macro 470 * is called with alloc = 0, and lock = 0. 471 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 472 * parameter. 473 */ 474 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 475 { \ 476 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 477 SFMMU_L1_HMERLINKS_MASK; \ 478 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 479 hatlock_t *_hatlockp; \ 480 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 481 if (lnkp != NULL) { \ 482 lnkp = &lnkp[_l2ix]; \ 483 } else if (alloc && lock) { \ 484 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 485 _hatlockp = sfmmu_hat_enter(sfmmup); \ 486 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 487 sfmmu_hat_exit(_hatlockp); \ 488 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 489 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 490 ASSERT(lnkp != NULL); \ 491 } else { \ 492 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 493 sfmmu_hat_exit(_hatlockp); \ 494 } \ 495 lnkp = &lnkp[_l2ix]; \ 496 } else if (alloc) { \ 497 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 498 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 499 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 500 lnkp = &lnkp[_l2ix]; \ 501 } \ 502 } 503 504 /* 505 * Per cpu pending freelist of hmeblks. 506 */ 507 typedef struct cpu_hme_pend { 508 struct hme_blk *chp_listp; 509 kmutex_t chp_mutex; 510 time_t chp_timestamp; 511 uint_t chp_count; 512 uint8_t chp_pad[36]; /* pad to 64 bytes */ 513 } cpu_hme_pend_t; 514 515 /* 516 * The default value of the threshold for the per cpu pending queues of hmeblks. 517 * The queues are flushed if either the number of hmeblks on the queue is above 518 * the threshold, or one second has elapsed since the last flush. 519 */ 520 #define CPU_HME_PEND_THRESH 1000 521 522 /* 523 * Per-MMU context domain kstats. 524 * 525 * TSB Miss Exceptions 526 * Number of times a TSB miss exception is handled in an MMU. See 527 * sfmmu_tsbmiss_exception() for more details. 528 * TSB Raise Exception 529 * Number of times the CPUs within an MMU are cross-called 530 * to invalidate either a specific process context (when the process 531 * switches MMU contexts) or the context of any process that is 532 * running on those CPUs (as part of the MMU context wrap-around). 533 * Wrap Around 534 * The number of times a wrap-around of MMU context happens. 535 */ 536 typedef enum mmu_ctx_stat_types { 537 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 538 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 539 MMU_CTX_WRAP_AROUND, /* wraparounds */ 540 MMU_CTX_NUM_STATS 541 } mmu_ctx_stat_t; 542 543 /* 544 * Per-MMU context domain structure. This is instantiated the first time a CPU 545 * belonging to the MMU context domain is configured into the system, at boot 546 * time or at DR time. 547 * 548 * mmu_gnum 549 * The current generation number for the context IDs on this MMU context 550 * domain. It is protected by mmu_lock. 551 * mmu_cnum 552 * The current cnum to be allocated on this MMU context domain. It 553 * is protected via CAS. 554 * mmu_nctxs 555 * The max number of context IDs supported on every CPU in this 556 * MMU context domain. This is needed here in case the system supports 557 * mixed type of processors/MMUs. It also helps to make ctx switch code 558 * access fewer cache lines i.e. no need to retrieve it from some global 559 * nctxs. 560 * mmu_lock 561 * The mutex spin lock used to serialize context ID wrap around 562 * mmu_idx 563 * The index for this MMU context domain structure in the global array 564 * mmu_ctxdoms. 565 * mmu_ncpus 566 * The actual number of CPUs that have been configured in this 567 * MMU context domain. This also acts as a reference count for the 568 * structure. When the last CPU in an MMU context domain is unconfigured, 569 * the structure is freed. It is protected by mmu_lock. 570 * mmu_cpuset 571 * The CPU set of configured CPUs for this MMU context domain. Used 572 * to cross-call all the CPUs in the MMU context domain to invalidate 573 * context IDs during a wraparound operation. It is protected by mmu_lock. 574 */ 575 576 typedef struct mmu_ctx { 577 uint64_t mmu_gnum; 578 uint_t mmu_cnum; 579 uint_t mmu_nctxs; 580 kmutex_t mmu_lock; 581 uint_t mmu_idx; 582 uint_t mmu_ncpus; 583 cpuset_t mmu_cpuset; 584 kstat_t *mmu_kstat; 585 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 586 } mmu_ctx_t; 587 588 #define mmu_tsb_exceptions \ 589 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 590 #define mmu_tsb_raise_exception \ 591 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 592 #define mmu_wrap_around \ 593 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 594 595 extern uint_t max_mmu_ctxdoms; 596 extern mmu_ctx_t **mmu_ctxs_tbl; 597 598 extern void sfmmu_cpu_init(cpu_t *); 599 extern void sfmmu_cpu_cleanup(cpu_t *); 600 601 extern uint_t sfmmu_ctxdom_nctxs(int); 602 603 #ifdef sun4v 604 extern void sfmmu_ctxdoms_remove(void); 605 extern void sfmmu_ctxdoms_lock(void); 606 extern void sfmmu_ctxdoms_unlock(void); 607 extern void sfmmu_ctxdoms_update(void); 608 #endif 609 610 /* 611 * The following structure is used to get MMU context domain information for 612 * a CPU from the platform. 613 * 614 * mmu_idx 615 * The MMU context domain index within the global array mmu_ctxs 616 * mmu_nctxs 617 * The number of context IDs supported in the MMU context domain 618 */ 619 typedef struct mmu_ctx_info { 620 uint_t mmu_idx; 621 uint_t mmu_nctxs; 622 } mmu_ctx_info_t; 623 624 #pragma weak plat_cpuid_to_mmu_ctx_info 625 626 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 627 628 /* 629 * Each address space has an array of sfmmu_ctx_t structures, one structure 630 * per MMU context domain. 631 * 632 * cnum 633 * The context ID allocated for an address space on an MMU context domain 634 * gnum 635 * The generation number for the context ID in the MMU context domain. 636 * 637 * This structure needs to be a power-of-two in size. 638 */ 639 typedef struct sfmmu_ctx { 640 uint64_t gnum:48; 641 uint64_t cnum:16; 642 } sfmmu_ctx_t; 643 644 645 /* 646 * The platform dependent hat structure. 647 * tte counts should be protected by cas. 648 * cpuset is protected by cas. 649 * 650 * ttecnt accounting for mappings which do not use shared hme is carried out 651 * during pagefault handling. In the shared hme case, only the first process 652 * to access a mapping generates a pagefault, subsequent processes simply 653 * find the shared hme entry during trap handling and therefore there is no 654 * corresponding event to initiate ttecnt accounting. Currently, as shared 655 * hmes are only used for text segments, when joining a region we assume the 656 * worst case and add the the number of ttes required to map the entire region 657 * to the ttecnt corresponding to the region pagesize. However, if the region 658 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 659 * then 8K pages will be allocated instead and the first TSB which stores 8K 660 * mappings will potentially be undersized. To compensate for the potential 661 * underaccounting in this case we always add 1/4 of the region size to the 8K 662 * ttecnt. 663 * 664 * Note that sfmmu_xhat_provider MUST be the first element. 665 */ 666 667 struct hat { 668 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 669 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 670 struct as *sfmmu_as; /* as this hat provides mapping for */ 671 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 672 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 673 /* shme rgns ttecnt for rgns in SCD */ 674 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 675 /* est. ism ttes that are NOT in a SCD */ 676 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 677 /* ttecnt for isms that are in a SCD */ 678 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 679 /* inflate tsb0 to allow for large page alloc failure in region */ 680 ulong_t sfmmu_tsb0_4minflcnt; 681 union _h_un { 682 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 683 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 684 } h_un; 685 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 686 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 687 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 688 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 689 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 690 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 691 ushort_t sfmmu_flags; /* flags */ 692 uchar_t sfmmu_tteflags; /* pgsz flags */ 693 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 694 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 695 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 696 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 697 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 698 uchar_t sfmmu_cext; /* context page size encoding */ 699 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 700 sf_srd_t *sfmmu_srdp; 701 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 702 sf_region_map_t sfmmu_region_map; 703 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 704 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 705 #ifdef sun4v 706 struct hv_tsb_block sfmmu_hvblock; 707 #endif 708 /* 709 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 710 * elements. max_mmu_ctxdoms is determined at run-time. 711 * sfmmu_ctxs[1] is just the fist element of an array, it always 712 * has to be the last field to ensure that the memory allocated 713 * for sfmmu_ctxs is consecutive with the memory of the rest of 714 * the hat data structure. 715 */ 716 sfmmu_ctx_t sfmmu_ctxs[1]; 717 718 }; 719 720 #define sfmmu_iblk h_un.sfmmu_iblkp 721 #define sfmmu_iment h_un.sfmmu_imentp 722 723 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 724 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 725 726 #define SF_RGNMAP_ISNULL(sfmmup) \ 727 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 728 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 729 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 730 731 struct sf_scd { 732 sfmmu_t *scd_sfmmup; /* shared context hat */ 733 /* per pgsz ttecnt for shme rgns in SCD */ 734 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 735 uint_t scd_refcnt; /* address spaces attached to scd */ 736 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 737 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 738 sf_scd_t *scd_prev; 739 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 740 kmutex_t scd_mutex; 741 /* 742 * Link used to add an scd to the sfmmu_iment list. 743 */ 744 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 745 }; 746 747 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 748 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 749 750 extern int disable_shctx; 751 extern int shctx_on; 752 753 /* 754 * bit mask for managing vac conflicts on large pages. 755 * bit 1 is for uncache flag. 756 * bits 2 through min(num of cache colors + 1,31) are 757 * for cache colors that have already been flushed. 758 */ 759 #ifdef VAC 760 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 761 #else 762 #define CACHE_NUM_COLOR 1 763 #endif 764 765 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 766 767 #define CacheColor_IsFlushed(flag, vcolor) \ 768 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 769 770 #define CacheColor_SetFlushed(flag, vcolor) \ 771 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 772 /* 773 * Flags passed to sfmmu_page_cache to flush page from vac or not. 774 */ 775 #define CACHE_FLUSH 0 776 #define CACHE_NO_FLUSH 1 777 778 /* 779 * Flags passed to sfmmu_tlbcache_demap 780 */ 781 #define FLUSH_NECESSARY_CPUS 0 782 #define FLUSH_ALL_CPUS 1 783 784 #ifdef DEBUG 785 /* 786 * For debugging purpose only. Maybe removed later. 787 */ 788 struct ctx_trace { 789 sfmmu_t *sc_sfmmu_stolen; 790 sfmmu_t *sc_sfmmu_stealing; 791 clock_t sc_time; 792 ushort_t sc_type; 793 ushort_t sc_cnum; 794 }; 795 #define CTX_TRC_STEAL 0x1 796 #define CTX_TRC_FREE 0x0 797 #define TRSIZE 0x400 798 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 799 ctx_trace_first : ((ptr) + 1)) 800 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 801 mutex_enter(mutex); \ 802 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 803 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 804 (ptr)->sc_cnum = (cnum); \ 805 (ptr)->sc_type = (type); \ 806 (ptr)->sc_time = ddi_get_lbolt(); \ 807 (ptr) = NEXT_CTXTR(ptr); \ 808 num_ctx_stolen += (type); \ 809 mutex_exit(mutex); 810 #else 811 812 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 813 814 #endif /* DEBUG */ 815 816 #endif /* !_ASM */ 817 818 /* 819 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 820 * ASSERT() that we're holding the HAT lock before changing the flags; 821 * however callers that read the flags may do so without acquiring the lock 822 * in a fast path, and then recheck the flag after acquiring the lock in 823 * a slow path. 824 */ 825 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 826 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 827 828 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 829 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 830 (sfmmup)->sfmmu_flags &= ~(flags)) 831 832 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 833 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 834 (sfmmup)->sfmmu_flags |= (flags)) 835 836 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 837 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 838 (flags)) 839 840 841 /* 842 * sfmmu tte HAT flags, must fit in 8 bits 843 */ 844 #define HAT_CHKCTX1_FLAG 0x1 845 #define HAT_64K_FLAG (0x1 << TTE64K) 846 #define HAT_512K_FLAG (0x1 << TTE512K) 847 #define HAT_4M_FLAG (0x1 << TTE4M) 848 #define HAT_32M_FLAG (0x1 << TTE32M) 849 #define HAT_256M_FLAG (0x1 << TTE256M) 850 851 /* 852 * sfmmu HAT flags, 16 bits at the moment. 853 */ 854 #define HAT_4MTEXT_FLAG 0x01 855 #define HAT_32M_ISM 0x02 856 #define HAT_256M_ISM 0x04 857 #define HAT_SWAPPED 0x08 /* swapped out */ 858 #define HAT_SWAPIN 0x10 /* swapping in */ 859 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 860 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 861 862 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 863 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 864 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 865 866 #define SFMMU_LGPGS_INUSE(sfmmup) \ 867 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 868 ((sfmmup)->sfmmu_iblk != NULL)) 869 870 /* 871 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 872 * are locked so that sfmmu_getctx can't steal any of these 873 * contexts. At the time this software was being developed, the 874 * only context that needs to be locked is context 0 (the kernel 875 * context), and context 1 (reserved for stolen context). So this constant 876 * was originally defined to be 2. 877 * 878 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 879 * routines only care whether the context is kernel, invalid or user. 880 */ 881 882 #define NUM_LOCKED_CTXS 2 883 #define INVALID_CONTEXT 1 884 885 #ifdef sun4v 886 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 887 #endif 888 #if defined(sun4v) || defined(UTSB_PHYS) 889 /* 890 * Get the location in the 4MB base TSB of the tsbe for this fault. 891 * Assumes that the second TSB only contains 4M mappings. 892 * 893 * In: 894 * tagacc = tag access register (not clobbered) 895 * tsbe = 2nd TSB base register 896 * tmp1, tmp2 = scratch registers 897 * Out: 898 * tsbe = pointer to the tsbe in the 2nd TSB 899 */ 900 901 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 902 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 903 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 904 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 905 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 906 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 907 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 908 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 909 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 910 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 911 912 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 913 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 914 915 /* 916 * Get the location in the 3rd TSB of the tsbe for this fault. 917 * The 3rd TSB corresponds to the shared context, and is used 918 * for 8K - 512k pages. 919 * 920 * In: 921 * tagacc = tag access register (not clobbered) 922 * tsbe, tmp1, tmp2 = scratch registers 923 * Out: 924 * tsbe = pointer to the tsbe in the 3rd TSB 925 */ 926 927 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 928 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 929 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 930 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 931 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 932 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 933 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 934 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 935 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 936 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 937 938 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 939 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 940 /* 941 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 942 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 943 */ 944 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 945 /* BEGIN CSTYLED */ \ 946 label: ;\ 947 ldx [rgn_map], tmp ;\ 948 dec cnt ;\ 949 add rgn_map, CLONGSIZE, rgn_map ;\ 950 stx tmp, [tsbmiss_map] ;\ 951 brnz,pt cnt, label ;\ 952 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 953 /* END CSTYLED */ 954 955 /* 956 * If there is no scd, then zero the tsbmiss scd_shmermap, 957 * from sfmmu_load_mmustate. 958 */ 959 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 960 /* BEGIN CSTYLED */ \ 961 label: ;\ 962 dec cnt ;\ 963 stx %g0, [tsbmiss_map] ;\ 964 brnz,pt cnt, label ;\ 965 add tsbmiss_map, CLONGSIZE, tsbmiss_map 966 /* END CSTYLED */ 967 968 /* 969 * Set hmemisc to 1 if the shared hme is also part of an scd. 970 * In: 971 * tsbarea = tsbmiss area (not clobbered) 972 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 973 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 974 * Out: 975 * use_shctx = 1 if shme is in scd and 0 otherwise 976 */ 977 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 978 /* BEGIN CSTYLED */ \ 979 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 980 add hmentoff, HMEBLK_TAG, hmentoff ;\ 981 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 982 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 983 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 984 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 985 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 986 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 987 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 988 srlx hmentoff, use_shctx, use_shctx ;\ 989 and use_shctx, 0x1, use_shctx \ 990 /* END CSTYLED */ 991 992 /* 993 * Synthesize a TSB base register contents for a process. 994 * 995 * In: 996 * tsbinfo = TSB info pointer (ro) 997 * tsbreg, tmp1 = scratch registers 998 * Out: 999 * tsbreg = value to program into TSB base register 1000 */ 1001 1002 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 1003 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 1004 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 1005 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 1006 or tsbreg, tmp1, tsbreg; 1007 1008 1009 /* 1010 * Load TSB base register to TSBMISS area for privte contexts. 1011 * This register contains utsb_pabase in bits 63:13, and TSB size 1012 * code in bits 2:0. 1013 * 1014 * For private context 1015 * In: 1016 * tsbreg = value to load (ro) 1017 * regnum = constant or register 1018 * tmp1 = scratch register 1019 * Out: 1020 * Specified scratchpad register updated 1021 * 1022 */ 1023 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 1024 mov regnum, tmp1; \ 1025 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1026 /* 1027 * Get TSB base register from the scratchpad for private contexts 1028 * 1029 * In: 1030 * regnum = constant or register 1031 * tsbreg = scratch 1032 * Out: 1033 * tsbreg = tsbreg from the specified scratchpad register 1034 */ 1035 #define GET_UTSBREG(regnum, tsbreg) \ 1036 mov regnum, tsbreg; \ 1037 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1038 1039 /* 1040 * Load TSB base register to TSBMISS area for shared contexts. 1041 * This register contains utsb_pabase in bits 63:13, and TSB size 1042 * code in bits 2:0. 1043 * 1044 * In: 1045 * tsbmiss = pointer to tsbmiss area 1046 * tsbmissoffset = offset to right tsb pointer 1047 * tsbreg = value to load (ro) 1048 * Out: 1049 * Specified tsbmiss area updated 1050 * 1051 */ 1052 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1053 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1054 1055 /* 1056 * Get TSB base register from the scratchpad for 1057 * shared contexts 1058 * 1059 * In: 1060 * tsbmiss = pointer to tsbmiss area 1061 * tsbmissoffset = offset to right tsb pointer 1062 * tsbreg = scratch 1063 * Out: 1064 * tsbreg = tsbreg from the specified scratchpad register 1065 */ 1066 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1067 ldx [tsbmiss + tsbmissoffset], tsbreg 1068 1069 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1070 1071 #ifndef _ASM 1072 1073 /* 1074 * Kernel page relocation stuff. 1075 */ 1076 struct sfmmu_callback { 1077 int key; 1078 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1079 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1080 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1081 int capture_cpus; 1082 }; 1083 1084 extern int sfmmu_max_cb_id; 1085 extern struct sfmmu_callback *sfmmu_cb_table; 1086 1087 struct pa_hment; 1088 1089 /* 1090 * RFE: With multihat gone we gain back an int. We could use this to 1091 * keep ref bits on a per cpu basis to eliminate xcalls. 1092 */ 1093 struct sf_hment { 1094 tte_t hme_tte; /* tte for this hment */ 1095 1096 union { 1097 struct page *page; /* what page this maps */ 1098 struct pa_hment *data; /* pa_hment */ 1099 } sf_hment_un; 1100 1101 struct sf_hment *hme_next; /* next hment */ 1102 struct sf_hment *hme_prev; /* prev hment */ 1103 }; 1104 1105 struct pa_hment { 1106 caddr_t addr; /* va */ 1107 uint_t len; /* bytes */ 1108 ushort_t flags; /* internal flags */ 1109 ushort_t refcnt; /* reference count */ 1110 id_t cb_id; /* callback id, table index */ 1111 void *pvt; /* handler's private data */ 1112 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1113 }; 1114 1115 #define hme_page sf_hment_un.page 1116 #define hme_data sf_hment_un.data 1117 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1118 #define PAHME_SZ (sizeof (struct pa_hment)) 1119 #define SFHME_SZ (sizeof (struct sf_hment)) 1120 1121 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1122 1123 /* 1124 * hmeblk_tag structure 1125 * structure used to obtain a match on a hme_blk. Currently consists of 1126 * the address of the sfmmu struct (or hatid), the base page address of the 1127 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1128 * and has the following meaning: 1129 * 1 = 8k or 64k hash sequence. 1130 * 2 = 512k hash sequence. 1131 * 3 = 4M hash sequence. 1132 * We require this count because we don't want to get a false hit on a 512K or 1133 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1134 * Note: The ordering and size of the hmeblk_tag members are implictly known 1135 * by the tsb miss handlers written in assembly. Do not change this structure 1136 * without checking those routines. See HTAG_SFMMUPSZ define. 1137 */ 1138 1139 /* 1140 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1141 */ 1142 typedef union { 1143 struct { 1144 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1145 hblk_rehash: 3, /* rehash number */ 1146 hblk_rid: 10; /* hme_blk region id */ 1147 void *hblk_id; 1148 } hblk_tag_un; 1149 uint64_t htag_tag[2]; 1150 } hmeblk_tag; 1151 1152 #define htag_id hblk_tag_un.hblk_id 1153 #define htag_bspage hblk_tag_un.hblk_basepg 1154 #define htag_rehash hblk_tag_un.hblk_rehash 1155 #define htag_rid hblk_tag_un.hblk_rid 1156 1157 #endif /* !_ASM */ 1158 1159 #define HTAG_REHASH_SHIFT 10 1160 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1161 #define HTAG_RID_MASK HTAG_MAX_RID 1162 1163 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1164 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1165 1166 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1167 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1168 #endif 1169 1170 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1171 1172 /* ISM regions */ 1173 #define SFMMU_INVALID_ISMRID 0xff 1174 1175 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1176 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1177 #endif 1178 1179 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1180 1181 1182 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1183 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1184 1185 /* 1186 * this macro must only be used for comparing tags in shared hmeblks. 1187 */ 1188 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1189 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1190 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1191 ~HTAG_RID_MASK) | \ 1192 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1193 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1194 1195 #define HME_REHASH(sfmmup) \ 1196 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1197 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1198 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1199 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1200 1201 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1202 /* needs to be multiple of 2 */ 1203 1204 #ifndef _ASM 1205 1206 #ifdef HBLK_TRACE 1207 1208 #define HBLK_LOCK 1 1209 #define HBLK_UNLOCK 0 1210 #define HBLK_STACK_DEPTH 6 1211 #define HBLK_AUDIT_CACHE_SIZE 16 1212 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1213 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1214 1215 struct hblk_lockcnt_audit { 1216 int flag; /* lock or unlock */ 1217 kthread_id_t thread; 1218 int depth; 1219 pc_t stack[HBLK_STACK_DEPTH]; 1220 }; 1221 1222 #endif /* HBLK_TRACE */ 1223 1224 1225 /* 1226 * Hment block structure. 1227 * The hme_blk is the node data structure which the hash structure 1228 * mantains. An hme_blk can have 2 different sizes depending on the 1229 * number of hments it implicitly contains. When dealing with 64K, 512K, 1230 * or 4M hments there is one hment per hme_blk. When dealing with 1231 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1232 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1233 * hme_blk. 1234 * 1235 * The hmeblk structure contains 2 tte reference counters used to determine if 1236 * it is ok to free up the hmeblk. Both counters have to be zero in order 1237 * to be able to free up hmeblk. They are protected by cas. 1238 * hblk_hmecnt is the number of hments present on pp mapping lists. 1239 * hblk_vcnt reflects number of valid ttes in hmeblk. 1240 * 1241 * The hmeblk now also has per tte lock cnts. This is required because 1242 * the counts can be high and there are not enough bits in the tte. When 1243 * physio is fixed to not lock the translations we should be able to move 1244 * the lock cnt back to the tte. See bug id 1198554. 1245 * 1246 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1247 * and sf_hment are at the same offsets in both structures. Whenever 1248 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1249 */ 1250 1251 struct hme_blk_misc { 1252 uint_t notused:25; 1253 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1254 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1255 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1256 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1257 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1258 }; 1259 1260 struct hme_blk { 1261 volatile uint64_t hblk_nextpa; /* physical address for hash list */ 1262 1263 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1264 1265 struct hme_blk *hblk_next; /* on free list or on hash list */ 1266 /* protected by hash lock */ 1267 1268 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1269 /* protected by hash lock */ 1270 uint_t hblk_span; /* span of memory hmeblk maps */ 1271 1272 struct hme_blk_misc hblk_misc; 1273 1274 union { 1275 struct { 1276 ushort_t hblk_hmecount; /* hment on mlists counter */ 1277 ushort_t hblk_validcnt; /* valid tte reference count */ 1278 } hblk_counts; 1279 uint_t hblk_shadow_mask; 1280 } hblk_un; 1281 1282 uint_t hblk_lckcnt; 1283 1284 #ifdef HBLK_TRACE 1285 kmutex_t hblk_audit_lock; /* lock to protect index */ 1286 uint_t hblk_audit_index; /* index into audit_cache */ 1287 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1288 #endif /* HBLK_AUDIT */ 1289 1290 struct sf_hment hblk_hme[1]; /* hment array */ 1291 }; 1292 1293 #define hblk_shared hblk_misc.shared_bit 1294 #define hblk_xhat_bit hblk_misc.xhat_bit 1295 #define hblk_shw_bit hblk_misc.shadow_bit 1296 #define hblk_nuc_bit hblk_misc.nucleus_bit 1297 #define hblk_ttesz hblk_misc.ttesize 1298 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1299 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1300 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1301 1302 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1303 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1304 1305 #ifdef HBLK_TRACE 1306 1307 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1308 { \ 1309 int flag = lock; /* to pacify lint */ \ 1310 int audit_index; \ 1311 \ 1312 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1313 audit_index = hmeblkp->hblk_audit_index; \ 1314 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1315 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1316 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1317 \ 1318 if (flag) \ 1319 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1320 HBLK_LOCK_PATTERN; \ 1321 else \ 1322 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1323 HBLK_UNLOCK_PATTERN; \ 1324 \ 1325 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1326 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1327 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1328 HBLK_STACK_DEPTH); \ 1329 } 1330 1331 #else 1332 1333 #define HBLK_STACK_TRACE(hmeblkp, lock) 1334 1335 #endif /* HBLK_TRACE */ 1336 1337 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1338 1339 /* 1340 * A maximum number of user hmeblks is defined in order to place an upper 1341 * limit on how much nucleus memory is required and to avoid overflowing the 1342 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1343 * the number of buckets required, for an average hash chain length of 4 on 1344 * a 16TB machine. 1345 */ 1346 1347 #define MAX_UHME_BUCKETS (0x1 << 30) 1348 #define MAX_KHME_BUCKETS (0x1 << 30) 1349 1350 /* 1351 * The minimum number of kernel hash buckets. 1352 */ 1353 #define MIN_KHME_BUCKETS 0x800 1354 1355 /* 1356 * The number of hash buckets must be a power of 2. If the initial calculated 1357 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1358 * power of 2, otherwise we round down to avoid huge over allocations. 1359 */ 1360 #define USER_BUCKETS_THRESHOLD (1<<22) 1361 1362 #define MAX_NUCUHME_BUCKETS 0x4000 1363 #define MAX_NUCKHME_BUCKETS 0x2000 1364 1365 /* 1366 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1367 * a regular mutex used to make sure operations on a hash link are only 1368 * done by one thread. Any operation which comes into the hat with 1369 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1370 * the tsb miss handlers to grab the hash lock to make sure the hash list 1371 * is consistent while we traverse it. Unfortunately this can lead to 1372 * deadlocks or recursive mutex enters since it is possible for 1373 * someone holding the lock to take a tlb/tsb miss. 1374 * To solve this problem we have added the hmehash_listlock. This lock 1375 * is only grabbed by the tsb miss handlers, vatopfn, and while 1376 * adding/removing a hmeblk from the hash list. The code is written to 1377 * guarantee we won't take a tlb miss while holding this lock. 1378 */ 1379 struct hmehash_bucket { 1380 kmutex_t hmehash_mutex; 1381 volatile uint64_t hmeh_nextpa; /* physical address for hash list */ 1382 struct hme_blk *hmeblkp; 1383 uint_t hmeh_listlock; 1384 }; 1385 1386 #endif /* !_ASM */ 1387 1388 #define SFMMU_PGCNT_MASK 0x3f 1389 #define SFMMU_PGCNT_SHIFT 6 1390 #define INVALID_MMU_ID -1 1391 #define SFMMU_MMU_GNUM_RSHIFT 16 1392 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1393 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1394 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1395 1396 /* 1397 * The tsb miss handlers written in assembly know that sfmmup 1398 * is a 64 bit ptr. 1399 * 1400 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1401 * bits. 1402 */ 1403 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1404 #define HTAG_BSPAGE_SHIFT 13 1405 1406 /* 1407 * Assembly routines need to be able to get to ttesz 1408 */ 1409 #define HBLK_SZMASK 0x7 1410 1411 #ifndef _ASM 1412 1413 /* 1414 * Returns the number of bytes that an hmeblk spans given its tte size 1415 */ 1416 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1417 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1418 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1419 sfmmu8_cache : sfmmu1_cache) 1420 #define HMEBLK_SPAN(ttesz) \ 1421 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1422 1423 #define set_hblk_sz(hmeblkp, ttesz) \ 1424 (hmeblkp)->hblk_ttesz = (ttesz); \ 1425 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1426 1427 #define get_hblk_base(hmeblkp) \ 1428 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1429 1430 #define get_hblk_endaddr(hmeblkp) \ 1431 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1432 1433 #define in_hblk_range(hmeblkp, vaddr) \ 1434 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1435 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1436 get_hblk_span(hmeblkp)))) 1437 1438 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1439 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1440 1441 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1442 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1443 1444 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1445 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1446 TTE_BSZS_SHIFT((shwsz) - 1)) 1447 1448 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1449 (NHMENTS - 1) * sizeof (struct sf_hment)) 1450 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1451 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1452 1453 /* 1454 * Hme_blk hash structure 1455 * Active mappings are kept in a hash structure of hme_blks. The hash 1456 * function is based on (ctx, vaddr) The size of the hash table size is a 1457 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1458 * The hash actually consists of 2 separate hashes. One hash is for the user 1459 * address space and the other hash is for the kernel address space. 1460 * The number of buckets are calculated at boot time and stored in the global 1461 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1462 * a power of 2 we can use a simply & function to derive an index instead of 1463 * a divide. 1464 * 1465 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1466 * bucket. 1467 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1468 * protects the link list. 1469 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1470 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1471 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1472 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1473 * and it varies depending on the page size as follows: 1474 * 8k pages: HBLK_RANGE_SHIFT 1475 * 64k pages: MMU_PAGESHIFT64K 1476 * 512K pages: MMU_PAGESHIFT512K 1477 * 4M pages: MMU_PAGESHIFT4M 1478 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1479 * changes should be reflected in both versions. This function and the TSB 1480 * miss handlers are the only places which know about the two hashes. 1481 * 1482 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1483 * into the same bucket for a particular process. It is currently set to 1484 * be equivalent to 64K range or one hme_blk. 1485 * 1486 * The hme_blks in the hash are protected by a per hash bucket mutex 1487 * known as SFMMU_HASH_LOCK. 1488 * You need to acquire this lock before traversing the hash bucket link 1489 * list, while adding/removing a hme_blk to the list, and while 1490 * modifying an hme_blk. A possible optimization is to replace these 1491 * mutexes by readers/writer lock but right now it is not clear whether 1492 * this is a win or not. 1493 * 1494 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1495 * hme_blk that contains the hment that corresponds to the passed 1496 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1497 */ 1498 1499 #endif /* ! _ASM */ 1500 1501 #define KHATID ksfmmup 1502 #define UHMEHASH_SZ uhmehash_num 1503 #define KHMEHASH_SZ khmehash_num 1504 #define HMENT_HASHAVELEN 4 1505 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1506 #define HBLK_MIN_TTESZ 1 1507 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1508 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1509 #define MAX_HASHCNT 5 1510 #define DEFAULT_MAX_HASHCNT 3 1511 1512 #ifndef _ASM 1513 1514 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1515 1516 #define HME_HASH_SHIFT(ttesz) \ 1517 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1518 1519 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1520 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1521 1522 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1523 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1524 1525 #define HME_HASH_REHASH(ttesz) \ 1526 (((ttesz) < TTE512K)? 1 : (ttesz)) 1527 1528 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1529 ((((void *)hatid) != ((void *)KHATID)) ? \ 1530 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1531 UHMEHASH_SZ) ]): \ 1532 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1533 KHMEHASH_SZ) ])) 1534 1535 /* 1536 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1537 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1538 * will be set to NULL, otherwise it will point to the correct hme_blk. 1539 * This macro also cleans empty hblks. 1540 */ 1541 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp) \ 1542 { \ 1543 struct hme_blk *nx_hblk; \ 1544 \ 1545 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1546 hblkp = hmebp->hmeblkp; \ 1547 pr_hblk = NULL; \ 1548 while (hblkp) { \ 1549 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1550 /* found hme_blk */ \ 1551 break; \ 1552 } \ 1553 nx_hblk = hblkp->hblk_next; \ 1554 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1555 sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk, \ 1556 listp, 0); \ 1557 } else { \ 1558 pr_hblk = hblkp; \ 1559 } \ 1560 hblkp = nx_hblk; \ 1561 } \ 1562 } 1563 1564 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1565 { \ 1566 struct hme_blk *pr_hblk; \ 1567 \ 1568 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp); \ 1569 } 1570 1571 /* 1572 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1573 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1574 * will be set to NULL, otherwise it will point to the correct hme_blk. 1575 * It doesn't remove empty hblks. 1576 */ 1577 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1578 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1579 for (hblkp = hmebp->hmeblkp; hblkp; \ 1580 hblkp = hblkp->hblk_next) { \ 1581 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1582 /* found hme_blk */ \ 1583 break; \ 1584 } \ 1585 } 1586 1587 #define SFMMU_HASH_LOCK(hmebp) \ 1588 (mutex_enter(&hmebp->hmehash_mutex)) 1589 1590 #define SFMMU_HASH_UNLOCK(hmebp) \ 1591 (mutex_exit(&hmebp->hmehash_mutex)) 1592 1593 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1594 (mutex_tryenter(&hmebp->hmehash_mutex)) 1595 1596 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1597 (mutex_owned(&hmebp->hmehash_mutex)) 1598 1599 #define SFMMU_XCALL_STATS(sfmmup) \ 1600 { \ 1601 if (sfmmup == ksfmmup) { \ 1602 SFMMU_STAT(sf_kernel_xcalls); \ 1603 } else { \ 1604 SFMMU_STAT(sf_user_xcalls); \ 1605 } \ 1606 } 1607 1608 #define astosfmmu(as) ((as)->a_hat) 1609 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1610 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1611 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1612 1613 #define sfmmutohtagid(sfmmup, rid) \ 1614 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1615 (void *)((sfmmup)->sfmmu_srdp)) 1616 1617 /* 1618 * We use the sfmmu data structure to keep the per as page coloring info. 1619 */ 1620 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1621 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1622 1623 typedef struct { 1624 char h8[HME8BLK_SZ]; 1625 } hblk8_t; 1626 1627 typedef struct { 1628 char h1[HME1BLK_SZ]; 1629 } hblk1_t; 1630 1631 typedef struct { 1632 ulong_t index; 1633 ulong_t len; 1634 hblk8_t *list; 1635 } nucleus_hblk8_info_t; 1636 1637 typedef struct { 1638 ulong_t index; 1639 ulong_t len; 1640 hblk1_t *list; 1641 } nucleus_hblk1_info_t; 1642 1643 /* 1644 * This struct is used for accumlating information about a range 1645 * of pages that are unloading so that a single xcall can flush 1646 * the entire range from remote tlbs. A function that must demap 1647 * a range of virtual addresses declares one of these structures 1648 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1649 * struct to the appropriate sfmmu_hblk_* level function which does 1650 * all the bookkeeping using the other macros. When the function has 1651 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1652 * macro to take care of any remaining unflushed mappings. 1653 * 1654 * The maximum range this struct can represent is the number of bits 1655 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1656 * MMU_PAGESIZE pages are supported. 1657 * 1658 * Since there are now cases where it's no longer necessary to do 1659 * flushes (e.g. when the process isn't runnable because it's swapping 1660 * out or exiting) we allow these macros to take a NULL dmr input and do 1661 * nothing in that case. 1662 */ 1663 typedef struct { 1664 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1665 caddr_t dmr_addr; /* beginning address */ 1666 caddr_t dmr_endaddr; /* ending address */ 1667 ulong_t dmr_bitvec; /* valid pages found */ 1668 ulong_t dmr_bit; /* next page to examine */ 1669 ulong_t dmr_maxbit; /* highest page in range */ 1670 ulong_t dmr_pgsz; /* page size in range */ 1671 } demap_range_t; 1672 1673 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1674 1675 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1676 (dmrp)->dmr_sfmmup = (sfmmup); \ 1677 (dmrp)->dmr_bitvec = 0; \ 1678 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1679 (dmrp)->dmr_pgsz = MMU_PAGESIZE; 1680 1681 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1682 1683 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1684 if ((dmrp) != NULL) { \ 1685 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1686 sfmmu_tlb_range_demap(dmrp); \ 1687 (dmrp)->dmr_endaddr = (endaddr); \ 1688 } 1689 1690 #define DEMAP_RANGE_FLUSH(dmrp) \ 1691 if ((dmrp)->dmr_bitvec != 0) \ 1692 sfmmu_tlb_range_demap(dmrp); 1693 1694 1695 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1696 if ((dmrp) != NULL) { \ 1697 if ((dmrp)->dmr_bitvec == 0) { \ 1698 (dmrp)->dmr_addr = (addr); \ 1699 (dmrp)->dmr_bit = 1; \ 1700 } \ 1701 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1702 } 1703 1704 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1705 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1706 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1707 sfmmu_tlb_range_demap(dmrp); \ 1708 } else { \ 1709 (dmrp)->dmr_bit <<= 1; \ 1710 } \ 1711 } 1712 1713 /* 1714 * TSB related structures 1715 * 1716 * The TSB is made up of tte entries. Both the tag and data are present 1717 * in the TSB. The TSB locking is managed as follows: 1718 * A software bit in the tsb tag is used to indicate that entry is locked. 1719 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1720 * fail forcing the cpu to go to the hat hash for the translation. 1721 * The cpu who holds the lock can then modify the data side, and the tag side. 1722 * The last write should be to the word containing the lock bit which will 1723 * clear the lock and allow the tsb entry to be read. It is assumed that all 1724 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1725 * bit load is required to prevent the following from happening: 1726 * 1727 * cpu 0 cpu 1 comments 1728 * 1729 * ldx tag tag unlocked 1730 * ldstub lock set lock 1731 * stx data 1732 * stx tag unlock 1733 * ldx tag incorrect tte!!! 1734 * 1735 * The software also maintains a bit in the tag to indicate an invalid 1736 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1737 * to invalidate a tsb entry with a single cas. See code for details. 1738 */ 1739 1740 union tsb_tag { 1741 struct { 1742 uint32_t tag_res0:16; /* reserved - context area */ 1743 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1744 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1745 uint32_t tag_res1:4; /* reserved */ 1746 uint32_t tag_va_hi:10; /* va[63:54] */ 1747 uint32_t tag_va_lo; /* va[53:22] */ 1748 } tagbits; 1749 struct tsb_tagints { 1750 uint32_t inthi; 1751 uint32_t intlo; 1752 } tagints; 1753 }; 1754 #define tag_invalid tagbits.tag_inv 1755 #define tag_locked tagbits.tag_lock 1756 #define tag_vahi tagbits.tag_va_hi 1757 #define tag_valo tagbits.tag_va_lo 1758 #define tag_inthi tagints.inthi 1759 #define tag_intlo tagints.intlo 1760 1761 struct tsbe { 1762 union tsb_tag tte_tag; 1763 tte_t tte_data; 1764 }; 1765 1766 /* 1767 * A per cpu struct is kept that duplicates some info 1768 * used by the tl>0 tsb miss handlers plus it provides 1769 * a scratch area. Its purpose is to minimize cache misses 1770 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1771 * 1772 * There should be one allocated per cpu in nucleus memory 1773 * and should be aligned on an ecache line boundary. 1774 */ 1775 struct tsbmiss { 1776 sfmmu_t *ksfmmup; /* kernel hat id */ 1777 sfmmu_t *usfmmup; /* user hat id */ 1778 sf_srd_t *usrdp; /* user's SRD hat id */ 1779 struct tsbe *tsbptr; /* hardware computed ptr */ 1780 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1781 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1782 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1783 uint64_t ismblkpa; 1784 struct hmehash_bucket *khashstart; 1785 struct hmehash_bucket *uhashstart; 1786 uint_t khashsz; 1787 uint_t uhashsz; 1788 uint16_t dcache_line_mask; /* used to flush dcache */ 1789 uchar_t uhat_tteflags; /* private page sizes */ 1790 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1791 uint32_t utsb_misses; 1792 uint32_t ktsb_misses; 1793 uint16_t uprot_traps; 1794 uint16_t kprot_traps; 1795 /* 1796 * scratch[0] -> TSB_TAGACC 1797 * scratch[1] -> TSBMISS_HMEBP 1798 * scratch[2] -> TSBMISS_HATID 1799 */ 1800 uintptr_t scratch[3]; 1801 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1802 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1803 uint8_t pad[48]; /* pad to 64 bytes */ 1804 }; 1805 1806 /* 1807 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1808 * miss handler. Some members are duplicates of common data or 1809 * the physical addresses of common data. A few members are also 1810 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1811 * minimize cache misses in the kpm tsb miss handler and occupies 1812 * one ecache line. There should be one allocated per cpu in 1813 * nucleus memory and it should be aligned on an ecache line 1814 * boundary. It is not merged w/ struct tsbmiss since there is 1815 * not much to share and the tsbmiss pathes are different, so 1816 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1817 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1818 * of struct tsbmiss is used on every dtlb miss. 1819 */ 1820 struct kpmtsbm { 1821 caddr_t vbase; /* start of address kpm range */ 1822 caddr_t vend; /* end of address kpm range */ 1823 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1824 uchar_t sz_shift; /* for single kpm window */ 1825 uchar_t kpmp_shift; /* hash lock shift */ 1826 uchar_t kpmp2pshft; /* kpm page to page shift */ 1827 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1828 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1829 uint64_t msegphashpa; /* paddr of memseg_phash */ 1830 struct tsbe *tsbptr; /* saved ktsb pointer */ 1831 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1832 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1833 uintptr_t pad[1]; 1834 }; 1835 1836 extern size_t tsb_slab_size; 1837 extern uint_t tsb_slab_shift; 1838 extern size_t tsb_slab_mask; 1839 1840 #endif /* !_ASM */ 1841 1842 /* 1843 * Flags for TL kpm tsbmiss handler 1844 */ 1845 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1846 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1847 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1848 1849 /* 1850 * The TSB 1851 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1852 * For kernel TSBs we may go beyond the hardware supported sizes and support 1853 * larger TSBs via software. 1854 * All TTE sizes are supported in the TSB; the manner in which this is 1855 * done is cpu dependent. 1856 */ 1857 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1858 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1859 1860 #ifdef sun4v 1861 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1862 #else /* sun4u */ 1863 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1864 #endif /* sun4v */ 1865 1866 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1867 1868 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1869 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1870 #define TSB_8K_SZCODE 0 /* 512 entries */ 1871 #define TSB_16K_SZCODE 1 /* 1k entries */ 1872 #define TSB_32K_SZCODE 2 /* 2k entries */ 1873 #define TSB_64K_SZCODE 3 /* 4k entries */ 1874 #define TSB_128K_SZCODE 4 /* 8k entries */ 1875 #define TSB_256K_SZCODE 5 /* 16k entries */ 1876 #define TSB_512K_SZCODE 6 /* 32k entries */ 1877 #define TSB_1M_SZCODE 7 /* 64k entries */ 1878 #define TSB_2M_SZCODE 8 /* 128k entries */ 1879 #define TSB_4M_SZCODE 9 /* 256k entries */ 1880 #define TSB_8M_SZCODE 10 /* 512k entries */ 1881 #define TSB_16M_SZCODE 11 /* 1M entries */ 1882 #define TSB_32M_SZCODE 12 /* 2M entries */ 1883 #define TSB_64M_SZCODE 13 /* 4M entries */ 1884 #define TSB_128M_SZCODE 14 /* 8M entries */ 1885 #define TSB_256M_SZCODE 15 /* 16M entries */ 1886 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1887 #define TSB_ENTRY_SIZE (1 << 4) 1888 #define TSB_START_SIZE 9 1889 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1890 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1891 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1892 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1893 1894 /* 1895 * sun4u platforms 1896 * --------------- 1897 * We now support two user TSBs with one TSB base register. 1898 * Hence the TSB base register is split up as follows: 1899 * 1900 * When only one TSB present: 1901 * [63 62..42 41..13 12..4 3..0] 1902 * ^ ^ ^ ^ ^ 1903 * | | | | | 1904 * | | | | |_ TSB size code 1905 * | | | | 1906 * | | | |_ Reserved 0 1907 * | | | 1908 * | | |_ TSB VA[41..13] 1909 * | | 1910 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1911 * | 1912 * |_ 0 1913 * 1914 * When second TSB present: 1915 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1916 * ^ ^ ^ ^ ^ ^ ^ ^ 1917 * | | | | | | | | 1918 * | | | | | | | |_ First TSB size code 1919 * | | | | | | | 1920 * | | | | | | |_ Reserved 0 1921 * | | | | | | 1922 * | | | | | |_ First TSB's VA[21..13] 1923 * | | | | | 1924 * | | | | |_ Reserved for future use 1925 * | | | | 1926 * | | | |_ Second TSB's size code 1927 * | | | 1928 * | | |_ Second TSB's VA[21..13] 1929 * | | 1930 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1931 * | 1932 * |_ 1 1933 * 1934 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1935 * may be up to 4M in size. For now, only hardware supported TSB sizes 1936 * are supported, though the slabs are usually 4M in size. 1937 * 1938 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1939 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1940 * registers. The second TSB base uses a dedicated scratchpad register which 1941 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1942 * both registers is equivalent to sun4v below, except the TSB PA range is 1943 * [46..13] for sun4u. 1944 * 1945 * sun4v platforms 1946 * --------------- 1947 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1948 * hardware TSB base registers to hold up to two different user TSBs. 1949 * 1950 * Each register contains TSB's physical base and size code information 1951 * as follows: 1952 * 1953 * [63..56 55..13 12..4 3..0] 1954 * ^ ^ ^ ^ 1955 * | | | | 1956 * | | | |_ TSB size code 1957 * | | | 1958 * | | |_ Reserved 0 1959 * | | 1960 * | |_ TSB PA[55..13] 1961 * | 1962 * | 1963 * | 1964 * |_ 0 for valid TSB 1965 * 1966 * Absence of a user TSB (primarily the second user TSB) is indicated by 1967 * storing a negative value in the TSB base register. This allows us to 1968 * check for presence of a user TSB by simply checking bit# 63. 1969 */ 1970 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1971 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1972 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1973 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1974 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1975 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1976 /* sectsb va -> bits 21:13 */ 1977 /* after clearing upper bits */ 1978 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1979 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1980 1981 #define BIGKTSB_SZ_MASK 0xf 1982 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1983 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1984 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1985 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1986 1987 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1988 /* 1989 * sw bits used on tsb_tag - bit masks used only in assembly 1990 * use only a sethi for these fields. 1991 */ 1992 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1993 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1994 1995 #ifdef _ASM 1996 1997 /* 1998 * Marker to indicate that this instruction will be hot patched at runtime 1999 * to some other value. 2000 * This value must be zero since it fills in the imm bits of the target 2001 * instructions to be patched 2002 */ 2003 #define RUNTIME_PATCH (0) 2004 2005 /* 2006 * V9 defines nop instruction as the following, which we use 2007 * at runtime to nullify some instructions we don't want to 2008 * execute in the trap handlers on certain platforms. 2009 */ 2010 #define MAKE_NOP_INSTR(reg) \ 2011 sethi %hi(0x1000000), reg 2012 2013 /* 2014 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2015 * instruction, with the source register specified by the jump_reg_number. 2016 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2017 * The instruction is returned in reg. The macro is used to patch in a jmpl 2018 * instruction at runtime. 2019 */ 2020 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2021 sethi %hi(0x81c00000), reg; \ 2022 mov jump_reg_number, tmp; \ 2023 sll tmp, 14, tmp; \ 2024 or reg, tmp, reg 2025 2026 /* 2027 * Macro to get hat per-MMU cnum on this CPU. 2028 * sfmmu - In, pass in "sfmmup" from the caller. 2029 * cnum - Out, return 'cnum' to the caller 2030 * scr - scratch 2031 */ 2032 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2033 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2034 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2035 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2036 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2037 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2038 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2039 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2040 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2041 2042 /* 2043 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2044 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2045 * gnum - Out, return sfmmu gnum 2046 * cnum - Out, return sfmmu cnum 2047 * reg - scratch 2048 */ 2049 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2050 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2051 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2052 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2053 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2054 2055 /* 2056 * Macro to get this CPU's tsbmiss area. 2057 */ 2058 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2059 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2060 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2061 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2062 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2063 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2064 2065 2066 /* 2067 * Macro to set kernel context + page size codes in DMMU primary context 2068 * register. It is only necessary for sun4u because sun4v does not need 2069 * page size codes 2070 */ 2071 #ifdef sun4v 2072 2073 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2074 2075 #else 2076 2077 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2078 sethi %hi(kcontextreg), reg0; \ 2079 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2080 mov MMU_PCONTEXT, reg1; \ 2081 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2082 xor reg0, reg2, reg2; \ 2083 brz reg2, label3; \ 2084 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2085 rdpr %pstate, reg3; /* disable interrupts */ \ 2086 btst PSTATE_IE, reg3; \ 2087 /*CSTYLED*/ \ 2088 bnz,a,pt %icc, label1; \ 2089 wrpr reg3, PSTATE_IE, %pstate; \ 2090 /*CSTYLED*/ \ 2091 label1:; \ 2092 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2093 sethi %hi(FLUSH_ADDR), reg4; \ 2094 mov DEMAP_ALL_TYPE, reg2; \ 2095 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2096 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2097 /*CSTYLED*/ \ 2098 label2:; \ 2099 stxa reg0, [reg1]ASI_MMU_CTX; \ 2100 flush reg4; \ 2101 btst PSTATE_IE, reg3; \ 2102 /*CSTYLED*/ \ 2103 bnz,a,pt %icc, label3; \ 2104 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2105 label3:; 2106 2107 #endif 2108 2109 /* 2110 * Macro to setup arguments with kernel sfmmup context + page size before 2111 * calling sfmmu_setctx_sec() 2112 */ 2113 #ifdef sun4v 2114 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2115 set KCONTEXT, arg0; \ 2116 set 0, arg1; 2117 #else 2118 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2119 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2120 set KCONTEXT, arg0; \ 2121 sll arg1, CTXREG_EXT_SHIFT, arg1; 2122 #endif 2123 2124 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2125 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2126 /*CSTYLED*/ \ 2127 bnz,pt %icc, label; /* already disabled */ \ 2128 nop; \ 2129 \ 2130 sethi %hi(panicstr), scr; \ 2131 ldx [scr + %lo(panicstr)], scr; \ 2132 tst scr; \ 2133 /*CSTYLED*/ \ 2134 bnz,pt %xcc, label; \ 2135 nop; \ 2136 \ 2137 save %sp, -SA(MINFRAME), %sp; \ 2138 sethi %hi(sfmmu_panic1), %o0; \ 2139 call panic; \ 2140 or %o0, %lo(sfmmu_panic1), %o0; \ 2141 /*CSTYLED*/ \ 2142 label: 2143 2144 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2145 /* \ 2146 * The caller must have disabled interrupts. \ 2147 * If interrupts are not disabled, panic \ 2148 */ \ 2149 rdpr %pstate, scr; \ 2150 andcc scr, PSTATE_IE, %g0; \ 2151 /*CSTYLED*/ \ 2152 bz,pt %icc, label; \ 2153 nop; \ 2154 \ 2155 sethi %hi(panicstr), scr; \ 2156 ldx [scr + %lo(panicstr)], scr; \ 2157 tst scr; \ 2158 /*CSTYLED*/ \ 2159 bnz,pt %xcc, label; \ 2160 nop; \ 2161 \ 2162 sethi %hi(sfmmu_panic6), %o0; \ 2163 call panic; \ 2164 or %o0, %lo(sfmmu_panic6), %o0; \ 2165 /*CSTYLED*/ \ 2166 label: 2167 2168 #endif /* _ASM */ 2169 2170 #ifndef _ASM 2171 2172 #ifdef VAC 2173 /* 2174 * Page coloring 2175 * The p_vcolor field of the page struct (1 byte) is used to store the 2176 * virtual page color. This provides for 255 colors. The value zero is 2177 * used to mean the page has no color - never been mapped or somehow 2178 * purified. 2179 */ 2180 2181 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2182 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2183 #define PP_SET_VCOLOR(pp, color) \ 2184 ((pp)->p_vcolor = ((color) + 1)) 2185 2186 /* 2187 * As mentioned p_vcolor == 0 means there is no color for this page. 2188 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2189 * one so we define this constant. 2190 */ 2191 #define NO_VCOLOR (-1) 2192 2193 #define addr_to_vcolor(addr) \ 2194 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2195 #else /* VAC */ 2196 #define addr_to_vcolor(addr) (0) 2197 #endif /* VAC */ 2198 2199 /* 2200 * The field p_index in the psm page structure is for large pages support. 2201 * P_index is a bit-vector of the different mapping sizes that a given page 2202 * is part of. An hme structure for a large mapping is only added in the 2203 * group leader page (first page). All pages covered by a given large mapping 2204 * have the corrosponding mapping bit set in their p_index field. This allows 2205 * us to only store an explicit hme structure in the leading page which 2206 * simplifies the mapping link list management. Furthermore, it provides us 2207 * a fast mechanism for determining the largest mapping a page is part of. For 2208 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2209 * 2210 * Implementation note: even though the first bit in p_index is reserved 2211 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2212 * In addition, the upper four bits of the p_index field are used by the 2213 * code as temporaries 2214 */ 2215 2216 /* 2217 * Defines for psm page struct fields and large page support 2218 */ 2219 #define SFMMU_INDEX_SHIFT 6 2220 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2221 2222 /* Return the mapping index */ 2223 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2224 2225 /* 2226 * These macros rely on the following property: 2227 * All pages constituting a large page are covered by a virtually 2228 * contiguous set of page_t's. 2229 */ 2230 2231 /* Return the leader for this mapping size */ 2232 #define PP_GROUPLEADER(pp, sz) \ 2233 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2234 2235 /* Return the root page for this page based on p_szc */ 2236 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2237 PP_GROUPLEADER((pp), (pp)->p_szc)) 2238 2239 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2240 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2241 2242 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2243 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2244 2245 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2246 2247 /* Need function to test the page mappping which takes p_index into account */ 2248 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2249 2250 /* 2251 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2252 * set p_index field. 2253 */ 2254 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2255 2256 2257 /* 2258 * prototypes for hat assembly routines. Some of these are 2259 * known to machine dependent VM code. 2260 */ 2261 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2262 extern struct tsbe * 2263 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2264 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2265 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2266 extern void sfmmu_load_mmustate(sfmmu_t *); 2267 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2268 #ifndef sun4v 2269 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2270 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2271 #endif /* sun4v */ 2272 extern void sfmmu_copytte(tte_t *, tte_t *); 2273 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2274 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2275 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2276 extern uint_t sfmmu_disable_intrs(void); 2277 extern void sfmmu_enable_intrs(uint_t); 2278 /* 2279 * functions exported to machine dependent VM code 2280 */ 2281 extern void sfmmu_patch_ktsb(void); 2282 #ifndef UTSB_PHYS 2283 extern void sfmmu_patch_utsb(void); 2284 #endif /* UTSB_PHYS */ 2285 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2286 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2287 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2288 #ifdef DEBUG 2289 extern void sfmmu_check_kpfn(pfn_t); 2290 #else 2291 #define sfmmu_check_kpfn(pfn) /* disabled */ 2292 #endif /* DEBUG */ 2293 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2294 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2295 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2296 extern void sfmmu_init_tsbs(void); 2297 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2298 extern int sfmmu_getctx_pri(void); 2299 extern int sfmmu_getctx_sec(void); 2300 extern void sfmmu_setctx_sec(uint_t); 2301 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2302 extern void sfmmu_init_ktsbinfo(void); 2303 extern int sfmmu_setup_4lp(void); 2304 extern void sfmmu_patch_mmu_asi(int); 2305 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2306 extern void sfmmu_cache_flushall(void); 2307 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2308 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2309 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2310 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2311 2312 extern void hat_kern_setup(void); 2313 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2314 extern int sfmmu_get_ppvcolor(struct page *); 2315 extern int sfmmu_get_addrvcolor(caddr_t); 2316 extern int sfmmu_hat_lock_held(sfmmu_t *); 2317 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2318 2319 /* 2320 * Functions exported to xhat_sfmmu.c 2321 */ 2322 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2323 extern void sfmmu_mlist_exit(kmutex_t *); 2324 extern int sfmmu_mlist_held(struct page *); 2325 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2326 2327 /* 2328 * MMU-specific functions optionally imported from the CPU module 2329 */ 2330 #pragma weak mmu_init_scd 2331 #pragma weak mmu_large_pages_disabled 2332 #pragma weak mmu_set_ctx_page_sizes 2333 #pragma weak mmu_check_page_sizes 2334 2335 extern void mmu_init_scd(sf_scd_t *); 2336 extern uint_t mmu_large_pages_disabled(uint_t); 2337 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2338 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2339 2340 extern sfmmu_t *ksfmmup; 2341 extern caddr_t ktsb_base; 2342 extern uint64_t ktsb_pbase; 2343 extern int ktsb_sz; 2344 extern int ktsb_szcode; 2345 extern caddr_t ktsb4m_base; 2346 extern uint64_t ktsb4m_pbase; 2347 extern int ktsb4m_sz; 2348 extern int ktsb4m_szcode; 2349 extern uint64_t kpm_tsbbase; 2350 extern int kpm_tsbsz; 2351 extern int ktsb_phys; 2352 extern int enable_bigktsb; 2353 #ifndef sun4v 2354 extern int utsb_dtlb_ttenum; 2355 extern int utsb4m_dtlb_ttenum; 2356 #endif /* sun4v */ 2357 extern int uhmehash_num; 2358 extern int khmehash_num; 2359 extern struct hmehash_bucket *uhme_hash; 2360 extern struct hmehash_bucket *khme_hash; 2361 extern uint_t hblk_alloc_dynamic; 2362 extern struct tsbmiss tsbmiss_area[NCPU]; 2363 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2364 2365 #ifndef sun4v 2366 extern int dtlb_resv_ttenum; 2367 extern caddr_t utsb_vabase; 2368 extern caddr_t utsb4m_vabase; 2369 #endif /* sun4v */ 2370 extern vmem_t *kmem_tsb_default_arena[]; 2371 extern int tsb_lgrp_affinity; 2372 2373 extern uint_t disable_large_pages; 2374 extern uint_t disable_ism_large_pages; 2375 extern uint_t disable_auto_data_large_pages; 2376 extern uint_t disable_auto_text_large_pages; 2377 2378 /* kpm externals */ 2379 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2380 extern void sfmmu_kpm_patch_tlbm(void); 2381 extern void sfmmu_kpm_patch_tsbm(void); 2382 extern void sfmmu_patch_shctx(void); 2383 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2384 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2385 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2386 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2387 extern caddr_t kpm_vbase; 2388 extern size_t kpm_size; 2389 extern struct memseg *memseg_hash[]; 2390 extern uint64_t memseg_phash[]; 2391 extern kpm_hlk_t *kpmp_table; 2392 extern kpm_shlk_t *kpmp_stable; 2393 extern uint_t kpmp_table_sz; 2394 extern uint_t kpmp_stable_sz; 2395 extern uchar_t kpmp_shift; 2396 2397 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2398 2399 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2400 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2401 2402 #endif /* !_ASM */ 2403 2404 /* sfmmu_kpm_tsbmtl flags */ 2405 #define KPMTSBM_STOP 0 2406 #define KPMTSBM_START 1 2407 2408 /* 2409 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2410 * it is ready to go is indicated by the two 4-bit fields defined in the 2411 * kpm_spage structure as follows: 2412 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2413 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2414 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2415 * handler can drop the mapping in regardless of the caching state of the 2416 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2417 * matter the page is currently mapped cacheable or non-cacheable. 2418 */ 2419 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2420 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2421 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2422 #define KPM_MAPPED_MASK 0xf 2423 2424 /* Physical memseg address NULL marker */ 2425 #define MSEG_NULLPTR_PA -1 2426 2427 /* 2428 * Memseg hash defines for kpm trap level tsbmiss handler. 2429 * Must be in sync w/ page.h . 2430 */ 2431 #define SFMMU_MEM_HASH_SHIFT 0x9 2432 #define SFMMU_N_MEM_SLOTS 0x200 2433 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2434 2435 #ifndef _ASM 2436 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2437 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2438 #endif 2439 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2440 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2441 #endif 2442 2443 /* Physical memseg address NULL marker */ 2444 #define SFMMU_MEMSEG_NULLPTR_PA -1 2445 2446 /* 2447 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2448 */ 2449 #if (KCONTEXT != 0) 2450 #error KCONTEXT != 0 2451 #endif 2452 #endif /* !_ASM */ 2453 2454 2455 #endif /* _KERNEL */ 2456 2457 #ifndef _ASM 2458 /* 2459 * ctx, hmeblk, mlistlock and other stats for sfmmu 2460 */ 2461 struct sfmmu_global_stat { 2462 int sf_tsb_exceptions; /* # of tsb exceptions */ 2463 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2464 2465 int sf_pagefaults; /* # of pagefaults */ 2466 2467 int sf_uhash_searches; /* # of user hash searches */ 2468 int sf_uhash_links; /* # of user hash links */ 2469 int sf_khash_searches; /* # of kernel hash searches */ 2470 int sf_khash_links; /* # of kernel hash links */ 2471 2472 int sf_swapout; /* # times hat swapped out */ 2473 2474 int sf_tsb_alloc; /* # TSB allocations */ 2475 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2476 int sf_tsb_sectsb_create; /* # times second TSB added */ 2477 2478 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2479 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2480 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2481 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2482 2483 2484 int sf_tteload8k; /* calls to sfmmu_tteload */ 2485 int sf_tteload64k; /* calls to sfmmu_tteload */ 2486 int sf_tteload512k; /* calls to sfmmu_tteload */ 2487 int sf_tteload4m; /* calls to sfmmu_tteload */ 2488 int sf_tteload32m; /* calls to sfmmu_tteload */ 2489 int sf_tteload256m; /* calls to sfmmu_tteload */ 2490 2491 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2492 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2493 2494 int sf_hblk_hit; /* found hblk during tteload */ 2495 int sf_hblk8_ncreate; /* static hblk8's created */ 2496 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2497 int sf_hblk1_ncreate; /* static hblk1's created */ 2498 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2499 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2500 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2501 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2502 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2503 int sf_get_free_success; /* reserve list allocs */ 2504 int sf_get_free_throttle; /* fails due to throttling */ 2505 int sf_get_free_fail; /* fails due to empty list */ 2506 int sf_put_free_success; /* reserve list frees */ 2507 int sf_put_free_fail; /* fails due to full list */ 2508 2509 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2510 int sf_uncache_conflict; /* VAC conflict resolution */ 2511 int sf_unload_conflict; /* VAC unload resolution */ 2512 int sf_ism_uncache; /* VAC conflict resolution */ 2513 int sf_ism_recache; /* VAC conflict resolution */ 2514 int sf_recache; /* VAC conflict resolution */ 2515 2516 int sf_steal_count; /* # of hblks stolen */ 2517 2518 int sf_pagesync; /* # of pagesyncs */ 2519 int sf_clrwrt; /* # of clear write perms */ 2520 int sf_pagesync_invalid; /* pagesync with inv tte */ 2521 2522 int sf_kernel_xcalls; /* # of kernel cross calls */ 2523 int sf_user_xcalls; /* # of user cross calls */ 2524 2525 int sf_tsb_grow; /* # of user tsb grows */ 2526 int sf_tsb_shrink; /* # of user tsb shrinks */ 2527 int sf_tsb_resize_failures; /* # of user tsb resize */ 2528 int sf_tsb_reloc; /* # of user tsb relocations */ 2529 2530 int sf_user_vtop; /* # of user vatopfn calls */ 2531 2532 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2533 2534 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2535 2536 int sf_region_remap_demap; /* # times shme remap demap */ 2537 2538 int sf_create_scd; /* # times SCD is created */ 2539 int sf_join_scd; /* # process joined scd */ 2540 int sf_leave_scd; /* # process left scd */ 2541 int sf_destroy_scd; /* # times SCD is destroyed */ 2542 }; 2543 2544 struct sfmmu_tsbsize_stat { 2545 int sf_tsbsz_8k; 2546 int sf_tsbsz_16k; 2547 int sf_tsbsz_32k; 2548 int sf_tsbsz_64k; 2549 int sf_tsbsz_128k; 2550 int sf_tsbsz_256k; 2551 int sf_tsbsz_512k; 2552 int sf_tsbsz_1m; 2553 int sf_tsbsz_2m; 2554 int sf_tsbsz_4m; 2555 int sf_tsbsz_8m; 2556 int sf_tsbsz_16m; 2557 int sf_tsbsz_32m; 2558 int sf_tsbsz_64m; 2559 int sf_tsbsz_128m; 2560 int sf_tsbsz_256m; 2561 }; 2562 2563 struct sfmmu_percpu_stat { 2564 int sf_itlb_misses; /* # of itlb misses */ 2565 int sf_dtlb_misses; /* # of dtlb misses */ 2566 int sf_utsb_misses; /* # of user tsb misses */ 2567 int sf_ktsb_misses; /* # of kernel tsb misses */ 2568 int sf_tsb_hits; /* # of tsb hits */ 2569 int sf_umod_faults; /* # of mod (prot viol) flts */ 2570 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2571 }; 2572 2573 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2574 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2575 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2576 2577 #define SFMMU_MMU_STAT(stat) { \ 2578 mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp; \ 2579 if (ctx) \ 2580 ctx->stat++; \ 2581 } 2582 2583 #endif /* !_ASM */ 2584 2585 #ifdef __cplusplus 2586 } 2587 #endif 2588 2589 #endif /* _VM_HAT_SFMMU_H */ 2590