xref: /titanic_51/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management for Spitfire MMU.
28  *
29  * This file implements the machine specific hardware translation
30  * needed by the VM system.  The machine independent interface is
31  * described in <vm/hat.h> while the machine dependent interface
32  * and data structures are described in <vm/hat_sfmmu.h>.
33  *
34  * The hat layer manages the address translation hardware as a cache
35  * driven by calls from the higher levels in the VM system.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/kstat.h>
40 #include <vm/hat.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/page.h>
43 #include <sys/pte.h>
44 #include <sys/systm.h>
45 #include <sys/mman.h>
46 #include <sys/sysmacros.h>
47 #include <sys/machparam.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/mmu.h>
51 #include <sys/cmn_err.h>
52 #include <sys/cpu.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/lgrp.h>
56 #include <sys/archsystm.h>
57 #include <sys/machsystm.h>
58 #include <sys/vmsystm.h>
59 #include <vm/as.h>
60 #include <vm/seg.h>
61 #include <vm/seg_kp.h>
62 #include <vm/seg_kmem.h>
63 #include <vm/seg_kpm.h>
64 #include <vm/rm.h>
65 #include <sys/t_lock.h>
66 #include <sys/obpdefs.h>
67 #include <sys/vm_machparam.h>
68 #include <sys/var.h>
69 #include <sys/trap.h>
70 #include <sys/machtrap.h>
71 #include <sys/scb.h>
72 #include <sys/bitmap.h>
73 #include <sys/machlock.h>
74 #include <sys/membar.h>
75 #include <sys/atomic.h>
76 #include <sys/cpu_module.h>
77 #include <sys/prom_debug.h>
78 #include <sys/ksynch.h>
79 #include <sys/mem_config.h>
80 #include <sys/mem_cage.h>
81 #include <vm/vm_dep.h>
82 #include <vm/xhat_sfmmu.h>
83 #include <sys/fpu/fpusystm.h>
84 #include <vm/mach_kpm.h>
85 #include <sys/callb.h>
86 
87 #ifdef	DEBUG
88 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
89 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
90 		caddr_t _eaddr = (saddr) + (len);			\
91 		sf_srd_t *_srdp;					\
92 		sf_region_t *_rgnp;					\
93 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
94 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
95 		ASSERT((hat) != ksfmmup);				\
96 		_srdp = (hat)->sfmmu_srdp;				\
97 		ASSERT(_srdp != NULL);					\
98 		ASSERT(_srdp->srd_refcnt != 0);				\
99 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
100 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
101 		ASSERT(_rgnp->rgn_refcnt != 0);				\
102 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
103 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
104 		    SFMMU_REGION_HME);					\
105 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
106 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
107 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
108 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
109 	}
110 
111 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
112 {						 			 \
113 		caddr_t _hsva;						 \
114 		caddr_t _heva;						 \
115 		caddr_t _rsva;					 	 \
116 		caddr_t _reva;					 	 \
117 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
118 		int	_flagtte;					 \
119 		ASSERT((srdp)->srd_refcnt != 0);			 \
120 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
121 		ASSERT((rgnp)->rgn_id == rid);				 \
122 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
123 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
124 		    SFMMU_REGION_HME);					 \
125 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
126 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
127 		_heva = get_hblk_endaddr(hmeblkp);			 \
128 		_rsva = (caddr_t)P2ALIGN(				 \
129 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
130 		_reva = (caddr_t)P2ROUNDUP(				 \
131 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
132 		    HBLK_MIN_BYTES);					 \
133 		ASSERT(_hsva >= _rsva);				 	 \
134 		ASSERT(_hsva < _reva);				 	 \
135 		ASSERT(_heva > _rsva);				 	 \
136 		ASSERT(_heva <= _reva);				 	 \
137 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
138 			_ttesz;						 \
139 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
140 }
141 
142 #else /* DEBUG */
143 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
144 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
145 #endif /* DEBUG */
146 
147 #if defined(SF_ERRATA_57)
148 extern caddr_t errata57_limit;
149 #endif
150 
151 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
152 				(sizeof (int64_t)))
153 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
154 
155 #define	HBLK_RESERVE_CNT	128
156 #define	HBLK_RESERVE_MIN	20
157 
158 static struct hme_blk		*freehblkp;
159 static kmutex_t			freehblkp_lock;
160 static int			freehblkcnt;
161 
162 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
163 static kmutex_t			hblk_reserve_lock;
164 static kthread_t		*hblk_reserve_thread;
165 
166 static nucleus_hblk8_info_t	nucleus_hblk8;
167 static nucleus_hblk1_info_t	nucleus_hblk1;
168 
169 /*
170  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
171  * after the initial phase of removing an hmeblk from the hash chain, see
172  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
173  */
174 static cpu_hme_pend_t		*cpu_hme_pend;
175 static uint_t			cpu_hme_pend_thresh;
176 /*
177  * SFMMU specific hat functions
178  */
179 void	hat_pagecachectl(struct page *, int);
180 
181 /* flags for hat_pagecachectl */
182 #define	HAT_CACHE	0x1
183 #define	HAT_UNCACHE	0x2
184 #define	HAT_TMPNC	0x4
185 
186 /*
187  * This flag is set to 0 via the MD in platforms that do not support
188  * I-cache coherency in hardware. Used to enable "soft exec" mode.
189  * The MD "coherency" property is optional, and defaults to 1 (because
190  * coherent I-cache is the norm.)
191  */
192 uint_t	icache_is_coherent = 1;
193 
194 /*
195  * Flag to allow the creation of non-cacheable translations
196  * to system memory. It is off by default. At the moment this
197  * flag is used by the ecache error injector. The error injector
198  * will turn it on when creating such a translation then shut it
199  * off when it's finished.
200  */
201 
202 int	sfmmu_allow_nc_trans = 0;
203 
204 /*
205  * Flag to disable large page support.
206  * 	value of 1 => disable all large pages.
207  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
208  *
209  * For example, use the value 0x4 to disable 512K pages.
210  *
211  */
212 #define	LARGE_PAGES_OFF		0x1
213 
214 /*
215  * The disable_large_pages and disable_ism_large_pages variables control
216  * hat_memload_array and the page sizes to be used by ISM and the kernel.
217  *
218  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
219  * are only used to control which OOB pages to use at upper VM segment creation
220  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
221  * Their values may come from platform or CPU specific code to disable page
222  * sizes that should not be used.
223  *
224  * WARNING: 512K pages are currently not supported for ISM/DISM.
225  */
226 uint_t	disable_large_pages = 0;
227 uint_t	disable_ism_large_pages = (1 << TTE512K);
228 uint_t	disable_auto_data_large_pages = 0;
229 uint_t	disable_auto_text_large_pages = 0;
230 uint_t	disable_shctx_large_pages = 0;
231 
232 /*
233  * Private sfmmu data structures for hat management
234  */
235 static struct kmem_cache *sfmmuid_cache;
236 static struct kmem_cache *mmuctxdom_cache;
237 
238 /*
239  * Private sfmmu data structures for tsb management
240  */
241 static struct kmem_cache *sfmmu_tsbinfo_cache;
242 static struct kmem_cache *sfmmu_tsb8k_cache;
243 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
244 static vmem_t *kmem_bigtsb_arena;
245 static vmem_t *kmem_tsb_arena;
246 
247 /*
248  * sfmmu static variables for hmeblk resource management.
249  */
250 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
251 static struct kmem_cache *sfmmu8_cache;
252 static struct kmem_cache *sfmmu1_cache;
253 static struct kmem_cache *pa_hment_cache;
254 
255 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
256 /*
257  * private data for ism
258  */
259 static struct kmem_cache *ism_blk_cache;
260 static struct kmem_cache *ism_ment_cache;
261 #define	ISMID_STARTADDR	NULL
262 
263 /*
264  * Region management data structures and function declarations.
265  */
266 
267 static void	sfmmu_leave_srd(sfmmu_t *);
268 static int	sfmmu_srdcache_constructor(void *, void *, int);
269 static void	sfmmu_srdcache_destructor(void *, void *);
270 static int	sfmmu_rgncache_constructor(void *, void *, int);
271 static void	sfmmu_rgncache_destructor(void *, void *);
272 static int	sfrgnmap_isnull(sf_region_map_t *);
273 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
274 static int	sfmmu_scdcache_constructor(void *, void *, int);
275 static void	sfmmu_scdcache_destructor(void *, void *);
276 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
277     size_t, void *, u_offset_t);
278 
279 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
280 static sf_srd_bucket_t *srd_buckets;
281 static struct kmem_cache *srd_cache;
282 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
283 static struct kmem_cache *region_cache;
284 static struct kmem_cache *scd_cache;
285 
286 #ifdef sun4v
287 int use_bigtsb_arena = 1;
288 #else
289 int use_bigtsb_arena = 0;
290 #endif
291 
292 /* External /etc/system tunable, for turning on&off the shctx support */
293 int disable_shctx = 0;
294 /* Internal variable, set by MD if the HW supports shctx feature */
295 int shctx_on = 0;
296 
297 /* Internal variable, set by MD if the HW supports the search order register */
298 int pgsz_search_on = 0;
299 /*
300  * External /etc/system tunable, for controlling search order register
301  * support.
302  */
303 int disable_pgsz_search = 0;
304 
305 #ifdef DEBUG
306 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
307 #endif
308 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
309 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
310 
311 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
312 static void sfmmu_find_scd(sfmmu_t *);
313 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
314 static void sfmmu_finish_join_scd(sfmmu_t *);
315 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
316 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
317 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
318 static void sfmmu_free_scd_tsbs(sfmmu_t *);
319 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
320 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
321 static void sfmmu_ism_hatflags(sfmmu_t *, int);
322 static int sfmmu_srd_lock_held(sf_srd_t *);
323 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
324 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
325 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
326 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
327 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
328 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
329 
330 /*
331  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
332  * HAT flags, synchronizing TLB/TSB coherency, and context management.
333  * The lock is hashed on the sfmmup since the case where we need to lock
334  * all processes is rare but does occur (e.g. we need to unload a shared
335  * mapping from all processes using the mapping).  We have a lot of buckets,
336  * and each slab of sfmmu_t's can use about a quarter of them, giving us
337  * a fairly good distribution without wasting too much space and overhead
338  * when we have to grab them all.
339  */
340 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
341 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
342 
343 /*
344  * Hash algorithm optimized for a small number of slabs.
345  *  7 is (highbit((sizeof sfmmu_t)) - 1)
346  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
347  * kmem_cache, and thus they will be sequential within that cache.  In
348  * addition, each new slab will have a different "color" up to cache_maxcolor
349  * which will skew the hashing for each successive slab which is allocated.
350  * If the size of sfmmu_t changed to a larger size, this algorithm may need
351  * to be revisited.
352  */
353 #define	TSB_HASH_SHIFT_BITS (7)
354 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
355 
356 #ifdef DEBUG
357 int tsb_hash_debug = 0;
358 #define	TSB_HASH(sfmmup)	\
359 	(tsb_hash_debug ? &hat_lock[0] : \
360 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
361 #else	/* DEBUG */
362 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
363 #endif	/* DEBUG */
364 
365 
366 /* sfmmu_replace_tsb() return codes. */
367 typedef enum tsb_replace_rc {
368 	TSB_SUCCESS,
369 	TSB_ALLOCFAIL,
370 	TSB_LOSTRACE,
371 	TSB_ALREADY_SWAPPED,
372 	TSB_CANTGROW
373 } tsb_replace_rc_t;
374 
375 /*
376  * Flags for TSB allocation routines.
377  */
378 #define	TSB_ALLOC	0x01
379 #define	TSB_FORCEALLOC	0x02
380 #define	TSB_GROW	0x04
381 #define	TSB_SHRINK	0x08
382 #define	TSB_SWAPIN	0x10
383 
384 /*
385  * Support for HAT callbacks.
386  */
387 #define	SFMMU_MAX_RELOC_CALLBACKS	10
388 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
389 static id_t sfmmu_cb_nextid = 0;
390 static id_t sfmmu_tsb_cb_id;
391 struct sfmmu_callback *sfmmu_cb_table;
392 
393 /*
394  * Kernel page relocation is enabled by default for non-caged
395  * kernel pages.  This has little effect unless segkmem_reloc is
396  * set, since by default kernel memory comes from inside the
397  * kernel cage.
398  */
399 int hat_kpr_enabled = 1;
400 
401 kmutex_t	kpr_mutex;
402 kmutex_t	kpr_suspendlock;
403 kthread_t	*kreloc_thread;
404 
405 /*
406  * Enable VA->PA translation sanity checking on DEBUG kernels.
407  * Disabled by default.  This is incompatible with some
408  * drivers (error injector, RSM) so if it breaks you get
409  * to keep both pieces.
410  */
411 int hat_check_vtop = 0;
412 
413 /*
414  * Private sfmmu routines (prototypes)
415  */
416 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
417 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
418 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
419 			uint_t);
420 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
421 			caddr_t, demap_range_t *, uint_t);
422 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
423 			caddr_t, int);
424 static void	sfmmu_hblk_free(struct hme_blk **);
425 static void	sfmmu_hblks_list_purge(struct hme_blk **, int);
426 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
427 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
428 static struct hme_blk *sfmmu_hblk_steal(int);
429 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
430 			struct hme_blk *, uint64_t, struct hme_blk *);
431 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
432 
433 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
434 		    struct page **, uint_t, uint_t, uint_t);
435 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
436 		    uint_t, uint_t, uint_t);
437 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
438 		    uint_t, uint_t, pgcnt_t, uint_t);
439 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
440 			uint_t);
441 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
442 			uint_t, uint_t);
443 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
444 					caddr_t, int, uint_t);
445 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
446 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
447 			uint_t);
448 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
449 			caddr_t, page_t **, uint_t, uint_t);
450 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
451 
452 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
453 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
454 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
455 #ifdef VAC
456 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
457 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
458 int	tst_tnc(page_t *pp, pgcnt_t);
459 void	conv_tnc(page_t *pp, int);
460 #endif
461 
462 static void	sfmmu_get_ctx(sfmmu_t *);
463 static void	sfmmu_free_sfmmu(sfmmu_t *);
464 
465 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
466 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
467 
468 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
469 static void	hat_pagereload(struct page *, struct page *);
470 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
471 #ifdef VAC
472 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
473 static void	sfmmu_page_cache(page_t *, int, int, int);
474 #endif
475 
476 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
477     struct hme_blk *, int);
478 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
479 			pfn_t, int, int, int, int);
480 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
481 			pfn_t, int);
482 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
483 static void	sfmmu_tlb_range_demap(demap_range_t *);
484 static void	sfmmu_sync_mmustate(sfmmu_t *);
485 
486 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
487 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
488 			sfmmu_t *);
489 static void	sfmmu_tsb_free(struct tsb_info *);
490 static void	sfmmu_tsbinfo_free(struct tsb_info *);
491 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
492 			sfmmu_t *);
493 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
494 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
495 static int	sfmmu_select_tsb_szc(pgcnt_t);
496 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
497 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
498 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
499 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
500 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
501 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
502 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
503     hatlock_t *, uint_t);
504 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
505 
506 #ifdef VAC
507 void	sfmmu_cache_flush(pfn_t, int);
508 void	sfmmu_cache_flushcolor(int, pfn_t);
509 #endif
510 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
511 			caddr_t, demap_range_t *, uint_t, int);
512 
513 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
514 static uint_t	sfmmu_ptov_attr(tte_t *);
515 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
516 			caddr_t, demap_range_t *, uint_t);
517 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
518 static int	sfmmu_idcache_constructor(void *, void *, int);
519 static void	sfmmu_idcache_destructor(void *, void *);
520 static int	sfmmu_hblkcache_constructor(void *, void *, int);
521 static void	sfmmu_hblkcache_destructor(void *, void *);
522 static void	sfmmu_hblkcache_reclaim(void *);
523 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
524 			struct hmehash_bucket *);
525 static void	sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
526 			struct hme_blk *, struct hme_blk **, int);
527 static void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
528 			uint64_t);
529 static struct hme_blk *sfmmu_check_pending_hblks(int);
530 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
531 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
532 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
533 			int, caddr_t *);
534 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
535 
536 static void	sfmmu_rm_large_mappings(page_t *, int);
537 
538 static void	hat_lock_init(void);
539 static void	hat_kstat_init(void);
540 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
541 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
542 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
543 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
544 int	fnd_mapping_sz(page_t *);
545 static void	iment_add(struct ism_ment *,  struct hat *);
546 static void	iment_sub(struct ism_ment *, struct hat *);
547 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
548 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
549 extern void	sfmmu_clear_utsbinfo(void);
550 
551 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
552 
553 extern int vpm_enable;
554 
555 /* kpm globals */
556 #ifdef	DEBUG
557 /*
558  * Enable trap level tsbmiss handling
559  */
560 int	kpm_tsbmtl = 1;
561 
562 /*
563  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
564  * required TLB shootdowns in this case, so handle w/ care. Off by default.
565  */
566 int	kpm_tlb_flush;
567 #endif	/* DEBUG */
568 
569 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
570 
571 #ifdef DEBUG
572 static void	sfmmu_check_hblk_flist();
573 #endif
574 
575 /*
576  * Semi-private sfmmu data structures.  Some of them are initialize in
577  * startup or in hat_init. Some of them are private but accessed by
578  * assembly code or mach_sfmmu.c
579  */
580 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
581 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
582 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
583 uint64_t	khme_hash_pa;		/* PA of khme_hash */
584 int 		uhmehash_num;		/* # of buckets in user hash table */
585 int 		khmehash_num;		/* # of buckets in kernel hash table */
586 
587 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
588 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
589 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
590 
591 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
592 uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
593 
594 int		cache;			/* describes system cache */
595 
596 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
597 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
598 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
599 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
600 
601 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
602 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
603 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
604 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
605 
606 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
607 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
608 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
609 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
610 
611 #ifndef sun4v
612 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
613 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
614 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
615 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
616 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
617 #endif /* sun4v */
618 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
619 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
620 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
621 
622 /*
623  * Size to use for TSB slabs.  Future platforms that support page sizes
624  * larger than 4M may wish to change these values, and provide their own
625  * assembly macros for building and decoding the TSB base register contents.
626  * Note disable_large_pages will override the value set here.
627  */
628 static	uint_t tsb_slab_ttesz = TTE4M;
629 size_t	tsb_slab_size = MMU_PAGESIZE4M;
630 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
631 /* PFN mask for TTE */
632 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
633 
634 /*
635  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
636  * exist.
637  */
638 static uint_t	bigtsb_slab_ttesz = TTE256M;
639 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
640 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
641 /* 256M page alignment for 8K pfn */
642 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
643 
644 /* largest TSB size to grow to, will be smaller on smaller memory systems */
645 static int	tsb_max_growsize = 0;
646 
647 /*
648  * Tunable parameters dealing with TSB policies.
649  */
650 
651 /*
652  * This undocumented tunable forces all 8K TSBs to be allocated from
653  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
654  */
655 #ifdef	DEBUG
656 int	tsb_forceheap = 0;
657 #endif	/* DEBUG */
658 
659 /*
660  * Decide whether to use per-lgroup arenas, or one global set of
661  * TSB arenas.  The default is not to break up per-lgroup, since
662  * most platforms don't recognize any tangible benefit from it.
663  */
664 int	tsb_lgrp_affinity = 0;
665 
666 /*
667  * Used for growing the TSB based on the process RSS.
668  * tsb_rss_factor is based on the smallest TSB, and is
669  * shifted by the TSB size to determine if we need to grow.
670  * The default will grow the TSB if the number of TTEs for
671  * this page size exceeds 75% of the number of TSB entries,
672  * which should _almost_ eliminate all conflict misses
673  * (at the expense of using up lots and lots of memory).
674  */
675 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
676 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
677 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
678 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
679 	default_tsb_size)
680 #define	TSB_OK_SHRINK()	\
681 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
682 #define	TSB_OK_GROW()	\
683 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
684 
685 int	enable_tsb_rss_sizing = 1;
686 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
687 
688 /* which TSB size code to use for new address spaces or if rss sizing off */
689 int default_tsb_size = TSB_8K_SZCODE;
690 
691 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
692 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
693 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
694 
695 #ifdef DEBUG
696 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
697 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
698 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
699 static int tsb_alloc_fail_mtbf = 0;
700 static int tsb_alloc_count = 0;
701 #endif /* DEBUG */
702 
703 /* if set to 1, will remap valid TTEs when growing TSB. */
704 int tsb_remap_ttes = 1;
705 
706 /*
707  * If we have more than this many mappings, allocate a second TSB.
708  * This default is chosen because the I/D fully associative TLBs are
709  * assumed to have at least 8 available entries. Platforms with a
710  * larger fully-associative TLB could probably override the default.
711  */
712 
713 #ifdef sun4v
714 int tsb_sectsb_threshold = 0;
715 #else
716 int tsb_sectsb_threshold = 8;
717 #endif
718 
719 /*
720  * kstat data
721  */
722 struct sfmmu_global_stat sfmmu_global_stat;
723 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
724 
725 /*
726  * Global data
727  */
728 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
729 
730 #ifdef DEBUG
731 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
732 #endif
733 
734 /* sfmmu locking operations */
735 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
736 static int	sfmmu_mlspl_held(struct page *, int);
737 
738 kmutex_t *sfmmu_page_enter(page_t *);
739 void	sfmmu_page_exit(kmutex_t *);
740 int	sfmmu_page_spl_held(struct page *);
741 
742 /* sfmmu internal locking operations - accessed directly */
743 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
744 				kmutex_t **, kmutex_t **);
745 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
746 static hatlock_t *sfmmu_hat_tryenter(sfmmu_t *);
747 static void	sfmmu_hat_lock_all(void);
748 static void	sfmmu_hat_unlock_all(void);
749 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
750 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
751 
752 /*
753  * Array of mutexes protecting a page's mapping list and p_nrm field.
754  *
755  * The hash function looks complicated, but is made up so that:
756  *
757  * "pp" not shifted, so adjacent pp values will hash to different cache lines
758  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
759  *
760  * "pp" >> mml_shift, incorporates more source bits into the hash result
761  *
762  *  "& (mml_table_size - 1), should be faster than using remainder "%"
763  *
764  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
765  * cacheline, since they get declared next to each other below. We'll trust
766  * ld not to do something random.
767  */
768 #ifdef	DEBUG
769 int mlist_hash_debug = 0;
770 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
771 	&mml_table[((uintptr_t)(pp) + \
772 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
773 #else	/* !DEBUG */
774 #define	MLIST_HASH(pp)   &mml_table[ \
775 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
776 #endif	/* !DEBUG */
777 
778 kmutex_t		*mml_table;
779 uint_t			mml_table_sz;	/* must be a power of 2 */
780 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
781 
782 kpm_hlk_t	*kpmp_table;
783 uint_t		kpmp_table_sz;	/* must be a power of 2 */
784 uchar_t		kpmp_shift;
785 
786 kpm_shlk_t	*kpmp_stable;
787 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
788 
789 /*
790  * SPL_HASH was improved to avoid false cache line sharing
791  */
792 #define	SPL_TABLE_SIZE	128
793 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
794 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
795 
796 #define	SPL_INDEX(pp) \
797 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
798 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
799 	(SPL_TABLE_SIZE - 1))
800 
801 #define	SPL_HASH(pp)    \
802 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
803 
804 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
805 
806 
807 /*
808  * hat_unload_callback() will group together callbacks in order
809  * to avoid xt_sync() calls.  This is the maximum size of the group.
810  */
811 #define	MAX_CB_ADDR	32
812 
813 tte_t	hw_tte;
814 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
815 
816 static char	*mmu_ctx_kstat_names[] = {
817 	"mmu_ctx_tsb_exceptions",
818 	"mmu_ctx_tsb_raise_exception",
819 	"mmu_ctx_wrap_around",
820 };
821 
822 /*
823  * Wrapper for vmem_xalloc since vmem_create only allows limited
824  * parameters for vm_source_alloc functions.  This function allows us
825  * to specify alignment consistent with the size of the object being
826  * allocated.
827  */
828 static void *
829 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
830 {
831 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
832 }
833 
834 /* Common code for setting tsb_alloc_hiwater. */
835 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
836 		ptob(pages) / tsb_alloc_hiwater_factor
837 
838 /*
839  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
840  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
841  * TTEs to represent all those physical pages.  We round this up by using
842  * 1<<highbit().  To figure out which size code to use, remember that the size
843  * code is just an amount to shift the smallest TSB size to get the size of
844  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
845  * highbit() - 1) to get the size code for the smallest TSB that can represent
846  * all of physical memory, while erring on the side of too much.
847  *
848  * Restrict tsb_max_growsize to make sure that:
849  *	1) TSBs can't grow larger than the TSB slab size
850  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
851  */
852 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
853 	int	_i, _szc, _slabszc, _tsbszc;				\
854 									\
855 	_i = highbit(pages);						\
856 	if ((1 << (_i - 1)) == (pages))					\
857 		_i--;		/* 2^n case, round down */              \
858 	_szc = _i - TSB_START_SIZE;					\
859 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
860 	_tsbszc = MIN(_szc, _slabszc);                                  \
861 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
862 }
863 
864 /*
865  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
866  * tsb_info which handles that TTE size.
867  */
868 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
869 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
870 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
871 	    sfmmu_hat_lock_held(sfmmup));				\
872 	if ((tte_szc) >= TTE4M)	{					\
873 		ASSERT((tsbinfop) != NULL);				\
874 		(tsbinfop) = (tsbinfop)->tsb_next;			\
875 	}								\
876 }
877 
878 /*
879  * Macro to use to unload entries from the TSB.
880  * It has knowledge of which page sizes get replicated in the TSB
881  * and will call the appropriate unload routine for the appropriate size.
882  */
883 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
884 {									\
885 	int ttesz = get_hblk_ttesz(hmeblkp);				\
886 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
887 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
888 	} else {							\
889 		caddr_t sva = ismhat ? addr : 				\
890 		    (caddr_t)get_hblk_base(hmeblkp);			\
891 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
892 		ASSERT(addr >= sva && addr < eva);			\
893 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
894 	}								\
895 }
896 
897 
898 /* Update tsb_alloc_hiwater after memory is configured. */
899 /*ARGSUSED*/
900 static void
901 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
902 {
903 	/* Assumes physmem has already been updated. */
904 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
905 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
906 }
907 
908 /*
909  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
910  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
911  * deleted.
912  */
913 /*ARGSUSED*/
914 static int
915 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
916 {
917 	return (0);
918 }
919 
920 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
921 /*ARGSUSED*/
922 static void
923 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
924 {
925 	/*
926 	 * Whether the delete was cancelled or not, just go ahead and update
927 	 * tsb_alloc_hiwater and tsb_max_growsize.
928 	 */
929 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
930 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
931 }
932 
933 static kphysm_setup_vector_t sfmmu_update_vec = {
934 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
935 	sfmmu_update_post_add,		/* post_add */
936 	sfmmu_update_pre_del,		/* pre_del */
937 	sfmmu_update_post_del		/* post_del */
938 };
939 
940 
941 /*
942  * HME_BLK HASH PRIMITIVES
943  */
944 
945 /*
946  * Enter a hme on the mapping list for page pp.
947  * When large pages are more prevalent in the system we might want to
948  * keep the mapping list in ascending order by the hment size. For now,
949  * small pages are more frequent, so don't slow it down.
950  */
951 #define	HME_ADD(hme, pp)					\
952 {								\
953 	ASSERT(sfmmu_mlist_held(pp));				\
954 								\
955 	hme->hme_prev = NULL;					\
956 	hme->hme_next = pp->p_mapping;				\
957 	hme->hme_page = pp;					\
958 	if (pp->p_mapping) {					\
959 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
960 		ASSERT(pp->p_share > 0);			\
961 	} else  {						\
962 		/* EMPTY */					\
963 		ASSERT(pp->p_share == 0);			\
964 	}							\
965 	pp->p_mapping = hme;					\
966 	pp->p_share++;						\
967 }
968 
969 /*
970  * Enter a hme on the mapping list for page pp.
971  * If we are unmapping a large translation, we need to make sure that the
972  * change is reflect in the corresponding bit of the p_index field.
973  */
974 #define	HME_SUB(hme, pp)					\
975 {								\
976 	ASSERT(sfmmu_mlist_held(pp));				\
977 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
978 								\
979 	if (pp->p_mapping == NULL) {				\
980 		panic("hme_remove - no mappings");		\
981 	}							\
982 								\
983 	membar_stst();	/* ensure previous stores finish */	\
984 								\
985 	ASSERT(pp->p_share > 0);				\
986 	pp->p_share--;						\
987 								\
988 	if (hme->hme_prev) {					\
989 		ASSERT(pp->p_mapping != hme);			\
990 		ASSERT(hme->hme_prev->hme_page == pp ||		\
991 			IS_PAHME(hme->hme_prev));		\
992 		hme->hme_prev->hme_next = hme->hme_next;	\
993 	} else {						\
994 		ASSERT(pp->p_mapping == hme);			\
995 		pp->p_mapping = hme->hme_next;			\
996 		ASSERT((pp->p_mapping == NULL) ?		\
997 			(pp->p_share == 0) : 1);		\
998 	}							\
999 								\
1000 	if (hme->hme_next) {					\
1001 		ASSERT(hme->hme_next->hme_page == pp ||		\
1002 			IS_PAHME(hme->hme_next));		\
1003 		hme->hme_next->hme_prev = hme->hme_prev;	\
1004 	}							\
1005 								\
1006 	/* zero out the entry */				\
1007 	hme->hme_next = NULL;					\
1008 	hme->hme_prev = NULL;					\
1009 	hme->hme_page = NULL;					\
1010 								\
1011 	if (hme_size(hme) > TTE8K) {				\
1012 		/* remove mappings for remainder of large pg */	\
1013 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
1014 	}							\
1015 }
1016 
1017 /*
1018  * This function returns the hment given the hme_blk and a vaddr.
1019  * It assumes addr has already been checked to belong to hme_blk's
1020  * range.
1021  */
1022 #define	HBLKTOHME(hment, hmeblkp, addr)					\
1023 {									\
1024 	int index;							\
1025 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
1026 }
1027 
1028 /*
1029  * Version of HBLKTOHME that also returns the index in hmeblkp
1030  * of the hment.
1031  */
1032 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1033 {									\
1034 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1035 									\
1036 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1037 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1038 	} else								\
1039 		idx = 0;						\
1040 									\
1041 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1042 }
1043 
1044 /*
1045  * Disable any page sizes not supported by the CPU
1046  */
1047 void
1048 hat_init_pagesizes()
1049 {
1050 	int 		i;
1051 
1052 	mmu_exported_page_sizes = 0;
1053 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1054 
1055 		szc_2_userszc[i] = (uint_t)-1;
1056 		userszc_2_szc[i] = (uint_t)-1;
1057 
1058 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1059 			disable_large_pages |= (1 << i);
1060 		} else {
1061 			szc_2_userszc[i] = mmu_exported_page_sizes;
1062 			userszc_2_szc[mmu_exported_page_sizes] = i;
1063 			mmu_exported_page_sizes++;
1064 		}
1065 	}
1066 
1067 	disable_ism_large_pages |= disable_large_pages;
1068 	disable_auto_data_large_pages = disable_large_pages;
1069 	disable_auto_text_large_pages = disable_large_pages;
1070 	disable_shctx_large_pages |= disable_large_pages;
1071 
1072 	/*
1073 	 * Initialize mmu-specific large page sizes.
1074 	 */
1075 	if (&mmu_large_pages_disabled) {
1076 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1077 		disable_shctx_large_pages |= disable_large_pages;
1078 		disable_ism_large_pages |=
1079 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1080 		disable_auto_data_large_pages |=
1081 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1082 		disable_auto_text_large_pages |=
1083 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1084 	}
1085 }
1086 
1087 /*
1088  * Initialize the hardware address translation structures.
1089  */
1090 void
1091 hat_init(void)
1092 {
1093 	int 		i;
1094 	uint_t		sz;
1095 	size_t		size;
1096 
1097 	hat_lock_init();
1098 	hat_kstat_init();
1099 
1100 	/*
1101 	 * Hardware-only bits in a TTE
1102 	 */
1103 	MAKE_TTE_MASK(&hw_tte);
1104 
1105 	hat_init_pagesizes();
1106 
1107 	/* Initialize the hash locks */
1108 	for (i = 0; i < khmehash_num; i++) {
1109 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1110 		    MUTEX_DEFAULT, NULL);
1111 		khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1112 	}
1113 	for (i = 0; i < uhmehash_num; i++) {
1114 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1115 		    MUTEX_DEFAULT, NULL);
1116 		uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1117 	}
1118 	khmehash_num--;		/* make sure counter starts from 0 */
1119 	uhmehash_num--;		/* make sure counter starts from 0 */
1120 
1121 	/*
1122 	 * Allocate context domain structures.
1123 	 *
1124 	 * A platform may choose to modify max_mmu_ctxdoms in
1125 	 * set_platform_defaults(). If a platform does not define
1126 	 * a set_platform_defaults() or does not choose to modify
1127 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1128 	 *
1129 	 * For sun4v, there will be one global context domain, this is to
1130 	 * avoid the ldom cpu substitution problem.
1131 	 *
1132 	 * For all platforms that have CPUs sharing MMUs, this
1133 	 * value must be defined.
1134 	 */
1135 	if (max_mmu_ctxdoms == 0) {
1136 #ifndef sun4v
1137 		max_mmu_ctxdoms = max_ncpus;
1138 #else /* sun4v */
1139 		max_mmu_ctxdoms = 1;
1140 #endif /* sun4v */
1141 	}
1142 
1143 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1144 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1145 
1146 	/* mmu_ctx_t is 64 bytes aligned */
1147 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1148 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1149 	/*
1150 	 * MMU context domain initialization for the Boot CPU.
1151 	 * This needs the context domains array allocated above.
1152 	 */
1153 	mutex_enter(&cpu_lock);
1154 	sfmmu_cpu_init(CPU);
1155 	mutex_exit(&cpu_lock);
1156 
1157 	/*
1158 	 * Intialize ism mapping list lock.
1159 	 */
1160 
1161 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1162 
1163 	/*
1164 	 * Each sfmmu structure carries an array of MMU context info
1165 	 * structures, one per context domain. The size of this array depends
1166 	 * on the maximum number of context domains. So, the size of the
1167 	 * sfmmu structure varies per platform.
1168 	 *
1169 	 * sfmmu is allocated from static arena, because trap
1170 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1171 	 * memory. sfmmu's alignment is changed to 64 bytes from
1172 	 * default 8 bytes, as the lower 6 bits will be used to pass
1173 	 * pgcnt to vtag_flush_pgcnt_tl1.
1174 	 */
1175 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1176 
1177 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1178 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1179 	    NULL, NULL, static_arena, 0);
1180 
1181 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1182 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1183 
1184 	/*
1185 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1186 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1187 	 * specified, don't use magazines to cache them--we want to return
1188 	 * them to the system as quickly as possible.
1189 	 */
1190 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1191 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1192 	    static_arena, KMC_NOMAGAZINE);
1193 
1194 	/*
1195 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1196 	 * memory, which corresponds to the old static reserve for TSBs.
1197 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1198 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1199 	 * allocations will be taken from the kernel heap (via
1200 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1201 	 * consumer.
1202 	 */
1203 	if (tsb_alloc_hiwater_factor == 0) {
1204 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1205 	}
1206 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1207 
1208 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1209 		if (!(disable_large_pages & (1 << sz)))
1210 			break;
1211 	}
1212 
1213 	if (sz < tsb_slab_ttesz) {
1214 		tsb_slab_ttesz = sz;
1215 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1216 		tsb_slab_size = 1 << tsb_slab_shift;
1217 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1218 		use_bigtsb_arena = 0;
1219 	} else if (use_bigtsb_arena &&
1220 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1221 		use_bigtsb_arena = 0;
1222 	}
1223 
1224 	if (!use_bigtsb_arena) {
1225 		bigtsb_slab_shift = tsb_slab_shift;
1226 	}
1227 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1228 
1229 	/*
1230 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1231 	 * than the default 4M slab size. We also honor disable_large_pages
1232 	 * here.
1233 	 *
1234 	 * The trap handlers need to be patched with the final slab shift,
1235 	 * since they need to be able to construct the TSB pointer at runtime.
1236 	 */
1237 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1238 	    !(disable_large_pages & (1 << TTE512K))) {
1239 		tsb_slab_ttesz = TTE512K;
1240 		tsb_slab_shift = MMU_PAGESHIFT512K;
1241 		tsb_slab_size = MMU_PAGESIZE512K;
1242 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1243 		use_bigtsb_arena = 0;
1244 	}
1245 
1246 	if (!use_bigtsb_arena) {
1247 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1248 		bigtsb_slab_shift = tsb_slab_shift;
1249 		bigtsb_slab_size = tsb_slab_size;
1250 		bigtsb_slab_mask = tsb_slab_mask;
1251 	}
1252 
1253 
1254 	/*
1255 	 * Set up memory callback to update tsb_alloc_hiwater and
1256 	 * tsb_max_growsize.
1257 	 */
1258 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1259 	ASSERT(i == 0);
1260 
1261 	/*
1262 	 * kmem_tsb_arena is the source from which large TSB slabs are
1263 	 * drawn.  The quantum of this arena corresponds to the largest
1264 	 * TSB size we can dynamically allocate for user processes.
1265 	 * Currently it must also be a supported page size since we
1266 	 * use exactly one translation entry to map each slab page.
1267 	 *
1268 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1269 	 * which most TSBs are allocated.  Since most TSB allocations are
1270 	 * typically 8K we have a kmem cache we stack on top of each
1271 	 * kmem_tsb_default_arena to speed up those allocations.
1272 	 *
1273 	 * Note the two-level scheme of arenas is required only
1274 	 * because vmem_create doesn't allow us to specify alignment
1275 	 * requirements.  If this ever changes the code could be
1276 	 * simplified to use only one level of arenas.
1277 	 *
1278 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1279 	 * will be provided in addition to the 4M kmem_tsb_arena.
1280 	 */
1281 	if (use_bigtsb_arena) {
1282 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1283 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1284 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1285 	}
1286 
1287 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1288 	    sfmmu_vmem_xalloc_aligned_wrapper,
1289 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1290 
1291 	if (tsb_lgrp_affinity) {
1292 		char s[50];
1293 		for (i = 0; i < NLGRPS_MAX; i++) {
1294 			if (use_bigtsb_arena) {
1295 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1296 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1297 				    NULL, 0, 2 * tsb_slab_size,
1298 				    sfmmu_tsb_segkmem_alloc,
1299 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1300 				    0, VM_SLEEP | VM_BESTFIT);
1301 			}
1302 
1303 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1304 			kmem_tsb_default_arena[i] = vmem_create(s,
1305 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1306 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1307 			    VM_SLEEP | VM_BESTFIT);
1308 
1309 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1310 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1311 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1312 			    kmem_tsb_default_arena[i], 0);
1313 		}
1314 	} else {
1315 		if (use_bigtsb_arena) {
1316 			kmem_bigtsb_default_arena[0] =
1317 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1318 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1319 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1320 			    VM_SLEEP | VM_BESTFIT);
1321 		}
1322 
1323 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1324 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1325 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1326 		    VM_SLEEP | VM_BESTFIT);
1327 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1328 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1329 		    kmem_tsb_default_arena[0], 0);
1330 	}
1331 
1332 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1333 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1334 	    sfmmu_hblkcache_destructor,
1335 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1336 	    hat_memload_arena, KMC_NOHASH);
1337 
1338 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1339 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1340 
1341 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1342 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1343 	    sfmmu_hblkcache_destructor,
1344 	    NULL, (void *)HME1BLK_SZ,
1345 	    hat_memload1_arena, KMC_NOHASH);
1346 
1347 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1348 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1349 
1350 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1351 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1352 	    NULL, NULL, static_arena, KMC_NOHASH);
1353 
1354 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1355 	    sizeof (ism_ment_t), 0, NULL, NULL,
1356 	    NULL, NULL, NULL, 0);
1357 
1358 	/*
1359 	 * We grab the first hat for the kernel,
1360 	 */
1361 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1362 	kas.a_hat = hat_alloc(&kas);
1363 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1364 
1365 	/*
1366 	 * Initialize hblk_reserve.
1367 	 */
1368 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1369 	    va_to_pa((caddr_t)hblk_reserve);
1370 
1371 #ifndef UTSB_PHYS
1372 	/*
1373 	 * Reserve some kernel virtual address space for the locked TTEs
1374 	 * that allow us to probe the TSB from TL>0.
1375 	 */
1376 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1377 	    0, 0, NULL, NULL, VM_SLEEP);
1378 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1379 	    0, 0, NULL, NULL, VM_SLEEP);
1380 #endif
1381 
1382 #ifdef VAC
1383 	/*
1384 	 * The big page VAC handling code assumes VAC
1385 	 * will not be bigger than the smallest big
1386 	 * page- which is 64K.
1387 	 */
1388 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1389 		cmn_err(CE_PANIC, "VAC too big!");
1390 	}
1391 #endif
1392 
1393 	(void) xhat_init();
1394 
1395 	uhme_hash_pa = va_to_pa(uhme_hash);
1396 	khme_hash_pa = va_to_pa(khme_hash);
1397 
1398 	/*
1399 	 * Initialize relocation locks. kpr_suspendlock is held
1400 	 * at PIL_MAX to prevent interrupts from pinning the holder
1401 	 * of a suspended TTE which may access it leading to a
1402 	 * deadlock condition.
1403 	 */
1404 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1405 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1406 
1407 	/*
1408 	 * If Shared context support is disabled via /etc/system
1409 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1410 	 * sequence by cpu module initialization code.
1411 	 */
1412 	if (shctx_on && disable_shctx) {
1413 		shctx_on = 0;
1414 	}
1415 
1416 	/*
1417 	 * If support for page size search is disabled via /etc/system
1418 	 * set pgsz_search_on to 0 here.
1419 	 */
1420 	if (pgsz_search_on && disable_pgsz_search) {
1421 		pgsz_search_on = 0;
1422 	}
1423 
1424 	if (shctx_on) {
1425 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1426 		    sizeof (srd_buckets[0]), KM_SLEEP);
1427 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1428 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1429 			    MUTEX_DEFAULT, NULL);
1430 		}
1431 
1432 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1433 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1434 		    NULL, NULL, NULL, 0);
1435 		region_cache = kmem_cache_create("region_cache",
1436 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1437 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1438 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1439 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1440 		    NULL, NULL, NULL, 0);
1441 	}
1442 
1443 	/*
1444 	 * Pre-allocate hrm_hashtab before enabling the collection of
1445 	 * refmod statistics.  Allocating on the fly would mean us
1446 	 * running the risk of suffering recursive mutex enters or
1447 	 * deadlocks.
1448 	 */
1449 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1450 	    KM_SLEEP);
1451 
1452 	/* Allocate per-cpu pending freelist of hmeblks */
1453 	cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1454 	    KM_SLEEP);
1455 	cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1456 	    (uintptr_t)cpu_hme_pend, 64);
1457 
1458 	for (i = 0; i < NCPU; i++) {
1459 		mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1460 		    NULL);
1461 	}
1462 
1463 	if (cpu_hme_pend_thresh == 0) {
1464 		cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1465 	}
1466 }
1467 
1468 /*
1469  * Initialize locking for the hat layer, called early during boot.
1470  */
1471 static void
1472 hat_lock_init()
1473 {
1474 	int i;
1475 
1476 	/*
1477 	 * initialize the array of mutexes protecting a page's mapping
1478 	 * list and p_nrm field.
1479 	 */
1480 	for (i = 0; i < mml_table_sz; i++)
1481 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1482 
1483 	if (kpm_enable) {
1484 		for (i = 0; i < kpmp_table_sz; i++) {
1485 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1486 			    MUTEX_DEFAULT, NULL);
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Initialize array of mutex locks that protects sfmmu fields and
1492 	 * TSB lists.
1493 	 */
1494 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1495 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1496 		    NULL);
1497 }
1498 
1499 #define	SFMMU_KERNEL_MAXVA \
1500 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1501 
1502 /*
1503  * Allocate a hat structure.
1504  * Called when an address space first uses a hat.
1505  */
1506 struct hat *
1507 hat_alloc(struct as *as)
1508 {
1509 	sfmmu_t *sfmmup;
1510 	int i;
1511 	uint64_t cnum;
1512 	extern uint_t get_color_start(struct as *);
1513 
1514 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1515 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1516 	sfmmup->sfmmu_as = as;
1517 	sfmmup->sfmmu_flags = 0;
1518 	sfmmup->sfmmu_tteflags = 0;
1519 	sfmmup->sfmmu_rtteflags = 0;
1520 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1521 
1522 	if (as == &kas) {
1523 		ksfmmup = sfmmup;
1524 		sfmmup->sfmmu_cext = 0;
1525 		cnum = KCONTEXT;
1526 
1527 		sfmmup->sfmmu_clrstart = 0;
1528 		sfmmup->sfmmu_tsb = NULL;
1529 		/*
1530 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1531 		 * to setup tsb_info for ksfmmup.
1532 		 */
1533 	} else {
1534 
1535 		/*
1536 		 * Just set to invalid ctx. When it faults, it will
1537 		 * get a valid ctx. This would avoid the situation
1538 		 * where we get a ctx, but it gets stolen and then
1539 		 * we fault when we try to run and so have to get
1540 		 * another ctx.
1541 		 */
1542 		sfmmup->sfmmu_cext = 0;
1543 		cnum = INVALID_CONTEXT;
1544 
1545 		/* initialize original physical page coloring bin */
1546 		sfmmup->sfmmu_clrstart = get_color_start(as);
1547 #ifdef DEBUG
1548 		if (tsb_random_size) {
1549 			uint32_t randval = (uint32_t)gettick() >> 4;
1550 			int size = randval % (tsb_max_growsize + 1);
1551 
1552 			/* chose a random tsb size for stress testing */
1553 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1554 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1555 		} else
1556 #endif /* DEBUG */
1557 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1558 			    default_tsb_size,
1559 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1560 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1561 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1562 	}
1563 
1564 	ASSERT(max_mmu_ctxdoms > 0);
1565 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1566 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1567 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1568 	}
1569 
1570 	for (i = 0; i < max_mmu_page_sizes; i++) {
1571 		sfmmup->sfmmu_ttecnt[i] = 0;
1572 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1573 		sfmmup->sfmmu_ismttecnt[i] = 0;
1574 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1575 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1576 	}
1577 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1578 	sfmmup->sfmmu_iblk = NULL;
1579 	sfmmup->sfmmu_ismhat = 0;
1580 	sfmmup->sfmmu_scdhat = 0;
1581 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1582 	if (sfmmup == ksfmmup) {
1583 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1584 	} else {
1585 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1586 	}
1587 	sfmmup->sfmmu_free = 0;
1588 	sfmmup->sfmmu_rmstat = 0;
1589 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1590 	sfmmup->sfmmu_xhat_provider = NULL;
1591 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1592 	sfmmup->sfmmu_srdp = NULL;
1593 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1594 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1595 	sfmmup->sfmmu_scdp = NULL;
1596 	sfmmup->sfmmu_scd_link.next = NULL;
1597 	sfmmup->sfmmu_scd_link.prev = NULL;
1598 
1599 	if (&mmu_set_pgsz_order && sfmmup !=  ksfmmup) {
1600 		mmu_set_pgsz_order(sfmmup, 0);
1601 		sfmmu_init_pgsz_hv(sfmmup);
1602 	}
1603 	return (sfmmup);
1604 }
1605 
1606 /*
1607  * Create per-MMU context domain kstats for a given MMU ctx.
1608  */
1609 static void
1610 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1611 {
1612 	mmu_ctx_stat_t	stat;
1613 	kstat_t		*mmu_kstat;
1614 
1615 	ASSERT(MUTEX_HELD(&cpu_lock));
1616 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1617 
1618 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1619 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1620 
1621 	if (mmu_kstat == NULL) {
1622 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1623 		    mmu_ctxp->mmu_idx);
1624 	} else {
1625 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1626 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1627 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1628 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1629 		mmu_ctxp->mmu_kstat = mmu_kstat;
1630 		kstat_install(mmu_kstat);
1631 	}
1632 }
1633 
1634 /*
1635  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1636  * context domain information for a given CPU. If a platform does not
1637  * specify that interface, then the function below is used instead to return
1638  * default information. The defaults are as follows:
1639  *
1640  *	- For sun4u systems there's one MMU context domain per CPU.
1641  *	  This default is used by all sun4u systems except OPL. OPL systems
1642  *	  provide platform specific interface to map CPU ids to MMU ids
1643  *	  because on OPL more than 1 CPU shares a single MMU.
1644  *        Note that on sun4v, there is one global context domain for
1645  *	  the entire system. This is to avoid running into potential problem
1646  *	  with ldom physical cpu substitution feature.
1647  *	- The number of MMU context IDs supported on any CPU in the
1648  *	  system is 8K.
1649  */
1650 /*ARGSUSED*/
1651 static void
1652 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1653 {
1654 	infop->mmu_nctxs = nctxs;
1655 #ifndef sun4v
1656 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1657 #else /* sun4v */
1658 	infop->mmu_idx = 0;
1659 #endif /* sun4v */
1660 }
1661 
1662 /*
1663  * Called during CPU initialization to set the MMU context-related information
1664  * for a CPU.
1665  *
1666  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1667  */
1668 void
1669 sfmmu_cpu_init(cpu_t *cp)
1670 {
1671 	mmu_ctx_info_t	info;
1672 	mmu_ctx_t	*mmu_ctxp;
1673 
1674 	ASSERT(MUTEX_HELD(&cpu_lock));
1675 
1676 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1677 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1678 	else
1679 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1680 
1681 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1682 
1683 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1684 		/* Each mmu_ctx is cacheline aligned. */
1685 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1686 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1687 
1688 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1689 		    (void *)ipltospl(DISP_LEVEL));
1690 		mmu_ctxp->mmu_idx = info.mmu_idx;
1691 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1692 		/*
1693 		 * Globally for lifetime of a system,
1694 		 * gnum must always increase.
1695 		 * mmu_saved_gnum is protected by the cpu_lock.
1696 		 */
1697 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1698 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1699 
1700 		sfmmu_mmu_kstat_create(mmu_ctxp);
1701 
1702 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1703 	} else {
1704 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1705 	}
1706 
1707 	/*
1708 	 * The mmu_lock is acquired here to prevent races with
1709 	 * the wrap-around code.
1710 	 */
1711 	mutex_enter(&mmu_ctxp->mmu_lock);
1712 
1713 
1714 	mmu_ctxp->mmu_ncpus++;
1715 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1716 	CPU_MMU_IDX(cp) = info.mmu_idx;
1717 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1718 
1719 	mutex_exit(&mmu_ctxp->mmu_lock);
1720 }
1721 
1722 /*
1723  * Called to perform MMU context-related cleanup for a CPU.
1724  */
1725 void
1726 sfmmu_cpu_cleanup(cpu_t *cp)
1727 {
1728 	mmu_ctx_t	*mmu_ctxp;
1729 
1730 	ASSERT(MUTEX_HELD(&cpu_lock));
1731 
1732 	mmu_ctxp = CPU_MMU_CTXP(cp);
1733 	ASSERT(mmu_ctxp != NULL);
1734 
1735 	/*
1736 	 * The mmu_lock is acquired here to prevent races with
1737 	 * the wrap-around code.
1738 	 */
1739 	mutex_enter(&mmu_ctxp->mmu_lock);
1740 
1741 	CPU_MMU_CTXP(cp) = NULL;
1742 
1743 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1744 	if (--mmu_ctxp->mmu_ncpus == 0) {
1745 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1746 		mutex_exit(&mmu_ctxp->mmu_lock);
1747 		mutex_destroy(&mmu_ctxp->mmu_lock);
1748 
1749 		if (mmu_ctxp->mmu_kstat)
1750 			kstat_delete(mmu_ctxp->mmu_kstat);
1751 
1752 		/* mmu_saved_gnum is protected by the cpu_lock. */
1753 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1754 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1755 
1756 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1757 
1758 		return;
1759 	}
1760 
1761 	mutex_exit(&mmu_ctxp->mmu_lock);
1762 }
1763 
1764 /*
1765  * Hat_setup, makes an address space context the current active one.
1766  * In sfmmu this translates to setting the secondary context with the
1767  * corresponding context.
1768  */
1769 void
1770 hat_setup(struct hat *sfmmup, int allocflag)
1771 {
1772 	hatlock_t *hatlockp;
1773 
1774 	/* Init needs some special treatment. */
1775 	if (allocflag == HAT_INIT) {
1776 		/*
1777 		 * Make sure that we have
1778 		 * 1. a TSB
1779 		 * 2. a valid ctx that doesn't get stolen after this point.
1780 		 */
1781 		hatlockp = sfmmu_hat_enter(sfmmup);
1782 
1783 		/*
1784 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1785 		 * TSBs, but we need one for init, since the kernel does some
1786 		 * special things to set up its stack and needs the TSB to
1787 		 * resolve page faults.
1788 		 */
1789 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1790 
1791 		sfmmu_get_ctx(sfmmup);
1792 
1793 		sfmmu_hat_exit(hatlockp);
1794 	} else {
1795 		ASSERT(allocflag == HAT_ALLOC);
1796 
1797 		hatlockp = sfmmu_hat_enter(sfmmup);
1798 		kpreempt_disable();
1799 
1800 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1801 		/*
1802 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1803 		 * pagesize bits don't matter in this case since we are passing
1804 		 * INVALID_CONTEXT to it.
1805 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1806 		 */
1807 		sfmmu_setctx_sec(INVALID_CONTEXT);
1808 		sfmmu_clear_utsbinfo();
1809 
1810 		kpreempt_enable();
1811 		sfmmu_hat_exit(hatlockp);
1812 	}
1813 }
1814 
1815 /*
1816  * Free all the translation resources for the specified address space.
1817  * Called from as_free when an address space is being destroyed.
1818  */
1819 void
1820 hat_free_start(struct hat *sfmmup)
1821 {
1822 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1823 	ASSERT(sfmmup != ksfmmup);
1824 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1825 
1826 	sfmmup->sfmmu_free = 1;
1827 	if (sfmmup->sfmmu_scdp != NULL) {
1828 		sfmmu_leave_scd(sfmmup, 0);
1829 	}
1830 
1831 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1832 }
1833 
1834 void
1835 hat_free_end(struct hat *sfmmup)
1836 {
1837 	int i;
1838 
1839 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1840 	ASSERT(sfmmup->sfmmu_free == 1);
1841 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1842 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1843 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1844 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1845 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1846 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1847 
1848 	if (sfmmup->sfmmu_rmstat) {
1849 		hat_freestat(sfmmup->sfmmu_as, NULL);
1850 	}
1851 
1852 	while (sfmmup->sfmmu_tsb != NULL) {
1853 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1854 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1855 		sfmmup->sfmmu_tsb = next;
1856 	}
1857 
1858 	if (sfmmup->sfmmu_srdp != NULL) {
1859 		sfmmu_leave_srd(sfmmup);
1860 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1861 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1862 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1863 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1864 				    SFMMU_L2_HMERLINKS_SIZE);
1865 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1866 			}
1867 		}
1868 	}
1869 	sfmmu_free_sfmmu(sfmmup);
1870 
1871 #ifdef DEBUG
1872 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1873 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1874 	}
1875 #endif
1876 
1877 	kmem_cache_free(sfmmuid_cache, sfmmup);
1878 }
1879 
1880 /*
1881  * Set up any translation structures, for the specified address space,
1882  * that are needed or preferred when the process is being swapped in.
1883  */
1884 /* ARGSUSED */
1885 void
1886 hat_swapin(struct hat *hat)
1887 {
1888 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1889 }
1890 
1891 /*
1892  * Free all of the translation resources, for the specified address space,
1893  * that can be freed while the process is swapped out. Called from as_swapout.
1894  * Also, free up the ctx that this process was using.
1895  */
1896 void
1897 hat_swapout(struct hat *sfmmup)
1898 {
1899 	struct hmehash_bucket *hmebp;
1900 	struct hme_blk *hmeblkp;
1901 	struct hme_blk *pr_hblk = NULL;
1902 	struct hme_blk *nx_hblk;
1903 	int i;
1904 	struct hme_blk *list = NULL;
1905 	hatlock_t *hatlockp;
1906 	struct tsb_info *tsbinfop;
1907 	struct free_tsb {
1908 		struct free_tsb *next;
1909 		struct tsb_info *tsbinfop;
1910 	};			/* free list of TSBs */
1911 	struct free_tsb *freelist, *last, *next;
1912 
1913 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1914 	SFMMU_STAT(sf_swapout);
1915 
1916 	/*
1917 	 * There is no way to go from an as to all its translations in sfmmu.
1918 	 * Here is one of the times when we take the big hit and traverse
1919 	 * the hash looking for hme_blks to free up.  Not only do we free up
1920 	 * this as hme_blks but all those that are free.  We are obviously
1921 	 * swapping because we need memory so let's free up as much
1922 	 * as we can.
1923 	 *
1924 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1925 	 * because:
1926 	 *  1) we free the ctx we're using and throw away the TSB(s);
1927 	 *  2) processes aren't runnable while being swapped out.
1928 	 */
1929 	ASSERT(sfmmup != KHATID);
1930 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1931 		hmebp = &uhme_hash[i];
1932 		SFMMU_HASH_LOCK(hmebp);
1933 		hmeblkp = hmebp->hmeblkp;
1934 		pr_hblk = NULL;
1935 		while (hmeblkp) {
1936 
1937 			ASSERT(!hmeblkp->hblk_xhat_bit);
1938 
1939 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1940 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1941 				ASSERT(!hmeblkp->hblk_shared);
1942 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1943 				    (caddr_t)get_hblk_base(hmeblkp),
1944 				    get_hblk_endaddr(hmeblkp),
1945 				    NULL, HAT_UNLOAD);
1946 			}
1947 			nx_hblk = hmeblkp->hblk_next;
1948 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1949 				ASSERT(!hmeblkp->hblk_lckcnt);
1950 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
1951 				    &list, 0);
1952 			} else {
1953 				pr_hblk = hmeblkp;
1954 			}
1955 			hmeblkp = nx_hblk;
1956 		}
1957 		SFMMU_HASH_UNLOCK(hmebp);
1958 	}
1959 
1960 	sfmmu_hblks_list_purge(&list, 0);
1961 
1962 	/*
1963 	 * Now free up the ctx so that others can reuse it.
1964 	 */
1965 	hatlockp = sfmmu_hat_enter(sfmmup);
1966 
1967 	sfmmu_invalidate_ctx(sfmmup);
1968 
1969 	/*
1970 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1971 	 * If TSBs were never swapped in, just return.
1972 	 * This implies that we don't support partial swapping
1973 	 * of TSBs -- either all are swapped out, or none are.
1974 	 *
1975 	 * We must hold the HAT lock here to prevent racing with another
1976 	 * thread trying to unmap TTEs from the TSB or running the post-
1977 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1978 	 * can't free memory while holding the HAT lock or we could
1979 	 * deadlock, so we build a list of TSBs to be freed after marking
1980 	 * the tsbinfos as swapped out and free them after dropping the
1981 	 * lock.
1982 	 */
1983 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1984 		sfmmu_hat_exit(hatlockp);
1985 		return;
1986 	}
1987 
1988 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1989 	last = freelist = NULL;
1990 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1991 	    tsbinfop = tsbinfop->tsb_next) {
1992 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1993 
1994 		/*
1995 		 * Cast the TSB into a struct free_tsb and put it on the free
1996 		 * list.
1997 		 */
1998 		if (freelist == NULL) {
1999 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2000 		} else {
2001 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
2002 			last = last->next;
2003 		}
2004 		last->next = NULL;
2005 		last->tsbinfop = tsbinfop;
2006 		tsbinfop->tsb_flags |= TSB_SWAPPED;
2007 		/*
2008 		 * Zero out the TTE to clear the valid bit.
2009 		 * Note we can't use a value like 0xbad because we want to
2010 		 * ensure diagnostic bits are NEVER set on TTEs that might
2011 		 * be loaded.  The intent is to catch any invalid access
2012 		 * to the swapped TSB, such as a thread running with a valid
2013 		 * context without first calling sfmmu_tsb_swapin() to
2014 		 * allocate TSB memory.
2015 		 */
2016 		tsbinfop->tsb_tte.ll = 0;
2017 	}
2018 
2019 	/* Now we can drop the lock and free the TSB memory. */
2020 	sfmmu_hat_exit(hatlockp);
2021 	for (; freelist != NULL; freelist = next) {
2022 		next = freelist->next;
2023 		sfmmu_tsb_free(freelist->tsbinfop);
2024 	}
2025 }
2026 
2027 /*
2028  * Duplicate the translations of an as into another newas
2029  */
2030 /* ARGSUSED */
2031 int
2032 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2033 	uint_t flag)
2034 {
2035 	sf_srd_t *srdp;
2036 	sf_scd_t *scdp;
2037 	int i;
2038 	extern uint_t get_color_start(struct as *);
2039 
2040 	ASSERT(hat->sfmmu_xhat_provider == NULL);
2041 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2042 	    (flag == HAT_DUP_SRD));
2043 	ASSERT(hat != ksfmmup);
2044 	ASSERT(newhat != ksfmmup);
2045 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2046 
2047 	if (flag == HAT_DUP_COW) {
2048 		panic("hat_dup: HAT_DUP_COW not supported");
2049 	}
2050 
2051 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2052 		ASSERT(srdp->srd_evp != NULL);
2053 		VN_HOLD(srdp->srd_evp);
2054 		ASSERT(srdp->srd_refcnt > 0);
2055 		newhat->sfmmu_srdp = srdp;
2056 		atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2057 	}
2058 
2059 	/*
2060 	 * HAT_DUP_ALL flag is used after as duplication is done.
2061 	 */
2062 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2063 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2064 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2065 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2066 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2067 		}
2068 
2069 		/* check if need to join scd */
2070 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2071 		    newhat->sfmmu_scdp != scdp) {
2072 			int ret;
2073 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2074 			    &scdp->scd_region_map, ret);
2075 			ASSERT(ret);
2076 			sfmmu_join_scd(scdp, newhat);
2077 			ASSERT(newhat->sfmmu_scdp == scdp &&
2078 			    scdp->scd_refcnt >= 2);
2079 			for (i = 0; i < max_mmu_page_sizes; i++) {
2080 				newhat->sfmmu_ismttecnt[i] =
2081 				    hat->sfmmu_ismttecnt[i];
2082 				newhat->sfmmu_scdismttecnt[i] =
2083 				    hat->sfmmu_scdismttecnt[i];
2084 			}
2085 		} else if (&mmu_set_pgsz_order) {
2086 			mmu_set_pgsz_order(newhat, 0);
2087 		}
2088 
2089 		sfmmu_check_page_sizes(newhat, 1);
2090 	}
2091 
2092 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2093 	    update_proc_pgcolorbase_after_fork != 0) {
2094 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2095 	}
2096 	return (0);
2097 }
2098 
2099 void
2100 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2101 	uint_t attr, uint_t flags)
2102 {
2103 	hat_do_memload(hat, addr, pp, attr, flags,
2104 	    SFMMU_INVALID_SHMERID);
2105 }
2106 
2107 void
2108 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2109 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2110 {
2111 	uint_t rid;
2112 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2113 	    hat->sfmmu_xhat_provider != NULL) {
2114 		hat_do_memload(hat, addr, pp, attr, flags,
2115 		    SFMMU_INVALID_SHMERID);
2116 		return;
2117 	}
2118 	rid = (uint_t)((uint64_t)rcookie);
2119 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2120 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2121 }
2122 
2123 /*
2124  * Set up addr to map to page pp with protection prot.
2125  * As an optimization we also load the TSB with the
2126  * corresponding tte but it is no big deal if  the tte gets kicked out.
2127  */
2128 static void
2129 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2130 	uint_t attr, uint_t flags, uint_t rid)
2131 {
2132 	tte_t tte;
2133 
2134 
2135 	ASSERT(hat != NULL);
2136 	ASSERT(PAGE_LOCKED(pp));
2137 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2138 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2139 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2140 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2141 
2142 	if (PP_ISFREE(pp)) {
2143 		panic("hat_memload: loading a mapping to free page %p",
2144 		    (void *)pp);
2145 	}
2146 
2147 	if (hat->sfmmu_xhat_provider) {
2148 		/* no regions for xhats */
2149 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2150 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2151 		return;
2152 	}
2153 
2154 	ASSERT((hat == ksfmmup) ||
2155 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2156 
2157 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2158 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2159 		    flags & ~SFMMU_LOAD_ALLFLAG);
2160 
2161 	if (hat->sfmmu_rmstat)
2162 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2163 
2164 #if defined(SF_ERRATA_57)
2165 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2166 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2167 	    !(flags & HAT_LOAD_SHARE)) {
2168 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2169 		    " page executable");
2170 		attr &= ~PROT_EXEC;
2171 	}
2172 #endif
2173 
2174 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2175 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2176 
2177 	/*
2178 	 * Check TSB and TLB page sizes.
2179 	 */
2180 	if ((flags & HAT_LOAD_SHARE) == 0) {
2181 		sfmmu_check_page_sizes(hat, 1);
2182 	}
2183 }
2184 
2185 /*
2186  * hat_devload can be called to map real memory (e.g.
2187  * /dev/kmem) and even though hat_devload will determine pf is
2188  * for memory, it will be unable to get a shared lock on the
2189  * page (because someone else has it exclusively) and will
2190  * pass dp = NULL.  If tteload doesn't get a non-NULL
2191  * page pointer it can't cache memory.
2192  */
2193 void
2194 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2195 	uint_t attr, int flags)
2196 {
2197 	tte_t tte;
2198 	struct page *pp = NULL;
2199 	int use_lgpg = 0;
2200 
2201 	ASSERT(hat != NULL);
2202 
2203 	if (hat->sfmmu_xhat_provider) {
2204 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2205 		return;
2206 	}
2207 
2208 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2209 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2210 	ASSERT((hat == ksfmmup) ||
2211 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2212 	if (len == 0)
2213 		panic("hat_devload: zero len");
2214 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2215 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2216 		    flags & ~SFMMU_LOAD_ALLFLAG);
2217 
2218 #if defined(SF_ERRATA_57)
2219 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2220 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2221 	    !(flags & HAT_LOAD_SHARE)) {
2222 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2223 		    " page executable");
2224 		attr &= ~PROT_EXEC;
2225 	}
2226 #endif
2227 
2228 	/*
2229 	 * If it's a memory page find its pp
2230 	 */
2231 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2232 		pp = page_numtopp_nolock(pfn);
2233 		if (pp == NULL) {
2234 			flags |= HAT_LOAD_NOCONSIST;
2235 		} else {
2236 			if (PP_ISFREE(pp)) {
2237 				panic("hat_memload: loading "
2238 				    "a mapping to free page %p",
2239 				    (void *)pp);
2240 			}
2241 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2242 				panic("hat_memload: loading a mapping "
2243 				    "to unlocked relocatable page %p",
2244 				    (void *)pp);
2245 			}
2246 			ASSERT(len == MMU_PAGESIZE);
2247 		}
2248 	}
2249 
2250 	if (hat->sfmmu_rmstat)
2251 		hat_resvstat(len, hat->sfmmu_as, addr);
2252 
2253 	if (flags & HAT_LOAD_NOCONSIST) {
2254 		attr |= SFMMU_UNCACHEVTTE;
2255 		use_lgpg = 1;
2256 	}
2257 	if (!pf_is_memory(pfn)) {
2258 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2259 		use_lgpg = 1;
2260 		switch (attr & HAT_ORDER_MASK) {
2261 			case HAT_STRICTORDER:
2262 			case HAT_UNORDERED_OK:
2263 				/*
2264 				 * we set the side effect bit for all non
2265 				 * memory mappings unless merging is ok
2266 				 */
2267 				attr |= SFMMU_SIDEFFECT;
2268 				break;
2269 			case HAT_MERGING_OK:
2270 			case HAT_LOADCACHING_OK:
2271 			case HAT_STORECACHING_OK:
2272 				break;
2273 			default:
2274 				panic("hat_devload: bad attr");
2275 				break;
2276 		}
2277 	}
2278 	while (len) {
2279 		if (!use_lgpg) {
2280 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2281 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2282 			    flags, SFMMU_INVALID_SHMERID);
2283 			len -= MMU_PAGESIZE;
2284 			addr += MMU_PAGESIZE;
2285 			pfn++;
2286 			continue;
2287 		}
2288 		/*
2289 		 *  try to use large pages, check va/pa alignments
2290 		 *  Note that 32M/256M page sizes are not (yet) supported.
2291 		 */
2292 		if ((len >= MMU_PAGESIZE4M) &&
2293 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2294 		    !(disable_large_pages & (1 << TTE4M)) &&
2295 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2296 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2297 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2298 			    flags, SFMMU_INVALID_SHMERID);
2299 			len -= MMU_PAGESIZE4M;
2300 			addr += MMU_PAGESIZE4M;
2301 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2302 		} else if ((len >= MMU_PAGESIZE512K) &&
2303 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2304 		    !(disable_large_pages & (1 << TTE512K)) &&
2305 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2306 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2307 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2308 			    flags, SFMMU_INVALID_SHMERID);
2309 			len -= MMU_PAGESIZE512K;
2310 			addr += MMU_PAGESIZE512K;
2311 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2312 		} else if ((len >= MMU_PAGESIZE64K) &&
2313 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2314 		    !(disable_large_pages & (1 << TTE64K)) &&
2315 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2316 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2317 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2318 			    flags, SFMMU_INVALID_SHMERID);
2319 			len -= MMU_PAGESIZE64K;
2320 			addr += MMU_PAGESIZE64K;
2321 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2322 		} else {
2323 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2324 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2325 			    flags, SFMMU_INVALID_SHMERID);
2326 			len -= MMU_PAGESIZE;
2327 			addr += MMU_PAGESIZE;
2328 			pfn++;
2329 		}
2330 	}
2331 
2332 	/*
2333 	 * Check TSB and TLB page sizes.
2334 	 */
2335 	if ((flags & HAT_LOAD_SHARE) == 0) {
2336 		sfmmu_check_page_sizes(hat, 1);
2337 	}
2338 }
2339 
2340 void
2341 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2342 	struct page **pps, uint_t attr, uint_t flags)
2343 {
2344 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2345 	    SFMMU_INVALID_SHMERID);
2346 }
2347 
2348 void
2349 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2350 	struct page **pps, uint_t attr, uint_t flags,
2351 	hat_region_cookie_t rcookie)
2352 {
2353 	uint_t rid;
2354 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2355 	    hat->sfmmu_xhat_provider != NULL) {
2356 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2357 		    SFMMU_INVALID_SHMERID);
2358 		return;
2359 	}
2360 	rid = (uint_t)((uint64_t)rcookie);
2361 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2362 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2363 }
2364 
2365 /*
2366  * Map the largest extend possible out of the page array. The array may NOT
2367  * be in order.  The largest possible mapping a page can have
2368  * is specified in the p_szc field.  The p_szc field
2369  * cannot change as long as there any mappings (large or small)
2370  * to any of the pages that make up the large page. (ie. any
2371  * promotion/demotion of page size is not up to the hat but up to
2372  * the page free list manager).  The array
2373  * should consist of properly aligned contigous pages that are
2374  * part of a big page for a large mapping to be created.
2375  */
2376 static void
2377 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2378 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2379 {
2380 	int  ttesz;
2381 	size_t mapsz;
2382 	pgcnt_t	numpg, npgs;
2383 	tte_t tte;
2384 	page_t *pp;
2385 	uint_t large_pages_disable;
2386 
2387 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2388 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2389 
2390 	if (hat->sfmmu_xhat_provider) {
2391 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2392 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2393 		return;
2394 	}
2395 
2396 	if (hat->sfmmu_rmstat)
2397 		hat_resvstat(len, hat->sfmmu_as, addr);
2398 
2399 #if defined(SF_ERRATA_57)
2400 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2401 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2402 	    !(flags & HAT_LOAD_SHARE)) {
2403 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2404 		    "user page executable");
2405 		attr &= ~PROT_EXEC;
2406 	}
2407 #endif
2408 
2409 	/* Get number of pages */
2410 	npgs = len >> MMU_PAGESHIFT;
2411 
2412 	if (flags & HAT_LOAD_SHARE) {
2413 		large_pages_disable = disable_ism_large_pages;
2414 	} else {
2415 		large_pages_disable = disable_large_pages;
2416 	}
2417 
2418 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2419 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2420 		    rid);
2421 		return;
2422 	}
2423 
2424 	while (npgs >= NHMENTS) {
2425 		pp = *pps;
2426 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2427 			/*
2428 			 * Check if this page size is disabled.
2429 			 */
2430 			if (large_pages_disable & (1 << ttesz))
2431 				continue;
2432 
2433 			numpg = TTEPAGES(ttesz);
2434 			mapsz = numpg << MMU_PAGESHIFT;
2435 			if ((npgs >= numpg) &&
2436 			    IS_P2ALIGNED(addr, mapsz) &&
2437 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2438 				/*
2439 				 * At this point we have enough pages and
2440 				 * we know the virtual address and the pfn
2441 				 * are properly aligned.  We still need
2442 				 * to check for physical contiguity but since
2443 				 * it is very likely that this is the case
2444 				 * we will assume they are so and undo
2445 				 * the request if necessary.  It would
2446 				 * be great if we could get a hint flag
2447 				 * like HAT_CONTIG which would tell us
2448 				 * the pages are contigous for sure.
2449 				 */
2450 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2451 				    attr, ttesz);
2452 				if (!sfmmu_tteload_array(hat, &tte, addr,
2453 				    pps, flags, rid)) {
2454 					break;
2455 				}
2456 			}
2457 		}
2458 		if (ttesz == TTE8K) {
2459 			/*
2460 			 * We were not able to map array using a large page
2461 			 * batch a hmeblk or fraction at a time.
2462 			 */
2463 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2464 			    & (NHMENTS-1);
2465 			numpg = NHMENTS - numpg;
2466 			ASSERT(numpg <= npgs);
2467 			mapsz = numpg * MMU_PAGESIZE;
2468 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2469 			    numpg, rid);
2470 		}
2471 		addr += mapsz;
2472 		npgs -= numpg;
2473 		pps += numpg;
2474 	}
2475 
2476 	if (npgs) {
2477 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2478 		    rid);
2479 	}
2480 
2481 	/*
2482 	 * Check TSB and TLB page sizes.
2483 	 */
2484 	if ((flags & HAT_LOAD_SHARE) == 0) {
2485 		sfmmu_check_page_sizes(hat, 1);
2486 	}
2487 }
2488 
2489 /*
2490  * Function tries to batch 8K pages into the same hme blk.
2491  */
2492 static void
2493 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2494 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2495 {
2496 	tte_t	tte;
2497 	page_t *pp;
2498 	struct hmehash_bucket *hmebp;
2499 	struct hme_blk *hmeblkp;
2500 	int	index;
2501 
2502 	while (npgs) {
2503 		/*
2504 		 * Acquire the hash bucket.
2505 		 */
2506 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2507 		    rid);
2508 		ASSERT(hmebp);
2509 
2510 		/*
2511 		 * Find the hment block.
2512 		 */
2513 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2514 		    TTE8K, flags, rid);
2515 		ASSERT(hmeblkp);
2516 
2517 		do {
2518 			/*
2519 			 * Make the tte.
2520 			 */
2521 			pp = *pps;
2522 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2523 
2524 			/*
2525 			 * Add the translation.
2526 			 */
2527 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2528 			    vaddr, pps, flags, rid);
2529 
2530 			/*
2531 			 * Goto next page.
2532 			 */
2533 			pps++;
2534 			npgs--;
2535 
2536 			/*
2537 			 * Goto next address.
2538 			 */
2539 			vaddr += MMU_PAGESIZE;
2540 
2541 			/*
2542 			 * Don't crossover into a different hmentblk.
2543 			 */
2544 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2545 			    (NHMENTS-1));
2546 
2547 		} while (index != 0 && npgs != 0);
2548 
2549 		/*
2550 		 * Release the hash bucket.
2551 		 */
2552 
2553 		sfmmu_tteload_release_hashbucket(hmebp);
2554 	}
2555 }
2556 
2557 /*
2558  * Construct a tte for a page:
2559  *
2560  * tte_valid = 1
2561  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2562  * tte_size = size
2563  * tte_nfo = attr & HAT_NOFAULT
2564  * tte_ie = attr & HAT_STRUCTURE_LE
2565  * tte_hmenum = hmenum
2566  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2567  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2568  * tte_ref = 1 (optimization)
2569  * tte_wr_perm = attr & PROT_WRITE;
2570  * tte_no_sync = attr & HAT_NOSYNC
2571  * tte_lock = attr & SFMMU_LOCKTTE
2572  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2573  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2574  * tte_e = attr & SFMMU_SIDEFFECT
2575  * tte_priv = !(attr & PROT_USER)
2576  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2577  * tte_glb = 0
2578  */
2579 void
2580 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2581 {
2582 	ASSERT((attr & ~(SFMMU_LOAD_ALLATTR | HAT_ATTR_NOSOFTEXEC)) == 0);
2583 
2584 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2585 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2586 
2587 	if (TTE_IS_NOSYNC(ttep)) {
2588 		TTE_SET_REF(ttep);
2589 		if (TTE_IS_WRITABLE(ttep)) {
2590 			TTE_SET_MOD(ttep);
2591 		}
2592 	}
2593 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2594 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2595 	}
2596 
2597 	/*
2598 	 * Disable hardware execute permission to force a fault if
2599 	 * this page is executed, so we can detect the execution.  Set
2600 	 * the soft exec bit to remember that this TTE has execute
2601 	 * permission.
2602 	 */
2603 	if (TTE_IS_EXECUTABLE(ttep) && (attr & HAT_ATTR_NOSOFTEXEC) == 0 &&
2604 	    icache_is_coherent == 0) {
2605 		TTE_CLR_EXEC(ttep);
2606 		TTE_SET_SOFTEXEC(ttep);
2607 	}
2608 }
2609 
2610 /*
2611  * This function will add a translation to the hme_blk and allocate the
2612  * hme_blk if one does not exist.
2613  * If a page structure is specified then it will add the
2614  * corresponding hment to the mapping list.
2615  * It will also update the hmenum field for the tte.
2616  *
2617  * Currently this function is only used for kernel mappings.
2618  * So pass invalid region to sfmmu_tteload_array().
2619  */
2620 void
2621 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2622 	uint_t flags)
2623 {
2624 	ASSERT(sfmmup == ksfmmup);
2625 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2626 	    SFMMU_INVALID_SHMERID);
2627 }
2628 
2629 /*
2630  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2631  * Assumes that a particular page size may only be resident in one TSB.
2632  */
2633 static void
2634 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2635 {
2636 	struct tsb_info *tsbinfop = NULL;
2637 	uint64_t tag;
2638 	struct tsbe *tsbe_addr;
2639 	uint64_t tsb_base;
2640 	uint_t tsb_size;
2641 	int vpshift = MMU_PAGESHIFT;
2642 	int phys = 0;
2643 
2644 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2645 		phys = ktsb_phys;
2646 		if (ttesz >= TTE4M) {
2647 #ifndef sun4v
2648 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2649 #endif
2650 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2651 			tsb_size = ktsb4m_szcode;
2652 		} else {
2653 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2654 			tsb_size = ktsb_szcode;
2655 		}
2656 	} else {
2657 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2658 
2659 		/*
2660 		 * If there isn't a TSB for this page size, or the TSB is
2661 		 * swapped out, there is nothing to do.  Note that the latter
2662 		 * case seems impossible but can occur if hat_pageunload()
2663 		 * is called on an ISM mapping while the process is swapped
2664 		 * out.
2665 		 */
2666 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2667 			return;
2668 
2669 		/*
2670 		 * If another thread is in the middle of relocating a TSB
2671 		 * we can't unload the entry so set a flag so that the
2672 		 * TSB will be flushed before it can be accessed by the
2673 		 * process.
2674 		 */
2675 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2676 			if (ttep == NULL)
2677 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2678 			return;
2679 		}
2680 #if defined(UTSB_PHYS)
2681 		phys = 1;
2682 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2683 #else
2684 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2685 #endif
2686 		tsb_size = tsbinfop->tsb_szc;
2687 	}
2688 	if (ttesz >= TTE4M)
2689 		vpshift = MMU_PAGESHIFT4M;
2690 
2691 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2692 	tag = sfmmu_make_tsbtag(vaddr);
2693 
2694 	if (ttep == NULL) {
2695 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2696 	} else {
2697 		if (ttesz >= TTE4M) {
2698 			SFMMU_STAT(sf_tsb_load4m);
2699 		} else {
2700 			SFMMU_STAT(sf_tsb_load8k);
2701 		}
2702 
2703 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2704 	}
2705 }
2706 
2707 /*
2708  * Unmap all entries from [start, end) matching the given page size.
2709  *
2710  * This function is used primarily to unmap replicated 64K or 512K entries
2711  * from the TSB that are inserted using the base page size TSB pointer, but
2712  * it may also be called to unmap a range of addresses from the TSB.
2713  */
2714 void
2715 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2716 {
2717 	struct tsb_info *tsbinfop;
2718 	uint64_t tag;
2719 	struct tsbe *tsbe_addr;
2720 	caddr_t vaddr;
2721 	uint64_t tsb_base;
2722 	int vpshift, vpgsz;
2723 	uint_t tsb_size;
2724 	int phys = 0;
2725 
2726 	/*
2727 	 * Assumptions:
2728 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2729 	 *  at a time shooting down any valid entries we encounter.
2730 	 *
2731 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2732 	 *  down any valid mappings we find.
2733 	 */
2734 	if (sfmmup == ksfmmup) {
2735 		phys = ktsb_phys;
2736 		if (ttesz >= TTE4M) {
2737 #ifndef sun4v
2738 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2739 #endif
2740 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2741 			tsb_size = ktsb4m_szcode;
2742 		} else {
2743 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2744 			tsb_size = ktsb_szcode;
2745 		}
2746 	} else {
2747 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2748 
2749 		/*
2750 		 * If there isn't a TSB for this page size, or the TSB is
2751 		 * swapped out, there is nothing to do.  Note that the latter
2752 		 * case seems impossible but can occur if hat_pageunload()
2753 		 * is called on an ISM mapping while the process is swapped
2754 		 * out.
2755 		 */
2756 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2757 			return;
2758 
2759 		/*
2760 		 * If another thread is in the middle of relocating a TSB
2761 		 * we can't unload the entry so set a flag so that the
2762 		 * TSB will be flushed before it can be accessed by the
2763 		 * process.
2764 		 */
2765 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2766 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2767 			return;
2768 		}
2769 #if defined(UTSB_PHYS)
2770 		phys = 1;
2771 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2772 #else
2773 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2774 #endif
2775 		tsb_size = tsbinfop->tsb_szc;
2776 	}
2777 	if (ttesz >= TTE4M) {
2778 		vpshift = MMU_PAGESHIFT4M;
2779 		vpgsz = MMU_PAGESIZE4M;
2780 	} else {
2781 		vpshift = MMU_PAGESHIFT;
2782 		vpgsz = MMU_PAGESIZE;
2783 	}
2784 
2785 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2786 		tag = sfmmu_make_tsbtag(vaddr);
2787 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2788 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2789 	}
2790 }
2791 
2792 /*
2793  * Select the optimum TSB size given the number of mappings
2794  * that need to be cached.
2795  */
2796 static int
2797 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2798 {
2799 	int szc = 0;
2800 
2801 #ifdef DEBUG
2802 	if (tsb_grow_stress) {
2803 		uint32_t randval = (uint32_t)gettick() >> 4;
2804 		return (randval % (tsb_max_growsize + 1));
2805 	}
2806 #endif	/* DEBUG */
2807 
2808 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2809 		szc++;
2810 	return (szc);
2811 }
2812 
2813 /*
2814  * This function will add a translation to the hme_blk and allocate the
2815  * hme_blk if one does not exist.
2816  * If a page structure is specified then it will add the
2817  * corresponding hment to the mapping list.
2818  * It will also update the hmenum field for the tte.
2819  * Furthermore, it attempts to create a large page translation
2820  * for <addr,hat> at page array pps.  It assumes addr and first
2821  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2822  */
2823 static int
2824 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2825 	page_t **pps, uint_t flags, uint_t rid)
2826 {
2827 	struct hmehash_bucket *hmebp;
2828 	struct hme_blk *hmeblkp;
2829 	int 	ret;
2830 	uint_t	size;
2831 
2832 	/*
2833 	 * Get mapping size.
2834 	 */
2835 	size = TTE_CSZ(ttep);
2836 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2837 
2838 	/*
2839 	 * Acquire the hash bucket.
2840 	 */
2841 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2842 	ASSERT(hmebp);
2843 
2844 	/*
2845 	 * Find the hment block.
2846 	 */
2847 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2848 	    rid);
2849 	ASSERT(hmeblkp);
2850 
2851 	/*
2852 	 * Add the translation.
2853 	 */
2854 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2855 	    rid);
2856 
2857 	/*
2858 	 * Release the hash bucket.
2859 	 */
2860 	sfmmu_tteload_release_hashbucket(hmebp);
2861 
2862 	return (ret);
2863 }
2864 
2865 /*
2866  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2867  */
2868 static struct hmehash_bucket *
2869 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2870     uint_t rid)
2871 {
2872 	struct hmehash_bucket *hmebp;
2873 	int hmeshift;
2874 	void *htagid = sfmmutohtagid(sfmmup, rid);
2875 
2876 	ASSERT(htagid != NULL);
2877 
2878 	hmeshift = HME_HASH_SHIFT(size);
2879 
2880 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2881 
2882 	SFMMU_HASH_LOCK(hmebp);
2883 
2884 	return (hmebp);
2885 }
2886 
2887 /*
2888  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2889  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2890  * allocated.
2891  */
2892 static struct hme_blk *
2893 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2894 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2895 {
2896 	hmeblk_tag hblktag;
2897 	int hmeshift;
2898 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2899 
2900 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2901 
2902 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2903 	ASSERT(hblktag.htag_id != NULL);
2904 	hmeshift = HME_HASH_SHIFT(size);
2905 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2906 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2907 	hblktag.htag_rid = rid;
2908 
2909 ttearray_realloc:
2910 
2911 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2912 
2913 	/*
2914 	 * We block until hblk_reserve_lock is released; it's held by
2915 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2916 	 * replaced by a hblk from sfmmu8_cache.
2917 	 */
2918 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2919 	    hblk_reserve_thread != curthread) {
2920 		SFMMU_HASH_UNLOCK(hmebp);
2921 		mutex_enter(&hblk_reserve_lock);
2922 		mutex_exit(&hblk_reserve_lock);
2923 		SFMMU_STAT(sf_hblk_reserve_hit);
2924 		SFMMU_HASH_LOCK(hmebp);
2925 		goto ttearray_realloc;
2926 	}
2927 
2928 	if (hmeblkp == NULL) {
2929 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2930 		    hblktag, flags, rid);
2931 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2932 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2933 	} else {
2934 		/*
2935 		 * It is possible for 8k and 64k hblks to collide since they
2936 		 * have the same rehash value. This is because we
2937 		 * lazily free hblks and 8K/64K blks could be lingering.
2938 		 * If we find size mismatch we free the block and & try again.
2939 		 */
2940 		if (get_hblk_ttesz(hmeblkp) != size) {
2941 			ASSERT(!hmeblkp->hblk_vcnt);
2942 			ASSERT(!hmeblkp->hblk_hmecnt);
2943 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2944 			    &list, 0);
2945 			goto ttearray_realloc;
2946 		}
2947 		if (hmeblkp->hblk_shw_bit) {
2948 			/*
2949 			 * if the hblk was previously used as a shadow hblk then
2950 			 * we will change it to a normal hblk
2951 			 */
2952 			ASSERT(!hmeblkp->hblk_shared);
2953 			if (hmeblkp->hblk_shw_mask) {
2954 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2955 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2956 				goto ttearray_realloc;
2957 			} else {
2958 				hmeblkp->hblk_shw_bit = 0;
2959 			}
2960 		}
2961 		SFMMU_STAT(sf_hblk_hit);
2962 	}
2963 
2964 	/*
2965 	 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
2966 	 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
2967 	 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
2968 	 * just add these hmeblks to the per-cpu pending queue.
2969 	 */
2970 	sfmmu_hblks_list_purge(&list, 1);
2971 
2972 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2973 	ASSERT(!hmeblkp->hblk_shw_bit);
2974 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2975 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2976 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2977 
2978 	return (hmeblkp);
2979 }
2980 
2981 /*
2982  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2983  * otherwise.
2984  */
2985 static int
2986 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2987 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2988 {
2989 	page_t *pp = *pps;
2990 	int hmenum, size, remap;
2991 	tte_t tteold, flush_tte;
2992 #ifdef DEBUG
2993 	tte_t orig_old;
2994 #endif /* DEBUG */
2995 	struct sf_hment *sfhme;
2996 	kmutex_t *pml, *pmtx;
2997 	hatlock_t *hatlockp;
2998 	int myflt;
2999 
3000 	/*
3001 	 * remove this panic when we decide to let user virtual address
3002 	 * space be >= USERLIMIT.
3003 	 */
3004 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3005 		panic("user addr %p in kernel space", (void *)vaddr);
3006 #if defined(TTE_IS_GLOBAL)
3007 	if (TTE_IS_GLOBAL(ttep))
3008 		panic("sfmmu_tteload: creating global tte");
3009 #endif
3010 
3011 #ifdef DEBUG
3012 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3013 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3014 		panic("sfmmu_tteload: non cacheable memory tte");
3015 #endif /* DEBUG */
3016 
3017 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
3018 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3019 		TTE_SET_REF(ttep);
3020 		TTE_SET_MOD(ttep);
3021 	}
3022 
3023 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3024 	    !TTE_IS_MOD(ttep)) {
3025 		/*
3026 		 * Don't load TSB for dummy as in ISM.  Also don't preload
3027 		 * the TSB if the TTE isn't writable since we're likely to
3028 		 * fault on it again -- preloading can be fairly expensive.
3029 		 */
3030 		flags |= SFMMU_NO_TSBLOAD;
3031 	}
3032 
3033 	size = TTE_CSZ(ttep);
3034 	switch (size) {
3035 	case TTE8K:
3036 		SFMMU_STAT(sf_tteload8k);
3037 		break;
3038 	case TTE64K:
3039 		SFMMU_STAT(sf_tteload64k);
3040 		break;
3041 	case TTE512K:
3042 		SFMMU_STAT(sf_tteload512k);
3043 		break;
3044 	case TTE4M:
3045 		SFMMU_STAT(sf_tteload4m);
3046 		break;
3047 	case (TTE32M):
3048 		SFMMU_STAT(sf_tteload32m);
3049 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3050 		break;
3051 	case (TTE256M):
3052 		SFMMU_STAT(sf_tteload256m);
3053 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3054 		break;
3055 	}
3056 
3057 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3058 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3059 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3060 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3061 
3062 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3063 
3064 	/*
3065 	 * Need to grab mlist lock here so that pageunload
3066 	 * will not change tte behind us.
3067 	 */
3068 	if (pp) {
3069 		pml = sfmmu_mlist_enter(pp);
3070 	}
3071 
3072 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3073 	/*
3074 	 * Look for corresponding hment and if valid verify
3075 	 * pfns are equal.
3076 	 */
3077 	remap = TTE_IS_VALID(&tteold);
3078 	if (remap) {
3079 		pfn_t	new_pfn, old_pfn;
3080 
3081 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3082 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3083 
3084 		if (flags & HAT_LOAD_REMAP) {
3085 			/* make sure we are remapping same type of pages */
3086 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3087 				panic("sfmmu_tteload - tte remap io<->memory");
3088 			}
3089 			if (old_pfn != new_pfn &&
3090 			    (pp != NULL || sfhme->hme_page != NULL)) {
3091 				panic("sfmmu_tteload - tte remap pp != NULL");
3092 			}
3093 		} else if (old_pfn != new_pfn) {
3094 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3095 			    (void *)hmeblkp);
3096 		}
3097 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3098 
3099 		if (TTE_IS_EXECUTABLE(&tteold) && TTE_IS_SOFTEXEC(ttep)) {
3100 			TTE_SET_EXEC(ttep);
3101 		}
3102 	}
3103 
3104 	if (pp) {
3105 		/*
3106 		 * If we know that this page will be executed, because
3107 		 * it was in the past (PP_ISEXEC is already true), or
3108 		 * if the caller says it will likely be executed
3109 		 * (HAT_LOAD_TEXT is true), then there is no need to
3110 		 * dynamically detect execution with a soft exec
3111 		 * fault. Enable hardware execute permission now.
3112 		 */
3113 		if ((PP_ISEXEC(pp) || (flags & HAT_LOAD_TEXT)) &&
3114 		    TTE_IS_SOFTEXEC(ttep)) {
3115 			TTE_SET_EXEC(ttep);
3116 		}
3117 
3118 		if (size == TTE8K) {
3119 #ifdef VAC
3120 			/*
3121 			 * Handle VAC consistency
3122 			 */
3123 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3124 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3125 			}
3126 #endif
3127 
3128 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3129 				pmtx = sfmmu_page_enter(pp);
3130 				PP_CLRRO(pp);
3131 				sfmmu_page_exit(pmtx);
3132 			} else if (!PP_ISMAPPED(pp) &&
3133 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3134 				pmtx = sfmmu_page_enter(pp);
3135 				if (!(PP_ISMOD(pp))) {
3136 					PP_SETRO(pp);
3137 				}
3138 				sfmmu_page_exit(pmtx);
3139 			}
3140 
3141 			if (TTE_EXECUTED(ttep)) {
3142 				pmtx = sfmmu_page_enter(pp);
3143 				PP_SETEXEC(pp);
3144 				sfmmu_page_exit(pmtx);
3145 			}
3146 
3147 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3148 			/*
3149 			 * sfmmu_pagearray_setup failed so return
3150 			 */
3151 			sfmmu_mlist_exit(pml);
3152 			return (1);
3153 		}
3154 
3155 	} else if (TTE_IS_SOFTEXEC(ttep)) {
3156 		TTE_SET_EXEC(ttep);
3157 	}
3158 
3159 	/*
3160 	 * Make sure hment is not on a mapping list.
3161 	 */
3162 	ASSERT(remap || (sfhme->hme_page == NULL));
3163 
3164 	/* if it is not a remap then hme->next better be NULL */
3165 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3166 
3167 	if (flags & HAT_LOAD_LOCK) {
3168 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3169 			panic("too high lckcnt-hmeblk %p",
3170 			    (void *)hmeblkp);
3171 		}
3172 		atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3173 
3174 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3175 	}
3176 
3177 #ifdef VAC
3178 	if (pp && PP_ISNC(pp)) {
3179 		/*
3180 		 * If the physical page is marked to be uncacheable, like
3181 		 * by a vac conflict, make sure the new mapping is also
3182 		 * uncacheable.
3183 		 */
3184 		TTE_CLR_VCACHEABLE(ttep);
3185 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3186 	}
3187 #endif
3188 	ttep->tte_hmenum = hmenum;
3189 
3190 #ifdef DEBUG
3191 	orig_old = tteold;
3192 #endif /* DEBUG */
3193 
3194 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3195 		if ((sfmmup == KHATID) &&
3196 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3197 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3198 		}
3199 #ifdef DEBUG
3200 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3201 #endif /* DEBUG */
3202 	}
3203 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3204 
3205 	if (!TTE_IS_VALID(&tteold)) {
3206 
3207 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3208 		if (rid == SFMMU_INVALID_SHMERID) {
3209 			atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3210 		} else {
3211 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3212 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3213 			/*
3214 			 * We already accounted for region ttecnt's in sfmmu
3215 			 * during hat_join_region() processing. Here we
3216 			 * only update ttecnt's in region struture.
3217 			 */
3218 			atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3219 		}
3220 	}
3221 
3222 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3223 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3224 	    sfmmup != ksfmmup) {
3225 		uchar_t tteflag = 1 << size;
3226 		if (rid == SFMMU_INVALID_SHMERID) {
3227 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3228 				hatlockp = sfmmu_hat_enter(sfmmup);
3229 				sfmmup->sfmmu_tteflags |= tteflag;
3230 				if (&mmu_set_pgsz_order) {
3231 					mmu_set_pgsz_order(sfmmup, 1);
3232 				}
3233 				sfmmu_hat_exit(hatlockp);
3234 			}
3235 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3236 			hatlockp = sfmmu_hat_enter(sfmmup);
3237 			sfmmup->sfmmu_rtteflags |= tteflag;
3238 			if (&mmu_set_pgsz_order && sfmmup !=  ksfmmup) {
3239 				mmu_set_pgsz_order(sfmmup, 1);
3240 			}
3241 			sfmmu_hat_exit(hatlockp);
3242 		}
3243 		/*
3244 		 * Update the current CPU tsbmiss area, so the current thread
3245 		 * won't need to take the tsbmiss for the new pagesize.
3246 		 * The other threads in the process will update their tsb
3247 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3248 		 * fail to find the translation for a newly added pagesize.
3249 		 */
3250 		if (size > TTE64K && myflt) {
3251 			struct tsbmiss *tsbmp;
3252 			kpreempt_disable();
3253 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3254 			if (rid == SFMMU_INVALID_SHMERID) {
3255 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3256 					tsbmp->uhat_tteflags |= tteflag;
3257 				}
3258 			} else {
3259 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3260 					tsbmp->uhat_rtteflags |= tteflag;
3261 				}
3262 			}
3263 			kpreempt_enable();
3264 		}
3265 	}
3266 
3267 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3268 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3269 		hatlockp = sfmmu_hat_enter(sfmmup);
3270 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3271 		sfmmu_hat_exit(hatlockp);
3272 	}
3273 
3274 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3275 	    hw_tte.tte_intlo;
3276 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3277 	    hw_tte.tte_inthi;
3278 
3279 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3280 		/*
3281 		 * If remap and new tte differs from old tte we need
3282 		 * to sync the mod bit and flush TLB/TSB.  We don't
3283 		 * need to sync ref bit because we currently always set
3284 		 * ref bit in tteload.
3285 		 */
3286 		ASSERT(TTE_IS_REF(ttep));
3287 		if (TTE_IS_MOD(&tteold) || (TTE_EXECUTED(&tteold) &&
3288 		    !TTE_IS_EXECUTABLE(ttep))) {
3289 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3290 		}
3291 		/*
3292 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3293 		 * hmes are only used for read only text. Adding this code for
3294 		 * completeness and future use of shared hmeblks with writable
3295 		 * mappings of VMODSORT vnodes.
3296 		 */
3297 		if (hmeblkp->hblk_shared) {
3298 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3299 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3300 			xt_sync(cpuset);
3301 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3302 		} else {
3303 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3304 			xt_sync(sfmmup->sfmmu_cpusran);
3305 		}
3306 	}
3307 
3308 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3309 		/*
3310 		 * We only preload 8K and 4M mappings into the TSB, since
3311 		 * 64K and 512K mappings are replicated and hence don't
3312 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3313 		 */
3314 		if (size == TTE8K || size == TTE4M) {
3315 			sf_scd_t *scdp;
3316 			hatlockp = sfmmu_hat_enter(sfmmup);
3317 			/*
3318 			 * Don't preload private TSB if the mapping is used
3319 			 * by the shctx in the SCD.
3320 			 */
3321 			scdp = sfmmup->sfmmu_scdp;
3322 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3323 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3324 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3325 				    size);
3326 			}
3327 			sfmmu_hat_exit(hatlockp);
3328 		}
3329 	}
3330 	if (pp) {
3331 		if (!remap) {
3332 			HME_ADD(sfhme, pp);
3333 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3334 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3335 
3336 			/*
3337 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3338 			 * see pageunload() for comment.
3339 			 */
3340 		}
3341 		sfmmu_mlist_exit(pml);
3342 	}
3343 
3344 	return (0);
3345 }
3346 /*
3347  * Function unlocks hash bucket.
3348  */
3349 static void
3350 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3351 {
3352 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3353 	SFMMU_HASH_UNLOCK(hmebp);
3354 }
3355 
3356 /*
3357  * function which checks and sets up page array for a large
3358  * translation.  Will set p_vcolor, p_index, p_ro fields.
3359  * Assumes addr and pfnum of first page are properly aligned.
3360  * Will check for physical contiguity. If check fails it return
3361  * non null.
3362  */
3363 static int
3364 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3365 {
3366 	int 	i, index, ttesz;
3367 	pfn_t	pfnum;
3368 	pgcnt_t	npgs;
3369 	page_t *pp, *pp1;
3370 	kmutex_t *pmtx;
3371 #ifdef VAC
3372 	int osz;
3373 	int cflags = 0;
3374 	int vac_err = 0;
3375 #endif
3376 	int newidx = 0;
3377 
3378 	ttesz = TTE_CSZ(ttep);
3379 
3380 	ASSERT(ttesz > TTE8K);
3381 
3382 	npgs = TTEPAGES(ttesz);
3383 	index = PAGESZ_TO_INDEX(ttesz);
3384 
3385 	pfnum = (*pps)->p_pagenum;
3386 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3387 
3388 	/*
3389 	 * Save the first pp so we can do HAT_TMPNC at the end.
3390 	 */
3391 	pp1 = *pps;
3392 #ifdef VAC
3393 	osz = fnd_mapping_sz(pp1);
3394 #endif
3395 
3396 	for (i = 0; i < npgs; i++, pps++) {
3397 		pp = *pps;
3398 		ASSERT(PAGE_LOCKED(pp));
3399 		ASSERT(pp->p_szc >= ttesz);
3400 		ASSERT(pp->p_szc == pp1->p_szc);
3401 		ASSERT(sfmmu_mlist_held(pp));
3402 
3403 		/*
3404 		 * XXX is it possible to maintain P_RO on the root only?
3405 		 */
3406 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3407 			pmtx = sfmmu_page_enter(pp);
3408 			PP_CLRRO(pp);
3409 			sfmmu_page_exit(pmtx);
3410 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3411 		    !PP_ISMOD(pp)) {
3412 			pmtx = sfmmu_page_enter(pp);
3413 			if (!(PP_ISMOD(pp))) {
3414 				PP_SETRO(pp);
3415 			}
3416 			sfmmu_page_exit(pmtx);
3417 		}
3418 
3419 		if (TTE_EXECUTED(ttep)) {
3420 			pmtx = sfmmu_page_enter(pp);
3421 			PP_SETEXEC(pp);
3422 			sfmmu_page_exit(pmtx);
3423 		}
3424 
3425 		/*
3426 		 * If this is a remap we skip vac & contiguity checks.
3427 		 */
3428 		if (remap)
3429 			continue;
3430 
3431 		/*
3432 		 * set p_vcolor and detect any vac conflicts.
3433 		 */
3434 #ifdef VAC
3435 		if (vac_err == 0) {
3436 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3437 
3438 		}
3439 #endif
3440 
3441 		/*
3442 		 * Save current index in case we need to undo it.
3443 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3444 		 *	"SFMMU_INDEX_SHIFT	6"
3445 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3446 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3447 		 *
3448 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3449 		 *	if ttesz == 1 then index = 0x2
3450 		 *		    2 then index = 0x4
3451 		 *		    3 then index = 0x8
3452 		 *		    4 then index = 0x10
3453 		 *		    5 then index = 0x20
3454 		 * The code below checks if it's a new pagesize (ie, newidx)
3455 		 * in case we need to take it back out of p_index,
3456 		 * and then or's the new index into the existing index.
3457 		 */
3458 		if ((PP_MAPINDEX(pp) & index) == 0)
3459 			newidx = 1;
3460 		pp->p_index = (PP_MAPINDEX(pp) | index);
3461 
3462 		/*
3463 		 * contiguity check
3464 		 */
3465 		if (pp->p_pagenum != pfnum) {
3466 			/*
3467 			 * If we fail the contiguity test then
3468 			 * the only thing we need to fix is the p_index field.
3469 			 * We might get a few extra flushes but since this
3470 			 * path is rare that is ok.  The p_ro field will
3471 			 * get automatically fixed on the next tteload to
3472 			 * the page.  NO TNC bit is set yet.
3473 			 */
3474 			while (i >= 0) {
3475 				pp = *pps;
3476 				if (newidx)
3477 					pp->p_index = (PP_MAPINDEX(pp) &
3478 					    ~index);
3479 				pps--;
3480 				i--;
3481 			}
3482 			return (1);
3483 		}
3484 		pfnum++;
3485 		addr += MMU_PAGESIZE;
3486 	}
3487 
3488 #ifdef VAC
3489 	if (vac_err) {
3490 		if (ttesz > osz) {
3491 			/*
3492 			 * There are some smaller mappings that causes vac
3493 			 * conflicts. Convert all existing small mappings to
3494 			 * TNC.
3495 			 */
3496 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3497 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3498 			    npgs);
3499 		} else {
3500 			/* EMPTY */
3501 			/*
3502 			 * If there exists an big page mapping,
3503 			 * that means the whole existing big page
3504 			 * has TNC setting already. No need to covert to
3505 			 * TNC again.
3506 			 */
3507 			ASSERT(PP_ISTNC(pp1));
3508 		}
3509 	}
3510 #endif	/* VAC */
3511 
3512 	return (0);
3513 }
3514 
3515 #ifdef VAC
3516 /*
3517  * Routine that detects vac consistency for a large page. It also
3518  * sets virtual color for all pp's for this big mapping.
3519  */
3520 static int
3521 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3522 {
3523 	int vcolor, ocolor;
3524 
3525 	ASSERT(sfmmu_mlist_held(pp));
3526 
3527 	if (PP_ISNC(pp)) {
3528 		return (HAT_TMPNC);
3529 	}
3530 
3531 	vcolor = addr_to_vcolor(addr);
3532 	if (PP_NEWPAGE(pp)) {
3533 		PP_SET_VCOLOR(pp, vcolor);
3534 		return (0);
3535 	}
3536 
3537 	ocolor = PP_GET_VCOLOR(pp);
3538 	if (ocolor == vcolor) {
3539 		return (0);
3540 	}
3541 
3542 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3543 		/*
3544 		 * Previous user of page had a differnet color
3545 		 * but since there are no current users
3546 		 * we just flush the cache and change the color.
3547 		 * As an optimization for large pages we flush the
3548 		 * entire cache of that color and set a flag.
3549 		 */
3550 		SFMMU_STAT(sf_pgcolor_conflict);
3551 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3552 			CacheColor_SetFlushed(*cflags, ocolor);
3553 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3554 		}
3555 		PP_SET_VCOLOR(pp, vcolor);
3556 		return (0);
3557 	}
3558 
3559 	/*
3560 	 * We got a real conflict with a current mapping.
3561 	 * set flags to start unencaching all mappings
3562 	 * and return failure so we restart looping
3563 	 * the pp array from the beginning.
3564 	 */
3565 	return (HAT_TMPNC);
3566 }
3567 #endif	/* VAC */
3568 
3569 /*
3570  * creates a large page shadow hmeblk for a tte.
3571  * The purpose of this routine is to allow us to do quick unloads because
3572  * the vm layer can easily pass a very large but sparsely populated range.
3573  */
3574 static struct hme_blk *
3575 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3576 {
3577 	struct hmehash_bucket *hmebp;
3578 	hmeblk_tag hblktag;
3579 	int hmeshift, size, vshift;
3580 	uint_t shw_mask, newshw_mask;
3581 	struct hme_blk *hmeblkp;
3582 
3583 	ASSERT(sfmmup != KHATID);
3584 	if (mmu_page_sizes == max_mmu_page_sizes) {
3585 		ASSERT(ttesz < TTE256M);
3586 	} else {
3587 		ASSERT(ttesz < TTE4M);
3588 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3589 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3590 	}
3591 
3592 	if (ttesz == TTE8K) {
3593 		size = TTE512K;
3594 	} else {
3595 		size = ++ttesz;
3596 	}
3597 
3598 	hblktag.htag_id = sfmmup;
3599 	hmeshift = HME_HASH_SHIFT(size);
3600 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3601 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3602 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3603 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3604 
3605 	SFMMU_HASH_LOCK(hmebp);
3606 
3607 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3608 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3609 	if (hmeblkp == NULL) {
3610 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3611 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3612 	}
3613 	ASSERT(hmeblkp);
3614 	if (!hmeblkp->hblk_shw_mask) {
3615 		/*
3616 		 * if this is a unused hblk it was just allocated or could
3617 		 * potentially be a previous large page hblk so we need to
3618 		 * set the shadow bit.
3619 		 */
3620 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3621 		hmeblkp->hblk_shw_bit = 1;
3622 	} else if (hmeblkp->hblk_shw_bit == 0) {
3623 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3624 		    (void *)hmeblkp);
3625 	}
3626 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3627 	ASSERT(!hmeblkp->hblk_shared);
3628 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3629 	ASSERT(vshift < 8);
3630 	/*
3631 	 * Atomically set shw mask bit
3632 	 */
3633 	do {
3634 		shw_mask = hmeblkp->hblk_shw_mask;
3635 		newshw_mask = shw_mask | (1 << vshift);
3636 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3637 		    newshw_mask);
3638 	} while (newshw_mask != shw_mask);
3639 
3640 	SFMMU_HASH_UNLOCK(hmebp);
3641 
3642 	return (hmeblkp);
3643 }
3644 
3645 /*
3646  * This routine cleanup a previous shadow hmeblk and changes it to
3647  * a regular hblk.  This happens rarely but it is possible
3648  * when a process wants to use large pages and there are hblks still
3649  * lying around from the previous as that used these hmeblks.
3650  * The alternative was to cleanup the shadow hblks at unload time
3651  * but since so few user processes actually use large pages, it is
3652  * better to be lazy and cleanup at this time.
3653  */
3654 static void
3655 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3656 	struct hmehash_bucket *hmebp)
3657 {
3658 	caddr_t addr, endaddr;
3659 	int hashno, size;
3660 
3661 	ASSERT(hmeblkp->hblk_shw_bit);
3662 	ASSERT(!hmeblkp->hblk_shared);
3663 
3664 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3665 
3666 	if (!hmeblkp->hblk_shw_mask) {
3667 		hmeblkp->hblk_shw_bit = 0;
3668 		return;
3669 	}
3670 	addr = (caddr_t)get_hblk_base(hmeblkp);
3671 	endaddr = get_hblk_endaddr(hmeblkp);
3672 	size = get_hblk_ttesz(hmeblkp);
3673 	hashno = size - 1;
3674 	ASSERT(hashno > 0);
3675 	SFMMU_HASH_UNLOCK(hmebp);
3676 
3677 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3678 
3679 	SFMMU_HASH_LOCK(hmebp);
3680 }
3681 
3682 static void
3683 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3684 	int hashno)
3685 {
3686 	int hmeshift, shadow = 0;
3687 	hmeblk_tag hblktag;
3688 	struct hmehash_bucket *hmebp;
3689 	struct hme_blk *hmeblkp;
3690 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3691 
3692 	ASSERT(hashno > 0);
3693 	hblktag.htag_id = sfmmup;
3694 	hblktag.htag_rehash = hashno;
3695 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3696 
3697 	hmeshift = HME_HASH_SHIFT(hashno);
3698 
3699 	while (addr < endaddr) {
3700 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3701 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3702 		SFMMU_HASH_LOCK(hmebp);
3703 		/* inline HME_HASH_SEARCH */
3704 		hmeblkp = hmebp->hmeblkp;
3705 		pr_hblk = NULL;
3706 		while (hmeblkp) {
3707 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3708 				/* found hme_blk */
3709 				ASSERT(!hmeblkp->hblk_shared);
3710 				if (hmeblkp->hblk_shw_bit) {
3711 					if (hmeblkp->hblk_shw_mask) {
3712 						shadow = 1;
3713 						sfmmu_shadow_hcleanup(sfmmup,
3714 						    hmeblkp, hmebp);
3715 						break;
3716 					} else {
3717 						hmeblkp->hblk_shw_bit = 0;
3718 					}
3719 				}
3720 
3721 				/*
3722 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3723 				 * since hblk_unload() does not gurantee that.
3724 				 *
3725 				 * XXX - this could cause tteload() to spin
3726 				 * where sfmmu_shadow_hcleanup() is called.
3727 				 */
3728 			}
3729 
3730 			nx_hblk = hmeblkp->hblk_next;
3731 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3732 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3733 				    &list, 0);
3734 			} else {
3735 				pr_hblk = hmeblkp;
3736 			}
3737 			hmeblkp = nx_hblk;
3738 		}
3739 
3740 		SFMMU_HASH_UNLOCK(hmebp);
3741 
3742 		if (shadow) {
3743 			/*
3744 			 * We found another shadow hblk so cleaned its
3745 			 * children.  We need to go back and cleanup
3746 			 * the original hblk so we don't change the
3747 			 * addr.
3748 			 */
3749 			shadow = 0;
3750 		} else {
3751 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3752 			    (1 << hmeshift));
3753 		}
3754 	}
3755 	sfmmu_hblks_list_purge(&list, 0);
3756 }
3757 
3758 /*
3759  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3760  * may still linger on after pageunload.
3761  */
3762 static void
3763 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3764 {
3765 	int hmeshift;
3766 	hmeblk_tag hblktag;
3767 	struct hmehash_bucket *hmebp;
3768 	struct hme_blk *hmeblkp;
3769 	struct hme_blk *pr_hblk;
3770 	struct hme_blk *list = NULL;
3771 
3772 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3773 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3774 
3775 	hmeshift = HME_HASH_SHIFT(ttesz);
3776 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3777 	hblktag.htag_rehash = ttesz;
3778 	hblktag.htag_rid = rid;
3779 	hblktag.htag_id = srdp;
3780 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3781 
3782 	SFMMU_HASH_LOCK(hmebp);
3783 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3784 	if (hmeblkp != NULL) {
3785 		ASSERT(hmeblkp->hblk_shared);
3786 		ASSERT(!hmeblkp->hblk_shw_bit);
3787 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3788 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3789 		}
3790 		ASSERT(!hmeblkp->hblk_lckcnt);
3791 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3792 		    &list, 0);
3793 	}
3794 	SFMMU_HASH_UNLOCK(hmebp);
3795 	sfmmu_hblks_list_purge(&list, 0);
3796 }
3797 
3798 /* ARGSUSED */
3799 static void
3800 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3801     size_t r_size, void *r_obj, u_offset_t r_objoff)
3802 {
3803 }
3804 
3805 /*
3806  * Searches for an hmeblk which maps addr, then unloads this mapping
3807  * and updates *eaddrp, if the hmeblk is found.
3808  */
3809 static void
3810 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3811     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3812 {
3813 	int hmeshift;
3814 	hmeblk_tag hblktag;
3815 	struct hmehash_bucket *hmebp;
3816 	struct hme_blk *hmeblkp;
3817 	struct hme_blk *pr_hblk;
3818 	struct hme_blk *list = NULL;
3819 
3820 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3821 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3822 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3823 
3824 	hmeshift = HME_HASH_SHIFT(ttesz);
3825 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3826 	hblktag.htag_rehash = ttesz;
3827 	hblktag.htag_rid = rid;
3828 	hblktag.htag_id = srdp;
3829 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3830 
3831 	SFMMU_HASH_LOCK(hmebp);
3832 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3833 	if (hmeblkp != NULL) {
3834 		ASSERT(hmeblkp->hblk_shared);
3835 		ASSERT(!hmeblkp->hblk_lckcnt);
3836 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3837 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3838 			    eaddr, NULL, HAT_UNLOAD);
3839 			ASSERT(*eaddrp > addr);
3840 		}
3841 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3842 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3843 		    &list, 0);
3844 	}
3845 	SFMMU_HASH_UNLOCK(hmebp);
3846 	sfmmu_hblks_list_purge(&list, 0);
3847 }
3848 
3849 static void
3850 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3851 {
3852 	int ttesz = rgnp->rgn_pgszc;
3853 	size_t rsz = rgnp->rgn_size;
3854 	caddr_t rsaddr = rgnp->rgn_saddr;
3855 	caddr_t readdr = rsaddr + rsz;
3856 	caddr_t rhsaddr;
3857 	caddr_t va;
3858 	uint_t rid = rgnp->rgn_id;
3859 	caddr_t cbsaddr;
3860 	caddr_t cbeaddr;
3861 	hat_rgn_cb_func_t rcbfunc;
3862 	ulong_t cnt;
3863 
3864 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3865 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3866 
3867 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3868 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3869 	if (ttesz < HBLK_MIN_TTESZ) {
3870 		ttesz = HBLK_MIN_TTESZ;
3871 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3872 	} else {
3873 		rhsaddr = rsaddr;
3874 	}
3875 
3876 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3877 		rcbfunc = sfmmu_rgn_cb_noop;
3878 	}
3879 
3880 	while (ttesz >= HBLK_MIN_TTESZ) {
3881 		cbsaddr = rsaddr;
3882 		cbeaddr = rsaddr;
3883 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3884 			ttesz--;
3885 			continue;
3886 		}
3887 		cnt = 0;
3888 		va = rsaddr;
3889 		while (va < readdr) {
3890 			ASSERT(va >= rhsaddr);
3891 			if (va != cbeaddr) {
3892 				if (cbeaddr != cbsaddr) {
3893 					ASSERT(cbeaddr > cbsaddr);
3894 					(*rcbfunc)(cbsaddr, cbeaddr,
3895 					    rsaddr, rsz, rgnp->rgn_obj,
3896 					    rgnp->rgn_objoff);
3897 				}
3898 				cbsaddr = va;
3899 				cbeaddr = va;
3900 			}
3901 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3902 			    ttesz, &cbeaddr);
3903 			cnt++;
3904 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3905 		}
3906 		if (cbeaddr != cbsaddr) {
3907 			ASSERT(cbeaddr > cbsaddr);
3908 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3909 			    rsz, rgnp->rgn_obj,
3910 			    rgnp->rgn_objoff);
3911 		}
3912 		ttesz--;
3913 	}
3914 }
3915 
3916 /*
3917  * Release one hardware address translation lock on the given address range.
3918  */
3919 void
3920 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3921 {
3922 	struct hmehash_bucket *hmebp;
3923 	hmeblk_tag hblktag;
3924 	int hmeshift, hashno = 1;
3925 	struct hme_blk *hmeblkp, *list = NULL;
3926 	caddr_t endaddr;
3927 
3928 	ASSERT(sfmmup != NULL);
3929 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3930 
3931 	ASSERT((sfmmup == ksfmmup) ||
3932 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3933 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3934 	endaddr = addr + len;
3935 	hblktag.htag_id = sfmmup;
3936 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3937 
3938 	/*
3939 	 * Spitfire supports 4 page sizes.
3940 	 * Most pages are expected to be of the smallest page size (8K) and
3941 	 * these will not need to be rehashed. 64K pages also don't need to be
3942 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3943 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3944 	 */
3945 	while (addr < endaddr) {
3946 		hmeshift = HME_HASH_SHIFT(hashno);
3947 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3948 		hblktag.htag_rehash = hashno;
3949 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3950 
3951 		SFMMU_HASH_LOCK(hmebp);
3952 
3953 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3954 		if (hmeblkp != NULL) {
3955 			ASSERT(!hmeblkp->hblk_shared);
3956 			/*
3957 			 * If we encounter a shadow hmeblk then
3958 			 * we know there are no valid hmeblks mapping
3959 			 * this address at this size or larger.
3960 			 * Just increment address by the smallest
3961 			 * page size.
3962 			 */
3963 			if (hmeblkp->hblk_shw_bit) {
3964 				addr += MMU_PAGESIZE;
3965 			} else {
3966 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3967 				    endaddr);
3968 			}
3969 			SFMMU_HASH_UNLOCK(hmebp);
3970 			hashno = 1;
3971 			continue;
3972 		}
3973 		SFMMU_HASH_UNLOCK(hmebp);
3974 
3975 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3976 			/*
3977 			 * We have traversed the whole list and rehashed
3978 			 * if necessary without finding the address to unlock
3979 			 * which should never happen.
3980 			 */
3981 			panic("sfmmu_unlock: addr not found. "
3982 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3983 		} else {
3984 			hashno++;
3985 		}
3986 	}
3987 
3988 	sfmmu_hblks_list_purge(&list, 0);
3989 }
3990 
3991 void
3992 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3993     hat_region_cookie_t rcookie)
3994 {
3995 	sf_srd_t *srdp;
3996 	sf_region_t *rgnp;
3997 	int ttesz;
3998 	uint_t rid;
3999 	caddr_t eaddr;
4000 	caddr_t va;
4001 	int hmeshift;
4002 	hmeblk_tag hblktag;
4003 	struct hmehash_bucket *hmebp;
4004 	struct hme_blk *hmeblkp;
4005 	struct hme_blk *pr_hblk;
4006 	struct hme_blk *list;
4007 
4008 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
4009 		hat_unlock(sfmmup, addr, len);
4010 		return;
4011 	}
4012 
4013 	ASSERT(sfmmup != NULL);
4014 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4015 	ASSERT(sfmmup != ksfmmup);
4016 
4017 	srdp = sfmmup->sfmmu_srdp;
4018 	rid = (uint_t)((uint64_t)rcookie);
4019 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
4020 	eaddr = addr + len;
4021 	va = addr;
4022 	list = NULL;
4023 	rgnp = srdp->srd_hmergnp[rid];
4024 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4025 
4026 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4027 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4028 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4029 		ttesz = HBLK_MIN_TTESZ;
4030 	} else {
4031 		ttesz = rgnp->rgn_pgszc;
4032 	}
4033 	while (va < eaddr) {
4034 		while (ttesz < rgnp->rgn_pgszc &&
4035 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4036 			ttesz++;
4037 		}
4038 		while (ttesz >= HBLK_MIN_TTESZ) {
4039 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4040 				ttesz--;
4041 				continue;
4042 			}
4043 			hmeshift = HME_HASH_SHIFT(ttesz);
4044 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4045 			hblktag.htag_rehash = ttesz;
4046 			hblktag.htag_rid = rid;
4047 			hblktag.htag_id = srdp;
4048 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4049 			SFMMU_HASH_LOCK(hmebp);
4050 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4051 			    &list);
4052 			if (hmeblkp == NULL) {
4053 				SFMMU_HASH_UNLOCK(hmebp);
4054 				ttesz--;
4055 				continue;
4056 			}
4057 			ASSERT(hmeblkp->hblk_shared);
4058 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4059 			ASSERT(va >= eaddr ||
4060 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4061 			SFMMU_HASH_UNLOCK(hmebp);
4062 			break;
4063 		}
4064 		if (ttesz < HBLK_MIN_TTESZ) {
4065 			panic("hat_unlock_region: addr not found "
4066 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
4067 		}
4068 	}
4069 	sfmmu_hblks_list_purge(&list, 0);
4070 }
4071 
4072 /*
4073  * Function to unlock a range of addresses in an hmeblk.  It returns the
4074  * next address that needs to be unlocked.
4075  * Should be called with the hash lock held.
4076  */
4077 static caddr_t
4078 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4079 {
4080 	struct sf_hment *sfhme;
4081 	tte_t tteold, ttemod;
4082 	int ttesz, ret;
4083 
4084 	ASSERT(in_hblk_range(hmeblkp, addr));
4085 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4086 
4087 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4088 	ttesz = get_hblk_ttesz(hmeblkp);
4089 
4090 	HBLKTOHME(sfhme, hmeblkp, addr);
4091 	while (addr < endaddr) {
4092 readtte:
4093 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4094 		if (TTE_IS_VALID(&tteold)) {
4095 
4096 			ttemod = tteold;
4097 
4098 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4099 			    &sfhme->hme_tte);
4100 
4101 			if (ret < 0)
4102 				goto readtte;
4103 
4104 			if (hmeblkp->hblk_lckcnt == 0)
4105 				panic("zero hblk lckcnt");
4106 
4107 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4108 			    (uintptr_t)endaddr)
4109 				panic("can't unlock large tte");
4110 
4111 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4112 			atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4113 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4114 		} else {
4115 			panic("sfmmu_hblk_unlock: invalid tte");
4116 		}
4117 		addr += TTEBYTES(ttesz);
4118 		sfhme++;
4119 	}
4120 	return (addr);
4121 }
4122 
4123 /*
4124  * Physical Address Mapping Framework
4125  *
4126  * General rules:
4127  *
4128  * (1) Applies only to seg_kmem memory pages. To make things easier,
4129  *     seg_kpm addresses are also accepted by the routines, but nothing
4130  *     is done with them since by definition their PA mappings are static.
4131  * (2) hat_add_callback() may only be called while holding the page lock
4132  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4133  *     or passing HAC_PAGELOCK flag.
4134  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4135  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4136  *     callbacks may not sleep or acquire adaptive mutex locks.
4137  * (4) Either prehandler() or posthandler() (but not both) may be specified
4138  *     as being NULL.  Specifying an errhandler() is optional.
4139  *
4140  * Details of using the framework:
4141  *
4142  * registering a callback (hat_register_callback())
4143  *
4144  *	Pass prehandler, posthandler, errhandler addresses
4145  *	as described below. If capture_cpus argument is nonzero,
4146  *	suspend callback to the prehandler will occur with CPUs
4147  *	captured and executing xc_loop() and CPUs will remain
4148  *	captured until after the posthandler suspend callback
4149  *	occurs.
4150  *
4151  * adding a callback (hat_add_callback())
4152  *
4153  *      as_pagelock();
4154  *	hat_add_callback();
4155  *      save returned pfn in private data structures or program registers;
4156  *      as_pageunlock();
4157  *
4158  * prehandler()
4159  *
4160  *	Stop all accesses by physical address to this memory page.
4161  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4162  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4163  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4164  *	locks must be XCALL_PIL or higher locks).
4165  *
4166  *	May return the following errors:
4167  *		EIO:	A fatal error has occurred. This will result in panic.
4168  *		EAGAIN:	The page cannot be suspended. This will fail the
4169  *			relocation.
4170  *		0:	Success.
4171  *
4172  * posthandler()
4173  *
4174  *      Save new pfn in private data structures or program registers;
4175  *	not allowed to fail (non-zero return values will result in panic).
4176  *
4177  * errhandler()
4178  *
4179  *	called when an error occurs related to the callback.  Currently
4180  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4181  *	a page is being freed, but there are still outstanding callback(s)
4182  *	registered on the page.
4183  *
4184  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4185  *
4186  *	stop using physical address
4187  *	hat_delete_callback();
4188  *
4189  */
4190 
4191 /*
4192  * Register a callback class.  Each subsystem should do this once and
4193  * cache the id_t returned for use in setting up and tearing down callbacks.
4194  *
4195  * There is no facility for removing callback IDs once they are created;
4196  * the "key" should be unique for each module, so in case a module is unloaded
4197  * and subsequently re-loaded, we can recycle the module's previous entry.
4198  */
4199 id_t
4200 hat_register_callback(int key,
4201 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4202 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4203 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4204 	int capture_cpus)
4205 {
4206 	id_t id;
4207 
4208 	/*
4209 	 * Search the table for a pre-existing callback associated with
4210 	 * the identifier "key".  If one exists, we re-use that entry in
4211 	 * the table for this instance, otherwise we assign the next
4212 	 * available table slot.
4213 	 */
4214 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4215 		if (sfmmu_cb_table[id].key == key)
4216 			break;
4217 	}
4218 
4219 	if (id == sfmmu_max_cb_id) {
4220 		id = sfmmu_cb_nextid++;
4221 		if (id >= sfmmu_max_cb_id)
4222 			panic("hat_register_callback: out of callback IDs");
4223 	}
4224 
4225 	ASSERT(prehandler != NULL || posthandler != NULL);
4226 
4227 	sfmmu_cb_table[id].key = key;
4228 	sfmmu_cb_table[id].prehandler = prehandler;
4229 	sfmmu_cb_table[id].posthandler = posthandler;
4230 	sfmmu_cb_table[id].errhandler = errhandler;
4231 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4232 
4233 	return (id);
4234 }
4235 
4236 #define	HAC_COOKIE_NONE	(void *)-1
4237 
4238 /*
4239  * Add relocation callbacks to the specified addr/len which will be called
4240  * when relocating the associated page. See the description of pre and
4241  * posthandler above for more details.
4242  *
4243  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4244  * locked internally so the caller must be able to deal with the callback
4245  * running even before this function has returned.  If HAC_PAGELOCK is not
4246  * set, it is assumed that the underlying memory pages are locked.
4247  *
4248  * Since the caller must track the individual page boundaries anyway,
4249  * we only allow a callback to be added to a single page (large
4250  * or small).  Thus [addr, addr + len) MUST be contained within a single
4251  * page.
4252  *
4253  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4254  * _provided_that_ a unique parameter is specified for each callback.
4255  * If multiple callbacks are registered on the same range the callback will
4256  * be invoked with each unique parameter. Registering the same callback with
4257  * the same argument more than once will result in corrupted kernel state.
4258  *
4259  * Returns the pfn of the underlying kernel page in *rpfn
4260  * on success, or PFN_INVALID on failure.
4261  *
4262  * cookiep (if passed) provides storage space for an opaque cookie
4263  * to return later to hat_delete_callback(). This cookie makes the callback
4264  * deletion significantly quicker by avoiding a potentially lengthy hash
4265  * search.
4266  *
4267  * Returns values:
4268  *    0:      success
4269  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4270  *    EINVAL: callback ID is not valid
4271  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4272  *            space
4273  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4274  */
4275 int
4276 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4277 	void *pvt, pfn_t *rpfn, void **cookiep)
4278 {
4279 	struct 		hmehash_bucket *hmebp;
4280 	hmeblk_tag 	hblktag;
4281 	struct hme_blk	*hmeblkp;
4282 	int 		hmeshift, hashno;
4283 	caddr_t 	saddr, eaddr, baseaddr;
4284 	struct pa_hment *pahmep;
4285 	struct sf_hment *sfhmep, *osfhmep;
4286 	kmutex_t	*pml;
4287 	tte_t   	tte;
4288 	page_t		*pp;
4289 	vnode_t		*vp;
4290 	u_offset_t	off;
4291 	pfn_t		pfn;
4292 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4293 	int		locked = 0;
4294 
4295 	/*
4296 	 * For KPM mappings, just return the physical address since we
4297 	 * don't need to register any callbacks.
4298 	 */
4299 	if (IS_KPM_ADDR(vaddr)) {
4300 		uint64_t paddr;
4301 		SFMMU_KPM_VTOP(vaddr, paddr);
4302 		*rpfn = btop(paddr);
4303 		if (cookiep != NULL)
4304 			*cookiep = HAC_COOKIE_NONE;
4305 		return (0);
4306 	}
4307 
4308 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4309 		*rpfn = PFN_INVALID;
4310 		return (EINVAL);
4311 	}
4312 
4313 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4314 		*rpfn = PFN_INVALID;
4315 		return (ENOMEM);
4316 	}
4317 
4318 	sfhmep = &pahmep->sfment;
4319 
4320 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4321 	eaddr = saddr + len;
4322 
4323 rehash:
4324 	/* Find the mapping(s) for this page */
4325 	for (hashno = TTE64K, hmeblkp = NULL;
4326 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4327 	    hashno++) {
4328 		hmeshift = HME_HASH_SHIFT(hashno);
4329 		hblktag.htag_id = ksfmmup;
4330 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4331 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4332 		hblktag.htag_rehash = hashno;
4333 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4334 
4335 		SFMMU_HASH_LOCK(hmebp);
4336 
4337 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4338 
4339 		if (hmeblkp == NULL)
4340 			SFMMU_HASH_UNLOCK(hmebp);
4341 	}
4342 
4343 	if (hmeblkp == NULL) {
4344 		kmem_cache_free(pa_hment_cache, pahmep);
4345 		*rpfn = PFN_INVALID;
4346 		return (ENXIO);
4347 	}
4348 
4349 	ASSERT(!hmeblkp->hblk_shared);
4350 
4351 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4352 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4353 
4354 	if (!TTE_IS_VALID(&tte)) {
4355 		SFMMU_HASH_UNLOCK(hmebp);
4356 		kmem_cache_free(pa_hment_cache, pahmep);
4357 		*rpfn = PFN_INVALID;
4358 		return (ENXIO);
4359 	}
4360 
4361 	/*
4362 	 * Make sure the boundaries for the callback fall within this
4363 	 * single mapping.
4364 	 */
4365 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4366 	ASSERT(saddr >= baseaddr);
4367 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4368 		SFMMU_HASH_UNLOCK(hmebp);
4369 		kmem_cache_free(pa_hment_cache, pahmep);
4370 		*rpfn = PFN_INVALID;
4371 		return (ERANGE);
4372 	}
4373 
4374 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4375 
4376 	/*
4377 	 * The pfn may not have a page_t underneath in which case we
4378 	 * just return it. This can happen if we are doing I/O to a
4379 	 * static portion of the kernel's address space, for instance.
4380 	 */
4381 	pp = osfhmep->hme_page;
4382 	if (pp == NULL) {
4383 		SFMMU_HASH_UNLOCK(hmebp);
4384 		kmem_cache_free(pa_hment_cache, pahmep);
4385 		*rpfn = pfn;
4386 		if (cookiep)
4387 			*cookiep = HAC_COOKIE_NONE;
4388 		return (0);
4389 	}
4390 	ASSERT(pp == PP_PAGEROOT(pp));
4391 
4392 	vp = pp->p_vnode;
4393 	off = pp->p_offset;
4394 
4395 	pml = sfmmu_mlist_enter(pp);
4396 
4397 	if (flags & HAC_PAGELOCK) {
4398 		if (!page_trylock(pp, SE_SHARED)) {
4399 			/*
4400 			 * Somebody is holding SE_EXCL lock. Might
4401 			 * even be hat_page_relocate(). Drop all
4402 			 * our locks, lookup the page in &kvp, and
4403 			 * retry. If it doesn't exist in &kvp and &zvp,
4404 			 * then we must be dealing with a kernel mapped
4405 			 * page which doesn't actually belong to
4406 			 * segkmem so we punt.
4407 			 */
4408 			sfmmu_mlist_exit(pml);
4409 			SFMMU_HASH_UNLOCK(hmebp);
4410 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4411 
4412 			/* check zvp before giving up */
4413 			if (pp == NULL)
4414 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4415 				    SE_SHARED);
4416 
4417 			/* Okay, we didn't find it, give up */
4418 			if (pp == NULL) {
4419 				kmem_cache_free(pa_hment_cache, pahmep);
4420 				*rpfn = pfn;
4421 				if (cookiep)
4422 					*cookiep = HAC_COOKIE_NONE;
4423 				return (0);
4424 			}
4425 			page_unlock(pp);
4426 			goto rehash;
4427 		}
4428 		locked = 1;
4429 	}
4430 
4431 	if (!PAGE_LOCKED(pp) && !panicstr)
4432 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4433 
4434 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4435 	    pp->p_offset != off) {
4436 		/*
4437 		 * The page moved before we got our hands on it.  Drop
4438 		 * all the locks and try again.
4439 		 */
4440 		ASSERT((flags & HAC_PAGELOCK) != 0);
4441 		sfmmu_mlist_exit(pml);
4442 		SFMMU_HASH_UNLOCK(hmebp);
4443 		page_unlock(pp);
4444 		locked = 0;
4445 		goto rehash;
4446 	}
4447 
4448 	if (!VN_ISKAS(vp)) {
4449 		/*
4450 		 * This is not a segkmem page but another page which
4451 		 * has been kernel mapped. It had better have at least
4452 		 * a share lock on it. Return the pfn.
4453 		 */
4454 		sfmmu_mlist_exit(pml);
4455 		SFMMU_HASH_UNLOCK(hmebp);
4456 		if (locked)
4457 			page_unlock(pp);
4458 		kmem_cache_free(pa_hment_cache, pahmep);
4459 		ASSERT(PAGE_LOCKED(pp));
4460 		*rpfn = pfn;
4461 		if (cookiep)
4462 			*cookiep = HAC_COOKIE_NONE;
4463 		return (0);
4464 	}
4465 
4466 	/*
4467 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4468 	 * the mapping list.
4469 	 */
4470 	pp->p_share++;
4471 	pahmep->cb_id = callback_id;
4472 	pahmep->addr = vaddr;
4473 	pahmep->len = len;
4474 	pahmep->refcnt = 1;
4475 	pahmep->flags = 0;
4476 	pahmep->pvt = pvt;
4477 
4478 	sfhmep->hme_tte.ll = 0;
4479 	sfhmep->hme_data = pahmep;
4480 	sfhmep->hme_prev = osfhmep;
4481 	sfhmep->hme_next = osfhmep->hme_next;
4482 
4483 	if (osfhmep->hme_next)
4484 		osfhmep->hme_next->hme_prev = sfhmep;
4485 
4486 	osfhmep->hme_next = sfhmep;
4487 
4488 	sfmmu_mlist_exit(pml);
4489 	SFMMU_HASH_UNLOCK(hmebp);
4490 
4491 	if (locked)
4492 		page_unlock(pp);
4493 
4494 	*rpfn = pfn;
4495 	if (cookiep)
4496 		*cookiep = (void *)pahmep;
4497 
4498 	return (0);
4499 }
4500 
4501 /*
4502  * Remove the relocation callbacks from the specified addr/len.
4503  */
4504 void
4505 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4506 	void *cookie)
4507 {
4508 	struct		hmehash_bucket *hmebp;
4509 	hmeblk_tag	hblktag;
4510 	struct hme_blk	*hmeblkp;
4511 	int		hmeshift, hashno;
4512 	caddr_t		saddr;
4513 	struct pa_hment	*pahmep;
4514 	struct sf_hment	*sfhmep, *osfhmep;
4515 	kmutex_t	*pml;
4516 	tte_t		tte;
4517 	page_t		*pp;
4518 	vnode_t		*vp;
4519 	u_offset_t	off;
4520 	int		locked = 0;
4521 
4522 	/*
4523 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4524 	 * remove so just return.
4525 	 */
4526 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4527 		return;
4528 
4529 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4530 
4531 rehash:
4532 	/* Find the mapping(s) for this page */
4533 	for (hashno = TTE64K, hmeblkp = NULL;
4534 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4535 	    hashno++) {
4536 		hmeshift = HME_HASH_SHIFT(hashno);
4537 		hblktag.htag_id = ksfmmup;
4538 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4539 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4540 		hblktag.htag_rehash = hashno;
4541 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4542 
4543 		SFMMU_HASH_LOCK(hmebp);
4544 
4545 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4546 
4547 		if (hmeblkp == NULL)
4548 			SFMMU_HASH_UNLOCK(hmebp);
4549 	}
4550 
4551 	if (hmeblkp == NULL)
4552 		return;
4553 
4554 	ASSERT(!hmeblkp->hblk_shared);
4555 
4556 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4557 
4558 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4559 	if (!TTE_IS_VALID(&tte)) {
4560 		SFMMU_HASH_UNLOCK(hmebp);
4561 		return;
4562 	}
4563 
4564 	pp = osfhmep->hme_page;
4565 	if (pp == NULL) {
4566 		SFMMU_HASH_UNLOCK(hmebp);
4567 		ASSERT(cookie == NULL);
4568 		return;
4569 	}
4570 
4571 	vp = pp->p_vnode;
4572 	off = pp->p_offset;
4573 
4574 	pml = sfmmu_mlist_enter(pp);
4575 
4576 	if (flags & HAC_PAGELOCK) {
4577 		if (!page_trylock(pp, SE_SHARED)) {
4578 			/*
4579 			 * Somebody is holding SE_EXCL lock. Might
4580 			 * even be hat_page_relocate(). Drop all
4581 			 * our locks, lookup the page in &kvp, and
4582 			 * retry. If it doesn't exist in &kvp and &zvp,
4583 			 * then we must be dealing with a kernel mapped
4584 			 * page which doesn't actually belong to
4585 			 * segkmem so we punt.
4586 			 */
4587 			sfmmu_mlist_exit(pml);
4588 			SFMMU_HASH_UNLOCK(hmebp);
4589 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4590 			/* check zvp before giving up */
4591 			if (pp == NULL)
4592 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4593 				    SE_SHARED);
4594 
4595 			if (pp == NULL) {
4596 				ASSERT(cookie == NULL);
4597 				return;
4598 			}
4599 			page_unlock(pp);
4600 			goto rehash;
4601 		}
4602 		locked = 1;
4603 	}
4604 
4605 	ASSERT(PAGE_LOCKED(pp));
4606 
4607 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4608 	    pp->p_offset != off) {
4609 		/*
4610 		 * The page moved before we got our hands on it.  Drop
4611 		 * all the locks and try again.
4612 		 */
4613 		ASSERT((flags & HAC_PAGELOCK) != 0);
4614 		sfmmu_mlist_exit(pml);
4615 		SFMMU_HASH_UNLOCK(hmebp);
4616 		page_unlock(pp);
4617 		locked = 0;
4618 		goto rehash;
4619 	}
4620 
4621 	if (!VN_ISKAS(vp)) {
4622 		/*
4623 		 * This is not a segkmem page but another page which
4624 		 * has been kernel mapped.
4625 		 */
4626 		sfmmu_mlist_exit(pml);
4627 		SFMMU_HASH_UNLOCK(hmebp);
4628 		if (locked)
4629 			page_unlock(pp);
4630 		ASSERT(cookie == NULL);
4631 		return;
4632 	}
4633 
4634 	if (cookie != NULL) {
4635 		pahmep = (struct pa_hment *)cookie;
4636 		sfhmep = &pahmep->sfment;
4637 	} else {
4638 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4639 		    sfhmep = sfhmep->hme_next) {
4640 
4641 			/*
4642 			 * skip va<->pa mappings
4643 			 */
4644 			if (!IS_PAHME(sfhmep))
4645 				continue;
4646 
4647 			pahmep = sfhmep->hme_data;
4648 			ASSERT(pahmep != NULL);
4649 
4650 			/*
4651 			 * if pa_hment matches, remove it
4652 			 */
4653 			if ((pahmep->pvt == pvt) &&
4654 			    (pahmep->addr == vaddr) &&
4655 			    (pahmep->len == len)) {
4656 				break;
4657 			}
4658 		}
4659 	}
4660 
4661 	if (sfhmep == NULL) {
4662 		if (!panicstr) {
4663 			panic("hat_delete_callback: pa_hment not found, pp %p",
4664 			    (void *)pp);
4665 		}
4666 		return;
4667 	}
4668 
4669 	/*
4670 	 * Note: at this point a valid kernel mapping must still be
4671 	 * present on this page.
4672 	 */
4673 	pp->p_share--;
4674 	if (pp->p_share <= 0)
4675 		panic("hat_delete_callback: zero p_share");
4676 
4677 	if (--pahmep->refcnt == 0) {
4678 		if (pahmep->flags != 0)
4679 			panic("hat_delete_callback: pa_hment is busy");
4680 
4681 		/*
4682 		 * Remove sfhmep from the mapping list for the page.
4683 		 */
4684 		if (sfhmep->hme_prev) {
4685 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4686 		} else {
4687 			pp->p_mapping = sfhmep->hme_next;
4688 		}
4689 
4690 		if (sfhmep->hme_next)
4691 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4692 
4693 		sfmmu_mlist_exit(pml);
4694 		SFMMU_HASH_UNLOCK(hmebp);
4695 
4696 		if (locked)
4697 			page_unlock(pp);
4698 
4699 		kmem_cache_free(pa_hment_cache, pahmep);
4700 		return;
4701 	}
4702 
4703 	sfmmu_mlist_exit(pml);
4704 	SFMMU_HASH_UNLOCK(hmebp);
4705 	if (locked)
4706 		page_unlock(pp);
4707 }
4708 
4709 /*
4710  * hat_probe returns 1 if the translation for the address 'addr' is
4711  * loaded, zero otherwise.
4712  *
4713  * hat_probe should be used only for advisorary purposes because it may
4714  * occasionally return the wrong value. The implementation must guarantee that
4715  * returning the wrong value is a very rare event. hat_probe is used
4716  * to implement optimizations in the segment drivers.
4717  *
4718  */
4719 int
4720 hat_probe(struct hat *sfmmup, caddr_t addr)
4721 {
4722 	pfn_t pfn;
4723 	tte_t tte;
4724 
4725 	ASSERT(sfmmup != NULL);
4726 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4727 
4728 	ASSERT((sfmmup == ksfmmup) ||
4729 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4730 
4731 	if (sfmmup == ksfmmup) {
4732 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4733 		    == PFN_SUSPENDED) {
4734 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4735 		}
4736 	} else {
4737 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4738 	}
4739 
4740 	if (pfn != PFN_INVALID)
4741 		return (1);
4742 	else
4743 		return (0);
4744 }
4745 
4746 ssize_t
4747 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4748 {
4749 	tte_t tte;
4750 
4751 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4752 
4753 	if (sfmmup == ksfmmup) {
4754 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4755 			return (-1);
4756 		}
4757 	} else {
4758 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4759 			return (-1);
4760 		}
4761 	}
4762 
4763 	ASSERT(TTE_IS_VALID(&tte));
4764 	return (TTEBYTES(TTE_CSZ(&tte)));
4765 }
4766 
4767 uint_t
4768 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4769 {
4770 	tte_t tte;
4771 
4772 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4773 
4774 	if (sfmmup == ksfmmup) {
4775 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4776 			tte.ll = 0;
4777 		}
4778 	} else {
4779 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4780 			tte.ll = 0;
4781 		}
4782 	}
4783 	if (TTE_IS_VALID(&tte)) {
4784 		*attr = sfmmu_ptov_attr(&tte);
4785 		return (0);
4786 	}
4787 	*attr = 0;
4788 	return ((uint_t)0xffffffff);
4789 }
4790 
4791 /*
4792  * Enables more attributes on specified address range (ie. logical OR)
4793  */
4794 void
4795 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4796 {
4797 	if (hat->sfmmu_xhat_provider) {
4798 		XHAT_SETATTR(hat, addr, len, attr);
4799 		return;
4800 	} else {
4801 		/*
4802 		 * This must be a CPU HAT. If the address space has
4803 		 * XHATs attached, change attributes for all of them,
4804 		 * just in case
4805 		 */
4806 		ASSERT(hat->sfmmu_as != NULL);
4807 		if (hat->sfmmu_as->a_xhat != NULL)
4808 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4809 	}
4810 
4811 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4812 }
4813 
4814 /*
4815  * Assigns attributes to the specified address range.  All the attributes
4816  * are specified.
4817  */
4818 void
4819 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4820 {
4821 	if (hat->sfmmu_xhat_provider) {
4822 		XHAT_CHGATTR(hat, addr, len, attr);
4823 		return;
4824 	} else {
4825 		/*
4826 		 * This must be a CPU HAT. If the address space has
4827 		 * XHATs attached, change attributes for all of them,
4828 		 * just in case
4829 		 */
4830 		ASSERT(hat->sfmmu_as != NULL);
4831 		if (hat->sfmmu_as->a_xhat != NULL)
4832 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4833 	}
4834 
4835 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4836 }
4837 
4838 /*
4839  * Remove attributes on the specified address range (ie. loginal NAND)
4840  */
4841 void
4842 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4843 {
4844 	if (hat->sfmmu_xhat_provider) {
4845 		XHAT_CLRATTR(hat, addr, len, attr);
4846 		return;
4847 	} else {
4848 		/*
4849 		 * This must be a CPU HAT. If the address space has
4850 		 * XHATs attached, change attributes for all of them,
4851 		 * just in case
4852 		 */
4853 		ASSERT(hat->sfmmu_as != NULL);
4854 		if (hat->sfmmu_as->a_xhat != NULL)
4855 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4856 	}
4857 
4858 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4859 }
4860 
4861 /*
4862  * Change attributes on an address range to that specified by attr and mode.
4863  */
4864 static void
4865 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4866 	int mode)
4867 {
4868 	struct hmehash_bucket *hmebp;
4869 	hmeblk_tag hblktag;
4870 	int hmeshift, hashno = 1;
4871 	struct hme_blk *hmeblkp, *list = NULL;
4872 	caddr_t endaddr;
4873 	cpuset_t cpuset;
4874 	demap_range_t dmr;
4875 
4876 	CPUSET_ZERO(cpuset);
4877 
4878 	ASSERT((sfmmup == ksfmmup) ||
4879 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4880 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4881 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4882 
4883 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4884 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4885 		panic("user addr %p in kernel space",
4886 		    (void *)addr);
4887 	}
4888 
4889 	endaddr = addr + len;
4890 	hblktag.htag_id = sfmmup;
4891 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4892 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4893 
4894 	while (addr < endaddr) {
4895 		hmeshift = HME_HASH_SHIFT(hashno);
4896 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4897 		hblktag.htag_rehash = hashno;
4898 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4899 
4900 		SFMMU_HASH_LOCK(hmebp);
4901 
4902 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4903 		if (hmeblkp != NULL) {
4904 			ASSERT(!hmeblkp->hblk_shared);
4905 			/*
4906 			 * We've encountered a shadow hmeblk so skip the range
4907 			 * of the next smaller mapping size.
4908 			 */
4909 			if (hmeblkp->hblk_shw_bit) {
4910 				ASSERT(sfmmup != ksfmmup);
4911 				ASSERT(hashno > 1);
4912 				addr = (caddr_t)P2END((uintptr_t)addr,
4913 				    TTEBYTES(hashno - 1));
4914 			} else {
4915 				addr = sfmmu_hblk_chgattr(sfmmup,
4916 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4917 			}
4918 			SFMMU_HASH_UNLOCK(hmebp);
4919 			hashno = 1;
4920 			continue;
4921 		}
4922 		SFMMU_HASH_UNLOCK(hmebp);
4923 
4924 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4925 			/*
4926 			 * We have traversed the whole list and rehashed
4927 			 * if necessary without finding the address to chgattr.
4928 			 * This is ok, so we increment the address by the
4929 			 * smallest hmeblk range for kernel mappings or for
4930 			 * user mappings with no large pages, and the largest
4931 			 * hmeblk range, to account for shadow hmeblks, for
4932 			 * user mappings with large pages and continue.
4933 			 */
4934 			if (sfmmup == ksfmmup)
4935 				addr = (caddr_t)P2END((uintptr_t)addr,
4936 				    TTEBYTES(1));
4937 			else
4938 				addr = (caddr_t)P2END((uintptr_t)addr,
4939 				    TTEBYTES(hashno));
4940 			hashno = 1;
4941 		} else {
4942 			hashno++;
4943 		}
4944 	}
4945 
4946 	sfmmu_hblks_list_purge(&list, 0);
4947 	DEMAP_RANGE_FLUSH(&dmr);
4948 	cpuset = sfmmup->sfmmu_cpusran;
4949 	xt_sync(cpuset);
4950 }
4951 
4952 /*
4953  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4954  * next addres that needs to be chgattr.
4955  * It should be called with the hash lock held.
4956  * XXX It should be possible to optimize chgattr by not flushing every time but
4957  * on the other hand:
4958  * 1. do one flush crosscall.
4959  * 2. only flush if we are increasing permissions (make sure this will work)
4960  */
4961 static caddr_t
4962 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4963 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4964 {
4965 	tte_t tte, tteattr, tteflags, ttemod;
4966 	struct sf_hment *sfhmep;
4967 	int ttesz;
4968 	struct page *pp = NULL;
4969 	kmutex_t *pml, *pmtx;
4970 	int ret;
4971 	int use_demap_range;
4972 #if defined(SF_ERRATA_57)
4973 	int check_exec;
4974 #endif
4975 
4976 	ASSERT(in_hblk_range(hmeblkp, addr));
4977 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4978 	ASSERT(!hmeblkp->hblk_shared);
4979 
4980 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4981 	ttesz = get_hblk_ttesz(hmeblkp);
4982 
4983 	/*
4984 	 * Flush the current demap region if addresses have been
4985 	 * skipped or the page size doesn't match.
4986 	 */
4987 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4988 	if (use_demap_range) {
4989 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4990 	} else {
4991 		DEMAP_RANGE_FLUSH(dmrp);
4992 	}
4993 
4994 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4995 #if defined(SF_ERRATA_57)
4996 	check_exec = (sfmmup != ksfmmup) &&
4997 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4998 	    TTE_IS_EXECUTABLE(&tteattr);
4999 #endif
5000 	HBLKTOHME(sfhmep, hmeblkp, addr);
5001 	while (addr < endaddr) {
5002 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5003 		if (TTE_IS_VALID(&tte)) {
5004 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
5005 				/*
5006 				 * if the new attr is the same as old
5007 				 * continue
5008 				 */
5009 				goto next_addr;
5010 			}
5011 			if (!TTE_IS_WRITABLE(&tteattr)) {
5012 				/*
5013 				 * make sure we clear hw modify bit if we
5014 				 * removing write protections
5015 				 */
5016 				tteflags.tte_intlo |= TTE_HWWR_INT;
5017 			}
5018 
5019 			pml = NULL;
5020 			pp = sfhmep->hme_page;
5021 			if (pp) {
5022 				pml = sfmmu_mlist_enter(pp);
5023 			}
5024 
5025 			if (pp != sfhmep->hme_page) {
5026 				/*
5027 				 * tte must have been unloaded.
5028 				 */
5029 				ASSERT(pml);
5030 				sfmmu_mlist_exit(pml);
5031 				continue;
5032 			}
5033 
5034 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5035 
5036 			ttemod = tte;
5037 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5038 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5039 
5040 #if defined(SF_ERRATA_57)
5041 			if (check_exec && addr < errata57_limit)
5042 				ttemod.tte_exec_perm = 0;
5043 #endif
5044 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5045 			    &sfhmep->hme_tte);
5046 
5047 			if (ret < 0) {
5048 				/* tte changed underneath us */
5049 				if (pml) {
5050 					sfmmu_mlist_exit(pml);
5051 				}
5052 				continue;
5053 			}
5054 
5055 			if ((tteflags.tte_intlo & TTE_HWWR_INT) ||
5056 			    (TTE_EXECUTED(&tte) &&
5057 			    !TTE_IS_EXECUTABLE(&ttemod))) {
5058 				/*
5059 				 * need to sync if clearing modify/exec bit.
5060 				 */
5061 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5062 			}
5063 
5064 			if (pp && PP_ISRO(pp)) {
5065 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5066 					pmtx = sfmmu_page_enter(pp);
5067 					PP_CLRRO(pp);
5068 					sfmmu_page_exit(pmtx);
5069 				}
5070 			}
5071 
5072 			if (ret > 0 && use_demap_range) {
5073 				DEMAP_RANGE_MARKPG(dmrp, addr);
5074 			} else if (ret > 0) {
5075 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5076 			}
5077 
5078 			if (pml) {
5079 				sfmmu_mlist_exit(pml);
5080 			}
5081 		}
5082 next_addr:
5083 		addr += TTEBYTES(ttesz);
5084 		sfhmep++;
5085 		DEMAP_RANGE_NEXTPG(dmrp);
5086 	}
5087 	return (addr);
5088 }
5089 
5090 /*
5091  * This routine converts virtual attributes to physical ones.  It will
5092  * update the tteflags field with the tte mask corresponding to the attributes
5093  * affected and it returns the new attributes.  It will also clear the modify
5094  * bit if we are taking away write permission.  This is necessary since the
5095  * modify bit is the hardware permission bit and we need to clear it in order
5096  * to detect write faults.
5097  */
5098 static uint64_t
5099 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5100 {
5101 	tte_t ttevalue;
5102 
5103 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5104 
5105 	switch (mode) {
5106 	case SFMMU_CHGATTR:
5107 		/* all attributes specified */
5108 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5109 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5110 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5111 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5112 		if (!icache_is_coherent) {
5113 			if (!(attr & PROT_EXEC)) {
5114 				TTE_SET_SOFTEXEC(ttemaskp);
5115 			} else {
5116 				TTE_CLR_EXEC(ttemaskp);
5117 				TTE_SET_SOFTEXEC(&ttevalue);
5118 			}
5119 		}
5120 		break;
5121 	case SFMMU_SETATTR:
5122 		ASSERT(!(attr & ~HAT_PROT_MASK));
5123 		ttemaskp->ll = 0;
5124 		ttevalue.ll = 0;
5125 		/*
5126 		 * a valid tte implies exec and read for sfmmu
5127 		 * so no need to do anything about them.
5128 		 * since priviledged access implies user access
5129 		 * PROT_USER doesn't make sense either.
5130 		 */
5131 		if (attr & PROT_WRITE) {
5132 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5133 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5134 		}
5135 		break;
5136 	case SFMMU_CLRATTR:
5137 		/* attributes will be nand with current ones */
5138 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5139 			panic("sfmmu: attr %x not supported", attr);
5140 		}
5141 		ttemaskp->ll = 0;
5142 		ttevalue.ll = 0;
5143 		if (attr & PROT_WRITE) {
5144 			/* clear both writable and modify bit */
5145 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5146 		}
5147 		if (attr & PROT_USER) {
5148 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5149 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5150 		}
5151 		break;
5152 	default:
5153 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5154 	}
5155 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5156 	return (ttevalue.ll);
5157 }
5158 
5159 static uint_t
5160 sfmmu_ptov_attr(tte_t *ttep)
5161 {
5162 	uint_t attr;
5163 
5164 	ASSERT(TTE_IS_VALID(ttep));
5165 
5166 	attr = PROT_READ;
5167 
5168 	if (TTE_IS_WRITABLE(ttep)) {
5169 		attr |= PROT_WRITE;
5170 	}
5171 	if (TTE_IS_EXECUTABLE(ttep)) {
5172 		attr |= PROT_EXEC;
5173 	}
5174 	if (TTE_IS_SOFTEXEC(ttep)) {
5175 		attr |= PROT_EXEC;
5176 	}
5177 	if (!TTE_IS_PRIVILEGED(ttep)) {
5178 		attr |= PROT_USER;
5179 	}
5180 	if (TTE_IS_NFO(ttep)) {
5181 		attr |= HAT_NOFAULT;
5182 	}
5183 	if (TTE_IS_NOSYNC(ttep)) {
5184 		attr |= HAT_NOSYNC;
5185 	}
5186 	if (TTE_IS_SIDEFFECT(ttep)) {
5187 		attr |= SFMMU_SIDEFFECT;
5188 	}
5189 	if (!TTE_IS_VCACHEABLE(ttep)) {
5190 		attr |= SFMMU_UNCACHEVTTE;
5191 	}
5192 	if (!TTE_IS_PCACHEABLE(ttep)) {
5193 		attr |= SFMMU_UNCACHEPTTE;
5194 	}
5195 	return (attr);
5196 }
5197 
5198 /*
5199  * hat_chgprot is a deprecated hat call.  New segment drivers
5200  * should store all attributes and use hat_*attr calls.
5201  *
5202  * Change the protections in the virtual address range
5203  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5204  * then remove write permission, leaving the other
5205  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5206  *
5207  */
5208 void
5209 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5210 {
5211 	struct hmehash_bucket *hmebp;
5212 	hmeblk_tag hblktag;
5213 	int hmeshift, hashno = 1;
5214 	struct hme_blk *hmeblkp, *list = NULL;
5215 	caddr_t endaddr;
5216 	cpuset_t cpuset;
5217 	demap_range_t dmr;
5218 
5219 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5220 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5221 
5222 	if (sfmmup->sfmmu_xhat_provider) {
5223 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
5224 		return;
5225 	} else {
5226 		/*
5227 		 * This must be a CPU HAT. If the address space has
5228 		 * XHATs attached, change attributes for all of them,
5229 		 * just in case
5230 		 */
5231 		ASSERT(sfmmup->sfmmu_as != NULL);
5232 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5233 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5234 	}
5235 
5236 	CPUSET_ZERO(cpuset);
5237 
5238 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5239 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5240 		panic("user addr %p vprot %x in kernel space",
5241 		    (void *)addr, vprot);
5242 	}
5243 	endaddr = addr + len;
5244 	hblktag.htag_id = sfmmup;
5245 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5246 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5247 
5248 	while (addr < endaddr) {
5249 		hmeshift = HME_HASH_SHIFT(hashno);
5250 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5251 		hblktag.htag_rehash = hashno;
5252 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5253 
5254 		SFMMU_HASH_LOCK(hmebp);
5255 
5256 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5257 		if (hmeblkp != NULL) {
5258 			ASSERT(!hmeblkp->hblk_shared);
5259 			/*
5260 			 * We've encountered a shadow hmeblk so skip the range
5261 			 * of the next smaller mapping size.
5262 			 */
5263 			if (hmeblkp->hblk_shw_bit) {
5264 				ASSERT(sfmmup != ksfmmup);
5265 				ASSERT(hashno > 1);
5266 				addr = (caddr_t)P2END((uintptr_t)addr,
5267 				    TTEBYTES(hashno - 1));
5268 			} else {
5269 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5270 				    addr, endaddr, &dmr, vprot);
5271 			}
5272 			SFMMU_HASH_UNLOCK(hmebp);
5273 			hashno = 1;
5274 			continue;
5275 		}
5276 		SFMMU_HASH_UNLOCK(hmebp);
5277 
5278 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5279 			/*
5280 			 * We have traversed the whole list and rehashed
5281 			 * if necessary without finding the address to chgprot.
5282 			 * This is ok so we increment the address by the
5283 			 * smallest hmeblk range for kernel mappings and the
5284 			 * largest hmeblk range, to account for shadow hmeblks,
5285 			 * for user mappings and continue.
5286 			 */
5287 			if (sfmmup == ksfmmup)
5288 				addr = (caddr_t)P2END((uintptr_t)addr,
5289 				    TTEBYTES(1));
5290 			else
5291 				addr = (caddr_t)P2END((uintptr_t)addr,
5292 				    TTEBYTES(hashno));
5293 			hashno = 1;
5294 		} else {
5295 			hashno++;
5296 		}
5297 	}
5298 
5299 	sfmmu_hblks_list_purge(&list, 0);
5300 	DEMAP_RANGE_FLUSH(&dmr);
5301 	cpuset = sfmmup->sfmmu_cpusran;
5302 	xt_sync(cpuset);
5303 }
5304 
5305 /*
5306  * This function chgprots a range of addresses in an hmeblk.  It returns the
5307  * next addres that needs to be chgprot.
5308  * It should be called with the hash lock held.
5309  * XXX It shold be possible to optimize chgprot by not flushing every time but
5310  * on the other hand:
5311  * 1. do one flush crosscall.
5312  * 2. only flush if we are increasing permissions (make sure this will work)
5313  */
5314 static caddr_t
5315 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5316 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5317 {
5318 	uint_t pprot;
5319 	tte_t tte, ttemod;
5320 	struct sf_hment *sfhmep;
5321 	uint_t tteflags;
5322 	int ttesz;
5323 	struct page *pp = NULL;
5324 	kmutex_t *pml, *pmtx;
5325 	int ret;
5326 	int use_demap_range;
5327 #if defined(SF_ERRATA_57)
5328 	int check_exec;
5329 #endif
5330 
5331 	ASSERT(in_hblk_range(hmeblkp, addr));
5332 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5333 	ASSERT(!hmeblkp->hblk_shared);
5334 
5335 #ifdef DEBUG
5336 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5337 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5338 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5339 	}
5340 #endif /* DEBUG */
5341 
5342 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5343 	ttesz = get_hblk_ttesz(hmeblkp);
5344 
5345 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5346 #if defined(SF_ERRATA_57)
5347 	check_exec = (sfmmup != ksfmmup) &&
5348 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5349 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5350 #endif
5351 	HBLKTOHME(sfhmep, hmeblkp, addr);
5352 
5353 	/*
5354 	 * Flush the current demap region if addresses have been
5355 	 * skipped or the page size doesn't match.
5356 	 */
5357 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5358 	if (use_demap_range) {
5359 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5360 	} else {
5361 		DEMAP_RANGE_FLUSH(dmrp);
5362 	}
5363 
5364 	while (addr < endaddr) {
5365 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5366 		if (TTE_IS_VALID(&tte)) {
5367 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5368 				/*
5369 				 * if the new protection is the same as old
5370 				 * continue
5371 				 */
5372 				goto next_addr;
5373 			}
5374 			pml = NULL;
5375 			pp = sfhmep->hme_page;
5376 			if (pp) {
5377 				pml = sfmmu_mlist_enter(pp);
5378 			}
5379 			if (pp != sfhmep->hme_page) {
5380 				/*
5381 				 * tte most have been unloaded
5382 				 * underneath us.  Recheck
5383 				 */
5384 				ASSERT(pml);
5385 				sfmmu_mlist_exit(pml);
5386 				continue;
5387 			}
5388 
5389 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5390 
5391 			ttemod = tte;
5392 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5393 			ASSERT(TTE_IS_SOFTEXEC(&tte) ==
5394 			    TTE_IS_SOFTEXEC(&ttemod));
5395 			ASSERT(TTE_IS_EXECUTABLE(&tte) ==
5396 			    TTE_IS_EXECUTABLE(&ttemod));
5397 
5398 #if defined(SF_ERRATA_57)
5399 			if (check_exec && addr < errata57_limit)
5400 				ttemod.tte_exec_perm = 0;
5401 #endif
5402 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5403 			    &sfhmep->hme_tte);
5404 
5405 			if (ret < 0) {
5406 				/* tte changed underneath us */
5407 				if (pml) {
5408 					sfmmu_mlist_exit(pml);
5409 				}
5410 				continue;
5411 			}
5412 
5413 			if (tteflags & TTE_HWWR_INT) {
5414 				/*
5415 				 * need to sync if we are clearing modify bit.
5416 				 */
5417 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5418 			}
5419 
5420 			if (pp && PP_ISRO(pp)) {
5421 				if (pprot & TTE_WRPRM_INT) {
5422 					pmtx = sfmmu_page_enter(pp);
5423 					PP_CLRRO(pp);
5424 					sfmmu_page_exit(pmtx);
5425 				}
5426 			}
5427 
5428 			if (ret > 0 && use_demap_range) {
5429 				DEMAP_RANGE_MARKPG(dmrp, addr);
5430 			} else if (ret > 0) {
5431 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5432 			}
5433 
5434 			if (pml) {
5435 				sfmmu_mlist_exit(pml);
5436 			}
5437 		}
5438 next_addr:
5439 		addr += TTEBYTES(ttesz);
5440 		sfhmep++;
5441 		DEMAP_RANGE_NEXTPG(dmrp);
5442 	}
5443 	return (addr);
5444 }
5445 
5446 /*
5447  * This routine is deprecated and should only be used by hat_chgprot.
5448  * The correct routine is sfmmu_vtop_attr.
5449  * This routine converts virtual page protections to physical ones.  It will
5450  * update the tteflags field with the tte mask corresponding to the protections
5451  * affected and it returns the new protections.  It will also clear the modify
5452  * bit if we are taking away write permission.  This is necessary since the
5453  * modify bit is the hardware permission bit and we need to clear it in order
5454  * to detect write faults.
5455  * It accepts the following special protections:
5456  * ~PROT_WRITE = remove write permissions.
5457  * ~PROT_USER = remove user permissions.
5458  */
5459 static uint_t
5460 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5461 {
5462 	if (vprot == (uint_t)~PROT_WRITE) {
5463 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5464 		return (0);		/* will cause wrprm to be cleared */
5465 	}
5466 	if (vprot == (uint_t)~PROT_USER) {
5467 		*tteflagsp = TTE_PRIV_INT;
5468 		return (0);		/* will cause privprm to be cleared */
5469 	}
5470 	if ((vprot == 0) || (vprot == PROT_USER) ||
5471 	    ((vprot & PROT_ALL) != vprot)) {
5472 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5473 	}
5474 
5475 	switch (vprot) {
5476 	case (PROT_READ):
5477 	case (PROT_EXEC):
5478 	case (PROT_EXEC | PROT_READ):
5479 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5480 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5481 	case (PROT_WRITE):
5482 	case (PROT_WRITE | PROT_READ):
5483 	case (PROT_EXEC | PROT_WRITE):
5484 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5485 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5486 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5487 	case (PROT_USER | PROT_READ):
5488 	case (PROT_USER | PROT_EXEC):
5489 	case (PROT_USER | PROT_EXEC | PROT_READ):
5490 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5491 		return (0); 			/* clr prv and wrt */
5492 	case (PROT_USER | PROT_WRITE):
5493 	case (PROT_USER | PROT_WRITE | PROT_READ):
5494 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5495 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5496 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5497 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5498 	default:
5499 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5500 	}
5501 	return (0);
5502 }
5503 
5504 /*
5505  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5506  * the normal algorithm would take too long for a very large VA range with
5507  * few real mappings. This routine just walks thru all HMEs in the global
5508  * hash table to find and remove mappings.
5509  */
5510 static void
5511 hat_unload_large_virtual(
5512 	struct hat		*sfmmup,
5513 	caddr_t			startaddr,
5514 	size_t			len,
5515 	uint_t			flags,
5516 	hat_callback_t		*callback)
5517 {
5518 	struct hmehash_bucket *hmebp;
5519 	struct hme_blk *hmeblkp;
5520 	struct hme_blk *pr_hblk = NULL;
5521 	struct hme_blk *nx_hblk;
5522 	struct hme_blk *list = NULL;
5523 	int i;
5524 	demap_range_t dmr, *dmrp;
5525 	cpuset_t cpuset;
5526 	caddr_t	endaddr = startaddr + len;
5527 	caddr_t	sa;
5528 	caddr_t	ea;
5529 	caddr_t	cb_sa[MAX_CB_ADDR];
5530 	caddr_t	cb_ea[MAX_CB_ADDR];
5531 	int	addr_cnt = 0;
5532 	int	a = 0;
5533 
5534 	if (sfmmup->sfmmu_free) {
5535 		dmrp = NULL;
5536 	} else {
5537 		dmrp = &dmr;
5538 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5539 	}
5540 
5541 	/*
5542 	 * Loop through all the hash buckets of HME blocks looking for matches.
5543 	 */
5544 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5545 		hmebp = &uhme_hash[i];
5546 		SFMMU_HASH_LOCK(hmebp);
5547 		hmeblkp = hmebp->hmeblkp;
5548 		pr_hblk = NULL;
5549 		while (hmeblkp) {
5550 			nx_hblk = hmeblkp->hblk_next;
5551 
5552 			/*
5553 			 * skip if not this context, if a shadow block or
5554 			 * if the mapping is not in the requested range
5555 			 */
5556 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5557 			    hmeblkp->hblk_shw_bit ||
5558 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5559 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5560 				pr_hblk = hmeblkp;
5561 				goto next_block;
5562 			}
5563 
5564 			ASSERT(!hmeblkp->hblk_shared);
5565 			/*
5566 			 * unload if there are any current valid mappings
5567 			 */
5568 			if (hmeblkp->hblk_vcnt != 0 ||
5569 			    hmeblkp->hblk_hmecnt != 0)
5570 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5571 				    sa, ea, dmrp, flags);
5572 
5573 			/*
5574 			 * on unmap we also release the HME block itself, once
5575 			 * all mappings are gone.
5576 			 */
5577 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5578 			    !hmeblkp->hblk_vcnt &&
5579 			    !hmeblkp->hblk_hmecnt) {
5580 				ASSERT(!hmeblkp->hblk_lckcnt);
5581 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5582 				    &list, 0);
5583 			} else {
5584 				pr_hblk = hmeblkp;
5585 			}
5586 
5587 			if (callback == NULL)
5588 				goto next_block;
5589 
5590 			/*
5591 			 * HME blocks may span more than one page, but we may be
5592 			 * unmapping only one page, so check for a smaller range
5593 			 * for the callback
5594 			 */
5595 			if (sa < startaddr)
5596 				sa = startaddr;
5597 			if (--ea > endaddr)
5598 				ea = endaddr - 1;
5599 
5600 			cb_sa[addr_cnt] = sa;
5601 			cb_ea[addr_cnt] = ea;
5602 			if (++addr_cnt == MAX_CB_ADDR) {
5603 				if (dmrp != NULL) {
5604 					DEMAP_RANGE_FLUSH(dmrp);
5605 					cpuset = sfmmup->sfmmu_cpusran;
5606 					xt_sync(cpuset);
5607 				}
5608 
5609 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5610 					callback->hcb_start_addr = cb_sa[a];
5611 					callback->hcb_end_addr = cb_ea[a];
5612 					callback->hcb_function(callback);
5613 				}
5614 				addr_cnt = 0;
5615 			}
5616 
5617 next_block:
5618 			hmeblkp = nx_hblk;
5619 		}
5620 		SFMMU_HASH_UNLOCK(hmebp);
5621 	}
5622 
5623 	sfmmu_hblks_list_purge(&list, 0);
5624 	if (dmrp != NULL) {
5625 		DEMAP_RANGE_FLUSH(dmrp);
5626 		cpuset = sfmmup->sfmmu_cpusran;
5627 		xt_sync(cpuset);
5628 	}
5629 
5630 	for (a = 0; a < addr_cnt; ++a) {
5631 		callback->hcb_start_addr = cb_sa[a];
5632 		callback->hcb_end_addr = cb_ea[a];
5633 		callback->hcb_function(callback);
5634 	}
5635 
5636 	/*
5637 	 * Check TSB and TLB page sizes if the process isn't exiting.
5638 	 */
5639 	if (!sfmmup->sfmmu_free)
5640 		sfmmu_check_page_sizes(sfmmup, 0);
5641 }
5642 
5643 /*
5644  * Unload all the mappings in the range [addr..addr+len). addr and len must
5645  * be MMU_PAGESIZE aligned.
5646  */
5647 
5648 extern struct seg *segkmap;
5649 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5650 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5651 
5652 
5653 void
5654 hat_unload_callback(
5655 	struct hat *sfmmup,
5656 	caddr_t addr,
5657 	size_t len,
5658 	uint_t flags,
5659 	hat_callback_t *callback)
5660 {
5661 	struct hmehash_bucket *hmebp;
5662 	hmeblk_tag hblktag;
5663 	int hmeshift, hashno, iskernel;
5664 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5665 	caddr_t endaddr;
5666 	cpuset_t cpuset;
5667 	int addr_count = 0;
5668 	int a;
5669 	caddr_t cb_start_addr[MAX_CB_ADDR];
5670 	caddr_t cb_end_addr[MAX_CB_ADDR];
5671 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5672 	demap_range_t dmr, *dmrp;
5673 
5674 	if (sfmmup->sfmmu_xhat_provider) {
5675 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5676 		return;
5677 	} else {
5678 		/*
5679 		 * This must be a CPU HAT. If the address space has
5680 		 * XHATs attached, unload the mappings for all of them,
5681 		 * just in case
5682 		 */
5683 		ASSERT(sfmmup->sfmmu_as != NULL);
5684 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5685 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5686 			    len, flags, callback);
5687 	}
5688 
5689 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5690 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5691 
5692 	ASSERT(sfmmup != NULL);
5693 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5694 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5695 
5696 	/*
5697 	 * Probing through a large VA range (say 63 bits) will be slow, even
5698 	 * at 4 Meg steps between the probes. So, when the virtual address range
5699 	 * is very large, search the HME entries for what to unload.
5700 	 *
5701 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5702 	 *
5703 	 *	UHMEHASH_SZ is number of hash buckets to examine
5704 	 *
5705 	 */
5706 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5707 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5708 		return;
5709 	}
5710 
5711 	CPUSET_ZERO(cpuset);
5712 
5713 	/*
5714 	 * If the process is exiting, we can save a lot of fuss since
5715 	 * we'll flush the TLB when we free the ctx anyway.
5716 	 */
5717 	if (sfmmup->sfmmu_free)
5718 		dmrp = NULL;
5719 	else
5720 		dmrp = &dmr;
5721 
5722 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5723 	endaddr = addr + len;
5724 	hblktag.htag_id = sfmmup;
5725 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5726 
5727 	/*
5728 	 * It is likely for the vm to call unload over a wide range of
5729 	 * addresses that are actually very sparsely populated by
5730 	 * translations.  In order to speed this up the sfmmu hat supports
5731 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5732 	 * correspond to actual small translations are allocated at tteload
5733 	 * time and are referred to as shadow hmeblks.  Now, during unload
5734 	 * time, we first check if we have a shadow hmeblk for that
5735 	 * translation.  The absence of one means the corresponding address
5736 	 * range is empty and can be skipped.
5737 	 *
5738 	 * The kernel is an exception to above statement and that is why
5739 	 * we don't use shadow hmeblks and hash starting from the smallest
5740 	 * page size.
5741 	 */
5742 	if (sfmmup == KHATID) {
5743 		iskernel = 1;
5744 		hashno = TTE64K;
5745 	} else {
5746 		iskernel = 0;
5747 		if (mmu_page_sizes == max_mmu_page_sizes) {
5748 			hashno = TTE256M;
5749 		} else {
5750 			hashno = TTE4M;
5751 		}
5752 	}
5753 	while (addr < endaddr) {
5754 		hmeshift = HME_HASH_SHIFT(hashno);
5755 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5756 		hblktag.htag_rehash = hashno;
5757 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5758 
5759 		SFMMU_HASH_LOCK(hmebp);
5760 
5761 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5762 		if (hmeblkp == NULL) {
5763 			/*
5764 			 * didn't find an hmeblk. skip the appropiate
5765 			 * address range.
5766 			 */
5767 			SFMMU_HASH_UNLOCK(hmebp);
5768 			if (iskernel) {
5769 				if (hashno < mmu_hashcnt) {
5770 					hashno++;
5771 					continue;
5772 				} else {
5773 					hashno = TTE64K;
5774 					addr = (caddr_t)roundup((uintptr_t)addr
5775 					    + 1, MMU_PAGESIZE64K);
5776 					continue;
5777 				}
5778 			}
5779 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5780 			    (1 << hmeshift));
5781 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5782 				ASSERT(hashno == TTE64K);
5783 				continue;
5784 			}
5785 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5786 				hashno = TTE512K;
5787 				continue;
5788 			}
5789 			if (mmu_page_sizes == max_mmu_page_sizes) {
5790 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5791 					hashno = TTE4M;
5792 					continue;
5793 				}
5794 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5795 					hashno = TTE32M;
5796 					continue;
5797 				}
5798 				hashno = TTE256M;
5799 				continue;
5800 			} else {
5801 				hashno = TTE4M;
5802 				continue;
5803 			}
5804 		}
5805 		ASSERT(hmeblkp);
5806 		ASSERT(!hmeblkp->hblk_shared);
5807 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5808 			/*
5809 			 * If the valid count is zero we can skip the range
5810 			 * mapped by this hmeblk.
5811 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5812 			 * is used by segment drivers as a hint
5813 			 * that the mapping resource won't be used any longer.
5814 			 * The best example of this is during exit().
5815 			 */
5816 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5817 			    get_hblk_span(hmeblkp));
5818 			if ((flags & HAT_UNLOAD_UNMAP) ||
5819 			    (iskernel && !issegkmap)) {
5820 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5821 				    &list, 0);
5822 			}
5823 			SFMMU_HASH_UNLOCK(hmebp);
5824 
5825 			if (iskernel) {
5826 				hashno = TTE64K;
5827 				continue;
5828 			}
5829 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5830 				ASSERT(hashno == TTE64K);
5831 				continue;
5832 			}
5833 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5834 				hashno = TTE512K;
5835 				continue;
5836 			}
5837 			if (mmu_page_sizes == max_mmu_page_sizes) {
5838 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5839 					hashno = TTE4M;
5840 					continue;
5841 				}
5842 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5843 					hashno = TTE32M;
5844 					continue;
5845 				}
5846 				hashno = TTE256M;
5847 				continue;
5848 			} else {
5849 				hashno = TTE4M;
5850 				continue;
5851 			}
5852 		}
5853 		if (hmeblkp->hblk_shw_bit) {
5854 			/*
5855 			 * If we encounter a shadow hmeblk we know there is
5856 			 * smaller sized hmeblks mapping the same address space.
5857 			 * Decrement the hash size and rehash.
5858 			 */
5859 			ASSERT(sfmmup != KHATID);
5860 			hashno--;
5861 			SFMMU_HASH_UNLOCK(hmebp);
5862 			continue;
5863 		}
5864 
5865 		/*
5866 		 * track callback address ranges.
5867 		 * only start a new range when it's not contiguous
5868 		 */
5869 		if (callback != NULL) {
5870 			if (addr_count > 0 &&
5871 			    addr == cb_end_addr[addr_count - 1])
5872 				--addr_count;
5873 			else
5874 				cb_start_addr[addr_count] = addr;
5875 		}
5876 
5877 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5878 		    dmrp, flags);
5879 
5880 		if (callback != NULL)
5881 			cb_end_addr[addr_count++] = addr;
5882 
5883 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5884 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5885 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5886 		}
5887 		SFMMU_HASH_UNLOCK(hmebp);
5888 
5889 		/*
5890 		 * Notify our caller as to exactly which pages
5891 		 * have been unloaded. We do these in clumps,
5892 		 * to minimize the number of xt_sync()s that need to occur.
5893 		 */
5894 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5895 			DEMAP_RANGE_FLUSH(dmrp);
5896 			if (dmrp != NULL) {
5897 				cpuset = sfmmup->sfmmu_cpusran;
5898 				xt_sync(cpuset);
5899 			}
5900 
5901 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5902 				callback->hcb_start_addr = cb_start_addr[a];
5903 				callback->hcb_end_addr = cb_end_addr[a];
5904 				callback->hcb_function(callback);
5905 			}
5906 			addr_count = 0;
5907 		}
5908 		if (iskernel) {
5909 			hashno = TTE64K;
5910 			continue;
5911 		}
5912 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5913 			ASSERT(hashno == TTE64K);
5914 			continue;
5915 		}
5916 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5917 			hashno = TTE512K;
5918 			continue;
5919 		}
5920 		if (mmu_page_sizes == max_mmu_page_sizes) {
5921 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5922 				hashno = TTE4M;
5923 				continue;
5924 			}
5925 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5926 				hashno = TTE32M;
5927 				continue;
5928 			}
5929 			hashno = TTE256M;
5930 		} else {
5931 			hashno = TTE4M;
5932 		}
5933 	}
5934 
5935 	sfmmu_hblks_list_purge(&list, 0);
5936 	DEMAP_RANGE_FLUSH(dmrp);
5937 	if (dmrp != NULL) {
5938 		cpuset = sfmmup->sfmmu_cpusran;
5939 		xt_sync(cpuset);
5940 	}
5941 	if (callback && addr_count != 0) {
5942 		for (a = 0; a < addr_count; ++a) {
5943 			callback->hcb_start_addr = cb_start_addr[a];
5944 			callback->hcb_end_addr = cb_end_addr[a];
5945 			callback->hcb_function(callback);
5946 		}
5947 	}
5948 
5949 	/*
5950 	 * Check TSB and TLB page sizes if the process isn't exiting.
5951 	 */
5952 	if (!sfmmup->sfmmu_free)
5953 		sfmmu_check_page_sizes(sfmmup, 0);
5954 }
5955 
5956 /*
5957  * Unload all the mappings in the range [addr..addr+len). addr and len must
5958  * be MMU_PAGESIZE aligned.
5959  */
5960 void
5961 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5962 {
5963 	if (sfmmup->sfmmu_xhat_provider) {
5964 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5965 		return;
5966 	}
5967 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5968 }
5969 
5970 
5971 /*
5972  * Find the largest mapping size for this page.
5973  */
5974 int
5975 fnd_mapping_sz(page_t *pp)
5976 {
5977 	int sz;
5978 	int p_index;
5979 
5980 	p_index = PP_MAPINDEX(pp);
5981 
5982 	sz = 0;
5983 	p_index >>= 1;	/* don't care about 8K bit */
5984 	for (; p_index; p_index >>= 1) {
5985 		sz++;
5986 	}
5987 
5988 	return (sz);
5989 }
5990 
5991 /*
5992  * This function unloads a range of addresses for an hmeblk.
5993  * It returns the next address to be unloaded.
5994  * It should be called with the hash lock held.
5995  */
5996 static caddr_t
5997 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5998 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5999 {
6000 	tte_t	tte, ttemod;
6001 	struct	sf_hment *sfhmep;
6002 	int	ttesz;
6003 	long	ttecnt;
6004 	page_t *pp;
6005 	kmutex_t *pml;
6006 	int ret;
6007 	int use_demap_range;
6008 
6009 	ASSERT(in_hblk_range(hmeblkp, addr));
6010 	ASSERT(!hmeblkp->hblk_shw_bit);
6011 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
6012 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
6013 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
6014 
6015 #ifdef DEBUG
6016 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
6017 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
6018 		panic("sfmmu_hblk_unload: partial unload of large page");
6019 	}
6020 #endif /* DEBUG */
6021 
6022 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6023 	ttesz = get_hblk_ttesz(hmeblkp);
6024 
6025 	use_demap_range = ((dmrp == NULL) ||
6026 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
6027 
6028 	if (use_demap_range) {
6029 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
6030 	} else {
6031 		DEMAP_RANGE_FLUSH(dmrp);
6032 	}
6033 	ttecnt = 0;
6034 	HBLKTOHME(sfhmep, hmeblkp, addr);
6035 
6036 	while (addr < endaddr) {
6037 		pml = NULL;
6038 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6039 		if (TTE_IS_VALID(&tte)) {
6040 			pp = sfhmep->hme_page;
6041 			if (pp != NULL) {
6042 				pml = sfmmu_mlist_enter(pp);
6043 			}
6044 
6045 			/*
6046 			 * Verify if hme still points to 'pp' now that
6047 			 * we have p_mapping lock.
6048 			 */
6049 			if (sfhmep->hme_page != pp) {
6050 				if (pp != NULL && sfhmep->hme_page != NULL) {
6051 					ASSERT(pml != NULL);
6052 					sfmmu_mlist_exit(pml);
6053 					/* Re-start this iteration. */
6054 					continue;
6055 				}
6056 				ASSERT((pp != NULL) &&
6057 				    (sfhmep->hme_page == NULL));
6058 				goto tte_unloaded;
6059 			}
6060 
6061 			/*
6062 			 * This point on we have both HASH and p_mapping
6063 			 * lock.
6064 			 */
6065 			ASSERT(pp == sfhmep->hme_page);
6066 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6067 
6068 			/*
6069 			 * We need to loop on modify tte because it is
6070 			 * possible for pagesync to come along and
6071 			 * change the software bits beneath us.
6072 			 *
6073 			 * Page_unload can also invalidate the tte after
6074 			 * we read tte outside of p_mapping lock.
6075 			 */
6076 again:
6077 			ttemod = tte;
6078 
6079 			TTE_SET_INVALID(&ttemod);
6080 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6081 			    &sfhmep->hme_tte);
6082 
6083 			if (ret <= 0) {
6084 				if (TTE_IS_VALID(&tte)) {
6085 					ASSERT(ret < 0);
6086 					goto again;
6087 				}
6088 				if (pp != NULL) {
6089 					panic("sfmmu_hblk_unload: pp = 0x%p "
6090 					    "tte became invalid under mlist"
6091 					    " lock = 0x%p", (void *)pp,
6092 					    (void *)pml);
6093 				}
6094 				continue;
6095 			}
6096 
6097 			if (!(flags & HAT_UNLOAD_NOSYNC) ||
6098 			    (pp != NULL && TTE_EXECUTED(&tte))) {
6099 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6100 			}
6101 
6102 			/*
6103 			 * Ok- we invalidated the tte. Do the rest of the job.
6104 			 */
6105 			ttecnt++;
6106 
6107 			if (flags & HAT_UNLOAD_UNLOCK) {
6108 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6109 				atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6110 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6111 			}
6112 
6113 			/*
6114 			 * Normally we would need to flush the page
6115 			 * from the virtual cache at this point in
6116 			 * order to prevent a potential cache alias
6117 			 * inconsistency.
6118 			 * The particular scenario we need to worry
6119 			 * about is:
6120 			 * Given:  va1 and va2 are two virtual address
6121 			 * that alias and map the same physical
6122 			 * address.
6123 			 * 1.   mapping exists from va1 to pa and data
6124 			 * has been read into the cache.
6125 			 * 2.   unload va1.
6126 			 * 3.   load va2 and modify data using va2.
6127 			 * 4    unload va2.
6128 			 * 5.   load va1 and reference data.  Unless we
6129 			 * flush the data cache when we unload we will
6130 			 * get stale data.
6131 			 * Fortunately, page coloring eliminates the
6132 			 * above scenario by remembering the color a
6133 			 * physical page was last or is currently
6134 			 * mapped to.  Now, we delay the flush until
6135 			 * the loading of translations.  Only when the
6136 			 * new translation is of a different color
6137 			 * are we forced to flush.
6138 			 */
6139 			if (use_demap_range) {
6140 				/*
6141 				 * Mark this page as needing a demap.
6142 				 */
6143 				DEMAP_RANGE_MARKPG(dmrp, addr);
6144 			} else {
6145 				ASSERT(sfmmup != NULL);
6146 				ASSERT(!hmeblkp->hblk_shared);
6147 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6148 				    sfmmup->sfmmu_free, 0);
6149 			}
6150 
6151 			if (pp) {
6152 				/*
6153 				 * Remove the hment from the mapping list
6154 				 */
6155 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6156 
6157 				/*
6158 				 * Again, we cannot
6159 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6160 				 */
6161 				HME_SUB(sfhmep, pp);
6162 				membar_stst();
6163 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6164 			}
6165 
6166 			ASSERT(hmeblkp->hblk_vcnt > 0);
6167 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6168 
6169 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6170 			    !hmeblkp->hblk_lckcnt);
6171 
6172 #ifdef VAC
6173 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6174 				if (PP_ISTNC(pp)) {
6175 					/*
6176 					 * If page was temporary
6177 					 * uncached, try to recache
6178 					 * it. Note that HME_SUB() was
6179 					 * called above so p_index and
6180 					 * mlist had been updated.
6181 					 */
6182 					conv_tnc(pp, ttesz);
6183 				} else if (pp->p_mapping == NULL) {
6184 					ASSERT(kpm_enable);
6185 					/*
6186 					 * Page is marked to be in VAC conflict
6187 					 * to an existing kpm mapping and/or is
6188 					 * kpm mapped using only the regular
6189 					 * pagesize.
6190 					 */
6191 					sfmmu_kpm_hme_unload(pp);
6192 				}
6193 			}
6194 #endif	/* VAC */
6195 		} else if ((pp = sfhmep->hme_page) != NULL) {
6196 				/*
6197 				 * TTE is invalid but the hme
6198 				 * still exists. let pageunload
6199 				 * complete its job.
6200 				 */
6201 				ASSERT(pml == NULL);
6202 				pml = sfmmu_mlist_enter(pp);
6203 				if (sfhmep->hme_page != NULL) {
6204 					sfmmu_mlist_exit(pml);
6205 					continue;
6206 				}
6207 				ASSERT(sfhmep->hme_page == NULL);
6208 		} else if (hmeblkp->hblk_hmecnt != 0) {
6209 			/*
6210 			 * pageunload may have not finished decrementing
6211 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6212 			 * wait for pageunload to finish. Rely on pageunload
6213 			 * to decrement hblk_hmecnt after hblk_vcnt.
6214 			 */
6215 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6216 			ASSERT(pml == NULL);
6217 			if (pf_is_memory(pfn)) {
6218 				pp = page_numtopp_nolock(pfn);
6219 				if (pp != NULL) {
6220 					pml = sfmmu_mlist_enter(pp);
6221 					sfmmu_mlist_exit(pml);
6222 					pml = NULL;
6223 				}
6224 			}
6225 		}
6226 
6227 tte_unloaded:
6228 		/*
6229 		 * At this point, the tte we are looking at
6230 		 * should be unloaded, and hme has been unlinked
6231 		 * from page too. This is important because in
6232 		 * pageunload, it does ttesync() then HME_SUB.
6233 		 * We need to make sure HME_SUB has been completed
6234 		 * so we know ttesync() has been completed. Otherwise,
6235 		 * at exit time, after return from hat layer, VM will
6236 		 * release as structure which hat_setstat() (called
6237 		 * by ttesync()) needs.
6238 		 */
6239 #ifdef DEBUG
6240 		{
6241 			tte_t	dtte;
6242 
6243 			ASSERT(sfhmep->hme_page == NULL);
6244 
6245 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6246 			ASSERT(!TTE_IS_VALID(&dtte));
6247 		}
6248 #endif
6249 
6250 		if (pml) {
6251 			sfmmu_mlist_exit(pml);
6252 		}
6253 
6254 		addr += TTEBYTES(ttesz);
6255 		sfhmep++;
6256 		DEMAP_RANGE_NEXTPG(dmrp);
6257 	}
6258 	/*
6259 	 * For shared hmeblks this routine is only called when region is freed
6260 	 * and no longer referenced.  So no need to decrement ttecnt
6261 	 * in the region structure here.
6262 	 */
6263 	if (ttecnt > 0 && sfmmup != NULL) {
6264 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6265 	}
6266 	return (addr);
6267 }
6268 
6269 /*
6270  * Synchronize all the mappings in the range [addr..addr+len).
6271  * Can be called with clearflag having two states:
6272  * HAT_SYNC_DONTZERO means just return the rm stats
6273  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6274  */
6275 void
6276 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6277 {
6278 	struct hmehash_bucket *hmebp;
6279 	hmeblk_tag hblktag;
6280 	int hmeshift, hashno = 1;
6281 	struct hme_blk *hmeblkp, *list = NULL;
6282 	caddr_t endaddr;
6283 	cpuset_t cpuset;
6284 
6285 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6286 	ASSERT((sfmmup == ksfmmup) ||
6287 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6288 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6289 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6290 	    (clearflag == HAT_SYNC_ZERORM));
6291 
6292 	CPUSET_ZERO(cpuset);
6293 
6294 	endaddr = addr + len;
6295 	hblktag.htag_id = sfmmup;
6296 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6297 
6298 	/*
6299 	 * Spitfire supports 4 page sizes.
6300 	 * Most pages are expected to be of the smallest page
6301 	 * size (8K) and these will not need to be rehashed. 64K
6302 	 * pages also don't need to be rehashed because the an hmeblk
6303 	 * spans 64K of address space. 512K pages might need 1 rehash and
6304 	 * and 4M pages 2 rehashes.
6305 	 */
6306 	while (addr < endaddr) {
6307 		hmeshift = HME_HASH_SHIFT(hashno);
6308 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6309 		hblktag.htag_rehash = hashno;
6310 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6311 
6312 		SFMMU_HASH_LOCK(hmebp);
6313 
6314 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6315 		if (hmeblkp != NULL) {
6316 			ASSERT(!hmeblkp->hblk_shared);
6317 			/*
6318 			 * We've encountered a shadow hmeblk so skip the range
6319 			 * of the next smaller mapping size.
6320 			 */
6321 			if (hmeblkp->hblk_shw_bit) {
6322 				ASSERT(sfmmup != ksfmmup);
6323 				ASSERT(hashno > 1);
6324 				addr = (caddr_t)P2END((uintptr_t)addr,
6325 				    TTEBYTES(hashno - 1));
6326 			} else {
6327 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6328 				    addr, endaddr, clearflag);
6329 			}
6330 			SFMMU_HASH_UNLOCK(hmebp);
6331 			hashno = 1;
6332 			continue;
6333 		}
6334 		SFMMU_HASH_UNLOCK(hmebp);
6335 
6336 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6337 			/*
6338 			 * We have traversed the whole list and rehashed
6339 			 * if necessary without finding the address to sync.
6340 			 * This is ok so we increment the address by the
6341 			 * smallest hmeblk range for kernel mappings and the
6342 			 * largest hmeblk range, to account for shadow hmeblks,
6343 			 * for user mappings and continue.
6344 			 */
6345 			if (sfmmup == ksfmmup)
6346 				addr = (caddr_t)P2END((uintptr_t)addr,
6347 				    TTEBYTES(1));
6348 			else
6349 				addr = (caddr_t)P2END((uintptr_t)addr,
6350 				    TTEBYTES(hashno));
6351 			hashno = 1;
6352 		} else {
6353 			hashno++;
6354 		}
6355 	}
6356 	sfmmu_hblks_list_purge(&list, 0);
6357 	cpuset = sfmmup->sfmmu_cpusran;
6358 	xt_sync(cpuset);
6359 }
6360 
6361 static caddr_t
6362 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6363 	caddr_t endaddr, int clearflag)
6364 {
6365 	tte_t	tte, ttemod;
6366 	struct sf_hment *sfhmep;
6367 	int ttesz;
6368 	struct page *pp;
6369 	kmutex_t *pml;
6370 	int ret;
6371 
6372 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6373 	ASSERT(!hmeblkp->hblk_shared);
6374 
6375 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6376 
6377 	ttesz = get_hblk_ttesz(hmeblkp);
6378 	HBLKTOHME(sfhmep, hmeblkp, addr);
6379 
6380 	while (addr < endaddr) {
6381 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6382 		if (TTE_IS_VALID(&tte)) {
6383 			pml = NULL;
6384 			pp = sfhmep->hme_page;
6385 			if (pp) {
6386 				pml = sfmmu_mlist_enter(pp);
6387 			}
6388 			if (pp != sfhmep->hme_page) {
6389 				/*
6390 				 * tte most have been unloaded
6391 				 * underneath us.  Recheck
6392 				 */
6393 				ASSERT(pml);
6394 				sfmmu_mlist_exit(pml);
6395 				continue;
6396 			}
6397 
6398 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6399 
6400 			if (clearflag == HAT_SYNC_ZERORM) {
6401 				ttemod = tte;
6402 				TTE_CLR_RM(&ttemod);
6403 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6404 				    &sfhmep->hme_tte);
6405 				if (ret < 0) {
6406 					if (pml) {
6407 						sfmmu_mlist_exit(pml);
6408 					}
6409 					continue;
6410 				}
6411 
6412 				if (ret > 0) {
6413 					sfmmu_tlb_demap(addr, sfmmup,
6414 					    hmeblkp, 0, 0);
6415 				}
6416 			}
6417 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6418 			if (pml) {
6419 				sfmmu_mlist_exit(pml);
6420 			}
6421 		}
6422 		addr += TTEBYTES(ttesz);
6423 		sfhmep++;
6424 	}
6425 	return (addr);
6426 }
6427 
6428 /*
6429  * This function will sync a tte to the page struct and it will
6430  * update the hat stats. Currently it allows us to pass a NULL pp
6431  * and we will simply update the stats.  We may want to change this
6432  * so we only keep stats for pages backed by pp's.
6433  */
6434 static void
6435 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6436 {
6437 	uint_t rm = 0;
6438 	int sz = TTE_CSZ(ttep);
6439 	pgcnt_t	npgs;
6440 
6441 	ASSERT(TTE_IS_VALID(ttep));
6442 
6443 	if (!TTE_IS_NOSYNC(ttep)) {
6444 
6445 		if (TTE_IS_REF(ttep))
6446 			rm |= P_REF;
6447 
6448 		if (TTE_IS_MOD(ttep))
6449 			rm |= P_MOD;
6450 
6451 		if (rm != 0) {
6452 			if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6453 				int i;
6454 				caddr_t	vaddr = addr;
6455 
6456 				for (i = 0; i < TTEPAGES(sz); i++) {
6457 					hat_setstat(sfmmup->sfmmu_as, vaddr,
6458 					    MMU_PAGESIZE, rm);
6459 					vaddr += MMU_PAGESIZE;
6460 				}
6461 			}
6462 		}
6463 	}
6464 
6465 	if (!pp)
6466 		return;
6467 
6468 	/*
6469 	 * If software says this page is executable, and the page was
6470 	 * in fact executed (indicated by hardware exec permission
6471 	 * being enabled), then set P_EXEC on the page to remember
6472 	 * that it was executed. The I$ will be flushed when the page
6473 	 * is reassigned.
6474 	 */
6475 	if (TTE_EXECUTED(ttep)) {
6476 		rm |= P_EXEC;
6477 	} else if (rm == 0) {
6478 		return;
6479 	}
6480 
6481 	/*
6482 	 * XXX I want to use cas to update nrm bits but they
6483 	 * currently belong in common/vm and not in hat where
6484 	 * they should be.
6485 	 * The nrm bits are protected by the same mutex as
6486 	 * the one that protects the page's mapping list.
6487 	 */
6488 	ASSERT(sfmmu_mlist_held(pp));
6489 	/*
6490 	 * If the tte is for a large page, we need to sync all the
6491 	 * pages covered by the tte.
6492 	 */
6493 	if (sz != TTE8K) {
6494 		ASSERT(pp->p_szc != 0);
6495 		pp = PP_GROUPLEADER(pp, sz);
6496 		ASSERT(sfmmu_mlist_held(pp));
6497 	}
6498 
6499 	/* Get number of pages from tte size. */
6500 	npgs = TTEPAGES(sz);
6501 
6502 	do {
6503 		ASSERT(pp);
6504 		ASSERT(sfmmu_mlist_held(pp));
6505 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6506 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)) ||
6507 		    ((rm & P_EXEC) != 0 && !PP_ISEXEC(pp)))
6508 			hat_page_setattr(pp, rm);
6509 
6510 		/*
6511 		 * Are we done? If not, we must have a large mapping.
6512 		 * For large mappings we need to sync the rest of the pages
6513 		 * covered by this tte; goto the next page.
6514 		 */
6515 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6516 }
6517 
6518 /*
6519  * Execute pre-callback handler of each pa_hment linked to pp
6520  *
6521  * Inputs:
6522  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6523  *   capture_cpus: pointer to return value (below)
6524  *
6525  * Returns:
6526  *   Propagates the subsystem callback return values back to the caller;
6527  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6528  *   is zero if all of the pa_hments are of a type that do not require
6529  *   capturing CPUs prior to suspending the mapping, else it is 1.
6530  */
6531 static int
6532 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6533 {
6534 	struct sf_hment	*sfhmep;
6535 	struct pa_hment *pahmep;
6536 	int (*f)(caddr_t, uint_t, uint_t, void *);
6537 	int		ret;
6538 	id_t		id;
6539 	int		locked = 0;
6540 	kmutex_t	*pml;
6541 
6542 	ASSERT(PAGE_EXCL(pp));
6543 	if (!sfmmu_mlist_held(pp)) {
6544 		pml = sfmmu_mlist_enter(pp);
6545 		locked = 1;
6546 	}
6547 
6548 	if (capture_cpus)
6549 		*capture_cpus = 0;
6550 
6551 top:
6552 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6553 		/*
6554 		 * skip sf_hments corresponding to VA<->PA mappings;
6555 		 * for pa_hment's, hme_tte.ll is zero
6556 		 */
6557 		if (!IS_PAHME(sfhmep))
6558 			continue;
6559 
6560 		pahmep = sfhmep->hme_data;
6561 		ASSERT(pahmep != NULL);
6562 
6563 		/*
6564 		 * skip if pre-handler has been called earlier in this loop
6565 		 */
6566 		if (pahmep->flags & flag)
6567 			continue;
6568 
6569 		id = pahmep->cb_id;
6570 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6571 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6572 			*capture_cpus = 1;
6573 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6574 			pahmep->flags |= flag;
6575 			continue;
6576 		}
6577 
6578 		/*
6579 		 * Drop the mapping list lock to avoid locking order issues.
6580 		 */
6581 		if (locked)
6582 			sfmmu_mlist_exit(pml);
6583 
6584 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6585 		if (ret != 0)
6586 			return (ret);	/* caller must do the cleanup */
6587 
6588 		if (locked) {
6589 			pml = sfmmu_mlist_enter(pp);
6590 			pahmep->flags |= flag;
6591 			goto top;
6592 		}
6593 
6594 		pahmep->flags |= flag;
6595 	}
6596 
6597 	if (locked)
6598 		sfmmu_mlist_exit(pml);
6599 
6600 	return (0);
6601 }
6602 
6603 /*
6604  * Execute post-callback handler of each pa_hment linked to pp
6605  *
6606  * Same overall assumptions and restrictions apply as for
6607  * hat_pageprocess_precallbacks().
6608  */
6609 static void
6610 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6611 {
6612 	pfn_t pgpfn = pp->p_pagenum;
6613 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6614 	pfn_t newpfn;
6615 	struct sf_hment *sfhmep;
6616 	struct pa_hment *pahmep;
6617 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6618 	id_t	id;
6619 	int	locked = 0;
6620 	kmutex_t *pml;
6621 
6622 	ASSERT(PAGE_EXCL(pp));
6623 	if (!sfmmu_mlist_held(pp)) {
6624 		pml = sfmmu_mlist_enter(pp);
6625 		locked = 1;
6626 	}
6627 
6628 top:
6629 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6630 		/*
6631 		 * skip sf_hments corresponding to VA<->PA mappings;
6632 		 * for pa_hment's, hme_tte.ll is zero
6633 		 */
6634 		if (!IS_PAHME(sfhmep))
6635 			continue;
6636 
6637 		pahmep = sfhmep->hme_data;
6638 		ASSERT(pahmep != NULL);
6639 
6640 		if ((pahmep->flags & flag) == 0)
6641 			continue;
6642 
6643 		pahmep->flags &= ~flag;
6644 
6645 		id = pahmep->cb_id;
6646 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6647 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6648 			continue;
6649 
6650 		/*
6651 		 * Convert the base page PFN into the constituent PFN
6652 		 * which is needed by the callback handler.
6653 		 */
6654 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6655 
6656 		/*
6657 		 * Drop the mapping list lock to avoid locking order issues.
6658 		 */
6659 		if (locked)
6660 			sfmmu_mlist_exit(pml);
6661 
6662 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6663 		    != 0)
6664 			panic("sfmmu: posthandler failed");
6665 
6666 		if (locked) {
6667 			pml = sfmmu_mlist_enter(pp);
6668 			goto top;
6669 		}
6670 	}
6671 
6672 	if (locked)
6673 		sfmmu_mlist_exit(pml);
6674 }
6675 
6676 /*
6677  * Suspend locked kernel mapping
6678  */
6679 void
6680 hat_pagesuspend(struct page *pp)
6681 {
6682 	struct sf_hment *sfhmep;
6683 	sfmmu_t *sfmmup;
6684 	tte_t tte, ttemod;
6685 	struct hme_blk *hmeblkp;
6686 	caddr_t addr;
6687 	int index, cons;
6688 	cpuset_t cpuset;
6689 
6690 	ASSERT(PAGE_EXCL(pp));
6691 	ASSERT(sfmmu_mlist_held(pp));
6692 
6693 	mutex_enter(&kpr_suspendlock);
6694 
6695 	/*
6696 	 * We're about to suspend a kernel mapping so mark this thread as
6697 	 * non-traceable by DTrace. This prevents us from running into issues
6698 	 * with probe context trying to touch a suspended page
6699 	 * in the relocation codepath itself.
6700 	 */
6701 	curthread->t_flag |= T_DONTDTRACE;
6702 
6703 	index = PP_MAPINDEX(pp);
6704 	cons = TTE8K;
6705 
6706 retry:
6707 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6708 
6709 		if (IS_PAHME(sfhmep))
6710 			continue;
6711 
6712 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6713 			continue;
6714 
6715 		/*
6716 		 * Loop until we successfully set the suspend bit in
6717 		 * the TTE.
6718 		 */
6719 again:
6720 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6721 		ASSERT(TTE_IS_VALID(&tte));
6722 
6723 		ttemod = tte;
6724 		TTE_SET_SUSPEND(&ttemod);
6725 		if (sfmmu_modifytte_try(&tte, &ttemod,
6726 		    &sfhmep->hme_tte) < 0)
6727 			goto again;
6728 
6729 		/*
6730 		 * Invalidate TSB entry
6731 		 */
6732 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6733 
6734 		sfmmup = hblktosfmmu(hmeblkp);
6735 		ASSERT(sfmmup == ksfmmup);
6736 		ASSERT(!hmeblkp->hblk_shared);
6737 
6738 		addr = tte_to_vaddr(hmeblkp, tte);
6739 
6740 		/*
6741 		 * No need to make sure that the TSB for this sfmmu is
6742 		 * not being relocated since it is ksfmmup and thus it
6743 		 * will never be relocated.
6744 		 */
6745 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6746 
6747 		/*
6748 		 * Update xcall stats
6749 		 */
6750 		cpuset = cpu_ready_set;
6751 		CPUSET_DEL(cpuset, CPU->cpu_id);
6752 
6753 		/* LINTED: constant in conditional context */
6754 		SFMMU_XCALL_STATS(ksfmmup);
6755 
6756 		/*
6757 		 * Flush TLB entry on remote CPU's
6758 		 */
6759 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6760 		    (uint64_t)ksfmmup);
6761 		xt_sync(cpuset);
6762 
6763 		/*
6764 		 * Flush TLB entry on local CPU
6765 		 */
6766 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6767 	}
6768 
6769 	while (index != 0) {
6770 		index = index >> 1;
6771 		if (index != 0)
6772 			cons++;
6773 		if (index & 0x1) {
6774 			pp = PP_GROUPLEADER(pp, cons);
6775 			goto retry;
6776 		}
6777 	}
6778 }
6779 
6780 #ifdef	DEBUG
6781 
6782 #define	N_PRLE	1024
6783 struct prle {
6784 	page_t *targ;
6785 	page_t *repl;
6786 	int status;
6787 	int pausecpus;
6788 	hrtime_t whence;
6789 };
6790 
6791 static struct prle page_relocate_log[N_PRLE];
6792 static int prl_entry;
6793 static kmutex_t prl_mutex;
6794 
6795 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6796 	mutex_enter(&prl_mutex);					\
6797 	page_relocate_log[prl_entry].targ = *(t);			\
6798 	page_relocate_log[prl_entry].repl = *(r);			\
6799 	page_relocate_log[prl_entry].status = (s);			\
6800 	page_relocate_log[prl_entry].pausecpus = (p);			\
6801 	page_relocate_log[prl_entry].whence = gethrtime();		\
6802 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6803 	mutex_exit(&prl_mutex);
6804 
6805 #else	/* !DEBUG */
6806 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6807 #endif
6808 
6809 /*
6810  * Core Kernel Page Relocation Algorithm
6811  *
6812  * Input:
6813  *
6814  * target : 	constituent pages are SE_EXCL locked.
6815  * replacement:	constituent pages are SE_EXCL locked.
6816  *
6817  * Output:
6818  *
6819  * nrelocp:	number of pages relocated
6820  */
6821 int
6822 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6823 {
6824 	page_t		*targ, *repl;
6825 	page_t		*tpp, *rpp;
6826 	kmutex_t	*low, *high;
6827 	spgcnt_t	npages, i;
6828 	page_t		*pl = NULL;
6829 	uint_t		ppattr;
6830 	int		old_pil;
6831 	cpuset_t	cpuset;
6832 	int		cap_cpus;
6833 	int		ret;
6834 #ifdef VAC
6835 	int		cflags = 0;
6836 #endif
6837 
6838 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6839 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6840 		return (EAGAIN);
6841 	}
6842 
6843 	mutex_enter(&kpr_mutex);
6844 	kreloc_thread = curthread;
6845 
6846 	targ = *target;
6847 	repl = *replacement;
6848 	ASSERT(repl != NULL);
6849 	ASSERT(targ->p_szc == repl->p_szc);
6850 
6851 	npages = page_get_pagecnt(targ->p_szc);
6852 
6853 	/*
6854 	 * unload VA<->PA mappings that are not locked
6855 	 */
6856 	tpp = targ;
6857 	for (i = 0; i < npages; i++) {
6858 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6859 		tpp++;
6860 	}
6861 
6862 	/*
6863 	 * Do "presuspend" callbacks, in a context from which we can still
6864 	 * block as needed. Note that we don't hold the mapping list lock
6865 	 * of "targ" at this point due to potential locking order issues;
6866 	 * we assume that between the hat_pageunload() above and holding
6867 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6868 	 * point.
6869 	 */
6870 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6871 	if (ret != 0) {
6872 		/*
6873 		 * EIO translates to fatal error, for all others cleanup
6874 		 * and return EAGAIN.
6875 		 */
6876 		ASSERT(ret != EIO);
6877 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6878 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6879 		kreloc_thread = NULL;
6880 		mutex_exit(&kpr_mutex);
6881 		return (EAGAIN);
6882 	}
6883 
6884 	/*
6885 	 * acquire p_mapping list lock for both the target and replacement
6886 	 * root pages.
6887 	 *
6888 	 * low and high refer to the need to grab the mlist locks in a
6889 	 * specific order in order to prevent race conditions.  Thus the
6890 	 * lower lock must be grabbed before the higher lock.
6891 	 *
6892 	 * This will block hat_unload's accessing p_mapping list.  Since
6893 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6894 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6895 	 * while we suspend and reload the locked mapping below.
6896 	 */
6897 	tpp = targ;
6898 	rpp = repl;
6899 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6900 
6901 	kpreempt_disable();
6902 
6903 	/*
6904 	 * We raise our PIL to 13 so that we don't get captured by
6905 	 * another CPU or pinned by an interrupt thread.  We can't go to
6906 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6907 	 * that level in the case of IOMMU pseudo mappings.
6908 	 */
6909 	cpuset = cpu_ready_set;
6910 	CPUSET_DEL(cpuset, CPU->cpu_id);
6911 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6912 		old_pil = splr(XCALL_PIL);
6913 	} else {
6914 		old_pil = -1;
6915 		xc_attention(cpuset);
6916 	}
6917 	ASSERT(getpil() == XCALL_PIL);
6918 
6919 	/*
6920 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6921 	 * this will suspend all DMA activity to the page while it is
6922 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6923 	 * may be captured at this point we should have acquired any needed
6924 	 * locks in the presuspend callback.
6925 	 */
6926 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6927 	if (ret != 0) {
6928 		repl = targ;
6929 		goto suspend_fail;
6930 	}
6931 
6932 	/*
6933 	 * Raise the PIL yet again, this time to block all high-level
6934 	 * interrupts on this CPU. This is necessary to prevent an
6935 	 * interrupt routine from pinning the thread which holds the
6936 	 * mapping suspended and then touching the suspended page.
6937 	 *
6938 	 * Once the page is suspended we also need to be careful to
6939 	 * avoid calling any functions which touch any seg_kmem memory
6940 	 * since that memory may be backed by the very page we are
6941 	 * relocating in here!
6942 	 */
6943 	hat_pagesuspend(targ);
6944 
6945 	/*
6946 	 * Now that we are confident everybody has stopped using this page,
6947 	 * copy the page contents.  Note we use a physical copy to prevent
6948 	 * locking issues and to avoid fpRAS because we can't handle it in
6949 	 * this context.
6950 	 */
6951 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6952 #ifdef VAC
6953 		/*
6954 		 * If the replacement has a different vcolor than
6955 		 * the one being replacd, we need to handle VAC
6956 		 * consistency for it just as we were setting up
6957 		 * a new mapping to it.
6958 		 */
6959 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6960 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6961 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6962 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6963 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6964 			    rpp->p_pagenum);
6965 		}
6966 #endif
6967 		/*
6968 		 * Copy the contents of the page.
6969 		 */
6970 		ppcopy_kernel(tpp, rpp);
6971 	}
6972 
6973 	tpp = targ;
6974 	rpp = repl;
6975 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6976 		/*
6977 		 * Copy attributes.  VAC consistency was handled above,
6978 		 * if required.
6979 		 */
6980 		ppattr = hat_page_getattr(tpp, (P_MOD | P_REF | P_RO));
6981 		page_clr_all_props(rpp, 0);
6982 		page_set_props(rpp, ppattr);
6983 		rpp->p_index = tpp->p_index;
6984 		tpp->p_index = 0;
6985 #ifdef VAC
6986 		rpp->p_vcolor = tpp->p_vcolor;
6987 #endif
6988 	}
6989 
6990 	/*
6991 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6992 	 * the mapping list from the target page to the replacement page.
6993 	 * Next process postcallbacks; since pa_hment's are linked only to the
6994 	 * p_mapping list of root page, we don't iterate over the constituent
6995 	 * pages.
6996 	 */
6997 	hat_pagereload(targ, repl);
6998 
6999 suspend_fail:
7000 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
7001 
7002 	/*
7003 	 * Now lower our PIL and release any captured CPUs since we
7004 	 * are out of the "danger zone".  After this it will again be
7005 	 * safe to acquire adaptive mutex locks, or to drop them...
7006 	 */
7007 	if (old_pil != -1) {
7008 		splx(old_pil);
7009 	} else {
7010 		xc_dismissed(cpuset);
7011 	}
7012 
7013 	kpreempt_enable();
7014 
7015 	sfmmu_mlist_reloc_exit(low, high);
7016 
7017 	/*
7018 	 * Postsuspend callbacks should drop any locks held across
7019 	 * the suspend callbacks.  As before, we don't hold the mapping
7020 	 * list lock at this point.. our assumption is that the mapping
7021 	 * list still can't change due to our holding SE_EXCL lock and
7022 	 * there being no unlocked mappings left. Hence the restriction
7023 	 * on calling context to hat_delete_callback()
7024 	 */
7025 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
7026 	if (ret != 0) {
7027 		/*
7028 		 * The second presuspend call failed: we got here through
7029 		 * the suspend_fail label above.
7030 		 */
7031 		ASSERT(ret != EIO);
7032 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
7033 		kreloc_thread = NULL;
7034 		mutex_exit(&kpr_mutex);
7035 		return (EAGAIN);
7036 	}
7037 
7038 	/*
7039 	 * Now that we're out of the performance critical section we can
7040 	 * take care of updating the hash table, since we still
7041 	 * hold all the pages locked SE_EXCL at this point we
7042 	 * needn't worry about things changing out from under us.
7043 	 */
7044 	tpp = targ;
7045 	rpp = repl;
7046 	for (i = 0; i < npages; i++, tpp++, rpp++) {
7047 
7048 		/*
7049 		 * replace targ with replacement in page_hash table
7050 		 */
7051 		targ = tpp;
7052 		page_relocate_hash(rpp, targ);
7053 
7054 		/*
7055 		 * concatenate target; caller of platform_page_relocate()
7056 		 * expects target to be concatenated after returning.
7057 		 */
7058 		ASSERT(targ->p_next == targ);
7059 		ASSERT(targ->p_prev == targ);
7060 		page_list_concat(&pl, &targ);
7061 	}
7062 
7063 	ASSERT(*target == pl);
7064 	*nrelocp = npages;
7065 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
7066 	kreloc_thread = NULL;
7067 	mutex_exit(&kpr_mutex);
7068 	return (0);
7069 }
7070 
7071 /*
7072  * Called when stray pa_hments are found attached to a page which is
7073  * being freed.  Notify the subsystem which attached the pa_hment of
7074  * the error if it registered a suitable handler, else panic.
7075  */
7076 static void
7077 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7078 {
7079 	id_t cb_id = pahmep->cb_id;
7080 
7081 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7082 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7083 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7084 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7085 			return;		/* non-fatal */
7086 	}
7087 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
7088 }
7089 
7090 /*
7091  * Remove all mappings to page 'pp'.
7092  */
7093 int
7094 hat_pageunload(struct page *pp, uint_t forceflag)
7095 {
7096 	struct page *origpp = pp;
7097 	struct sf_hment *sfhme, *tmphme;
7098 	struct hme_blk *hmeblkp;
7099 	kmutex_t *pml;
7100 #ifdef VAC
7101 	kmutex_t *pmtx;
7102 #endif
7103 	cpuset_t cpuset, tset;
7104 	int index, cons;
7105 	int xhme_blks;
7106 	int pa_hments;
7107 
7108 	ASSERT(PAGE_EXCL(pp));
7109 
7110 retry_xhat:
7111 	tmphme = NULL;
7112 	xhme_blks = 0;
7113 	pa_hments = 0;
7114 	CPUSET_ZERO(cpuset);
7115 
7116 	pml = sfmmu_mlist_enter(pp);
7117 
7118 #ifdef VAC
7119 	if (pp->p_kpmref)
7120 		sfmmu_kpm_pageunload(pp);
7121 	ASSERT(!PP_ISMAPPED_KPM(pp));
7122 #endif
7123 	/*
7124 	 * Clear vpm reference. Since the page is exclusively locked
7125 	 * vpm cannot be referencing it.
7126 	 */
7127 	if (vpm_enable) {
7128 		pp->p_vpmref = 0;
7129 	}
7130 
7131 	index = PP_MAPINDEX(pp);
7132 	cons = TTE8K;
7133 retry:
7134 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7135 		tmphme = sfhme->hme_next;
7136 
7137 		if (IS_PAHME(sfhme)) {
7138 			ASSERT(sfhme->hme_data != NULL);
7139 			pa_hments++;
7140 			continue;
7141 		}
7142 
7143 		hmeblkp = sfmmu_hmetohblk(sfhme);
7144 		if (hmeblkp->hblk_xhat_bit) {
7145 			struct xhat_hme_blk *xblk =
7146 			    (struct xhat_hme_blk *)hmeblkp;
7147 
7148 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7149 			    pp, forceflag, XBLK2PROVBLK(xblk));
7150 
7151 			xhme_blks = 1;
7152 			continue;
7153 		}
7154 
7155 		/*
7156 		 * If there are kernel mappings don't unload them, they will
7157 		 * be suspended.
7158 		 */
7159 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7160 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7161 			continue;
7162 
7163 		tset = sfmmu_pageunload(pp, sfhme, cons);
7164 		CPUSET_OR(cpuset, tset);
7165 	}
7166 
7167 	while (index != 0) {
7168 		index = index >> 1;
7169 		if (index != 0)
7170 			cons++;
7171 		if (index & 0x1) {
7172 			/* Go to leading page */
7173 			pp = PP_GROUPLEADER(pp, cons);
7174 			ASSERT(sfmmu_mlist_held(pp));
7175 			goto retry;
7176 		}
7177 	}
7178 
7179 	/*
7180 	 * cpuset may be empty if the page was only mapped by segkpm,
7181 	 * in which case we won't actually cross-trap.
7182 	 */
7183 	xt_sync(cpuset);
7184 
7185 	/*
7186 	 * The page should have no mappings at this point, unless
7187 	 * we were called from hat_page_relocate() in which case we
7188 	 * leave the locked mappings which will be suspended later.
7189 	 */
7190 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7191 	    (forceflag == SFMMU_KERNEL_RELOC));
7192 
7193 #ifdef VAC
7194 	if (PP_ISTNC(pp)) {
7195 		if (cons == TTE8K) {
7196 			pmtx = sfmmu_page_enter(pp);
7197 			PP_CLRTNC(pp);
7198 			sfmmu_page_exit(pmtx);
7199 		} else {
7200 			conv_tnc(pp, cons);
7201 		}
7202 	}
7203 #endif	/* VAC */
7204 
7205 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7206 		/*
7207 		 * Unlink any pa_hments and free them, calling back
7208 		 * the responsible subsystem to notify it of the error.
7209 		 * This can occur in situations such as drivers leaking
7210 		 * DMA handles: naughty, but common enough that we'd like
7211 		 * to keep the system running rather than bringing it
7212 		 * down with an obscure error like "pa_hment leaked"
7213 		 * which doesn't aid the user in debugging their driver.
7214 		 */
7215 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7216 			tmphme = sfhme->hme_next;
7217 			if (IS_PAHME(sfhme)) {
7218 				struct pa_hment *pahmep = sfhme->hme_data;
7219 				sfmmu_pahment_leaked(pahmep);
7220 				HME_SUB(sfhme, pp);
7221 				kmem_cache_free(pa_hment_cache, pahmep);
7222 			}
7223 		}
7224 
7225 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7226 	}
7227 
7228 	sfmmu_mlist_exit(pml);
7229 
7230 	/*
7231 	 * XHAT may not have finished unloading pages
7232 	 * because some other thread was waiting for
7233 	 * mlist lock and XHAT_PAGEUNLOAD let it do
7234 	 * the job.
7235 	 */
7236 	if (xhme_blks) {
7237 		pp = origpp;
7238 		goto retry_xhat;
7239 	}
7240 
7241 	return (0);
7242 }
7243 
7244 cpuset_t
7245 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7246 {
7247 	struct hme_blk *hmeblkp;
7248 	sfmmu_t *sfmmup;
7249 	tte_t tte, ttemod;
7250 #ifdef DEBUG
7251 	tte_t orig_old;
7252 #endif /* DEBUG */
7253 	caddr_t addr;
7254 	int ttesz;
7255 	int ret;
7256 	cpuset_t cpuset;
7257 
7258 	ASSERT(pp != NULL);
7259 	ASSERT(sfmmu_mlist_held(pp));
7260 	ASSERT(!PP_ISKAS(pp));
7261 
7262 	CPUSET_ZERO(cpuset);
7263 
7264 	hmeblkp = sfmmu_hmetohblk(sfhme);
7265 
7266 readtte:
7267 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7268 	if (TTE_IS_VALID(&tte)) {
7269 		sfmmup = hblktosfmmu(hmeblkp);
7270 		ttesz = get_hblk_ttesz(hmeblkp);
7271 		/*
7272 		 * Only unload mappings of 'cons' size.
7273 		 */
7274 		if (ttesz != cons)
7275 			return (cpuset);
7276 
7277 		/*
7278 		 * Note that we have p_mapping lock, but no hash lock here.
7279 		 * hblk_unload() has to have both hash lock AND p_mapping
7280 		 * lock before it tries to modify tte. So, the tte could
7281 		 * not become invalid in the sfmmu_modifytte_try() below.
7282 		 */
7283 		ttemod = tte;
7284 #ifdef DEBUG
7285 		orig_old = tte;
7286 #endif /* DEBUG */
7287 
7288 		TTE_SET_INVALID(&ttemod);
7289 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7290 		if (ret < 0) {
7291 #ifdef DEBUG
7292 			/* only R/M bits can change. */
7293 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7294 #endif /* DEBUG */
7295 			goto readtte;
7296 		}
7297 
7298 		if (ret == 0) {
7299 			panic("pageunload: cas failed?");
7300 		}
7301 
7302 		addr = tte_to_vaddr(hmeblkp, tte);
7303 
7304 		if (hmeblkp->hblk_shared) {
7305 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7306 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7307 			sf_region_t *rgnp;
7308 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7309 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7310 			ASSERT(srdp != NULL);
7311 			rgnp = srdp->srd_hmergnp[rid];
7312 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7313 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7314 			sfmmu_ttesync(NULL, addr, &tte, pp);
7315 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7316 			atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7317 		} else {
7318 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7319 			atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7320 
7321 			/*
7322 			 * We need to flush the page from the virtual cache
7323 			 * in order to prevent a virtual cache alias
7324 			 * inconsistency. The particular scenario we need
7325 			 * to worry about is:
7326 			 * Given:  va1 and va2 are two virtual address that
7327 			 * alias and will map the same physical address.
7328 			 * 1.   mapping exists from va1 to pa and data has
7329 			 *	been read into the cache.
7330 			 * 2.   unload va1.
7331 			 * 3.   load va2 and modify data using va2.
7332 			 * 4    unload va2.
7333 			 * 5.   load va1 and reference data.  Unless we flush
7334 			 *	the data cache when we unload we will get
7335 			 *	stale data.
7336 			 * This scenario is taken care of by using virtual
7337 			 * page coloring.
7338 			 */
7339 			if (sfmmup->sfmmu_ismhat) {
7340 				/*
7341 				 * Flush TSBs, TLBs and caches
7342 				 * of every process
7343 				 * sharing this ism segment.
7344 				 */
7345 				sfmmu_hat_lock_all();
7346 				mutex_enter(&ism_mlist_lock);
7347 				kpreempt_disable();
7348 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7349 				    pp->p_pagenum, CACHE_NO_FLUSH);
7350 				kpreempt_enable();
7351 				mutex_exit(&ism_mlist_lock);
7352 				sfmmu_hat_unlock_all();
7353 				cpuset = cpu_ready_set;
7354 			} else {
7355 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7356 				cpuset = sfmmup->sfmmu_cpusran;
7357 			}
7358 		}
7359 
7360 		/*
7361 		 * Hme_sub has to run after ttesync() and a_rss update.
7362 		 * See hblk_unload().
7363 		 */
7364 		HME_SUB(sfhme, pp);
7365 		membar_stst();
7366 
7367 		/*
7368 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7369 		 * since pteload may have done a HME_ADD() right after
7370 		 * we did the HME_SUB() above. Hmecnt is now maintained
7371 		 * by cas only. no lock guranteed its value. The only
7372 		 * gurantee we have is the hmecnt should not be less than
7373 		 * what it should be so the hblk will not be taken away.
7374 		 * It's also important that we decremented the hmecnt after
7375 		 * we are done with hmeblkp so that this hmeblk won't be
7376 		 * stolen.
7377 		 */
7378 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7379 		ASSERT(hmeblkp->hblk_vcnt > 0);
7380 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7381 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7382 		/*
7383 		 * This is bug 4063182.
7384 		 * XXX: fixme
7385 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7386 		 *	!hmeblkp->hblk_lckcnt);
7387 		 */
7388 	} else {
7389 		panic("invalid tte? pp %p &tte %p",
7390 		    (void *)pp, (void *)&tte);
7391 	}
7392 
7393 	return (cpuset);
7394 }
7395 
7396 /*
7397  * While relocating a kernel page, this function will move the mappings
7398  * from tpp to dpp and modify any associated data with these mappings.
7399  * It also unsuspends the suspended kernel mapping.
7400  */
7401 static void
7402 hat_pagereload(struct page *tpp, struct page *dpp)
7403 {
7404 	struct sf_hment *sfhme;
7405 	tte_t tte, ttemod;
7406 	int index, cons;
7407 
7408 	ASSERT(getpil() == PIL_MAX);
7409 	ASSERT(sfmmu_mlist_held(tpp));
7410 	ASSERT(sfmmu_mlist_held(dpp));
7411 
7412 	index = PP_MAPINDEX(tpp);
7413 	cons = TTE8K;
7414 
7415 	/* Update real mappings to the page */
7416 retry:
7417 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7418 		if (IS_PAHME(sfhme))
7419 			continue;
7420 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7421 		ttemod = tte;
7422 
7423 		/*
7424 		 * replace old pfn with new pfn in TTE
7425 		 */
7426 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7427 
7428 		/*
7429 		 * clear suspend bit
7430 		 */
7431 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7432 		TTE_CLR_SUSPEND(&ttemod);
7433 
7434 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7435 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7436 
7437 		/*
7438 		 * set hme_page point to new page
7439 		 */
7440 		sfhme->hme_page = dpp;
7441 	}
7442 
7443 	/*
7444 	 * move p_mapping list from old page to new page
7445 	 */
7446 	dpp->p_mapping = tpp->p_mapping;
7447 	tpp->p_mapping = NULL;
7448 	dpp->p_share = tpp->p_share;
7449 	tpp->p_share = 0;
7450 
7451 	while (index != 0) {
7452 		index = index >> 1;
7453 		if (index != 0)
7454 			cons++;
7455 		if (index & 0x1) {
7456 			tpp = PP_GROUPLEADER(tpp, cons);
7457 			dpp = PP_GROUPLEADER(dpp, cons);
7458 			goto retry;
7459 		}
7460 	}
7461 
7462 	curthread->t_flag &= ~T_DONTDTRACE;
7463 	mutex_exit(&kpr_suspendlock);
7464 }
7465 
7466 uint_t
7467 hat_pagesync(struct page *pp, uint_t clearflag)
7468 {
7469 	struct sf_hment *sfhme, *tmphme = NULL;
7470 	struct hme_blk *hmeblkp;
7471 	kmutex_t *pml;
7472 	cpuset_t cpuset, tset;
7473 	int	index, cons;
7474 	extern	ulong_t po_share;
7475 	page_t	*save_pp = pp;
7476 	int	stop_on_sh = 0;
7477 	uint_t	shcnt;
7478 
7479 	CPUSET_ZERO(cpuset);
7480 
7481 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7482 		return (PP_GENERIC_ATTR(pp));
7483 	}
7484 
7485 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7486 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7487 			return (PP_GENERIC_ATTR(pp));
7488 		}
7489 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7490 			return (PP_GENERIC_ATTR(pp));
7491 		}
7492 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7493 			if (pp->p_share > po_share) {
7494 				hat_page_setattr(pp, P_REF);
7495 				return (PP_GENERIC_ATTR(pp));
7496 			}
7497 			stop_on_sh = 1;
7498 			shcnt = 0;
7499 		}
7500 	}
7501 
7502 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7503 	pml = sfmmu_mlist_enter(pp);
7504 	index = PP_MAPINDEX(pp);
7505 	cons = TTE8K;
7506 retry:
7507 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7508 		/*
7509 		 * We need to save the next hment on the list since
7510 		 * it is possible for pagesync to remove an invalid hment
7511 		 * from the list.
7512 		 */
7513 		tmphme = sfhme->hme_next;
7514 		if (IS_PAHME(sfhme))
7515 			continue;
7516 		/*
7517 		 * If we are looking for large mappings and this hme doesn't
7518 		 * reach the range we are seeking, just ignore it.
7519 		 */
7520 		hmeblkp = sfmmu_hmetohblk(sfhme);
7521 		if (hmeblkp->hblk_xhat_bit)
7522 			continue;
7523 
7524 		if (hme_size(sfhme) < cons)
7525 			continue;
7526 
7527 		if (stop_on_sh) {
7528 			if (hmeblkp->hblk_shared) {
7529 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7530 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7531 				sf_region_t *rgnp;
7532 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7533 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7534 				ASSERT(srdp != NULL);
7535 				rgnp = srdp->srd_hmergnp[rid];
7536 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7537 				    rgnp, rid);
7538 				shcnt += rgnp->rgn_refcnt;
7539 			} else {
7540 				shcnt++;
7541 			}
7542 			if (shcnt > po_share) {
7543 				/*
7544 				 * tell the pager to spare the page this time
7545 				 * around.
7546 				 */
7547 				hat_page_setattr(save_pp, P_REF);
7548 				index = 0;
7549 				break;
7550 			}
7551 		}
7552 		tset = sfmmu_pagesync(pp, sfhme,
7553 		    clearflag & ~HAT_SYNC_STOPON_RM);
7554 		CPUSET_OR(cpuset, tset);
7555 
7556 		/*
7557 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7558 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7559 		 */
7560 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7561 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7562 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7563 			index = 0;
7564 			break;
7565 		}
7566 	}
7567 
7568 	while (index) {
7569 		index = index >> 1;
7570 		cons++;
7571 		if (index & 0x1) {
7572 			/* Go to leading page */
7573 			pp = PP_GROUPLEADER(pp, cons);
7574 			goto retry;
7575 		}
7576 	}
7577 
7578 	xt_sync(cpuset);
7579 	sfmmu_mlist_exit(pml);
7580 	return (PP_GENERIC_ATTR(save_pp));
7581 }
7582 
7583 /*
7584  * Get all the hardware dependent attributes for a page struct
7585  */
7586 static cpuset_t
7587 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7588 	uint_t clearflag)
7589 {
7590 	caddr_t addr;
7591 	tte_t tte, ttemod;
7592 	struct hme_blk *hmeblkp;
7593 	int ret;
7594 	sfmmu_t *sfmmup;
7595 	cpuset_t cpuset;
7596 
7597 	ASSERT(pp != NULL);
7598 	ASSERT(sfmmu_mlist_held(pp));
7599 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7600 	    (clearflag == HAT_SYNC_ZERORM));
7601 
7602 	SFMMU_STAT(sf_pagesync);
7603 
7604 	CPUSET_ZERO(cpuset);
7605 
7606 sfmmu_pagesync_retry:
7607 
7608 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7609 	if (TTE_IS_VALID(&tte)) {
7610 		hmeblkp = sfmmu_hmetohblk(sfhme);
7611 		sfmmup = hblktosfmmu(hmeblkp);
7612 		addr = tte_to_vaddr(hmeblkp, tte);
7613 		if (clearflag == HAT_SYNC_ZERORM) {
7614 			ttemod = tte;
7615 			TTE_CLR_RM(&ttemod);
7616 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7617 			    &sfhme->hme_tte);
7618 			if (ret < 0) {
7619 				/*
7620 				 * cas failed and the new value is not what
7621 				 * we want.
7622 				 */
7623 				goto sfmmu_pagesync_retry;
7624 			}
7625 
7626 			if (ret > 0) {
7627 				/* we win the cas */
7628 				if (hmeblkp->hblk_shared) {
7629 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7630 					uint_t rid =
7631 					    hmeblkp->hblk_tag.htag_rid;
7632 					sf_region_t *rgnp;
7633 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7634 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7635 					ASSERT(srdp != NULL);
7636 					rgnp = srdp->srd_hmergnp[rid];
7637 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7638 					    srdp, rgnp, rid);
7639 					cpuset = sfmmu_rgntlb_demap(addr,
7640 					    rgnp, hmeblkp, 1);
7641 				} else {
7642 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7643 					    0, 0);
7644 					cpuset = sfmmup->sfmmu_cpusran;
7645 				}
7646 			}
7647 		}
7648 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7649 		    &tte, pp);
7650 	}
7651 	return (cpuset);
7652 }
7653 
7654 /*
7655  * Remove write permission from a mappings to a page, so that
7656  * we can detect the next modification of it. This requires modifying
7657  * the TTE then invalidating (demap) any TLB entry using that TTE.
7658  * This code is similar to sfmmu_pagesync().
7659  */
7660 static cpuset_t
7661 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7662 {
7663 	caddr_t addr;
7664 	tte_t tte;
7665 	tte_t ttemod;
7666 	struct hme_blk *hmeblkp;
7667 	int ret;
7668 	sfmmu_t *sfmmup;
7669 	cpuset_t cpuset;
7670 
7671 	ASSERT(pp != NULL);
7672 	ASSERT(sfmmu_mlist_held(pp));
7673 
7674 	CPUSET_ZERO(cpuset);
7675 	SFMMU_STAT(sf_clrwrt);
7676 
7677 retry:
7678 
7679 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7680 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7681 		hmeblkp = sfmmu_hmetohblk(sfhme);
7682 
7683 		/*
7684 		 * xhat mappings should never be to a VMODSORT page.
7685 		 */
7686 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
7687 
7688 		sfmmup = hblktosfmmu(hmeblkp);
7689 		addr = tte_to_vaddr(hmeblkp, tte);
7690 
7691 		ttemod = tte;
7692 		TTE_CLR_WRT(&ttemod);
7693 		TTE_CLR_MOD(&ttemod);
7694 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7695 
7696 		/*
7697 		 * if cas failed and the new value is not what
7698 		 * we want retry
7699 		 */
7700 		if (ret < 0)
7701 			goto retry;
7702 
7703 		/* we win the cas */
7704 		if (ret > 0) {
7705 			if (hmeblkp->hblk_shared) {
7706 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7707 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7708 				sf_region_t *rgnp;
7709 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7710 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7711 				ASSERT(srdp != NULL);
7712 				rgnp = srdp->srd_hmergnp[rid];
7713 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7714 				    srdp, rgnp, rid);
7715 				cpuset = sfmmu_rgntlb_demap(addr,
7716 				    rgnp, hmeblkp, 1);
7717 			} else {
7718 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7719 				cpuset = sfmmup->sfmmu_cpusran;
7720 			}
7721 		}
7722 	}
7723 
7724 	return (cpuset);
7725 }
7726 
7727 /*
7728  * Walk all mappings of a page, removing write permission and clearing the
7729  * ref/mod bits. This code is similar to hat_pagesync()
7730  */
7731 static void
7732 hat_page_clrwrt(page_t *pp)
7733 {
7734 	struct sf_hment *sfhme;
7735 	struct sf_hment *tmphme = NULL;
7736 	kmutex_t *pml;
7737 	cpuset_t cpuset;
7738 	cpuset_t tset;
7739 	int	index;
7740 	int	 cons;
7741 
7742 	CPUSET_ZERO(cpuset);
7743 
7744 	pml = sfmmu_mlist_enter(pp);
7745 	index = PP_MAPINDEX(pp);
7746 	cons = TTE8K;
7747 retry:
7748 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7749 		tmphme = sfhme->hme_next;
7750 
7751 		/*
7752 		 * If we are looking for large mappings and this hme doesn't
7753 		 * reach the range we are seeking, just ignore its.
7754 		 */
7755 
7756 		if (hme_size(sfhme) < cons)
7757 			continue;
7758 
7759 		tset = sfmmu_pageclrwrt(pp, sfhme);
7760 		CPUSET_OR(cpuset, tset);
7761 	}
7762 
7763 	while (index) {
7764 		index = index >> 1;
7765 		cons++;
7766 		if (index & 0x1) {
7767 			/* Go to leading page */
7768 			pp = PP_GROUPLEADER(pp, cons);
7769 			goto retry;
7770 		}
7771 	}
7772 
7773 	xt_sync(cpuset);
7774 	sfmmu_mlist_exit(pml);
7775 }
7776 
7777 /*
7778  * Set the given REF/MOD/RO bits for the given page.
7779  * For a vnode with a sorted v_pages list, we need to change
7780  * the attributes and the v_pages list together under page_vnode_mutex.
7781  */
7782 void
7783 hat_page_setattr(page_t *pp, uint_t flag)
7784 {
7785 	vnode_t		*vp = pp->p_vnode;
7786 	page_t		**listp;
7787 	kmutex_t	*pmtx;
7788 	kmutex_t	*vphm = NULL;
7789 	int		noshuffle;
7790 
7791 	noshuffle = flag & P_NSH;
7792 	flag &= ~P_NSH;
7793 
7794 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO | P_EXEC)));
7795 
7796 	/*
7797 	 * nothing to do if attribute already set
7798 	 */
7799 	if ((pp->p_nrm & flag) == flag)
7800 		return;
7801 
7802 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7803 	    !noshuffle) {
7804 		vphm = page_vnode_mutex(vp);
7805 		mutex_enter(vphm);
7806 	}
7807 
7808 	pmtx = sfmmu_page_enter(pp);
7809 	pp->p_nrm |= flag;
7810 	sfmmu_page_exit(pmtx);
7811 
7812 	if (vphm != NULL) {
7813 		/*
7814 		 * Some File Systems examine v_pages for NULL w/o
7815 		 * grabbing the vphm mutex. Must not let it become NULL when
7816 		 * pp is the only page on the list.
7817 		 */
7818 		if (pp->p_vpnext != pp) {
7819 			page_vpsub(&vp->v_pages, pp);
7820 			if (vp->v_pages != NULL)
7821 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7822 			else
7823 				listp = &vp->v_pages;
7824 			page_vpadd(listp, pp);
7825 		}
7826 		mutex_exit(vphm);
7827 	}
7828 }
7829 
7830 void
7831 hat_page_clrattr(page_t *pp, uint_t flag)
7832 {
7833 	vnode_t		*vp = pp->p_vnode;
7834 	kmutex_t	*pmtx;
7835 
7836 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7837 
7838 	pmtx = sfmmu_page_enter(pp);
7839 
7840 	/*
7841 	 * Caller is expected to hold page's io lock for VMODSORT to work
7842 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7843 	 * bit is cleared.
7844 	 * We don't have assert to avoid tripping some existing third party
7845 	 * code. The dirty page is moved back to top of the v_page list
7846 	 * after IO is done in pvn_write_done().
7847 	 */
7848 	pp->p_nrm &= ~flag;
7849 	sfmmu_page_exit(pmtx);
7850 
7851 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7852 
7853 		/*
7854 		 * VMODSORT works by removing write permissions and getting
7855 		 * a fault when a page is made dirty. At this point
7856 		 * we need to remove write permission from all mappings
7857 		 * to this page.
7858 		 */
7859 		hat_page_clrwrt(pp);
7860 	}
7861 }
7862 
7863 uint_t
7864 hat_page_getattr(page_t *pp, uint_t flag)
7865 {
7866 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7867 	return ((uint_t)(pp->p_nrm & flag));
7868 }
7869 
7870 /*
7871  * DEBUG kernels: verify that a kernel va<->pa translation
7872  * is safe by checking the underlying page_t is in a page
7873  * relocation-safe state.
7874  */
7875 #ifdef	DEBUG
7876 void
7877 sfmmu_check_kpfn(pfn_t pfn)
7878 {
7879 	page_t *pp;
7880 	int index, cons;
7881 
7882 	if (hat_check_vtop == 0)
7883 		return;
7884 
7885 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7886 		return;
7887 
7888 	pp = page_numtopp_nolock(pfn);
7889 	if (!pp)
7890 		return;
7891 
7892 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7893 		return;
7894 
7895 	/*
7896 	 * Handed a large kernel page, we dig up the root page since we
7897 	 * know the root page might have the lock also.
7898 	 */
7899 	if (pp->p_szc != 0) {
7900 		index = PP_MAPINDEX(pp);
7901 		cons = TTE8K;
7902 again:
7903 		while (index != 0) {
7904 			index >>= 1;
7905 			if (index != 0)
7906 				cons++;
7907 			if (index & 0x1) {
7908 				pp = PP_GROUPLEADER(pp, cons);
7909 				goto again;
7910 			}
7911 		}
7912 	}
7913 
7914 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7915 		return;
7916 
7917 	/*
7918 	 * Pages need to be locked or allocated "permanent" (either from
7919 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7920 	 * page_create_va()) for VA->PA translations to be valid.
7921 	 */
7922 	if (!PP_ISNORELOC(pp))
7923 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7924 		    (void *)pp);
7925 	else
7926 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7927 		    (void *)pp);
7928 }
7929 #endif	/* DEBUG */
7930 
7931 /*
7932  * Returns a page frame number for a given virtual address.
7933  * Returns PFN_INVALID to indicate an invalid mapping
7934  */
7935 pfn_t
7936 hat_getpfnum(struct hat *hat, caddr_t addr)
7937 {
7938 	pfn_t pfn;
7939 	tte_t tte;
7940 
7941 	/*
7942 	 * We would like to
7943 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7944 	 * but we can't because the iommu driver will call this
7945 	 * routine at interrupt time and it can't grab the as lock
7946 	 * or it will deadlock: A thread could have the as lock
7947 	 * and be waiting for io.  The io can't complete
7948 	 * because the interrupt thread is blocked trying to grab
7949 	 * the as lock.
7950 	 */
7951 
7952 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7953 
7954 	if (hat == ksfmmup) {
7955 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7956 			ASSERT(segkmem_lpszc > 0);
7957 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7958 			if (pfn != PFN_INVALID) {
7959 				sfmmu_check_kpfn(pfn);
7960 				return (pfn);
7961 			}
7962 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7963 			return (sfmmu_kpm_vatopfn(addr));
7964 		}
7965 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7966 		    == PFN_SUSPENDED) {
7967 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7968 		}
7969 		sfmmu_check_kpfn(pfn);
7970 		return (pfn);
7971 	} else {
7972 		return (sfmmu_uvatopfn(addr, hat, NULL));
7973 	}
7974 }
7975 
7976 /*
7977  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7978  * Use hat_getpfnum(kas.a_hat, ...) instead.
7979  *
7980  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7981  * but can't right now due to the fact that some software has grown to use
7982  * this interface incorrectly. So for now when the interface is misused,
7983  * return a warning to the user that in the future it won't work in the
7984  * way they're abusing it, and carry on (after disabling page relocation).
7985  */
7986 pfn_t
7987 hat_getkpfnum(caddr_t addr)
7988 {
7989 	pfn_t pfn;
7990 	tte_t tte;
7991 	int badcaller = 0;
7992 	extern int segkmem_reloc;
7993 
7994 	if (segkpm && IS_KPM_ADDR(addr)) {
7995 		badcaller = 1;
7996 		pfn = sfmmu_kpm_vatopfn(addr);
7997 	} else {
7998 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7999 		    == PFN_SUSPENDED) {
8000 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
8001 		}
8002 		badcaller = pf_is_memory(pfn);
8003 	}
8004 
8005 	if (badcaller) {
8006 		/*
8007 		 * We can't return PFN_INVALID or the caller may panic
8008 		 * or corrupt the system.  The only alternative is to
8009 		 * disable page relocation at this point for all kernel
8010 		 * memory.  This will impact any callers of page_relocate()
8011 		 * such as FMA or DR.
8012 		 *
8013 		 * RFE: Add junk here to spit out an ereport so the sysadmin
8014 		 * can be advised that he should upgrade his device driver
8015 		 * so that this doesn't happen.
8016 		 */
8017 		hat_getkpfnum_badcall(caller());
8018 		if (hat_kpr_enabled && segkmem_reloc) {
8019 			hat_kpr_enabled = 0;
8020 			segkmem_reloc = 0;
8021 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
8022 		}
8023 	}
8024 	return (pfn);
8025 }
8026 
8027 /*
8028  * This routine will return both pfn and tte for the vaddr.
8029  */
8030 static pfn_t
8031 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
8032 {
8033 	struct hmehash_bucket *hmebp;
8034 	hmeblk_tag hblktag;
8035 	int hmeshift, hashno = 1;
8036 	struct hme_blk *hmeblkp = NULL;
8037 	tte_t tte;
8038 
8039 	struct sf_hment *sfhmep;
8040 	pfn_t pfn;
8041 
8042 	/* support for ISM */
8043 	ism_map_t	*ism_map;
8044 	ism_blk_t	*ism_blkp;
8045 	int		i;
8046 	sfmmu_t *ism_hatid = NULL;
8047 	sfmmu_t *locked_hatid = NULL;
8048 	sfmmu_t	*sv_sfmmup = sfmmup;
8049 	caddr_t	sv_vaddr = vaddr;
8050 	sf_srd_t *srdp;
8051 
8052 	if (ttep == NULL) {
8053 		ttep = &tte;
8054 	} else {
8055 		ttep->ll = 0;
8056 	}
8057 
8058 	ASSERT(sfmmup != ksfmmup);
8059 	SFMMU_STAT(sf_user_vtop);
8060 	/*
8061 	 * Set ism_hatid if vaddr falls in a ISM segment.
8062 	 */
8063 	ism_blkp = sfmmup->sfmmu_iblk;
8064 	if (ism_blkp != NULL) {
8065 		sfmmu_ismhat_enter(sfmmup, 0);
8066 		locked_hatid = sfmmup;
8067 	}
8068 	while (ism_blkp != NULL && ism_hatid == NULL) {
8069 		ism_map = ism_blkp->iblk_maps;
8070 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
8071 			if (vaddr >= ism_start(ism_map[i]) &&
8072 			    vaddr < ism_end(ism_map[i])) {
8073 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
8074 				vaddr = (caddr_t)(vaddr -
8075 				    ism_start(ism_map[i]));
8076 				break;
8077 			}
8078 		}
8079 		ism_blkp = ism_blkp->iblk_next;
8080 	}
8081 	if (locked_hatid) {
8082 		sfmmu_ismhat_exit(locked_hatid, 0);
8083 	}
8084 
8085 	hblktag.htag_id = sfmmup;
8086 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
8087 	do {
8088 		hmeshift = HME_HASH_SHIFT(hashno);
8089 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
8090 		hblktag.htag_rehash = hashno;
8091 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
8092 
8093 		SFMMU_HASH_LOCK(hmebp);
8094 
8095 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
8096 		if (hmeblkp != NULL) {
8097 			ASSERT(!hmeblkp->hblk_shared);
8098 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
8099 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8100 			SFMMU_HASH_UNLOCK(hmebp);
8101 			if (TTE_IS_VALID(ttep)) {
8102 				pfn = TTE_TO_PFN(vaddr, ttep);
8103 				return (pfn);
8104 			}
8105 			break;
8106 		}
8107 		SFMMU_HASH_UNLOCK(hmebp);
8108 		hashno++;
8109 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8110 
8111 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8112 		return (PFN_INVALID);
8113 	}
8114 	srdp = sv_sfmmup->sfmmu_srdp;
8115 	ASSERT(srdp != NULL);
8116 	ASSERT(srdp->srd_refcnt != 0);
8117 	hblktag.htag_id = srdp;
8118 	hashno = 1;
8119 	do {
8120 		hmeshift = HME_HASH_SHIFT(hashno);
8121 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8122 		hblktag.htag_rehash = hashno;
8123 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8124 
8125 		SFMMU_HASH_LOCK(hmebp);
8126 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8127 		    hmeblkp = hmeblkp->hblk_next) {
8128 			uint_t rid;
8129 			sf_region_t *rgnp;
8130 			caddr_t rsaddr;
8131 			caddr_t readdr;
8132 
8133 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8134 			    sv_sfmmup->sfmmu_hmeregion_map)) {
8135 				continue;
8136 			}
8137 			ASSERT(hmeblkp->hblk_shared);
8138 			rid = hmeblkp->hblk_tag.htag_rid;
8139 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8140 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8141 			rgnp = srdp->srd_hmergnp[rid];
8142 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8143 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8144 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8145 			rsaddr = rgnp->rgn_saddr;
8146 			readdr = rsaddr + rgnp->rgn_size;
8147 #ifdef DEBUG
8148 			if (TTE_IS_VALID(ttep) ||
8149 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
8150 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8151 				ASSERT(eva > sv_vaddr);
8152 				ASSERT(sv_vaddr >= rsaddr);
8153 				ASSERT(sv_vaddr < readdr);
8154 				ASSERT(eva <= readdr);
8155 			}
8156 #endif /* DEBUG */
8157 			/*
8158 			 * Continue the search if we
8159 			 * found an invalid 8K tte outside of the area
8160 			 * covered by this hmeblk's region.
8161 			 */
8162 			if (TTE_IS_VALID(ttep)) {
8163 				SFMMU_HASH_UNLOCK(hmebp);
8164 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8165 				return (pfn);
8166 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8167 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8168 				SFMMU_HASH_UNLOCK(hmebp);
8169 				pfn = PFN_INVALID;
8170 				return (pfn);
8171 			}
8172 		}
8173 		SFMMU_HASH_UNLOCK(hmebp);
8174 		hashno++;
8175 	} while (hashno <= mmu_hashcnt);
8176 	return (PFN_INVALID);
8177 }
8178 
8179 
8180 /*
8181  * For compatability with AT&T and later optimizations
8182  */
8183 /* ARGSUSED */
8184 void
8185 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8186 {
8187 	ASSERT(hat != NULL);
8188 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8189 }
8190 
8191 /*
8192  * Return the number of mappings to a particular page.  This number is an
8193  * approximation of the number of people sharing the page.
8194  *
8195  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8196  * hat_page_checkshare() can be used to compare threshold to share
8197  * count that reflects the number of region sharers albeit at higher cost.
8198  */
8199 ulong_t
8200 hat_page_getshare(page_t *pp)
8201 {
8202 	page_t *spp = pp;	/* start page */
8203 	kmutex_t *pml;
8204 	ulong_t	cnt;
8205 	int index, sz = TTE64K;
8206 
8207 	/*
8208 	 * We need to grab the mlist lock to make sure any outstanding
8209 	 * load/unloads complete.  Otherwise we could return zero
8210 	 * even though the unload(s) hasn't finished yet.
8211 	 */
8212 	pml = sfmmu_mlist_enter(spp);
8213 	cnt = spp->p_share;
8214 
8215 #ifdef VAC
8216 	if (kpm_enable)
8217 		cnt += spp->p_kpmref;
8218 #endif
8219 	if (vpm_enable && pp->p_vpmref) {
8220 		cnt += 1;
8221 	}
8222 
8223 	/*
8224 	 * If we have any large mappings, we count the number of
8225 	 * mappings that this large page is part of.
8226 	 */
8227 	index = PP_MAPINDEX(spp);
8228 	index >>= 1;
8229 	while (index) {
8230 		pp = PP_GROUPLEADER(spp, sz);
8231 		if ((index & 0x1) && pp != spp) {
8232 			cnt += pp->p_share;
8233 			spp = pp;
8234 		}
8235 		index >>= 1;
8236 		sz++;
8237 	}
8238 	sfmmu_mlist_exit(pml);
8239 	return (cnt);
8240 }
8241 
8242 /*
8243  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8244  * otherwise. Count shared hmeblks by region's refcnt.
8245  */
8246 int
8247 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8248 {
8249 	kmutex_t *pml;
8250 	ulong_t	cnt = 0;
8251 	int index, sz = TTE8K;
8252 	struct sf_hment *sfhme, *tmphme = NULL;
8253 	struct hme_blk *hmeblkp;
8254 
8255 	pml = sfmmu_mlist_enter(pp);
8256 
8257 #ifdef VAC
8258 	if (kpm_enable)
8259 		cnt = pp->p_kpmref;
8260 #endif
8261 
8262 	if (vpm_enable && pp->p_vpmref) {
8263 		cnt += 1;
8264 	}
8265 
8266 	if (pp->p_share + cnt > sh_thresh) {
8267 		sfmmu_mlist_exit(pml);
8268 		return (1);
8269 	}
8270 
8271 	index = PP_MAPINDEX(pp);
8272 
8273 again:
8274 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8275 		tmphme = sfhme->hme_next;
8276 		if (IS_PAHME(sfhme)) {
8277 			continue;
8278 		}
8279 
8280 		hmeblkp = sfmmu_hmetohblk(sfhme);
8281 		if (hmeblkp->hblk_xhat_bit) {
8282 			cnt++;
8283 			if (cnt > sh_thresh) {
8284 				sfmmu_mlist_exit(pml);
8285 				return (1);
8286 			}
8287 			continue;
8288 		}
8289 		if (hme_size(sfhme) != sz) {
8290 			continue;
8291 		}
8292 
8293 		if (hmeblkp->hblk_shared) {
8294 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8295 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8296 			sf_region_t *rgnp;
8297 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8298 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8299 			ASSERT(srdp != NULL);
8300 			rgnp = srdp->srd_hmergnp[rid];
8301 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8302 			    rgnp, rid);
8303 			cnt += rgnp->rgn_refcnt;
8304 		} else {
8305 			cnt++;
8306 		}
8307 		if (cnt > sh_thresh) {
8308 			sfmmu_mlist_exit(pml);
8309 			return (1);
8310 		}
8311 	}
8312 
8313 	index >>= 1;
8314 	sz++;
8315 	while (index) {
8316 		pp = PP_GROUPLEADER(pp, sz);
8317 		ASSERT(sfmmu_mlist_held(pp));
8318 		if (index & 0x1) {
8319 			goto again;
8320 		}
8321 		index >>= 1;
8322 		sz++;
8323 	}
8324 	sfmmu_mlist_exit(pml);
8325 	return (0);
8326 }
8327 
8328 /*
8329  * Unload all large mappings to the pp and reset the p_szc field of every
8330  * constituent page according to the remaining mappings.
8331  *
8332  * pp must be locked SE_EXCL. Even though no other constituent pages are
8333  * locked it's legal to unload the large mappings to the pp because all
8334  * constituent pages of large locked mappings have to be locked SE_SHARED.
8335  * This means if we have SE_EXCL lock on one of constituent pages none of the
8336  * large mappings to pp are locked.
8337  *
8338  * Decrease p_szc field starting from the last constituent page and ending
8339  * with the root page. This method is used because other threads rely on the
8340  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8341  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8342  * ensures that p_szc changes of the constituent pages appears atomic for all
8343  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8344  *
8345  * This mechanism is only used for file system pages where it's not always
8346  * possible to get SE_EXCL locks on all constituent pages to demote the size
8347  * code (as is done for anonymous or kernel large pages).
8348  *
8349  * See more comments in front of sfmmu_mlspl_enter().
8350  */
8351 void
8352 hat_page_demote(page_t *pp)
8353 {
8354 	int index;
8355 	int sz;
8356 	cpuset_t cpuset;
8357 	int sync = 0;
8358 	page_t *rootpp;
8359 	struct sf_hment *sfhme;
8360 	struct sf_hment *tmphme = NULL;
8361 	struct hme_blk *hmeblkp;
8362 	uint_t pszc;
8363 	page_t *lastpp;
8364 	cpuset_t tset;
8365 	pgcnt_t npgs;
8366 	kmutex_t *pml;
8367 	kmutex_t *pmtx = NULL;
8368 
8369 	ASSERT(PAGE_EXCL(pp));
8370 	ASSERT(!PP_ISFREE(pp));
8371 	ASSERT(!PP_ISKAS(pp));
8372 	ASSERT(page_szc_lock_assert(pp));
8373 	pml = sfmmu_mlist_enter(pp);
8374 
8375 	pszc = pp->p_szc;
8376 	if (pszc == 0) {
8377 		goto out;
8378 	}
8379 
8380 	index = PP_MAPINDEX(pp) >> 1;
8381 
8382 	if (index) {
8383 		CPUSET_ZERO(cpuset);
8384 		sz = TTE64K;
8385 		sync = 1;
8386 	}
8387 
8388 	while (index) {
8389 		if (!(index & 0x1)) {
8390 			index >>= 1;
8391 			sz++;
8392 			continue;
8393 		}
8394 		ASSERT(sz <= pszc);
8395 		rootpp = PP_GROUPLEADER(pp, sz);
8396 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8397 			tmphme = sfhme->hme_next;
8398 			ASSERT(!IS_PAHME(sfhme));
8399 			hmeblkp = sfmmu_hmetohblk(sfhme);
8400 			if (hme_size(sfhme) != sz) {
8401 				continue;
8402 			}
8403 			if (hmeblkp->hblk_xhat_bit) {
8404 				cmn_err(CE_PANIC,
8405 				    "hat_page_demote: xhat hmeblk");
8406 			}
8407 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8408 			CPUSET_OR(cpuset, tset);
8409 		}
8410 		if (index >>= 1) {
8411 			sz++;
8412 		}
8413 	}
8414 
8415 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8416 
8417 	if (sync) {
8418 		xt_sync(cpuset);
8419 #ifdef VAC
8420 		if (PP_ISTNC(pp)) {
8421 			conv_tnc(rootpp, sz);
8422 		}
8423 #endif	/* VAC */
8424 	}
8425 
8426 	pmtx = sfmmu_page_enter(pp);
8427 
8428 	ASSERT(pp->p_szc == pszc);
8429 	rootpp = PP_PAGEROOT(pp);
8430 	ASSERT(rootpp->p_szc == pszc);
8431 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8432 
8433 	while (lastpp != rootpp) {
8434 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8435 		ASSERT(sz < pszc);
8436 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8437 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8438 		while (--npgs > 0) {
8439 			lastpp->p_szc = (uchar_t)sz;
8440 			lastpp = PP_PAGEPREV(lastpp);
8441 		}
8442 		if (sz) {
8443 			/*
8444 			 * make sure before current root's pszc
8445 			 * is updated all updates to constituent pages pszc
8446 			 * fields are globally visible.
8447 			 */
8448 			membar_producer();
8449 		}
8450 		lastpp->p_szc = sz;
8451 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8452 		if (lastpp != rootpp) {
8453 			lastpp = PP_PAGEPREV(lastpp);
8454 		}
8455 	}
8456 	if (sz == 0) {
8457 		/* the loop above doesn't cover this case */
8458 		rootpp->p_szc = 0;
8459 	}
8460 out:
8461 	ASSERT(pp->p_szc == 0);
8462 	if (pmtx != NULL) {
8463 		sfmmu_page_exit(pmtx);
8464 	}
8465 	sfmmu_mlist_exit(pml);
8466 }
8467 
8468 /*
8469  * Refresh the HAT ismttecnt[] element for size szc.
8470  * Caller must have set ISM busy flag to prevent mapping
8471  * lists from changing while we're traversing them.
8472  */
8473 pgcnt_t
8474 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8475 {
8476 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8477 	ism_map_t	*ism_map;
8478 	pgcnt_t		npgs = 0;
8479 	pgcnt_t		npgs_scd = 0;
8480 	int		j;
8481 	sf_scd_t	*scdp;
8482 	uchar_t		rid;
8483 	hatlock_t 	*hatlockp;
8484 	int		ismnotinscd = 0;
8485 
8486 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8487 	scdp = sfmmup->sfmmu_scdp;
8488 
8489 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8490 		ism_map = ism_blkp->iblk_maps;
8491 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8492 			rid = ism_map[j].imap_rid;
8493 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8494 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8495 
8496 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8497 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8498 				/* ISM is in sfmmup's SCD */
8499 				npgs_scd +=
8500 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8501 			} else {
8502 				/* ISMs is not in SCD */
8503 				npgs +=
8504 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8505 				ismnotinscd = 1;
8506 			}
8507 		}
8508 	}
8509 
8510 	if (&mmu_set_pgsz_order) {
8511 		hatlockp = sfmmu_hat_enter(sfmmup);
8512 		if (ismnotinscd) {
8513 			SFMMU_FLAGS_SET(sfmmup, HAT_ISMNOTINSCD);
8514 		} else {
8515 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMNOTINSCD);
8516 		}
8517 		sfmmu_hat_exit(hatlockp);
8518 	}
8519 
8520 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8521 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8522 	return (npgs);
8523 }
8524 
8525 /*
8526  * Yield the memory claim requirement for an address space.
8527  *
8528  * This is currently implemented as the number of bytes that have active
8529  * hardware translations that have page structures.  Therefore, it can
8530  * underestimate the traditional resident set size, eg, if the
8531  * physical page is present and the hardware translation is missing;
8532  * and it can overestimate the rss, eg, if there are active
8533  * translations to a frame buffer with page structs.
8534  * Also, it does not take sharing into account.
8535  *
8536  * Note that we don't acquire locks here since this function is most often
8537  * called from the clock thread.
8538  */
8539 size_t
8540 hat_get_mapped_size(struct hat *hat)
8541 {
8542 	size_t		assize = 0;
8543 	int 		i;
8544 
8545 	if (hat == NULL)
8546 		return (0);
8547 
8548 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8549 
8550 	for (i = 0; i < mmu_page_sizes; i++)
8551 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8552 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8553 
8554 	if (hat->sfmmu_iblk == NULL)
8555 		return (assize);
8556 
8557 	for (i = 0; i < mmu_page_sizes; i++)
8558 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8559 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8560 
8561 	return (assize);
8562 }
8563 
8564 int
8565 hat_stats_enable(struct hat *hat)
8566 {
8567 	hatlock_t	*hatlockp;
8568 
8569 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8570 
8571 	hatlockp = sfmmu_hat_enter(hat);
8572 	hat->sfmmu_rmstat++;
8573 	sfmmu_hat_exit(hatlockp);
8574 	return (1);
8575 }
8576 
8577 void
8578 hat_stats_disable(struct hat *hat)
8579 {
8580 	hatlock_t	*hatlockp;
8581 
8582 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8583 
8584 	hatlockp = sfmmu_hat_enter(hat);
8585 	hat->sfmmu_rmstat--;
8586 	sfmmu_hat_exit(hatlockp);
8587 }
8588 
8589 /*
8590  * Routines for entering or removing  ourselves from the
8591  * ism_hat's mapping list. This is used for both private and
8592  * SCD hats.
8593  */
8594 static void
8595 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8596 {
8597 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8598 
8599 	iment->iment_prev = NULL;
8600 	iment->iment_next = ism_hat->sfmmu_iment;
8601 	if (ism_hat->sfmmu_iment) {
8602 		ism_hat->sfmmu_iment->iment_prev = iment;
8603 	}
8604 	ism_hat->sfmmu_iment = iment;
8605 }
8606 
8607 static void
8608 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8609 {
8610 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8611 
8612 	if (ism_hat->sfmmu_iment == NULL) {
8613 		panic("ism map entry remove - no entries");
8614 	}
8615 
8616 	if (iment->iment_prev) {
8617 		ASSERT(ism_hat->sfmmu_iment != iment);
8618 		iment->iment_prev->iment_next = iment->iment_next;
8619 	} else {
8620 		ASSERT(ism_hat->sfmmu_iment == iment);
8621 		ism_hat->sfmmu_iment = iment->iment_next;
8622 	}
8623 
8624 	if (iment->iment_next) {
8625 		iment->iment_next->iment_prev = iment->iment_prev;
8626 	}
8627 
8628 	/*
8629 	 * zero out the entry
8630 	 */
8631 	iment->iment_next = NULL;
8632 	iment->iment_prev = NULL;
8633 	iment->iment_hat =  NULL;
8634 }
8635 
8636 /*
8637  * Hat_share()/unshare() return an (non-zero) error
8638  * when saddr and daddr are not properly aligned.
8639  *
8640  * The top level mapping element determines the alignment
8641  * requirement for saddr and daddr, depending on different
8642  * architectures.
8643  *
8644  * When hat_share()/unshare() are not supported,
8645  * HATOP_SHARE()/UNSHARE() return 0
8646  */
8647 int
8648 hat_share(struct hat *sfmmup, caddr_t addr,
8649 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8650 {
8651 	ism_blk_t	*ism_blkp;
8652 	ism_blk_t	*new_iblk;
8653 	ism_map_t 	*ism_map;
8654 	ism_ment_t	*ism_ment;
8655 	int		i, added;
8656 	hatlock_t	*hatlockp;
8657 	int		reload_mmu = 0;
8658 	uint_t		ismshift = page_get_shift(ismszc);
8659 	size_t		ismpgsz = page_get_pagesize(ismszc);
8660 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8661 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8662 	ushort_t	ismhatflag;
8663 	hat_region_cookie_t rcookie;
8664 	sf_scd_t	*old_scdp;
8665 
8666 #ifdef DEBUG
8667 	caddr_t		eaddr = addr + len;
8668 #endif /* DEBUG */
8669 
8670 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8671 	ASSERT(sptaddr == ISMID_STARTADDR);
8672 	/*
8673 	 * Check the alignment.
8674 	 */
8675 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8676 		return (EINVAL);
8677 
8678 	/*
8679 	 * Check size alignment.
8680 	 */
8681 	if (!ISM_ALIGNED(ismshift, len))
8682 		return (EINVAL);
8683 
8684 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8685 
8686 	/*
8687 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8688 	 * ism map blk in case we need one.  We must do our
8689 	 * allocations before acquiring locks to prevent a deadlock
8690 	 * in the kmem allocator on the mapping list lock.
8691 	 */
8692 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8693 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8694 
8695 	/*
8696 	 * Serialize ISM mappings with the ISM busy flag, and also the
8697 	 * trap handlers.
8698 	 */
8699 	sfmmu_ismhat_enter(sfmmup, 0);
8700 
8701 	/*
8702 	 * Allocate an ism map blk if necessary.
8703 	 */
8704 	if (sfmmup->sfmmu_iblk == NULL) {
8705 		sfmmup->sfmmu_iblk = new_iblk;
8706 		bzero(new_iblk, sizeof (*new_iblk));
8707 		new_iblk->iblk_nextpa = (uint64_t)-1;
8708 		membar_stst();	/* make sure next ptr visible to all CPUs */
8709 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8710 		reload_mmu = 1;
8711 		new_iblk = NULL;
8712 	}
8713 
8714 #ifdef DEBUG
8715 	/*
8716 	 * Make sure mapping does not already exist.
8717 	 */
8718 	ism_blkp = sfmmup->sfmmu_iblk;
8719 	while (ism_blkp != NULL) {
8720 		ism_map = ism_blkp->iblk_maps;
8721 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8722 			if ((addr >= ism_start(ism_map[i]) &&
8723 			    addr < ism_end(ism_map[i])) ||
8724 			    eaddr > ism_start(ism_map[i]) &&
8725 			    eaddr <= ism_end(ism_map[i])) {
8726 				panic("sfmmu_share: Already mapped!");
8727 			}
8728 		}
8729 		ism_blkp = ism_blkp->iblk_next;
8730 	}
8731 #endif /* DEBUG */
8732 
8733 	ASSERT(ismszc >= TTE4M);
8734 	if (ismszc == TTE4M) {
8735 		ismhatflag = HAT_4M_FLAG;
8736 	} else if (ismszc == TTE32M) {
8737 		ismhatflag = HAT_32M_FLAG;
8738 	} else if (ismszc == TTE256M) {
8739 		ismhatflag = HAT_256M_FLAG;
8740 	}
8741 	/*
8742 	 * Add mapping to first available mapping slot.
8743 	 */
8744 	ism_blkp = sfmmup->sfmmu_iblk;
8745 	added = 0;
8746 	while (!added) {
8747 		ism_map = ism_blkp->iblk_maps;
8748 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8749 			if (ism_map[i].imap_ismhat == NULL) {
8750 
8751 				ism_map[i].imap_ismhat = ism_hatid;
8752 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8753 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8754 				ism_map[i].imap_hatflags = ismhatflag;
8755 				ism_map[i].imap_sz_mask = ismmask;
8756 				/*
8757 				 * imap_seg is checked in ISM_CHECK to see if
8758 				 * non-NULL, then other info assumed valid.
8759 				 */
8760 				membar_stst();
8761 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8762 				ism_map[i].imap_ment = ism_ment;
8763 
8764 				/*
8765 				 * Now add ourselves to the ism_hat's
8766 				 * mapping list.
8767 				 */
8768 				ism_ment->iment_hat = sfmmup;
8769 				ism_ment->iment_base_va = addr;
8770 				ism_hatid->sfmmu_ismhat = 1;
8771 				mutex_enter(&ism_mlist_lock);
8772 				iment_add(ism_ment, ism_hatid);
8773 				mutex_exit(&ism_mlist_lock);
8774 				added = 1;
8775 				break;
8776 			}
8777 		}
8778 		if (!added && ism_blkp->iblk_next == NULL) {
8779 			ism_blkp->iblk_next = new_iblk;
8780 			new_iblk = NULL;
8781 			bzero(ism_blkp->iblk_next,
8782 			    sizeof (*ism_blkp->iblk_next));
8783 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8784 			membar_stst();
8785 			ism_blkp->iblk_nextpa =
8786 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8787 		}
8788 		ism_blkp = ism_blkp->iblk_next;
8789 	}
8790 
8791 	/*
8792 	 * After calling hat_join_region, sfmmup may join a new SCD or
8793 	 * move from the old scd to a new scd, in which case, we want to
8794 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8795 	 * sfmmu_check_page_sizes at the end of this routine.
8796 	 */
8797 	old_scdp = sfmmup->sfmmu_scdp;
8798 
8799 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8800 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8801 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8802 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8803 	}
8804 	/*
8805 	 * Update our counters for this sfmmup's ism mappings.
8806 	 */
8807 	for (i = 0; i <= ismszc; i++) {
8808 		if (!(disable_ism_large_pages & (1 << i)))
8809 			(void) ism_tsb_entries(sfmmup, i);
8810 	}
8811 
8812 	/*
8813 	 * For ISM and DISM we do not support 512K pages, so we only only
8814 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8815 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8816 	 *
8817 	 * Need to set 32M/256M ISM flags to make sure
8818 	 * sfmmu_check_page_sizes() enables them on Panther.
8819 	 */
8820 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8821 
8822 	switch (ismszc) {
8823 	case TTE256M:
8824 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8825 			hatlockp = sfmmu_hat_enter(sfmmup);
8826 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8827 			sfmmu_hat_exit(hatlockp);
8828 		}
8829 		break;
8830 	case TTE32M:
8831 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8832 			hatlockp = sfmmu_hat_enter(sfmmup);
8833 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8834 			sfmmu_hat_exit(hatlockp);
8835 		}
8836 		break;
8837 	default:
8838 		break;
8839 	}
8840 
8841 	/*
8842 	 * If we updated the ismblkpa for this HAT we must make
8843 	 * sure all CPUs running this process reload their tsbmiss area.
8844 	 * Otherwise they will fail to load the mappings in the tsbmiss
8845 	 * handler and will loop calling pagefault().
8846 	 */
8847 	if (reload_mmu) {
8848 		hatlockp = sfmmu_hat_enter(sfmmup);
8849 		sfmmu_sync_mmustate(sfmmup);
8850 		sfmmu_hat_exit(hatlockp);
8851 	}
8852 
8853 	if (&mmu_set_pgsz_order) {
8854 		hatlockp = sfmmu_hat_enter(sfmmup);
8855 		mmu_set_pgsz_order(sfmmup, 1);
8856 		sfmmu_hat_exit(hatlockp);
8857 	}
8858 	sfmmu_ismhat_exit(sfmmup, 0);
8859 
8860 	/*
8861 	 * Free up ismblk if we didn't use it.
8862 	 */
8863 	if (new_iblk != NULL)
8864 		kmem_cache_free(ism_blk_cache, new_iblk);
8865 
8866 	/*
8867 	 * Check TSB and TLB page sizes.
8868 	 */
8869 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8870 		sfmmu_check_page_sizes(sfmmup, 0);
8871 	} else {
8872 		sfmmu_check_page_sizes(sfmmup, 1);
8873 	}
8874 	return (0);
8875 }
8876 
8877 /*
8878  * hat_unshare removes exactly one ism_map from
8879  * this process's as.  It expects multiple calls
8880  * to hat_unshare for multiple shm segments.
8881  */
8882 void
8883 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8884 {
8885 	ism_map_t 	*ism_map;
8886 	ism_ment_t	*free_ment = NULL;
8887 	ism_blk_t	*ism_blkp;
8888 	struct hat	*ism_hatid;
8889 	int 		found, i;
8890 	hatlock_t	*hatlockp;
8891 	struct tsb_info	*tsbinfo;
8892 	uint_t		ismshift = page_get_shift(ismszc);
8893 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8894 	uchar_t		ism_rid;
8895 	sf_scd_t	*old_scdp;
8896 
8897 	ASSERT(ISM_ALIGNED(ismshift, addr));
8898 	ASSERT(ISM_ALIGNED(ismshift, len));
8899 	ASSERT(sfmmup != NULL);
8900 	ASSERT(sfmmup != ksfmmup);
8901 
8902 	if (sfmmup->sfmmu_xhat_provider) {
8903 		XHAT_UNSHARE(sfmmup, addr, len);
8904 		return;
8905 	} else {
8906 		/*
8907 		 * This must be a CPU HAT. If the address space has
8908 		 * XHATs attached, inform all XHATs that ISM segment
8909 		 * is going away
8910 		 */
8911 		ASSERT(sfmmup->sfmmu_as != NULL);
8912 		if (sfmmup->sfmmu_as->a_xhat != NULL)
8913 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8914 	}
8915 
8916 	/*
8917 	 * Make sure that during the entire time ISM mappings are removed,
8918 	 * the trap handlers serialize behind us, and that no one else
8919 	 * can be mucking with ISM mappings.  This also lets us get away
8920 	 * with not doing expensive cross calls to flush the TLB -- we
8921 	 * just discard the context, flush the entire TSB, and call it
8922 	 * a day.
8923 	 */
8924 	sfmmu_ismhat_enter(sfmmup, 0);
8925 
8926 	/*
8927 	 * Remove the mapping.
8928 	 *
8929 	 * We can't have any holes in the ism map.
8930 	 * The tsb miss code while searching the ism map will
8931 	 * stop on an empty map slot.  So we must move
8932 	 * everyone past the hole up 1 if any.
8933 	 *
8934 	 * Also empty ism map blks are not freed until the
8935 	 * process exits. This is to prevent a MT race condition
8936 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8937 	 */
8938 	found = 0;
8939 	ism_blkp = sfmmup->sfmmu_iblk;
8940 	while (!found && ism_blkp != NULL) {
8941 		ism_map = ism_blkp->iblk_maps;
8942 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8943 			if (addr == ism_start(ism_map[i]) &&
8944 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8945 				found = 1;
8946 				break;
8947 			}
8948 		}
8949 		if (!found)
8950 			ism_blkp = ism_blkp->iblk_next;
8951 	}
8952 
8953 	if (found) {
8954 		ism_hatid = ism_map[i].imap_ismhat;
8955 		ism_rid = ism_map[i].imap_rid;
8956 		ASSERT(ism_hatid != NULL);
8957 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8958 
8959 		/*
8960 		 * After hat_leave_region, the sfmmup may leave SCD,
8961 		 * in which case, we want to grow the private tsb size when
8962 		 * calling sfmmu_check_page_sizes at the end of the routine.
8963 		 */
8964 		old_scdp = sfmmup->sfmmu_scdp;
8965 		/*
8966 		 * Then remove ourselves from the region.
8967 		 */
8968 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8969 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8970 			    HAT_REGION_ISM);
8971 		}
8972 
8973 		/*
8974 		 * And now guarantee that any other cpu
8975 		 * that tries to process an ISM miss
8976 		 * will go to tl=0.
8977 		 */
8978 		hatlockp = sfmmu_hat_enter(sfmmup);
8979 		sfmmu_invalidate_ctx(sfmmup);
8980 		sfmmu_hat_exit(hatlockp);
8981 
8982 		/*
8983 		 * Remove ourselves from the ism mapping list.
8984 		 */
8985 		mutex_enter(&ism_mlist_lock);
8986 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8987 		mutex_exit(&ism_mlist_lock);
8988 		free_ment = ism_map[i].imap_ment;
8989 
8990 		/*
8991 		 * We delete the ism map by copying
8992 		 * the next map over the current one.
8993 		 * We will take the next one in the maps
8994 		 * array or from the next ism_blk.
8995 		 */
8996 		while (ism_blkp != NULL) {
8997 			ism_map = ism_blkp->iblk_maps;
8998 			while (i < (ISM_MAP_SLOTS - 1)) {
8999 				ism_map[i] = ism_map[i + 1];
9000 				i++;
9001 			}
9002 			/* i == (ISM_MAP_SLOTS - 1) */
9003 			ism_blkp = ism_blkp->iblk_next;
9004 			if (ism_blkp != NULL) {
9005 				ism_map[i] = ism_blkp->iblk_maps[0];
9006 				i = 0;
9007 			} else {
9008 				ism_map[i].imap_seg = 0;
9009 				ism_map[i].imap_vb_shift = 0;
9010 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
9011 				ism_map[i].imap_hatflags = 0;
9012 				ism_map[i].imap_sz_mask = 0;
9013 				ism_map[i].imap_ismhat = NULL;
9014 				ism_map[i].imap_ment = NULL;
9015 			}
9016 		}
9017 
9018 		/*
9019 		 * Now flush entire TSB for the process, since
9020 		 * demapping page by page can be too expensive.
9021 		 * We don't have to flush the TLB here anymore
9022 		 * since we switch to a new TLB ctx instead.
9023 		 * Also, there is no need to flush if the process
9024 		 * is exiting since the TSB will be freed later.
9025 		 */
9026 		if (!sfmmup->sfmmu_free) {
9027 			hatlockp = sfmmu_hat_enter(sfmmup);
9028 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
9029 			    tsbinfo = tsbinfo->tsb_next) {
9030 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
9031 					continue;
9032 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
9033 					tsbinfo->tsb_flags |=
9034 					    TSB_FLUSH_NEEDED;
9035 					continue;
9036 				}
9037 
9038 				sfmmu_inv_tsb(tsbinfo->tsb_va,
9039 				    TSB_BYTES(tsbinfo->tsb_szc));
9040 			}
9041 			sfmmu_hat_exit(hatlockp);
9042 		}
9043 	}
9044 
9045 	/*
9046 	 * Update our counters for this sfmmup's ism mappings.
9047 	 */
9048 	for (i = 0; i <= ismszc; i++) {
9049 		if (!(disable_ism_large_pages & (1 << i)))
9050 			(void) ism_tsb_entries(sfmmup, i);
9051 	}
9052 
9053 	if (&mmu_set_pgsz_order) {
9054 		hatlockp = sfmmu_hat_enter(sfmmup);
9055 		mmu_set_pgsz_order(sfmmup, 1);
9056 		sfmmu_hat_exit(hatlockp);
9057 	}
9058 	sfmmu_ismhat_exit(sfmmup, 0);
9059 
9060 	/*
9061 	 * We must do our freeing here after dropping locks
9062 	 * to prevent a deadlock in the kmem allocator on the
9063 	 * mapping list lock.
9064 	 */
9065 	if (free_ment != NULL)
9066 		kmem_cache_free(ism_ment_cache, free_ment);
9067 
9068 	/*
9069 	 * Check TSB and TLB page sizes if the process isn't exiting.
9070 	 */
9071 	if (!sfmmup->sfmmu_free) {
9072 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
9073 			sfmmu_check_page_sizes(sfmmup, 1);
9074 		} else {
9075 			sfmmu_check_page_sizes(sfmmup, 0);
9076 		}
9077 	}
9078 }
9079 
9080 /* ARGSUSED */
9081 static int
9082 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
9083 {
9084 	/* void *buf is sfmmu_t pointer */
9085 	bzero(buf, sizeof (sfmmu_t));
9086 
9087 	return (0);
9088 }
9089 
9090 /* ARGSUSED */
9091 static void
9092 sfmmu_idcache_destructor(void *buf, void *cdrarg)
9093 {
9094 	/* void *buf is sfmmu_t pointer */
9095 }
9096 
9097 /*
9098  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
9099  * field to be the pa of this hmeblk
9100  */
9101 /* ARGSUSED */
9102 static int
9103 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
9104 {
9105 	struct hme_blk *hmeblkp;
9106 
9107 	bzero(buf, (size_t)cdrarg);
9108 	hmeblkp = (struct hme_blk *)buf;
9109 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
9110 
9111 #ifdef	HBLK_TRACE
9112 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
9113 #endif	/* HBLK_TRACE */
9114 
9115 	return (0);
9116 }
9117 
9118 /* ARGSUSED */
9119 static void
9120 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
9121 {
9122 
9123 #ifdef	HBLK_TRACE
9124 
9125 	struct hme_blk *hmeblkp;
9126 
9127 	hmeblkp = (struct hme_blk *)buf;
9128 	mutex_destroy(&hmeblkp->hblk_audit_lock);
9129 
9130 #endif	/* HBLK_TRACE */
9131 }
9132 
9133 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
9134 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
9135 /*
9136  * The kmem allocator will callback into our reclaim routine when the system
9137  * is running low in memory.  We traverse the hash and free up all unused but
9138  * still cached hme_blks.  We also traverse the free list and free them up
9139  * as well.
9140  */
9141 /*ARGSUSED*/
9142 static void
9143 sfmmu_hblkcache_reclaim(void *cdrarg)
9144 {
9145 	int i;
9146 	struct hmehash_bucket *hmebp;
9147 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9148 	static struct hmehash_bucket *uhmehash_reclaim_hand;
9149 	static struct hmehash_bucket *khmehash_reclaim_hand;
9150 	struct hme_blk *list = NULL, *last_hmeblkp;
9151 	cpuset_t cpuset = cpu_ready_set;
9152 	cpu_hme_pend_t *cpuhp;
9153 
9154 	/* Free up hmeblks on the cpu pending lists */
9155 	for (i = 0; i < NCPU; i++) {
9156 		cpuhp = &cpu_hme_pend[i];
9157 		if (cpuhp->chp_listp != NULL)  {
9158 			mutex_enter(&cpuhp->chp_mutex);
9159 			if (cpuhp->chp_listp == NULL) {
9160 				mutex_exit(&cpuhp->chp_mutex);
9161 				continue;
9162 			}
9163 			for (last_hmeblkp = cpuhp->chp_listp;
9164 			    last_hmeblkp->hblk_next != NULL;
9165 			    last_hmeblkp = last_hmeblkp->hblk_next)
9166 				;
9167 			last_hmeblkp->hblk_next = list;
9168 			list = cpuhp->chp_listp;
9169 			cpuhp->chp_listp = NULL;
9170 			cpuhp->chp_count = 0;
9171 			mutex_exit(&cpuhp->chp_mutex);
9172 		}
9173 
9174 	}
9175 
9176 	if (list != NULL) {
9177 		kpreempt_disable();
9178 		CPUSET_DEL(cpuset, CPU->cpu_id);
9179 		xt_sync(cpuset);
9180 		xt_sync(cpuset);
9181 		kpreempt_enable();
9182 		sfmmu_hblk_free(&list);
9183 		list = NULL;
9184 	}
9185 
9186 	hmebp = uhmehash_reclaim_hand;
9187 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9188 		uhmehash_reclaim_hand = hmebp = uhme_hash;
9189 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9190 
9191 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9192 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9193 			hmeblkp = hmebp->hmeblkp;
9194 			pr_hblk = NULL;
9195 			while (hmeblkp) {
9196 				nx_hblk = hmeblkp->hblk_next;
9197 				if (!hmeblkp->hblk_vcnt &&
9198 				    !hmeblkp->hblk_hmecnt) {
9199 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9200 					    pr_hblk, &list, 0);
9201 				} else {
9202 					pr_hblk = hmeblkp;
9203 				}
9204 				hmeblkp = nx_hblk;
9205 			}
9206 			SFMMU_HASH_UNLOCK(hmebp);
9207 		}
9208 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9209 			hmebp = uhme_hash;
9210 	}
9211 
9212 	hmebp = khmehash_reclaim_hand;
9213 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9214 		khmehash_reclaim_hand = hmebp = khme_hash;
9215 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9216 
9217 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9218 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9219 			hmeblkp = hmebp->hmeblkp;
9220 			pr_hblk = NULL;
9221 			while (hmeblkp) {
9222 				nx_hblk = hmeblkp->hblk_next;
9223 				if (!hmeblkp->hblk_vcnt &&
9224 				    !hmeblkp->hblk_hmecnt) {
9225 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9226 					    pr_hblk, &list, 0);
9227 				} else {
9228 					pr_hblk = hmeblkp;
9229 				}
9230 				hmeblkp = nx_hblk;
9231 			}
9232 			SFMMU_HASH_UNLOCK(hmebp);
9233 		}
9234 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9235 			hmebp = khme_hash;
9236 	}
9237 	sfmmu_hblks_list_purge(&list, 0);
9238 }
9239 
9240 /*
9241  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9242  * same goes for sfmmu_get_addrvcolor().
9243  *
9244  * This function will return the virtual color for the specified page. The
9245  * virtual color corresponds to this page current mapping or its last mapping.
9246  * It is used by memory allocators to choose addresses with the correct
9247  * alignment so vac consistency is automatically maintained.  If the page
9248  * has no color it returns -1.
9249  */
9250 /*ARGSUSED*/
9251 int
9252 sfmmu_get_ppvcolor(struct page *pp)
9253 {
9254 #ifdef VAC
9255 	int color;
9256 
9257 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9258 		return (-1);
9259 	}
9260 	color = PP_GET_VCOLOR(pp);
9261 	ASSERT(color < mmu_btop(shm_alignment));
9262 	return (color);
9263 #else
9264 	return (-1);
9265 #endif	/* VAC */
9266 }
9267 
9268 /*
9269  * This function will return the desired alignment for vac consistency
9270  * (vac color) given a virtual address.  If no vac is present it returns -1.
9271  */
9272 /*ARGSUSED*/
9273 int
9274 sfmmu_get_addrvcolor(caddr_t vaddr)
9275 {
9276 #ifdef VAC
9277 	if (cache & CACHE_VAC) {
9278 		return (addr_to_vcolor(vaddr));
9279 	} else {
9280 		return (-1);
9281 	}
9282 #else
9283 	return (-1);
9284 #endif	/* VAC */
9285 }
9286 
9287 #ifdef VAC
9288 /*
9289  * Check for conflicts.
9290  * A conflict exists if the new and existent mappings do not match in
9291  * their "shm_alignment fields. If conflicts exist, the existant mappings
9292  * are flushed unless one of them is locked. If one of them is locked, then
9293  * the mappings are flushed and converted to non-cacheable mappings.
9294  */
9295 static void
9296 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9297 {
9298 	struct hat *tmphat;
9299 	struct sf_hment *sfhmep, *tmphme = NULL;
9300 	struct hme_blk *hmeblkp;
9301 	int vcolor;
9302 	tte_t tte;
9303 
9304 	ASSERT(sfmmu_mlist_held(pp));
9305 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9306 
9307 	vcolor = addr_to_vcolor(addr);
9308 	if (PP_NEWPAGE(pp)) {
9309 		PP_SET_VCOLOR(pp, vcolor);
9310 		return;
9311 	}
9312 
9313 	if (PP_GET_VCOLOR(pp) == vcolor) {
9314 		return;
9315 	}
9316 
9317 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9318 		/*
9319 		 * Previous user of page had a different color
9320 		 * but since there are no current users
9321 		 * we just flush the cache and change the color.
9322 		 */
9323 		SFMMU_STAT(sf_pgcolor_conflict);
9324 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9325 		PP_SET_VCOLOR(pp, vcolor);
9326 		return;
9327 	}
9328 
9329 	/*
9330 	 * If we get here we have a vac conflict with a current
9331 	 * mapping.  VAC conflict policy is as follows.
9332 	 * - The default is to unload the other mappings unless:
9333 	 * - If we have a large mapping we uncache the page.
9334 	 * We need to uncache the rest of the large page too.
9335 	 * - If any of the mappings are locked we uncache the page.
9336 	 * - If the requested mapping is inconsistent
9337 	 * with another mapping and that mapping
9338 	 * is in the same address space we have to
9339 	 * make it non-cached.  The default thing
9340 	 * to do is unload the inconsistent mapping
9341 	 * but if they are in the same address space
9342 	 * we run the risk of unmapping the pc or the
9343 	 * stack which we will use as we return to the user,
9344 	 * in which case we can then fault on the thing
9345 	 * we just unloaded and get into an infinite loop.
9346 	 */
9347 	if (PP_ISMAPPED_LARGE(pp)) {
9348 		int sz;
9349 
9350 		/*
9351 		 * Existing mapping is for big pages. We don't unload
9352 		 * existing big mappings to satisfy new mappings.
9353 		 * Always convert all mappings to TNC.
9354 		 */
9355 		sz = fnd_mapping_sz(pp);
9356 		pp = PP_GROUPLEADER(pp, sz);
9357 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9358 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9359 		    TTEPAGES(sz));
9360 
9361 		return;
9362 	}
9363 
9364 	/*
9365 	 * check if any mapping is in same as or if it is locked
9366 	 * since in that case we need to uncache.
9367 	 */
9368 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9369 		tmphme = sfhmep->hme_next;
9370 		if (IS_PAHME(sfhmep))
9371 			continue;
9372 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9373 		if (hmeblkp->hblk_xhat_bit)
9374 			continue;
9375 		tmphat = hblktosfmmu(hmeblkp);
9376 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9377 		ASSERT(TTE_IS_VALID(&tte));
9378 		if (hmeblkp->hblk_shared || tmphat == hat ||
9379 		    hmeblkp->hblk_lckcnt) {
9380 			/*
9381 			 * We have an uncache conflict
9382 			 */
9383 			SFMMU_STAT(sf_uncache_conflict);
9384 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9385 			return;
9386 		}
9387 	}
9388 
9389 	/*
9390 	 * We have an unload conflict
9391 	 * We have already checked for LARGE mappings, therefore
9392 	 * the remaining mapping(s) must be TTE8K.
9393 	 */
9394 	SFMMU_STAT(sf_unload_conflict);
9395 
9396 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9397 		tmphme = sfhmep->hme_next;
9398 		if (IS_PAHME(sfhmep))
9399 			continue;
9400 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9401 		if (hmeblkp->hblk_xhat_bit)
9402 			continue;
9403 		ASSERT(!hmeblkp->hblk_shared);
9404 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9405 	}
9406 
9407 	if (PP_ISMAPPED_KPM(pp))
9408 		sfmmu_kpm_vac_unload(pp, addr);
9409 
9410 	/*
9411 	 * Unloads only do TLB flushes so we need to flush the
9412 	 * cache here.
9413 	 */
9414 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9415 	PP_SET_VCOLOR(pp, vcolor);
9416 }
9417 
9418 /*
9419  * Whenever a mapping is unloaded and the page is in TNC state,
9420  * we see if the page can be made cacheable again. 'pp' is
9421  * the page that we just unloaded a mapping from, the size
9422  * of mapping that was unloaded is 'ottesz'.
9423  * Remark:
9424  * The recache policy for mpss pages can leave a performance problem
9425  * under the following circumstances:
9426  * . A large page in uncached mode has just been unmapped.
9427  * . All constituent pages are TNC due to a conflicting small mapping.
9428  * . There are many other, non conflicting, small mappings around for
9429  *   a lot of the constituent pages.
9430  * . We're called w/ the "old" groupleader page and the old ottesz,
9431  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9432  *   we end up w/ TTE8K or npages == 1.
9433  * . We call tst_tnc w/ the old groupleader only, and if there is no
9434  *   conflict, we re-cache only this page.
9435  * . All other small mappings are not checked and will be left in TNC mode.
9436  * The problem is not very serious because:
9437  * . mpss is actually only defined for heap and stack, so the probability
9438  *   is not very high that a large page mapping exists in parallel to a small
9439  *   one (this is possible, but seems to be bad programming style in the
9440  *   appl).
9441  * . The problem gets a little bit more serious, when those TNC pages
9442  *   have to be mapped into kernel space, e.g. for networking.
9443  * . When VAC alias conflicts occur in applications, this is regarded
9444  *   as an application bug. So if kstat's show them, the appl should
9445  *   be changed anyway.
9446  */
9447 void
9448 conv_tnc(page_t *pp, int ottesz)
9449 {
9450 	int cursz, dosz;
9451 	pgcnt_t curnpgs, dopgs;
9452 	pgcnt_t pg64k;
9453 	page_t *pp2;
9454 
9455 	/*
9456 	 * Determine how big a range we check for TNC and find
9457 	 * leader page. cursz is the size of the biggest
9458 	 * mapping that still exist on 'pp'.
9459 	 */
9460 	if (PP_ISMAPPED_LARGE(pp)) {
9461 		cursz = fnd_mapping_sz(pp);
9462 	} else {
9463 		cursz = TTE8K;
9464 	}
9465 
9466 	if (ottesz >= cursz) {
9467 		dosz = ottesz;
9468 		pp2 = pp;
9469 	} else {
9470 		dosz = cursz;
9471 		pp2 = PP_GROUPLEADER(pp, dosz);
9472 	}
9473 
9474 	pg64k = TTEPAGES(TTE64K);
9475 	dopgs = TTEPAGES(dosz);
9476 
9477 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9478 
9479 	while (dopgs != 0) {
9480 		curnpgs = TTEPAGES(cursz);
9481 		if (tst_tnc(pp2, curnpgs)) {
9482 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9483 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9484 			    curnpgs);
9485 		}
9486 
9487 		ASSERT(dopgs >= curnpgs);
9488 		dopgs -= curnpgs;
9489 
9490 		if (dopgs == 0) {
9491 			break;
9492 		}
9493 
9494 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9495 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9496 			cursz = fnd_mapping_sz(pp2);
9497 		} else {
9498 			cursz = TTE8K;
9499 		}
9500 	}
9501 }
9502 
9503 /*
9504  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9505  * returns 0 otherwise. Note that oaddr argument is valid for only
9506  * 8k pages.
9507  */
9508 int
9509 tst_tnc(page_t *pp, pgcnt_t npages)
9510 {
9511 	struct	sf_hment *sfhme;
9512 	struct	hme_blk *hmeblkp;
9513 	tte_t	tte;
9514 	caddr_t	vaddr;
9515 	int	clr_valid = 0;
9516 	int 	color, color1, bcolor;
9517 	int	i, ncolors;
9518 
9519 	ASSERT(pp != NULL);
9520 	ASSERT(!(cache & CACHE_WRITEBACK));
9521 
9522 	if (npages > 1) {
9523 		ncolors = CACHE_NUM_COLOR;
9524 	}
9525 
9526 	for (i = 0; i < npages; i++) {
9527 		ASSERT(sfmmu_mlist_held(pp));
9528 		ASSERT(PP_ISTNC(pp));
9529 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9530 
9531 		if (PP_ISPNC(pp)) {
9532 			return (0);
9533 		}
9534 
9535 		clr_valid = 0;
9536 		if (PP_ISMAPPED_KPM(pp)) {
9537 			caddr_t kpmvaddr;
9538 
9539 			ASSERT(kpm_enable);
9540 			kpmvaddr = hat_kpm_page2va(pp, 1);
9541 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9542 			color1 = addr_to_vcolor(kpmvaddr);
9543 			clr_valid = 1;
9544 		}
9545 
9546 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9547 			if (IS_PAHME(sfhme))
9548 				continue;
9549 			hmeblkp = sfmmu_hmetohblk(sfhme);
9550 			if (hmeblkp->hblk_xhat_bit)
9551 				continue;
9552 
9553 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9554 			ASSERT(TTE_IS_VALID(&tte));
9555 
9556 			vaddr = tte_to_vaddr(hmeblkp, tte);
9557 			color = addr_to_vcolor(vaddr);
9558 
9559 			if (npages > 1) {
9560 				/*
9561 				 * If there is a big mapping, make sure
9562 				 * 8K mapping is consistent with the big
9563 				 * mapping.
9564 				 */
9565 				bcolor = i % ncolors;
9566 				if (color != bcolor) {
9567 					return (0);
9568 				}
9569 			}
9570 			if (!clr_valid) {
9571 				clr_valid = 1;
9572 				color1 = color;
9573 			}
9574 
9575 			if (color1 != color) {
9576 				return (0);
9577 			}
9578 		}
9579 
9580 		pp = PP_PAGENEXT(pp);
9581 	}
9582 
9583 	return (1);
9584 }
9585 
9586 void
9587 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9588 	pgcnt_t npages)
9589 {
9590 	kmutex_t *pmtx;
9591 	int i, ncolors, bcolor;
9592 	kpm_hlk_t *kpmp;
9593 	cpuset_t cpuset;
9594 
9595 	ASSERT(pp != NULL);
9596 	ASSERT(!(cache & CACHE_WRITEBACK));
9597 
9598 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9599 	pmtx = sfmmu_page_enter(pp);
9600 
9601 	/*
9602 	 * Fast path caching single unmapped page
9603 	 */
9604 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9605 	    flags == HAT_CACHE) {
9606 		PP_CLRTNC(pp);
9607 		PP_CLRPNC(pp);
9608 		sfmmu_page_exit(pmtx);
9609 		sfmmu_kpm_kpmp_exit(kpmp);
9610 		return;
9611 	}
9612 
9613 	/*
9614 	 * We need to capture all cpus in order to change cacheability
9615 	 * because we can't allow one cpu to access the same physical
9616 	 * page using a cacheable and a non-cachebale mapping at the same
9617 	 * time. Since we may end up walking the ism mapping list
9618 	 * have to grab it's lock now since we can't after all the
9619 	 * cpus have been captured.
9620 	 */
9621 	sfmmu_hat_lock_all();
9622 	mutex_enter(&ism_mlist_lock);
9623 	kpreempt_disable();
9624 	cpuset = cpu_ready_set;
9625 	xc_attention(cpuset);
9626 
9627 	if (npages > 1) {
9628 		/*
9629 		 * Make sure all colors are flushed since the
9630 		 * sfmmu_page_cache() only flushes one color-
9631 		 * it does not know big pages.
9632 		 */
9633 		ncolors = CACHE_NUM_COLOR;
9634 		if (flags & HAT_TMPNC) {
9635 			for (i = 0; i < ncolors; i++) {
9636 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9637 			}
9638 			cache_flush_flag = CACHE_NO_FLUSH;
9639 		}
9640 	}
9641 
9642 	for (i = 0; i < npages; i++) {
9643 
9644 		ASSERT(sfmmu_mlist_held(pp));
9645 
9646 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9647 
9648 			if (npages > 1) {
9649 				bcolor = i % ncolors;
9650 			} else {
9651 				bcolor = NO_VCOLOR;
9652 			}
9653 
9654 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9655 			    bcolor);
9656 		}
9657 
9658 		pp = PP_PAGENEXT(pp);
9659 	}
9660 
9661 	xt_sync(cpuset);
9662 	xc_dismissed(cpuset);
9663 	mutex_exit(&ism_mlist_lock);
9664 	sfmmu_hat_unlock_all();
9665 	sfmmu_page_exit(pmtx);
9666 	sfmmu_kpm_kpmp_exit(kpmp);
9667 	kpreempt_enable();
9668 }
9669 
9670 /*
9671  * This function changes the virtual cacheability of all mappings to a
9672  * particular page.  When changing from uncache to cacheable the mappings will
9673  * only be changed if all of them have the same virtual color.
9674  * We need to flush the cache in all cpus.  It is possible that
9675  * a process referenced a page as cacheable but has sinced exited
9676  * and cleared the mapping list.  We still to flush it but have no
9677  * state so all cpus is the only alternative.
9678  */
9679 static void
9680 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9681 {
9682 	struct	sf_hment *sfhme;
9683 	struct	hme_blk *hmeblkp;
9684 	sfmmu_t *sfmmup;
9685 	tte_t	tte, ttemod;
9686 	caddr_t	vaddr;
9687 	int	ret, color;
9688 	pfn_t	pfn;
9689 
9690 	color = bcolor;
9691 	pfn = pp->p_pagenum;
9692 
9693 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9694 
9695 		if (IS_PAHME(sfhme))
9696 			continue;
9697 		hmeblkp = sfmmu_hmetohblk(sfhme);
9698 
9699 		if (hmeblkp->hblk_xhat_bit)
9700 			continue;
9701 
9702 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9703 		ASSERT(TTE_IS_VALID(&tte));
9704 		vaddr = tte_to_vaddr(hmeblkp, tte);
9705 		color = addr_to_vcolor(vaddr);
9706 
9707 #ifdef DEBUG
9708 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9709 			ASSERT(color == bcolor);
9710 		}
9711 #endif
9712 
9713 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9714 
9715 		ttemod = tte;
9716 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9717 			TTE_CLR_VCACHEABLE(&ttemod);
9718 		} else {	/* flags & HAT_CACHE */
9719 			TTE_SET_VCACHEABLE(&ttemod);
9720 		}
9721 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9722 		if (ret < 0) {
9723 			/*
9724 			 * Since all cpus are captured modifytte should not
9725 			 * fail.
9726 			 */
9727 			panic("sfmmu_page_cache: write to tte failed");
9728 		}
9729 
9730 		sfmmup = hblktosfmmu(hmeblkp);
9731 		if (cache_flush_flag == CACHE_FLUSH) {
9732 			/*
9733 			 * Flush TSBs, TLBs and caches
9734 			 */
9735 			if (hmeblkp->hblk_shared) {
9736 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9737 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9738 				sf_region_t *rgnp;
9739 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9740 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9741 				ASSERT(srdp != NULL);
9742 				rgnp = srdp->srd_hmergnp[rid];
9743 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9744 				    srdp, rgnp, rid);
9745 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9746 				    hmeblkp, 0);
9747 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9748 			} else if (sfmmup->sfmmu_ismhat) {
9749 				if (flags & HAT_CACHE) {
9750 					SFMMU_STAT(sf_ism_recache);
9751 				} else {
9752 					SFMMU_STAT(sf_ism_uncache);
9753 				}
9754 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9755 				    pfn, CACHE_FLUSH);
9756 			} else {
9757 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9758 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9759 			}
9760 
9761 			/*
9762 			 * all cache entries belonging to this pfn are
9763 			 * now flushed.
9764 			 */
9765 			cache_flush_flag = CACHE_NO_FLUSH;
9766 		} else {
9767 			/*
9768 			 * Flush only TSBs and TLBs.
9769 			 */
9770 			if (hmeblkp->hblk_shared) {
9771 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9772 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9773 				sf_region_t *rgnp;
9774 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9775 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9776 				ASSERT(srdp != NULL);
9777 				rgnp = srdp->srd_hmergnp[rid];
9778 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9779 				    srdp, rgnp, rid);
9780 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9781 				    hmeblkp, 0);
9782 			} else if (sfmmup->sfmmu_ismhat) {
9783 				if (flags & HAT_CACHE) {
9784 					SFMMU_STAT(sf_ism_recache);
9785 				} else {
9786 					SFMMU_STAT(sf_ism_uncache);
9787 				}
9788 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9789 				    pfn, CACHE_NO_FLUSH);
9790 			} else {
9791 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9792 			}
9793 		}
9794 	}
9795 
9796 	if (PP_ISMAPPED_KPM(pp))
9797 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9798 
9799 	switch (flags) {
9800 
9801 		default:
9802 			panic("sfmmu_pagecache: unknown flags");
9803 			break;
9804 
9805 		case HAT_CACHE:
9806 			PP_CLRTNC(pp);
9807 			PP_CLRPNC(pp);
9808 			PP_SET_VCOLOR(pp, color);
9809 			break;
9810 
9811 		case HAT_TMPNC:
9812 			PP_SETTNC(pp);
9813 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9814 			break;
9815 
9816 		case HAT_UNCACHE:
9817 			PP_SETPNC(pp);
9818 			PP_CLRTNC(pp);
9819 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9820 			break;
9821 	}
9822 }
9823 #endif	/* VAC */
9824 
9825 
9826 /*
9827  * Wrapper routine used to return a context.
9828  *
9829  * It's the responsibility of the caller to guarantee that the
9830  * process serializes on calls here by taking the HAT lock for
9831  * the hat.
9832  *
9833  */
9834 static void
9835 sfmmu_get_ctx(sfmmu_t *sfmmup)
9836 {
9837 	mmu_ctx_t *mmu_ctxp;
9838 	uint_t pstate_save;
9839 	int ret;
9840 
9841 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9842 	ASSERT(sfmmup != ksfmmup);
9843 
9844 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9845 		sfmmu_setup_tsbinfo(sfmmup);
9846 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9847 	}
9848 
9849 	kpreempt_disable();
9850 
9851 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9852 	ASSERT(mmu_ctxp);
9853 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9854 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9855 
9856 	/*
9857 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9858 	 */
9859 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9860 		sfmmu_ctx_wrap_around(mmu_ctxp);
9861 
9862 	/*
9863 	 * Let the MMU set up the page sizes to use for
9864 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9865 	 */
9866 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9867 		mmu_set_ctx_page_sizes(sfmmup);
9868 	}
9869 
9870 	/*
9871 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9872 	 * interrupts disabled to prevent race condition with wrap-around
9873 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9874 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9875 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9876 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9877 	 */
9878 	pstate_save = sfmmu_disable_intrs();
9879 
9880 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9881 	    sfmmup->sfmmu_scdp != NULL) {
9882 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9883 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9884 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9885 		/* debug purpose only */
9886 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9887 		    != INVALID_CONTEXT);
9888 	}
9889 	sfmmu_load_mmustate(sfmmup);
9890 
9891 	sfmmu_enable_intrs(pstate_save);
9892 
9893 	kpreempt_enable();
9894 }
9895 
9896 /*
9897  * When all cnums are used up in a MMU, cnum will wrap around to the
9898  * next generation and start from 2.
9899  */
9900 static void
9901 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
9902 {
9903 
9904 	/* caller must have disabled the preemption */
9905 	ASSERT(curthread->t_preempt >= 1);
9906 	ASSERT(mmu_ctxp != NULL);
9907 
9908 	/* acquire Per-MMU (PM) spin lock */
9909 	mutex_enter(&mmu_ctxp->mmu_lock);
9910 
9911 	/* re-check to see if wrap-around is needed */
9912 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9913 		goto done;
9914 
9915 	SFMMU_MMU_STAT(mmu_wrap_around);
9916 
9917 	/* update gnum */
9918 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9919 	mmu_ctxp->mmu_gnum++;
9920 	if (mmu_ctxp->mmu_gnum == 0 ||
9921 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9922 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9923 		    (void *)mmu_ctxp);
9924 	}
9925 
9926 	if (mmu_ctxp->mmu_ncpus > 1) {
9927 		cpuset_t cpuset;
9928 
9929 		membar_enter(); /* make sure updated gnum visible */
9930 
9931 		SFMMU_XCALL_STATS(NULL);
9932 
9933 		/* xcall to others on the same MMU to invalidate ctx */
9934 		cpuset = mmu_ctxp->mmu_cpuset;
9935 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
9936 		CPUSET_DEL(cpuset, CPU->cpu_id);
9937 		CPUSET_AND(cpuset, cpu_ready_set);
9938 
9939 		/*
9940 		 * Pass in INVALID_CONTEXT as the first parameter to
9941 		 * sfmmu_raise_tsb_exception, which invalidates the context
9942 		 * of any process running on the CPUs in the MMU.
9943 		 */
9944 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9945 		    INVALID_CONTEXT, INVALID_CONTEXT);
9946 		xt_sync(cpuset);
9947 
9948 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9949 	}
9950 
9951 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9952 		sfmmu_setctx_sec(INVALID_CONTEXT);
9953 		sfmmu_clear_utsbinfo();
9954 	}
9955 
9956 	/*
9957 	 * No xcall is needed here. For sun4u systems all CPUs in context
9958 	 * domain share a single physical MMU therefore it's enough to flush
9959 	 * TLB on local CPU. On sun4v systems we use 1 global context
9960 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9961 	 * handler. Note that vtag_flushall_uctxs() is called
9962 	 * for Ultra II machine, where the equivalent flushall functionality
9963 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9964 	 */
9965 	if (&vtag_flushall_uctxs != NULL) {
9966 		vtag_flushall_uctxs();
9967 	} else {
9968 		vtag_flushall();
9969 	}
9970 
9971 	/* reset mmu cnum, skips cnum 0 and 1 */
9972 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9973 
9974 done:
9975 	mutex_exit(&mmu_ctxp->mmu_lock);
9976 }
9977 
9978 
9979 /*
9980  * For multi-threaded process, set the process context to INVALID_CONTEXT
9981  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9982  * process, we can just load the MMU state directly without having to
9983  * set context invalid. Caller must hold the hat lock since we don't
9984  * acquire it here.
9985  */
9986 static void
9987 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9988 {
9989 	uint_t cnum;
9990 	uint_t pstate_save;
9991 
9992 	ASSERT(sfmmup != ksfmmup);
9993 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9994 
9995 	kpreempt_disable();
9996 
9997 	/*
9998 	 * We check whether the pass'ed-in sfmmup is the same as the
9999 	 * current running proc. This is to makes sure the current proc
10000 	 * stays single-threaded if it already is.
10001 	 */
10002 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
10003 	    (curthread->t_procp->p_lwpcnt == 1)) {
10004 		/* single-thread */
10005 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
10006 		if (cnum != INVALID_CONTEXT) {
10007 			uint_t curcnum;
10008 			/*
10009 			 * Disable interrupts to prevent race condition
10010 			 * with sfmmu_ctx_wrap_around ctx invalidation.
10011 			 * In sun4v, ctx invalidation involves setting
10012 			 * TSB to NULL, hence, interrupts should be disabled
10013 			 * untill after sfmmu_load_mmustate is completed.
10014 			 */
10015 			pstate_save = sfmmu_disable_intrs();
10016 			curcnum = sfmmu_getctx_sec();
10017 			if (curcnum == cnum)
10018 				sfmmu_load_mmustate(sfmmup);
10019 			sfmmu_enable_intrs(pstate_save);
10020 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
10021 		}
10022 	} else {
10023 		/*
10024 		 * multi-thread
10025 		 * or when sfmmup is not the same as the curproc.
10026 		 */
10027 		sfmmu_invalidate_ctx(sfmmup);
10028 	}
10029 
10030 	kpreempt_enable();
10031 }
10032 
10033 
10034 /*
10035  * Replace the specified TSB with a new TSB.  This function gets called when
10036  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
10037  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
10038  * (8K).
10039  *
10040  * Caller must hold the HAT lock, but should assume any tsb_info
10041  * pointers it has are no longer valid after calling this function.
10042  *
10043  * Return values:
10044  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
10045  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
10046  *			something to this tsbinfo/TSB
10047  *	TSB_SUCCESS	Operation succeeded
10048  */
10049 static tsb_replace_rc_t
10050 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
10051     hatlock_t *hatlockp, uint_t flags)
10052 {
10053 	struct tsb_info *new_tsbinfo = NULL;
10054 	struct tsb_info *curtsb, *prevtsb;
10055 	uint_t tte_sz_mask;
10056 	int i;
10057 
10058 	ASSERT(sfmmup != ksfmmup);
10059 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10060 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10061 	ASSERT(szc <= tsb_max_growsize);
10062 
10063 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
10064 		return (TSB_LOSTRACE);
10065 
10066 	/*
10067 	 * Find the tsb_info ahead of this one in the list, and
10068 	 * also make sure that the tsb_info passed in really
10069 	 * exists!
10070 	 */
10071 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10072 	    curtsb != old_tsbinfo && curtsb != NULL;
10073 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10074 		;
10075 	ASSERT(curtsb != NULL);
10076 
10077 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10078 		/*
10079 		 * The process is swapped out, so just set the new size
10080 		 * code.  When it swaps back in, we'll allocate a new one
10081 		 * of the new chosen size.
10082 		 */
10083 		curtsb->tsb_szc = szc;
10084 		return (TSB_SUCCESS);
10085 	}
10086 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
10087 
10088 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
10089 
10090 	/*
10091 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
10092 	 * If we fail to allocate a TSB, exit.
10093 	 *
10094 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
10095 	 * then try 4M slab after the initial alloc fails.
10096 	 *
10097 	 * If tsb swapin with tsb size > 4M, then try 4M after the
10098 	 * initial alloc fails.
10099 	 */
10100 	sfmmu_hat_exit(hatlockp);
10101 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
10102 	    tte_sz_mask, flags, sfmmup) &&
10103 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
10104 	    (!(flags & TSB_SWAPIN) &&
10105 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
10106 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
10107 	    tte_sz_mask, flags, sfmmup))) {
10108 		(void) sfmmu_hat_enter(sfmmup);
10109 		if (!(flags & TSB_SWAPIN))
10110 			SFMMU_STAT(sf_tsb_resize_failures);
10111 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10112 		return (TSB_ALLOCFAIL);
10113 	}
10114 	(void) sfmmu_hat_enter(sfmmup);
10115 
10116 	/*
10117 	 * Re-check to make sure somebody else didn't muck with us while we
10118 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
10119 	 * exit; this can happen if we try to shrink the TSB from the context
10120 	 * of another process (such as on an ISM unmap), though it is rare.
10121 	 */
10122 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10123 		SFMMU_STAT(sf_tsb_resize_failures);
10124 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10125 		sfmmu_hat_exit(hatlockp);
10126 		sfmmu_tsbinfo_free(new_tsbinfo);
10127 		(void) sfmmu_hat_enter(sfmmup);
10128 		return (TSB_LOSTRACE);
10129 	}
10130 
10131 #ifdef	DEBUG
10132 	/* Reverify that the tsb_info still exists.. for debugging only */
10133 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10134 	    curtsb != old_tsbinfo && curtsb != NULL;
10135 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10136 		;
10137 	ASSERT(curtsb != NULL);
10138 #endif	/* DEBUG */
10139 
10140 	/*
10141 	 * Quiesce any CPUs running this process on their next TLB miss
10142 	 * so they atomically see the new tsb_info.  We temporarily set the
10143 	 * context to invalid context so new threads that come on processor
10144 	 * after we do the xcall to cpusran will also serialize behind the
10145 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
10146 	 * race with a new thread coming on processor is relatively rare,
10147 	 * this synchronization mechanism should be cheaper than always
10148 	 * pausing all CPUs for the duration of the setup, which is what
10149 	 * the old implementation did.  This is particuarly true if we are
10150 	 * copying a huge chunk of memory around during that window.
10151 	 *
10152 	 * The memory barriers are to make sure things stay consistent
10153 	 * with resume() since it does not hold the HAT lock while
10154 	 * walking the list of tsb_info structures.
10155 	 */
10156 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10157 		/* The TSB is either growing or shrinking. */
10158 		sfmmu_invalidate_ctx(sfmmup);
10159 	} else {
10160 		/*
10161 		 * It is illegal to swap in TSBs from a process other
10162 		 * than a process being swapped in.  This in turn
10163 		 * implies we do not have a valid MMU context here
10164 		 * since a process needs one to resolve translation
10165 		 * misses.
10166 		 */
10167 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10168 	}
10169 
10170 #ifdef DEBUG
10171 	ASSERT(max_mmu_ctxdoms > 0);
10172 
10173 	/*
10174 	 * Process should have INVALID_CONTEXT on all MMUs
10175 	 */
10176 	for (i = 0; i < max_mmu_ctxdoms; i++) {
10177 
10178 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10179 	}
10180 #endif
10181 
10182 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10183 	membar_stst();	/* strict ordering required */
10184 	if (prevtsb)
10185 		prevtsb->tsb_next = new_tsbinfo;
10186 	else
10187 		sfmmup->sfmmu_tsb = new_tsbinfo;
10188 	membar_enter();	/* make sure new TSB globally visible */
10189 
10190 	/*
10191 	 * We need to migrate TSB entries from the old TSB to the new TSB
10192 	 * if tsb_remap_ttes is set and the TSB is growing.
10193 	 */
10194 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10195 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10196 
10197 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10198 
10199 	/*
10200 	 * Drop the HAT lock to free our old tsb_info.
10201 	 */
10202 	sfmmu_hat_exit(hatlockp);
10203 
10204 	if ((flags & TSB_GROW) == TSB_GROW) {
10205 		SFMMU_STAT(sf_tsb_grow);
10206 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10207 		SFMMU_STAT(sf_tsb_shrink);
10208 	}
10209 
10210 	sfmmu_tsbinfo_free(old_tsbinfo);
10211 
10212 	(void) sfmmu_hat_enter(sfmmup);
10213 	return (TSB_SUCCESS);
10214 }
10215 
10216 /*
10217  * This function will re-program hat pgsz array, and invalidate the
10218  * process' context, forcing the process to switch to another
10219  * context on the next TLB miss, and therefore start using the
10220  * TLB that is reprogrammed for the new page sizes.
10221  */
10222 void
10223 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10224 {
10225 	int i;
10226 	hatlock_t *hatlockp = NULL;
10227 
10228 	hatlockp = sfmmu_hat_enter(sfmmup);
10229 	/* USIII+-IV+ optimization, requires hat lock */
10230 	if (tmp_pgsz) {
10231 		for (i = 0; i < mmu_page_sizes; i++)
10232 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10233 	}
10234 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10235 
10236 	sfmmu_invalidate_ctx(sfmmup);
10237 
10238 	sfmmu_hat_exit(hatlockp);
10239 }
10240 
10241 /*
10242  * The scd_rttecnt field in the SCD must be updated to take account of the
10243  * regions which it contains.
10244  */
10245 static void
10246 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10247 {
10248 	uint_t rid;
10249 	uint_t i, j;
10250 	ulong_t w;
10251 	sf_region_t *rgnp;
10252 
10253 	ASSERT(srdp != NULL);
10254 
10255 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10256 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10257 			continue;
10258 		}
10259 
10260 		j = 0;
10261 		while (w) {
10262 			if (!(w & 0x1)) {
10263 				j++;
10264 				w >>= 1;
10265 				continue;
10266 			}
10267 			rid = (i << BT_ULSHIFT) | j;
10268 			j++;
10269 			w >>= 1;
10270 
10271 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10272 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10273 			rgnp = srdp->srd_hmergnp[rid];
10274 			ASSERT(rgnp->rgn_refcnt > 0);
10275 			ASSERT(rgnp->rgn_id == rid);
10276 
10277 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10278 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10279 
10280 			/*
10281 			 * Maintain the tsb0 inflation cnt for the regions
10282 			 * in the SCD.
10283 			 */
10284 			if (rgnp->rgn_pgszc >= TTE4M) {
10285 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10286 				    rgnp->rgn_size >>
10287 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10288 			}
10289 		}
10290 	}
10291 }
10292 
10293 /*
10294  * This function assumes that there are either four or six supported page
10295  * sizes and at most two programmable TLBs, so we need to decide which
10296  * page sizes are most important and then tell the MMU layer so it
10297  * can adjust the TLB page sizes accordingly (if supported).
10298  *
10299  * If these assumptions change, this function will need to be
10300  * updated to support whatever the new limits are.
10301  *
10302  * The growing flag is nonzero if we are growing the address space,
10303  * and zero if it is shrinking.  This allows us to decide whether
10304  * to grow or shrink our TSB, depending upon available memory
10305  * conditions.
10306  */
10307 static void
10308 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10309 {
10310 	uint64_t ttecnt[MMU_PAGE_SIZES];
10311 	uint64_t tte8k_cnt, tte4m_cnt;
10312 	uint8_t i;
10313 	int sectsb_thresh;
10314 
10315 	/*
10316 	 * Kernel threads, processes with small address spaces not using
10317 	 * large pages, and dummy ISM HATs need not apply.
10318 	 */
10319 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10320 		return;
10321 
10322 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10323 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10324 		return;
10325 
10326 	for (i = 0; i < mmu_page_sizes; i++) {
10327 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10328 		    sfmmup->sfmmu_ismttecnt[i];
10329 	}
10330 
10331 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10332 	if (&mmu_check_page_sizes)
10333 		mmu_check_page_sizes(sfmmup, ttecnt);
10334 
10335 	/*
10336 	 * Calculate the number of 8k ttes to represent the span of these
10337 	 * pages.
10338 	 */
10339 	tte8k_cnt = ttecnt[TTE8K] +
10340 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10341 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10342 	if (mmu_page_sizes == max_mmu_page_sizes) {
10343 		tte4m_cnt = ttecnt[TTE4M] +
10344 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10345 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10346 	} else {
10347 		tte4m_cnt = ttecnt[TTE4M];
10348 	}
10349 
10350 	/*
10351 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10352 	 */
10353 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10354 
10355 	/*
10356 	 * Inflate TSB sizes by a factor of 2 if this process
10357 	 * uses 4M text pages to minimize extra conflict misses
10358 	 * in the first TSB since without counting text pages
10359 	 * 8K TSB may become too small.
10360 	 *
10361 	 * Also double the size of the second TSB to minimize
10362 	 * extra conflict misses due to competition between 4M text pages
10363 	 * and data pages.
10364 	 *
10365 	 * We need to adjust the second TSB allocation threshold by the
10366 	 * inflation factor, since there is no point in creating a second
10367 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10368 	 */
10369 	sectsb_thresh = tsb_sectsb_threshold;
10370 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10371 		tte8k_cnt <<= 1;
10372 		tte4m_cnt <<= 1;
10373 		sectsb_thresh <<= 1;
10374 	}
10375 
10376 	/*
10377 	 * Check to see if our TSB is the right size; we may need to
10378 	 * grow or shrink it.  If the process is small, our work is
10379 	 * finished at this point.
10380 	 */
10381 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10382 		return;
10383 	}
10384 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10385 }
10386 
10387 static void
10388 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10389 	uint64_t tte4m_cnt, int sectsb_thresh)
10390 {
10391 	int tsb_bits;
10392 	uint_t tsb_szc;
10393 	struct tsb_info *tsbinfop;
10394 	hatlock_t *hatlockp = NULL;
10395 
10396 	hatlockp = sfmmu_hat_enter(sfmmup);
10397 	ASSERT(hatlockp != NULL);
10398 	tsbinfop = sfmmup->sfmmu_tsb;
10399 	ASSERT(tsbinfop != NULL);
10400 
10401 	/*
10402 	 * If we're growing, select the size based on RSS.  If we're
10403 	 * shrinking, leave some room so we don't have to turn around and
10404 	 * grow again immediately.
10405 	 */
10406 	if (growing)
10407 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10408 	else
10409 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10410 
10411 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10412 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10413 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10414 		    hatlockp, TSB_SHRINK);
10415 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10416 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10417 		    hatlockp, TSB_GROW);
10418 	}
10419 	tsbinfop = sfmmup->sfmmu_tsb;
10420 
10421 	/*
10422 	 * With the TLB and first TSB out of the way, we need to see if
10423 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10424 	 * the TLB page sizes above, the process will start using this new
10425 	 * TSB right away; otherwise, it will start using it on the next
10426 	 * context switch.  Either way, it's no big deal so there's no
10427 	 * synchronization with the trap handlers here unless we grow the
10428 	 * TSB (in which case it's required to prevent using the old one
10429 	 * after it's freed). Note: second tsb is required for 32M/256M
10430 	 * page sizes.
10431 	 */
10432 	if (tte4m_cnt > sectsb_thresh) {
10433 		/*
10434 		 * If we're growing, select the size based on RSS.  If we're
10435 		 * shrinking, leave some room so we don't have to turn
10436 		 * around and grow again immediately.
10437 		 */
10438 		if (growing)
10439 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10440 		else
10441 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10442 		if (tsbinfop->tsb_next == NULL) {
10443 			struct tsb_info *newtsb;
10444 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10445 			    0 : TSB_ALLOC;
10446 
10447 			sfmmu_hat_exit(hatlockp);
10448 
10449 			/*
10450 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10451 			 * can't get the size we want, retry w/a minimum sized
10452 			 * TSB.  If that still didn't work, give up; we can
10453 			 * still run without one.
10454 			 */
10455 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10456 			    TSB4M|TSB32M|TSB256M:TSB4M;
10457 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10458 			    allocflags, sfmmup)) &&
10459 			    (tsb_szc <= TSB_4M_SZCODE ||
10460 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10461 			    tsb_bits, allocflags, sfmmup)) &&
10462 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10463 			    tsb_bits, allocflags, sfmmup)) {
10464 				return;
10465 			}
10466 
10467 			hatlockp = sfmmu_hat_enter(sfmmup);
10468 
10469 			sfmmu_invalidate_ctx(sfmmup);
10470 
10471 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10472 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10473 				SFMMU_STAT(sf_tsb_sectsb_create);
10474 				sfmmu_hat_exit(hatlockp);
10475 				return;
10476 			} else {
10477 				/*
10478 				 * It's annoying, but possible for us
10479 				 * to get here.. we dropped the HAT lock
10480 				 * because of locking order in the kmem
10481 				 * allocator, and while we were off getting
10482 				 * our memory, some other thread decided to
10483 				 * do us a favor and won the race to get a
10484 				 * second TSB for this process.  Sigh.
10485 				 */
10486 				sfmmu_hat_exit(hatlockp);
10487 				sfmmu_tsbinfo_free(newtsb);
10488 				return;
10489 			}
10490 		}
10491 
10492 		/*
10493 		 * We have a second TSB, see if it's big enough.
10494 		 */
10495 		tsbinfop = tsbinfop->tsb_next;
10496 
10497 		/*
10498 		 * Check to see if our second TSB is the right size;
10499 		 * we may need to grow or shrink it.
10500 		 * To prevent thrashing (e.g. growing the TSB on a
10501 		 * subsequent map operation), only try to shrink if
10502 		 * the TSB reach exceeds twice the virtual address
10503 		 * space size.
10504 		 */
10505 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10506 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10507 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10508 			    tsb_szc, hatlockp, TSB_SHRINK);
10509 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10510 		    TSB_OK_GROW()) {
10511 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10512 			    tsb_szc, hatlockp, TSB_GROW);
10513 		}
10514 	}
10515 
10516 	sfmmu_hat_exit(hatlockp);
10517 }
10518 
10519 /*
10520  * Free up a sfmmu
10521  * Since the sfmmu is currently embedded in the hat struct we simply zero
10522  * out our fields and free up the ism map blk list if any.
10523  */
10524 static void
10525 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10526 {
10527 	ism_blk_t	*blkp, *nx_blkp;
10528 #ifdef	DEBUG
10529 	ism_map_t	*map;
10530 	int 		i;
10531 #endif
10532 
10533 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10534 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10535 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10536 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10537 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10538 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10539 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10540 
10541 	sfmmup->sfmmu_free = 0;
10542 	sfmmup->sfmmu_ismhat = 0;
10543 
10544 	blkp = sfmmup->sfmmu_iblk;
10545 	sfmmup->sfmmu_iblk = NULL;
10546 
10547 	while (blkp) {
10548 #ifdef	DEBUG
10549 		map = blkp->iblk_maps;
10550 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10551 			ASSERT(map[i].imap_seg == 0);
10552 			ASSERT(map[i].imap_ismhat == NULL);
10553 			ASSERT(map[i].imap_ment == NULL);
10554 		}
10555 #endif
10556 		nx_blkp = blkp->iblk_next;
10557 		blkp->iblk_next = NULL;
10558 		blkp->iblk_nextpa = (uint64_t)-1;
10559 		kmem_cache_free(ism_blk_cache, blkp);
10560 		blkp = nx_blkp;
10561 	}
10562 }
10563 
10564 /*
10565  * Locking primitves accessed by HATLOCK macros
10566  */
10567 
10568 #define	SFMMU_SPL_MTX	(0x0)
10569 #define	SFMMU_ML_MTX	(0x1)
10570 
10571 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10572 					    SPL_HASH(pg) : MLIST_HASH(pg))
10573 
10574 kmutex_t *
10575 sfmmu_page_enter(struct page *pp)
10576 {
10577 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10578 }
10579 
10580 void
10581 sfmmu_page_exit(kmutex_t *spl)
10582 {
10583 	mutex_exit(spl);
10584 }
10585 
10586 int
10587 sfmmu_page_spl_held(struct page *pp)
10588 {
10589 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10590 }
10591 
10592 kmutex_t *
10593 sfmmu_mlist_enter(struct page *pp)
10594 {
10595 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10596 }
10597 
10598 void
10599 sfmmu_mlist_exit(kmutex_t *mml)
10600 {
10601 	mutex_exit(mml);
10602 }
10603 
10604 int
10605 sfmmu_mlist_held(struct page *pp)
10606 {
10607 
10608 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10609 }
10610 
10611 /*
10612  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10613  * sfmmu_mlist_enter() case mml_table lock array is used and for
10614  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10615  *
10616  * The lock is taken on a root page so that it protects an operation on all
10617  * constituent pages of a large page pp belongs to.
10618  *
10619  * The routine takes a lock from the appropriate array. The lock is determined
10620  * by hashing the root page. After taking the lock this routine checks if the
10621  * root page has the same size code that was used to determine the root (i.e
10622  * that root hasn't changed).  If root page has the expected p_szc field we
10623  * have the right lock and it's returned to the caller. If root's p_szc
10624  * decreased we release the lock and retry from the beginning.  This case can
10625  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10626  * value and taking the lock. The number of retries due to p_szc decrease is
10627  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10628  * determined by hashing pp itself.
10629  *
10630  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10631  * possible that p_szc can increase. To increase p_szc a thread has to lock
10632  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10633  * callers that don't hold a page locked recheck if hmeblk through which pp
10634  * was found still maps this pp.  If it doesn't map it anymore returned lock
10635  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10636  * p_szc increase after taking the lock it returns this lock without further
10637  * retries because in this case the caller doesn't care about which lock was
10638  * taken. The caller will drop it right away.
10639  *
10640  * After the routine returns it's guaranteed that hat_page_demote() can't
10641  * change p_szc field of any of constituent pages of a large page pp belongs
10642  * to as long as pp was either locked at least SHARED prior to this call or
10643  * the caller finds that hment that pointed to this pp still references this
10644  * pp (this also assumes that the caller holds hme hash bucket lock so that
10645  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10646  * hat_pageunload()).
10647  */
10648 static kmutex_t *
10649 sfmmu_mlspl_enter(struct page *pp, int type)
10650 {
10651 	kmutex_t	*mtx;
10652 	uint_t		prev_rszc = UINT_MAX;
10653 	page_t		*rootpp;
10654 	uint_t		szc;
10655 	uint_t		rszc;
10656 	uint_t		pszc = pp->p_szc;
10657 
10658 	ASSERT(pp != NULL);
10659 
10660 again:
10661 	if (pszc == 0) {
10662 		mtx = SFMMU_MLSPL_MTX(type, pp);
10663 		mutex_enter(mtx);
10664 		return (mtx);
10665 	}
10666 
10667 	/* The lock lives in the root page */
10668 	rootpp = PP_GROUPLEADER(pp, pszc);
10669 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10670 	mutex_enter(mtx);
10671 
10672 	/*
10673 	 * Return mml in the following 3 cases:
10674 	 *
10675 	 * 1) If pp itself is root since if its p_szc decreased before we took
10676 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10677 	 * increased it doesn't matter what lock we return (see comment in
10678 	 * front of this routine).
10679 	 *
10680 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10681 	 * large page we have the right lock since any previous potential
10682 	 * hat_page_demote() is done demoting from greater than current root's
10683 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10684 	 * further hat_page_demote() can start or be in progress since it
10685 	 * would need the same lock we currently hold.
10686 	 *
10687 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10688 	 * matter what lock we return (see comment in front of this routine).
10689 	 */
10690 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10691 	    rszc >= prev_rszc) {
10692 		return (mtx);
10693 	}
10694 
10695 	/*
10696 	 * hat_page_demote() could have decreased root's p_szc.
10697 	 * In this case pp's p_szc must also be smaller than pszc.
10698 	 * Retry.
10699 	 */
10700 	if (rszc < pszc) {
10701 		szc = pp->p_szc;
10702 		if (szc < pszc) {
10703 			mutex_exit(mtx);
10704 			pszc = szc;
10705 			goto again;
10706 		}
10707 		/*
10708 		 * pp's p_szc increased after it was decreased.
10709 		 * page cannot be mapped. Return current lock. The caller
10710 		 * will drop it right away.
10711 		 */
10712 		return (mtx);
10713 	}
10714 
10715 	/*
10716 	 * root's p_szc is greater than pp's p_szc.
10717 	 * hat_page_demote() is not done with all pages
10718 	 * yet. Wait for it to complete.
10719 	 */
10720 	mutex_exit(mtx);
10721 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10722 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10723 	mutex_enter(mtx);
10724 	mutex_exit(mtx);
10725 	prev_rszc = rszc;
10726 	goto again;
10727 }
10728 
10729 static int
10730 sfmmu_mlspl_held(struct page *pp, int type)
10731 {
10732 	kmutex_t	*mtx;
10733 
10734 	ASSERT(pp != NULL);
10735 	/* The lock lives in the root page */
10736 	pp = PP_PAGEROOT(pp);
10737 	ASSERT(pp != NULL);
10738 
10739 	mtx = SFMMU_MLSPL_MTX(type, pp);
10740 	return (MUTEX_HELD(mtx));
10741 }
10742 
10743 static uint_t
10744 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10745 {
10746 	struct  hme_blk *hblkp;
10747 
10748 
10749 	if (freehblkp != NULL) {
10750 		mutex_enter(&freehblkp_lock);
10751 		if (freehblkp != NULL) {
10752 			/*
10753 			 * If the current thread is owning hblk_reserve OR
10754 			 * critical request from sfmmu_hblk_steal()
10755 			 * let it succeed even if freehblkcnt is really low.
10756 			 */
10757 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10758 				SFMMU_STAT(sf_get_free_throttle);
10759 				mutex_exit(&freehblkp_lock);
10760 				return (0);
10761 			}
10762 			freehblkcnt--;
10763 			*hmeblkpp = freehblkp;
10764 			hblkp = *hmeblkpp;
10765 			freehblkp = hblkp->hblk_next;
10766 			mutex_exit(&freehblkp_lock);
10767 			hblkp->hblk_next = NULL;
10768 			SFMMU_STAT(sf_get_free_success);
10769 
10770 			ASSERT(hblkp->hblk_hmecnt == 0);
10771 			ASSERT(hblkp->hblk_vcnt == 0);
10772 			ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10773 
10774 			return (1);
10775 		}
10776 		mutex_exit(&freehblkp_lock);
10777 	}
10778 
10779 	/* Check cpu hblk pending queues */
10780 	if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10781 		hblkp = *hmeblkpp;
10782 		hblkp->hblk_next = NULL;
10783 		hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10784 
10785 		ASSERT(hblkp->hblk_hmecnt == 0);
10786 		ASSERT(hblkp->hblk_vcnt == 0);
10787 
10788 		return (1);
10789 	}
10790 
10791 	SFMMU_STAT(sf_get_free_fail);
10792 	return (0);
10793 }
10794 
10795 static uint_t
10796 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10797 {
10798 	struct  hme_blk *hblkp;
10799 
10800 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10801 	ASSERT(hmeblkp->hblk_vcnt == 0);
10802 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10803 
10804 	/*
10805 	 * If the current thread is mapping into kernel space,
10806 	 * let it succede even if freehblkcnt is max
10807 	 * so that it will avoid freeing it to kmem.
10808 	 * This will prevent stack overflow due to
10809 	 * possible recursion since kmem_cache_free()
10810 	 * might require creation of a slab which
10811 	 * in turn needs an hmeblk to map that slab;
10812 	 * let's break this vicious chain at the first
10813 	 * opportunity.
10814 	 */
10815 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10816 		mutex_enter(&freehblkp_lock);
10817 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10818 			SFMMU_STAT(sf_put_free_success);
10819 			freehblkcnt++;
10820 			hmeblkp->hblk_next = freehblkp;
10821 			freehblkp = hmeblkp;
10822 			mutex_exit(&freehblkp_lock);
10823 			return (1);
10824 		}
10825 		mutex_exit(&freehblkp_lock);
10826 	}
10827 
10828 	/*
10829 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10830 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10831 	 * we are not in the process of mapping into kernel space.
10832 	 */
10833 	ASSERT(!critical);
10834 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10835 		mutex_enter(&freehblkp_lock);
10836 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10837 			freehblkcnt--;
10838 			hblkp = freehblkp;
10839 			freehblkp = hblkp->hblk_next;
10840 			mutex_exit(&freehblkp_lock);
10841 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10842 			kmem_cache_free(sfmmu8_cache, hblkp);
10843 			continue;
10844 		}
10845 		mutex_exit(&freehblkp_lock);
10846 	}
10847 	SFMMU_STAT(sf_put_free_fail);
10848 	return (0);
10849 }
10850 
10851 static void
10852 sfmmu_hblk_swap(struct hme_blk *new)
10853 {
10854 	struct hme_blk *old, *hblkp, *prev;
10855 	uint64_t newpa;
10856 	caddr_t	base, vaddr, endaddr;
10857 	struct hmehash_bucket *hmebp;
10858 	struct sf_hment *osfhme, *nsfhme;
10859 	page_t *pp;
10860 	kmutex_t *pml;
10861 	tte_t tte;
10862 	struct hme_blk *list = NULL;
10863 
10864 #ifdef	DEBUG
10865 	hmeblk_tag		hblktag;
10866 	struct hme_blk		*found;
10867 #endif
10868 	old = HBLK_RESERVE;
10869 	ASSERT(!old->hblk_shared);
10870 
10871 	/*
10872 	 * save pa before bcopy clobbers it
10873 	 */
10874 	newpa = new->hblk_nextpa;
10875 
10876 	base = (caddr_t)get_hblk_base(old);
10877 	endaddr = base + get_hblk_span(old);
10878 
10879 	/*
10880 	 * acquire hash bucket lock.
10881 	 */
10882 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10883 	    SFMMU_INVALID_SHMERID);
10884 
10885 	/*
10886 	 * copy contents from old to new
10887 	 */
10888 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10889 
10890 	/*
10891 	 * add new to hash chain
10892 	 */
10893 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10894 
10895 	/*
10896 	 * search hash chain for hblk_reserve; this needs to be performed
10897 	 * after adding new, otherwise prev won't correspond to the hblk which
10898 	 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10899 	 * remove old later.
10900 	 */
10901 	for (prev = NULL,
10902 	    hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10903 	    prev = hblkp, hblkp = hblkp->hblk_next)
10904 		;
10905 
10906 	if (hblkp != old)
10907 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10908 
10909 	/*
10910 	 * p_mapping list is still pointing to hments in hblk_reserve;
10911 	 * fix up p_mapping list so that they point to hments in new.
10912 	 *
10913 	 * Since all these mappings are created by hblk_reserve_thread
10914 	 * on the way and it's using at least one of the buffers from each of
10915 	 * the newly minted slabs, there is no danger of any of these
10916 	 * mappings getting unloaded by another thread.
10917 	 *
10918 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10919 	 * Since all of these hments hold mappings established by segkmem
10920 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10921 	 * have no meaning for the mappings in hblk_reserve.  hments in
10922 	 * old and new are identical except for ref/mod bits.
10923 	 */
10924 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10925 
10926 		HBLKTOHME(osfhme, old, vaddr);
10927 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10928 
10929 		if (TTE_IS_VALID(&tte)) {
10930 			if ((pp = osfhme->hme_page) == NULL)
10931 				panic("sfmmu_hblk_swap: page not mapped");
10932 
10933 			pml = sfmmu_mlist_enter(pp);
10934 
10935 			if (pp != osfhme->hme_page)
10936 				panic("sfmmu_hblk_swap: mapping changed");
10937 
10938 			HBLKTOHME(nsfhme, new, vaddr);
10939 
10940 			HME_ADD(nsfhme, pp);
10941 			HME_SUB(osfhme, pp);
10942 
10943 			sfmmu_mlist_exit(pml);
10944 		}
10945 	}
10946 
10947 	/*
10948 	 * remove old from hash chain
10949 	 */
10950 	sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10951 
10952 #ifdef	DEBUG
10953 
10954 	hblktag.htag_id = ksfmmup;
10955 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10956 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10957 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10958 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10959 
10960 	if (found != new)
10961 		panic("sfmmu_hblk_swap: new hblk not found");
10962 #endif
10963 
10964 	SFMMU_HASH_UNLOCK(hmebp);
10965 
10966 	/*
10967 	 * Reset hblk_reserve
10968 	 */
10969 	bzero((void *)old, HME8BLK_SZ);
10970 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10971 }
10972 
10973 /*
10974  * Grab the mlist mutex for both pages passed in.
10975  *
10976  * low and high will be returned as pointers to the mutexes for these pages.
10977  * low refers to the mutex residing in the lower bin of the mlist hash, while
10978  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10979  * is due to the locking order restrictions on the same thread grabbing
10980  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10981  *
10982  * If both pages hash to the same mutex, only grab that single mutex, and
10983  * high will be returned as NULL
10984  * If the pages hash to different bins in the hash, grab the lower addressed
10985  * lock first and then the higher addressed lock in order to follow the locking
10986  * rules involved with the same thread grabbing multiple mlist mutexes.
10987  * low and high will both have non-NULL values.
10988  */
10989 static void
10990 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10991     kmutex_t **low, kmutex_t **high)
10992 {
10993 	kmutex_t	*mml_targ, *mml_repl;
10994 
10995 	/*
10996 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10997 	 * because this routine is only called by hat_page_relocate() and all
10998 	 * targ and repl pages are already locked EXCL so szc can't change.
10999 	 */
11000 
11001 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
11002 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
11003 
11004 	if (mml_targ == mml_repl) {
11005 		*low = mml_targ;
11006 		*high = NULL;
11007 	} else {
11008 		if (mml_targ < mml_repl) {
11009 			*low = mml_targ;
11010 			*high = mml_repl;
11011 		} else {
11012 			*low = mml_repl;
11013 			*high = mml_targ;
11014 		}
11015 	}
11016 
11017 	mutex_enter(*low);
11018 	if (*high)
11019 		mutex_enter(*high);
11020 }
11021 
11022 static void
11023 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
11024 {
11025 	if (high)
11026 		mutex_exit(high);
11027 	mutex_exit(low);
11028 }
11029 
11030 hatlock_t *
11031 sfmmu_hat_enter(sfmmu_t *sfmmup)
11032 {
11033 	hatlock_t	*hatlockp;
11034 
11035 	if (sfmmup != ksfmmup) {
11036 		hatlockp = TSB_HASH(sfmmup);
11037 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11038 		return (hatlockp);
11039 	}
11040 	return (NULL);
11041 }
11042 
11043 static hatlock_t *
11044 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
11045 {
11046 	hatlock_t	*hatlockp;
11047 
11048 	if (sfmmup != ksfmmup) {
11049 		hatlockp = TSB_HASH(sfmmup);
11050 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
11051 			return (NULL);
11052 		return (hatlockp);
11053 	}
11054 	return (NULL);
11055 }
11056 
11057 void
11058 sfmmu_hat_exit(hatlock_t *hatlockp)
11059 {
11060 	if (hatlockp != NULL)
11061 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11062 }
11063 
11064 static void
11065 sfmmu_hat_lock_all(void)
11066 {
11067 	int i;
11068 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
11069 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
11070 }
11071 
11072 static void
11073 sfmmu_hat_unlock_all(void)
11074 {
11075 	int i;
11076 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
11077 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
11078 }
11079 
11080 int
11081 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
11082 {
11083 	ASSERT(sfmmup != ksfmmup);
11084 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
11085 }
11086 
11087 /*
11088  * Locking primitives to provide consistency between ISM unmap
11089  * and other operations.  Since ISM unmap can take a long time, we
11090  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
11091  * contention on the hatlock buckets while ISM segments are being
11092  * unmapped.  The tradeoff is that the flags don't prevent priority
11093  * inversion from occurring, so we must request kernel priority in
11094  * case we have to sleep to keep from getting buried while holding
11095  * the HAT_ISMBUSY flag set, which in turn could block other kernel
11096  * threads from running (for example, in sfmmu_uvatopfn()).
11097  */
11098 static void
11099 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
11100 {
11101 	hatlock_t *hatlockp;
11102 
11103 	THREAD_KPRI_REQUEST();
11104 	if (!hatlock_held)
11105 		hatlockp = sfmmu_hat_enter(sfmmup);
11106 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
11107 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11108 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
11109 	if (!hatlock_held)
11110 		sfmmu_hat_exit(hatlockp);
11111 }
11112 
11113 static void
11114 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
11115 {
11116 	hatlock_t *hatlockp;
11117 
11118 	if (!hatlock_held)
11119 		hatlockp = sfmmu_hat_enter(sfmmup);
11120 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
11121 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
11122 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11123 	if (!hatlock_held)
11124 		sfmmu_hat_exit(hatlockp);
11125 	THREAD_KPRI_RELEASE();
11126 }
11127 
11128 /*
11129  *
11130  * Algorithm:
11131  *
11132  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
11133  *	hblks.
11134  *
11135  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
11136  *
11137  * 		(a) try to return an hblk from reserve pool of free hblks;
11138  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
11139  *		    and return hblk_reserve.
11140  *
11141  * (3) call kmem_cache_alloc() to allocate hblk;
11142  *
11143  *		(a) if hblk_reserve_lock is held by the current thread,
11144  *		    atomically replace hblk_reserve by the hblk that is
11145  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
11146  *		    and call kmem_cache_alloc() again.
11147  *		(b) if reserve pool is not full, add the hblk that is
11148  *		    returned by kmem_cache_alloc to reserve pool and
11149  *		    call kmem_cache_alloc again.
11150  *
11151  */
11152 static struct hme_blk *
11153 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
11154 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
11155 	uint_t flags, uint_t rid)
11156 {
11157 	struct hme_blk *hmeblkp = NULL;
11158 	struct hme_blk *newhblkp;
11159 	struct hme_blk *shw_hblkp = NULL;
11160 	struct kmem_cache *sfmmu_cache = NULL;
11161 	uint64_t hblkpa;
11162 	ulong_t index;
11163 	uint_t owner;		/* set to 1 if using hblk_reserve */
11164 	uint_t forcefree;
11165 	int sleep;
11166 	sf_srd_t *srdp;
11167 	sf_region_t *rgnp;
11168 
11169 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11170 	ASSERT(hblktag.htag_rid == rid);
11171 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
11172 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11173 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
11174 
11175 	/*
11176 	 * If segkmem is not created yet, allocate from static hmeblks
11177 	 * created at the end of startup_modules().  See the block comment
11178 	 * in startup_modules() describing how we estimate the number of
11179 	 * static hmeblks that will be needed during re-map.
11180 	 */
11181 	if (!hblk_alloc_dynamic) {
11182 
11183 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11184 
11185 		if (size == TTE8K) {
11186 			index = nucleus_hblk8.index;
11187 			if (index >= nucleus_hblk8.len) {
11188 				/*
11189 				 * If we panic here, see startup_modules() to
11190 				 * make sure that we are calculating the
11191 				 * number of hblk8's that we need correctly.
11192 				 */
11193 				prom_panic("no nucleus hblk8 to allocate");
11194 			}
11195 			hmeblkp =
11196 			    (struct hme_blk *)&nucleus_hblk8.list[index];
11197 			nucleus_hblk8.index++;
11198 			SFMMU_STAT(sf_hblk8_nalloc);
11199 		} else {
11200 			index = nucleus_hblk1.index;
11201 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11202 				/*
11203 				 * If we panic here, see startup_modules().
11204 				 * Most likely you need to update the
11205 				 * calculation of the number of hblk1 elements
11206 				 * that the kernel needs to boot.
11207 				 */
11208 				prom_panic("no nucleus hblk1 to allocate");
11209 			}
11210 			hmeblkp =
11211 			    (struct hme_blk *)&nucleus_hblk1.list[index];
11212 			nucleus_hblk1.index++;
11213 			SFMMU_STAT(sf_hblk1_nalloc);
11214 		}
11215 
11216 		goto hblk_init;
11217 	}
11218 
11219 	SFMMU_HASH_UNLOCK(hmebp);
11220 
11221 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11222 		if (mmu_page_sizes == max_mmu_page_sizes) {
11223 			if (size < TTE256M)
11224 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11225 				    size, flags);
11226 		} else {
11227 			if (size < TTE4M)
11228 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11229 				    size, flags);
11230 		}
11231 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11232 		/*
11233 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11234 		 * rather than shadow hmeblks to keep track of the
11235 		 * mapping sizes which have been allocated for the region.
11236 		 * Here we cleanup old invalid hmeblks with this rid,
11237 		 * which may be left around by pageunload().
11238 		 */
11239 		int ttesz;
11240 		caddr_t va;
11241 		caddr_t	eva = vaddr + TTEBYTES(size);
11242 
11243 		ASSERT(sfmmup != KHATID);
11244 
11245 		srdp = sfmmup->sfmmu_srdp;
11246 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11247 		rgnp = srdp->srd_hmergnp[rid];
11248 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11249 		ASSERT(rgnp->rgn_refcnt != 0);
11250 		ASSERT(size <= rgnp->rgn_pgszc);
11251 
11252 		ttesz = HBLK_MIN_TTESZ;
11253 		do {
11254 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11255 				continue;
11256 			}
11257 
11258 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11259 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11260 			} else if (ttesz < size) {
11261 				for (va = vaddr; va < eva;
11262 				    va += TTEBYTES(ttesz)) {
11263 					sfmmu_cleanup_rhblk(srdp, va, rid,
11264 					    ttesz);
11265 				}
11266 			}
11267 		} while (++ttesz <= rgnp->rgn_pgszc);
11268 	}
11269 
11270 fill_hblk:
11271 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11272 
11273 	if (owner && size == TTE8K) {
11274 
11275 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11276 		/*
11277 		 * We are really in a tight spot. We already own
11278 		 * hblk_reserve and we need another hblk.  In anticipation
11279 		 * of this kind of scenario, we specifically set aside
11280 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11281 		 * by owner of hblk_reserve.
11282 		 */
11283 		SFMMU_STAT(sf_hblk_recurse_cnt);
11284 
11285 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11286 			panic("sfmmu_hblk_alloc: reserve list is empty");
11287 
11288 		goto hblk_verify;
11289 	}
11290 
11291 	ASSERT(!owner);
11292 
11293 	if ((flags & HAT_NO_KALLOC) == 0) {
11294 
11295 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11296 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11297 
11298 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11299 			hmeblkp = sfmmu_hblk_steal(size);
11300 		} else {
11301 			/*
11302 			 * if we are the owner of hblk_reserve,
11303 			 * swap hblk_reserve with hmeblkp and
11304 			 * start a fresh life.  Hope things go
11305 			 * better this time.
11306 			 */
11307 			if (hblk_reserve_thread == curthread) {
11308 				ASSERT(sfmmu_cache == sfmmu8_cache);
11309 				sfmmu_hblk_swap(hmeblkp);
11310 				hblk_reserve_thread = NULL;
11311 				mutex_exit(&hblk_reserve_lock);
11312 				goto fill_hblk;
11313 			}
11314 			/*
11315 			 * let's donate this hblk to our reserve list if
11316 			 * we are not mapping kernel range
11317 			 */
11318 			if (size == TTE8K && sfmmup != KHATID) {
11319 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11320 					goto fill_hblk;
11321 			}
11322 		}
11323 	} else {
11324 		/*
11325 		 * We are here to map the slab in sfmmu8_cache; let's
11326 		 * check if we could tap our reserve list; if successful,
11327 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11328 		 */
11329 		SFMMU_STAT(sf_hblk_slab_cnt);
11330 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11331 			/*
11332 			 * let's start hblk_reserve dance
11333 			 */
11334 			SFMMU_STAT(sf_hblk_reserve_cnt);
11335 			owner = 1;
11336 			mutex_enter(&hblk_reserve_lock);
11337 			hmeblkp = HBLK_RESERVE;
11338 			hblk_reserve_thread = curthread;
11339 		}
11340 	}
11341 
11342 hblk_verify:
11343 	ASSERT(hmeblkp != NULL);
11344 	set_hblk_sz(hmeblkp, size);
11345 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11346 	SFMMU_HASH_LOCK(hmebp);
11347 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11348 	if (newhblkp != NULL) {
11349 		SFMMU_HASH_UNLOCK(hmebp);
11350 		if (hmeblkp != HBLK_RESERVE) {
11351 			/*
11352 			 * This is really tricky!
11353 			 *
11354 			 * vmem_alloc(vmem_seg_arena)
11355 			 *  vmem_alloc(vmem_internal_arena)
11356 			 *   segkmem_alloc(heap_arena)
11357 			 *    vmem_alloc(heap_arena)
11358 			 *    page_create()
11359 			 *    hat_memload()
11360 			 *	kmem_cache_free()
11361 			 *	 kmem_cache_alloc()
11362 			 *	  kmem_slab_create()
11363 			 *	   vmem_alloc(kmem_internal_arena)
11364 			 *	    segkmem_alloc(heap_arena)
11365 			 *		vmem_alloc(heap_arena)
11366 			 *		page_create()
11367 			 *		hat_memload()
11368 			 *		  kmem_cache_free()
11369 			 *		...
11370 			 *
11371 			 * Thus, hat_memload() could call kmem_cache_free
11372 			 * for enough number of times that we could easily
11373 			 * hit the bottom of the stack or run out of reserve
11374 			 * list of vmem_seg structs.  So, we must donate
11375 			 * this hblk to reserve list if it's allocated
11376 			 * from sfmmu8_cache *and* mapping kernel range.
11377 			 * We don't need to worry about freeing hmeblk1's
11378 			 * to kmem since they don't map any kmem slabs.
11379 			 *
11380 			 * Note: When segkmem supports largepages, we must
11381 			 * free hmeblk1's to reserve list as well.
11382 			 */
11383 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11384 			if (size == TTE8K &&
11385 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11386 				goto re_verify;
11387 			}
11388 			ASSERT(sfmmup != KHATID);
11389 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11390 		} else {
11391 			/*
11392 			 * Hey! we don't need hblk_reserve any more.
11393 			 */
11394 			ASSERT(owner);
11395 			hblk_reserve_thread = NULL;
11396 			mutex_exit(&hblk_reserve_lock);
11397 			owner = 0;
11398 		}
11399 re_verify:
11400 		/*
11401 		 * let's check if the goodies are still present
11402 		 */
11403 		SFMMU_HASH_LOCK(hmebp);
11404 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11405 		if (newhblkp != NULL) {
11406 			/*
11407 			 * return newhblkp if it's not hblk_reserve;
11408 			 * if newhblkp is hblk_reserve, return it
11409 			 * _only if_ we are the owner of hblk_reserve.
11410 			 */
11411 			if (newhblkp != HBLK_RESERVE || owner) {
11412 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11413 				    newhblkp->hblk_shared);
11414 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11415 				    !newhblkp->hblk_shared);
11416 				return (newhblkp);
11417 			} else {
11418 				/*
11419 				 * we just hit hblk_reserve in the hash and
11420 				 * we are not the owner of that;
11421 				 *
11422 				 * block until hblk_reserve_thread completes
11423 				 * swapping hblk_reserve and try the dance
11424 				 * once again.
11425 				 */
11426 				SFMMU_HASH_UNLOCK(hmebp);
11427 				mutex_enter(&hblk_reserve_lock);
11428 				mutex_exit(&hblk_reserve_lock);
11429 				SFMMU_STAT(sf_hblk_reserve_hit);
11430 				goto fill_hblk;
11431 			}
11432 		} else {
11433 			/*
11434 			 * it's no more! try the dance once again.
11435 			 */
11436 			SFMMU_HASH_UNLOCK(hmebp);
11437 			goto fill_hblk;
11438 		}
11439 	}
11440 
11441 hblk_init:
11442 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11443 		uint16_t tteflag = 0x1 <<
11444 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11445 
11446 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11447 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11448 		}
11449 		hmeblkp->hblk_shared = 1;
11450 	} else {
11451 		hmeblkp->hblk_shared = 0;
11452 	}
11453 	set_hblk_sz(hmeblkp, size);
11454 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11455 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11456 	hmeblkp->hblk_tag = hblktag;
11457 	hmeblkp->hblk_shadow = shw_hblkp;
11458 	hblkpa = hmeblkp->hblk_nextpa;
11459 	hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11460 
11461 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11462 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11463 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11464 	ASSERT(hmeblkp->hblk_vcnt == 0);
11465 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11466 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11467 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11468 	return (hmeblkp);
11469 }
11470 
11471 /*
11472  * This function cleans up the hme_blk and returns it to the free list.
11473  */
11474 /* ARGSUSED */
11475 static void
11476 sfmmu_hblk_free(struct hme_blk **listp)
11477 {
11478 	struct hme_blk *hmeblkp, *next_hmeblkp;
11479 	int		size;
11480 	uint_t		critical;
11481 	uint64_t	hblkpa;
11482 
11483 	ASSERT(*listp != NULL);
11484 
11485 	hmeblkp = *listp;
11486 	while (hmeblkp != NULL) {
11487 		next_hmeblkp = hmeblkp->hblk_next;
11488 		ASSERT(!hmeblkp->hblk_hmecnt);
11489 		ASSERT(!hmeblkp->hblk_vcnt);
11490 		ASSERT(!hmeblkp->hblk_lckcnt);
11491 		ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11492 		ASSERT(hmeblkp->hblk_shared == 0);
11493 		ASSERT(hmeblkp->hblk_shw_bit == 0);
11494 		ASSERT(hmeblkp->hblk_shadow == NULL);
11495 
11496 		hblkpa = va_to_pa((caddr_t)hmeblkp);
11497 		ASSERT(hblkpa != (uint64_t)-1);
11498 		critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11499 
11500 		size = get_hblk_ttesz(hmeblkp);
11501 		hmeblkp->hblk_next = NULL;
11502 		hmeblkp->hblk_nextpa = hblkpa;
11503 
11504 		if (hmeblkp->hblk_nuc_bit == 0) {
11505 
11506 			if (size != TTE8K ||
11507 			    !sfmmu_put_free_hblk(hmeblkp, critical))
11508 				kmem_cache_free(get_hblk_cache(hmeblkp),
11509 				    hmeblkp);
11510 		}
11511 		hmeblkp = next_hmeblkp;
11512 	}
11513 }
11514 
11515 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11516 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11517 
11518 static uint_t sfmmu_hblk_steal_twice;
11519 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11520 
11521 /*
11522  * Steal a hmeblk from user or kernel hme hash lists.
11523  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11524  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11525  * tap into critical reserve of freehblkp.
11526  * Note: We remain looping in this routine until we find one.
11527  */
11528 static struct hme_blk *
11529 sfmmu_hblk_steal(int size)
11530 {
11531 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11532 	struct hmehash_bucket *hmebp;
11533 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11534 	uint64_t hblkpa;
11535 	int i;
11536 	uint_t loop_cnt = 0, critical;
11537 
11538 	for (;;) {
11539 		/* Check cpu hblk pending queues */
11540 		if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11541 			hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11542 			ASSERT(hmeblkp->hblk_hmecnt == 0);
11543 			ASSERT(hmeblkp->hblk_vcnt == 0);
11544 			return (hmeblkp);
11545 		}
11546 
11547 		if (size == TTE8K) {
11548 			critical =
11549 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11550 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11551 				return (hmeblkp);
11552 		}
11553 
11554 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11555 		    uhmehash_steal_hand;
11556 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11557 
11558 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11559 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11560 			SFMMU_HASH_LOCK(hmebp);
11561 			hmeblkp = hmebp->hmeblkp;
11562 			hblkpa = hmebp->hmeh_nextpa;
11563 			pr_hblk = NULL;
11564 			while (hmeblkp) {
11565 				/*
11566 				 * check if it is a hmeblk that is not locked
11567 				 * and not shared. skip shadow hmeblks with
11568 				 * shadow_mask set i.e valid count non zero.
11569 				 */
11570 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11571 				    (hmeblkp->hblk_shw_bit == 0 ||
11572 				    hmeblkp->hblk_vcnt == 0) &&
11573 				    (hmeblkp->hblk_lckcnt == 0)) {
11574 					/*
11575 					 * there is a high probability that we
11576 					 * will find a free one. search some
11577 					 * buckets for a free hmeblk initially
11578 					 * before unloading a valid hmeblk.
11579 					 */
11580 					if ((hmeblkp->hblk_vcnt == 0 &&
11581 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11582 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11583 						if (sfmmu_steal_this_hblk(hmebp,
11584 						    hmeblkp, hblkpa, pr_hblk)) {
11585 							/*
11586 							 * Hblk is unloaded
11587 							 * successfully
11588 							 */
11589 							break;
11590 						}
11591 					}
11592 				}
11593 				pr_hblk = hmeblkp;
11594 				hblkpa = hmeblkp->hblk_nextpa;
11595 				hmeblkp = hmeblkp->hblk_next;
11596 			}
11597 
11598 			SFMMU_HASH_UNLOCK(hmebp);
11599 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11600 				hmebp = uhme_hash;
11601 		}
11602 		uhmehash_steal_hand = hmebp;
11603 
11604 		if (hmeblkp != NULL)
11605 			break;
11606 
11607 		/*
11608 		 * in the worst case, look for a free one in the kernel
11609 		 * hash table.
11610 		 */
11611 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11612 			SFMMU_HASH_LOCK(hmebp);
11613 			hmeblkp = hmebp->hmeblkp;
11614 			hblkpa = hmebp->hmeh_nextpa;
11615 			pr_hblk = NULL;
11616 			while (hmeblkp) {
11617 				/*
11618 				 * check if it is free hmeblk
11619 				 */
11620 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11621 				    (hmeblkp->hblk_lckcnt == 0) &&
11622 				    (hmeblkp->hblk_vcnt == 0) &&
11623 				    (hmeblkp->hblk_hmecnt == 0)) {
11624 					if (sfmmu_steal_this_hblk(hmebp,
11625 					    hmeblkp, hblkpa, pr_hblk)) {
11626 						break;
11627 					} else {
11628 						/*
11629 						 * Cannot fail since we have
11630 						 * hash lock.
11631 						 */
11632 						panic("fail to steal?");
11633 					}
11634 				}
11635 
11636 				pr_hblk = hmeblkp;
11637 				hblkpa = hmeblkp->hblk_nextpa;
11638 				hmeblkp = hmeblkp->hblk_next;
11639 			}
11640 
11641 			SFMMU_HASH_UNLOCK(hmebp);
11642 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11643 				hmebp = khme_hash;
11644 		}
11645 
11646 		if (hmeblkp != NULL)
11647 			break;
11648 		sfmmu_hblk_steal_twice++;
11649 	}
11650 	return (hmeblkp);
11651 }
11652 
11653 /*
11654  * This routine does real work to prepare a hblk to be "stolen" by
11655  * unloading the mappings, updating shadow counts ....
11656  * It returns 1 if the block is ready to be reused (stolen), or 0
11657  * means the block cannot be stolen yet- pageunload is still working
11658  * on this hblk.
11659  */
11660 static int
11661 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11662 	uint64_t hblkpa, struct hme_blk *pr_hblk)
11663 {
11664 	int shw_size, vshift;
11665 	struct hme_blk *shw_hblkp;
11666 	caddr_t vaddr;
11667 	uint_t shw_mask, newshw_mask;
11668 	struct hme_blk *list = NULL;
11669 
11670 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11671 
11672 	/*
11673 	 * check if the hmeblk is free, unload if necessary
11674 	 */
11675 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11676 		sfmmu_t *sfmmup;
11677 		demap_range_t dmr;
11678 
11679 		sfmmup = hblktosfmmu(hmeblkp);
11680 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11681 			return (0);
11682 		}
11683 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11684 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11685 		    (caddr_t)get_hblk_base(hmeblkp),
11686 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11687 		DEMAP_RANGE_FLUSH(&dmr);
11688 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11689 			/*
11690 			 * Pageunload is working on the same hblk.
11691 			 */
11692 			return (0);
11693 		}
11694 
11695 		sfmmu_hblk_steal_unload_count++;
11696 	}
11697 
11698 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11699 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11700 
11701 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11702 	hmeblkp->hblk_nextpa = hblkpa;
11703 
11704 	shw_hblkp = hmeblkp->hblk_shadow;
11705 	if (shw_hblkp) {
11706 		ASSERT(!hmeblkp->hblk_shared);
11707 		shw_size = get_hblk_ttesz(shw_hblkp);
11708 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11709 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11710 		ASSERT(vshift < 8);
11711 		/*
11712 		 * Atomically clear shadow mask bit
11713 		 */
11714 		do {
11715 			shw_mask = shw_hblkp->hblk_shw_mask;
11716 			ASSERT(shw_mask & (1 << vshift));
11717 			newshw_mask = shw_mask & ~(1 << vshift);
11718 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11719 			    shw_mask, newshw_mask);
11720 		} while (newshw_mask != shw_mask);
11721 		hmeblkp->hblk_shadow = NULL;
11722 	}
11723 
11724 	/*
11725 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11726 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11727 	 * we are indeed allocating a shadow hmeblk.
11728 	 */
11729 	hmeblkp->hblk_shw_bit = 0;
11730 
11731 	if (hmeblkp->hblk_shared) {
11732 		sf_srd_t	*srdp;
11733 		sf_region_t	*rgnp;
11734 		uint_t		rid;
11735 
11736 		srdp = hblktosrd(hmeblkp);
11737 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11738 		rid = hmeblkp->hblk_tag.htag_rid;
11739 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11740 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11741 		rgnp = srdp->srd_hmergnp[rid];
11742 		ASSERT(rgnp != NULL);
11743 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11744 		hmeblkp->hblk_shared = 0;
11745 	}
11746 
11747 	sfmmu_hblk_steal_count++;
11748 	SFMMU_STAT(sf_steal_count);
11749 
11750 	return (1);
11751 }
11752 
11753 struct hme_blk *
11754 sfmmu_hmetohblk(struct sf_hment *sfhme)
11755 {
11756 	struct hme_blk *hmeblkp;
11757 	struct sf_hment *sfhme0;
11758 	struct hme_blk *hblk_dummy = 0;
11759 
11760 	/*
11761 	 * No dummy sf_hments, please.
11762 	 */
11763 	ASSERT(sfhme->hme_tte.ll != 0);
11764 
11765 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11766 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11767 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11768 
11769 	return (hmeblkp);
11770 }
11771 
11772 /*
11773  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11774  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11775  * KM_SLEEP allocation.
11776  *
11777  * Return 0 on success, -1 otherwise.
11778  */
11779 static void
11780 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11781 {
11782 	struct tsb_info *tsbinfop, *next;
11783 	tsb_replace_rc_t rc;
11784 	boolean_t gotfirst = B_FALSE;
11785 
11786 	ASSERT(sfmmup != ksfmmup);
11787 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11788 
11789 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11790 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11791 	}
11792 
11793 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11794 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11795 	} else {
11796 		return;
11797 	}
11798 
11799 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11800 
11801 	/*
11802 	 * Loop over all tsbinfo's replacing them with ones that actually have
11803 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11804 	 */
11805 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11806 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11807 		next = tsbinfop->tsb_next;
11808 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11809 		    hatlockp, TSB_SWAPIN);
11810 		if (rc != TSB_SUCCESS) {
11811 			break;
11812 		}
11813 		gotfirst = B_TRUE;
11814 	}
11815 
11816 	switch (rc) {
11817 	case TSB_SUCCESS:
11818 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11819 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11820 		return;
11821 	case TSB_LOSTRACE:
11822 		break;
11823 	case TSB_ALLOCFAIL:
11824 		break;
11825 	default:
11826 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11827 		    "%d", rc);
11828 	}
11829 
11830 	/*
11831 	 * In this case, we failed to get one of our TSBs.  If we failed to
11832 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11833 	 * and throw away the tsbinfos, starting where the allocation failed;
11834 	 * we can get by with just one TSB as long as we don't leave the
11835 	 * SWAPPED tsbinfo structures lying around.
11836 	 */
11837 	tsbinfop = sfmmup->sfmmu_tsb;
11838 	next = tsbinfop->tsb_next;
11839 	tsbinfop->tsb_next = NULL;
11840 
11841 	sfmmu_hat_exit(hatlockp);
11842 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11843 		next = tsbinfop->tsb_next;
11844 		sfmmu_tsbinfo_free(tsbinfop);
11845 	}
11846 	hatlockp = sfmmu_hat_enter(sfmmup);
11847 
11848 	/*
11849 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11850 	 * pages.
11851 	 */
11852 	if (!gotfirst) {
11853 		tsbinfop = sfmmup->sfmmu_tsb;
11854 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11855 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11856 		ASSERT(rc == TSB_SUCCESS);
11857 	}
11858 
11859 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11860 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11861 }
11862 
11863 static int
11864 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11865 {
11866 	ulong_t bix = 0;
11867 	uint_t rid;
11868 	sf_region_t *rgnp;
11869 
11870 	ASSERT(srdp != NULL);
11871 	ASSERT(srdp->srd_refcnt != 0);
11872 
11873 	w <<= BT_ULSHIFT;
11874 	while (bmw) {
11875 		if (!(bmw & 0x1)) {
11876 			bix++;
11877 			bmw >>= 1;
11878 			continue;
11879 		}
11880 		rid = w | bix;
11881 		rgnp = srdp->srd_hmergnp[rid];
11882 		ASSERT(rgnp->rgn_refcnt > 0);
11883 		ASSERT(rgnp->rgn_id == rid);
11884 		if (addr < rgnp->rgn_saddr ||
11885 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11886 			bix++;
11887 			bmw >>= 1;
11888 		} else {
11889 			return (1);
11890 		}
11891 	}
11892 	return (0);
11893 }
11894 
11895 /*
11896  * Handle exceptions for low level tsb_handler.
11897  *
11898  * There are many scenarios that could land us here:
11899  *
11900  * If the context is invalid we land here. The context can be invalid
11901  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11902  * perform a wrap around operation in order to allocate a new context.
11903  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11904  * TSBs configuration is changeing for this process and we are forced into
11905  * here to do a syncronization operation. If the context is valid we can
11906  * be here from window trap hanlder. In this case just call trap to handle
11907  * the fault.
11908  *
11909  * Note that the process will run in INVALID_CONTEXT before
11910  * faulting into here and subsequently loading the MMU registers
11911  * (including the TSB base register) associated with this process.
11912  * For this reason, the trap handlers must all test for
11913  * INVALID_CONTEXT before attempting to access any registers other
11914  * than the context registers.
11915  */
11916 void
11917 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11918 {
11919 	sfmmu_t *sfmmup, *shsfmmup;
11920 	uint_t ctxtype;
11921 	klwp_id_t lwp;
11922 	char lwp_save_state;
11923 	hatlock_t *hatlockp, *shatlockp;
11924 	struct tsb_info *tsbinfop;
11925 	struct tsbmiss *tsbmp;
11926 	sf_scd_t *scdp;
11927 
11928 	SFMMU_STAT(sf_tsb_exceptions);
11929 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11930 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11931 	/*
11932 	 * note that in sun4u, tagacces register contains ctxnum
11933 	 * while sun4v passes ctxtype in the tagaccess register.
11934 	 */
11935 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11936 
11937 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11938 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11939 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11940 	    ctxtype == INVALID_CONTEXT);
11941 
11942 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11943 		/*
11944 		 * We may land here because shme bitmap and pagesize
11945 		 * flags are updated lazily in tsbmiss area on other cpus.
11946 		 * If we detect here that tsbmiss area is out of sync with
11947 		 * sfmmu update it and retry the trapped instruction.
11948 		 * Otherwise call trap().
11949 		 */
11950 		int ret = 0;
11951 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11952 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11953 
11954 		/*
11955 		 * Must set lwp state to LWP_SYS before
11956 		 * trying to acquire any adaptive lock
11957 		 */
11958 		lwp = ttolwp(curthread);
11959 		ASSERT(lwp);
11960 		lwp_save_state = lwp->lwp_state;
11961 		lwp->lwp_state = LWP_SYS;
11962 
11963 		hatlockp = sfmmu_hat_enter(sfmmup);
11964 		kpreempt_disable();
11965 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11966 		ASSERT(sfmmup == tsbmp->usfmmup);
11967 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11968 		    ~tteflag_mask) ||
11969 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11970 		    ~tteflag_mask)) {
11971 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11972 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11973 			ret = 1;
11974 		}
11975 		if (sfmmup->sfmmu_srdp != NULL) {
11976 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11977 			ulong_t *tm = tsbmp->shmermap;
11978 			ulong_t i;
11979 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11980 				ulong_t d = tm[i] ^ sm[i];
11981 				if (d) {
11982 					if (d & sm[i]) {
11983 						if (!ret && sfmmu_is_rgnva(
11984 						    sfmmup->sfmmu_srdp,
11985 						    addr, i, d & sm[i])) {
11986 							ret = 1;
11987 						}
11988 					}
11989 					tm[i] = sm[i];
11990 				}
11991 			}
11992 		}
11993 		kpreempt_enable();
11994 		sfmmu_hat_exit(hatlockp);
11995 		lwp->lwp_state = lwp_save_state;
11996 		if (ret) {
11997 			return;
11998 		}
11999 	} else if (ctxtype == INVALID_CONTEXT) {
12000 		/*
12001 		 * First, make sure we come out of here with a valid ctx,
12002 		 * since if we don't get one we'll simply loop on the
12003 		 * faulting instruction.
12004 		 *
12005 		 * If the ISM mappings are changing, the TSB is relocated,
12006 		 * the process is swapped, the process is joining SCD or
12007 		 * leaving SCD or shared regions we serialize behind the
12008 		 * controlling thread with hat lock, sfmmu_flags and
12009 		 * sfmmu_tsb_cv condition variable.
12010 		 */
12011 
12012 		/*
12013 		 * Must set lwp state to LWP_SYS before
12014 		 * trying to acquire any adaptive lock
12015 		 */
12016 		lwp = ttolwp(curthread);
12017 		ASSERT(lwp);
12018 		lwp_save_state = lwp->lwp_state;
12019 		lwp->lwp_state = LWP_SYS;
12020 
12021 		hatlockp = sfmmu_hat_enter(sfmmup);
12022 retry:
12023 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
12024 			shsfmmup = scdp->scd_sfmmup;
12025 			ASSERT(shsfmmup != NULL);
12026 
12027 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
12028 			    tsbinfop = tsbinfop->tsb_next) {
12029 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12030 					/* drop the private hat lock */
12031 					sfmmu_hat_exit(hatlockp);
12032 					/* acquire the shared hat lock */
12033 					shatlockp = sfmmu_hat_enter(shsfmmup);
12034 					/*
12035 					 * recheck to see if anything changed
12036 					 * after we drop the private hat lock.
12037 					 */
12038 					if (sfmmup->sfmmu_scdp == scdp &&
12039 					    shsfmmup == scdp->scd_sfmmup) {
12040 						sfmmu_tsb_chk_reloc(shsfmmup,
12041 						    shatlockp);
12042 					}
12043 					sfmmu_hat_exit(shatlockp);
12044 					hatlockp = sfmmu_hat_enter(sfmmup);
12045 					goto retry;
12046 				}
12047 			}
12048 		}
12049 
12050 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
12051 		    tsbinfop = tsbinfop->tsb_next) {
12052 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12053 				cv_wait(&sfmmup->sfmmu_tsb_cv,
12054 				    HATLOCK_MUTEXP(hatlockp));
12055 				goto retry;
12056 			}
12057 		}
12058 
12059 		/*
12060 		 * Wait for ISM maps to be updated.
12061 		 */
12062 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12063 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12064 			    HATLOCK_MUTEXP(hatlockp));
12065 			goto retry;
12066 		}
12067 
12068 		/* Is this process joining an SCD? */
12069 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12070 			/*
12071 			 * Flush private TSB and setup shared TSB.
12072 			 * sfmmu_finish_join_scd() does not drop the
12073 			 * hat lock.
12074 			 */
12075 			sfmmu_finish_join_scd(sfmmup);
12076 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
12077 		}
12078 
12079 		/*
12080 		 * If we're swapping in, get TSB(s).  Note that we must do
12081 		 * this before we get a ctx or load the MMU state.  Once
12082 		 * we swap in we have to recheck to make sure the TSB(s) and
12083 		 * ISM mappings didn't change while we slept.
12084 		 */
12085 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
12086 			sfmmu_tsb_swapin(sfmmup, hatlockp);
12087 			goto retry;
12088 		}
12089 
12090 		sfmmu_get_ctx(sfmmup);
12091 
12092 		sfmmu_hat_exit(hatlockp);
12093 		/*
12094 		 * Must restore lwp_state if not calling
12095 		 * trap() for further processing. Restore
12096 		 * it anyway.
12097 		 */
12098 		lwp->lwp_state = lwp_save_state;
12099 		return;
12100 	}
12101 	trap(rp, (caddr_t)tagaccess, traptype, 0);
12102 }
12103 
12104 static void
12105 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
12106 {
12107 	struct tsb_info *tp;
12108 
12109 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12110 
12111 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
12112 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
12113 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12114 			    HATLOCK_MUTEXP(hatlockp));
12115 			break;
12116 		}
12117 	}
12118 }
12119 
12120 /*
12121  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
12122  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
12123  * rather than spinning to avoid send mondo timeouts with
12124  * interrupts enabled. When the lock is acquired it is immediately
12125  * released and we return back to sfmmu_vatopfn just after
12126  * the GET_TTE call.
12127  */
12128 void
12129 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
12130 {
12131 	struct page	**pp;
12132 
12133 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12134 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12135 }
12136 
12137 /*
12138  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12139  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12140  * cross traps which cannot be handled while spinning in the
12141  * trap handlers. Simply enter and exit the kpr_suspendlock spin
12142  * mutex, which is held by the holder of the suspend bit, and then
12143  * retry the trapped instruction after unwinding.
12144  */
12145 /*ARGSUSED*/
12146 void
12147 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12148 {
12149 	ASSERT(curthread != kreloc_thread);
12150 	mutex_enter(&kpr_suspendlock);
12151 	mutex_exit(&kpr_suspendlock);
12152 }
12153 
12154 /*
12155  * This routine could be optimized to reduce the number of xcalls by flushing
12156  * the entire TLBs if region reference count is above some threshold but the
12157  * tradeoff will depend on the size of the TLB. So for now flush the specific
12158  * page a context at a time.
12159  *
12160  * If uselocks is 0 then it's called after all cpus were captured and all the
12161  * hat locks were taken. In this case don't take the region lock by relying on
12162  * the order of list region update operations in hat_join_region(),
12163  * hat_leave_region() and hat_dup_region(). The ordering in those routines
12164  * guarantees that list is always forward walkable and reaches active sfmmus
12165  * regardless of where xc_attention() captures a cpu.
12166  */
12167 cpuset_t
12168 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12169     struct hme_blk *hmeblkp, int uselocks)
12170 {
12171 	sfmmu_t	*sfmmup;
12172 	cpuset_t cpuset;
12173 	cpuset_t rcpuset;
12174 	hatlock_t *hatlockp;
12175 	uint_t rid = rgnp->rgn_id;
12176 	sf_rgn_link_t *rlink;
12177 	sf_scd_t *scdp;
12178 
12179 	ASSERT(hmeblkp->hblk_shared);
12180 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12181 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12182 
12183 	CPUSET_ZERO(rcpuset);
12184 	if (uselocks) {
12185 		mutex_enter(&rgnp->rgn_mutex);
12186 	}
12187 	sfmmup = rgnp->rgn_sfmmu_head;
12188 	while (sfmmup != NULL) {
12189 		if (uselocks) {
12190 			hatlockp = sfmmu_hat_enter(sfmmup);
12191 		}
12192 
12193 		/*
12194 		 * When an SCD is created the SCD hat is linked on the sfmmu
12195 		 * region lists for each hme region which is part of the
12196 		 * SCD. If we find an SCD hat, when walking these lists,
12197 		 * then we flush the shared TSBs, if we find a private hat,
12198 		 * which is part of an SCD, but where the region
12199 		 * is not part of the SCD then we flush the private TSBs.
12200 		 *
12201 		 * If the Rock page size register is present, then SCDs
12202 		 * may contain both shared and private pages, so we cannot
12203 		 * use this optimization to avoid flushing private TSBs.
12204 		 */
12205 		if (pgsz_search_on == 0 &&
12206 		    !sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12207 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12208 			scdp = sfmmup->sfmmu_scdp;
12209 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12210 				if (uselocks) {
12211 					sfmmu_hat_exit(hatlockp);
12212 				}
12213 				goto next;
12214 			}
12215 		}
12216 
12217 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12218 
12219 		kpreempt_disable();
12220 		cpuset = sfmmup->sfmmu_cpusran;
12221 		CPUSET_AND(cpuset, cpu_ready_set);
12222 		CPUSET_DEL(cpuset, CPU->cpu_id);
12223 		SFMMU_XCALL_STATS(sfmmup);
12224 		xt_some(cpuset, vtag_flushpage_tl1,
12225 		    (uint64_t)addr, (uint64_t)sfmmup);
12226 		vtag_flushpage(addr, (uint64_t)sfmmup);
12227 		if (uselocks) {
12228 			sfmmu_hat_exit(hatlockp);
12229 		}
12230 		kpreempt_enable();
12231 		CPUSET_OR(rcpuset, cpuset);
12232 
12233 next:
12234 		/* LINTED: constant in conditional context */
12235 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12236 		ASSERT(rlink != NULL);
12237 		sfmmup = rlink->next;
12238 	}
12239 	if (uselocks) {
12240 		mutex_exit(&rgnp->rgn_mutex);
12241 	}
12242 	return (rcpuset);
12243 }
12244 
12245 /*
12246  * This routine takes an sfmmu pointer and the va for an adddress in an
12247  * ISM region as input and returns the corresponding region id in ism_rid.
12248  * The return value of 1 indicates that a region has been found and ism_rid
12249  * is valid, otherwise 0 is returned.
12250  */
12251 static int
12252 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12253 {
12254 	ism_blk_t	*ism_blkp;
12255 	int		i;
12256 	ism_map_t	*ism_map;
12257 #ifdef DEBUG
12258 	struct hat	*ism_hatid;
12259 #endif
12260 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12261 
12262 	ism_blkp = sfmmup->sfmmu_iblk;
12263 	while (ism_blkp != NULL) {
12264 		ism_map = ism_blkp->iblk_maps;
12265 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12266 			if ((va >= ism_start(ism_map[i])) &&
12267 			    (va < ism_end(ism_map[i]))) {
12268 
12269 				*ism_rid = ism_map[i].imap_rid;
12270 #ifdef DEBUG
12271 				ism_hatid = ism_map[i].imap_ismhat;
12272 				ASSERT(ism_hatid == ism_sfmmup);
12273 				ASSERT(ism_hatid->sfmmu_ismhat);
12274 #endif
12275 				return (1);
12276 			}
12277 		}
12278 		ism_blkp = ism_blkp->iblk_next;
12279 	}
12280 	return (0);
12281 }
12282 
12283 /*
12284  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12285  * This routine may be called with all cpu's captured. Therefore, the
12286  * caller is responsible for holding all locks and disabling kernel
12287  * preemption.
12288  */
12289 /* ARGSUSED */
12290 static void
12291 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12292 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12293 {
12294 	cpuset_t 	cpuset;
12295 	caddr_t 	va;
12296 	ism_ment_t	*ment;
12297 	sfmmu_t		*sfmmup;
12298 #ifdef VAC
12299 	int 		vcolor;
12300 #endif
12301 
12302 	sf_scd_t	*scdp;
12303 	uint_t		ism_rid;
12304 
12305 	ASSERT(!hmeblkp->hblk_shared);
12306 	/*
12307 	 * Walk the ism_hat's mapping list and flush the page
12308 	 * from every hat sharing this ism_hat. This routine
12309 	 * may be called while all cpu's have been captured.
12310 	 * Therefore we can't attempt to grab any locks. For now
12311 	 * this means we will protect the ism mapping list under
12312 	 * a single lock which will be grabbed by the caller.
12313 	 * If hat_share/unshare scalibility becomes a performance
12314 	 * problem then we may need to re-think ism mapping list locking.
12315 	 */
12316 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12317 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12318 	addr = addr - ISMID_STARTADDR;
12319 
12320 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12321 
12322 		sfmmup = ment->iment_hat;
12323 
12324 		va = ment->iment_base_va;
12325 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12326 
12327 		/*
12328 		 * When an SCD is created the SCD hat is linked on the ism
12329 		 * mapping lists for each ISM segment which is part of the
12330 		 * SCD. If we find an SCD hat, when walking these lists,
12331 		 * then we flush the shared TSBs, if we find a private hat,
12332 		 * which is part of an SCD, but where the region
12333 		 * corresponding to this va is not part of the SCD then we
12334 		 * flush the private TSBs.
12335 		 *
12336 		 * If the Rock page size register is present, then SCDs
12337 		 * may contain both shared and private pages, so we cannot
12338 		 * use this optimization to avoid flushing private TSBs.
12339 		 */
12340 		if (pgsz_search_on == 0 &&
12341 		    !sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12342 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12343 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12344 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12345 			    &ism_rid)) {
12346 				cmn_err(CE_PANIC,
12347 				    "can't find matching ISM rid!");
12348 			}
12349 
12350 			scdp = sfmmup->sfmmu_scdp;
12351 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12352 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12353 			    ism_rid)) {
12354 				continue;
12355 			}
12356 		}
12357 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12358 
12359 		cpuset = sfmmup->sfmmu_cpusran;
12360 		CPUSET_AND(cpuset, cpu_ready_set);
12361 		CPUSET_DEL(cpuset, CPU->cpu_id);
12362 		SFMMU_XCALL_STATS(sfmmup);
12363 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12364 		    (uint64_t)sfmmup);
12365 		vtag_flushpage(va, (uint64_t)sfmmup);
12366 
12367 #ifdef VAC
12368 		/*
12369 		 * Flush D$
12370 		 * When flushing D$ we must flush all
12371 		 * cpu's. See sfmmu_cache_flush().
12372 		 */
12373 		if (cache_flush_flag == CACHE_FLUSH) {
12374 			cpuset = cpu_ready_set;
12375 			CPUSET_DEL(cpuset, CPU->cpu_id);
12376 
12377 			SFMMU_XCALL_STATS(sfmmup);
12378 			vcolor = addr_to_vcolor(va);
12379 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12380 			vac_flushpage(pfnum, vcolor);
12381 		}
12382 #endif	/* VAC */
12383 	}
12384 }
12385 
12386 /*
12387  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12388  * a particular virtual address and ctx.  If noflush is set we do not
12389  * flush the TLB/TSB.  This function may or may not be called with the
12390  * HAT lock held.
12391  */
12392 static void
12393 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12394 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12395 	int hat_lock_held)
12396 {
12397 #ifdef VAC
12398 	int vcolor;
12399 #endif
12400 	cpuset_t cpuset;
12401 	hatlock_t *hatlockp;
12402 
12403 	ASSERT(!hmeblkp->hblk_shared);
12404 
12405 #if defined(lint) && !defined(VAC)
12406 	pfnum = pfnum;
12407 	cpu_flag = cpu_flag;
12408 	cache_flush_flag = cache_flush_flag;
12409 #endif
12410 
12411 	/*
12412 	 * There is no longer a need to protect against ctx being
12413 	 * stolen here since we don't store the ctx in the TSB anymore.
12414 	 */
12415 #ifdef VAC
12416 	vcolor = addr_to_vcolor(addr);
12417 #endif
12418 
12419 	/*
12420 	 * We must hold the hat lock during the flush of TLB,
12421 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12422 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12423 	 * causing TLB demap routine to skip flush on that MMU.
12424 	 * If the context on a MMU has already been set to
12425 	 * INVALID_CONTEXT, we just get an extra flush on
12426 	 * that MMU.
12427 	 */
12428 	if (!hat_lock_held && !tlb_noflush)
12429 		hatlockp = sfmmu_hat_enter(sfmmup);
12430 
12431 	kpreempt_disable();
12432 	if (!tlb_noflush) {
12433 		/*
12434 		 * Flush the TSB and TLB.
12435 		 */
12436 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12437 
12438 		cpuset = sfmmup->sfmmu_cpusran;
12439 		CPUSET_AND(cpuset, cpu_ready_set);
12440 		CPUSET_DEL(cpuset, CPU->cpu_id);
12441 
12442 		SFMMU_XCALL_STATS(sfmmup);
12443 
12444 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12445 		    (uint64_t)sfmmup);
12446 
12447 		vtag_flushpage(addr, (uint64_t)sfmmup);
12448 	}
12449 
12450 	if (!hat_lock_held && !tlb_noflush)
12451 		sfmmu_hat_exit(hatlockp);
12452 
12453 #ifdef VAC
12454 	/*
12455 	 * Flush the D$
12456 	 *
12457 	 * Even if the ctx is stolen, we need to flush the
12458 	 * cache. Our ctx stealer only flushes the TLBs.
12459 	 */
12460 	if (cache_flush_flag == CACHE_FLUSH) {
12461 		if (cpu_flag & FLUSH_ALL_CPUS) {
12462 			cpuset = cpu_ready_set;
12463 		} else {
12464 			cpuset = sfmmup->sfmmu_cpusran;
12465 			CPUSET_AND(cpuset, cpu_ready_set);
12466 		}
12467 		CPUSET_DEL(cpuset, CPU->cpu_id);
12468 		SFMMU_XCALL_STATS(sfmmup);
12469 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12470 		vac_flushpage(pfnum, vcolor);
12471 	}
12472 #endif	/* VAC */
12473 	kpreempt_enable();
12474 }
12475 
12476 /*
12477  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12478  * address and ctx.  If noflush is set we do not currently do anything.
12479  * This function may or may not be called with the HAT lock held.
12480  */
12481 static void
12482 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12483 	int tlb_noflush, int hat_lock_held)
12484 {
12485 	cpuset_t cpuset;
12486 	hatlock_t *hatlockp;
12487 
12488 	ASSERT(!hmeblkp->hblk_shared);
12489 
12490 	/*
12491 	 * If the process is exiting we have nothing to do.
12492 	 */
12493 	if (tlb_noflush)
12494 		return;
12495 
12496 	/*
12497 	 * Flush TSB.
12498 	 */
12499 	if (!hat_lock_held)
12500 		hatlockp = sfmmu_hat_enter(sfmmup);
12501 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12502 
12503 	kpreempt_disable();
12504 
12505 	cpuset = sfmmup->sfmmu_cpusran;
12506 	CPUSET_AND(cpuset, cpu_ready_set);
12507 	CPUSET_DEL(cpuset, CPU->cpu_id);
12508 
12509 	SFMMU_XCALL_STATS(sfmmup);
12510 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12511 
12512 	vtag_flushpage(addr, (uint64_t)sfmmup);
12513 
12514 	if (!hat_lock_held)
12515 		sfmmu_hat_exit(hatlockp);
12516 
12517 	kpreempt_enable();
12518 
12519 }
12520 
12521 /*
12522  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12523  * call handler that can flush a range of pages to save on xcalls.
12524  */
12525 static int sfmmu_xcall_save;
12526 
12527 /*
12528  * this routine is never used for demaping addresses backed by SRD hmeblks.
12529  */
12530 static void
12531 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12532 {
12533 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12534 	hatlock_t *hatlockp;
12535 	cpuset_t cpuset;
12536 	uint64_t sfmmu_pgcnt;
12537 	pgcnt_t pgcnt = 0;
12538 	int pgunload = 0;
12539 	int dirtypg = 0;
12540 	caddr_t addr = dmrp->dmr_addr;
12541 	caddr_t eaddr;
12542 	uint64_t bitvec = dmrp->dmr_bitvec;
12543 
12544 	ASSERT(bitvec & 1);
12545 
12546 	/*
12547 	 * Flush TSB and calculate number of pages to flush.
12548 	 */
12549 	while (bitvec != 0) {
12550 		dirtypg = 0;
12551 		/*
12552 		 * Find the first page to flush and then count how many
12553 		 * pages there are after it that also need to be flushed.
12554 		 * This way the number of TSB flushes is minimized.
12555 		 */
12556 		while ((bitvec & 1) == 0) {
12557 			pgcnt++;
12558 			addr += MMU_PAGESIZE;
12559 			bitvec >>= 1;
12560 		}
12561 		while (bitvec & 1) {
12562 			dirtypg++;
12563 			bitvec >>= 1;
12564 		}
12565 		eaddr = addr + ptob(dirtypg);
12566 		hatlockp = sfmmu_hat_enter(sfmmup);
12567 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12568 		sfmmu_hat_exit(hatlockp);
12569 		pgunload += dirtypg;
12570 		addr = eaddr;
12571 		pgcnt += dirtypg;
12572 	}
12573 
12574 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12575 	if (sfmmup->sfmmu_free == 0) {
12576 		addr = dmrp->dmr_addr;
12577 		bitvec = dmrp->dmr_bitvec;
12578 
12579 		/*
12580 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12581 		 * as it will be used to pack argument for xt_some
12582 		 */
12583 		ASSERT((pgcnt > 0) &&
12584 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12585 
12586 		/*
12587 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12588 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12589 		 * always >= 1.
12590 		 */
12591 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12592 		sfmmu_pgcnt = (uint64_t)sfmmup |
12593 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12594 
12595 		/*
12596 		 * We must hold the hat lock during the flush of TLB,
12597 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12598 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12599 		 * causing TLB demap routine to skip flush on that MMU.
12600 		 * If the context on a MMU has already been set to
12601 		 * INVALID_CONTEXT, we just get an extra flush on
12602 		 * that MMU.
12603 		 */
12604 		hatlockp = sfmmu_hat_enter(sfmmup);
12605 		kpreempt_disable();
12606 
12607 		cpuset = sfmmup->sfmmu_cpusran;
12608 		CPUSET_AND(cpuset, cpu_ready_set);
12609 		CPUSET_DEL(cpuset, CPU->cpu_id);
12610 
12611 		SFMMU_XCALL_STATS(sfmmup);
12612 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12613 		    sfmmu_pgcnt);
12614 
12615 		for (; bitvec != 0; bitvec >>= 1) {
12616 			if (bitvec & 1)
12617 				vtag_flushpage(addr, (uint64_t)sfmmup);
12618 			addr += MMU_PAGESIZE;
12619 		}
12620 		kpreempt_enable();
12621 		sfmmu_hat_exit(hatlockp);
12622 
12623 		sfmmu_xcall_save += (pgunload-1);
12624 	}
12625 	dmrp->dmr_bitvec = 0;
12626 }
12627 
12628 /*
12629  * In cases where we need to synchronize with TLB/TSB miss trap
12630  * handlers, _and_ need to flush the TLB, it's a lot easier to
12631  * throw away the context from the process than to do a
12632  * special song and dance to keep things consistent for the
12633  * handlers.
12634  *
12635  * Since the process suddenly ends up without a context and our caller
12636  * holds the hat lock, threads that fault after this function is called
12637  * will pile up on the lock.  We can then do whatever we need to
12638  * atomically from the context of the caller.  The first blocked thread
12639  * to resume executing will get the process a new context, and the
12640  * process will resume executing.
12641  *
12642  * One added advantage of this approach is that on MMUs that
12643  * support a "flush all" operation, we will delay the flush until
12644  * cnum wrap-around, and then flush the TLB one time.  This
12645  * is rather rare, so it's a lot less expensive than making 8000
12646  * x-calls to flush the TLB 8000 times.
12647  *
12648  * A per-process (PP) lock is used to synchronize ctx allocations in
12649  * resume() and ctx invalidations here.
12650  */
12651 void
12652 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12653 {
12654 	cpuset_t cpuset;
12655 	int cnum, currcnum;
12656 	mmu_ctx_t *mmu_ctxp;
12657 	int i;
12658 	uint_t pstate_save;
12659 
12660 	SFMMU_STAT(sf_ctx_inv);
12661 
12662 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12663 	ASSERT(sfmmup != ksfmmup);
12664 
12665 	kpreempt_disable();
12666 
12667 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12668 	ASSERT(mmu_ctxp);
12669 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12670 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12671 
12672 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12673 
12674 	pstate_save = sfmmu_disable_intrs();
12675 
12676 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12677 	/* set HAT cnum invalid across all context domains. */
12678 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12679 
12680 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12681 		if (cnum == INVALID_CONTEXT) {
12682 			continue;
12683 		}
12684 
12685 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12686 	}
12687 	membar_enter();	/* make sure globally visible to all CPUs */
12688 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12689 
12690 	sfmmu_enable_intrs(pstate_save);
12691 
12692 	cpuset = sfmmup->sfmmu_cpusran;
12693 	CPUSET_DEL(cpuset, CPU->cpu_id);
12694 	CPUSET_AND(cpuset, cpu_ready_set);
12695 	if (!CPUSET_ISNULL(cpuset)) {
12696 		SFMMU_XCALL_STATS(sfmmup);
12697 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12698 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12699 		xt_sync(cpuset);
12700 		SFMMU_STAT(sf_tsb_raise_exception);
12701 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12702 	}
12703 
12704 	/*
12705 	 * If the hat to-be-invalidated is the same as the current
12706 	 * process on local CPU we need to invalidate
12707 	 * this CPU context as well.
12708 	 */
12709 	if ((sfmmu_getctx_sec() == currcnum) &&
12710 	    (currcnum != INVALID_CONTEXT)) {
12711 		/* sets shared context to INVALID too */
12712 		sfmmu_setctx_sec(INVALID_CONTEXT);
12713 		sfmmu_clear_utsbinfo();
12714 	}
12715 
12716 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12717 
12718 	kpreempt_enable();
12719 
12720 	/*
12721 	 * we hold the hat lock, so nobody should allocate a context
12722 	 * for us yet
12723 	 */
12724 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12725 }
12726 
12727 #ifdef VAC
12728 /*
12729  * We need to flush the cache in all cpus.  It is possible that
12730  * a process referenced a page as cacheable but has sinced exited
12731  * and cleared the mapping list.  We still to flush it but have no
12732  * state so all cpus is the only alternative.
12733  */
12734 void
12735 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12736 {
12737 	cpuset_t cpuset;
12738 
12739 	kpreempt_disable();
12740 	cpuset = cpu_ready_set;
12741 	CPUSET_DEL(cpuset, CPU->cpu_id);
12742 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12743 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12744 	xt_sync(cpuset);
12745 	vac_flushpage(pfnum, vcolor);
12746 	kpreempt_enable();
12747 }
12748 
12749 void
12750 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12751 {
12752 	cpuset_t cpuset;
12753 
12754 	ASSERT(vcolor >= 0);
12755 
12756 	kpreempt_disable();
12757 	cpuset = cpu_ready_set;
12758 	CPUSET_DEL(cpuset, CPU->cpu_id);
12759 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12760 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12761 	xt_sync(cpuset);
12762 	vac_flushcolor(vcolor, pfnum);
12763 	kpreempt_enable();
12764 }
12765 #endif	/* VAC */
12766 
12767 /*
12768  * We need to prevent processes from accessing the TSB using a cached physical
12769  * address.  It's alright if they try to access the TSB via virtual address
12770  * since they will just fault on that virtual address once the mapping has
12771  * been suspended.
12772  */
12773 #pragma weak sendmondo_in_recover
12774 
12775 /* ARGSUSED */
12776 static int
12777 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12778 {
12779 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12780 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12781 	hatlock_t *hatlockp;
12782 	sf_scd_t *scdp;
12783 
12784 	if (flags != HAT_PRESUSPEND)
12785 		return (0);
12786 
12787 	/*
12788 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12789 	 * be a shared hat, then set SCD's tsbinfo's flag.
12790 	 * If tsb is not shared, sfmmup is a private hat, then set
12791 	 * its private tsbinfo's flag.
12792 	 */
12793 	hatlockp = sfmmu_hat_enter(sfmmup);
12794 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12795 
12796 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12797 		sfmmu_tsb_inv_ctx(sfmmup);
12798 		sfmmu_hat_exit(hatlockp);
12799 	} else {
12800 		/* release lock on the shared hat */
12801 		sfmmu_hat_exit(hatlockp);
12802 		/* sfmmup is a shared hat */
12803 		ASSERT(sfmmup->sfmmu_scdhat);
12804 		scdp = sfmmup->sfmmu_scdp;
12805 		ASSERT(scdp != NULL);
12806 		/* get private hat from the scd list */
12807 		mutex_enter(&scdp->scd_mutex);
12808 		sfmmup = scdp->scd_sf_list;
12809 		while (sfmmup != NULL) {
12810 			hatlockp = sfmmu_hat_enter(sfmmup);
12811 			/*
12812 			 * We do not call sfmmu_tsb_inv_ctx here because
12813 			 * sendmondo_in_recover check is only needed for
12814 			 * sun4u.
12815 			 */
12816 			sfmmu_invalidate_ctx(sfmmup);
12817 			sfmmu_hat_exit(hatlockp);
12818 			sfmmup = sfmmup->sfmmu_scd_link.next;
12819 
12820 		}
12821 		mutex_exit(&scdp->scd_mutex);
12822 	}
12823 	return (0);
12824 }
12825 
12826 static void
12827 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12828 {
12829 	extern uint32_t sendmondo_in_recover;
12830 
12831 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12832 
12833 	/*
12834 	 * For Cheetah+ Erratum 25:
12835 	 * Wait for any active recovery to finish.  We can't risk
12836 	 * relocating the TSB of the thread running mondo_recover_proc()
12837 	 * since, if we did that, we would deadlock.  The scenario we are
12838 	 * trying to avoid is as follows:
12839 	 *
12840 	 * THIS CPU			RECOVER CPU
12841 	 * --------			-----------
12842 	 *				Begins recovery, walking through TSB
12843 	 * hat_pagesuspend() TSB TTE
12844 	 *				TLB miss on TSB TTE, spins at TL1
12845 	 * xt_sync()
12846 	 *	send_mondo_timeout()
12847 	 *	mondo_recover_proc()
12848 	 *	((deadlocked))
12849 	 *
12850 	 * The second half of the workaround is that mondo_recover_proc()
12851 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12852 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12853 	 * and hence avoiding the TLB miss that could result in a deadlock.
12854 	 */
12855 	if (&sendmondo_in_recover) {
12856 		membar_enter();	/* make sure RELOC flag visible */
12857 		while (sendmondo_in_recover) {
12858 			drv_usecwait(1);
12859 			membar_consumer();
12860 		}
12861 	}
12862 
12863 	sfmmu_invalidate_ctx(sfmmup);
12864 }
12865 
12866 /* ARGSUSED */
12867 static int
12868 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12869 	void *tsbinfo, pfn_t newpfn)
12870 {
12871 	hatlock_t *hatlockp;
12872 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12873 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12874 
12875 	if (flags != HAT_POSTUNSUSPEND)
12876 		return (0);
12877 
12878 	hatlockp = sfmmu_hat_enter(sfmmup);
12879 
12880 	SFMMU_STAT(sf_tsb_reloc);
12881 
12882 	/*
12883 	 * The process may have swapped out while we were relocating one
12884 	 * of its TSBs.  If so, don't bother doing the setup since the
12885 	 * process can't be using the memory anymore.
12886 	 */
12887 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12888 		ASSERT(va == tsbinfop->tsb_va);
12889 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12890 
12891 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12892 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12893 			    TSB_BYTES(tsbinfop->tsb_szc));
12894 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12895 		}
12896 	}
12897 
12898 	membar_exit();
12899 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12900 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12901 
12902 	sfmmu_hat_exit(hatlockp);
12903 
12904 	return (0);
12905 }
12906 
12907 /*
12908  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12909  * allocate a TSB here, depending on the flags passed in.
12910  */
12911 static int
12912 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12913 	uint_t flags, sfmmu_t *sfmmup)
12914 {
12915 	int err;
12916 
12917 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12918 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12919 
12920 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12921 	    tsb_szc, flags, sfmmup)) != 0) {
12922 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12923 		SFMMU_STAT(sf_tsb_allocfail);
12924 		*tsbinfopp = NULL;
12925 		return (err);
12926 	}
12927 	SFMMU_STAT(sf_tsb_alloc);
12928 
12929 	/*
12930 	 * Bump the TSB size counters for this TSB size.
12931 	 */
12932 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12933 	return (0);
12934 }
12935 
12936 static void
12937 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12938 {
12939 	caddr_t tsbva = tsbinfo->tsb_va;
12940 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12941 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12942 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12943 
12944 	/*
12945 	 * If we allocated this TSB from relocatable kernel memory, then we
12946 	 * need to uninstall the callback handler.
12947 	 */
12948 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12949 		uintptr_t slab_mask;
12950 		caddr_t slab_vaddr;
12951 		page_t **ppl;
12952 		int ret;
12953 
12954 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12955 		if (tsb_size > MMU_PAGESIZE4M)
12956 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12957 		else
12958 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12959 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12960 
12961 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12962 		ASSERT(ret == 0);
12963 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12964 		    0, NULL);
12965 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12966 	}
12967 
12968 	if (kmem_cachep != NULL) {
12969 		kmem_cache_free(kmem_cachep, tsbva);
12970 	} else {
12971 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12972 	}
12973 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12974 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12975 }
12976 
12977 static void
12978 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12979 {
12980 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12981 		sfmmu_tsb_free(tsbinfo);
12982 	}
12983 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12984 
12985 }
12986 
12987 /*
12988  * Setup all the references to physical memory for this tsbinfo.
12989  * The underlying page(s) must be locked.
12990  */
12991 static void
12992 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12993 {
12994 	ASSERT(pfn != PFN_INVALID);
12995 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12996 
12997 #ifndef sun4v
12998 	if (tsbinfo->tsb_szc == 0) {
12999 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
13000 		    PROT_WRITE|PROT_READ, TTE8K);
13001 	} else {
13002 		/*
13003 		 * Round down PA and use a large mapping; the handlers will
13004 		 * compute the TSB pointer at the correct offset into the
13005 		 * big virtual page.  NOTE: this assumes all TSBs larger
13006 		 * than 8K must come from physically contiguous slabs of
13007 		 * size tsb_slab_size.
13008 		 */
13009 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
13010 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
13011 	}
13012 	tsbinfo->tsb_pa = ptob(pfn);
13013 
13014 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
13015 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
13016 
13017 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
13018 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
13019 #else /* sun4v */
13020 	tsbinfo->tsb_pa = ptob(pfn);
13021 #endif /* sun4v */
13022 }
13023 
13024 
13025 /*
13026  * Returns zero on success, ENOMEM if over the high water mark,
13027  * or EAGAIN if the caller needs to retry with a smaller TSB
13028  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
13029  *
13030  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
13031  * is specified and the TSB requested is PAGESIZE, though it
13032  * may sleep waiting for memory if sufficient memory is not
13033  * available.
13034  */
13035 static int
13036 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
13037     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
13038 {
13039 	caddr_t vaddr = NULL;
13040 	caddr_t slab_vaddr;
13041 	uintptr_t slab_mask;
13042 	int tsbbytes = TSB_BYTES(tsbcode);
13043 	int lowmem = 0;
13044 	struct kmem_cache *kmem_cachep = NULL;
13045 	vmem_t *vmp = NULL;
13046 	lgrp_id_t lgrpid = LGRP_NONE;
13047 	pfn_t pfn;
13048 	uint_t cbflags = HAC_SLEEP;
13049 	page_t **pplist;
13050 	int ret;
13051 
13052 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
13053 	if (tsbbytes > MMU_PAGESIZE4M)
13054 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
13055 	else
13056 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
13057 
13058 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
13059 		flags |= TSB_ALLOC;
13060 
13061 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
13062 
13063 	tsbinfo->tsb_sfmmu = sfmmup;
13064 
13065 	/*
13066 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
13067 	 * return.
13068 	 */
13069 	if ((flags & TSB_ALLOC) == 0) {
13070 		tsbinfo->tsb_szc = tsbcode;
13071 		tsbinfo->tsb_ttesz_mask = tteszmask;
13072 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
13073 		tsbinfo->tsb_pa = -1;
13074 		tsbinfo->tsb_tte.ll = 0;
13075 		tsbinfo->tsb_next = NULL;
13076 		tsbinfo->tsb_flags = TSB_SWAPPED;
13077 		tsbinfo->tsb_cache = NULL;
13078 		tsbinfo->tsb_vmp = NULL;
13079 		return (0);
13080 	}
13081 
13082 #ifdef DEBUG
13083 	/*
13084 	 * For debugging:
13085 	 * Randomly force allocation failures every tsb_alloc_mtbf
13086 	 * tries if TSB_FORCEALLOC is not specified.  This will
13087 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
13088 	 * it is even, to allow testing of both failure paths...
13089 	 */
13090 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
13091 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
13092 		tsb_alloc_count = 0;
13093 		tsb_alloc_fail_mtbf++;
13094 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
13095 	}
13096 #endif	/* DEBUG */
13097 
13098 	/*
13099 	 * Enforce high water mark if we are not doing a forced allocation
13100 	 * and are not shrinking a process' TSB.
13101 	 */
13102 	if ((flags & TSB_SHRINK) == 0 &&
13103 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
13104 		if ((flags & TSB_FORCEALLOC) == 0)
13105 			return (ENOMEM);
13106 		lowmem = 1;
13107 	}
13108 
13109 	/*
13110 	 * Allocate from the correct location based upon the size of the TSB
13111 	 * compared to the base page size, and what memory conditions dictate.
13112 	 * Note we always do nonblocking allocations from the TSB arena since
13113 	 * we don't want memory fragmentation to cause processes to block
13114 	 * indefinitely waiting for memory; until the kernel algorithms that
13115 	 * coalesce large pages are improved this is our best option.
13116 	 *
13117 	 * Algorithm:
13118 	 *	If allocating a "large" TSB (>8K), allocate from the
13119 	 *		appropriate kmem_tsb_default_arena vmem arena
13120 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
13121 	 *	tsb_forceheap is set
13122 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
13123 	 *		KM_SLEEP (never fails)
13124 	 *	else
13125 	 *		Allocate from appropriate sfmmu_tsb_cache with
13126 	 *		KM_NOSLEEP
13127 	 *	endif
13128 	 */
13129 	if (tsb_lgrp_affinity)
13130 		lgrpid = lgrp_home_id(curthread);
13131 	if (lgrpid == LGRP_NONE)
13132 		lgrpid = 0;	/* use lgrp of boot CPU */
13133 
13134 	if (tsbbytes > MMU_PAGESIZE) {
13135 		if (tsbbytes > MMU_PAGESIZE4M) {
13136 			vmp = kmem_bigtsb_default_arena[lgrpid];
13137 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13138 			    0, 0, NULL, NULL, VM_NOSLEEP);
13139 		} else {
13140 			vmp = kmem_tsb_default_arena[lgrpid];
13141 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13142 			    0, 0, NULL, NULL, VM_NOSLEEP);
13143 		}
13144 #ifdef	DEBUG
13145 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13146 #else	/* !DEBUG */
13147 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
13148 #endif	/* DEBUG */
13149 		kmem_cachep = sfmmu_tsb8k_cache;
13150 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13151 		ASSERT(vaddr != NULL);
13152 	} else {
13153 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
13154 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13155 	}
13156 
13157 	tsbinfo->tsb_cache = kmem_cachep;
13158 	tsbinfo->tsb_vmp = vmp;
13159 
13160 	if (vaddr == NULL) {
13161 		return (EAGAIN);
13162 	}
13163 
13164 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13165 	kmem_cachep = tsbinfo->tsb_cache;
13166 
13167 	/*
13168 	 * If we are allocating from outside the cage, then we need to
13169 	 * register a relocation callback handler.  Note that for now
13170 	 * since pseudo mappings always hang off of the slab's root page,
13171 	 * we need only lock the first 8K of the TSB slab.  This is a bit
13172 	 * hacky but it is good for performance.
13173 	 */
13174 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13175 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13176 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13177 		ASSERT(ret == 0);
13178 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13179 		    cbflags, (void *)tsbinfo, &pfn, NULL);
13180 
13181 		/*
13182 		 * Need to free up resources if we could not successfully
13183 		 * add the callback function and return an error condition.
13184 		 */
13185 		if (ret != 0) {
13186 			if (kmem_cachep) {
13187 				kmem_cache_free(kmem_cachep, vaddr);
13188 			} else {
13189 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13190 			}
13191 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13192 			    S_WRITE);
13193 			return (EAGAIN);
13194 		}
13195 	} else {
13196 		/*
13197 		 * Since allocation of 8K TSBs from heap is rare and occurs
13198 		 * during memory pressure we allocate them from permanent
13199 		 * memory rather than using callbacks to get the PFN.
13200 		 */
13201 		pfn = hat_getpfnum(kas.a_hat, vaddr);
13202 	}
13203 
13204 	tsbinfo->tsb_va = vaddr;
13205 	tsbinfo->tsb_szc = tsbcode;
13206 	tsbinfo->tsb_ttesz_mask = tteszmask;
13207 	tsbinfo->tsb_next = NULL;
13208 	tsbinfo->tsb_flags = 0;
13209 
13210 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13211 
13212 	sfmmu_inv_tsb(vaddr, tsbbytes);
13213 
13214 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13215 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13216 	}
13217 
13218 	return (0);
13219 }
13220 
13221 /*
13222  * Initialize per cpu tsb and per cpu tsbmiss_area
13223  */
13224 void
13225 sfmmu_init_tsbs(void)
13226 {
13227 	int i;
13228 	struct tsbmiss	*tsbmissp;
13229 	struct kpmtsbm	*kpmtsbmp;
13230 #ifndef sun4v
13231 	extern int	dcache_line_mask;
13232 #endif /* sun4v */
13233 	extern uint_t	vac_colors;
13234 
13235 	/*
13236 	 * Init. tsb miss area.
13237 	 */
13238 	tsbmissp = tsbmiss_area;
13239 
13240 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13241 		/*
13242 		 * initialize the tsbmiss area.
13243 		 * Do this for all possible CPUs as some may be added
13244 		 * while the system is running. There is no cost to this.
13245 		 */
13246 		tsbmissp->ksfmmup = ksfmmup;
13247 #ifndef sun4v
13248 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13249 #endif /* sun4v */
13250 		tsbmissp->khashstart =
13251 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13252 		tsbmissp->uhashstart =
13253 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13254 		tsbmissp->khashsz = khmehash_num;
13255 		tsbmissp->uhashsz = uhmehash_num;
13256 	}
13257 
13258 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13259 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13260 
13261 	if (kpm_enable == 0)
13262 		return;
13263 
13264 	/* -- Begin KPM specific init -- */
13265 
13266 	if (kpm_smallpages) {
13267 		/*
13268 		 * If we're using base pagesize pages for seg_kpm
13269 		 * mappings, we use the kernel TSB since we can't afford
13270 		 * to allocate a second huge TSB for these mappings.
13271 		 */
13272 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13273 		kpm_tsbsz = ktsb_szcode;
13274 		kpmsm_tsbbase = kpm_tsbbase;
13275 		kpmsm_tsbsz = kpm_tsbsz;
13276 	} else {
13277 		/*
13278 		 * In VAC conflict case, just put the entries in the
13279 		 * kernel 8K indexed TSB for now so we can find them.
13280 		 * This could really be changed in the future if we feel
13281 		 * the need...
13282 		 */
13283 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13284 		kpmsm_tsbsz = ktsb_szcode;
13285 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13286 		kpm_tsbsz = ktsb4m_szcode;
13287 	}
13288 
13289 	kpmtsbmp = kpmtsbm_area;
13290 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13291 		/*
13292 		 * Initialize the kpmtsbm area.
13293 		 * Do this for all possible CPUs as some may be added
13294 		 * while the system is running. There is no cost to this.
13295 		 */
13296 		kpmtsbmp->vbase = kpm_vbase;
13297 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13298 		kpmtsbmp->sz_shift = kpm_size_shift;
13299 		kpmtsbmp->kpmp_shift = kpmp_shift;
13300 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13301 		if (kpm_smallpages == 0) {
13302 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13303 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13304 		} else {
13305 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13306 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13307 		}
13308 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13309 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13310 #ifdef	DEBUG
13311 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13312 #endif	/* DEBUG */
13313 		if (ktsb_phys)
13314 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13315 	}
13316 
13317 	/* -- End KPM specific init -- */
13318 }
13319 
13320 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13321 struct tsb_info ktsb_info[2];
13322 
13323 /*
13324  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13325  */
13326 void
13327 sfmmu_init_ktsbinfo()
13328 {
13329 	ASSERT(ksfmmup != NULL);
13330 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13331 	/*
13332 	 * Allocate tsbinfos for kernel and copy in data
13333 	 * to make debug easier and sun4v setup easier.
13334 	 */
13335 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13336 	ktsb_info[0].tsb_szc = ktsb_szcode;
13337 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13338 	ktsb_info[0].tsb_va = ktsb_base;
13339 	ktsb_info[0].tsb_pa = ktsb_pbase;
13340 	ktsb_info[0].tsb_flags = 0;
13341 	ktsb_info[0].tsb_tte.ll = 0;
13342 	ktsb_info[0].tsb_cache = NULL;
13343 
13344 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13345 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13346 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13347 	ktsb_info[1].tsb_va = ktsb4m_base;
13348 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13349 	ktsb_info[1].tsb_flags = 0;
13350 	ktsb_info[1].tsb_tte.ll = 0;
13351 	ktsb_info[1].tsb_cache = NULL;
13352 
13353 	/* Link them into ksfmmup. */
13354 	ktsb_info[0].tsb_next = &ktsb_info[1];
13355 	ktsb_info[1].tsb_next = NULL;
13356 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13357 
13358 	sfmmu_setup_tsbinfo(ksfmmup);
13359 }
13360 
13361 /*
13362  * Cache the last value returned from va_to_pa().  If the VA specified
13363  * in the current call to cached_va_to_pa() maps to the same Page (as the
13364  * previous call to cached_va_to_pa()), then compute the PA using
13365  * cached info, else call va_to_pa().
13366  *
13367  * Note: this function is neither MT-safe nor consistent in the presence
13368  * of multiple, interleaved threads.  This function was created to enable
13369  * an optimization used during boot (at a point when there's only one thread
13370  * executing on the "boot CPU", and before startup_vm() has been called).
13371  */
13372 static uint64_t
13373 cached_va_to_pa(void *vaddr)
13374 {
13375 	static uint64_t prev_vaddr_base = 0;
13376 	static uint64_t prev_pfn = 0;
13377 
13378 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13379 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13380 	} else {
13381 		uint64_t pa = va_to_pa(vaddr);
13382 
13383 		if (pa != ((uint64_t)-1)) {
13384 			/*
13385 			 * Computed physical address is valid.  Cache its
13386 			 * related info for the next cached_va_to_pa() call.
13387 			 */
13388 			prev_pfn = pa & MMU_PAGEMASK;
13389 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13390 		}
13391 
13392 		return (pa);
13393 	}
13394 }
13395 
13396 /*
13397  * Carve up our nucleus hblk region.  We may allocate more hblks than
13398  * asked due to rounding errors but we are guaranteed to have at least
13399  * enough space to allocate the requested number of hblk8's and hblk1's.
13400  */
13401 void
13402 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13403 {
13404 	struct hme_blk *hmeblkp;
13405 	size_t hme8blk_sz, hme1blk_sz;
13406 	size_t i;
13407 	size_t hblk8_bound;
13408 	ulong_t j = 0, k = 0;
13409 
13410 	ASSERT(addr != NULL && size != 0);
13411 
13412 	/* Need to use proper structure alignment */
13413 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13414 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13415 
13416 	nucleus_hblk8.list = (void *)addr;
13417 	nucleus_hblk8.index = 0;
13418 
13419 	/*
13420 	 * Use as much memory as possible for hblk8's since we
13421 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13422 	 * We need to hold back enough space for the hblk1's which
13423 	 * we'll allocate next.
13424 	 */
13425 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13426 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13427 		hmeblkp = (struct hme_blk *)addr;
13428 		addr += hme8blk_sz;
13429 		hmeblkp->hblk_nuc_bit = 1;
13430 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13431 	}
13432 	nucleus_hblk8.len = j;
13433 	ASSERT(j >= nhblk8);
13434 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13435 
13436 	nucleus_hblk1.list = (void *)addr;
13437 	nucleus_hblk1.index = 0;
13438 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13439 		hmeblkp = (struct hme_blk *)addr;
13440 		addr += hme1blk_sz;
13441 		hmeblkp->hblk_nuc_bit = 1;
13442 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13443 	}
13444 	ASSERT(k >= nhblk1);
13445 	nucleus_hblk1.len = k;
13446 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13447 }
13448 
13449 /*
13450  * This function is currently not supported on this platform. For what
13451  * it's supposed to do, see hat.c and hat_srmmu.c
13452  */
13453 /* ARGSUSED */
13454 faultcode_t
13455 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13456     uint_t flags)
13457 {
13458 	ASSERT(hat->sfmmu_xhat_provider == NULL);
13459 	return (FC_NOSUPPORT);
13460 }
13461 
13462 /*
13463  * Searchs the mapping list of the page for a mapping of the same size. If not
13464  * found the corresponding bit is cleared in the p_index field. When large
13465  * pages are more prevalent in the system, we can maintain the mapping list
13466  * in order and we don't have to traverse the list each time. Just check the
13467  * next and prev entries, and if both are of different size, we clear the bit.
13468  */
13469 static void
13470 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13471 {
13472 	struct sf_hment *sfhmep;
13473 	struct hme_blk *hmeblkp;
13474 	int	index;
13475 	pgcnt_t	npgs;
13476 
13477 	ASSERT(ttesz > TTE8K);
13478 
13479 	ASSERT(sfmmu_mlist_held(pp));
13480 
13481 	ASSERT(PP_ISMAPPED_LARGE(pp));
13482 
13483 	/*
13484 	 * Traverse mapping list looking for another mapping of same size.
13485 	 * since we only want to clear index field if all mappings of
13486 	 * that size are gone.
13487 	 */
13488 
13489 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13490 		if (IS_PAHME(sfhmep))
13491 			continue;
13492 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13493 		if (hmeblkp->hblk_xhat_bit)
13494 			continue;
13495 		if (hme_size(sfhmep) == ttesz) {
13496 			/*
13497 			 * another mapping of the same size. don't clear index.
13498 			 */
13499 			return;
13500 		}
13501 	}
13502 
13503 	/*
13504 	 * Clear the p_index bit for large page.
13505 	 */
13506 	index = PAGESZ_TO_INDEX(ttesz);
13507 	npgs = TTEPAGES(ttesz);
13508 	while (npgs-- > 0) {
13509 		ASSERT(pp->p_index & index);
13510 		pp->p_index &= ~index;
13511 		pp = PP_PAGENEXT(pp);
13512 	}
13513 }
13514 
13515 /*
13516  * return supported features
13517  */
13518 /* ARGSUSED */
13519 int
13520 hat_supported(enum hat_features feature, void *arg)
13521 {
13522 	switch (feature) {
13523 	case    HAT_SHARED_PT:
13524 	case	HAT_DYNAMIC_ISM_UNMAP:
13525 	case	HAT_VMODSORT:
13526 		return (1);
13527 	case	HAT_SHARED_REGIONS:
13528 		if (shctx_on)
13529 			return (1);
13530 		else
13531 			return (0);
13532 	default:
13533 		return (0);
13534 	}
13535 }
13536 
13537 void
13538 hat_enter(struct hat *hat)
13539 {
13540 	hatlock_t	*hatlockp;
13541 
13542 	if (hat != ksfmmup) {
13543 		hatlockp = TSB_HASH(hat);
13544 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13545 	}
13546 }
13547 
13548 void
13549 hat_exit(struct hat *hat)
13550 {
13551 	hatlock_t	*hatlockp;
13552 
13553 	if (hat != ksfmmup) {
13554 		hatlockp = TSB_HASH(hat);
13555 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13556 	}
13557 }
13558 
13559 /*ARGSUSED*/
13560 void
13561 hat_reserve(struct as *as, caddr_t addr, size_t len)
13562 {
13563 }
13564 
13565 static void
13566 hat_kstat_init(void)
13567 {
13568 	kstat_t *ksp;
13569 
13570 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13571 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13572 	    KSTAT_FLAG_VIRTUAL);
13573 	if (ksp) {
13574 		ksp->ks_data = (void *) &sfmmu_global_stat;
13575 		kstat_install(ksp);
13576 	}
13577 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13578 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13579 	    KSTAT_FLAG_VIRTUAL);
13580 	if (ksp) {
13581 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13582 		kstat_install(ksp);
13583 	}
13584 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13585 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13586 	    KSTAT_FLAG_WRITABLE);
13587 	if (ksp) {
13588 		ksp->ks_update = sfmmu_kstat_percpu_update;
13589 		kstat_install(ksp);
13590 	}
13591 }
13592 
13593 /* ARGSUSED */
13594 static int
13595 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13596 {
13597 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13598 	struct tsbmiss *tsbm = tsbmiss_area;
13599 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13600 	int i;
13601 
13602 	ASSERT(cpu_kstat);
13603 	if (rw == KSTAT_READ) {
13604 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13605 			cpu_kstat->sf_itlb_misses = 0;
13606 			cpu_kstat->sf_dtlb_misses = 0;
13607 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13608 			    tsbm->uprot_traps;
13609 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13610 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13611 			cpu_kstat->sf_tsb_hits = 0;
13612 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13613 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13614 		}
13615 	} else {
13616 		/* KSTAT_WRITE is used to clear stats */
13617 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13618 			tsbm->utsb_misses = 0;
13619 			tsbm->ktsb_misses = 0;
13620 			tsbm->uprot_traps = 0;
13621 			tsbm->kprot_traps = 0;
13622 			kpmtsbm->kpm_dtlb_misses = 0;
13623 			kpmtsbm->kpm_tsb_misses = 0;
13624 		}
13625 	}
13626 	return (0);
13627 }
13628 
13629 #ifdef	DEBUG
13630 
13631 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13632 
13633 /*
13634  * A tte checker. *orig_old is the value we read before cas.
13635  *	*cur is the value returned by cas.
13636  *	*new is the desired value when we do the cas.
13637  *
13638  *	*hmeblkp is currently unused.
13639  */
13640 
13641 /* ARGSUSED */
13642 void
13643 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13644 {
13645 	pfn_t i, j, k;
13646 	int cpuid = CPU->cpu_id;
13647 
13648 	gorig[cpuid] = orig_old;
13649 	gcur[cpuid] = cur;
13650 	gnew[cpuid] = new;
13651 
13652 #ifdef lint
13653 	hmeblkp = hmeblkp;
13654 #endif
13655 
13656 	if (TTE_IS_VALID(orig_old)) {
13657 		if (TTE_IS_VALID(cur)) {
13658 			i = TTE_TO_TTEPFN(orig_old);
13659 			j = TTE_TO_TTEPFN(cur);
13660 			k = TTE_TO_TTEPFN(new);
13661 			if (i != j) {
13662 				/* remap error? */
13663 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13664 			}
13665 
13666 			if (i != k) {
13667 				/* remap error? */
13668 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13669 			}
13670 		} else {
13671 			if (TTE_IS_VALID(new)) {
13672 				panic("chk_tte: invalid cur? ");
13673 			}
13674 
13675 			i = TTE_TO_TTEPFN(orig_old);
13676 			k = TTE_TO_TTEPFN(new);
13677 			if (i != k) {
13678 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13679 			}
13680 		}
13681 	} else {
13682 		if (TTE_IS_VALID(cur)) {
13683 			j = TTE_TO_TTEPFN(cur);
13684 			if (TTE_IS_VALID(new)) {
13685 				k = TTE_TO_TTEPFN(new);
13686 				if (j != k) {
13687 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13688 					    j, k);
13689 				}
13690 			} else {
13691 				panic("chk_tte: why here?");
13692 			}
13693 		} else {
13694 			if (!TTE_IS_VALID(new)) {
13695 				panic("chk_tte: why here2 ?");
13696 			}
13697 		}
13698 	}
13699 }
13700 
13701 #endif /* DEBUG */
13702 
13703 extern void prefetch_tsbe_read(struct tsbe *);
13704 extern void prefetch_tsbe_write(struct tsbe *);
13705 
13706 
13707 /*
13708  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13709  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13710  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13711  * prefetch to make the most utilization of the prefetch capability.
13712  */
13713 #define	TSBE_PREFETCH_STRIDE (7)
13714 
13715 void
13716 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13717 {
13718 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13719 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13720 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13721 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13722 	struct tsbe *old;
13723 	struct tsbe *new;
13724 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13725 	uint64_t va;
13726 	int new_offset;
13727 	int i;
13728 	int vpshift;
13729 	int last_prefetch;
13730 
13731 	if (old_bytes == new_bytes) {
13732 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13733 	} else {
13734 
13735 		/*
13736 		 * A TSBE is 16 bytes which means there are four TSBE's per
13737 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13738 		 */
13739 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13740 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13741 		for (i = 0; i < old_entries; i++, old++) {
13742 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13743 				prefetch_tsbe_read(old);
13744 			if (!old->tte_tag.tag_invalid) {
13745 				/*
13746 				 * We have a valid TTE to remap.  Check the
13747 				 * size.  We won't remap 64K or 512K TTEs
13748 				 * because they span more than one TSB entry
13749 				 * and are indexed using an 8K virt. page.
13750 				 * Ditto for 32M and 256M TTEs.
13751 				 */
13752 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13753 				    TTE_CSZ(&old->tte_data) == TTE512K)
13754 					continue;
13755 				if (mmu_page_sizes == max_mmu_page_sizes) {
13756 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13757 					    TTE_CSZ(&old->tte_data) == TTE256M)
13758 						continue;
13759 				}
13760 
13761 				/* clear the lower 22 bits of the va */
13762 				va = *(uint64_t *)old << 22;
13763 				/* turn va into a virtual pfn */
13764 				va >>= 22 - TSB_START_SIZE;
13765 				/*
13766 				 * or in bits from the offset in the tsb
13767 				 * to get the real virtual pfn. These
13768 				 * correspond to bits [21:13] in the va
13769 				 */
13770 				vpshift =
13771 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13772 				    0x1ff;
13773 				va |= (i << vpshift);
13774 				va >>= vpshift;
13775 				new_offset = va & (new_entries - 1);
13776 				new = new_base + new_offset;
13777 				prefetch_tsbe_write(new);
13778 				*new = *old;
13779 			}
13780 		}
13781 	}
13782 }
13783 
13784 /*
13785  * unused in sfmmu
13786  */
13787 void
13788 hat_dump(void)
13789 {
13790 }
13791 
13792 /*
13793  * Called when a thread is exiting and we have switched to the kernel address
13794  * space.  Perform the same VM initialization resume() uses when switching
13795  * processes.
13796  *
13797  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13798  * we call it anyway in case the semantics change in the future.
13799  */
13800 /*ARGSUSED*/
13801 void
13802 hat_thread_exit(kthread_t *thd)
13803 {
13804 	uint_t pgsz_cnum;
13805 	uint_t pstate_save;
13806 
13807 	ASSERT(thd->t_procp->p_as == &kas);
13808 
13809 	pgsz_cnum = KCONTEXT;
13810 #ifdef sun4u
13811 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13812 #endif
13813 
13814 	/*
13815 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13816 	 * kernel threads. We need to disable interrupts here,
13817 	 * simply because otherwise sfmmu_load_mmustate() would panic
13818 	 * if the caller does not disable interrupts.
13819 	 */
13820 	pstate_save = sfmmu_disable_intrs();
13821 
13822 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13823 	sfmmu_setctx_sec(pgsz_cnum);
13824 	sfmmu_load_mmustate(ksfmmup);
13825 	sfmmu_enable_intrs(pstate_save);
13826 }
13827 
13828 
13829 /*
13830  * SRD support
13831  */
13832 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13833 				    (((uintptr_t)(vp)) >> 11)) & \
13834 				    srd_hashmask)
13835 
13836 /*
13837  * Attach the process to the srd struct associated with the exec vnode
13838  * from which the process is started.
13839  */
13840 void
13841 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13842 {
13843 	uint_t hash = SRD_HASH_FUNCTION(evp);
13844 	sf_srd_t *srdp;
13845 	sf_srd_t *newsrdp;
13846 
13847 	ASSERT(sfmmup != ksfmmup);
13848 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13849 
13850 	if (!shctx_on) {
13851 		return;
13852 	}
13853 
13854 	VN_HOLD(evp);
13855 
13856 	if (srd_buckets[hash].srdb_srdp != NULL) {
13857 		mutex_enter(&srd_buckets[hash].srdb_lock);
13858 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13859 		    srdp = srdp->srd_hash) {
13860 			if (srdp->srd_evp == evp) {
13861 				ASSERT(srdp->srd_refcnt >= 0);
13862 				sfmmup->sfmmu_srdp = srdp;
13863 				atomic_add_32(
13864 				    (volatile uint_t *)&srdp->srd_refcnt, 1);
13865 				mutex_exit(&srd_buckets[hash].srdb_lock);
13866 				return;
13867 			}
13868 		}
13869 		mutex_exit(&srd_buckets[hash].srdb_lock);
13870 	}
13871 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13872 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13873 
13874 	newsrdp->srd_evp = evp;
13875 	newsrdp->srd_refcnt = 1;
13876 	newsrdp->srd_hmergnfree = NULL;
13877 	newsrdp->srd_ismrgnfree = NULL;
13878 
13879 	mutex_enter(&srd_buckets[hash].srdb_lock);
13880 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13881 	    srdp = srdp->srd_hash) {
13882 		if (srdp->srd_evp == evp) {
13883 			ASSERT(srdp->srd_refcnt >= 0);
13884 			sfmmup->sfmmu_srdp = srdp;
13885 			atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13886 			mutex_exit(&srd_buckets[hash].srdb_lock);
13887 			kmem_cache_free(srd_cache, newsrdp);
13888 			return;
13889 		}
13890 	}
13891 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13892 	srd_buckets[hash].srdb_srdp = newsrdp;
13893 	sfmmup->sfmmu_srdp = newsrdp;
13894 
13895 	mutex_exit(&srd_buckets[hash].srdb_lock);
13896 
13897 }
13898 
13899 static void
13900 sfmmu_leave_srd(sfmmu_t *sfmmup)
13901 {
13902 	vnode_t *evp;
13903 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13904 	uint_t hash;
13905 	sf_srd_t **prev_srdpp;
13906 	sf_region_t *rgnp;
13907 	sf_region_t *nrgnp;
13908 #ifdef DEBUG
13909 	int rgns = 0;
13910 #endif
13911 	int i;
13912 
13913 	ASSERT(sfmmup != ksfmmup);
13914 	ASSERT(srdp != NULL);
13915 	ASSERT(srdp->srd_refcnt > 0);
13916 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13917 	ASSERT(sfmmup->sfmmu_free == 1);
13918 
13919 	sfmmup->sfmmu_srdp = NULL;
13920 	evp = srdp->srd_evp;
13921 	ASSERT(evp != NULL);
13922 	if (atomic_add_32_nv(
13923 	    (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13924 		VN_RELE(evp);
13925 		return;
13926 	}
13927 
13928 	hash = SRD_HASH_FUNCTION(evp);
13929 	mutex_enter(&srd_buckets[hash].srdb_lock);
13930 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13931 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13932 		if (srdp->srd_evp == evp) {
13933 			break;
13934 		}
13935 	}
13936 	if (srdp == NULL || srdp->srd_refcnt) {
13937 		mutex_exit(&srd_buckets[hash].srdb_lock);
13938 		VN_RELE(evp);
13939 		return;
13940 	}
13941 	*prev_srdpp = srdp->srd_hash;
13942 	mutex_exit(&srd_buckets[hash].srdb_lock);
13943 
13944 	ASSERT(srdp->srd_refcnt == 0);
13945 	VN_RELE(evp);
13946 
13947 #ifdef DEBUG
13948 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13949 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13950 	}
13951 #endif /* DEBUG */
13952 
13953 	/* free each hme regions in the srd */
13954 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13955 		nrgnp = rgnp->rgn_next;
13956 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13957 		ASSERT(rgnp->rgn_refcnt == 0);
13958 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13959 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13960 		ASSERT(rgnp->rgn_hmeflags == 0);
13961 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13962 #ifdef DEBUG
13963 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13964 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13965 		}
13966 		rgns++;
13967 #endif /* DEBUG */
13968 		kmem_cache_free(region_cache, rgnp);
13969 	}
13970 	ASSERT(rgns == srdp->srd_next_hmerid);
13971 
13972 #ifdef DEBUG
13973 	rgns = 0;
13974 #endif
13975 	/* free each ism rgns in the srd */
13976 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13977 		nrgnp = rgnp->rgn_next;
13978 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13979 		ASSERT(rgnp->rgn_refcnt == 0);
13980 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13981 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13982 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13983 #ifdef DEBUG
13984 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13985 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13986 		}
13987 		rgns++;
13988 #endif /* DEBUG */
13989 		kmem_cache_free(region_cache, rgnp);
13990 	}
13991 	ASSERT(rgns == srdp->srd_next_ismrid);
13992 	ASSERT(srdp->srd_ismbusyrgns == 0);
13993 	ASSERT(srdp->srd_hmebusyrgns == 0);
13994 
13995 	srdp->srd_next_ismrid = 0;
13996 	srdp->srd_next_hmerid = 0;
13997 
13998 	bzero((void *)srdp->srd_ismrgnp,
13999 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
14000 	bzero((void *)srdp->srd_hmergnp,
14001 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
14002 
14003 	ASSERT(srdp->srd_scdp == NULL);
14004 	kmem_cache_free(srd_cache, srdp);
14005 }
14006 
14007 /* ARGSUSED */
14008 static int
14009 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
14010 {
14011 	sf_srd_t *srdp = (sf_srd_t *)buf;
14012 	bzero(buf, sizeof (*srdp));
14013 
14014 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
14015 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
14016 	return (0);
14017 }
14018 
14019 /* ARGSUSED */
14020 static void
14021 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
14022 {
14023 	sf_srd_t *srdp = (sf_srd_t *)buf;
14024 
14025 	mutex_destroy(&srdp->srd_mutex);
14026 	mutex_destroy(&srdp->srd_scd_mutex);
14027 }
14028 
14029 /*
14030  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
14031  * at the same time for the same process and address range. This is ensured by
14032  * the fact that address space is locked as writer when a process joins the
14033  * regions. Therefore there's no need to hold an srd lock during the entire
14034  * execution of hat_join_region()/hat_leave_region().
14035  */
14036 
14037 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
14038 				    (((uintptr_t)(obj)) >> 11)) & \
14039 					srd_rgn_hashmask)
14040 /*
14041  * This routine implements the shared context functionality required when
14042  * attaching a segment to an address space. It must be called from
14043  * hat_share() for D(ISM) segments and from segvn_create() for segments
14044  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
14045  * which is saved in the private segment data for hme segments and
14046  * the ism_map structure for ism segments.
14047  */
14048 hat_region_cookie_t
14049 hat_join_region(struct hat *sfmmup,
14050 	caddr_t r_saddr,
14051 	size_t r_size,
14052 	void *r_obj,
14053 	u_offset_t r_objoff,
14054 	uchar_t r_perm,
14055 	uchar_t r_pgszc,
14056 	hat_rgn_cb_func_t r_cb_function,
14057 	uint_t flags)
14058 {
14059 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14060 	uint_t rhash;
14061 	uint_t rid;
14062 	hatlock_t *hatlockp;
14063 	sf_region_t *rgnp;
14064 	sf_region_t *new_rgnp = NULL;
14065 	int i;
14066 	uint16_t *nextidp;
14067 	sf_region_t **freelistp;
14068 	int maxids;
14069 	sf_region_t **rarrp;
14070 	uint16_t *busyrgnsp;
14071 	ulong_t rttecnt;
14072 	uchar_t tteflag;
14073 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14074 	int text = (r_type == HAT_REGION_TEXT);
14075 
14076 	if (srdp == NULL || r_size == 0) {
14077 		return (HAT_INVALID_REGION_COOKIE);
14078 	}
14079 
14080 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14081 	ASSERT(sfmmup != ksfmmup);
14082 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14083 	ASSERT(srdp->srd_refcnt > 0);
14084 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14085 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14086 	ASSERT(r_pgszc < mmu_page_sizes);
14087 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
14088 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
14089 		panic("hat_join_region: region addr or size is not aligned\n");
14090 	}
14091 
14092 
14093 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14094 	    SFMMU_REGION_HME;
14095 	/*
14096 	 * Currently only support shared hmes for the read only main text
14097 	 * region.
14098 	 */
14099 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
14100 	    (r_perm & PROT_WRITE))) {
14101 		return (HAT_INVALID_REGION_COOKIE);
14102 	}
14103 
14104 	rhash = RGN_HASH_FUNCTION(r_obj);
14105 
14106 	if (r_type == SFMMU_REGION_ISM) {
14107 		nextidp = &srdp->srd_next_ismrid;
14108 		freelistp = &srdp->srd_ismrgnfree;
14109 		maxids = SFMMU_MAX_ISM_REGIONS;
14110 		rarrp = srdp->srd_ismrgnp;
14111 		busyrgnsp = &srdp->srd_ismbusyrgns;
14112 	} else {
14113 		nextidp = &srdp->srd_next_hmerid;
14114 		freelistp = &srdp->srd_hmergnfree;
14115 		maxids = SFMMU_MAX_HME_REGIONS;
14116 		rarrp = srdp->srd_hmergnp;
14117 		busyrgnsp = &srdp->srd_hmebusyrgns;
14118 	}
14119 
14120 	mutex_enter(&srdp->srd_mutex);
14121 
14122 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14123 	    rgnp = rgnp->rgn_hash) {
14124 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
14125 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
14126 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
14127 			break;
14128 		}
14129 	}
14130 
14131 rfound:
14132 	if (rgnp != NULL) {
14133 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14134 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
14135 		ASSERT(rgnp->rgn_refcnt >= 0);
14136 		rid = rgnp->rgn_id;
14137 		ASSERT(rid < maxids);
14138 		ASSERT(rarrp[rid] == rgnp);
14139 		ASSERT(rid < *nextidp);
14140 		atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14141 		mutex_exit(&srdp->srd_mutex);
14142 		if (new_rgnp != NULL) {
14143 			kmem_cache_free(region_cache, new_rgnp);
14144 		}
14145 		if (r_type == SFMMU_REGION_HME) {
14146 			int myjoin =
14147 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
14148 
14149 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
14150 			/*
14151 			 * bitmap should be updated after linking sfmmu on
14152 			 * region list so that pageunload() doesn't skip
14153 			 * TSB/TLB flush. As soon as bitmap is updated another
14154 			 * thread in this process can already start accessing
14155 			 * this region.
14156 			 */
14157 			/*
14158 			 * Normally ttecnt accounting is done as part of
14159 			 * pagefault handling. But a process may not take any
14160 			 * pagefaults on shared hmeblks created by some other
14161 			 * process. To compensate for this assume that the
14162 			 * entire region will end up faulted in using
14163 			 * the region's pagesize.
14164 			 *
14165 			 */
14166 			if (r_pgszc > TTE8K) {
14167 				tteflag = 1 << r_pgszc;
14168 				if (disable_large_pages & tteflag) {
14169 					tteflag = 0;
14170 				}
14171 			} else {
14172 				tteflag = 0;
14173 			}
14174 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14175 				hatlockp = sfmmu_hat_enter(sfmmup);
14176 				sfmmup->sfmmu_rtteflags |= tteflag;
14177 				if (&mmu_set_pgsz_order) {
14178 					mmu_set_pgsz_order(sfmmup, 1);
14179 				}
14180 				sfmmu_hat_exit(hatlockp);
14181 			}
14182 			hatlockp = sfmmu_hat_enter(sfmmup);
14183 
14184 			/*
14185 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14186 			 * region to allow for large page allocation failure.
14187 			 */
14188 			if (r_pgszc >= TTE4M) {
14189 				sfmmup->sfmmu_tsb0_4minflcnt +=
14190 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14191 			}
14192 
14193 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
14194 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14195 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14196 			    rttecnt);
14197 
14198 			if (text && r_pgszc >= TTE4M &&
14199 			    (tteflag || ((disable_large_pages >> TTE4M) &
14200 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14201 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14202 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14203 			}
14204 
14205 			sfmmu_hat_exit(hatlockp);
14206 			/*
14207 			 * On Panther we need to make sure TLB is programmed
14208 			 * to accept 32M/256M pages.  Call
14209 			 * sfmmu_check_page_sizes() now to make sure TLB is
14210 			 * setup before making hmeregions visible to other
14211 			 * threads.
14212 			 */
14213 			sfmmu_check_page_sizes(sfmmup, 1);
14214 			hatlockp = sfmmu_hat_enter(sfmmup);
14215 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14216 
14217 			/*
14218 			 * if context is invalid tsb miss exception code will
14219 			 * call sfmmu_check_page_sizes() and update tsbmiss
14220 			 * area later.
14221 			 */
14222 			kpreempt_disable();
14223 			if (myjoin &&
14224 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14225 			    != INVALID_CONTEXT)) {
14226 				struct tsbmiss *tsbmp;
14227 
14228 				tsbmp = &tsbmiss_area[CPU->cpu_id];
14229 				ASSERT(sfmmup == tsbmp->usfmmup);
14230 				BT_SET(tsbmp->shmermap, rid);
14231 				if (r_pgszc > TTE64K) {
14232 					tsbmp->uhat_rtteflags |= tteflag;
14233 				}
14234 
14235 			}
14236 			kpreempt_enable();
14237 
14238 			sfmmu_hat_exit(hatlockp);
14239 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14240 			    HAT_INVALID_REGION_COOKIE);
14241 		} else {
14242 			hatlockp = sfmmu_hat_enter(sfmmup);
14243 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14244 			sfmmu_hat_exit(hatlockp);
14245 		}
14246 		ASSERT(rid < maxids);
14247 
14248 		if (r_type == SFMMU_REGION_ISM) {
14249 			sfmmu_find_scd(sfmmup);
14250 		}
14251 		return ((hat_region_cookie_t)((uint64_t)rid));
14252 	}
14253 
14254 	ASSERT(new_rgnp == NULL);
14255 
14256 	if (*busyrgnsp >= maxids) {
14257 		mutex_exit(&srdp->srd_mutex);
14258 		return (HAT_INVALID_REGION_COOKIE);
14259 	}
14260 
14261 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14262 	if (*freelistp != NULL) {
14263 		rgnp = *freelistp;
14264 		*freelistp = rgnp->rgn_next;
14265 		ASSERT(rgnp->rgn_id < *nextidp);
14266 		ASSERT(rgnp->rgn_id < maxids);
14267 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14268 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14269 		    == r_type);
14270 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14271 		ASSERT(rgnp->rgn_hmeflags == 0);
14272 	} else {
14273 		/*
14274 		 * release local locks before memory allocation.
14275 		 */
14276 		mutex_exit(&srdp->srd_mutex);
14277 
14278 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14279 
14280 		mutex_enter(&srdp->srd_mutex);
14281 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14282 		    rgnp = rgnp->rgn_hash) {
14283 			if (rgnp->rgn_saddr == r_saddr &&
14284 			    rgnp->rgn_size == r_size &&
14285 			    rgnp->rgn_obj == r_obj &&
14286 			    rgnp->rgn_objoff == r_objoff &&
14287 			    rgnp->rgn_perm == r_perm &&
14288 			    rgnp->rgn_pgszc == r_pgszc) {
14289 				break;
14290 			}
14291 		}
14292 		if (rgnp != NULL) {
14293 			goto rfound;
14294 		}
14295 
14296 		if (*nextidp >= maxids) {
14297 			mutex_exit(&srdp->srd_mutex);
14298 			goto fail;
14299 		}
14300 		rgnp = new_rgnp;
14301 		new_rgnp = NULL;
14302 		rgnp->rgn_id = (*nextidp)++;
14303 		ASSERT(rgnp->rgn_id < maxids);
14304 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14305 		rarrp[rgnp->rgn_id] = rgnp;
14306 	}
14307 
14308 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14309 	ASSERT(rgnp->rgn_hmeflags == 0);
14310 #ifdef DEBUG
14311 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14312 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14313 	}
14314 #endif
14315 	rgnp->rgn_saddr = r_saddr;
14316 	rgnp->rgn_size = r_size;
14317 	rgnp->rgn_obj = r_obj;
14318 	rgnp->rgn_objoff = r_objoff;
14319 	rgnp->rgn_perm = r_perm;
14320 	rgnp->rgn_pgszc = r_pgszc;
14321 	rgnp->rgn_flags = r_type;
14322 	rgnp->rgn_refcnt = 0;
14323 	rgnp->rgn_cb_function = r_cb_function;
14324 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14325 	srdp->srd_rgnhash[rhash] = rgnp;
14326 	(*busyrgnsp)++;
14327 	ASSERT(*busyrgnsp <= maxids);
14328 	goto rfound;
14329 
14330 fail:
14331 	ASSERT(new_rgnp != NULL);
14332 	kmem_cache_free(region_cache, new_rgnp);
14333 	return (HAT_INVALID_REGION_COOKIE);
14334 }
14335 
14336 /*
14337  * This function implements the shared context functionality required
14338  * when detaching a segment from an address space. It must be called
14339  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14340  * for segments with a valid region_cookie.
14341  * It will also be called from all seg_vn routines which change a
14342  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14343  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14344  * from segvn_fault().
14345  */
14346 void
14347 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14348 {
14349 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14350 	sf_scd_t *scdp;
14351 	uint_t rhash;
14352 	uint_t rid = (uint_t)((uint64_t)rcookie);
14353 	hatlock_t *hatlockp = NULL;
14354 	sf_region_t *rgnp;
14355 	sf_region_t **prev_rgnpp;
14356 	sf_region_t *cur_rgnp;
14357 	void *r_obj;
14358 	int i;
14359 	caddr_t	r_saddr;
14360 	caddr_t r_eaddr;
14361 	size_t	r_size;
14362 	uchar_t	r_pgszc;
14363 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14364 
14365 	ASSERT(sfmmup != ksfmmup);
14366 	ASSERT(srdp != NULL);
14367 	ASSERT(srdp->srd_refcnt > 0);
14368 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14369 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14370 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14371 
14372 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14373 	    SFMMU_REGION_HME;
14374 
14375 	if (r_type == SFMMU_REGION_ISM) {
14376 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14377 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14378 		rgnp = srdp->srd_ismrgnp[rid];
14379 	} else {
14380 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14381 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14382 		rgnp = srdp->srd_hmergnp[rid];
14383 	}
14384 	ASSERT(rgnp != NULL);
14385 	ASSERT(rgnp->rgn_id == rid);
14386 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14387 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14388 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14389 
14390 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14391 	if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14392 		xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14393 		    rgnp->rgn_size, 0, NULL);
14394 	}
14395 
14396 	if (sfmmup->sfmmu_free) {
14397 		ulong_t rttecnt;
14398 		r_pgszc = rgnp->rgn_pgszc;
14399 		r_size = rgnp->rgn_size;
14400 
14401 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14402 		if (r_type == SFMMU_REGION_ISM) {
14403 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14404 		} else {
14405 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14406 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14407 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14408 
14409 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14410 			    -rttecnt);
14411 
14412 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14413 		}
14414 	} else if (r_type == SFMMU_REGION_ISM) {
14415 		hatlockp = sfmmu_hat_enter(sfmmup);
14416 		ASSERT(rid < srdp->srd_next_ismrid);
14417 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14418 		scdp = sfmmup->sfmmu_scdp;
14419 		if (scdp != NULL &&
14420 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14421 			sfmmu_leave_scd(sfmmup, r_type);
14422 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14423 		}
14424 		sfmmu_hat_exit(hatlockp);
14425 	} else {
14426 		ulong_t rttecnt;
14427 		r_pgszc = rgnp->rgn_pgszc;
14428 		r_saddr = rgnp->rgn_saddr;
14429 		r_size = rgnp->rgn_size;
14430 		r_eaddr = r_saddr + r_size;
14431 
14432 		ASSERT(r_type == SFMMU_REGION_HME);
14433 		hatlockp = sfmmu_hat_enter(sfmmup);
14434 		ASSERT(rid < srdp->srd_next_hmerid);
14435 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14436 
14437 		/*
14438 		 * If region is part of an SCD call sfmmu_leave_scd().
14439 		 * Otherwise if process is not exiting and has valid context
14440 		 * just drop the context on the floor to lose stale TLB
14441 		 * entries and force the update of tsb miss area to reflect
14442 		 * the new region map. After that clean our TSB entries.
14443 		 */
14444 		scdp = sfmmup->sfmmu_scdp;
14445 		if (scdp != NULL &&
14446 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14447 			sfmmu_leave_scd(sfmmup, r_type);
14448 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14449 		}
14450 		sfmmu_invalidate_ctx(sfmmup);
14451 
14452 		i = TTE8K;
14453 		while (i < mmu_page_sizes) {
14454 			if (rgnp->rgn_ttecnt[i] != 0) {
14455 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14456 				    r_eaddr, i);
14457 				if (i < TTE4M) {
14458 					i = TTE4M;
14459 					continue;
14460 				} else {
14461 					break;
14462 				}
14463 			}
14464 			i++;
14465 		}
14466 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14467 		if (r_pgszc >= TTE4M) {
14468 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14469 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14470 			    rttecnt);
14471 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14472 		}
14473 
14474 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14475 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14476 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14477 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14478 
14479 		sfmmu_hat_exit(hatlockp);
14480 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14481 			/* sfmmup left the scd, grow private tsb */
14482 			sfmmu_check_page_sizes(sfmmup, 1);
14483 		} else {
14484 			sfmmu_check_page_sizes(sfmmup, 0);
14485 		}
14486 	}
14487 
14488 	if (r_type == SFMMU_REGION_HME) {
14489 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14490 	}
14491 
14492 	r_obj = rgnp->rgn_obj;
14493 	if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14494 		return;
14495 	}
14496 
14497 	/*
14498 	 * looks like nobody uses this region anymore. Free it.
14499 	 */
14500 	rhash = RGN_HASH_FUNCTION(r_obj);
14501 	mutex_enter(&srdp->srd_mutex);
14502 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14503 	    (cur_rgnp = *prev_rgnpp) != NULL;
14504 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14505 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14506 			break;
14507 		}
14508 	}
14509 
14510 	if (cur_rgnp == NULL) {
14511 		mutex_exit(&srdp->srd_mutex);
14512 		return;
14513 	}
14514 
14515 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14516 	*prev_rgnpp = rgnp->rgn_hash;
14517 	if (r_type == SFMMU_REGION_ISM) {
14518 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14519 		ASSERT(rid < srdp->srd_next_ismrid);
14520 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14521 		srdp->srd_ismrgnfree = rgnp;
14522 		ASSERT(srdp->srd_ismbusyrgns > 0);
14523 		srdp->srd_ismbusyrgns--;
14524 		mutex_exit(&srdp->srd_mutex);
14525 		return;
14526 	}
14527 	mutex_exit(&srdp->srd_mutex);
14528 
14529 	/*
14530 	 * Destroy region's hmeblks.
14531 	 */
14532 	sfmmu_unload_hmeregion(srdp, rgnp);
14533 
14534 	rgnp->rgn_hmeflags = 0;
14535 
14536 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14537 	ASSERT(rgnp->rgn_id == rid);
14538 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14539 		rgnp->rgn_ttecnt[i] = 0;
14540 	}
14541 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14542 	mutex_enter(&srdp->srd_mutex);
14543 	ASSERT(rid < srdp->srd_next_hmerid);
14544 	rgnp->rgn_next = srdp->srd_hmergnfree;
14545 	srdp->srd_hmergnfree = rgnp;
14546 	ASSERT(srdp->srd_hmebusyrgns > 0);
14547 	srdp->srd_hmebusyrgns--;
14548 	mutex_exit(&srdp->srd_mutex);
14549 }
14550 
14551 /*
14552  * For now only called for hmeblk regions and not for ISM regions.
14553  */
14554 void
14555 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14556 {
14557 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14558 	uint_t rid = (uint_t)((uint64_t)rcookie);
14559 	sf_region_t *rgnp;
14560 	sf_rgn_link_t *rlink;
14561 	sf_rgn_link_t *hrlink;
14562 	ulong_t	rttecnt;
14563 
14564 	ASSERT(sfmmup != ksfmmup);
14565 	ASSERT(srdp != NULL);
14566 	ASSERT(srdp->srd_refcnt > 0);
14567 
14568 	ASSERT(rid < srdp->srd_next_hmerid);
14569 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14570 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14571 
14572 	rgnp = srdp->srd_hmergnp[rid];
14573 	ASSERT(rgnp->rgn_refcnt > 0);
14574 	ASSERT(rgnp->rgn_id == rid);
14575 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14576 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14577 
14578 	atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14579 
14580 	/* LINTED: constant in conditional context */
14581 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14582 	ASSERT(rlink != NULL);
14583 	mutex_enter(&rgnp->rgn_mutex);
14584 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14585 	/* LINTED: constant in conditional context */
14586 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14587 	ASSERT(hrlink != NULL);
14588 	ASSERT(hrlink->prev == NULL);
14589 	rlink->next = rgnp->rgn_sfmmu_head;
14590 	rlink->prev = NULL;
14591 	hrlink->prev = sfmmup;
14592 	/*
14593 	 * make sure rlink's next field is correct
14594 	 * before making this link visible.
14595 	 */
14596 	membar_stst();
14597 	rgnp->rgn_sfmmu_head = sfmmup;
14598 	mutex_exit(&rgnp->rgn_mutex);
14599 
14600 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14601 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14602 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14603 	/* update tsb0 inflation count */
14604 	if (rgnp->rgn_pgszc >= TTE4M) {
14605 		sfmmup->sfmmu_tsb0_4minflcnt +=
14606 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14607 	}
14608 	/*
14609 	 * Update regionid bitmask without hat lock since no other thread
14610 	 * can update this region bitmask right now.
14611 	 */
14612 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14613 }
14614 
14615 /* ARGSUSED */
14616 static int
14617 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14618 {
14619 	sf_region_t *rgnp = (sf_region_t *)buf;
14620 	bzero(buf, sizeof (*rgnp));
14621 
14622 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14623 
14624 	return (0);
14625 }
14626 
14627 /* ARGSUSED */
14628 static void
14629 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14630 {
14631 	sf_region_t *rgnp = (sf_region_t *)buf;
14632 	mutex_destroy(&rgnp->rgn_mutex);
14633 }
14634 
14635 static int
14636 sfrgnmap_isnull(sf_region_map_t *map)
14637 {
14638 	int i;
14639 
14640 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14641 		if (map->bitmap[i] != 0) {
14642 			return (0);
14643 		}
14644 	}
14645 	return (1);
14646 }
14647 
14648 static int
14649 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14650 {
14651 	int i;
14652 
14653 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14654 		if (map->bitmap[i] != 0) {
14655 			return (0);
14656 		}
14657 	}
14658 	return (1);
14659 }
14660 
14661 #ifdef DEBUG
14662 static void
14663 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14664 {
14665 	sfmmu_t *sp;
14666 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14667 
14668 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14669 		ASSERT(srdp == sp->sfmmu_srdp);
14670 		if (sp == sfmmup) {
14671 			if (onlist) {
14672 				return;
14673 			} else {
14674 				panic("shctx: sfmmu 0x%p found on scd"
14675 				    "list 0x%p", (void *)sfmmup,
14676 				    (void *)*headp);
14677 			}
14678 		}
14679 	}
14680 	if (onlist) {
14681 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14682 		    (void *)sfmmup, (void *)*headp);
14683 	} else {
14684 		return;
14685 	}
14686 }
14687 #else /* DEBUG */
14688 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14689 #endif /* DEBUG */
14690 
14691 /*
14692  * Removes an sfmmu from the SCD sfmmu list.
14693  */
14694 static void
14695 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14696 {
14697 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14698 	check_scd_sfmmu_list(headp, sfmmup, 1);
14699 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14700 		ASSERT(*headp != sfmmup);
14701 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14702 		    sfmmup->sfmmu_scd_link.next;
14703 	} else {
14704 		ASSERT(*headp == sfmmup);
14705 		*headp = sfmmup->sfmmu_scd_link.next;
14706 	}
14707 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14708 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14709 		    sfmmup->sfmmu_scd_link.prev;
14710 	}
14711 }
14712 
14713 
14714 /*
14715  * Adds an sfmmu to the start of the queue.
14716  */
14717 static void
14718 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14719 {
14720 	check_scd_sfmmu_list(headp, sfmmup, 0);
14721 	sfmmup->sfmmu_scd_link.prev = NULL;
14722 	sfmmup->sfmmu_scd_link.next = *headp;
14723 	if (*headp != NULL)
14724 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14725 	*headp = sfmmup;
14726 }
14727 
14728 /*
14729  * Remove an scd from the start of the queue.
14730  */
14731 static void
14732 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14733 {
14734 	if (scdp->scd_prev != NULL) {
14735 		ASSERT(*headp != scdp);
14736 		scdp->scd_prev->scd_next = scdp->scd_next;
14737 	} else {
14738 		ASSERT(*headp == scdp);
14739 		*headp = scdp->scd_next;
14740 	}
14741 
14742 	if (scdp->scd_next != NULL) {
14743 		scdp->scd_next->scd_prev = scdp->scd_prev;
14744 	}
14745 }
14746 
14747 /*
14748  * Add an scd to the start of the queue.
14749  */
14750 static void
14751 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14752 {
14753 	scdp->scd_prev = NULL;
14754 	scdp->scd_next = *headp;
14755 	if (*headp != NULL) {
14756 		(*headp)->scd_prev = scdp;
14757 	}
14758 	*headp = scdp;
14759 }
14760 
14761 static int
14762 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14763 {
14764 	uint_t rid;
14765 	uint_t i;
14766 	uint_t j;
14767 	ulong_t w;
14768 	sf_region_t *rgnp;
14769 	ulong_t tte8k_cnt = 0;
14770 	ulong_t tte4m_cnt = 0;
14771 	uint_t tsb_szc;
14772 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14773 	sfmmu_t	*ism_hatid;
14774 	struct tsb_info *newtsb;
14775 	int szc;
14776 
14777 	ASSERT(srdp != NULL);
14778 
14779 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14780 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14781 			continue;
14782 		}
14783 		j = 0;
14784 		while (w) {
14785 			if (!(w & 0x1)) {
14786 				j++;
14787 				w >>= 1;
14788 				continue;
14789 			}
14790 			rid = (i << BT_ULSHIFT) | j;
14791 			j++;
14792 			w >>= 1;
14793 
14794 			if (rid < SFMMU_MAX_HME_REGIONS) {
14795 				rgnp = srdp->srd_hmergnp[rid];
14796 				ASSERT(rgnp->rgn_id == rid);
14797 				ASSERT(rgnp->rgn_refcnt > 0);
14798 
14799 				if (rgnp->rgn_pgszc < TTE4M) {
14800 					tte8k_cnt += rgnp->rgn_size >>
14801 					    TTE_PAGE_SHIFT(TTE8K);
14802 				} else {
14803 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14804 					tte4m_cnt += rgnp->rgn_size >>
14805 					    TTE_PAGE_SHIFT(TTE4M);
14806 					/*
14807 					 * Inflate SCD tsb0 by preallocating
14808 					 * 1/4 8k ttecnt for 4M regions to
14809 					 * allow for lgpg alloc failure.
14810 					 */
14811 					tte8k_cnt += rgnp->rgn_size >>
14812 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14813 				}
14814 			} else {
14815 				rid -= SFMMU_MAX_HME_REGIONS;
14816 				rgnp = srdp->srd_ismrgnp[rid];
14817 				ASSERT(rgnp->rgn_id == rid);
14818 				ASSERT(rgnp->rgn_refcnt > 0);
14819 
14820 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14821 				ASSERT(ism_hatid->sfmmu_ismhat);
14822 
14823 				for (szc = 0; szc < TTE4M; szc++) {
14824 					tte8k_cnt +=
14825 					    ism_hatid->sfmmu_ttecnt[szc] <<
14826 					    TTE_BSZS_SHIFT(szc);
14827 				}
14828 
14829 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14830 				if (rgnp->rgn_pgszc >= TTE4M) {
14831 					tte4m_cnt += rgnp->rgn_size >>
14832 					    TTE_PAGE_SHIFT(TTE4M);
14833 				}
14834 			}
14835 		}
14836 	}
14837 
14838 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14839 
14840 	/* Allocate both the SCD TSBs here. */
14841 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14842 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14843 	    (tsb_szc <= TSB_4M_SZCODE ||
14844 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14845 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14846 	    TSB_ALLOC, scsfmmup))) {
14847 
14848 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14849 		return (TSB_ALLOCFAIL);
14850 	} else {
14851 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14852 
14853 		if (tte4m_cnt) {
14854 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14855 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14856 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14857 			    (tsb_szc <= TSB_4M_SZCODE ||
14858 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14859 			    TSB4M|TSB32M|TSB256M,
14860 			    TSB_ALLOC, scsfmmup))) {
14861 				/*
14862 				 * If we fail to allocate the 2nd shared tsb,
14863 				 * just free the 1st tsb, return failure.
14864 				 */
14865 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14866 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14867 				return (TSB_ALLOCFAIL);
14868 			} else {
14869 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14870 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14871 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14872 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14873 			}
14874 		}
14875 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14876 	}
14877 	return (TSB_SUCCESS);
14878 }
14879 
14880 static void
14881 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14882 {
14883 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14884 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14885 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14886 		scd_sfmmu->sfmmu_tsb = next;
14887 	}
14888 }
14889 
14890 /*
14891  * Link the sfmmu onto the hme region list.
14892  */
14893 void
14894 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14895 {
14896 	uint_t rid;
14897 	sf_rgn_link_t *rlink;
14898 	sfmmu_t *head;
14899 	sf_rgn_link_t *hrlink;
14900 
14901 	rid = rgnp->rgn_id;
14902 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14903 
14904 	/* LINTED: constant in conditional context */
14905 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14906 	ASSERT(rlink != NULL);
14907 	mutex_enter(&rgnp->rgn_mutex);
14908 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14909 		rlink->next = NULL;
14910 		rlink->prev = NULL;
14911 		/*
14912 		 * make sure rlink's next field is NULL
14913 		 * before making this link visible.
14914 		 */
14915 		membar_stst();
14916 		rgnp->rgn_sfmmu_head = sfmmup;
14917 	} else {
14918 		/* LINTED: constant in conditional context */
14919 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14920 		ASSERT(hrlink != NULL);
14921 		ASSERT(hrlink->prev == NULL);
14922 		rlink->next = head;
14923 		rlink->prev = NULL;
14924 		hrlink->prev = sfmmup;
14925 		/*
14926 		 * make sure rlink's next field is correct
14927 		 * before making this link visible.
14928 		 */
14929 		membar_stst();
14930 		rgnp->rgn_sfmmu_head = sfmmup;
14931 	}
14932 	mutex_exit(&rgnp->rgn_mutex);
14933 }
14934 
14935 /*
14936  * Unlink the sfmmu from the hme region list.
14937  */
14938 void
14939 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14940 {
14941 	uint_t rid;
14942 	sf_rgn_link_t *rlink;
14943 
14944 	rid = rgnp->rgn_id;
14945 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14946 
14947 	/* LINTED: constant in conditional context */
14948 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14949 	ASSERT(rlink != NULL);
14950 	mutex_enter(&rgnp->rgn_mutex);
14951 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14952 		sfmmu_t *next = rlink->next;
14953 		rgnp->rgn_sfmmu_head = next;
14954 		/*
14955 		 * if we are stopped by xc_attention() after this
14956 		 * point the forward link walking in
14957 		 * sfmmu_rgntlb_demap() will work correctly since the
14958 		 * head correctly points to the next element.
14959 		 */
14960 		membar_stst();
14961 		rlink->next = NULL;
14962 		ASSERT(rlink->prev == NULL);
14963 		if (next != NULL) {
14964 			sf_rgn_link_t *nrlink;
14965 			/* LINTED: constant in conditional context */
14966 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14967 			ASSERT(nrlink != NULL);
14968 			ASSERT(nrlink->prev == sfmmup);
14969 			nrlink->prev = NULL;
14970 		}
14971 	} else {
14972 		sfmmu_t *next = rlink->next;
14973 		sfmmu_t *prev = rlink->prev;
14974 		sf_rgn_link_t *prlink;
14975 
14976 		ASSERT(prev != NULL);
14977 		/* LINTED: constant in conditional context */
14978 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14979 		ASSERT(prlink != NULL);
14980 		ASSERT(prlink->next == sfmmup);
14981 		prlink->next = next;
14982 		/*
14983 		 * if we are stopped by xc_attention()
14984 		 * after this point the forward link walking
14985 		 * will work correctly since the prev element
14986 		 * correctly points to the next element.
14987 		 */
14988 		membar_stst();
14989 		rlink->next = NULL;
14990 		rlink->prev = NULL;
14991 		if (next != NULL) {
14992 			sf_rgn_link_t *nrlink;
14993 			/* LINTED: constant in conditional context */
14994 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14995 			ASSERT(nrlink != NULL);
14996 			ASSERT(nrlink->prev == sfmmup);
14997 			nrlink->prev = prev;
14998 		}
14999 	}
15000 	mutex_exit(&rgnp->rgn_mutex);
15001 }
15002 
15003 /*
15004  * Link scd sfmmu onto ism or hme region list for each region in the
15005  * scd region map.
15006  */
15007 void
15008 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15009 {
15010 	uint_t rid;
15011 	uint_t i;
15012 	uint_t j;
15013 	ulong_t w;
15014 	sf_region_t *rgnp;
15015 	sfmmu_t *scsfmmup;
15016 
15017 	scsfmmup = scdp->scd_sfmmup;
15018 	ASSERT(scsfmmup->sfmmu_scdhat);
15019 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15020 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15021 			continue;
15022 		}
15023 		j = 0;
15024 		while (w) {
15025 			if (!(w & 0x1)) {
15026 				j++;
15027 				w >>= 1;
15028 				continue;
15029 			}
15030 			rid = (i << BT_ULSHIFT) | j;
15031 			j++;
15032 			w >>= 1;
15033 
15034 			if (rid < SFMMU_MAX_HME_REGIONS) {
15035 				rgnp = srdp->srd_hmergnp[rid];
15036 				ASSERT(rgnp->rgn_id == rid);
15037 				ASSERT(rgnp->rgn_refcnt > 0);
15038 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
15039 			} else {
15040 				sfmmu_t *ism_hatid = NULL;
15041 				ism_ment_t *ism_ment;
15042 				rid -= SFMMU_MAX_HME_REGIONS;
15043 				rgnp = srdp->srd_ismrgnp[rid];
15044 				ASSERT(rgnp->rgn_id == rid);
15045 				ASSERT(rgnp->rgn_refcnt > 0);
15046 
15047 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15048 				ASSERT(ism_hatid->sfmmu_ismhat);
15049 				ism_ment = &scdp->scd_ism_links[rid];
15050 				ism_ment->iment_hat = scsfmmup;
15051 				ism_ment->iment_base_va = rgnp->rgn_saddr;
15052 				mutex_enter(&ism_mlist_lock);
15053 				iment_add(ism_ment, ism_hatid);
15054 				mutex_exit(&ism_mlist_lock);
15055 
15056 			}
15057 		}
15058 	}
15059 }
15060 /*
15061  * Unlink scd sfmmu from ism or hme region list for each region in the
15062  * scd region map.
15063  */
15064 void
15065 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15066 {
15067 	uint_t rid;
15068 	uint_t i;
15069 	uint_t j;
15070 	ulong_t w;
15071 	sf_region_t *rgnp;
15072 	sfmmu_t *scsfmmup;
15073 
15074 	scsfmmup = scdp->scd_sfmmup;
15075 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15076 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15077 			continue;
15078 		}
15079 		j = 0;
15080 		while (w) {
15081 			if (!(w & 0x1)) {
15082 				j++;
15083 				w >>= 1;
15084 				continue;
15085 			}
15086 			rid = (i << BT_ULSHIFT) | j;
15087 			j++;
15088 			w >>= 1;
15089 
15090 			if (rid < SFMMU_MAX_HME_REGIONS) {
15091 				rgnp = srdp->srd_hmergnp[rid];
15092 				ASSERT(rgnp->rgn_id == rid);
15093 				ASSERT(rgnp->rgn_refcnt > 0);
15094 				sfmmu_unlink_from_hmeregion(scsfmmup,
15095 				    rgnp);
15096 
15097 			} else {
15098 				sfmmu_t *ism_hatid = NULL;
15099 				ism_ment_t *ism_ment;
15100 				rid -= SFMMU_MAX_HME_REGIONS;
15101 				rgnp = srdp->srd_ismrgnp[rid];
15102 				ASSERT(rgnp->rgn_id == rid);
15103 				ASSERT(rgnp->rgn_refcnt > 0);
15104 
15105 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15106 				ASSERT(ism_hatid->sfmmu_ismhat);
15107 				ism_ment = &scdp->scd_ism_links[rid];
15108 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
15109 				ASSERT(ism_ment->iment_base_va ==
15110 				    rgnp->rgn_saddr);
15111 				ism_ment->iment_hat = NULL;
15112 				ism_ment->iment_base_va = 0;
15113 				mutex_enter(&ism_mlist_lock);
15114 				iment_sub(ism_ment, ism_hatid);
15115 				mutex_exit(&ism_mlist_lock);
15116 
15117 			}
15118 		}
15119 	}
15120 }
15121 /*
15122  * Allocates and initialises a new SCD structure, this is called with
15123  * the srd_scd_mutex held and returns with the reference count
15124  * initialised to 1.
15125  */
15126 static sf_scd_t *
15127 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
15128 {
15129 	sf_scd_t *new_scdp;
15130 	sfmmu_t *scsfmmup;
15131 	int i;
15132 
15133 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
15134 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
15135 
15136 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
15137 	new_scdp->scd_sfmmup = scsfmmup;
15138 	scsfmmup->sfmmu_srdp = srdp;
15139 	scsfmmup->sfmmu_scdp = new_scdp;
15140 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
15141 	scsfmmup->sfmmu_scdhat = 1;
15142 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
15143 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
15144 
15145 	ASSERT(max_mmu_ctxdoms > 0);
15146 	for (i = 0; i < max_mmu_ctxdoms; i++) {
15147 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15148 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
15149 	}
15150 
15151 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
15152 		new_scdp->scd_rttecnt[i] = 0;
15153 	}
15154 
15155 	new_scdp->scd_region_map = *new_map;
15156 	new_scdp->scd_refcnt = 1;
15157 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15158 		kmem_cache_free(scd_cache, new_scdp);
15159 		kmem_cache_free(sfmmuid_cache, scsfmmup);
15160 		return (NULL);
15161 	}
15162 	if (&mmu_init_scd) {
15163 		mmu_init_scd(new_scdp);
15164 	}
15165 	return (new_scdp);
15166 }
15167 
15168 /*
15169  * The first phase of a process joining an SCD. The hat structure is
15170  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15171  * and a cross-call with context invalidation is used to cause the
15172  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15173  * routine.
15174  */
15175 static void
15176 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15177 {
15178 	hatlock_t *hatlockp;
15179 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15180 	int i;
15181 	sf_scd_t *old_scdp;
15182 
15183 	ASSERT(srdp != NULL);
15184 	ASSERT(scdp != NULL);
15185 	ASSERT(scdp->scd_refcnt > 0);
15186 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15187 
15188 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15189 		ASSERT(old_scdp != scdp);
15190 
15191 		mutex_enter(&old_scdp->scd_mutex);
15192 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15193 		mutex_exit(&old_scdp->scd_mutex);
15194 		/*
15195 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15196 		 * include the shme rgn ttecnt for rgns that
15197 		 * were in the old SCD
15198 		 */
15199 		for (i = 0; i < mmu_page_sizes; i++) {
15200 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15201 			    old_scdp->scd_rttecnt[i]);
15202 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15203 			    sfmmup->sfmmu_scdrttecnt[i]);
15204 		}
15205 	}
15206 
15207 	/*
15208 	 * Move sfmmu to the scd lists.
15209 	 */
15210 	mutex_enter(&scdp->scd_mutex);
15211 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15212 	mutex_exit(&scdp->scd_mutex);
15213 	SF_SCD_INCR_REF(scdp);
15214 
15215 	hatlockp = sfmmu_hat_enter(sfmmup);
15216 	/*
15217 	 * For a multi-thread process, we must stop
15218 	 * all the other threads before joining the scd.
15219 	 */
15220 
15221 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15222 
15223 	sfmmu_invalidate_ctx(sfmmup);
15224 	sfmmup->sfmmu_scdp = scdp;
15225 
15226 	/*
15227 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15228 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15229 	 */
15230 	for (i = 0; i < mmu_page_sizes; i++) {
15231 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15232 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15233 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15234 		    -sfmmup->sfmmu_scdrttecnt[i]);
15235 		if (!sfmmup->sfmmu_ttecnt[i]) {
15236 			sfmmup->sfmmu_tteflags &= ~(1 << i);
15237 		}
15238 	}
15239 	/* update tsb0 inflation count */
15240 	if (old_scdp != NULL) {
15241 		sfmmup->sfmmu_tsb0_4minflcnt +=
15242 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15243 	}
15244 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15245 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15246 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15247 
15248 	if (&mmu_set_pgsz_order) {
15249 		mmu_set_pgsz_order(sfmmup, 0);
15250 	}
15251 	sfmmu_hat_exit(hatlockp);
15252 
15253 	if (old_scdp != NULL) {
15254 		SF_SCD_DECR_REF(srdp, old_scdp);
15255 	}
15256 
15257 }
15258 
15259 /*
15260  * This routine is called by a process to become part of an SCD. It is called
15261  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15262  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15263  */
15264 static void
15265 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15266 {
15267 	struct tsb_info	*tsbinfop;
15268 
15269 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15270 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15271 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15272 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15273 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15274 
15275 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15276 	    tsbinfop = tsbinfop->tsb_next) {
15277 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15278 			continue;
15279 		}
15280 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15281 
15282 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15283 		    TSB_BYTES(tsbinfop->tsb_szc));
15284 	}
15285 
15286 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15287 	sfmmu_ism_hatflags(sfmmup, 1);
15288 
15289 	SFMMU_STAT(sf_join_scd);
15290 }
15291 
15292 /*
15293  * This routine is called in order to check if there is an SCD which matches
15294  * the process's region map if not then a new SCD may be created.
15295  */
15296 static void
15297 sfmmu_find_scd(sfmmu_t *sfmmup)
15298 {
15299 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15300 	sf_scd_t *scdp, *new_scdp;
15301 	int ret;
15302 
15303 	ASSERT(srdp != NULL);
15304 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15305 
15306 	mutex_enter(&srdp->srd_scd_mutex);
15307 	for (scdp = srdp->srd_scdp; scdp != NULL;
15308 	    scdp = scdp->scd_next) {
15309 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15310 		    &sfmmup->sfmmu_region_map, SFMMU_RGNMAP_WORDS, ret);
15311 		if (ret == 1) {
15312 			SF_SCD_INCR_REF(scdp);
15313 			mutex_exit(&srdp->srd_scd_mutex);
15314 			sfmmu_join_scd(scdp, sfmmup);
15315 			ASSERT(scdp->scd_refcnt >= 2);
15316 			atomic_add_32((volatile uint32_t *)
15317 			    &scdp->scd_refcnt, -1);
15318 			return;
15319 		} else {
15320 			/*
15321 			 * If the sfmmu region map is a subset of the scd
15322 			 * region map, then the assumption is that this process
15323 			 * will continue attaching to ISM segments until the
15324 			 * region maps are equal.
15325 			 */
15326 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15327 			    &sfmmup->sfmmu_region_map, ret);
15328 			if (ret == 1) {
15329 				mutex_exit(&srdp->srd_scd_mutex);
15330 				return;
15331 			}
15332 		}
15333 	}
15334 
15335 	ASSERT(scdp == NULL);
15336 	/*
15337 	 * No matching SCD has been found, create a new one.
15338 	 */
15339 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15340 	    NULL) {
15341 		mutex_exit(&srdp->srd_scd_mutex);
15342 		return;
15343 	}
15344 
15345 	/*
15346 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15347 	 */
15348 
15349 	/* Set scd_rttecnt for shme rgns in SCD */
15350 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15351 
15352 	/*
15353 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15354 	 */
15355 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15356 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15357 	SFMMU_STAT_ADD(sf_create_scd, 1);
15358 
15359 	mutex_exit(&srdp->srd_scd_mutex);
15360 	sfmmu_join_scd(new_scdp, sfmmup);
15361 	ASSERT(new_scdp->scd_refcnt >= 2);
15362 	atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15363 }
15364 
15365 /*
15366  * This routine is called by a process to remove itself from an SCD. It is
15367  * either called when the processes has detached from a segment or from
15368  * hat_free_start() as a result of calling exit.
15369  */
15370 static void
15371 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15372 {
15373 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15374 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15375 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15376 	int i;
15377 
15378 	ASSERT(scdp != NULL);
15379 	ASSERT(srdp != NULL);
15380 
15381 	if (sfmmup->sfmmu_free) {
15382 		/*
15383 		 * If the process is part of an SCD the sfmmu is unlinked
15384 		 * from scd_sf_list.
15385 		 */
15386 		mutex_enter(&scdp->scd_mutex);
15387 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15388 		mutex_exit(&scdp->scd_mutex);
15389 		/*
15390 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15391 		 * are about to leave the SCD
15392 		 */
15393 		for (i = 0; i < mmu_page_sizes; i++) {
15394 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15395 			    scdp->scd_rttecnt[i]);
15396 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15397 			    sfmmup->sfmmu_scdrttecnt[i]);
15398 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15399 		}
15400 		sfmmup->sfmmu_scdp = NULL;
15401 
15402 		SF_SCD_DECR_REF(srdp, scdp);
15403 		return;
15404 	}
15405 
15406 	ASSERT(r_type != SFMMU_REGION_ISM ||
15407 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15408 	ASSERT(scdp->scd_refcnt);
15409 	ASSERT(!sfmmup->sfmmu_free);
15410 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15411 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15412 
15413 	/*
15414 	 * Wait for ISM maps to be updated.
15415 	 */
15416 	if (r_type != SFMMU_REGION_ISM) {
15417 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15418 		    sfmmup->sfmmu_scdp != NULL) {
15419 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15420 			    HATLOCK_MUTEXP(hatlockp));
15421 		}
15422 
15423 		if (sfmmup->sfmmu_scdp == NULL) {
15424 			sfmmu_hat_exit(hatlockp);
15425 			return;
15426 		}
15427 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15428 	}
15429 
15430 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15431 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15432 		/*
15433 		 * Since HAT_JOIN_SCD was set our context
15434 		 * is still invalid.
15435 		 */
15436 	} else {
15437 		/*
15438 		 * For a multi-thread process, we must stop
15439 		 * all the other threads before leaving the scd.
15440 		 */
15441 
15442 		sfmmu_invalidate_ctx(sfmmup);
15443 	}
15444 
15445 	/* Clear all the rid's for ISM, delete flags, etc */
15446 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15447 	sfmmu_ism_hatflags(sfmmup, 0);
15448 
15449 	/*
15450 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15451 	 * are in SCD before this sfmmup leaves the SCD.
15452 	 */
15453 	for (i = 0; i < mmu_page_sizes; i++) {
15454 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15455 		    scdp->scd_rttecnt[i]);
15456 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15457 		    sfmmup->sfmmu_scdrttecnt[i]);
15458 		if (sfmmup->sfmmu_ttecnt[i] &&
15459 		    (sfmmup->sfmmu_tteflags & (1 << i)) == 0) {
15460 			sfmmup->sfmmu_tteflags |= (1 << i);
15461 		}
15462 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15463 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15464 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15465 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15466 	}
15467 	/* update tsb0 inflation count */
15468 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15469 
15470 	if (r_type != SFMMU_REGION_ISM) {
15471 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15472 	}
15473 	sfmmup->sfmmu_scdp = NULL;
15474 
15475 	if (&mmu_set_pgsz_order) {
15476 		mmu_set_pgsz_order(sfmmup, 0);
15477 	}
15478 	sfmmu_hat_exit(hatlockp);
15479 
15480 	/*
15481 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15482 	 * the hat lock as we hold the sfmmu_as lock which prevents
15483 	 * hat_join_region from adding this thread to the scd again. Other
15484 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15485 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15486 	 * while holding the hat lock.
15487 	 */
15488 	mutex_enter(&scdp->scd_mutex);
15489 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15490 	mutex_exit(&scdp->scd_mutex);
15491 	SFMMU_STAT(sf_leave_scd);
15492 
15493 	SF_SCD_DECR_REF(srdp, scdp);
15494 	hatlockp = sfmmu_hat_enter(sfmmup);
15495 
15496 }
15497 
15498 /*
15499  * Unlink and free up an SCD structure with a reference count of 0.
15500  */
15501 static void
15502 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15503 {
15504 	sfmmu_t *scsfmmup;
15505 	sf_scd_t *sp;
15506 	hatlock_t *shatlockp;
15507 	int i, ret;
15508 
15509 	mutex_enter(&srdp->srd_scd_mutex);
15510 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15511 		if (sp == scdp)
15512 			break;
15513 	}
15514 	if (sp == NULL || sp->scd_refcnt) {
15515 		mutex_exit(&srdp->srd_scd_mutex);
15516 		return;
15517 	}
15518 
15519 	/*
15520 	 * It is possible that the scd has been freed and reallocated with a
15521 	 * different region map while we've been waiting for the srd_scd_mutex.
15522 	 */
15523 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map,
15524 	    SFMMU_RGNMAP_WORDS, ret);
15525 	if (ret != 1) {
15526 		mutex_exit(&srdp->srd_scd_mutex);
15527 		return;
15528 	}
15529 
15530 	ASSERT(scdp->scd_sf_list == NULL);
15531 	/*
15532 	 * Unlink scd from srd_scdp list.
15533 	 */
15534 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15535 	mutex_exit(&srdp->srd_scd_mutex);
15536 
15537 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15538 
15539 	/* Clear shared context tsb and release ctx */
15540 	scsfmmup = scdp->scd_sfmmup;
15541 
15542 	/*
15543 	 * create a barrier so that scd will not be destroyed
15544 	 * if other thread still holds the same shared hat lock.
15545 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15546 	 * shared hat lock before checking the shared tsb reloc flag.
15547 	 */
15548 	shatlockp = sfmmu_hat_enter(scsfmmup);
15549 	sfmmu_hat_exit(shatlockp);
15550 
15551 	sfmmu_free_scd_tsbs(scsfmmup);
15552 
15553 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15554 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15555 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15556 			    SFMMU_L2_HMERLINKS_SIZE);
15557 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15558 		}
15559 	}
15560 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15561 	kmem_cache_free(scd_cache, scdp);
15562 	SFMMU_STAT(sf_destroy_scd);
15563 }
15564 
15565 /*
15566  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15567  * bits which are set in the ism_region_map parameter. This flag indicates to
15568  * the tsbmiss handler that mapping for these segments should be loaded using
15569  * the shared context.
15570  */
15571 static void
15572 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15573 {
15574 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15575 	ism_blk_t *ism_blkp;
15576 	ism_map_t *ism_map;
15577 	int i, rid;
15578 
15579 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15580 	ASSERT(scdp != NULL);
15581 	/*
15582 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15583 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15584 	 */
15585 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15586 
15587 	ism_blkp = sfmmup->sfmmu_iblk;
15588 	while (ism_blkp != NULL) {
15589 		ism_map = ism_blkp->iblk_maps;
15590 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15591 			rid = ism_map[i].imap_rid;
15592 			if (rid == SFMMU_INVALID_ISMRID) {
15593 				continue;
15594 			}
15595 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15596 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15597 			    addflag) {
15598 				ism_map[i].imap_hatflags |=
15599 				    HAT_CTX1_FLAG;
15600 			} else {
15601 				ism_map[i].imap_hatflags &=
15602 				    ~HAT_CTX1_FLAG;
15603 			}
15604 		}
15605 		ism_blkp = ism_blkp->iblk_next;
15606 	}
15607 }
15608 
15609 static int
15610 sfmmu_srd_lock_held(sf_srd_t *srdp)
15611 {
15612 	return (MUTEX_HELD(&srdp->srd_mutex));
15613 }
15614 
15615 /* ARGSUSED */
15616 static int
15617 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15618 {
15619 	sf_scd_t *scdp = (sf_scd_t *)buf;
15620 
15621 	bzero(buf, sizeof (sf_scd_t));
15622 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15623 	return (0);
15624 }
15625 
15626 /* ARGSUSED */
15627 static void
15628 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15629 {
15630 	sf_scd_t *scdp = (sf_scd_t *)buf;
15631 
15632 	mutex_destroy(&scdp->scd_mutex);
15633 }
15634 
15635 /*
15636  * The listp parameter is a pointer to a list of hmeblks which are partially
15637  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15638  * freeing process is to cross-call all cpus to ensure that there are no
15639  * remaining cached references.
15640  *
15641  * If the local generation number is less than the global then we can free
15642  * hmeblks which are already on the pending queue as another cpu has completed
15643  * the cross-call.
15644  *
15645  * We cross-call to make sure that there are no threads on other cpus accessing
15646  * these hmblks and then complete the process of freeing them under the
15647  * following conditions:
15648  * 	The total number of pending hmeblks is greater than the threshold
15649  *	The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15650  *	It is at least 1 second since the last time we cross-called
15651  *
15652  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15653  */
15654 static void
15655 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15656 {
15657 	struct hme_blk *hblkp, *pr_hblkp = NULL;
15658 	int		count = 0;
15659 	cpuset_t	cpuset = cpu_ready_set;
15660 	cpu_hme_pend_t	*cpuhp;
15661 	timestruc_t	now;
15662 	int		one_second_expired = 0;
15663 
15664 	gethrestime_lasttick(&now);
15665 
15666 	for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15667 		ASSERT(hblkp->hblk_shw_bit == 0);
15668 		ASSERT(hblkp->hblk_shared == 0);
15669 		count++;
15670 		pr_hblkp = hblkp;
15671 	}
15672 
15673 	cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15674 	mutex_enter(&cpuhp->chp_mutex);
15675 
15676 	if ((cpuhp->chp_count + count) == 0) {
15677 		mutex_exit(&cpuhp->chp_mutex);
15678 		return;
15679 	}
15680 
15681 	if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15682 		one_second_expired  = 1;
15683 	}
15684 
15685 	if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15686 	    (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15687 	    one_second_expired)) {
15688 		/* Append global list to local */
15689 		if (pr_hblkp == NULL) {
15690 			*listp = cpuhp->chp_listp;
15691 		} else {
15692 			pr_hblkp->hblk_next = cpuhp->chp_listp;
15693 		}
15694 		cpuhp->chp_listp = NULL;
15695 		cpuhp->chp_count = 0;
15696 		cpuhp->chp_timestamp = now.tv_sec;
15697 		mutex_exit(&cpuhp->chp_mutex);
15698 
15699 		kpreempt_disable();
15700 		CPUSET_DEL(cpuset, CPU->cpu_id);
15701 		xt_sync(cpuset);
15702 		xt_sync(cpuset);
15703 		kpreempt_enable();
15704 
15705 		/*
15706 		 * At this stage we know that no trap handlers on other
15707 		 * cpus can have references to hmeblks on the list.
15708 		 */
15709 		sfmmu_hblk_free(listp);
15710 	} else if (*listp != NULL) {
15711 		pr_hblkp->hblk_next = cpuhp->chp_listp;
15712 		cpuhp->chp_listp = *listp;
15713 		cpuhp->chp_count += count;
15714 		*listp = NULL;
15715 		mutex_exit(&cpuhp->chp_mutex);
15716 	} else {
15717 		mutex_exit(&cpuhp->chp_mutex);
15718 	}
15719 }
15720 
15721 /*
15722  * Add an hmeblk to the the hash list.
15723  */
15724 void
15725 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15726 	uint64_t hblkpa)
15727 {
15728 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15729 #ifdef	DEBUG
15730 	if (hmebp->hmeblkp == NULL) {
15731 		ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15732 	}
15733 #endif /* DEBUG */
15734 
15735 	hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15736 	/*
15737 	 * Since the TSB miss handler now does not lock the hash chain before
15738 	 * walking it, make sure that the hmeblks nextpa is globally visible
15739 	 * before we make the hmeblk globally visible by updating the chain root
15740 	 * pointer in the hash bucket.
15741 	 */
15742 	membar_producer();
15743 	hmebp->hmeh_nextpa = hblkpa;
15744 	hmeblkp->hblk_next = hmebp->hmeblkp;
15745 	hmebp->hmeblkp = hmeblkp;
15746 
15747 }
15748 
15749 /*
15750  * This function is the first part of a 2 part process to remove an hmeblk
15751  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15752  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15753  * a per-cpu pending list using the virtual address pointer.
15754  *
15755  * TSB miss trap handlers that start after this phase will no longer see
15756  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15757  * can still use it for further chain traversal because we haven't yet modifed
15758  * the next physical pointer or freed it.
15759  *
15760  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15761  * we reuse or free this hmeblk. This will make sure all lingering references to
15762  * the hmeblk after first phase disappear before we finally reclaim it.
15763  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15764  * during their traversal.
15765  *
15766  * The hmehash_mutex must be held when calling this function.
15767  *
15768  * Input:
15769  *	 hmebp - hme hash bucket pointer
15770  *	 hmeblkp - address of hmeblk to be removed
15771  *	 pr_hblk - virtual address of previous hmeblkp
15772  *	 listp - pointer to list of hmeblks linked by virtual address
15773  *	 free_now flag - indicates that a complete removal from the hash chains
15774  *			 is necessary.
15775  *
15776  * It is inefficient to use the free_now flag as a cross-call is required to
15777  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15778  * in short supply.
15779  */
15780 void
15781 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15782     struct hme_blk *pr_hblk, struct hme_blk **listp,
15783     int free_now)
15784 {
15785 	int shw_size, vshift;
15786 	struct hme_blk *shw_hblkp;
15787 	uint_t		shw_mask, newshw_mask;
15788 	caddr_t		vaddr;
15789 	int		size;
15790 	cpuset_t cpuset = cpu_ready_set;
15791 
15792 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15793 
15794 	if (hmebp->hmeblkp == hmeblkp) {
15795 		hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15796 		hmebp->hmeblkp = hmeblkp->hblk_next;
15797 	} else {
15798 		pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15799 		pr_hblk->hblk_next = hmeblkp->hblk_next;
15800 	}
15801 
15802 	size = get_hblk_ttesz(hmeblkp);
15803 	shw_hblkp = hmeblkp->hblk_shadow;
15804 	if (shw_hblkp) {
15805 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15806 		ASSERT(!hmeblkp->hblk_shared);
15807 #ifdef	DEBUG
15808 		if (mmu_page_sizes == max_mmu_page_sizes) {
15809 			ASSERT(size < TTE256M);
15810 		} else {
15811 			ASSERT(size < TTE4M);
15812 		}
15813 #endif /* DEBUG */
15814 
15815 		shw_size = get_hblk_ttesz(shw_hblkp);
15816 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
15817 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15818 		ASSERT(vshift < 8);
15819 		/*
15820 		 * Atomically clear shadow mask bit
15821 		 */
15822 		do {
15823 			shw_mask = shw_hblkp->hblk_shw_mask;
15824 			ASSERT(shw_mask & (1 << vshift));
15825 			newshw_mask = shw_mask & ~(1 << vshift);
15826 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
15827 			    shw_mask, newshw_mask);
15828 		} while (newshw_mask != shw_mask);
15829 		hmeblkp->hblk_shadow = NULL;
15830 	}
15831 	hmeblkp->hblk_shw_bit = 0;
15832 
15833 	if (hmeblkp->hblk_shared) {
15834 #ifdef	DEBUG
15835 		sf_srd_t	*srdp;
15836 		sf_region_t	*rgnp;
15837 		uint_t		rid;
15838 
15839 		srdp = hblktosrd(hmeblkp);
15840 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15841 		rid = hmeblkp->hblk_tag.htag_rid;
15842 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15843 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15844 		rgnp = srdp->srd_hmergnp[rid];
15845 		ASSERT(rgnp != NULL);
15846 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15847 #endif /* DEBUG */
15848 		hmeblkp->hblk_shared = 0;
15849 	}
15850 	if (free_now) {
15851 		kpreempt_disable();
15852 		CPUSET_DEL(cpuset, CPU->cpu_id);
15853 		xt_sync(cpuset);
15854 		xt_sync(cpuset);
15855 		kpreempt_enable();
15856 
15857 		hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15858 		hmeblkp->hblk_next = NULL;
15859 	} else {
15860 		/* Append hmeblkp to listp for processing later. */
15861 		hmeblkp->hblk_next = *listp;
15862 		*listp = hmeblkp;
15863 	}
15864 }
15865 
15866 /*
15867  * This routine is called when memory is in short supply and returns a free
15868  * hmeblk of the requested size from the cpu pending lists.
15869  */
15870 static struct hme_blk *
15871 sfmmu_check_pending_hblks(int size)
15872 {
15873 	int i;
15874 	struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15875 	int found_hmeblk;
15876 	cpuset_t cpuset = cpu_ready_set;
15877 	cpu_hme_pend_t *cpuhp;
15878 
15879 	/* Flush cpu hblk pending queues */
15880 	for (i = 0; i < NCPU; i++) {
15881 		cpuhp = &cpu_hme_pend[i];
15882 		if (cpuhp->chp_listp != NULL)  {
15883 			mutex_enter(&cpuhp->chp_mutex);
15884 			if (cpuhp->chp_listp == NULL)  {
15885 				mutex_exit(&cpuhp->chp_mutex);
15886 				continue;
15887 			}
15888 			found_hmeblk = 0;
15889 			last_hmeblkp = NULL;
15890 			for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15891 			    hmeblkp = hmeblkp->hblk_next) {
15892 				if (get_hblk_ttesz(hmeblkp) == size) {
15893 					if (last_hmeblkp == NULL) {
15894 						cpuhp->chp_listp =
15895 						    hmeblkp->hblk_next;
15896 					} else {
15897 						last_hmeblkp->hblk_next =
15898 						    hmeblkp->hblk_next;
15899 					}
15900 					ASSERT(cpuhp->chp_count > 0);
15901 					cpuhp->chp_count--;
15902 					found_hmeblk = 1;
15903 					break;
15904 				} else {
15905 					last_hmeblkp = hmeblkp;
15906 				}
15907 			}
15908 			mutex_exit(&cpuhp->chp_mutex);
15909 
15910 			if (found_hmeblk) {
15911 				kpreempt_disable();
15912 				CPUSET_DEL(cpuset, CPU->cpu_id);
15913 				xt_sync(cpuset);
15914 				xt_sync(cpuset);
15915 				kpreempt_enable();
15916 				return (hmeblkp);
15917 			}
15918 		}
15919 	}
15920 	return (NULL);
15921 }
15922