xref: /titanic_51/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 805b6c0426f50f44bd56333ddd105576a1e47aa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
143  * a process would page fault indefinitely if it tried to
144  * access a 512K page.
145  */
146 int	disable_ism_large_pages = (1 << TTE512K);
147 int	disable_large_pages = 0;
148 int	disable_auto_large_pages = 0;
149 
150 /*
151  * Private sfmmu data structures for hat management
152  */
153 static struct kmem_cache *sfmmuid_cache;
154 static struct kmem_cache *mmuctxdom_cache;
155 
156 /*
157  * Private sfmmu data structures for tsb management
158  */
159 static struct kmem_cache *sfmmu_tsbinfo_cache;
160 static struct kmem_cache *sfmmu_tsb8k_cache;
161 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
162 static vmem_t *kmem_tsb_arena;
163 
164 /*
165  * sfmmu static variables for hmeblk resource management.
166  */
167 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
168 static struct kmem_cache *sfmmu8_cache;
169 static struct kmem_cache *sfmmu1_cache;
170 static struct kmem_cache *pa_hment_cache;
171 
172 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
173 /*
174  * private data for ism
175  */
176 static struct kmem_cache *ism_blk_cache;
177 static struct kmem_cache *ism_ment_cache;
178 #define	ISMID_STARTADDR	NULL
179 
180 /*
181  * Whether to delay TLB flushes and use Cheetah's flush-all support
182  * when removing contexts from the dirty list.
183  */
184 int delay_tlb_flush;
185 int disable_delay_tlb_flush;
186 
187 /*
188  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
189  * HAT flags, synchronizing TLB/TSB coherency, and context management.
190  * The lock is hashed on the sfmmup since the case where we need to lock
191  * all processes is rare but does occur (e.g. we need to unload a shared
192  * mapping from all processes using the mapping).  We have a lot of buckets,
193  * and each slab of sfmmu_t's can use about a quarter of them, giving us
194  * a fairly good distribution without wasting too much space and overhead
195  * when we have to grab them all.
196  */
197 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
198 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
199 
200 /*
201  * Hash algorithm optimized for a small number of slabs.
202  *  7 is (highbit((sizeof sfmmu_t)) - 1)
203  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
204  * kmem_cache, and thus they will be sequential within that cache.  In
205  * addition, each new slab will have a different "color" up to cache_maxcolor
206  * which will skew the hashing for each successive slab which is allocated.
207  * If the size of sfmmu_t changed to a larger size, this algorithm may need
208  * to be revisited.
209  */
210 #define	TSB_HASH_SHIFT_BITS (7)
211 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
212 
213 #ifdef DEBUG
214 int tsb_hash_debug = 0;
215 #define	TSB_HASH(sfmmup)	\
216 	(tsb_hash_debug ? &hat_lock[0] : \
217 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
218 #else	/* DEBUG */
219 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
220 #endif	/* DEBUG */
221 
222 
223 /* sfmmu_replace_tsb() return codes. */
224 typedef enum tsb_replace_rc {
225 	TSB_SUCCESS,
226 	TSB_ALLOCFAIL,
227 	TSB_LOSTRACE,
228 	TSB_ALREADY_SWAPPED,
229 	TSB_CANTGROW
230 } tsb_replace_rc_t;
231 
232 /*
233  * Flags for TSB allocation routines.
234  */
235 #define	TSB_ALLOC	0x01
236 #define	TSB_FORCEALLOC	0x02
237 #define	TSB_GROW	0x04
238 #define	TSB_SHRINK	0x08
239 #define	TSB_SWAPIN	0x10
240 
241 /*
242  * Support for HAT callbacks.
243  */
244 #define	SFMMU_MAX_RELOC_CALLBACKS	10
245 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
246 static id_t sfmmu_cb_nextid = 0;
247 static id_t sfmmu_tsb_cb_id;
248 struct sfmmu_callback *sfmmu_cb_table;
249 
250 /*
251  * Kernel page relocation is enabled by default for non-caged
252  * kernel pages.  This has little effect unless segkmem_reloc is
253  * set, since by default kernel memory comes from inside the
254  * kernel cage.
255  */
256 int hat_kpr_enabled = 1;
257 
258 kmutex_t	kpr_mutex;
259 kmutex_t	kpr_suspendlock;
260 kthread_t	*kreloc_thread;
261 
262 /*
263  * Enable VA->PA translation sanity checking on DEBUG kernels.
264  * Disabled by default.  This is incompatible with some
265  * drivers (error injector, RSM) so if it breaks you get
266  * to keep both pieces.
267  */
268 int hat_check_vtop = 0;
269 
270 /*
271  * Private sfmmu routines (prototypes)
272  */
273 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
274 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
275 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
276 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
277 			caddr_t, demap_range_t *, uint_t);
278 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
279 			caddr_t, int);
280 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
281 			uint64_t, struct hme_blk **);
282 static void	sfmmu_hblks_list_purge(struct hme_blk **);
283 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
284 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
285 static struct hme_blk *sfmmu_hblk_steal(int);
286 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
287 			struct hme_blk *, uint64_t, uint64_t,
288 			struct hme_blk *);
289 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
290 
291 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
292 		    uint_t, uint_t, pgcnt_t);
293 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
294 			uint_t);
295 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
296 			uint_t);
297 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
298 					caddr_t, int);
299 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
300 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
301 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
302 			caddr_t, page_t **, uint_t);
303 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
304 
305 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
306 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
307 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
308 #ifdef VAC
309 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
310 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
311 int	tst_tnc(page_t *pp, pgcnt_t);
312 void	conv_tnc(page_t *pp, int);
313 #endif
314 
315 static void	sfmmu_get_ctx(sfmmu_t *);
316 static void	sfmmu_free_sfmmu(sfmmu_t *);
317 
318 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
319 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
320 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
321 
322 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
323 static void	hat_pagereload(struct page *, struct page *);
324 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
325 #ifdef VAC
326 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
327 static void	sfmmu_page_cache(page_t *, int, int, int);
328 #endif
329 
330 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
331 			pfn_t, int, int, int, int);
332 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
333 			pfn_t, int);
334 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
335 static void	sfmmu_tlb_range_demap(demap_range_t *);
336 static void	sfmmu_invalidate_ctx(sfmmu_t *);
337 static void	sfmmu_sync_mmustate(sfmmu_t *);
338 
339 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
340 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
341 			sfmmu_t *);
342 static void	sfmmu_tsb_free(struct tsb_info *);
343 static void	sfmmu_tsbinfo_free(struct tsb_info *);
344 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
345 			sfmmu_t *);
346 
347 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
348 static int	sfmmu_select_tsb_szc(pgcnt_t);
349 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
350 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
351 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
352 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
353 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
354 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
355 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
356     hatlock_t *, uint_t);
357 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
358 
359 #ifdef VAC
360 void	sfmmu_cache_flush(pfn_t, int);
361 void	sfmmu_cache_flushcolor(int, pfn_t);
362 #endif
363 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
364 			caddr_t, demap_range_t *, uint_t, int);
365 
366 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
367 static uint_t	sfmmu_ptov_attr(tte_t *);
368 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
369 			caddr_t, demap_range_t *, uint_t);
370 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
371 static int	sfmmu_idcache_constructor(void *, void *, int);
372 static void	sfmmu_idcache_destructor(void *, void *);
373 static int	sfmmu_hblkcache_constructor(void *, void *, int);
374 static void	sfmmu_hblkcache_destructor(void *, void *);
375 static void	sfmmu_hblkcache_reclaim(void *);
376 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
377 			struct hmehash_bucket *);
378 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
379 static void	sfmmu_rm_large_mappings(page_t *, int);
380 
381 static void	hat_lock_init(void);
382 static void	hat_kstat_init(void);
383 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
384 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
385 int	fnd_mapping_sz(page_t *);
386 static void	iment_add(struct ism_ment *,  struct hat *);
387 static void	iment_sub(struct ism_ment *, struct hat *);
388 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
389 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
390 extern void	sfmmu_clear_utsbinfo(void);
391 
392 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
393 
394 /* kpm globals */
395 #ifdef	DEBUG
396 /*
397  * Enable trap level tsbmiss handling
398  */
399 int	kpm_tsbmtl = 1;
400 
401 /*
402  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
403  * required TLB shootdowns in this case, so handle w/ care. Off by default.
404  */
405 int	kpm_tlb_flush;
406 #endif	/* DEBUG */
407 
408 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
409 
410 #ifdef DEBUG
411 static void	sfmmu_check_hblk_flist();
412 #endif
413 
414 /*
415  * Semi-private sfmmu data structures.  Some of them are initialize in
416  * startup or in hat_init. Some of them are private but accessed by
417  * assembly code or mach_sfmmu.c
418  */
419 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
420 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
421 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
422 uint64_t	khme_hash_pa;		/* PA of khme_hash */
423 int 		uhmehash_num;		/* # of buckets in user hash table */
424 int 		khmehash_num;		/* # of buckets in kernel hash table */
425 
426 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
427 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
428 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
429 
430 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
431 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
432 
433 int		cache;			/* describes system cache */
434 
435 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
436 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
437 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
438 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
439 
440 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
441 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
442 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
443 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
444 
445 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
446 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
447 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
448 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
449 
450 #ifndef sun4v
451 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
452 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
453 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
454 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
455 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
456 #endif /* sun4v */
457 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
458 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
459 
460 /*
461  * Size to use for TSB slabs.  Future platforms that support page sizes
462  * larger than 4M may wish to change these values, and provide their own
463  * assembly macros for building and decoding the TSB base register contents.
464  * Note disable_large_pages will override the value set here.
465  */
466 uint_t	tsb_slab_ttesz = TTE4M;
467 uint_t	tsb_slab_size;
468 uint_t	tsb_slab_shift;
469 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
470 
471 /* largest TSB size to grow to, will be smaller on smaller memory systems */
472 int	tsb_max_growsize = UTSB_MAX_SZCODE;
473 
474 /*
475  * Tunable parameters dealing with TSB policies.
476  */
477 
478 /*
479  * This undocumented tunable forces all 8K TSBs to be allocated from
480  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
481  */
482 #ifdef	DEBUG
483 int	tsb_forceheap = 0;
484 #endif	/* DEBUG */
485 
486 /*
487  * Decide whether to use per-lgroup arenas, or one global set of
488  * TSB arenas.  The default is not to break up per-lgroup, since
489  * most platforms don't recognize any tangible benefit from it.
490  */
491 int	tsb_lgrp_affinity = 0;
492 
493 /*
494  * Used for growing the TSB based on the process RSS.
495  * tsb_rss_factor is based on the smallest TSB, and is
496  * shifted by the TSB size to determine if we need to grow.
497  * The default will grow the TSB if the number of TTEs for
498  * this page size exceeds 75% of the number of TSB entries,
499  * which should _almost_ eliminate all conflict misses
500  * (at the expense of using up lots and lots of memory).
501  */
502 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
503 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
504 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
505 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
506 	default_tsb_size)
507 #define	TSB_OK_SHRINK()	\
508 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
509 #define	TSB_OK_GROW()	\
510 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
511 
512 int	enable_tsb_rss_sizing = 1;
513 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
514 
515 /* which TSB size code to use for new address spaces or if rss sizing off */
516 int default_tsb_size = TSB_8K_SZCODE;
517 
518 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
519 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
520 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
521 
522 #ifdef DEBUG
523 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
524 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
525 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
526 static int tsb_alloc_fail_mtbf = 0;
527 static int tsb_alloc_count = 0;
528 #endif /* DEBUG */
529 
530 /* if set to 1, will remap valid TTEs when growing TSB. */
531 int tsb_remap_ttes = 1;
532 
533 /*
534  * If we have more than this many mappings, allocate a second TSB.
535  * This default is chosen because the I/D fully associative TLBs are
536  * assumed to have at least 8 available entries. Platforms with a
537  * larger fully-associative TLB could probably override the default.
538  */
539 int tsb_sectsb_threshold = 8;
540 
541 /*
542  * kstat data
543  */
544 struct sfmmu_global_stat sfmmu_global_stat;
545 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
546 
547 /*
548  * Global data
549  */
550 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
551 
552 #ifdef DEBUG
553 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
554 #endif
555 
556 /* sfmmu locking operations */
557 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
558 static int	sfmmu_mlspl_held(struct page *, int);
559 
560 kmutex_t *sfmmu_page_enter(page_t *);
561 void	sfmmu_page_exit(kmutex_t *);
562 int	sfmmu_page_spl_held(struct page *);
563 
564 /* sfmmu internal locking operations - accessed directly */
565 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
566 				kmutex_t **, kmutex_t **);
567 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
568 static hatlock_t *
569 		sfmmu_hat_enter(sfmmu_t *);
570 static hatlock_t *
571 		sfmmu_hat_tryenter(sfmmu_t *);
572 static void	sfmmu_hat_exit(hatlock_t *);
573 static void	sfmmu_hat_lock_all(void);
574 static void	sfmmu_hat_unlock_all(void);
575 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
576 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
577 
578 /*
579  * Array of mutexes protecting a page's mapping list and p_nrm field.
580  *
581  * The hash function looks complicated, but is made up so that:
582  *
583  * "pp" not shifted, so adjacent pp values will hash to different cache lines
584  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
585  *
586  * "pp" >> mml_shift, incorporates more source bits into the hash result
587  *
588  *  "& (mml_table_size - 1), should be faster than using remainder "%"
589  *
590  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
591  * cacheline, since they get declared next to each other below. We'll trust
592  * ld not to do something random.
593  */
594 #ifdef	DEBUG
595 int mlist_hash_debug = 0;
596 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
597 	&mml_table[((uintptr_t)(pp) + \
598 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
599 #else	/* !DEBUG */
600 #define	MLIST_HASH(pp)   &mml_table[ \
601 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
602 #endif	/* !DEBUG */
603 
604 kmutex_t		*mml_table;
605 uint_t			mml_table_sz;	/* must be a power of 2 */
606 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
607 
608 kpm_hlk_t	*kpmp_table;
609 uint_t		kpmp_table_sz;	/* must be a power of 2 */
610 uchar_t		kpmp_shift;
611 
612 kpm_shlk_t	*kpmp_stable;
613 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
614 
615 /*
616  * SPL_HASH was improved to avoid false cache line sharing
617  */
618 #define	SPL_TABLE_SIZE	128
619 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
620 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
621 
622 #define	SPL_INDEX(pp) \
623 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
624 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
625 	(SPL_TABLE_SIZE - 1))
626 
627 #define	SPL_HASH(pp)    \
628 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
629 
630 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
631 
632 
633 /*
634  * hat_unload_callback() will group together callbacks in order
635  * to avoid xt_sync() calls.  This is the maximum size of the group.
636  */
637 #define	MAX_CB_ADDR	32
638 
639 tte_t	hw_tte;
640 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
641 
642 static char	*mmu_ctx_kstat_names[] = {
643 	"mmu_ctx_tsb_exceptions",
644 	"mmu_ctx_tsb_raise_exception",
645 	"mmu_ctx_wrap_around",
646 };
647 
648 /*
649  * Wrapper for vmem_xalloc since vmem_create only allows limited
650  * parameters for vm_source_alloc functions.  This function allows us
651  * to specify alignment consistent with the size of the object being
652  * allocated.
653  */
654 static void *
655 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
656 {
657 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
658 }
659 
660 /* Common code for setting tsb_alloc_hiwater. */
661 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
662 		ptob(pages) / tsb_alloc_hiwater_factor
663 
664 /*
665  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
666  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
667  * TTEs to represent all those physical pages.  We round this up by using
668  * 1<<highbit().  To figure out which size code to use, remember that the size
669  * code is just an amount to shift the smallest TSB size to get the size of
670  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
671  * highbit() - 1) to get the size code for the smallest TSB that can represent
672  * all of physical memory, while erring on the side of too much.
673  *
674  * If the computed size code is less than the current tsb_max_growsize, we set
675  * tsb_max_growsize to the computed size code.  In the case where the computed
676  * size code is greater than tsb_max_growsize, we have these restrictions that
677  * apply to increasing tsb_max_growsize:
678  *	1) TSBs can't grow larger than the TSB slab size
679  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
680  */
681 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
682 	int	i, szc;							\
683 									\
684 	i = highbit(pages);						\
685 	if ((1 << (i - 1)) == (pages))					\
686 		i--;		/* 2^n case, round down */		\
687 	szc = i - TSB_START_SIZE;					\
688 	if (szc < tsb_max_growsize)					\
689 		tsb_max_growsize = szc;					\
690 	else if ((szc > tsb_max_growsize) &&				\
691 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
692 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
693 }
694 
695 /*
696  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
697  * tsb_info which handles that TTE size.
698  */
699 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
700 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
701 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
702 	if ((tte_szc) >= TTE4M)						\
703 		(tsbinfop) = (tsbinfop)->tsb_next;
704 
705 /*
706  * Return the number of mappings present in the HAT
707  * for a particular process and page size.
708  */
709 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
710 	(sfmmup)->sfmmu_iblk?						\
711 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
712 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
713 	    (sfmmup)->sfmmu_ttecnt[(szc)];
714 
715 /*
716  * Macro to use to unload entries from the TSB.
717  * It has knowledge of which page sizes get replicated in the TSB
718  * and will call the appropriate unload routine for the appropriate size.
719  */
720 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
721 {									\
722 	int ttesz = get_hblk_ttesz(hmeblkp);				\
723 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
724 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
725 	} else {							\
726 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
727 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
728 		ASSERT(addr >= sva && addr < eva);			\
729 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
730 	}								\
731 }
732 
733 
734 /* Update tsb_alloc_hiwater after memory is configured. */
735 /*ARGSUSED*/
736 static void
737 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
738 {
739 	/* Assumes physmem has already been updated. */
740 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
741 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
742 }
743 
744 /*
745  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
746  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
747  * deleted.
748  */
749 /*ARGSUSED*/
750 static int
751 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
752 {
753 	return (0);
754 }
755 
756 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
757 /*ARGSUSED*/
758 static void
759 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
760 {
761 	/*
762 	 * Whether the delete was cancelled or not, just go ahead and update
763 	 * tsb_alloc_hiwater and tsb_max_growsize.
764 	 */
765 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
766 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
767 }
768 
769 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
770 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
771 	sfmmu_update_tsb_post_add,	/* post_add */
772 	sfmmu_update_tsb_pre_del,	/* pre_del */
773 	sfmmu_update_tsb_post_del	/* post_del */
774 };
775 
776 
777 /*
778  * HME_BLK HASH PRIMITIVES
779  */
780 
781 /*
782  * Enter a hme on the mapping list for page pp.
783  * When large pages are more prevalent in the system we might want to
784  * keep the mapping list in ascending order by the hment size. For now,
785  * small pages are more frequent, so don't slow it down.
786  */
787 #define	HME_ADD(hme, pp)					\
788 {								\
789 	ASSERT(sfmmu_mlist_held(pp));				\
790 								\
791 	hme->hme_prev = NULL;					\
792 	hme->hme_next = pp->p_mapping;				\
793 	hme->hme_page = pp;					\
794 	if (pp->p_mapping) {					\
795 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
796 		ASSERT(pp->p_share > 0);			\
797 	} else  {						\
798 		/* EMPTY */					\
799 		ASSERT(pp->p_share == 0);			\
800 	}							\
801 	pp->p_mapping = hme;					\
802 	pp->p_share++;						\
803 }
804 
805 /*
806  * Enter a hme on the mapping list for page pp.
807  * If we are unmapping a large translation, we need to make sure that the
808  * change is reflect in the corresponding bit of the p_index field.
809  */
810 #define	HME_SUB(hme, pp)					\
811 {								\
812 	ASSERT(sfmmu_mlist_held(pp));				\
813 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
814 								\
815 	if (pp->p_mapping == NULL) {				\
816 		panic("hme_remove - no mappings");		\
817 	}							\
818 								\
819 	membar_stst();	/* ensure previous stores finish */	\
820 								\
821 	ASSERT(pp->p_share > 0);				\
822 	pp->p_share--;						\
823 								\
824 	if (hme->hme_prev) {					\
825 		ASSERT(pp->p_mapping != hme);			\
826 		ASSERT(hme->hme_prev->hme_page == pp ||		\
827 			IS_PAHME(hme->hme_prev));		\
828 		hme->hme_prev->hme_next = hme->hme_next;	\
829 	} else {						\
830 		ASSERT(pp->p_mapping == hme);			\
831 		pp->p_mapping = hme->hme_next;			\
832 		ASSERT((pp->p_mapping == NULL) ?		\
833 			(pp->p_share == 0) : 1);		\
834 	}							\
835 								\
836 	if (hme->hme_next) {					\
837 		ASSERT(hme->hme_next->hme_page == pp ||		\
838 			IS_PAHME(hme->hme_next));		\
839 		hme->hme_next->hme_prev = hme->hme_prev;	\
840 	}							\
841 								\
842 	/* zero out the entry */				\
843 	hme->hme_next = NULL;					\
844 	hme->hme_prev = NULL;					\
845 	hme->hme_page = NULL;					\
846 								\
847 	if (hme_size(hme) > TTE8K) {				\
848 		/* remove mappings for remainder of large pg */	\
849 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
850 	}							\
851 }
852 
853 /*
854  * This function returns the hment given the hme_blk and a vaddr.
855  * It assumes addr has already been checked to belong to hme_blk's
856  * range.
857  */
858 #define	HBLKTOHME(hment, hmeblkp, addr)					\
859 {									\
860 	int index;							\
861 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
862 }
863 
864 /*
865  * Version of HBLKTOHME that also returns the index in hmeblkp
866  * of the hment.
867  */
868 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
869 {									\
870 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
871 									\
872 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
873 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
874 	} else								\
875 		idx = 0;						\
876 									\
877 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
878 }
879 
880 /*
881  * Disable any page sizes not supported by the CPU
882  */
883 void
884 hat_init_pagesizes()
885 {
886 	int 		i;
887 
888 	mmu_exported_page_sizes = 0;
889 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
890 		extern int	disable_text_largepages;
891 		extern int	disable_initdata_largepages;
892 
893 		szc_2_userszc[i] = (uint_t)-1;
894 		userszc_2_szc[i] = (uint_t)-1;
895 
896 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
897 			disable_large_pages |= (1 << i);
898 			disable_ism_large_pages |= (1 << i);
899 			disable_text_largepages |= (1 << i);
900 			disable_initdata_largepages |= (1 << i);
901 		} else {
902 			szc_2_userszc[i] = mmu_exported_page_sizes;
903 			userszc_2_szc[mmu_exported_page_sizes] = i;
904 			mmu_exported_page_sizes++;
905 		}
906 	}
907 
908 	disable_auto_large_pages = disable_large_pages;
909 
910 	/*
911 	 * Initialize mmu-specific large page sizes.
912 	 */
913 	if (&mmu_large_pages_disabled) {
914 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
915 		disable_ism_large_pages |=
916 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
917 		disable_auto_large_pages |=
918 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
919 	}
920 
921 }
922 
923 /*
924  * Initialize the hardware address translation structures.
925  */
926 void
927 hat_init(void)
928 {
929 	int 		i;
930 	uint_t		sz;
931 	uint_t		maxtsb;
932 	size_t		size;
933 
934 	hat_lock_init();
935 	hat_kstat_init();
936 
937 	/*
938 	 * Hardware-only bits in a TTE
939 	 */
940 	MAKE_TTE_MASK(&hw_tte);
941 
942 	hat_init_pagesizes();
943 
944 	/* Initialize the hash locks */
945 	for (i = 0; i < khmehash_num; i++) {
946 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
947 		    MUTEX_DEFAULT, NULL);
948 	}
949 	for (i = 0; i < uhmehash_num; i++) {
950 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
951 		    MUTEX_DEFAULT, NULL);
952 	}
953 	khmehash_num--;		/* make sure counter starts from 0 */
954 	uhmehash_num--;		/* make sure counter starts from 0 */
955 
956 	/*
957 	 * Allocate context domain structures.
958 	 *
959 	 * A platform may choose to modify max_mmu_ctxdoms in
960 	 * set_platform_defaults(). If a platform does not define
961 	 * a set_platform_defaults() or does not choose to modify
962 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
963 	 *
964 	 * For sun4v, there will be one global context domain, this is to
965 	 * avoid the ldom cpu substitution problem.
966 	 *
967 	 * For all platforms that have CPUs sharing MMUs, this
968 	 * value must be defined.
969 	 */
970 	if (max_mmu_ctxdoms == 0) {
971 #ifndef sun4v
972 		max_mmu_ctxdoms = max_ncpus;
973 #else /* sun4v */
974 		max_mmu_ctxdoms = 1;
975 #endif /* sun4v */
976 	}
977 
978 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
979 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
980 
981 	/* mmu_ctx_t is 64 bytes aligned */
982 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
983 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
984 	/*
985 	 * MMU context domain initialization for the Boot CPU.
986 	 * This needs the context domains array allocated above.
987 	 */
988 	mutex_enter(&cpu_lock);
989 	sfmmu_cpu_init(CPU);
990 	mutex_exit(&cpu_lock);
991 
992 	/*
993 	 * Intialize ism mapping list lock.
994 	 */
995 
996 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
997 
998 	/*
999 	 * Each sfmmu structure carries an array of MMU context info
1000 	 * structures, one per context domain. The size of this array depends
1001 	 * on the maximum number of context domains. So, the size of the
1002 	 * sfmmu structure varies per platform.
1003 	 *
1004 	 * sfmmu is allocated from static arena, because trap
1005 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1006 	 * memory. sfmmu's alignment is changed to 64 bytes from
1007 	 * default 8 bytes, as the lower 6 bits will be used to pass
1008 	 * pgcnt to vtag_flush_pgcnt_tl1.
1009 	 */
1010 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1011 
1012 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1013 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1014 	    NULL, NULL, static_arena, 0);
1015 
1016 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1017 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1018 
1019 	/*
1020 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1021 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1022 	 * specified, don't use magazines to cache them--we want to return
1023 	 * them to the system as quickly as possible.
1024 	 */
1025 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1026 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1027 	    static_arena, KMC_NOMAGAZINE);
1028 
1029 	/*
1030 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1031 	 * memory, which corresponds to the old static reserve for TSBs.
1032 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1033 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1034 	 * allocations will be taken from the kernel heap (via
1035 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1036 	 * consumer.
1037 	 */
1038 	if (tsb_alloc_hiwater_factor == 0) {
1039 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1040 	}
1041 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1042 
1043 	/* Set tsb_max_growsize. */
1044 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1045 
1046 	/*
1047 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1048 	 * than the default 4M slab size. We also honor disable_large_pages
1049 	 * here.
1050 	 *
1051 	 * The trap handlers need to be patched with the final slab shift,
1052 	 * since they need to be able to construct the TSB pointer at runtime.
1053 	 */
1054 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1055 		tsb_slab_ttesz = TTE512K;
1056 
1057 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1058 		if (!(disable_large_pages & (1 << sz)))
1059 			break;
1060 	}
1061 
1062 	tsb_slab_ttesz = sz;
1063 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1064 	tsb_slab_size = 1 << tsb_slab_shift;
1065 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1066 
1067 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1068 	if (tsb_max_growsize > maxtsb)
1069 		tsb_max_growsize = maxtsb;
1070 
1071 	/*
1072 	 * Set up memory callback to update tsb_alloc_hiwater and
1073 	 * tsb_max_growsize.
1074 	 */
1075 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1076 	ASSERT(i == 0);
1077 
1078 	/*
1079 	 * kmem_tsb_arena is the source from which large TSB slabs are
1080 	 * drawn.  The quantum of this arena corresponds to the largest
1081 	 * TSB size we can dynamically allocate for user processes.
1082 	 * Currently it must also be a supported page size since we
1083 	 * use exactly one translation entry to map each slab page.
1084 	 *
1085 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1086 	 * which most TSBs are allocated.  Since most TSB allocations are
1087 	 * typically 8K we have a kmem cache we stack on top of each
1088 	 * kmem_tsb_default_arena to speed up those allocations.
1089 	 *
1090 	 * Note the two-level scheme of arenas is required only
1091 	 * because vmem_create doesn't allow us to specify alignment
1092 	 * requirements.  If this ever changes the code could be
1093 	 * simplified to use only one level of arenas.
1094 	 */
1095 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1096 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1097 	    0, VM_SLEEP);
1098 
1099 	if (tsb_lgrp_affinity) {
1100 		char s[50];
1101 		for (i = 0; i < NLGRPS_MAX; i++) {
1102 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1103 			kmem_tsb_default_arena[i] =
1104 			    vmem_create(s, NULL, 0, PAGESIZE,
1105 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1106 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1107 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1108 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1109 			    PAGESIZE, NULL, NULL, NULL, NULL,
1110 			    kmem_tsb_default_arena[i], 0);
1111 		}
1112 	} else {
1113 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1114 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1115 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1116 		    VM_SLEEP | VM_BESTFIT);
1117 
1118 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1119 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1120 		    kmem_tsb_default_arena[0], 0);
1121 	}
1122 
1123 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1124 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1125 		sfmmu_hblkcache_destructor,
1126 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1127 		hat_memload_arena, KMC_NOHASH);
1128 
1129 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1130 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1131 
1132 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1133 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1134 		sfmmu_hblkcache_destructor,
1135 		NULL, (void *)HME1BLK_SZ,
1136 		hat_memload1_arena, KMC_NOHASH);
1137 
1138 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1139 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1140 
1141 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1142 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1143 		NULL, NULL, static_arena, KMC_NOHASH);
1144 
1145 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1146 		sizeof (ism_ment_t), 0, NULL, NULL,
1147 		NULL, NULL, NULL, 0);
1148 
1149 	/*
1150 	 * We grab the first hat for the kernel,
1151 	 */
1152 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1153 	kas.a_hat = hat_alloc(&kas);
1154 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1155 
1156 	/*
1157 	 * Initialize hblk_reserve.
1158 	 */
1159 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1160 				va_to_pa((caddr_t)hblk_reserve);
1161 
1162 #ifndef UTSB_PHYS
1163 	/*
1164 	 * Reserve some kernel virtual address space for the locked TTEs
1165 	 * that allow us to probe the TSB from TL>0.
1166 	 */
1167 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1168 		0, 0, NULL, NULL, VM_SLEEP);
1169 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1170 		0, 0, NULL, NULL, VM_SLEEP);
1171 #endif
1172 
1173 #ifdef VAC
1174 	/*
1175 	 * The big page VAC handling code assumes VAC
1176 	 * will not be bigger than the smallest big
1177 	 * page- which is 64K.
1178 	 */
1179 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1180 		cmn_err(CE_PANIC, "VAC too big!");
1181 	}
1182 #endif
1183 
1184 	(void) xhat_init();
1185 
1186 	uhme_hash_pa = va_to_pa(uhme_hash);
1187 	khme_hash_pa = va_to_pa(khme_hash);
1188 
1189 	/*
1190 	 * Initialize relocation locks. kpr_suspendlock is held
1191 	 * at PIL_MAX to prevent interrupts from pinning the holder
1192 	 * of a suspended TTE which may access it leading to a
1193 	 * deadlock condition.
1194 	 */
1195 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1196 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1197 }
1198 
1199 /*
1200  * Initialize locking for the hat layer, called early during boot.
1201  */
1202 static void
1203 hat_lock_init()
1204 {
1205 	int i;
1206 
1207 	/*
1208 	 * initialize the array of mutexes protecting a page's mapping
1209 	 * list and p_nrm field.
1210 	 */
1211 	for (i = 0; i < mml_table_sz; i++)
1212 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1213 
1214 	if (kpm_enable) {
1215 		for (i = 0; i < kpmp_table_sz; i++) {
1216 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1217 			    MUTEX_DEFAULT, NULL);
1218 		}
1219 	}
1220 
1221 	/*
1222 	 * Initialize array of mutex locks that protects sfmmu fields and
1223 	 * TSB lists.
1224 	 */
1225 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1226 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1227 		    NULL);
1228 }
1229 
1230 extern caddr_t kmem64_base, kmem64_end;
1231 
1232 #define	SFMMU_KERNEL_MAXVA \
1233 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1234 
1235 /*
1236  * Allocate a hat structure.
1237  * Called when an address space first uses a hat.
1238  */
1239 struct hat *
1240 hat_alloc(struct as *as)
1241 {
1242 	sfmmu_t *sfmmup;
1243 	int i;
1244 	uint64_t cnum;
1245 	extern uint_t get_color_start(struct as *);
1246 
1247 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1248 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1249 	sfmmup->sfmmu_as = as;
1250 	sfmmup->sfmmu_flags = 0;
1251 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1252 
1253 	if (as == &kas) {
1254 		ksfmmup = sfmmup;
1255 		sfmmup->sfmmu_cext = 0;
1256 		cnum = KCONTEXT;
1257 
1258 		sfmmup->sfmmu_clrstart = 0;
1259 		sfmmup->sfmmu_tsb = NULL;
1260 		/*
1261 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1262 		 * to setup tsb_info for ksfmmup.
1263 		 */
1264 	} else {
1265 
1266 		/*
1267 		 * Just set to invalid ctx. When it faults, it will
1268 		 * get a valid ctx. This would avoid the situation
1269 		 * where we get a ctx, but it gets stolen and then
1270 		 * we fault when we try to run and so have to get
1271 		 * another ctx.
1272 		 */
1273 		sfmmup->sfmmu_cext = 0;
1274 		cnum = INVALID_CONTEXT;
1275 
1276 		/* initialize original physical page coloring bin */
1277 		sfmmup->sfmmu_clrstart = get_color_start(as);
1278 #ifdef DEBUG
1279 		if (tsb_random_size) {
1280 			uint32_t randval = (uint32_t)gettick() >> 4;
1281 			int size = randval % (tsb_max_growsize + 1);
1282 
1283 			/* chose a random tsb size for stress testing */
1284 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1285 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1286 		} else
1287 #endif /* DEBUG */
1288 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1289 			    default_tsb_size,
1290 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1291 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1292 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1293 	}
1294 
1295 	ASSERT(max_mmu_ctxdoms > 0);
1296 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1297 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1298 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1299 	}
1300 
1301 	sfmmu_setup_tsbinfo(sfmmup);
1302 	for (i = 0; i < max_mmu_page_sizes; i++) {
1303 		sfmmup->sfmmu_ttecnt[i] = 0;
1304 		sfmmup->sfmmu_ismttecnt[i] = 0;
1305 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1306 	}
1307 
1308 	sfmmup->sfmmu_iblk = NULL;
1309 	sfmmup->sfmmu_ismhat = 0;
1310 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1311 	if (sfmmup == ksfmmup) {
1312 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1313 	} else {
1314 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1315 	}
1316 	sfmmup->sfmmu_free = 0;
1317 	sfmmup->sfmmu_rmstat = 0;
1318 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1319 	sfmmup->sfmmu_xhat_provider = NULL;
1320 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1321 	return (sfmmup);
1322 }
1323 
1324 /*
1325  * Create per-MMU context domain kstats for a given MMU ctx.
1326  */
1327 static void
1328 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1329 {
1330 	mmu_ctx_stat_t	stat;
1331 	kstat_t		*mmu_kstat;
1332 
1333 	ASSERT(MUTEX_HELD(&cpu_lock));
1334 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1335 
1336 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1337 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1338 
1339 	if (mmu_kstat == NULL) {
1340 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1341 		    mmu_ctxp->mmu_idx);
1342 	} else {
1343 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1344 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1345 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1346 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1347 		mmu_ctxp->mmu_kstat = mmu_kstat;
1348 		kstat_install(mmu_kstat);
1349 	}
1350 }
1351 
1352 /*
1353  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1354  * context domain information for a given CPU. If a platform does not
1355  * specify that interface, then the function below is used instead to return
1356  * default information. The defaults are as follows:
1357  *
1358  *	- For sun4u systems there's one MMU context domain per CPU.
1359  *	  This default is used by all sun4u systems except OPL. OPL systems
1360  *	  provide platform specific interface to map CPU ids to MMU ids
1361  *	  because on OPL more than 1 CPU shares a single MMU.
1362  *        Note that on sun4v, there is one global context domain for
1363  *	  the entire system. This is to avoid running into potential problem
1364  *	  with ldom physical cpu substitution feature.
1365  *	- The number of MMU context IDs supported on any CPU in the
1366  *	  system is 8K.
1367  */
1368 /*ARGSUSED*/
1369 static void
1370 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1371 {
1372 	infop->mmu_nctxs = nctxs;
1373 #ifndef sun4v
1374 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1375 #else /* sun4v */
1376 	infop->mmu_idx = 0;
1377 #endif /* sun4v */
1378 }
1379 
1380 /*
1381  * Called during CPU initialization to set the MMU context-related information
1382  * for a CPU.
1383  *
1384  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1385  */
1386 void
1387 sfmmu_cpu_init(cpu_t *cp)
1388 {
1389 	mmu_ctx_info_t	info;
1390 	mmu_ctx_t	*mmu_ctxp;
1391 
1392 	ASSERT(MUTEX_HELD(&cpu_lock));
1393 
1394 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1395 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1396 	else
1397 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1398 
1399 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1400 
1401 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1402 		/* Each mmu_ctx is cacheline aligned. */
1403 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1404 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1405 
1406 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1407 		    (void *)ipltospl(DISP_LEVEL));
1408 		mmu_ctxp->mmu_idx = info.mmu_idx;
1409 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1410 		/*
1411 		 * Globally for lifetime of a system,
1412 		 * gnum must always increase.
1413 		 * mmu_saved_gnum is protected by the cpu_lock.
1414 		 */
1415 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1416 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1417 
1418 		sfmmu_mmu_kstat_create(mmu_ctxp);
1419 
1420 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1421 	} else {
1422 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1423 	}
1424 
1425 	/*
1426 	 * The mmu_lock is acquired here to prevent races with
1427 	 * the wrap-around code.
1428 	 */
1429 	mutex_enter(&mmu_ctxp->mmu_lock);
1430 
1431 
1432 	mmu_ctxp->mmu_ncpus++;
1433 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1434 	CPU_MMU_IDX(cp) = info.mmu_idx;
1435 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1436 
1437 	mutex_exit(&mmu_ctxp->mmu_lock);
1438 }
1439 
1440 /*
1441  * Called to perform MMU context-related cleanup for a CPU.
1442  */
1443 void
1444 sfmmu_cpu_cleanup(cpu_t *cp)
1445 {
1446 	mmu_ctx_t	*mmu_ctxp;
1447 
1448 	ASSERT(MUTEX_HELD(&cpu_lock));
1449 
1450 	mmu_ctxp = CPU_MMU_CTXP(cp);
1451 	ASSERT(mmu_ctxp != NULL);
1452 
1453 	/*
1454 	 * The mmu_lock is acquired here to prevent races with
1455 	 * the wrap-around code.
1456 	 */
1457 	mutex_enter(&mmu_ctxp->mmu_lock);
1458 
1459 	CPU_MMU_CTXP(cp) = NULL;
1460 
1461 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1462 	if (--mmu_ctxp->mmu_ncpus == 0) {
1463 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1464 		mutex_exit(&mmu_ctxp->mmu_lock);
1465 		mutex_destroy(&mmu_ctxp->mmu_lock);
1466 
1467 		if (mmu_ctxp->mmu_kstat)
1468 			kstat_delete(mmu_ctxp->mmu_kstat);
1469 
1470 		/* mmu_saved_gnum is protected by the cpu_lock. */
1471 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1472 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1473 
1474 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1475 
1476 		return;
1477 	}
1478 
1479 	mutex_exit(&mmu_ctxp->mmu_lock);
1480 }
1481 
1482 /*
1483  * Hat_setup, makes an address space context the current active one.
1484  * In sfmmu this translates to setting the secondary context with the
1485  * corresponding context.
1486  */
1487 void
1488 hat_setup(struct hat *sfmmup, int allocflag)
1489 {
1490 	hatlock_t *hatlockp;
1491 
1492 	/* Init needs some special treatment. */
1493 	if (allocflag == HAT_INIT) {
1494 		/*
1495 		 * Make sure that we have
1496 		 * 1. a TSB
1497 		 * 2. a valid ctx that doesn't get stolen after this point.
1498 		 */
1499 		hatlockp = sfmmu_hat_enter(sfmmup);
1500 
1501 		/*
1502 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1503 		 * TSBs, but we need one for init, since the kernel does some
1504 		 * special things to set up its stack and needs the TSB to
1505 		 * resolve page faults.
1506 		 */
1507 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1508 
1509 		sfmmu_get_ctx(sfmmup);
1510 
1511 		sfmmu_hat_exit(hatlockp);
1512 	} else {
1513 		ASSERT(allocflag == HAT_ALLOC);
1514 
1515 		hatlockp = sfmmu_hat_enter(sfmmup);
1516 		kpreempt_disable();
1517 
1518 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1519 
1520 		/*
1521 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1522 		 * pagesize bits don't matter in this case since we are passing
1523 		 * INVALID_CONTEXT to it.
1524 		 */
1525 		sfmmu_setctx_sec(INVALID_CONTEXT);
1526 		sfmmu_clear_utsbinfo();
1527 
1528 		kpreempt_enable();
1529 		sfmmu_hat_exit(hatlockp);
1530 	}
1531 }
1532 
1533 /*
1534  * Free all the translation resources for the specified address space.
1535  * Called from as_free when an address space is being destroyed.
1536  */
1537 void
1538 hat_free_start(struct hat *sfmmup)
1539 {
1540 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1541 	ASSERT(sfmmup != ksfmmup);
1542 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1543 
1544 	sfmmup->sfmmu_free = 1;
1545 }
1546 
1547 void
1548 hat_free_end(struct hat *sfmmup)
1549 {
1550 	int i;
1551 
1552 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1553 	if (sfmmup->sfmmu_ismhat) {
1554 		for (i = 0; i < mmu_page_sizes; i++) {
1555 			sfmmup->sfmmu_ttecnt[i] = 0;
1556 			sfmmup->sfmmu_ismttecnt[i] = 0;
1557 		}
1558 	} else {
1559 		/* EMPTY */
1560 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1561 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1562 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1563 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1564 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1565 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1566 	}
1567 
1568 	if (sfmmup->sfmmu_rmstat) {
1569 		hat_freestat(sfmmup->sfmmu_as, NULL);
1570 	}
1571 
1572 	while (sfmmup->sfmmu_tsb != NULL) {
1573 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1574 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1575 		sfmmup->sfmmu_tsb = next;
1576 	}
1577 	sfmmu_free_sfmmu(sfmmup);
1578 
1579 	kmem_cache_free(sfmmuid_cache, sfmmup);
1580 }
1581 
1582 /*
1583  * Set up any translation structures, for the specified address space,
1584  * that are needed or preferred when the process is being swapped in.
1585  */
1586 /* ARGSUSED */
1587 void
1588 hat_swapin(struct hat *hat)
1589 {
1590 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1591 }
1592 
1593 /*
1594  * Free all of the translation resources, for the specified address space,
1595  * that can be freed while the process is swapped out. Called from as_swapout.
1596  * Also, free up the ctx that this process was using.
1597  */
1598 void
1599 hat_swapout(struct hat *sfmmup)
1600 {
1601 	struct hmehash_bucket *hmebp;
1602 	struct hme_blk *hmeblkp;
1603 	struct hme_blk *pr_hblk = NULL;
1604 	struct hme_blk *nx_hblk;
1605 	int i;
1606 	uint64_t hblkpa, prevpa, nx_pa;
1607 	struct hme_blk *list = NULL;
1608 	hatlock_t *hatlockp;
1609 	struct tsb_info *tsbinfop;
1610 	struct free_tsb {
1611 		struct free_tsb *next;
1612 		struct tsb_info *tsbinfop;
1613 	};			/* free list of TSBs */
1614 	struct free_tsb *freelist, *last, *next;
1615 
1616 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1617 	SFMMU_STAT(sf_swapout);
1618 
1619 	/*
1620 	 * There is no way to go from an as to all its translations in sfmmu.
1621 	 * Here is one of the times when we take the big hit and traverse
1622 	 * the hash looking for hme_blks to free up.  Not only do we free up
1623 	 * this as hme_blks but all those that are free.  We are obviously
1624 	 * swapping because we need memory so let's free up as much
1625 	 * as we can.
1626 	 *
1627 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1628 	 * because:
1629 	 *  1) we free the ctx we're using and throw away the TSB(s);
1630 	 *  2) processes aren't runnable while being swapped out.
1631 	 */
1632 	ASSERT(sfmmup != KHATID);
1633 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1634 		hmebp = &uhme_hash[i];
1635 		SFMMU_HASH_LOCK(hmebp);
1636 		hmeblkp = hmebp->hmeblkp;
1637 		hblkpa = hmebp->hmeh_nextpa;
1638 		prevpa = 0;
1639 		pr_hblk = NULL;
1640 		while (hmeblkp) {
1641 
1642 			ASSERT(!hmeblkp->hblk_xhat_bit);
1643 
1644 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1645 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1646 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1647 					(caddr_t)get_hblk_base(hmeblkp),
1648 					get_hblk_endaddr(hmeblkp),
1649 					NULL, HAT_UNLOAD);
1650 			}
1651 			nx_hblk = hmeblkp->hblk_next;
1652 			nx_pa = hmeblkp->hblk_nextpa;
1653 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1654 				ASSERT(!hmeblkp->hblk_lckcnt);
1655 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1656 					prevpa, pr_hblk);
1657 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1658 			} else {
1659 				pr_hblk = hmeblkp;
1660 				prevpa = hblkpa;
1661 			}
1662 			hmeblkp = nx_hblk;
1663 			hblkpa = nx_pa;
1664 		}
1665 		SFMMU_HASH_UNLOCK(hmebp);
1666 	}
1667 
1668 	sfmmu_hblks_list_purge(&list);
1669 
1670 	/*
1671 	 * Now free up the ctx so that others can reuse it.
1672 	 */
1673 	hatlockp = sfmmu_hat_enter(sfmmup);
1674 
1675 	sfmmu_invalidate_ctx(sfmmup);
1676 
1677 	/*
1678 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1679 	 * If TSBs were never swapped in, just return.
1680 	 * This implies that we don't support partial swapping
1681 	 * of TSBs -- either all are swapped out, or none are.
1682 	 *
1683 	 * We must hold the HAT lock here to prevent racing with another
1684 	 * thread trying to unmap TTEs from the TSB or running the post-
1685 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1686 	 * can't free memory while holding the HAT lock or we could
1687 	 * deadlock, so we build a list of TSBs to be freed after marking
1688 	 * the tsbinfos as swapped out and free them after dropping the
1689 	 * lock.
1690 	 */
1691 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1692 		sfmmu_hat_exit(hatlockp);
1693 		return;
1694 	}
1695 
1696 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1697 	last = freelist = NULL;
1698 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1699 	    tsbinfop = tsbinfop->tsb_next) {
1700 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1701 
1702 		/*
1703 		 * Cast the TSB into a struct free_tsb and put it on the free
1704 		 * list.
1705 		 */
1706 		if (freelist == NULL) {
1707 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1708 		} else {
1709 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1710 			last = last->next;
1711 		}
1712 		last->next = NULL;
1713 		last->tsbinfop = tsbinfop;
1714 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1715 		/*
1716 		 * Zero out the TTE to clear the valid bit.
1717 		 * Note we can't use a value like 0xbad because we want to
1718 		 * ensure diagnostic bits are NEVER set on TTEs that might
1719 		 * be loaded.  The intent is to catch any invalid access
1720 		 * to the swapped TSB, such as a thread running with a valid
1721 		 * context without first calling sfmmu_tsb_swapin() to
1722 		 * allocate TSB memory.
1723 		 */
1724 		tsbinfop->tsb_tte.ll = 0;
1725 	}
1726 
1727 	/* Now we can drop the lock and free the TSB memory. */
1728 	sfmmu_hat_exit(hatlockp);
1729 	for (; freelist != NULL; freelist = next) {
1730 		next = freelist->next;
1731 		sfmmu_tsb_free(freelist->tsbinfop);
1732 	}
1733 }
1734 
1735 /*
1736  * Duplicate the translations of an as into another newas
1737  */
1738 /* ARGSUSED */
1739 int
1740 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1741 	uint_t flag)
1742 {
1743 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1744 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1745 
1746 	if (flag == HAT_DUP_COW) {
1747 		panic("hat_dup: HAT_DUP_COW not supported");
1748 	}
1749 	return (0);
1750 }
1751 
1752 /*
1753  * Set up addr to map to page pp with protection prot.
1754  * As an optimization we also load the TSB with the
1755  * corresponding tte but it is no big deal if  the tte gets kicked out.
1756  */
1757 void
1758 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1759 	uint_t attr, uint_t flags)
1760 {
1761 	tte_t tte;
1762 
1763 
1764 	ASSERT(hat != NULL);
1765 	ASSERT(PAGE_LOCKED(pp));
1766 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1767 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1768 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1769 
1770 	if (PP_ISFREE(pp)) {
1771 		panic("hat_memload: loading a mapping to free page %p",
1772 		    (void *)pp);
1773 	}
1774 
1775 	if (hat->sfmmu_xhat_provider) {
1776 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1777 		return;
1778 	}
1779 
1780 	ASSERT((hat == ksfmmup) ||
1781 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1782 
1783 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1784 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1785 		    flags & ~SFMMU_LOAD_ALLFLAG);
1786 
1787 	if (hat->sfmmu_rmstat)
1788 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1789 
1790 #if defined(SF_ERRATA_57)
1791 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1792 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1793 	    !(flags & HAT_LOAD_SHARE)) {
1794 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1795 		    " page executable");
1796 		attr &= ~PROT_EXEC;
1797 	}
1798 #endif
1799 
1800 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1801 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1802 
1803 	/*
1804 	 * Check TSB and TLB page sizes.
1805 	 */
1806 	if ((flags & HAT_LOAD_SHARE) == 0) {
1807 		sfmmu_check_page_sizes(hat, 1);
1808 	}
1809 }
1810 
1811 /*
1812  * hat_devload can be called to map real memory (e.g.
1813  * /dev/kmem) and even though hat_devload will determine pf is
1814  * for memory, it will be unable to get a shared lock on the
1815  * page (because someone else has it exclusively) and will
1816  * pass dp = NULL.  If tteload doesn't get a non-NULL
1817  * page pointer it can't cache memory.
1818  */
1819 void
1820 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1821 	uint_t attr, int flags)
1822 {
1823 	tte_t tte;
1824 	struct page *pp = NULL;
1825 	int use_lgpg = 0;
1826 
1827 	ASSERT(hat != NULL);
1828 
1829 	if (hat->sfmmu_xhat_provider) {
1830 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1831 		return;
1832 	}
1833 
1834 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1835 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1836 	ASSERT((hat == ksfmmup) ||
1837 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1838 	if (len == 0)
1839 		panic("hat_devload: zero len");
1840 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1841 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1842 		    flags & ~SFMMU_LOAD_ALLFLAG);
1843 
1844 #if defined(SF_ERRATA_57)
1845 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1846 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1847 	    !(flags & HAT_LOAD_SHARE)) {
1848 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1849 		    " page executable");
1850 		attr &= ~PROT_EXEC;
1851 	}
1852 #endif
1853 
1854 	/*
1855 	 * If it's a memory page find its pp
1856 	 */
1857 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1858 		pp = page_numtopp_nolock(pfn);
1859 		if (pp == NULL) {
1860 			flags |= HAT_LOAD_NOCONSIST;
1861 		} else {
1862 			if (PP_ISFREE(pp)) {
1863 				panic("hat_memload: loading "
1864 				    "a mapping to free page %p",
1865 				    (void *)pp);
1866 			}
1867 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1868 				panic("hat_memload: loading a mapping "
1869 				    "to unlocked relocatable page %p",
1870 				    (void *)pp);
1871 			}
1872 			ASSERT(len == MMU_PAGESIZE);
1873 		}
1874 	}
1875 
1876 	if (hat->sfmmu_rmstat)
1877 		hat_resvstat(len, hat->sfmmu_as, addr);
1878 
1879 	if (flags & HAT_LOAD_NOCONSIST) {
1880 		attr |= SFMMU_UNCACHEVTTE;
1881 		use_lgpg = 1;
1882 	}
1883 	if (!pf_is_memory(pfn)) {
1884 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1885 		use_lgpg = 1;
1886 		switch (attr & HAT_ORDER_MASK) {
1887 			case HAT_STRICTORDER:
1888 			case HAT_UNORDERED_OK:
1889 				/*
1890 				 * we set the side effect bit for all non
1891 				 * memory mappings unless merging is ok
1892 				 */
1893 				attr |= SFMMU_SIDEFFECT;
1894 				break;
1895 			case HAT_MERGING_OK:
1896 			case HAT_LOADCACHING_OK:
1897 			case HAT_STORECACHING_OK:
1898 				break;
1899 			default:
1900 				panic("hat_devload: bad attr");
1901 				break;
1902 		}
1903 	}
1904 	while (len) {
1905 		if (!use_lgpg) {
1906 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1907 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1908 			    flags);
1909 			len -= MMU_PAGESIZE;
1910 			addr += MMU_PAGESIZE;
1911 			pfn++;
1912 			continue;
1913 		}
1914 		/*
1915 		 *  try to use large pages, check va/pa alignments
1916 		 *  Note that 32M/256M page sizes are not (yet) supported.
1917 		 */
1918 		if ((len >= MMU_PAGESIZE4M) &&
1919 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1920 		    !(disable_large_pages & (1 << TTE4M)) &&
1921 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1922 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1923 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1924 			    flags);
1925 			len -= MMU_PAGESIZE4M;
1926 			addr += MMU_PAGESIZE4M;
1927 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1928 		} else if ((len >= MMU_PAGESIZE512K) &&
1929 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1930 		    !(disable_large_pages & (1 << TTE512K)) &&
1931 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1932 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1933 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1934 			    flags);
1935 			len -= MMU_PAGESIZE512K;
1936 			addr += MMU_PAGESIZE512K;
1937 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1938 		} else if ((len >= MMU_PAGESIZE64K) &&
1939 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1940 		    !(disable_large_pages & (1 << TTE64K)) &&
1941 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1942 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1943 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1944 			    flags);
1945 			len -= MMU_PAGESIZE64K;
1946 			addr += MMU_PAGESIZE64K;
1947 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1948 		} else {
1949 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1950 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1951 			    flags);
1952 			len -= MMU_PAGESIZE;
1953 			addr += MMU_PAGESIZE;
1954 			pfn++;
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * Check TSB and TLB page sizes.
1960 	 */
1961 	if ((flags & HAT_LOAD_SHARE) == 0) {
1962 		sfmmu_check_page_sizes(hat, 1);
1963 	}
1964 }
1965 
1966 /*
1967  * Map the largest extend possible out of the page array. The array may NOT
1968  * be in order.  The largest possible mapping a page can have
1969  * is specified in the p_szc field.  The p_szc field
1970  * cannot change as long as there any mappings (large or small)
1971  * to any of the pages that make up the large page. (ie. any
1972  * promotion/demotion of page size is not up to the hat but up to
1973  * the page free list manager).  The array
1974  * should consist of properly aligned contigous pages that are
1975  * part of a big page for a large mapping to be created.
1976  */
1977 void
1978 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1979 	struct page **pps, uint_t attr, uint_t flags)
1980 {
1981 	int  ttesz;
1982 	size_t mapsz;
1983 	pgcnt_t	numpg, npgs;
1984 	tte_t tte;
1985 	page_t *pp;
1986 	int large_pages_disable;
1987 
1988 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1989 
1990 	if (hat->sfmmu_xhat_provider) {
1991 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1992 		return;
1993 	}
1994 
1995 	if (hat->sfmmu_rmstat)
1996 		hat_resvstat(len, hat->sfmmu_as, addr);
1997 
1998 #if defined(SF_ERRATA_57)
1999 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2000 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2001 	    !(flags & HAT_LOAD_SHARE)) {
2002 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2003 		    "user page executable");
2004 		attr &= ~PROT_EXEC;
2005 	}
2006 #endif
2007 
2008 	/* Get number of pages */
2009 	npgs = len >> MMU_PAGESHIFT;
2010 
2011 	if (flags & HAT_LOAD_SHARE) {
2012 		large_pages_disable = disable_ism_large_pages;
2013 	} else {
2014 		large_pages_disable = disable_large_pages;
2015 	}
2016 
2017 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2018 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2019 		return;
2020 	}
2021 
2022 	while (npgs >= NHMENTS) {
2023 		pp = *pps;
2024 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2025 			/*
2026 			 * Check if this page size is disabled.
2027 			 */
2028 			if (large_pages_disable & (1 << ttesz))
2029 				continue;
2030 
2031 			numpg = TTEPAGES(ttesz);
2032 			mapsz = numpg << MMU_PAGESHIFT;
2033 			if ((npgs >= numpg) &&
2034 			    IS_P2ALIGNED(addr, mapsz) &&
2035 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2036 				/*
2037 				 * At this point we have enough pages and
2038 				 * we know the virtual address and the pfn
2039 				 * are properly aligned.  We still need
2040 				 * to check for physical contiguity but since
2041 				 * it is very likely that this is the case
2042 				 * we will assume they are so and undo
2043 				 * the request if necessary.  It would
2044 				 * be great if we could get a hint flag
2045 				 * like HAT_CONTIG which would tell us
2046 				 * the pages are contigous for sure.
2047 				 */
2048 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2049 					attr, ttesz);
2050 				if (!sfmmu_tteload_array(hat, &tte, addr,
2051 				    pps, flags)) {
2052 					break;
2053 				}
2054 			}
2055 		}
2056 		if (ttesz == TTE8K) {
2057 			/*
2058 			 * We were not able to map array using a large page
2059 			 * batch a hmeblk or fraction at a time.
2060 			 */
2061 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2062 				& (NHMENTS-1);
2063 			numpg = NHMENTS - numpg;
2064 			ASSERT(numpg <= npgs);
2065 			mapsz = numpg * MMU_PAGESIZE;
2066 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2067 							numpg);
2068 		}
2069 		addr += mapsz;
2070 		npgs -= numpg;
2071 		pps += numpg;
2072 	}
2073 
2074 	if (npgs) {
2075 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2076 	}
2077 
2078 	/*
2079 	 * Check TSB and TLB page sizes.
2080 	 */
2081 	if ((flags & HAT_LOAD_SHARE) == 0) {
2082 		sfmmu_check_page_sizes(hat, 1);
2083 	}
2084 }
2085 
2086 /*
2087  * Function tries to batch 8K pages into the same hme blk.
2088  */
2089 static void
2090 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2091 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2092 {
2093 	tte_t	tte;
2094 	page_t *pp;
2095 	struct hmehash_bucket *hmebp;
2096 	struct hme_blk *hmeblkp;
2097 	int	index;
2098 
2099 	while (npgs) {
2100 		/*
2101 		 * Acquire the hash bucket.
2102 		 */
2103 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2104 		ASSERT(hmebp);
2105 
2106 		/*
2107 		 * Find the hment block.
2108 		 */
2109 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2110 				TTE8K, flags);
2111 		ASSERT(hmeblkp);
2112 
2113 		do {
2114 			/*
2115 			 * Make the tte.
2116 			 */
2117 			pp = *pps;
2118 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2119 
2120 			/*
2121 			 * Add the translation.
2122 			 */
2123 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2124 					vaddr, pps, flags);
2125 
2126 			/*
2127 			 * Goto next page.
2128 			 */
2129 			pps++;
2130 			npgs--;
2131 
2132 			/*
2133 			 * Goto next address.
2134 			 */
2135 			vaddr += MMU_PAGESIZE;
2136 
2137 			/*
2138 			 * Don't crossover into a different hmentblk.
2139 			 */
2140 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2141 			    (NHMENTS-1));
2142 
2143 		} while (index != 0 && npgs != 0);
2144 
2145 		/*
2146 		 * Release the hash bucket.
2147 		 */
2148 
2149 		sfmmu_tteload_release_hashbucket(hmebp);
2150 	}
2151 }
2152 
2153 /*
2154  * Construct a tte for a page:
2155  *
2156  * tte_valid = 1
2157  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2158  * tte_size = size
2159  * tte_nfo = attr & HAT_NOFAULT
2160  * tte_ie = attr & HAT_STRUCTURE_LE
2161  * tte_hmenum = hmenum
2162  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2163  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2164  * tte_ref = 1 (optimization)
2165  * tte_wr_perm = attr & PROT_WRITE;
2166  * tte_no_sync = attr & HAT_NOSYNC
2167  * tte_lock = attr & SFMMU_LOCKTTE
2168  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2169  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2170  * tte_e = attr & SFMMU_SIDEFFECT
2171  * tte_priv = !(attr & PROT_USER)
2172  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2173  * tte_glb = 0
2174  */
2175 void
2176 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2177 {
2178 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2179 
2180 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2181 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2182 
2183 	if (TTE_IS_NOSYNC(ttep)) {
2184 		TTE_SET_REF(ttep);
2185 		if (TTE_IS_WRITABLE(ttep)) {
2186 			TTE_SET_MOD(ttep);
2187 		}
2188 	}
2189 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2190 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2191 	}
2192 }
2193 
2194 /*
2195  * This function will add a translation to the hme_blk and allocate the
2196  * hme_blk if one does not exist.
2197  * If a page structure is specified then it will add the
2198  * corresponding hment to the mapping list.
2199  * It will also update the hmenum field for the tte.
2200  */
2201 void
2202 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2203 	uint_t flags)
2204 {
2205 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2206 }
2207 
2208 /*
2209  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2210  * Assumes that a particular page size may only be resident in one TSB.
2211  */
2212 static void
2213 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2214 {
2215 	struct tsb_info *tsbinfop = NULL;
2216 	uint64_t tag;
2217 	struct tsbe *tsbe_addr;
2218 	uint64_t tsb_base;
2219 	uint_t tsb_size;
2220 	int vpshift = MMU_PAGESHIFT;
2221 	int phys = 0;
2222 
2223 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2224 		phys = ktsb_phys;
2225 		if (ttesz >= TTE4M) {
2226 #ifndef sun4v
2227 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2228 #endif
2229 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2230 			tsb_size = ktsb4m_szcode;
2231 		} else {
2232 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2233 			tsb_size = ktsb_szcode;
2234 		}
2235 	} else {
2236 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2237 
2238 		/*
2239 		 * If there isn't a TSB for this page size, or the TSB is
2240 		 * swapped out, there is nothing to do.  Note that the latter
2241 		 * case seems impossible but can occur if hat_pageunload()
2242 		 * is called on an ISM mapping while the process is swapped
2243 		 * out.
2244 		 */
2245 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2246 			return;
2247 
2248 		/*
2249 		 * If another thread is in the middle of relocating a TSB
2250 		 * we can't unload the entry so set a flag so that the
2251 		 * TSB will be flushed before it can be accessed by the
2252 		 * process.
2253 		 */
2254 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2255 			if (ttep == NULL)
2256 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2257 			return;
2258 		}
2259 #if defined(UTSB_PHYS)
2260 		phys = 1;
2261 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2262 #else
2263 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2264 #endif
2265 		tsb_size = tsbinfop->tsb_szc;
2266 	}
2267 	if (ttesz >= TTE4M)
2268 		vpshift = MMU_PAGESHIFT4M;
2269 
2270 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2271 	tag = sfmmu_make_tsbtag(vaddr);
2272 
2273 	if (ttep == NULL) {
2274 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2275 	} else {
2276 		if (ttesz >= TTE4M) {
2277 			SFMMU_STAT(sf_tsb_load4m);
2278 		} else {
2279 			SFMMU_STAT(sf_tsb_load8k);
2280 		}
2281 
2282 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2283 	}
2284 }
2285 
2286 /*
2287  * Unmap all entries from [start, end) matching the given page size.
2288  *
2289  * This function is used primarily to unmap replicated 64K or 512K entries
2290  * from the TSB that are inserted using the base page size TSB pointer, but
2291  * it may also be called to unmap a range of addresses from the TSB.
2292  */
2293 void
2294 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2295 {
2296 	struct tsb_info *tsbinfop;
2297 	uint64_t tag;
2298 	struct tsbe *tsbe_addr;
2299 	caddr_t vaddr;
2300 	uint64_t tsb_base;
2301 	int vpshift, vpgsz;
2302 	uint_t tsb_size;
2303 	int phys = 0;
2304 
2305 	/*
2306 	 * Assumptions:
2307 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2308 	 *  at a time shooting down any valid entries we encounter.
2309 	 *
2310 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2311 	 *  down any valid mappings we find.
2312 	 */
2313 	if (sfmmup == ksfmmup) {
2314 		phys = ktsb_phys;
2315 		if (ttesz >= TTE4M) {
2316 #ifndef sun4v
2317 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2318 #endif
2319 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2320 			tsb_size = ktsb4m_szcode;
2321 		} else {
2322 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2323 			tsb_size = ktsb_szcode;
2324 		}
2325 	} else {
2326 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2327 
2328 		/*
2329 		 * If there isn't a TSB for this page size, or the TSB is
2330 		 * swapped out, there is nothing to do.  Note that the latter
2331 		 * case seems impossible but can occur if hat_pageunload()
2332 		 * is called on an ISM mapping while the process is swapped
2333 		 * out.
2334 		 */
2335 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2336 			return;
2337 
2338 		/*
2339 		 * If another thread is in the middle of relocating a TSB
2340 		 * we can't unload the entry so set a flag so that the
2341 		 * TSB will be flushed before it can be accessed by the
2342 		 * process.
2343 		 */
2344 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2345 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2346 			return;
2347 		}
2348 #if defined(UTSB_PHYS)
2349 		phys = 1;
2350 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2351 #else
2352 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2353 #endif
2354 		tsb_size = tsbinfop->tsb_szc;
2355 	}
2356 	if (ttesz >= TTE4M) {
2357 		vpshift = MMU_PAGESHIFT4M;
2358 		vpgsz = MMU_PAGESIZE4M;
2359 	} else {
2360 		vpshift = MMU_PAGESHIFT;
2361 		vpgsz = MMU_PAGESIZE;
2362 	}
2363 
2364 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2365 		tag = sfmmu_make_tsbtag(vaddr);
2366 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2367 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2368 	}
2369 }
2370 
2371 /*
2372  * Select the optimum TSB size given the number of mappings
2373  * that need to be cached.
2374  */
2375 static int
2376 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2377 {
2378 	int szc = 0;
2379 
2380 #ifdef DEBUG
2381 	if (tsb_grow_stress) {
2382 		uint32_t randval = (uint32_t)gettick() >> 4;
2383 		return (randval % (tsb_max_growsize + 1));
2384 	}
2385 #endif	/* DEBUG */
2386 
2387 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2388 		szc++;
2389 	return (szc);
2390 }
2391 
2392 /*
2393  * This function will add a translation to the hme_blk and allocate the
2394  * hme_blk if one does not exist.
2395  * If a page structure is specified then it will add the
2396  * corresponding hment to the mapping list.
2397  * It will also update the hmenum field for the tte.
2398  * Furthermore, it attempts to create a large page translation
2399  * for <addr,hat> at page array pps.  It assumes addr and first
2400  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2401  */
2402 static int
2403 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2404 	page_t **pps, uint_t flags)
2405 {
2406 	struct hmehash_bucket *hmebp;
2407 	struct hme_blk *hmeblkp;
2408 	int 	ret;
2409 	uint_t	size;
2410 
2411 	/*
2412 	 * Get mapping size.
2413 	 */
2414 	size = TTE_CSZ(ttep);
2415 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2416 
2417 	/*
2418 	 * Acquire the hash bucket.
2419 	 */
2420 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2421 	ASSERT(hmebp);
2422 
2423 	/*
2424 	 * Find the hment block.
2425 	 */
2426 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2427 	ASSERT(hmeblkp);
2428 
2429 	/*
2430 	 * Add the translation.
2431 	 */
2432 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2433 
2434 	/*
2435 	 * Release the hash bucket.
2436 	 */
2437 	sfmmu_tteload_release_hashbucket(hmebp);
2438 
2439 	return (ret);
2440 }
2441 
2442 /*
2443  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2444  */
2445 static struct hmehash_bucket *
2446 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2447 {
2448 	struct hmehash_bucket *hmebp;
2449 	int hmeshift;
2450 
2451 	hmeshift = HME_HASH_SHIFT(size);
2452 
2453 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2454 
2455 	SFMMU_HASH_LOCK(hmebp);
2456 
2457 	return (hmebp);
2458 }
2459 
2460 /*
2461  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2462  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2463  * allocated.
2464  */
2465 static struct hme_blk *
2466 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2467 	caddr_t vaddr, uint_t size, uint_t flags)
2468 {
2469 	hmeblk_tag hblktag;
2470 	int hmeshift;
2471 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2472 	uint64_t hblkpa, prevpa;
2473 	struct kmem_cache *sfmmu_cache;
2474 	uint_t forcefree;
2475 
2476 	hblktag.htag_id = sfmmup;
2477 	hmeshift = HME_HASH_SHIFT(size);
2478 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2479 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2480 
2481 ttearray_realloc:
2482 
2483 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2484 	    pr_hblk, prevpa, &list);
2485 
2486 	/*
2487 	 * We block until hblk_reserve_lock is released; it's held by
2488 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2489 	 * replaced by a hblk from sfmmu8_cache.
2490 	 */
2491 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2492 	    hblk_reserve_thread != curthread) {
2493 		SFMMU_HASH_UNLOCK(hmebp);
2494 		mutex_enter(&hblk_reserve_lock);
2495 		mutex_exit(&hblk_reserve_lock);
2496 		SFMMU_STAT(sf_hblk_reserve_hit);
2497 		SFMMU_HASH_LOCK(hmebp);
2498 		goto ttearray_realloc;
2499 	}
2500 
2501 	if (hmeblkp == NULL) {
2502 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2503 		    hblktag, flags);
2504 	} else {
2505 		/*
2506 		 * It is possible for 8k and 64k hblks to collide since they
2507 		 * have the same rehash value. This is because we
2508 		 * lazily free hblks and 8K/64K blks could be lingering.
2509 		 * If we find size mismatch we free the block and & try again.
2510 		 */
2511 		if (get_hblk_ttesz(hmeblkp) != size) {
2512 			ASSERT(!hmeblkp->hblk_vcnt);
2513 			ASSERT(!hmeblkp->hblk_hmecnt);
2514 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2515 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2516 			goto ttearray_realloc;
2517 		}
2518 		if (hmeblkp->hblk_shw_bit) {
2519 			/*
2520 			 * if the hblk was previously used as a shadow hblk then
2521 			 * we will change it to a normal hblk
2522 			 */
2523 			if (hmeblkp->hblk_shw_mask) {
2524 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2525 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2526 				goto ttearray_realloc;
2527 			} else {
2528 				hmeblkp->hblk_shw_bit = 0;
2529 			}
2530 		}
2531 		SFMMU_STAT(sf_hblk_hit);
2532 	}
2533 
2534 	/*
2535 	 * hat_memload() should never call kmem_cache_free(); see block
2536 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2537 	 * enqueue each hblk in the list to reserve list if it's created
2538 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2539 	 */
2540 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2541 	while ((pr_hblk = list) != NULL) {
2542 		list = pr_hblk->hblk_next;
2543 		sfmmu_cache = get_hblk_cache(pr_hblk);
2544 		if ((sfmmu_cache == sfmmu8_cache) &&
2545 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2546 			continue;
2547 
2548 		ASSERT(sfmmup != KHATID);
2549 		kmem_cache_free(sfmmu_cache, pr_hblk);
2550 	}
2551 
2552 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2553 	ASSERT(!hmeblkp->hblk_shw_bit);
2554 
2555 	return (hmeblkp);
2556 }
2557 
2558 /*
2559  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2560  * otherwise.
2561  */
2562 static int
2563 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2564 	caddr_t vaddr, page_t **pps, uint_t flags)
2565 {
2566 	page_t *pp = *pps;
2567 	int hmenum, size, remap;
2568 	tte_t tteold, flush_tte;
2569 #ifdef DEBUG
2570 	tte_t orig_old;
2571 #endif /* DEBUG */
2572 	struct sf_hment *sfhme;
2573 	kmutex_t *pml, *pmtx;
2574 	hatlock_t *hatlockp;
2575 
2576 	/*
2577 	 * remove this panic when we decide to let user virtual address
2578 	 * space be >= USERLIMIT.
2579 	 */
2580 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2581 		panic("user addr %p in kernel space", vaddr);
2582 #if defined(TTE_IS_GLOBAL)
2583 	if (TTE_IS_GLOBAL(ttep))
2584 		panic("sfmmu_tteload: creating global tte");
2585 #endif
2586 
2587 #ifdef DEBUG
2588 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2589 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2590 		panic("sfmmu_tteload: non cacheable memory tte");
2591 #endif /* DEBUG */
2592 
2593 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2594 	    !TTE_IS_MOD(ttep)) {
2595 		/*
2596 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2597 		 * the TSB if the TTE isn't writable since we're likely to
2598 		 * fault on it again -- preloading can be fairly expensive.
2599 		 */
2600 		flags |= SFMMU_NO_TSBLOAD;
2601 	}
2602 
2603 	size = TTE_CSZ(ttep);
2604 	switch (size) {
2605 	case TTE8K:
2606 		SFMMU_STAT(sf_tteload8k);
2607 		break;
2608 	case TTE64K:
2609 		SFMMU_STAT(sf_tteload64k);
2610 		break;
2611 	case TTE512K:
2612 		SFMMU_STAT(sf_tteload512k);
2613 		break;
2614 	case TTE4M:
2615 		SFMMU_STAT(sf_tteload4m);
2616 		break;
2617 	case (TTE32M):
2618 		SFMMU_STAT(sf_tteload32m);
2619 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2620 		break;
2621 	case (TTE256M):
2622 		SFMMU_STAT(sf_tteload256m);
2623 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2624 		break;
2625 	}
2626 
2627 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2628 
2629 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2630 
2631 	/*
2632 	 * Need to grab mlist lock here so that pageunload
2633 	 * will not change tte behind us.
2634 	 */
2635 	if (pp) {
2636 		pml = sfmmu_mlist_enter(pp);
2637 	}
2638 
2639 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2640 	/*
2641 	 * Look for corresponding hment and if valid verify
2642 	 * pfns are equal.
2643 	 */
2644 	remap = TTE_IS_VALID(&tteold);
2645 	if (remap) {
2646 		pfn_t	new_pfn, old_pfn;
2647 
2648 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2649 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2650 
2651 		if (flags & HAT_LOAD_REMAP) {
2652 			/* make sure we are remapping same type of pages */
2653 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2654 				panic("sfmmu_tteload - tte remap io<->memory");
2655 			}
2656 			if (old_pfn != new_pfn &&
2657 			    (pp != NULL || sfhme->hme_page != NULL)) {
2658 				panic("sfmmu_tteload - tte remap pp != NULL");
2659 			}
2660 		} else if (old_pfn != new_pfn) {
2661 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2662 			    (void *)hmeblkp);
2663 		}
2664 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2665 	}
2666 
2667 	if (pp) {
2668 		if (size == TTE8K) {
2669 #ifdef VAC
2670 			/*
2671 			 * Handle VAC consistency
2672 			 */
2673 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2674 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2675 			}
2676 #endif
2677 
2678 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2679 				pmtx = sfmmu_page_enter(pp);
2680 				PP_CLRRO(pp);
2681 				sfmmu_page_exit(pmtx);
2682 			} else if (!PP_ISMAPPED(pp) &&
2683 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2684 				pmtx = sfmmu_page_enter(pp);
2685 				if (!(PP_ISMOD(pp))) {
2686 					PP_SETRO(pp);
2687 				}
2688 				sfmmu_page_exit(pmtx);
2689 			}
2690 
2691 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2692 			/*
2693 			 * sfmmu_pagearray_setup failed so return
2694 			 */
2695 			sfmmu_mlist_exit(pml);
2696 			return (1);
2697 		}
2698 	}
2699 
2700 	/*
2701 	 * Make sure hment is not on a mapping list.
2702 	 */
2703 	ASSERT(remap || (sfhme->hme_page == NULL));
2704 
2705 	/* if it is not a remap then hme->next better be NULL */
2706 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2707 
2708 	if (flags & HAT_LOAD_LOCK) {
2709 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2710 			panic("too high lckcnt-hmeblk %p",
2711 			    (void *)hmeblkp);
2712 		}
2713 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2714 
2715 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2716 	}
2717 
2718 #ifdef VAC
2719 	if (pp && PP_ISNC(pp)) {
2720 		/*
2721 		 * If the physical page is marked to be uncacheable, like
2722 		 * by a vac conflict, make sure the new mapping is also
2723 		 * uncacheable.
2724 		 */
2725 		TTE_CLR_VCACHEABLE(ttep);
2726 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2727 	}
2728 #endif
2729 	ttep->tte_hmenum = hmenum;
2730 
2731 #ifdef DEBUG
2732 	orig_old = tteold;
2733 #endif /* DEBUG */
2734 
2735 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2736 		if ((sfmmup == KHATID) &&
2737 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2738 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2739 		}
2740 #ifdef DEBUG
2741 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2742 #endif /* DEBUG */
2743 	}
2744 
2745 	if (!TTE_IS_VALID(&tteold)) {
2746 
2747 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2748 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2749 
2750 		/*
2751 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2752 		 */
2753 
2754 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2755 		    sfmmup != ksfmmup) {
2756 			/*
2757 			 * If this is the first large mapping for the process
2758 			 * we must force any CPUs running this process to TL=0
2759 			 * where they will reload the HAT flags from the
2760 			 * tsbmiss area.  This is necessary to make the large
2761 			 * mappings we are about to load visible to those CPUs;
2762 			 * otherwise they'll loop forever calling pagefault()
2763 			 * since we don't search large hash chains by default.
2764 			 */
2765 			hatlockp = sfmmu_hat_enter(sfmmup);
2766 			if (size == TTE512K &&
2767 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2768 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2769 				sfmmu_sync_mmustate(sfmmup);
2770 			} else if (size == TTE4M &&
2771 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2772 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2773 				sfmmu_sync_mmustate(sfmmup);
2774 			} else if (size == TTE64K &&
2775 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2776 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2777 				/* no sync mmustate; 64K shares 8K hashes */
2778 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2779 			    if (size == TTE32M &&
2780 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2781 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2782 				sfmmu_sync_mmustate(sfmmup);
2783 			    } else if (size == TTE256M &&
2784 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2785 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2786 				sfmmu_sync_mmustate(sfmmup);
2787 			    }
2788 			}
2789 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2790 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2791 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2792 			}
2793 			sfmmu_hat_exit(hatlockp);
2794 		}
2795 	}
2796 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2797 
2798 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2799 	    hw_tte.tte_intlo;
2800 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2801 	    hw_tte.tte_inthi;
2802 
2803 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2804 		/*
2805 		 * If remap and new tte differs from old tte we need
2806 		 * to sync the mod bit and flush TLB/TSB.  We don't
2807 		 * need to sync ref bit because we currently always set
2808 		 * ref bit in tteload.
2809 		 */
2810 		ASSERT(TTE_IS_REF(ttep));
2811 		if (TTE_IS_MOD(&tteold)) {
2812 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2813 		}
2814 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2815 		xt_sync(sfmmup->sfmmu_cpusran);
2816 	}
2817 
2818 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2819 		/*
2820 		 * We only preload 8K and 4M mappings into the TSB, since
2821 		 * 64K and 512K mappings are replicated and hence don't
2822 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2823 		 */
2824 		if (size == TTE8K || size == TTE4M) {
2825 			hatlockp = sfmmu_hat_enter(sfmmup);
2826 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2827 			sfmmu_hat_exit(hatlockp);
2828 		}
2829 	}
2830 	if (pp) {
2831 		if (!remap) {
2832 			HME_ADD(sfhme, pp);
2833 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2834 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2835 
2836 			/*
2837 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2838 			 * see pageunload() for comment.
2839 			 */
2840 		}
2841 		sfmmu_mlist_exit(pml);
2842 	}
2843 
2844 	return (0);
2845 }
2846 /*
2847  * Function unlocks hash bucket.
2848  */
2849 static void
2850 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2851 {
2852 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2853 	SFMMU_HASH_UNLOCK(hmebp);
2854 }
2855 
2856 /*
2857  * function which checks and sets up page array for a large
2858  * translation.  Will set p_vcolor, p_index, p_ro fields.
2859  * Assumes addr and pfnum of first page are properly aligned.
2860  * Will check for physical contiguity. If check fails it return
2861  * non null.
2862  */
2863 static int
2864 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2865 {
2866 	int 	i, index, ttesz;
2867 	pfn_t	pfnum;
2868 	pgcnt_t	npgs;
2869 	page_t *pp, *pp1;
2870 	kmutex_t *pmtx;
2871 #ifdef VAC
2872 	int osz;
2873 	int cflags = 0;
2874 	int vac_err = 0;
2875 #endif
2876 	int newidx = 0;
2877 
2878 	ttesz = TTE_CSZ(ttep);
2879 
2880 	ASSERT(ttesz > TTE8K);
2881 
2882 	npgs = TTEPAGES(ttesz);
2883 	index = PAGESZ_TO_INDEX(ttesz);
2884 
2885 	pfnum = (*pps)->p_pagenum;
2886 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2887 
2888 	/*
2889 	 * Save the first pp so we can do HAT_TMPNC at the end.
2890 	 */
2891 	pp1 = *pps;
2892 #ifdef VAC
2893 	osz = fnd_mapping_sz(pp1);
2894 #endif
2895 
2896 	for (i = 0; i < npgs; i++, pps++) {
2897 		pp = *pps;
2898 		ASSERT(PAGE_LOCKED(pp));
2899 		ASSERT(pp->p_szc >= ttesz);
2900 		ASSERT(pp->p_szc == pp1->p_szc);
2901 		ASSERT(sfmmu_mlist_held(pp));
2902 
2903 		/*
2904 		 * XXX is it possible to maintain P_RO on the root only?
2905 		 */
2906 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2907 			pmtx = sfmmu_page_enter(pp);
2908 			PP_CLRRO(pp);
2909 			sfmmu_page_exit(pmtx);
2910 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2911 		    !PP_ISMOD(pp)) {
2912 			pmtx = sfmmu_page_enter(pp);
2913 			if (!(PP_ISMOD(pp))) {
2914 				PP_SETRO(pp);
2915 			}
2916 			sfmmu_page_exit(pmtx);
2917 		}
2918 
2919 		/*
2920 		 * If this is a remap we skip vac & contiguity checks.
2921 		 */
2922 		if (remap)
2923 			continue;
2924 
2925 		/*
2926 		 * set p_vcolor and detect any vac conflicts.
2927 		 */
2928 #ifdef VAC
2929 		if (vac_err == 0) {
2930 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2931 
2932 		}
2933 #endif
2934 
2935 		/*
2936 		 * Save current index in case we need to undo it.
2937 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2938 		 *	"SFMMU_INDEX_SHIFT	6"
2939 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2940 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2941 		 *
2942 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2943 		 *	if ttesz == 1 then index = 0x2
2944 		 *		    2 then index = 0x4
2945 		 *		    3 then index = 0x8
2946 		 *		    4 then index = 0x10
2947 		 *		    5 then index = 0x20
2948 		 * The code below checks if it's a new pagesize (ie, newidx)
2949 		 * in case we need to take it back out of p_index,
2950 		 * and then or's the new index into the existing index.
2951 		 */
2952 		if ((PP_MAPINDEX(pp) & index) == 0)
2953 			newidx = 1;
2954 		pp->p_index = (PP_MAPINDEX(pp) | index);
2955 
2956 		/*
2957 		 * contiguity check
2958 		 */
2959 		if (pp->p_pagenum != pfnum) {
2960 			/*
2961 			 * If we fail the contiguity test then
2962 			 * the only thing we need to fix is the p_index field.
2963 			 * We might get a few extra flushes but since this
2964 			 * path is rare that is ok.  The p_ro field will
2965 			 * get automatically fixed on the next tteload to
2966 			 * the page.  NO TNC bit is set yet.
2967 			 */
2968 			while (i >= 0) {
2969 				pp = *pps;
2970 				if (newidx)
2971 					pp->p_index = (PP_MAPINDEX(pp) &
2972 					    ~index);
2973 				pps--;
2974 				i--;
2975 			}
2976 			return (1);
2977 		}
2978 		pfnum++;
2979 		addr += MMU_PAGESIZE;
2980 	}
2981 
2982 #ifdef VAC
2983 	if (vac_err) {
2984 		if (ttesz > osz) {
2985 			/*
2986 			 * There are some smaller mappings that causes vac
2987 			 * conflicts. Convert all existing small mappings to
2988 			 * TNC.
2989 			 */
2990 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2991 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2992 				npgs);
2993 		} else {
2994 			/* EMPTY */
2995 			/*
2996 			 * If there exists an big page mapping,
2997 			 * that means the whole existing big page
2998 			 * has TNC setting already. No need to covert to
2999 			 * TNC again.
3000 			 */
3001 			ASSERT(PP_ISTNC(pp1));
3002 		}
3003 	}
3004 #endif	/* VAC */
3005 
3006 	return (0);
3007 }
3008 
3009 #ifdef VAC
3010 /*
3011  * Routine that detects vac consistency for a large page. It also
3012  * sets virtual color for all pp's for this big mapping.
3013  */
3014 static int
3015 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3016 {
3017 	int vcolor, ocolor;
3018 
3019 	ASSERT(sfmmu_mlist_held(pp));
3020 
3021 	if (PP_ISNC(pp)) {
3022 		return (HAT_TMPNC);
3023 	}
3024 
3025 	vcolor = addr_to_vcolor(addr);
3026 	if (PP_NEWPAGE(pp)) {
3027 		PP_SET_VCOLOR(pp, vcolor);
3028 		return (0);
3029 	}
3030 
3031 	ocolor = PP_GET_VCOLOR(pp);
3032 	if (ocolor == vcolor) {
3033 		return (0);
3034 	}
3035 
3036 	if (!PP_ISMAPPED(pp)) {
3037 		/*
3038 		 * Previous user of page had a differnet color
3039 		 * but since there are no current users
3040 		 * we just flush the cache and change the color.
3041 		 * As an optimization for large pages we flush the
3042 		 * entire cache of that color and set a flag.
3043 		 */
3044 		SFMMU_STAT(sf_pgcolor_conflict);
3045 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3046 			CacheColor_SetFlushed(*cflags, ocolor);
3047 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3048 		}
3049 		PP_SET_VCOLOR(pp, vcolor);
3050 		return (0);
3051 	}
3052 
3053 	/*
3054 	 * We got a real conflict with a current mapping.
3055 	 * set flags to start unencaching all mappings
3056 	 * and return failure so we restart looping
3057 	 * the pp array from the beginning.
3058 	 */
3059 	return (HAT_TMPNC);
3060 }
3061 #endif	/* VAC */
3062 
3063 /*
3064  * creates a large page shadow hmeblk for a tte.
3065  * The purpose of this routine is to allow us to do quick unloads because
3066  * the vm layer can easily pass a very large but sparsely populated range.
3067  */
3068 static struct hme_blk *
3069 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3070 {
3071 	struct hmehash_bucket *hmebp;
3072 	hmeblk_tag hblktag;
3073 	int hmeshift, size, vshift;
3074 	uint_t shw_mask, newshw_mask;
3075 	struct hme_blk *hmeblkp;
3076 
3077 	ASSERT(sfmmup != KHATID);
3078 	if (mmu_page_sizes == max_mmu_page_sizes) {
3079 		ASSERT(ttesz < TTE256M);
3080 	} else {
3081 		ASSERT(ttesz < TTE4M);
3082 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3083 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3084 	}
3085 
3086 	if (ttesz == TTE8K) {
3087 		size = TTE512K;
3088 	} else {
3089 		size = ++ttesz;
3090 	}
3091 
3092 	hblktag.htag_id = sfmmup;
3093 	hmeshift = HME_HASH_SHIFT(size);
3094 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3095 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3096 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3097 
3098 	SFMMU_HASH_LOCK(hmebp);
3099 
3100 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3101 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3102 	if (hmeblkp == NULL) {
3103 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3104 			hblktag, flags);
3105 	}
3106 	ASSERT(hmeblkp);
3107 	if (!hmeblkp->hblk_shw_mask) {
3108 		/*
3109 		 * if this is a unused hblk it was just allocated or could
3110 		 * potentially be a previous large page hblk so we need to
3111 		 * set the shadow bit.
3112 		 */
3113 		hmeblkp->hblk_shw_bit = 1;
3114 	}
3115 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3116 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3117 	ASSERT(vshift < 8);
3118 	/*
3119 	 * Atomically set shw mask bit
3120 	 */
3121 	do {
3122 		shw_mask = hmeblkp->hblk_shw_mask;
3123 		newshw_mask = shw_mask | (1 << vshift);
3124 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3125 		    newshw_mask);
3126 	} while (newshw_mask != shw_mask);
3127 
3128 	SFMMU_HASH_UNLOCK(hmebp);
3129 
3130 	return (hmeblkp);
3131 }
3132 
3133 /*
3134  * This routine cleanup a previous shadow hmeblk and changes it to
3135  * a regular hblk.  This happens rarely but it is possible
3136  * when a process wants to use large pages and there are hblks still
3137  * lying around from the previous as that used these hmeblks.
3138  * The alternative was to cleanup the shadow hblks at unload time
3139  * but since so few user processes actually use large pages, it is
3140  * better to be lazy and cleanup at this time.
3141  */
3142 static void
3143 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3144 	struct hmehash_bucket *hmebp)
3145 {
3146 	caddr_t addr, endaddr;
3147 	int hashno, size;
3148 
3149 	ASSERT(hmeblkp->hblk_shw_bit);
3150 
3151 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3152 
3153 	if (!hmeblkp->hblk_shw_mask) {
3154 		hmeblkp->hblk_shw_bit = 0;
3155 		return;
3156 	}
3157 	addr = (caddr_t)get_hblk_base(hmeblkp);
3158 	endaddr = get_hblk_endaddr(hmeblkp);
3159 	size = get_hblk_ttesz(hmeblkp);
3160 	hashno = size - 1;
3161 	ASSERT(hashno > 0);
3162 	SFMMU_HASH_UNLOCK(hmebp);
3163 
3164 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3165 
3166 	SFMMU_HASH_LOCK(hmebp);
3167 }
3168 
3169 static void
3170 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3171 	int hashno)
3172 {
3173 	int hmeshift, shadow = 0;
3174 	hmeblk_tag hblktag;
3175 	struct hmehash_bucket *hmebp;
3176 	struct hme_blk *hmeblkp;
3177 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3178 	uint64_t hblkpa, prevpa, nx_pa;
3179 
3180 	ASSERT(hashno > 0);
3181 	hblktag.htag_id = sfmmup;
3182 	hblktag.htag_rehash = hashno;
3183 
3184 	hmeshift = HME_HASH_SHIFT(hashno);
3185 
3186 	while (addr < endaddr) {
3187 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3188 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3189 		SFMMU_HASH_LOCK(hmebp);
3190 		/* inline HME_HASH_SEARCH */
3191 		hmeblkp = hmebp->hmeblkp;
3192 		hblkpa = hmebp->hmeh_nextpa;
3193 		prevpa = 0;
3194 		pr_hblk = NULL;
3195 		while (hmeblkp) {
3196 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3197 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3198 				/* found hme_blk */
3199 				if (hmeblkp->hblk_shw_bit) {
3200 					if (hmeblkp->hblk_shw_mask) {
3201 						shadow = 1;
3202 						sfmmu_shadow_hcleanup(sfmmup,
3203 						    hmeblkp, hmebp);
3204 						break;
3205 					} else {
3206 						hmeblkp->hblk_shw_bit = 0;
3207 					}
3208 				}
3209 
3210 				/*
3211 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3212 				 * since hblk_unload() does not gurantee that.
3213 				 *
3214 				 * XXX - this could cause tteload() to spin
3215 				 * where sfmmu_shadow_hcleanup() is called.
3216 				 */
3217 			}
3218 
3219 			nx_hblk = hmeblkp->hblk_next;
3220 			nx_pa = hmeblkp->hblk_nextpa;
3221 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3222 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3223 					pr_hblk);
3224 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3225 			} else {
3226 				pr_hblk = hmeblkp;
3227 				prevpa = hblkpa;
3228 			}
3229 			hmeblkp = nx_hblk;
3230 			hblkpa = nx_pa;
3231 		}
3232 
3233 		SFMMU_HASH_UNLOCK(hmebp);
3234 
3235 		if (shadow) {
3236 			/*
3237 			 * We found another shadow hblk so cleaned its
3238 			 * children.  We need to go back and cleanup
3239 			 * the original hblk so we don't change the
3240 			 * addr.
3241 			 */
3242 			shadow = 0;
3243 		} else {
3244 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3245 				(1 << hmeshift));
3246 		}
3247 	}
3248 	sfmmu_hblks_list_purge(&list);
3249 }
3250 
3251 /*
3252  * Release one hardware address translation lock on the given address range.
3253  */
3254 void
3255 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3256 {
3257 	struct hmehash_bucket *hmebp;
3258 	hmeblk_tag hblktag;
3259 	int hmeshift, hashno = 1;
3260 	struct hme_blk *hmeblkp, *list = NULL;
3261 	caddr_t endaddr;
3262 
3263 	ASSERT(sfmmup != NULL);
3264 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3265 
3266 	ASSERT((sfmmup == ksfmmup) ||
3267 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3268 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3269 	endaddr = addr + len;
3270 	hblktag.htag_id = sfmmup;
3271 
3272 	/*
3273 	 * Spitfire supports 4 page sizes.
3274 	 * Most pages are expected to be of the smallest page size (8K) and
3275 	 * these will not need to be rehashed. 64K pages also don't need to be
3276 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3277 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3278 	 */
3279 	while (addr < endaddr) {
3280 		hmeshift = HME_HASH_SHIFT(hashno);
3281 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3282 		hblktag.htag_rehash = hashno;
3283 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3284 
3285 		SFMMU_HASH_LOCK(hmebp);
3286 
3287 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3288 		if (hmeblkp != NULL) {
3289 			/*
3290 			 * If we encounter a shadow hmeblk then
3291 			 * we know there are no valid hmeblks mapping
3292 			 * this address at this size or larger.
3293 			 * Just increment address by the smallest
3294 			 * page size.
3295 			 */
3296 			if (hmeblkp->hblk_shw_bit) {
3297 				addr += MMU_PAGESIZE;
3298 			} else {
3299 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3300 				    endaddr);
3301 			}
3302 			SFMMU_HASH_UNLOCK(hmebp);
3303 			hashno = 1;
3304 			continue;
3305 		}
3306 		SFMMU_HASH_UNLOCK(hmebp);
3307 
3308 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3309 			/*
3310 			 * We have traversed the whole list and rehashed
3311 			 * if necessary without finding the address to unlock
3312 			 * which should never happen.
3313 			 */
3314 			panic("sfmmu_unlock: addr not found. "
3315 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3316 		} else {
3317 			hashno++;
3318 		}
3319 	}
3320 
3321 	sfmmu_hblks_list_purge(&list);
3322 }
3323 
3324 /*
3325  * Function to unlock a range of addresses in an hmeblk.  It returns the
3326  * next address that needs to be unlocked.
3327  * Should be called with the hash lock held.
3328  */
3329 static caddr_t
3330 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3331 {
3332 	struct sf_hment *sfhme;
3333 	tte_t tteold, ttemod;
3334 	int ttesz, ret;
3335 
3336 	ASSERT(in_hblk_range(hmeblkp, addr));
3337 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3338 
3339 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3340 	ttesz = get_hblk_ttesz(hmeblkp);
3341 
3342 	HBLKTOHME(sfhme, hmeblkp, addr);
3343 	while (addr < endaddr) {
3344 readtte:
3345 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3346 		if (TTE_IS_VALID(&tteold)) {
3347 
3348 			ttemod = tteold;
3349 
3350 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3351 			    &sfhme->hme_tte);
3352 
3353 			if (ret < 0)
3354 				goto readtte;
3355 
3356 			if (hmeblkp->hblk_lckcnt == 0)
3357 				panic("zero hblk lckcnt");
3358 
3359 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3360 			    (uintptr_t)endaddr)
3361 				panic("can't unlock large tte");
3362 
3363 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3364 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3365 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3366 		} else {
3367 			panic("sfmmu_hblk_unlock: invalid tte");
3368 		}
3369 		addr += TTEBYTES(ttesz);
3370 		sfhme++;
3371 	}
3372 	return (addr);
3373 }
3374 
3375 /*
3376  * Physical Address Mapping Framework
3377  *
3378  * General rules:
3379  *
3380  * (1) Applies only to seg_kmem memory pages. To make things easier,
3381  *     seg_kpm addresses are also accepted by the routines, but nothing
3382  *     is done with them since by definition their PA mappings are static.
3383  * (2) hat_add_callback() may only be called while holding the page lock
3384  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3385  *     or passing HAC_PAGELOCK flag.
3386  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3387  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3388  *     callbacks may not sleep or acquire adaptive mutex locks.
3389  * (4) Either prehandler() or posthandler() (but not both) may be specified
3390  *     as being NULL.  Specifying an errhandler() is optional.
3391  *
3392  * Details of using the framework:
3393  *
3394  * registering a callback (hat_register_callback())
3395  *
3396  *	Pass prehandler, posthandler, errhandler addresses
3397  *	as described below. If capture_cpus argument is nonzero,
3398  *	suspend callback to the prehandler will occur with CPUs
3399  *	captured and executing xc_loop() and CPUs will remain
3400  *	captured until after the posthandler suspend callback
3401  *	occurs.
3402  *
3403  * adding a callback (hat_add_callback())
3404  *
3405  *      as_pagelock();
3406  *	hat_add_callback();
3407  *      save returned pfn in private data structures or program registers;
3408  *      as_pageunlock();
3409  *
3410  * prehandler()
3411  *
3412  *	Stop all accesses by physical address to this memory page.
3413  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3414  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3415  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3416  *	locks must be XCALL_PIL or higher locks).
3417  *
3418  *	May return the following errors:
3419  *		EIO:	A fatal error has occurred. This will result in panic.
3420  *		EAGAIN:	The page cannot be suspended. This will fail the
3421  *			relocation.
3422  *		0:	Success.
3423  *
3424  * posthandler()
3425  *
3426  *      Save new pfn in private data structures or program registers;
3427  *	not allowed to fail (non-zero return values will result in panic).
3428  *
3429  * errhandler()
3430  *
3431  *	called when an error occurs related to the callback.  Currently
3432  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3433  *	a page is being freed, but there are still outstanding callback(s)
3434  *	registered on the page.
3435  *
3436  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3437  *
3438  *	stop using physical address
3439  *	hat_delete_callback();
3440  *
3441  */
3442 
3443 /*
3444  * Register a callback class.  Each subsystem should do this once and
3445  * cache the id_t returned for use in setting up and tearing down callbacks.
3446  *
3447  * There is no facility for removing callback IDs once they are created;
3448  * the "key" should be unique for each module, so in case a module is unloaded
3449  * and subsequently re-loaded, we can recycle the module's previous entry.
3450  */
3451 id_t
3452 hat_register_callback(int key,
3453 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3454 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3455 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3456 	int capture_cpus)
3457 {
3458 	id_t id;
3459 
3460 	/*
3461 	 * Search the table for a pre-existing callback associated with
3462 	 * the identifier "key".  If one exists, we re-use that entry in
3463 	 * the table for this instance, otherwise we assign the next
3464 	 * available table slot.
3465 	 */
3466 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3467 		if (sfmmu_cb_table[id].key == key)
3468 			break;
3469 	}
3470 
3471 	if (id == sfmmu_max_cb_id) {
3472 		id = sfmmu_cb_nextid++;
3473 		if (id >= sfmmu_max_cb_id)
3474 			panic("hat_register_callback: out of callback IDs");
3475 	}
3476 
3477 	ASSERT(prehandler != NULL || posthandler != NULL);
3478 
3479 	sfmmu_cb_table[id].key = key;
3480 	sfmmu_cb_table[id].prehandler = prehandler;
3481 	sfmmu_cb_table[id].posthandler = posthandler;
3482 	sfmmu_cb_table[id].errhandler = errhandler;
3483 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3484 
3485 	return (id);
3486 }
3487 
3488 #define	HAC_COOKIE_NONE	(void *)-1
3489 
3490 /*
3491  * Add relocation callbacks to the specified addr/len which will be called
3492  * when relocating the associated page. See the description of pre and
3493  * posthandler above for more details.
3494  *
3495  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3496  * locked internally so the caller must be able to deal with the callback
3497  * running even before this function has returned.  If HAC_PAGELOCK is not
3498  * set, it is assumed that the underlying memory pages are locked.
3499  *
3500  * Since the caller must track the individual page boundaries anyway,
3501  * we only allow a callback to be added to a single page (large
3502  * or small).  Thus [addr, addr + len) MUST be contained within a single
3503  * page.
3504  *
3505  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3506  * _provided_that_ a unique parameter is specified for each callback.
3507  * If multiple callbacks are registered on the same range the callback will
3508  * be invoked with each unique parameter. Registering the same callback with
3509  * the same argument more than once will result in corrupted kernel state.
3510  *
3511  * Returns the pfn of the underlying kernel page in *rpfn
3512  * on success, or PFN_INVALID on failure.
3513  *
3514  * cookiep (if passed) provides storage space for an opaque cookie
3515  * to return later to hat_delete_callback(). This cookie makes the callback
3516  * deletion significantly quicker by avoiding a potentially lengthy hash
3517  * search.
3518  *
3519  * Returns values:
3520  *    0:      success
3521  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3522  *    EINVAL: callback ID is not valid
3523  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3524  *            space
3525  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3526  */
3527 int
3528 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3529 	void *pvt, pfn_t *rpfn, void **cookiep)
3530 {
3531 	struct 		hmehash_bucket *hmebp;
3532 	hmeblk_tag 	hblktag;
3533 	struct hme_blk	*hmeblkp;
3534 	int 		hmeshift, hashno;
3535 	caddr_t 	saddr, eaddr, baseaddr;
3536 	struct pa_hment *pahmep;
3537 	struct sf_hment *sfhmep, *osfhmep;
3538 	kmutex_t	*pml;
3539 	tte_t   	tte;
3540 	page_t		*pp;
3541 	vnode_t		*vp;
3542 	u_offset_t	off;
3543 	pfn_t		pfn;
3544 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3545 	int		locked = 0;
3546 
3547 	/*
3548 	 * For KPM mappings, just return the physical address since we
3549 	 * don't need to register any callbacks.
3550 	 */
3551 	if (IS_KPM_ADDR(vaddr)) {
3552 		uint64_t paddr;
3553 		SFMMU_KPM_VTOP(vaddr, paddr);
3554 		*rpfn = btop(paddr);
3555 		if (cookiep != NULL)
3556 			*cookiep = HAC_COOKIE_NONE;
3557 		return (0);
3558 	}
3559 
3560 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3561 		*rpfn = PFN_INVALID;
3562 		return (EINVAL);
3563 	}
3564 
3565 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3566 		*rpfn = PFN_INVALID;
3567 		return (ENOMEM);
3568 	}
3569 
3570 	sfhmep = &pahmep->sfment;
3571 
3572 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3573 	eaddr = saddr + len;
3574 
3575 rehash:
3576 	/* Find the mapping(s) for this page */
3577 	for (hashno = TTE64K, hmeblkp = NULL;
3578 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3579 	    hashno++) {
3580 		hmeshift = HME_HASH_SHIFT(hashno);
3581 		hblktag.htag_id = ksfmmup;
3582 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3583 		hblktag.htag_rehash = hashno;
3584 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3585 
3586 		SFMMU_HASH_LOCK(hmebp);
3587 
3588 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3589 
3590 		if (hmeblkp == NULL)
3591 			SFMMU_HASH_UNLOCK(hmebp);
3592 	}
3593 
3594 	if (hmeblkp == NULL) {
3595 		kmem_cache_free(pa_hment_cache, pahmep);
3596 		*rpfn = PFN_INVALID;
3597 		return (ENXIO);
3598 	}
3599 
3600 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3601 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3602 
3603 	if (!TTE_IS_VALID(&tte)) {
3604 		SFMMU_HASH_UNLOCK(hmebp);
3605 		kmem_cache_free(pa_hment_cache, pahmep);
3606 		*rpfn = PFN_INVALID;
3607 		return (ENXIO);
3608 	}
3609 
3610 	/*
3611 	 * Make sure the boundaries for the callback fall within this
3612 	 * single mapping.
3613 	 */
3614 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3615 	ASSERT(saddr >= baseaddr);
3616 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3617 		SFMMU_HASH_UNLOCK(hmebp);
3618 		kmem_cache_free(pa_hment_cache, pahmep);
3619 		*rpfn = PFN_INVALID;
3620 		return (ERANGE);
3621 	}
3622 
3623 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3624 
3625 	/*
3626 	 * The pfn may not have a page_t underneath in which case we
3627 	 * just return it. This can happen if we are doing I/O to a
3628 	 * static portion of the kernel's address space, for instance.
3629 	 */
3630 	pp = osfhmep->hme_page;
3631 	if (pp == NULL) {
3632 		SFMMU_HASH_UNLOCK(hmebp);
3633 		kmem_cache_free(pa_hment_cache, pahmep);
3634 		*rpfn = pfn;
3635 		if (cookiep)
3636 			*cookiep = HAC_COOKIE_NONE;
3637 		return (0);
3638 	}
3639 	ASSERT(pp == PP_PAGEROOT(pp));
3640 
3641 	vp = pp->p_vnode;
3642 	off = pp->p_offset;
3643 
3644 	pml = sfmmu_mlist_enter(pp);
3645 
3646 	if (flags & HAC_PAGELOCK) {
3647 		if (!page_trylock(pp, SE_SHARED)) {
3648 			/*
3649 			 * Somebody is holding SE_EXCL lock. Might
3650 			 * even be hat_page_relocate(). Drop all
3651 			 * our locks, lookup the page in &kvp, and
3652 			 * retry. If it doesn't exist in &kvp, then
3653 			 * we must be dealing with a kernel mapped
3654 			 * page which doesn't actually belong to
3655 			 * segkmem so we punt.
3656 			 */
3657 			sfmmu_mlist_exit(pml);
3658 			SFMMU_HASH_UNLOCK(hmebp);
3659 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3660 			if (pp == NULL) {
3661 				kmem_cache_free(pa_hment_cache, pahmep);
3662 				*rpfn = pfn;
3663 				if (cookiep)
3664 					*cookiep = HAC_COOKIE_NONE;
3665 				return (0);
3666 			}
3667 			page_unlock(pp);
3668 			goto rehash;
3669 		}
3670 		locked = 1;
3671 	}
3672 
3673 	if (!PAGE_LOCKED(pp) && !panicstr)
3674 		panic("hat_add_callback: page 0x%p not locked", pp);
3675 
3676 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3677 	    pp->p_offset != off) {
3678 		/*
3679 		 * The page moved before we got our hands on it.  Drop
3680 		 * all the locks and try again.
3681 		 */
3682 		ASSERT((flags & HAC_PAGELOCK) != 0);
3683 		sfmmu_mlist_exit(pml);
3684 		SFMMU_HASH_UNLOCK(hmebp);
3685 		page_unlock(pp);
3686 		locked = 0;
3687 		goto rehash;
3688 	}
3689 
3690 	if (vp != &kvp) {
3691 		/*
3692 		 * This is not a segkmem page but another page which
3693 		 * has been kernel mapped. It had better have at least
3694 		 * a share lock on it. Return the pfn.
3695 		 */
3696 		sfmmu_mlist_exit(pml);
3697 		SFMMU_HASH_UNLOCK(hmebp);
3698 		if (locked)
3699 			page_unlock(pp);
3700 		kmem_cache_free(pa_hment_cache, pahmep);
3701 		ASSERT(PAGE_LOCKED(pp));
3702 		*rpfn = pfn;
3703 		if (cookiep)
3704 			*cookiep = HAC_COOKIE_NONE;
3705 		return (0);
3706 	}
3707 
3708 	/*
3709 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3710 	 * the mapping list.
3711 	 */
3712 	pp->p_share++;
3713 	pahmep->cb_id = callback_id;
3714 	pahmep->addr = vaddr;
3715 	pahmep->len = len;
3716 	pahmep->refcnt = 1;
3717 	pahmep->flags = 0;
3718 	pahmep->pvt = pvt;
3719 
3720 	sfhmep->hme_tte.ll = 0;
3721 	sfhmep->hme_data = pahmep;
3722 	sfhmep->hme_prev = osfhmep;
3723 	sfhmep->hme_next = osfhmep->hme_next;
3724 
3725 	if (osfhmep->hme_next)
3726 		osfhmep->hme_next->hme_prev = sfhmep;
3727 
3728 	osfhmep->hme_next = sfhmep;
3729 
3730 	sfmmu_mlist_exit(pml);
3731 	SFMMU_HASH_UNLOCK(hmebp);
3732 
3733 	if (locked)
3734 		page_unlock(pp);
3735 
3736 	*rpfn = pfn;
3737 	if (cookiep)
3738 		*cookiep = (void *)pahmep;
3739 
3740 	return (0);
3741 }
3742 
3743 /*
3744  * Remove the relocation callbacks from the specified addr/len.
3745  */
3746 void
3747 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3748 	void *cookie)
3749 {
3750 	struct		hmehash_bucket *hmebp;
3751 	hmeblk_tag	hblktag;
3752 	struct hme_blk	*hmeblkp;
3753 	int		hmeshift, hashno;
3754 	caddr_t		saddr;
3755 	struct pa_hment	*pahmep;
3756 	struct sf_hment	*sfhmep, *osfhmep;
3757 	kmutex_t	*pml;
3758 	tte_t		tte;
3759 	page_t		*pp;
3760 	vnode_t		*vp;
3761 	u_offset_t	off;
3762 	int		locked = 0;
3763 
3764 	/*
3765 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3766 	 * remove so just return.
3767 	 */
3768 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3769 		return;
3770 
3771 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3772 
3773 rehash:
3774 	/* Find the mapping(s) for this page */
3775 	for (hashno = TTE64K, hmeblkp = NULL;
3776 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3777 	    hashno++) {
3778 		hmeshift = HME_HASH_SHIFT(hashno);
3779 		hblktag.htag_id = ksfmmup;
3780 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3781 		hblktag.htag_rehash = hashno;
3782 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3783 
3784 		SFMMU_HASH_LOCK(hmebp);
3785 
3786 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3787 
3788 		if (hmeblkp == NULL)
3789 			SFMMU_HASH_UNLOCK(hmebp);
3790 	}
3791 
3792 	if (hmeblkp == NULL)
3793 		return;
3794 
3795 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3796 
3797 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3798 	if (!TTE_IS_VALID(&tte)) {
3799 		SFMMU_HASH_UNLOCK(hmebp);
3800 		return;
3801 	}
3802 
3803 	pp = osfhmep->hme_page;
3804 	if (pp == NULL) {
3805 		SFMMU_HASH_UNLOCK(hmebp);
3806 		ASSERT(cookie == NULL);
3807 		return;
3808 	}
3809 
3810 	vp = pp->p_vnode;
3811 	off = pp->p_offset;
3812 
3813 	pml = sfmmu_mlist_enter(pp);
3814 
3815 	if (flags & HAC_PAGELOCK) {
3816 		if (!page_trylock(pp, SE_SHARED)) {
3817 			/*
3818 			 * Somebody is holding SE_EXCL lock. Might
3819 			 * even be hat_page_relocate(). Drop all
3820 			 * our locks, lookup the page in &kvp, and
3821 			 * retry. If it doesn't exist in &kvp, then
3822 			 * we must be dealing with a kernel mapped
3823 			 * page which doesn't actually belong to
3824 			 * segkmem so we punt.
3825 			 */
3826 			sfmmu_mlist_exit(pml);
3827 			SFMMU_HASH_UNLOCK(hmebp);
3828 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3829 			if (pp == NULL) {
3830 				ASSERT(cookie == NULL);
3831 				return;
3832 			}
3833 			page_unlock(pp);
3834 			goto rehash;
3835 		}
3836 		locked = 1;
3837 	}
3838 
3839 	ASSERT(PAGE_LOCKED(pp));
3840 
3841 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3842 	    pp->p_offset != off) {
3843 		/*
3844 		 * The page moved before we got our hands on it.  Drop
3845 		 * all the locks and try again.
3846 		 */
3847 		ASSERT((flags & HAC_PAGELOCK) != 0);
3848 		sfmmu_mlist_exit(pml);
3849 		SFMMU_HASH_UNLOCK(hmebp);
3850 		page_unlock(pp);
3851 		locked = 0;
3852 		goto rehash;
3853 	}
3854 
3855 	if (vp != &kvp) {
3856 		/*
3857 		 * This is not a segkmem page but another page which
3858 		 * has been kernel mapped.
3859 		 */
3860 		sfmmu_mlist_exit(pml);
3861 		SFMMU_HASH_UNLOCK(hmebp);
3862 		if (locked)
3863 			page_unlock(pp);
3864 		ASSERT(cookie == NULL);
3865 		return;
3866 	}
3867 
3868 	if (cookie != NULL) {
3869 		pahmep = (struct pa_hment *)cookie;
3870 		sfhmep = &pahmep->sfment;
3871 	} else {
3872 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3873 		    sfhmep = sfhmep->hme_next) {
3874 
3875 			/*
3876 			 * skip va<->pa mappings
3877 			 */
3878 			if (!IS_PAHME(sfhmep))
3879 				continue;
3880 
3881 			pahmep = sfhmep->hme_data;
3882 			ASSERT(pahmep != NULL);
3883 
3884 			/*
3885 			 * if pa_hment matches, remove it
3886 			 */
3887 			if ((pahmep->pvt == pvt) &&
3888 			    (pahmep->addr == vaddr) &&
3889 			    (pahmep->len == len)) {
3890 				break;
3891 			}
3892 		}
3893 	}
3894 
3895 	if (sfhmep == NULL) {
3896 		if (!panicstr) {
3897 			panic("hat_delete_callback: pa_hment not found, pp %p",
3898 			    (void *)pp);
3899 		}
3900 		return;
3901 	}
3902 
3903 	/*
3904 	 * Note: at this point a valid kernel mapping must still be
3905 	 * present on this page.
3906 	 */
3907 	pp->p_share--;
3908 	if (pp->p_share <= 0)
3909 		panic("hat_delete_callback: zero p_share");
3910 
3911 	if (--pahmep->refcnt == 0) {
3912 		if (pahmep->flags != 0)
3913 			panic("hat_delete_callback: pa_hment is busy");
3914 
3915 		/*
3916 		 * Remove sfhmep from the mapping list for the page.
3917 		 */
3918 		if (sfhmep->hme_prev) {
3919 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3920 		} else {
3921 			pp->p_mapping = sfhmep->hme_next;
3922 		}
3923 
3924 		if (sfhmep->hme_next)
3925 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3926 
3927 		sfmmu_mlist_exit(pml);
3928 		SFMMU_HASH_UNLOCK(hmebp);
3929 
3930 		if (locked)
3931 			page_unlock(pp);
3932 
3933 		kmem_cache_free(pa_hment_cache, pahmep);
3934 		return;
3935 	}
3936 
3937 	sfmmu_mlist_exit(pml);
3938 	SFMMU_HASH_UNLOCK(hmebp);
3939 	if (locked)
3940 		page_unlock(pp);
3941 }
3942 
3943 /*
3944  * hat_probe returns 1 if the translation for the address 'addr' is
3945  * loaded, zero otherwise.
3946  *
3947  * hat_probe should be used only for advisorary purposes because it may
3948  * occasionally return the wrong value. The implementation must guarantee that
3949  * returning the wrong value is a very rare event. hat_probe is used
3950  * to implement optimizations in the segment drivers.
3951  *
3952  */
3953 int
3954 hat_probe(struct hat *sfmmup, caddr_t addr)
3955 {
3956 	pfn_t pfn;
3957 	tte_t tte;
3958 
3959 	ASSERT(sfmmup != NULL);
3960 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3961 
3962 	ASSERT((sfmmup == ksfmmup) ||
3963 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3964 
3965 	if (sfmmup == ksfmmup) {
3966 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3967 		    == PFN_SUSPENDED) {
3968 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3969 		}
3970 	} else {
3971 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3972 	}
3973 
3974 	if (pfn != PFN_INVALID)
3975 		return (1);
3976 	else
3977 		return (0);
3978 }
3979 
3980 ssize_t
3981 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3982 {
3983 	tte_t tte;
3984 
3985 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3986 
3987 	sfmmu_gettte(sfmmup, addr, &tte);
3988 	if (TTE_IS_VALID(&tte)) {
3989 		return (TTEBYTES(TTE_CSZ(&tte)));
3990 	}
3991 	return (-1);
3992 }
3993 
3994 static void
3995 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3996 {
3997 	struct hmehash_bucket *hmebp;
3998 	hmeblk_tag hblktag;
3999 	int hmeshift, hashno = 1;
4000 	struct hme_blk *hmeblkp, *list = NULL;
4001 	struct sf_hment *sfhmep;
4002 
4003 	/* support for ISM */
4004 	ism_map_t	*ism_map;
4005 	ism_blk_t	*ism_blkp;
4006 	int		i;
4007 	sfmmu_t		*ism_hatid = NULL;
4008 	sfmmu_t		*locked_hatid = NULL;
4009 
4010 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4011 
4012 	ism_blkp = sfmmup->sfmmu_iblk;
4013 	if (ism_blkp) {
4014 		sfmmu_ismhat_enter(sfmmup, 0);
4015 		locked_hatid = sfmmup;
4016 	}
4017 	while (ism_blkp && ism_hatid == NULL) {
4018 		ism_map = ism_blkp->iblk_maps;
4019 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4020 			if (addr >= ism_start(ism_map[i]) &&
4021 			    addr < ism_end(ism_map[i])) {
4022 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4023 				addr = (caddr_t)(addr -
4024 					ism_start(ism_map[i]));
4025 				break;
4026 			}
4027 		}
4028 		ism_blkp = ism_blkp->iblk_next;
4029 	}
4030 	if (locked_hatid) {
4031 		sfmmu_ismhat_exit(locked_hatid, 0);
4032 	}
4033 
4034 	hblktag.htag_id = sfmmup;
4035 	ttep->ll = 0;
4036 
4037 	do {
4038 		hmeshift = HME_HASH_SHIFT(hashno);
4039 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4040 		hblktag.htag_rehash = hashno;
4041 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4042 
4043 		SFMMU_HASH_LOCK(hmebp);
4044 
4045 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4046 		if (hmeblkp != NULL) {
4047 			HBLKTOHME(sfhmep, hmeblkp, addr);
4048 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4049 			SFMMU_HASH_UNLOCK(hmebp);
4050 			break;
4051 		}
4052 		SFMMU_HASH_UNLOCK(hmebp);
4053 		hashno++;
4054 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4055 
4056 	sfmmu_hblks_list_purge(&list);
4057 }
4058 
4059 uint_t
4060 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4061 {
4062 	tte_t tte;
4063 
4064 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4065 
4066 	sfmmu_gettte(sfmmup, addr, &tte);
4067 	if (TTE_IS_VALID(&tte)) {
4068 		*attr = sfmmu_ptov_attr(&tte);
4069 		return (0);
4070 	}
4071 	*attr = 0;
4072 	return ((uint_t)0xffffffff);
4073 }
4074 
4075 /*
4076  * Enables more attributes on specified address range (ie. logical OR)
4077  */
4078 void
4079 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4080 {
4081 	if (hat->sfmmu_xhat_provider) {
4082 		XHAT_SETATTR(hat, addr, len, attr);
4083 		return;
4084 	} else {
4085 		/*
4086 		 * This must be a CPU HAT. If the address space has
4087 		 * XHATs attached, change attributes for all of them,
4088 		 * just in case
4089 		 */
4090 		ASSERT(hat->sfmmu_as != NULL);
4091 		if (hat->sfmmu_as->a_xhat != NULL)
4092 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4093 	}
4094 
4095 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4096 }
4097 
4098 /*
4099  * Assigns attributes to the specified address range.  All the attributes
4100  * are specified.
4101  */
4102 void
4103 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4104 {
4105 	if (hat->sfmmu_xhat_provider) {
4106 		XHAT_CHGATTR(hat, addr, len, attr);
4107 		return;
4108 	} else {
4109 		/*
4110 		 * This must be a CPU HAT. If the address space has
4111 		 * XHATs attached, change attributes for all of them,
4112 		 * just in case
4113 		 */
4114 		ASSERT(hat->sfmmu_as != NULL);
4115 		if (hat->sfmmu_as->a_xhat != NULL)
4116 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4117 	}
4118 
4119 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4120 }
4121 
4122 /*
4123  * Remove attributes on the specified address range (ie. loginal NAND)
4124  */
4125 void
4126 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4127 {
4128 	if (hat->sfmmu_xhat_provider) {
4129 		XHAT_CLRATTR(hat, addr, len, attr);
4130 		return;
4131 	} else {
4132 		/*
4133 		 * This must be a CPU HAT. If the address space has
4134 		 * XHATs attached, change attributes for all of them,
4135 		 * just in case
4136 		 */
4137 		ASSERT(hat->sfmmu_as != NULL);
4138 		if (hat->sfmmu_as->a_xhat != NULL)
4139 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4140 	}
4141 
4142 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4143 }
4144 
4145 /*
4146  * Change attributes on an address range to that specified by attr and mode.
4147  */
4148 static void
4149 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4150 	int mode)
4151 {
4152 	struct hmehash_bucket *hmebp;
4153 	hmeblk_tag hblktag;
4154 	int hmeshift, hashno = 1;
4155 	struct hme_blk *hmeblkp, *list = NULL;
4156 	caddr_t endaddr;
4157 	cpuset_t cpuset;
4158 	demap_range_t dmr;
4159 
4160 	CPUSET_ZERO(cpuset);
4161 
4162 	ASSERT((sfmmup == ksfmmup) ||
4163 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4164 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4165 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4166 
4167 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4168 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4169 		panic("user addr %p in kernel space",
4170 		    (void *)addr);
4171 	}
4172 
4173 	endaddr = addr + len;
4174 	hblktag.htag_id = sfmmup;
4175 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4176 
4177 	while (addr < endaddr) {
4178 		hmeshift = HME_HASH_SHIFT(hashno);
4179 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4180 		hblktag.htag_rehash = hashno;
4181 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4182 
4183 		SFMMU_HASH_LOCK(hmebp);
4184 
4185 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4186 		if (hmeblkp != NULL) {
4187 			/*
4188 			 * We've encountered a shadow hmeblk so skip the range
4189 			 * of the next smaller mapping size.
4190 			 */
4191 			if (hmeblkp->hblk_shw_bit) {
4192 				ASSERT(sfmmup != ksfmmup);
4193 				ASSERT(hashno > 1);
4194 				addr = (caddr_t)P2END((uintptr_t)addr,
4195 					    TTEBYTES(hashno - 1));
4196 			} else {
4197 				addr = sfmmu_hblk_chgattr(sfmmup,
4198 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4199 			}
4200 			SFMMU_HASH_UNLOCK(hmebp);
4201 			hashno = 1;
4202 			continue;
4203 		}
4204 		SFMMU_HASH_UNLOCK(hmebp);
4205 
4206 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4207 			/*
4208 			 * We have traversed the whole list and rehashed
4209 			 * if necessary without finding the address to chgattr.
4210 			 * This is ok, so we increment the address by the
4211 			 * smallest hmeblk range for kernel mappings or for
4212 			 * user mappings with no large pages, and the largest
4213 			 * hmeblk range, to account for shadow hmeblks, for
4214 			 * user mappings with large pages and continue.
4215 			 */
4216 			if (sfmmup == ksfmmup)
4217 				addr = (caddr_t)P2END((uintptr_t)addr,
4218 					    TTEBYTES(1));
4219 			else
4220 				addr = (caddr_t)P2END((uintptr_t)addr,
4221 					    TTEBYTES(hashno));
4222 			hashno = 1;
4223 		} else {
4224 			hashno++;
4225 		}
4226 	}
4227 
4228 	sfmmu_hblks_list_purge(&list);
4229 	DEMAP_RANGE_FLUSH(&dmr);
4230 	cpuset = sfmmup->sfmmu_cpusran;
4231 	xt_sync(cpuset);
4232 }
4233 
4234 /*
4235  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4236  * next addres that needs to be chgattr.
4237  * It should be called with the hash lock held.
4238  * XXX It should be possible to optimize chgattr by not flushing every time but
4239  * on the other hand:
4240  * 1. do one flush crosscall.
4241  * 2. only flush if we are increasing permissions (make sure this will work)
4242  */
4243 static caddr_t
4244 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4245 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4246 {
4247 	tte_t tte, tteattr, tteflags, ttemod;
4248 	struct sf_hment *sfhmep;
4249 	int ttesz;
4250 	struct page *pp = NULL;
4251 	kmutex_t *pml, *pmtx;
4252 	int ret;
4253 	int use_demap_range;
4254 #if defined(SF_ERRATA_57)
4255 	int check_exec;
4256 #endif
4257 
4258 	ASSERT(in_hblk_range(hmeblkp, addr));
4259 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4260 
4261 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4262 	ttesz = get_hblk_ttesz(hmeblkp);
4263 
4264 	/*
4265 	 * Flush the current demap region if addresses have been
4266 	 * skipped or the page size doesn't match.
4267 	 */
4268 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4269 	if (use_demap_range) {
4270 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4271 	} else {
4272 		DEMAP_RANGE_FLUSH(dmrp);
4273 	}
4274 
4275 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4276 #if defined(SF_ERRATA_57)
4277 	check_exec = (sfmmup != ksfmmup) &&
4278 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4279 	    TTE_IS_EXECUTABLE(&tteattr);
4280 #endif
4281 	HBLKTOHME(sfhmep, hmeblkp, addr);
4282 	while (addr < endaddr) {
4283 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4284 		if (TTE_IS_VALID(&tte)) {
4285 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4286 				/*
4287 				 * if the new attr is the same as old
4288 				 * continue
4289 				 */
4290 				goto next_addr;
4291 			}
4292 			if (!TTE_IS_WRITABLE(&tteattr)) {
4293 				/*
4294 				 * make sure we clear hw modify bit if we
4295 				 * removing write protections
4296 				 */
4297 				tteflags.tte_intlo |= TTE_HWWR_INT;
4298 			}
4299 
4300 			pml = NULL;
4301 			pp = sfhmep->hme_page;
4302 			if (pp) {
4303 				pml = sfmmu_mlist_enter(pp);
4304 			}
4305 
4306 			if (pp != sfhmep->hme_page) {
4307 				/*
4308 				 * tte must have been unloaded.
4309 				 */
4310 				ASSERT(pml);
4311 				sfmmu_mlist_exit(pml);
4312 				continue;
4313 			}
4314 
4315 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4316 
4317 			ttemod = tte;
4318 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4319 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4320 
4321 #if defined(SF_ERRATA_57)
4322 			if (check_exec && addr < errata57_limit)
4323 				ttemod.tte_exec_perm = 0;
4324 #endif
4325 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4326 			    &sfhmep->hme_tte);
4327 
4328 			if (ret < 0) {
4329 				/* tte changed underneath us */
4330 				if (pml) {
4331 					sfmmu_mlist_exit(pml);
4332 				}
4333 				continue;
4334 			}
4335 
4336 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4337 				/*
4338 				 * need to sync if we are clearing modify bit.
4339 				 */
4340 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4341 			}
4342 
4343 			if (pp && PP_ISRO(pp)) {
4344 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4345 					pmtx = sfmmu_page_enter(pp);
4346 					PP_CLRRO(pp);
4347 					sfmmu_page_exit(pmtx);
4348 				}
4349 			}
4350 
4351 			if (ret > 0 && use_demap_range) {
4352 				DEMAP_RANGE_MARKPG(dmrp, addr);
4353 			} else if (ret > 0) {
4354 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4355 			}
4356 
4357 			if (pml) {
4358 				sfmmu_mlist_exit(pml);
4359 			}
4360 		}
4361 next_addr:
4362 		addr += TTEBYTES(ttesz);
4363 		sfhmep++;
4364 		DEMAP_RANGE_NEXTPG(dmrp);
4365 	}
4366 	return (addr);
4367 }
4368 
4369 /*
4370  * This routine converts virtual attributes to physical ones.  It will
4371  * update the tteflags field with the tte mask corresponding to the attributes
4372  * affected and it returns the new attributes.  It will also clear the modify
4373  * bit if we are taking away write permission.  This is necessary since the
4374  * modify bit is the hardware permission bit and we need to clear it in order
4375  * to detect write faults.
4376  */
4377 static uint64_t
4378 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4379 {
4380 	tte_t ttevalue;
4381 
4382 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4383 
4384 	switch (mode) {
4385 	case SFMMU_CHGATTR:
4386 		/* all attributes specified */
4387 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4388 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4389 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4390 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4391 		break;
4392 	case SFMMU_SETATTR:
4393 		ASSERT(!(attr & ~HAT_PROT_MASK));
4394 		ttemaskp->ll = 0;
4395 		ttevalue.ll = 0;
4396 		/*
4397 		 * a valid tte implies exec and read for sfmmu
4398 		 * so no need to do anything about them.
4399 		 * since priviledged access implies user access
4400 		 * PROT_USER doesn't make sense either.
4401 		 */
4402 		if (attr & PROT_WRITE) {
4403 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4404 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4405 		}
4406 		break;
4407 	case SFMMU_CLRATTR:
4408 		/* attributes will be nand with current ones */
4409 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4410 			panic("sfmmu: attr %x not supported", attr);
4411 		}
4412 		ttemaskp->ll = 0;
4413 		ttevalue.ll = 0;
4414 		if (attr & PROT_WRITE) {
4415 			/* clear both writable and modify bit */
4416 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4417 		}
4418 		if (attr & PROT_USER) {
4419 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4420 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4421 		}
4422 		break;
4423 	default:
4424 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4425 	}
4426 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4427 	return (ttevalue.ll);
4428 }
4429 
4430 static uint_t
4431 sfmmu_ptov_attr(tte_t *ttep)
4432 {
4433 	uint_t attr;
4434 
4435 	ASSERT(TTE_IS_VALID(ttep));
4436 
4437 	attr = PROT_READ;
4438 
4439 	if (TTE_IS_WRITABLE(ttep)) {
4440 		attr |= PROT_WRITE;
4441 	}
4442 	if (TTE_IS_EXECUTABLE(ttep)) {
4443 		attr |= PROT_EXEC;
4444 	}
4445 	if (!TTE_IS_PRIVILEGED(ttep)) {
4446 		attr |= PROT_USER;
4447 	}
4448 	if (TTE_IS_NFO(ttep)) {
4449 		attr |= HAT_NOFAULT;
4450 	}
4451 	if (TTE_IS_NOSYNC(ttep)) {
4452 		attr |= HAT_NOSYNC;
4453 	}
4454 	if (TTE_IS_SIDEFFECT(ttep)) {
4455 		attr |= SFMMU_SIDEFFECT;
4456 	}
4457 	if (!TTE_IS_VCACHEABLE(ttep)) {
4458 		attr |= SFMMU_UNCACHEVTTE;
4459 	}
4460 	if (!TTE_IS_PCACHEABLE(ttep)) {
4461 		attr |= SFMMU_UNCACHEPTTE;
4462 	}
4463 	return (attr);
4464 }
4465 
4466 /*
4467  * hat_chgprot is a deprecated hat call.  New segment drivers
4468  * should store all attributes and use hat_*attr calls.
4469  *
4470  * Change the protections in the virtual address range
4471  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4472  * then remove write permission, leaving the other
4473  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4474  *
4475  */
4476 void
4477 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4478 {
4479 	struct hmehash_bucket *hmebp;
4480 	hmeblk_tag hblktag;
4481 	int hmeshift, hashno = 1;
4482 	struct hme_blk *hmeblkp, *list = NULL;
4483 	caddr_t endaddr;
4484 	cpuset_t cpuset;
4485 	demap_range_t dmr;
4486 
4487 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4488 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4489 
4490 	if (sfmmup->sfmmu_xhat_provider) {
4491 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4492 		return;
4493 	} else {
4494 		/*
4495 		 * This must be a CPU HAT. If the address space has
4496 		 * XHATs attached, change attributes for all of them,
4497 		 * just in case
4498 		 */
4499 		ASSERT(sfmmup->sfmmu_as != NULL);
4500 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4501 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4502 	}
4503 
4504 	CPUSET_ZERO(cpuset);
4505 
4506 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4507 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4508 		panic("user addr %p vprot %x in kernel space",
4509 		    (void *)addr, vprot);
4510 	}
4511 	endaddr = addr + len;
4512 	hblktag.htag_id = sfmmup;
4513 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4514 
4515 	while (addr < endaddr) {
4516 		hmeshift = HME_HASH_SHIFT(hashno);
4517 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4518 		hblktag.htag_rehash = hashno;
4519 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4520 
4521 		SFMMU_HASH_LOCK(hmebp);
4522 
4523 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4524 		if (hmeblkp != NULL) {
4525 			/*
4526 			 * We've encountered a shadow hmeblk so skip the range
4527 			 * of the next smaller mapping size.
4528 			 */
4529 			if (hmeblkp->hblk_shw_bit) {
4530 				ASSERT(sfmmup != ksfmmup);
4531 				ASSERT(hashno > 1);
4532 				addr = (caddr_t)P2END((uintptr_t)addr,
4533 					    TTEBYTES(hashno - 1));
4534 			} else {
4535 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4536 					addr, endaddr, &dmr, vprot);
4537 			}
4538 			SFMMU_HASH_UNLOCK(hmebp);
4539 			hashno = 1;
4540 			continue;
4541 		}
4542 		SFMMU_HASH_UNLOCK(hmebp);
4543 
4544 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4545 			/*
4546 			 * We have traversed the whole list and rehashed
4547 			 * if necessary without finding the address to chgprot.
4548 			 * This is ok so we increment the address by the
4549 			 * smallest hmeblk range for kernel mappings and the
4550 			 * largest hmeblk range, to account for shadow hmeblks,
4551 			 * for user mappings and continue.
4552 			 */
4553 			if (sfmmup == ksfmmup)
4554 				addr = (caddr_t)P2END((uintptr_t)addr,
4555 					    TTEBYTES(1));
4556 			else
4557 				addr = (caddr_t)P2END((uintptr_t)addr,
4558 					    TTEBYTES(hashno));
4559 			hashno = 1;
4560 		} else {
4561 			hashno++;
4562 		}
4563 	}
4564 
4565 	sfmmu_hblks_list_purge(&list);
4566 	DEMAP_RANGE_FLUSH(&dmr);
4567 	cpuset = sfmmup->sfmmu_cpusran;
4568 	xt_sync(cpuset);
4569 }
4570 
4571 /*
4572  * This function chgprots a range of addresses in an hmeblk.  It returns the
4573  * next addres that needs to be chgprot.
4574  * It should be called with the hash lock held.
4575  * XXX It shold be possible to optimize chgprot by not flushing every time but
4576  * on the other hand:
4577  * 1. do one flush crosscall.
4578  * 2. only flush if we are increasing permissions (make sure this will work)
4579  */
4580 static caddr_t
4581 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4582 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4583 {
4584 	uint_t pprot;
4585 	tte_t tte, ttemod;
4586 	struct sf_hment *sfhmep;
4587 	uint_t tteflags;
4588 	int ttesz;
4589 	struct page *pp = NULL;
4590 	kmutex_t *pml, *pmtx;
4591 	int ret;
4592 	int use_demap_range;
4593 #if defined(SF_ERRATA_57)
4594 	int check_exec;
4595 #endif
4596 
4597 	ASSERT(in_hblk_range(hmeblkp, addr));
4598 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4599 
4600 #ifdef DEBUG
4601 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4602 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4603 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4604 	}
4605 #endif /* DEBUG */
4606 
4607 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4608 	ttesz = get_hblk_ttesz(hmeblkp);
4609 
4610 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4611 #if defined(SF_ERRATA_57)
4612 	check_exec = (sfmmup != ksfmmup) &&
4613 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4614 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4615 #endif
4616 	HBLKTOHME(sfhmep, hmeblkp, addr);
4617 
4618 	/*
4619 	 * Flush the current demap region if addresses have been
4620 	 * skipped or the page size doesn't match.
4621 	 */
4622 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4623 	if (use_demap_range) {
4624 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4625 	} else {
4626 		DEMAP_RANGE_FLUSH(dmrp);
4627 	}
4628 
4629 	while (addr < endaddr) {
4630 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4631 		if (TTE_IS_VALID(&tte)) {
4632 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4633 				/*
4634 				 * if the new protection is the same as old
4635 				 * continue
4636 				 */
4637 				goto next_addr;
4638 			}
4639 			pml = NULL;
4640 			pp = sfhmep->hme_page;
4641 			if (pp) {
4642 				pml = sfmmu_mlist_enter(pp);
4643 			}
4644 			if (pp != sfhmep->hme_page) {
4645 				/*
4646 				 * tte most have been unloaded
4647 				 * underneath us.  Recheck
4648 				 */
4649 				ASSERT(pml);
4650 				sfmmu_mlist_exit(pml);
4651 				continue;
4652 			}
4653 
4654 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4655 
4656 			ttemod = tte;
4657 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4658 #if defined(SF_ERRATA_57)
4659 			if (check_exec && addr < errata57_limit)
4660 				ttemod.tte_exec_perm = 0;
4661 #endif
4662 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4663 			    &sfhmep->hme_tte);
4664 
4665 			if (ret < 0) {
4666 				/* tte changed underneath us */
4667 				if (pml) {
4668 					sfmmu_mlist_exit(pml);
4669 				}
4670 				continue;
4671 			}
4672 
4673 			if (tteflags & TTE_HWWR_INT) {
4674 				/*
4675 				 * need to sync if we are clearing modify bit.
4676 				 */
4677 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4678 			}
4679 
4680 			if (pp && PP_ISRO(pp)) {
4681 				if (pprot & TTE_WRPRM_INT) {
4682 					pmtx = sfmmu_page_enter(pp);
4683 					PP_CLRRO(pp);
4684 					sfmmu_page_exit(pmtx);
4685 				}
4686 			}
4687 
4688 			if (ret > 0 && use_demap_range) {
4689 				DEMAP_RANGE_MARKPG(dmrp, addr);
4690 			} else if (ret > 0) {
4691 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4692 			}
4693 
4694 			if (pml) {
4695 				sfmmu_mlist_exit(pml);
4696 			}
4697 		}
4698 next_addr:
4699 		addr += TTEBYTES(ttesz);
4700 		sfhmep++;
4701 		DEMAP_RANGE_NEXTPG(dmrp);
4702 	}
4703 	return (addr);
4704 }
4705 
4706 /*
4707  * This routine is deprecated and should only be used by hat_chgprot.
4708  * The correct routine is sfmmu_vtop_attr.
4709  * This routine converts virtual page protections to physical ones.  It will
4710  * update the tteflags field with the tte mask corresponding to the protections
4711  * affected and it returns the new protections.  It will also clear the modify
4712  * bit if we are taking away write permission.  This is necessary since the
4713  * modify bit is the hardware permission bit and we need to clear it in order
4714  * to detect write faults.
4715  * It accepts the following special protections:
4716  * ~PROT_WRITE = remove write permissions.
4717  * ~PROT_USER = remove user permissions.
4718  */
4719 static uint_t
4720 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4721 {
4722 	if (vprot == (uint_t)~PROT_WRITE) {
4723 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4724 		return (0);		/* will cause wrprm to be cleared */
4725 	}
4726 	if (vprot == (uint_t)~PROT_USER) {
4727 		*tteflagsp = TTE_PRIV_INT;
4728 		return (0);		/* will cause privprm to be cleared */
4729 	}
4730 	if ((vprot == 0) || (vprot == PROT_USER) ||
4731 		((vprot & PROT_ALL) != vprot)) {
4732 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4733 	}
4734 
4735 	switch (vprot) {
4736 	case (PROT_READ):
4737 	case (PROT_EXEC):
4738 	case (PROT_EXEC | PROT_READ):
4739 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4740 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4741 	case (PROT_WRITE):
4742 	case (PROT_WRITE | PROT_READ):
4743 	case (PROT_EXEC | PROT_WRITE):
4744 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4745 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4746 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4747 	case (PROT_USER | PROT_READ):
4748 	case (PROT_USER | PROT_EXEC):
4749 	case (PROT_USER | PROT_EXEC | PROT_READ):
4750 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4751 		return (0); 			/* clr prv and wrt */
4752 	case (PROT_USER | PROT_WRITE):
4753 	case (PROT_USER | PROT_WRITE | PROT_READ):
4754 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4755 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4756 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4757 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4758 	default:
4759 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4760 	}
4761 	return (0);
4762 }
4763 
4764 /*
4765  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4766  * the normal algorithm would take too long for a very large VA range with
4767  * few real mappings. This routine just walks thru all HMEs in the global
4768  * hash table to find and remove mappings.
4769  */
4770 static void
4771 hat_unload_large_virtual(
4772 	struct hat		*sfmmup,
4773 	caddr_t			startaddr,
4774 	size_t			len,
4775 	uint_t			flags,
4776 	hat_callback_t		*callback)
4777 {
4778 	struct hmehash_bucket *hmebp;
4779 	struct hme_blk *hmeblkp;
4780 	struct hme_blk *pr_hblk = NULL;
4781 	struct hme_blk *nx_hblk;
4782 	struct hme_blk *list = NULL;
4783 	int i;
4784 	uint64_t hblkpa, prevpa, nx_pa;
4785 	demap_range_t dmr, *dmrp;
4786 	cpuset_t cpuset;
4787 	caddr_t	endaddr = startaddr + len;
4788 	caddr_t	sa;
4789 	caddr_t	ea;
4790 	caddr_t	cb_sa[MAX_CB_ADDR];
4791 	caddr_t	cb_ea[MAX_CB_ADDR];
4792 	int	addr_cnt = 0;
4793 	int	a = 0;
4794 
4795 	if (sfmmup->sfmmu_free) {
4796 		dmrp = NULL;
4797 	} else {
4798 		dmrp = &dmr;
4799 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4800 	}
4801 
4802 	/*
4803 	 * Loop through all the hash buckets of HME blocks looking for matches.
4804 	 */
4805 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4806 		hmebp = &uhme_hash[i];
4807 		SFMMU_HASH_LOCK(hmebp);
4808 		hmeblkp = hmebp->hmeblkp;
4809 		hblkpa = hmebp->hmeh_nextpa;
4810 		prevpa = 0;
4811 		pr_hblk = NULL;
4812 		while (hmeblkp) {
4813 			nx_hblk = hmeblkp->hblk_next;
4814 			nx_pa = hmeblkp->hblk_nextpa;
4815 
4816 			/*
4817 			 * skip if not this context, if a shadow block or
4818 			 * if the mapping is not in the requested range
4819 			 */
4820 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4821 			    hmeblkp->hblk_shw_bit ||
4822 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4823 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4824 				pr_hblk = hmeblkp;
4825 				prevpa = hblkpa;
4826 				goto next_block;
4827 			}
4828 
4829 			/*
4830 			 * unload if there are any current valid mappings
4831 			 */
4832 			if (hmeblkp->hblk_vcnt != 0 ||
4833 			    hmeblkp->hblk_hmecnt != 0)
4834 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4835 				    sa, ea, dmrp, flags);
4836 
4837 			/*
4838 			 * on unmap we also release the HME block itself, once
4839 			 * all mappings are gone.
4840 			 */
4841 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4842 			    !hmeblkp->hblk_vcnt &&
4843 			    !hmeblkp->hblk_hmecnt) {
4844 				ASSERT(!hmeblkp->hblk_lckcnt);
4845 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4846 					prevpa, pr_hblk);
4847 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4848 			} else {
4849 				pr_hblk = hmeblkp;
4850 				prevpa = hblkpa;
4851 			}
4852 
4853 			if (callback == NULL)
4854 				goto next_block;
4855 
4856 			/*
4857 			 * HME blocks may span more than one page, but we may be
4858 			 * unmapping only one page, so check for a smaller range
4859 			 * for the callback
4860 			 */
4861 			if (sa < startaddr)
4862 				sa = startaddr;
4863 			if (--ea > endaddr)
4864 				ea = endaddr - 1;
4865 
4866 			cb_sa[addr_cnt] = sa;
4867 			cb_ea[addr_cnt] = ea;
4868 			if (++addr_cnt == MAX_CB_ADDR) {
4869 				if (dmrp != NULL) {
4870 					DEMAP_RANGE_FLUSH(dmrp);
4871 					cpuset = sfmmup->sfmmu_cpusran;
4872 					xt_sync(cpuset);
4873 				}
4874 
4875 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4876 					callback->hcb_start_addr = cb_sa[a];
4877 					callback->hcb_end_addr = cb_ea[a];
4878 					callback->hcb_function(callback);
4879 				}
4880 				addr_cnt = 0;
4881 			}
4882 
4883 next_block:
4884 			hmeblkp = nx_hblk;
4885 			hblkpa = nx_pa;
4886 		}
4887 		SFMMU_HASH_UNLOCK(hmebp);
4888 	}
4889 
4890 	sfmmu_hblks_list_purge(&list);
4891 	if (dmrp != NULL) {
4892 		DEMAP_RANGE_FLUSH(dmrp);
4893 		cpuset = sfmmup->sfmmu_cpusran;
4894 		xt_sync(cpuset);
4895 	}
4896 
4897 	for (a = 0; a < addr_cnt; ++a) {
4898 		callback->hcb_start_addr = cb_sa[a];
4899 		callback->hcb_end_addr = cb_ea[a];
4900 		callback->hcb_function(callback);
4901 	}
4902 
4903 	/*
4904 	 * Check TSB and TLB page sizes if the process isn't exiting.
4905 	 */
4906 	if (!sfmmup->sfmmu_free)
4907 		sfmmu_check_page_sizes(sfmmup, 0);
4908 }
4909 
4910 /*
4911  * Unload all the mappings in the range [addr..addr+len). addr and len must
4912  * be MMU_PAGESIZE aligned.
4913  */
4914 
4915 extern struct seg *segkmap;
4916 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4917 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4918 
4919 
4920 void
4921 hat_unload_callback(
4922 	struct hat *sfmmup,
4923 	caddr_t addr,
4924 	size_t len,
4925 	uint_t flags,
4926 	hat_callback_t *callback)
4927 {
4928 	struct hmehash_bucket *hmebp;
4929 	hmeblk_tag hblktag;
4930 	int hmeshift, hashno, iskernel;
4931 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4932 	caddr_t endaddr;
4933 	cpuset_t cpuset;
4934 	uint64_t hblkpa, prevpa;
4935 	int addr_count = 0;
4936 	int a;
4937 	caddr_t cb_start_addr[MAX_CB_ADDR];
4938 	caddr_t cb_end_addr[MAX_CB_ADDR];
4939 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4940 	demap_range_t dmr, *dmrp;
4941 
4942 	if (sfmmup->sfmmu_xhat_provider) {
4943 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4944 		return;
4945 	} else {
4946 		/*
4947 		 * This must be a CPU HAT. If the address space has
4948 		 * XHATs attached, unload the mappings for all of them,
4949 		 * just in case
4950 		 */
4951 		ASSERT(sfmmup->sfmmu_as != NULL);
4952 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4953 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4954 			    len, flags, callback);
4955 	}
4956 
4957 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4958 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4959 
4960 	ASSERT(sfmmup != NULL);
4961 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4962 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4963 
4964 	/*
4965 	 * Probing through a large VA range (say 63 bits) will be slow, even
4966 	 * at 4 Meg steps between the probes. So, when the virtual address range
4967 	 * is very large, search the HME entries for what to unload.
4968 	 *
4969 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4970 	 *
4971 	 *	UHMEHASH_SZ is number of hash buckets to examine
4972 	 *
4973 	 */
4974 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4975 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4976 		return;
4977 	}
4978 
4979 	CPUSET_ZERO(cpuset);
4980 
4981 	/*
4982 	 * If the process is exiting, we can save a lot of fuss since
4983 	 * we'll flush the TLB when we free the ctx anyway.
4984 	 */
4985 	if (sfmmup->sfmmu_free)
4986 		dmrp = NULL;
4987 	else
4988 		dmrp = &dmr;
4989 
4990 	DEMAP_RANGE_INIT(sfmmup, dmrp);
4991 	endaddr = addr + len;
4992 	hblktag.htag_id = sfmmup;
4993 
4994 	/*
4995 	 * It is likely for the vm to call unload over a wide range of
4996 	 * addresses that are actually very sparsely populated by
4997 	 * translations.  In order to speed this up the sfmmu hat supports
4998 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
4999 	 * correspond to actual small translations are allocated at tteload
5000 	 * time and are referred to as shadow hmeblks.  Now, during unload
5001 	 * time, we first check if we have a shadow hmeblk for that
5002 	 * translation.  The absence of one means the corresponding address
5003 	 * range is empty and can be skipped.
5004 	 *
5005 	 * The kernel is an exception to above statement and that is why
5006 	 * we don't use shadow hmeblks and hash starting from the smallest
5007 	 * page size.
5008 	 */
5009 	if (sfmmup == KHATID) {
5010 		iskernel = 1;
5011 		hashno = TTE64K;
5012 	} else {
5013 		iskernel = 0;
5014 		if (mmu_page_sizes == max_mmu_page_sizes) {
5015 			hashno = TTE256M;
5016 		} else {
5017 			hashno = TTE4M;
5018 		}
5019 	}
5020 	while (addr < endaddr) {
5021 		hmeshift = HME_HASH_SHIFT(hashno);
5022 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5023 		hblktag.htag_rehash = hashno;
5024 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5025 
5026 		SFMMU_HASH_LOCK(hmebp);
5027 
5028 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5029 			prevpa, &list);
5030 		if (hmeblkp == NULL) {
5031 			/*
5032 			 * didn't find an hmeblk. skip the appropiate
5033 			 * address range.
5034 			 */
5035 			SFMMU_HASH_UNLOCK(hmebp);
5036 			if (iskernel) {
5037 				if (hashno < mmu_hashcnt) {
5038 					hashno++;
5039 					continue;
5040 				} else {
5041 					hashno = TTE64K;
5042 					addr = (caddr_t)roundup((uintptr_t)addr
5043 						+ 1, MMU_PAGESIZE64K);
5044 					continue;
5045 				}
5046 			}
5047 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5048 				(1 << hmeshift));
5049 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5050 				ASSERT(hashno == TTE64K);
5051 				continue;
5052 			}
5053 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5054 				hashno = TTE512K;
5055 				continue;
5056 			}
5057 			if (mmu_page_sizes == max_mmu_page_sizes) {
5058 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5059 					hashno = TTE4M;
5060 					continue;
5061 				}
5062 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5063 					hashno = TTE32M;
5064 					continue;
5065 				}
5066 				hashno = TTE256M;
5067 				continue;
5068 			} else {
5069 				hashno = TTE4M;
5070 				continue;
5071 			}
5072 		}
5073 		ASSERT(hmeblkp);
5074 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5075 			/*
5076 			 * If the valid count is zero we can skip the range
5077 			 * mapped by this hmeblk.
5078 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5079 			 * is used by segment drivers as a hint
5080 			 * that the mapping resource won't be used any longer.
5081 			 * The best example of this is during exit().
5082 			 */
5083 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5084 				get_hblk_span(hmeblkp));
5085 			if ((flags & HAT_UNLOAD_UNMAP) ||
5086 			    (iskernel && !issegkmap)) {
5087 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5088 				    pr_hblk);
5089 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5090 			}
5091 			SFMMU_HASH_UNLOCK(hmebp);
5092 
5093 			if (iskernel) {
5094 				hashno = TTE64K;
5095 				continue;
5096 			}
5097 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5098 				ASSERT(hashno == TTE64K);
5099 				continue;
5100 			}
5101 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5102 				hashno = TTE512K;
5103 				continue;
5104 			}
5105 			if (mmu_page_sizes == max_mmu_page_sizes) {
5106 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5107 					hashno = TTE4M;
5108 					continue;
5109 				}
5110 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5111 					hashno = TTE32M;
5112 					continue;
5113 				}
5114 				hashno = TTE256M;
5115 				continue;
5116 			} else {
5117 				hashno = TTE4M;
5118 				continue;
5119 			}
5120 		}
5121 		if (hmeblkp->hblk_shw_bit) {
5122 			/*
5123 			 * If we encounter a shadow hmeblk we know there is
5124 			 * smaller sized hmeblks mapping the same address space.
5125 			 * Decrement the hash size and rehash.
5126 			 */
5127 			ASSERT(sfmmup != KHATID);
5128 			hashno--;
5129 			SFMMU_HASH_UNLOCK(hmebp);
5130 			continue;
5131 		}
5132 
5133 		/*
5134 		 * track callback address ranges.
5135 		 * only start a new range when it's not contiguous
5136 		 */
5137 		if (callback != NULL) {
5138 			if (addr_count > 0 &&
5139 			    addr == cb_end_addr[addr_count - 1])
5140 				--addr_count;
5141 			else
5142 				cb_start_addr[addr_count] = addr;
5143 		}
5144 
5145 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5146 				dmrp, flags);
5147 
5148 		if (callback != NULL)
5149 			cb_end_addr[addr_count++] = addr;
5150 
5151 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5152 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5153 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5154 			    pr_hblk);
5155 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5156 		}
5157 		SFMMU_HASH_UNLOCK(hmebp);
5158 
5159 		/*
5160 		 * Notify our caller as to exactly which pages
5161 		 * have been unloaded. We do these in clumps,
5162 		 * to minimize the number of xt_sync()s that need to occur.
5163 		 */
5164 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5165 			DEMAP_RANGE_FLUSH(dmrp);
5166 			if (dmrp != NULL) {
5167 				cpuset = sfmmup->sfmmu_cpusran;
5168 				xt_sync(cpuset);
5169 			}
5170 
5171 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5172 				callback->hcb_start_addr = cb_start_addr[a];
5173 				callback->hcb_end_addr = cb_end_addr[a];
5174 				callback->hcb_function(callback);
5175 			}
5176 			addr_count = 0;
5177 		}
5178 		if (iskernel) {
5179 			hashno = TTE64K;
5180 			continue;
5181 		}
5182 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5183 			ASSERT(hashno == TTE64K);
5184 			continue;
5185 		}
5186 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5187 			hashno = TTE512K;
5188 			continue;
5189 		}
5190 		if (mmu_page_sizes == max_mmu_page_sizes) {
5191 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5192 				hashno = TTE4M;
5193 				continue;
5194 			}
5195 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5196 				hashno = TTE32M;
5197 				continue;
5198 			}
5199 			hashno = TTE256M;
5200 		} else {
5201 			hashno = TTE4M;
5202 		}
5203 	}
5204 
5205 	sfmmu_hblks_list_purge(&list);
5206 	DEMAP_RANGE_FLUSH(dmrp);
5207 	if (dmrp != NULL) {
5208 		cpuset = sfmmup->sfmmu_cpusran;
5209 		xt_sync(cpuset);
5210 	}
5211 	if (callback && addr_count != 0) {
5212 		for (a = 0; a < addr_count; ++a) {
5213 			callback->hcb_start_addr = cb_start_addr[a];
5214 			callback->hcb_end_addr = cb_end_addr[a];
5215 			callback->hcb_function(callback);
5216 		}
5217 	}
5218 
5219 	/*
5220 	 * Check TSB and TLB page sizes if the process isn't exiting.
5221 	 */
5222 	if (!sfmmup->sfmmu_free)
5223 		sfmmu_check_page_sizes(sfmmup, 0);
5224 }
5225 
5226 /*
5227  * Unload all the mappings in the range [addr..addr+len). addr and len must
5228  * be MMU_PAGESIZE aligned.
5229  */
5230 void
5231 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5232 {
5233 	if (sfmmup->sfmmu_xhat_provider) {
5234 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5235 		return;
5236 	}
5237 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5238 }
5239 
5240 
5241 /*
5242  * Find the largest mapping size for this page.
5243  */
5244 int
5245 fnd_mapping_sz(page_t *pp)
5246 {
5247 	int sz;
5248 	int p_index;
5249 
5250 	p_index = PP_MAPINDEX(pp);
5251 
5252 	sz = 0;
5253 	p_index >>= 1;	/* don't care about 8K bit */
5254 	for (; p_index; p_index >>= 1) {
5255 		sz++;
5256 	}
5257 
5258 	return (sz);
5259 }
5260 
5261 /*
5262  * This function unloads a range of addresses for an hmeblk.
5263  * It returns the next address to be unloaded.
5264  * It should be called with the hash lock held.
5265  */
5266 static caddr_t
5267 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5268 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5269 {
5270 	tte_t	tte, ttemod;
5271 	struct	sf_hment *sfhmep;
5272 	int	ttesz;
5273 	long	ttecnt;
5274 	page_t *pp;
5275 	kmutex_t *pml;
5276 	int ret;
5277 	int use_demap_range;
5278 
5279 	ASSERT(in_hblk_range(hmeblkp, addr));
5280 	ASSERT(!hmeblkp->hblk_shw_bit);
5281 #ifdef DEBUG
5282 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5283 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5284 		panic("sfmmu_hblk_unload: partial unload of large page");
5285 	}
5286 #endif /* DEBUG */
5287 
5288 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5289 	ttesz = get_hblk_ttesz(hmeblkp);
5290 
5291 	use_demap_range = (do_virtual_coloring &&
5292 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5293 	if (use_demap_range) {
5294 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5295 	} else {
5296 		DEMAP_RANGE_FLUSH(dmrp);
5297 	}
5298 	ttecnt = 0;
5299 	HBLKTOHME(sfhmep, hmeblkp, addr);
5300 
5301 	while (addr < endaddr) {
5302 		pml = NULL;
5303 again:
5304 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5305 		if (TTE_IS_VALID(&tte)) {
5306 			pp = sfhmep->hme_page;
5307 			if (pp && pml == NULL) {
5308 				pml = sfmmu_mlist_enter(pp);
5309 			}
5310 
5311 			/*
5312 			 * Verify if hme still points to 'pp' now that
5313 			 * we have p_mapping lock.
5314 			 */
5315 			if (sfhmep->hme_page != pp) {
5316 				if (pp != NULL && sfhmep->hme_page != NULL) {
5317 					if (pml) {
5318 						sfmmu_mlist_exit(pml);
5319 					}
5320 					/* Re-start this iteration. */
5321 					continue;
5322 				}
5323 				ASSERT((pp != NULL) &&
5324 				    (sfhmep->hme_page == NULL));
5325 				goto tte_unloaded;
5326 			}
5327 
5328 			/*
5329 			 * This point on we have both HASH and p_mapping
5330 			 * lock.
5331 			 */
5332 			ASSERT(pp == sfhmep->hme_page);
5333 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5334 
5335 			/*
5336 			 * We need to loop on modify tte because it is
5337 			 * possible for pagesync to come along and
5338 			 * change the software bits beneath us.
5339 			 *
5340 			 * Page_unload can also invalidate the tte after
5341 			 * we read tte outside of p_mapping lock.
5342 			 */
5343 			ttemod = tte;
5344 
5345 			TTE_SET_INVALID(&ttemod);
5346 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5347 			    &sfhmep->hme_tte);
5348 
5349 			if (ret <= 0) {
5350 				if (TTE_IS_VALID(&tte)) {
5351 					goto again;
5352 				} else {
5353 					/*
5354 					 * We read in a valid pte, but it
5355 					 * is unloaded by page_unload.
5356 					 * hme_page has become NULL and
5357 					 * we hold no p_mapping lock.
5358 					 */
5359 					ASSERT(pp == NULL && pml == NULL);
5360 					goto tte_unloaded;
5361 				}
5362 			}
5363 
5364 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5365 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5366 			}
5367 
5368 			/*
5369 			 * Ok- we invalidated the tte. Do the rest of the job.
5370 			 */
5371 			ttecnt++;
5372 
5373 			if (flags & HAT_UNLOAD_UNLOCK) {
5374 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5375 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5376 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5377 			}
5378 
5379 			/*
5380 			 * Normally we would need to flush the page
5381 			 * from the virtual cache at this point in
5382 			 * order to prevent a potential cache alias
5383 			 * inconsistency.
5384 			 * The particular scenario we need to worry
5385 			 * about is:
5386 			 * Given:  va1 and va2 are two virtual address
5387 			 * that alias and map the same physical
5388 			 * address.
5389 			 * 1.	mapping exists from va1 to pa and data
5390 			 * has been read into the cache.
5391 			 * 2.	unload va1.
5392 			 * 3.	load va2 and modify data using va2.
5393 			 * 4	unload va2.
5394 			 * 5.	load va1 and reference data.  Unless we
5395 			 * flush the data cache when we unload we will
5396 			 * get stale data.
5397 			 * Fortunately, page coloring eliminates the
5398 			 * above scenario by remembering the color a
5399 			 * physical page was last or is currently
5400 			 * mapped to.  Now, we delay the flush until
5401 			 * the loading of translations.  Only when the
5402 			 * new translation is of a different color
5403 			 * are we forced to flush.
5404 			 */
5405 			if (use_demap_range) {
5406 				/*
5407 				 * Mark this page as needing a demap.
5408 				 */
5409 				DEMAP_RANGE_MARKPG(dmrp, addr);
5410 			} else {
5411 				if (do_virtual_coloring) {
5412 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5413 					    sfmmup->sfmmu_free, 0);
5414 				} else {
5415 					pfn_t pfnum;
5416 
5417 					pfnum = TTE_TO_PFN(addr, &tte);
5418 					sfmmu_tlbcache_demap(addr, sfmmup,
5419 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5420 					    FLUSH_NECESSARY_CPUS,
5421 					    CACHE_FLUSH, 0);
5422 				}
5423 			}
5424 
5425 			if (pp) {
5426 				/*
5427 				 * Remove the hment from the mapping list
5428 				 */
5429 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5430 
5431 				/*
5432 				 * Again, we cannot
5433 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5434 				 */
5435 				HME_SUB(sfhmep, pp);
5436 				membar_stst();
5437 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5438 			}
5439 
5440 			ASSERT(hmeblkp->hblk_vcnt > 0);
5441 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5442 
5443 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5444 			    !hmeblkp->hblk_lckcnt);
5445 
5446 #ifdef VAC
5447 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5448 				if (PP_ISTNC(pp)) {
5449 					/*
5450 					 * If page was temporary
5451 					 * uncached, try to recache
5452 					 * it. Note that HME_SUB() was
5453 					 * called above so p_index and
5454 					 * mlist had been updated.
5455 					 */
5456 					conv_tnc(pp, ttesz);
5457 				} else if (pp->p_mapping == NULL) {
5458 					ASSERT(kpm_enable);
5459 					/*
5460 					 * Page is marked to be in VAC conflict
5461 					 * to an existing kpm mapping and/or is
5462 					 * kpm mapped using only the regular
5463 					 * pagesize.
5464 					 */
5465 					sfmmu_kpm_hme_unload(pp);
5466 				}
5467 			}
5468 #endif	/* VAC */
5469 		} else if ((pp = sfhmep->hme_page) != NULL) {
5470 				/*
5471 				 * TTE is invalid but the hme
5472 				 * still exists. let pageunload
5473 				 * complete its job.
5474 				 */
5475 				ASSERT(pml == NULL);
5476 				pml = sfmmu_mlist_enter(pp);
5477 				if (sfhmep->hme_page != NULL) {
5478 					sfmmu_mlist_exit(pml);
5479 					pml = NULL;
5480 					goto again;
5481 				}
5482 				ASSERT(sfhmep->hme_page == NULL);
5483 		} else if (hmeblkp->hblk_hmecnt != 0) {
5484 			/*
5485 			 * pageunload may have not finished decrementing
5486 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5487 			 * wait for pageunload to finish. Rely on pageunload
5488 			 * to decrement hblk_hmecnt after hblk_vcnt.
5489 			 */
5490 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5491 			ASSERT(pml == NULL);
5492 			if (pf_is_memory(pfn)) {
5493 				pp = page_numtopp_nolock(pfn);
5494 				if (pp != NULL) {
5495 					pml = sfmmu_mlist_enter(pp);
5496 					sfmmu_mlist_exit(pml);
5497 					pml = NULL;
5498 				}
5499 			}
5500 		}
5501 
5502 tte_unloaded:
5503 		/*
5504 		 * At this point, the tte we are looking at
5505 		 * should be unloaded, and hme has been unlinked
5506 		 * from page too. This is important because in
5507 		 * pageunload, it does ttesync() then HME_SUB.
5508 		 * We need to make sure HME_SUB has been completed
5509 		 * so we know ttesync() has been completed. Otherwise,
5510 		 * at exit time, after return from hat layer, VM will
5511 		 * release as structure which hat_setstat() (called
5512 		 * by ttesync()) needs.
5513 		 */
5514 #ifdef DEBUG
5515 		{
5516 			tte_t	dtte;
5517 
5518 			ASSERT(sfhmep->hme_page == NULL);
5519 
5520 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5521 			ASSERT(!TTE_IS_VALID(&dtte));
5522 		}
5523 #endif
5524 
5525 		if (pml) {
5526 			sfmmu_mlist_exit(pml);
5527 		}
5528 
5529 		addr += TTEBYTES(ttesz);
5530 		sfhmep++;
5531 		DEMAP_RANGE_NEXTPG(dmrp);
5532 	}
5533 	if (ttecnt > 0)
5534 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5535 	return (addr);
5536 }
5537 
5538 /*
5539  * Synchronize all the mappings in the range [addr..addr+len).
5540  * Can be called with clearflag having two states:
5541  * HAT_SYNC_DONTZERO means just return the rm stats
5542  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5543  */
5544 void
5545 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5546 {
5547 	struct hmehash_bucket *hmebp;
5548 	hmeblk_tag hblktag;
5549 	int hmeshift, hashno = 1;
5550 	struct hme_blk *hmeblkp, *list = NULL;
5551 	caddr_t endaddr;
5552 	cpuset_t cpuset;
5553 
5554 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5555 	ASSERT((sfmmup == ksfmmup) ||
5556 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5557 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5558 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5559 		(clearflag == HAT_SYNC_ZERORM));
5560 
5561 	CPUSET_ZERO(cpuset);
5562 
5563 	endaddr = addr + len;
5564 	hblktag.htag_id = sfmmup;
5565 	/*
5566 	 * Spitfire supports 4 page sizes.
5567 	 * Most pages are expected to be of the smallest page
5568 	 * size (8K) and these will not need to be rehashed. 64K
5569 	 * pages also don't need to be rehashed because the an hmeblk
5570 	 * spans 64K of address space. 512K pages might need 1 rehash and
5571 	 * and 4M pages 2 rehashes.
5572 	 */
5573 	while (addr < endaddr) {
5574 		hmeshift = HME_HASH_SHIFT(hashno);
5575 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5576 		hblktag.htag_rehash = hashno;
5577 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5578 
5579 		SFMMU_HASH_LOCK(hmebp);
5580 
5581 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5582 		if (hmeblkp != NULL) {
5583 			/*
5584 			 * We've encountered a shadow hmeblk so skip the range
5585 			 * of the next smaller mapping size.
5586 			 */
5587 			if (hmeblkp->hblk_shw_bit) {
5588 				ASSERT(sfmmup != ksfmmup);
5589 				ASSERT(hashno > 1);
5590 				addr = (caddr_t)P2END((uintptr_t)addr,
5591 					    TTEBYTES(hashno - 1));
5592 			} else {
5593 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5594 				    addr, endaddr, clearflag);
5595 			}
5596 			SFMMU_HASH_UNLOCK(hmebp);
5597 			hashno = 1;
5598 			continue;
5599 		}
5600 		SFMMU_HASH_UNLOCK(hmebp);
5601 
5602 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5603 			/*
5604 			 * We have traversed the whole list and rehashed
5605 			 * if necessary without finding the address to sync.
5606 			 * This is ok so we increment the address by the
5607 			 * smallest hmeblk range for kernel mappings and the
5608 			 * largest hmeblk range, to account for shadow hmeblks,
5609 			 * for user mappings and continue.
5610 			 */
5611 			if (sfmmup == ksfmmup)
5612 				addr = (caddr_t)P2END((uintptr_t)addr,
5613 					    TTEBYTES(1));
5614 			else
5615 				addr = (caddr_t)P2END((uintptr_t)addr,
5616 					    TTEBYTES(hashno));
5617 			hashno = 1;
5618 		} else {
5619 			hashno++;
5620 		}
5621 	}
5622 	sfmmu_hblks_list_purge(&list);
5623 	cpuset = sfmmup->sfmmu_cpusran;
5624 	xt_sync(cpuset);
5625 }
5626 
5627 static caddr_t
5628 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5629 	caddr_t endaddr, int clearflag)
5630 {
5631 	tte_t	tte, ttemod;
5632 	struct sf_hment *sfhmep;
5633 	int ttesz;
5634 	struct page *pp;
5635 	kmutex_t *pml;
5636 	int ret;
5637 
5638 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5639 
5640 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5641 
5642 	ttesz = get_hblk_ttesz(hmeblkp);
5643 	HBLKTOHME(sfhmep, hmeblkp, addr);
5644 
5645 	while (addr < endaddr) {
5646 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5647 		if (TTE_IS_VALID(&tte)) {
5648 			pml = NULL;
5649 			pp = sfhmep->hme_page;
5650 			if (pp) {
5651 				pml = sfmmu_mlist_enter(pp);
5652 			}
5653 			if (pp != sfhmep->hme_page) {
5654 				/*
5655 				 * tte most have been unloaded
5656 				 * underneath us.  Recheck
5657 				 */
5658 				ASSERT(pml);
5659 				sfmmu_mlist_exit(pml);
5660 				continue;
5661 			}
5662 
5663 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5664 
5665 			if (clearflag == HAT_SYNC_ZERORM) {
5666 				ttemod = tte;
5667 				TTE_CLR_RM(&ttemod);
5668 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5669 				    &sfhmep->hme_tte);
5670 				if (ret < 0) {
5671 					if (pml) {
5672 						sfmmu_mlist_exit(pml);
5673 					}
5674 					continue;
5675 				}
5676 
5677 				if (ret > 0) {
5678 					sfmmu_tlb_demap(addr, sfmmup,
5679 						hmeblkp, 0, 0);
5680 				}
5681 			}
5682 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5683 			if (pml) {
5684 				sfmmu_mlist_exit(pml);
5685 			}
5686 		}
5687 		addr += TTEBYTES(ttesz);
5688 		sfhmep++;
5689 	}
5690 	return (addr);
5691 }
5692 
5693 /*
5694  * This function will sync a tte to the page struct and it will
5695  * update the hat stats. Currently it allows us to pass a NULL pp
5696  * and we will simply update the stats.  We may want to change this
5697  * so we only keep stats for pages backed by pp's.
5698  */
5699 static void
5700 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5701 {
5702 	uint_t rm = 0;
5703 	int   	sz;
5704 	pgcnt_t	npgs;
5705 
5706 	ASSERT(TTE_IS_VALID(ttep));
5707 
5708 	if (TTE_IS_NOSYNC(ttep)) {
5709 		return;
5710 	}
5711 
5712 	if (TTE_IS_REF(ttep))  {
5713 		rm = P_REF;
5714 	}
5715 	if (TTE_IS_MOD(ttep))  {
5716 		rm |= P_MOD;
5717 	}
5718 
5719 	if (rm == 0) {
5720 		return;
5721 	}
5722 
5723 	sz = TTE_CSZ(ttep);
5724 	if (sfmmup->sfmmu_rmstat) {
5725 		int i;
5726 		caddr_t	vaddr = addr;
5727 
5728 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5729 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5730 		}
5731 
5732 	}
5733 
5734 	/*
5735 	 * XXX I want to use cas to update nrm bits but they
5736 	 * currently belong in common/vm and not in hat where
5737 	 * they should be.
5738 	 * The nrm bits are protected by the same mutex as
5739 	 * the one that protects the page's mapping list.
5740 	 */
5741 	if (!pp)
5742 		return;
5743 	ASSERT(sfmmu_mlist_held(pp));
5744 	/*
5745 	 * If the tte is for a large page, we need to sync all the
5746 	 * pages covered by the tte.
5747 	 */
5748 	if (sz != TTE8K) {
5749 		ASSERT(pp->p_szc != 0);
5750 		pp = PP_GROUPLEADER(pp, sz);
5751 		ASSERT(sfmmu_mlist_held(pp));
5752 	}
5753 
5754 	/* Get number of pages from tte size. */
5755 	npgs = TTEPAGES(sz);
5756 
5757 	do {
5758 		ASSERT(pp);
5759 		ASSERT(sfmmu_mlist_held(pp));
5760 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5761 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5762 			hat_page_setattr(pp, rm);
5763 
5764 		/*
5765 		 * Are we done? If not, we must have a large mapping.
5766 		 * For large mappings we need to sync the rest of the pages
5767 		 * covered by this tte; goto the next page.
5768 		 */
5769 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5770 }
5771 
5772 /*
5773  * Execute pre-callback handler of each pa_hment linked to pp
5774  *
5775  * Inputs:
5776  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5777  *   capture_cpus: pointer to return value (below)
5778  *
5779  * Returns:
5780  *   Propagates the subsystem callback return values back to the caller;
5781  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5782  *   is zero if all of the pa_hments are of a type that do not require
5783  *   capturing CPUs prior to suspending the mapping, else it is 1.
5784  */
5785 static int
5786 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5787 {
5788 	struct sf_hment	*sfhmep;
5789 	struct pa_hment *pahmep;
5790 	int (*f)(caddr_t, uint_t, uint_t, void *);
5791 	int		ret;
5792 	id_t		id;
5793 	int		locked = 0;
5794 	kmutex_t	*pml;
5795 
5796 	ASSERT(PAGE_EXCL(pp));
5797 	if (!sfmmu_mlist_held(pp)) {
5798 		pml = sfmmu_mlist_enter(pp);
5799 		locked = 1;
5800 	}
5801 
5802 	if (capture_cpus)
5803 		*capture_cpus = 0;
5804 
5805 top:
5806 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5807 		/*
5808 		 * skip sf_hments corresponding to VA<->PA mappings;
5809 		 * for pa_hment's, hme_tte.ll is zero
5810 		 */
5811 		if (!IS_PAHME(sfhmep))
5812 			continue;
5813 
5814 		pahmep = sfhmep->hme_data;
5815 		ASSERT(pahmep != NULL);
5816 
5817 		/*
5818 		 * skip if pre-handler has been called earlier in this loop
5819 		 */
5820 		if (pahmep->flags & flag)
5821 			continue;
5822 
5823 		id = pahmep->cb_id;
5824 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5825 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5826 			*capture_cpus = 1;
5827 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5828 			pahmep->flags |= flag;
5829 			continue;
5830 		}
5831 
5832 		/*
5833 		 * Drop the mapping list lock to avoid locking order issues.
5834 		 */
5835 		if (locked)
5836 			sfmmu_mlist_exit(pml);
5837 
5838 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5839 		if (ret != 0)
5840 			return (ret);	/* caller must do the cleanup */
5841 
5842 		if (locked) {
5843 			pml = sfmmu_mlist_enter(pp);
5844 			pahmep->flags |= flag;
5845 			goto top;
5846 		}
5847 
5848 		pahmep->flags |= flag;
5849 	}
5850 
5851 	if (locked)
5852 		sfmmu_mlist_exit(pml);
5853 
5854 	return (0);
5855 }
5856 
5857 /*
5858  * Execute post-callback handler of each pa_hment linked to pp
5859  *
5860  * Same overall assumptions and restrictions apply as for
5861  * hat_pageprocess_precallbacks().
5862  */
5863 static void
5864 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5865 {
5866 	pfn_t pgpfn = pp->p_pagenum;
5867 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5868 	pfn_t newpfn;
5869 	struct sf_hment *sfhmep;
5870 	struct pa_hment *pahmep;
5871 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5872 	id_t	id;
5873 	int	locked = 0;
5874 	kmutex_t *pml;
5875 
5876 	ASSERT(PAGE_EXCL(pp));
5877 	if (!sfmmu_mlist_held(pp)) {
5878 		pml = sfmmu_mlist_enter(pp);
5879 		locked = 1;
5880 	}
5881 
5882 top:
5883 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5884 		/*
5885 		 * skip sf_hments corresponding to VA<->PA mappings;
5886 		 * for pa_hment's, hme_tte.ll is zero
5887 		 */
5888 		if (!IS_PAHME(sfhmep))
5889 			continue;
5890 
5891 		pahmep = sfhmep->hme_data;
5892 		ASSERT(pahmep != NULL);
5893 
5894 		if ((pahmep->flags & flag) == 0)
5895 			continue;
5896 
5897 		pahmep->flags &= ~flag;
5898 
5899 		id = pahmep->cb_id;
5900 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5901 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5902 			continue;
5903 
5904 		/*
5905 		 * Convert the base page PFN into the constituent PFN
5906 		 * which is needed by the callback handler.
5907 		 */
5908 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5909 
5910 		/*
5911 		 * Drop the mapping list lock to avoid locking order issues.
5912 		 */
5913 		if (locked)
5914 			sfmmu_mlist_exit(pml);
5915 
5916 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5917 		    != 0)
5918 			panic("sfmmu: posthandler failed");
5919 
5920 		if (locked) {
5921 			pml = sfmmu_mlist_enter(pp);
5922 			goto top;
5923 		}
5924 	}
5925 
5926 	if (locked)
5927 		sfmmu_mlist_exit(pml);
5928 }
5929 
5930 /*
5931  * Suspend locked kernel mapping
5932  */
5933 void
5934 hat_pagesuspend(struct page *pp)
5935 {
5936 	struct sf_hment *sfhmep;
5937 	sfmmu_t *sfmmup;
5938 	tte_t tte, ttemod;
5939 	struct hme_blk *hmeblkp;
5940 	caddr_t addr;
5941 	int index, cons;
5942 	cpuset_t cpuset;
5943 
5944 	ASSERT(PAGE_EXCL(pp));
5945 	ASSERT(sfmmu_mlist_held(pp));
5946 
5947 	mutex_enter(&kpr_suspendlock);
5948 
5949 	/*
5950 	 * Call into dtrace to tell it we're about to suspend a
5951 	 * kernel mapping. This prevents us from running into issues
5952 	 * with probe context trying to touch a suspended page
5953 	 * in the relocation codepath itself.
5954 	 */
5955 	if (dtrace_kreloc_init)
5956 		(*dtrace_kreloc_init)();
5957 
5958 	index = PP_MAPINDEX(pp);
5959 	cons = TTE8K;
5960 
5961 retry:
5962 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5963 
5964 		if (IS_PAHME(sfhmep))
5965 			continue;
5966 
5967 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5968 			continue;
5969 
5970 		/*
5971 		 * Loop until we successfully set the suspend bit in
5972 		 * the TTE.
5973 		 */
5974 again:
5975 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5976 		ASSERT(TTE_IS_VALID(&tte));
5977 
5978 		ttemod = tte;
5979 		TTE_SET_SUSPEND(&ttemod);
5980 		if (sfmmu_modifytte_try(&tte, &ttemod,
5981 		    &sfhmep->hme_tte) < 0)
5982 			goto again;
5983 
5984 		/*
5985 		 * Invalidate TSB entry
5986 		 */
5987 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5988 
5989 		sfmmup = hblktosfmmu(hmeblkp);
5990 		ASSERT(sfmmup == ksfmmup);
5991 
5992 		addr = tte_to_vaddr(hmeblkp, tte);
5993 
5994 		/*
5995 		 * No need to make sure that the TSB for this sfmmu is
5996 		 * not being relocated since it is ksfmmup and thus it
5997 		 * will never be relocated.
5998 		 */
5999 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6000 
6001 		/*
6002 		 * Update xcall stats
6003 		 */
6004 		cpuset = cpu_ready_set;
6005 		CPUSET_DEL(cpuset, CPU->cpu_id);
6006 
6007 		/* LINTED: constant in conditional context */
6008 		SFMMU_XCALL_STATS(ksfmmup);
6009 
6010 		/*
6011 		 * Flush TLB entry on remote CPU's
6012 		 */
6013 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6014 		    (uint64_t)ksfmmup);
6015 		xt_sync(cpuset);
6016 
6017 		/*
6018 		 * Flush TLB entry on local CPU
6019 		 */
6020 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6021 	}
6022 
6023 	while (index != 0) {
6024 		index = index >> 1;
6025 		if (index != 0)
6026 			cons++;
6027 		if (index & 0x1) {
6028 			pp = PP_GROUPLEADER(pp, cons);
6029 			goto retry;
6030 		}
6031 	}
6032 }
6033 
6034 #ifdef	DEBUG
6035 
6036 #define	N_PRLE	1024
6037 struct prle {
6038 	page_t *targ;
6039 	page_t *repl;
6040 	int status;
6041 	int pausecpus;
6042 	hrtime_t whence;
6043 };
6044 
6045 static struct prle page_relocate_log[N_PRLE];
6046 static int prl_entry;
6047 static kmutex_t prl_mutex;
6048 
6049 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6050 	mutex_enter(&prl_mutex);					\
6051 	page_relocate_log[prl_entry].targ = *(t);			\
6052 	page_relocate_log[prl_entry].repl = *(r);			\
6053 	page_relocate_log[prl_entry].status = (s);			\
6054 	page_relocate_log[prl_entry].pausecpus = (p);			\
6055 	page_relocate_log[prl_entry].whence = gethrtime();		\
6056 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6057 	mutex_exit(&prl_mutex);
6058 
6059 #else	/* !DEBUG */
6060 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6061 #endif
6062 
6063 /*
6064  * Core Kernel Page Relocation Algorithm
6065  *
6066  * Input:
6067  *
6068  * target : 	constituent pages are SE_EXCL locked.
6069  * replacement:	constituent pages are SE_EXCL locked.
6070  *
6071  * Output:
6072  *
6073  * nrelocp:	number of pages relocated
6074  */
6075 int
6076 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6077 {
6078 	page_t		*targ, *repl;
6079 	page_t		*tpp, *rpp;
6080 	kmutex_t	*low, *high;
6081 	spgcnt_t	npages, i;
6082 	page_t		*pl = NULL;
6083 	int		old_pil;
6084 	cpuset_t	cpuset;
6085 	int		cap_cpus;
6086 	int		ret;
6087 
6088 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6089 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6090 		return (EAGAIN);
6091 	}
6092 
6093 	mutex_enter(&kpr_mutex);
6094 	kreloc_thread = curthread;
6095 
6096 	targ = *target;
6097 	repl = *replacement;
6098 	ASSERT(repl != NULL);
6099 	ASSERT(targ->p_szc == repl->p_szc);
6100 
6101 	npages = page_get_pagecnt(targ->p_szc);
6102 
6103 	/*
6104 	 * unload VA<->PA mappings that are not locked
6105 	 */
6106 	tpp = targ;
6107 	for (i = 0; i < npages; i++) {
6108 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6109 		tpp++;
6110 	}
6111 
6112 	/*
6113 	 * Do "presuspend" callbacks, in a context from which we can still
6114 	 * block as needed. Note that we don't hold the mapping list lock
6115 	 * of "targ" at this point due to potential locking order issues;
6116 	 * we assume that between the hat_pageunload() above and holding
6117 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6118 	 * point.
6119 	 */
6120 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6121 	if (ret != 0) {
6122 		/*
6123 		 * EIO translates to fatal error, for all others cleanup
6124 		 * and return EAGAIN.
6125 		 */
6126 		ASSERT(ret != EIO);
6127 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6128 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6129 		kreloc_thread = NULL;
6130 		mutex_exit(&kpr_mutex);
6131 		return (EAGAIN);
6132 	}
6133 
6134 	/*
6135 	 * acquire p_mapping list lock for both the target and replacement
6136 	 * root pages.
6137 	 *
6138 	 * low and high refer to the need to grab the mlist locks in a
6139 	 * specific order in order to prevent race conditions.  Thus the
6140 	 * lower lock must be grabbed before the higher lock.
6141 	 *
6142 	 * This will block hat_unload's accessing p_mapping list.  Since
6143 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6144 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6145 	 * while we suspend and reload the locked mapping below.
6146 	 */
6147 	tpp = targ;
6148 	rpp = repl;
6149 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6150 
6151 	kpreempt_disable();
6152 
6153 #ifdef VAC
6154 	/*
6155 	 * If the replacement page is of a different virtual color
6156 	 * than the page it is replacing, we need to handle the VAC
6157 	 * consistency for it just as we would if we were setting up
6158 	 * a new mapping to a page.
6159 	 */
6160 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6161 		if (tpp->p_vcolor != rpp->p_vcolor) {
6162 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6163 			    rpp->p_pagenum);
6164 		}
6165 	}
6166 #endif
6167 
6168 	/*
6169 	 * We raise our PIL to 13 so that we don't get captured by
6170 	 * another CPU or pinned by an interrupt thread.  We can't go to
6171 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6172 	 * that level in the case of IOMMU pseudo mappings.
6173 	 */
6174 	cpuset = cpu_ready_set;
6175 	CPUSET_DEL(cpuset, CPU->cpu_id);
6176 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6177 		old_pil = splr(XCALL_PIL);
6178 	} else {
6179 		old_pil = -1;
6180 		xc_attention(cpuset);
6181 	}
6182 	ASSERT(getpil() == XCALL_PIL);
6183 
6184 	/*
6185 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6186 	 * this will suspend all DMA activity to the page while it is
6187 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6188 	 * may be captured at this point we should have acquired any needed
6189 	 * locks in the presuspend callback.
6190 	 */
6191 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6192 	if (ret != 0) {
6193 		repl = targ;
6194 		goto suspend_fail;
6195 	}
6196 
6197 	/*
6198 	 * Raise the PIL yet again, this time to block all high-level
6199 	 * interrupts on this CPU. This is necessary to prevent an
6200 	 * interrupt routine from pinning the thread which holds the
6201 	 * mapping suspended and then touching the suspended page.
6202 	 *
6203 	 * Once the page is suspended we also need to be careful to
6204 	 * avoid calling any functions which touch any seg_kmem memory
6205 	 * since that memory may be backed by the very page we are
6206 	 * relocating in here!
6207 	 */
6208 	hat_pagesuspend(targ);
6209 
6210 	/*
6211 	 * Now that we are confident everybody has stopped using this page,
6212 	 * copy the page contents.  Note we use a physical copy to prevent
6213 	 * locking issues and to avoid fpRAS because we can't handle it in
6214 	 * this context.
6215 	 */
6216 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6217 		/*
6218 		 * Copy the contents of the page.
6219 		 */
6220 		ppcopy_kernel(tpp, rpp);
6221 	}
6222 
6223 	tpp = targ;
6224 	rpp = repl;
6225 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6226 		/*
6227 		 * Copy attributes.  VAC consistency was handled above,
6228 		 * if required.
6229 		 */
6230 		rpp->p_nrm = tpp->p_nrm;
6231 		tpp->p_nrm = 0;
6232 		rpp->p_index = tpp->p_index;
6233 		tpp->p_index = 0;
6234 #ifdef VAC
6235 		rpp->p_vcolor = tpp->p_vcolor;
6236 #endif
6237 	}
6238 
6239 	/*
6240 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6241 	 * the mapping list from the target page to the replacement page.
6242 	 * Next process postcallbacks; since pa_hment's are linked only to the
6243 	 * p_mapping list of root page, we don't iterate over the constituent
6244 	 * pages.
6245 	 */
6246 	hat_pagereload(targ, repl);
6247 
6248 suspend_fail:
6249 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6250 
6251 	/*
6252 	 * Now lower our PIL and release any captured CPUs since we
6253 	 * are out of the "danger zone".  After this it will again be
6254 	 * safe to acquire adaptive mutex locks, or to drop them...
6255 	 */
6256 	if (old_pil != -1) {
6257 		splx(old_pil);
6258 	} else {
6259 		xc_dismissed(cpuset);
6260 	}
6261 
6262 	kpreempt_enable();
6263 
6264 	sfmmu_mlist_reloc_exit(low, high);
6265 
6266 	/*
6267 	 * Postsuspend callbacks should drop any locks held across
6268 	 * the suspend callbacks.  As before, we don't hold the mapping
6269 	 * list lock at this point.. our assumption is that the mapping
6270 	 * list still can't change due to our holding SE_EXCL lock and
6271 	 * there being no unlocked mappings left. Hence the restriction
6272 	 * on calling context to hat_delete_callback()
6273 	 */
6274 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6275 	if (ret != 0) {
6276 		/*
6277 		 * The second presuspend call failed: we got here through
6278 		 * the suspend_fail label above.
6279 		 */
6280 		ASSERT(ret != EIO);
6281 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6282 		kreloc_thread = NULL;
6283 		mutex_exit(&kpr_mutex);
6284 		return (EAGAIN);
6285 	}
6286 
6287 	/*
6288 	 * Now that we're out of the performance critical section we can
6289 	 * take care of updating the hash table, since we still
6290 	 * hold all the pages locked SE_EXCL at this point we
6291 	 * needn't worry about things changing out from under us.
6292 	 */
6293 	tpp = targ;
6294 	rpp = repl;
6295 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6296 
6297 		/*
6298 		 * replace targ with replacement in page_hash table
6299 		 */
6300 		targ = tpp;
6301 		page_relocate_hash(rpp, targ);
6302 
6303 		/*
6304 		 * concatenate target; caller of platform_page_relocate()
6305 		 * expects target to be concatenated after returning.
6306 		 */
6307 		ASSERT(targ->p_next == targ);
6308 		ASSERT(targ->p_prev == targ);
6309 		page_list_concat(&pl, &targ);
6310 	}
6311 
6312 	ASSERT(*target == pl);
6313 	*nrelocp = npages;
6314 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6315 	kreloc_thread = NULL;
6316 	mutex_exit(&kpr_mutex);
6317 	return (0);
6318 }
6319 
6320 /*
6321  * Called when stray pa_hments are found attached to a page which is
6322  * being freed.  Notify the subsystem which attached the pa_hment of
6323  * the error if it registered a suitable handler, else panic.
6324  */
6325 static void
6326 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6327 {
6328 	id_t cb_id = pahmep->cb_id;
6329 
6330 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6331 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6332 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6333 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6334 			return;		/* non-fatal */
6335 	}
6336 	panic("pa_hment leaked: 0x%p", pahmep);
6337 }
6338 
6339 /*
6340  * Remove all mappings to page 'pp'.
6341  */
6342 int
6343 hat_pageunload(struct page *pp, uint_t forceflag)
6344 {
6345 	struct page *origpp = pp;
6346 	struct sf_hment *sfhme, *tmphme;
6347 	struct hme_blk *hmeblkp;
6348 	kmutex_t *pml;
6349 #ifdef VAC
6350 	kmutex_t *pmtx;
6351 #endif
6352 	cpuset_t cpuset, tset;
6353 	int index, cons;
6354 	int xhme_blks;
6355 	int pa_hments;
6356 
6357 	ASSERT(PAGE_EXCL(pp));
6358 
6359 retry_xhat:
6360 	tmphme = NULL;
6361 	xhme_blks = 0;
6362 	pa_hments = 0;
6363 	CPUSET_ZERO(cpuset);
6364 
6365 	pml = sfmmu_mlist_enter(pp);
6366 
6367 #ifdef VAC
6368 	if (pp->p_kpmref)
6369 		sfmmu_kpm_pageunload(pp);
6370 	ASSERT(!PP_ISMAPPED_KPM(pp));
6371 #endif
6372 
6373 	index = PP_MAPINDEX(pp);
6374 	cons = TTE8K;
6375 retry:
6376 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6377 		tmphme = sfhme->hme_next;
6378 
6379 		if (IS_PAHME(sfhme)) {
6380 			ASSERT(sfhme->hme_data != NULL);
6381 			pa_hments++;
6382 			continue;
6383 		}
6384 
6385 		hmeblkp = sfmmu_hmetohblk(sfhme);
6386 		if (hmeblkp->hblk_xhat_bit) {
6387 			struct xhat_hme_blk *xblk =
6388 			    (struct xhat_hme_blk *)hmeblkp;
6389 
6390 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6391 			    pp, forceflag, XBLK2PROVBLK(xblk));
6392 
6393 			xhme_blks = 1;
6394 			continue;
6395 		}
6396 
6397 		/*
6398 		 * If there are kernel mappings don't unload them, they will
6399 		 * be suspended.
6400 		 */
6401 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6402 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6403 			continue;
6404 
6405 		tset = sfmmu_pageunload(pp, sfhme, cons);
6406 		CPUSET_OR(cpuset, tset);
6407 	}
6408 
6409 	while (index != 0) {
6410 		index = index >> 1;
6411 		if (index != 0)
6412 			cons++;
6413 		if (index & 0x1) {
6414 			/* Go to leading page */
6415 			pp = PP_GROUPLEADER(pp, cons);
6416 			ASSERT(sfmmu_mlist_held(pp));
6417 			goto retry;
6418 		}
6419 	}
6420 
6421 	/*
6422 	 * cpuset may be empty if the page was only mapped by segkpm,
6423 	 * in which case we won't actually cross-trap.
6424 	 */
6425 	xt_sync(cpuset);
6426 
6427 	/*
6428 	 * The page should have no mappings at this point, unless
6429 	 * we were called from hat_page_relocate() in which case we
6430 	 * leave the locked mappings which will be suspended later.
6431 	 */
6432 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6433 	    (forceflag == SFMMU_KERNEL_RELOC));
6434 
6435 #ifdef VAC
6436 	if (PP_ISTNC(pp)) {
6437 		if (cons == TTE8K) {
6438 			pmtx = sfmmu_page_enter(pp);
6439 			PP_CLRTNC(pp);
6440 			sfmmu_page_exit(pmtx);
6441 		} else {
6442 			conv_tnc(pp, cons);
6443 		}
6444 	}
6445 #endif	/* VAC */
6446 
6447 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6448 		/*
6449 		 * Unlink any pa_hments and free them, calling back
6450 		 * the responsible subsystem to notify it of the error.
6451 		 * This can occur in situations such as drivers leaking
6452 		 * DMA handles: naughty, but common enough that we'd like
6453 		 * to keep the system running rather than bringing it
6454 		 * down with an obscure error like "pa_hment leaked"
6455 		 * which doesn't aid the user in debugging their driver.
6456 		 */
6457 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6458 			tmphme = sfhme->hme_next;
6459 			if (IS_PAHME(sfhme)) {
6460 				struct pa_hment *pahmep = sfhme->hme_data;
6461 				sfmmu_pahment_leaked(pahmep);
6462 				HME_SUB(sfhme, pp);
6463 				kmem_cache_free(pa_hment_cache, pahmep);
6464 			}
6465 		}
6466 
6467 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6468 	}
6469 
6470 	sfmmu_mlist_exit(pml);
6471 
6472 	/*
6473 	 * XHAT may not have finished unloading pages
6474 	 * because some other thread was waiting for
6475 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6476 	 * the job.
6477 	 */
6478 	if (xhme_blks) {
6479 		pp = origpp;
6480 		goto retry_xhat;
6481 	}
6482 
6483 	return (0);
6484 }
6485 
6486 cpuset_t
6487 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6488 {
6489 	struct hme_blk *hmeblkp;
6490 	sfmmu_t *sfmmup;
6491 	tte_t tte, ttemod;
6492 #ifdef DEBUG
6493 	tte_t orig_old;
6494 #endif /* DEBUG */
6495 	caddr_t addr;
6496 	int ttesz;
6497 	int ret;
6498 	cpuset_t cpuset;
6499 
6500 	ASSERT(pp != NULL);
6501 	ASSERT(sfmmu_mlist_held(pp));
6502 	ASSERT(pp->p_vnode != &kvp);
6503 
6504 	CPUSET_ZERO(cpuset);
6505 
6506 	hmeblkp = sfmmu_hmetohblk(sfhme);
6507 
6508 readtte:
6509 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6510 	if (TTE_IS_VALID(&tte)) {
6511 		sfmmup = hblktosfmmu(hmeblkp);
6512 		ttesz = get_hblk_ttesz(hmeblkp);
6513 		/*
6514 		 * Only unload mappings of 'cons' size.
6515 		 */
6516 		if (ttesz != cons)
6517 			return (cpuset);
6518 
6519 		/*
6520 		 * Note that we have p_mapping lock, but no hash lock here.
6521 		 * hblk_unload() has to have both hash lock AND p_mapping
6522 		 * lock before it tries to modify tte. So, the tte could
6523 		 * not become invalid in the sfmmu_modifytte_try() below.
6524 		 */
6525 		ttemod = tte;
6526 #ifdef DEBUG
6527 		orig_old = tte;
6528 #endif /* DEBUG */
6529 
6530 		TTE_SET_INVALID(&ttemod);
6531 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6532 		if (ret < 0) {
6533 #ifdef DEBUG
6534 			/* only R/M bits can change. */
6535 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6536 #endif /* DEBUG */
6537 			goto readtte;
6538 		}
6539 
6540 		if (ret == 0) {
6541 			panic("pageunload: cas failed?");
6542 		}
6543 
6544 		addr = tte_to_vaddr(hmeblkp, tte);
6545 
6546 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6547 
6548 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6549 
6550 		/*
6551 		 * We need to flush the page from the virtual cache
6552 		 * in order to prevent a virtual cache alias
6553 		 * inconsistency. The particular scenario we need
6554 		 * to worry about is:
6555 		 * Given:  va1 and va2 are two virtual address that
6556 		 * alias and will map the same physical address.
6557 		 * 1.	mapping exists from va1 to pa and data has
6558 		 *	been read into the cache.
6559 		 * 2.	unload va1.
6560 		 * 3.	load va2 and modify data using va2.
6561 		 * 4	unload va2.
6562 		 * 5.	load va1 and reference data.  Unless we flush
6563 		 *	the data cache when we unload we will get
6564 		 *	stale data.
6565 		 * This scenario is taken care of by using virtual
6566 		 * page coloring.
6567 		 */
6568 		if (sfmmup->sfmmu_ismhat) {
6569 			/*
6570 			 * Flush TSBs, TLBs and caches
6571 			 * of every process
6572 			 * sharing this ism segment.
6573 			 */
6574 			sfmmu_hat_lock_all();
6575 			mutex_enter(&ism_mlist_lock);
6576 			kpreempt_disable();
6577 			if (do_virtual_coloring)
6578 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6579 					pp->p_pagenum, CACHE_NO_FLUSH);
6580 			else
6581 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6582 					pp->p_pagenum, CACHE_FLUSH);
6583 			kpreempt_enable();
6584 			mutex_exit(&ism_mlist_lock);
6585 			sfmmu_hat_unlock_all();
6586 			cpuset = cpu_ready_set;
6587 		} else if (do_virtual_coloring) {
6588 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6589 			cpuset = sfmmup->sfmmu_cpusran;
6590 		} else {
6591 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6592 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6593 				CACHE_FLUSH, 0);
6594 			cpuset = sfmmup->sfmmu_cpusran;
6595 		}
6596 
6597 		/*
6598 		 * Hme_sub has to run after ttesync() and a_rss update.
6599 		 * See hblk_unload().
6600 		 */
6601 		HME_SUB(sfhme, pp);
6602 		membar_stst();
6603 
6604 		/*
6605 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6606 		 * since pteload may have done a HME_ADD() right after
6607 		 * we did the HME_SUB() above. Hmecnt is now maintained
6608 		 * by cas only. no lock guranteed its value. The only
6609 		 * gurantee we have is the hmecnt should not be less than
6610 		 * what it should be so the hblk will not be taken away.
6611 		 * It's also important that we decremented the hmecnt after
6612 		 * we are done with hmeblkp so that this hmeblk won't be
6613 		 * stolen.
6614 		 */
6615 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6616 		ASSERT(hmeblkp->hblk_vcnt > 0);
6617 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6618 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6619 		/*
6620 		 * This is bug 4063182.
6621 		 * XXX: fixme
6622 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6623 		 *	!hmeblkp->hblk_lckcnt);
6624 		 */
6625 	} else {
6626 		panic("invalid tte? pp %p &tte %p",
6627 		    (void *)pp, (void *)&tte);
6628 	}
6629 
6630 	return (cpuset);
6631 }
6632 
6633 /*
6634  * While relocating a kernel page, this function will move the mappings
6635  * from tpp to dpp and modify any associated data with these mappings.
6636  * It also unsuspends the suspended kernel mapping.
6637  */
6638 static void
6639 hat_pagereload(struct page *tpp, struct page *dpp)
6640 {
6641 	struct sf_hment *sfhme;
6642 	tte_t tte, ttemod;
6643 	int index, cons;
6644 
6645 	ASSERT(getpil() == PIL_MAX);
6646 	ASSERT(sfmmu_mlist_held(tpp));
6647 	ASSERT(sfmmu_mlist_held(dpp));
6648 
6649 	index = PP_MAPINDEX(tpp);
6650 	cons = TTE8K;
6651 
6652 	/* Update real mappings to the page */
6653 retry:
6654 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6655 		if (IS_PAHME(sfhme))
6656 			continue;
6657 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6658 		ttemod = tte;
6659 
6660 		/*
6661 		 * replace old pfn with new pfn in TTE
6662 		 */
6663 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6664 
6665 		/*
6666 		 * clear suspend bit
6667 		 */
6668 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6669 		TTE_CLR_SUSPEND(&ttemod);
6670 
6671 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6672 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6673 
6674 		/*
6675 		 * set hme_page point to new page
6676 		 */
6677 		sfhme->hme_page = dpp;
6678 	}
6679 
6680 	/*
6681 	 * move p_mapping list from old page to new page
6682 	 */
6683 	dpp->p_mapping = tpp->p_mapping;
6684 	tpp->p_mapping = NULL;
6685 	dpp->p_share = tpp->p_share;
6686 	tpp->p_share = 0;
6687 
6688 	while (index != 0) {
6689 		index = index >> 1;
6690 		if (index != 0)
6691 			cons++;
6692 		if (index & 0x1) {
6693 			tpp = PP_GROUPLEADER(tpp, cons);
6694 			dpp = PP_GROUPLEADER(dpp, cons);
6695 			goto retry;
6696 		}
6697 	}
6698 
6699 	if (dtrace_kreloc_fini)
6700 		(*dtrace_kreloc_fini)();
6701 	mutex_exit(&kpr_suspendlock);
6702 }
6703 
6704 uint_t
6705 hat_pagesync(struct page *pp, uint_t clearflag)
6706 {
6707 	struct sf_hment *sfhme, *tmphme = NULL;
6708 	struct hme_blk *hmeblkp;
6709 	kmutex_t *pml;
6710 	cpuset_t cpuset, tset;
6711 	int	index, cons;
6712 	extern	ulong_t po_share;
6713 	page_t	*save_pp = pp;
6714 
6715 	CPUSET_ZERO(cpuset);
6716 
6717 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6718 		return (PP_GENERIC_ATTR(pp));
6719 	}
6720 
6721 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6722 	    PP_ISREF(pp)) {
6723 		return (PP_GENERIC_ATTR(pp));
6724 	}
6725 
6726 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6727 	    PP_ISMOD(pp)) {
6728 		return (PP_GENERIC_ATTR(pp));
6729 	}
6730 
6731 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6732 	    (pp->p_share > po_share) &&
6733 	    !(clearflag & HAT_SYNC_ZERORM)) {
6734 		if (PP_ISRO(pp))
6735 			hat_page_setattr(pp, P_REF);
6736 		return (PP_GENERIC_ATTR(pp));
6737 	}
6738 
6739 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6740 	pml = sfmmu_mlist_enter(pp);
6741 	index = PP_MAPINDEX(pp);
6742 	cons = TTE8K;
6743 retry:
6744 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6745 		/*
6746 		 * We need to save the next hment on the list since
6747 		 * it is possible for pagesync to remove an invalid hment
6748 		 * from the list.
6749 		 */
6750 		tmphme = sfhme->hme_next;
6751 		/*
6752 		 * If we are looking for large mappings and this hme doesn't
6753 		 * reach the range we are seeking, just ignore its.
6754 		 */
6755 		hmeblkp = sfmmu_hmetohblk(sfhme);
6756 		if (hmeblkp->hblk_xhat_bit)
6757 			continue;
6758 
6759 		if (hme_size(sfhme) < cons)
6760 			continue;
6761 		tset = sfmmu_pagesync(pp, sfhme,
6762 			clearflag & ~HAT_SYNC_STOPON_RM);
6763 		CPUSET_OR(cpuset, tset);
6764 		/*
6765 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6766 		 * as the "ref" or "mod" is set.
6767 		 */
6768 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6769 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6770 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6771 			index = 0;
6772 			break;
6773 		}
6774 	}
6775 
6776 	while (index) {
6777 		index = index >> 1;
6778 		cons++;
6779 		if (index & 0x1) {
6780 			/* Go to leading page */
6781 			pp = PP_GROUPLEADER(pp, cons);
6782 			goto retry;
6783 		}
6784 	}
6785 
6786 	xt_sync(cpuset);
6787 	sfmmu_mlist_exit(pml);
6788 	return (PP_GENERIC_ATTR(save_pp));
6789 }
6790 
6791 /*
6792  * Get all the hardware dependent attributes for a page struct
6793  */
6794 static cpuset_t
6795 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6796 	uint_t clearflag)
6797 {
6798 	caddr_t addr;
6799 	tte_t tte, ttemod;
6800 	struct hme_blk *hmeblkp;
6801 	int ret;
6802 	sfmmu_t *sfmmup;
6803 	cpuset_t cpuset;
6804 
6805 	ASSERT(pp != NULL);
6806 	ASSERT(sfmmu_mlist_held(pp));
6807 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6808 		(clearflag == HAT_SYNC_ZERORM));
6809 
6810 	SFMMU_STAT(sf_pagesync);
6811 
6812 	CPUSET_ZERO(cpuset);
6813 
6814 sfmmu_pagesync_retry:
6815 
6816 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6817 	if (TTE_IS_VALID(&tte)) {
6818 		hmeblkp = sfmmu_hmetohblk(sfhme);
6819 		sfmmup = hblktosfmmu(hmeblkp);
6820 		addr = tte_to_vaddr(hmeblkp, tte);
6821 		if (clearflag == HAT_SYNC_ZERORM) {
6822 			ttemod = tte;
6823 			TTE_CLR_RM(&ttemod);
6824 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6825 				&sfhme->hme_tte);
6826 			if (ret < 0) {
6827 				/*
6828 				 * cas failed and the new value is not what
6829 				 * we want.
6830 				 */
6831 				goto sfmmu_pagesync_retry;
6832 			}
6833 
6834 			if (ret > 0) {
6835 				/* we win the cas */
6836 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6837 				cpuset = sfmmup->sfmmu_cpusran;
6838 			}
6839 		}
6840 
6841 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6842 	}
6843 	return (cpuset);
6844 }
6845 
6846 /*
6847  * Remove write permission from a mappings to a page, so that
6848  * we can detect the next modification of it. This requires modifying
6849  * the TTE then invalidating (demap) any TLB entry using that TTE.
6850  * This code is similar to sfmmu_pagesync().
6851  */
6852 static cpuset_t
6853 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6854 {
6855 	caddr_t addr;
6856 	tte_t tte;
6857 	tte_t ttemod;
6858 	struct hme_blk *hmeblkp;
6859 	int ret;
6860 	sfmmu_t *sfmmup;
6861 	cpuset_t cpuset;
6862 
6863 	ASSERT(pp != NULL);
6864 	ASSERT(sfmmu_mlist_held(pp));
6865 
6866 	CPUSET_ZERO(cpuset);
6867 	SFMMU_STAT(sf_clrwrt);
6868 
6869 retry:
6870 
6871 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6872 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6873 		hmeblkp = sfmmu_hmetohblk(sfhme);
6874 
6875 		/*
6876 		 * xhat mappings should never be to a VMODSORT page.
6877 		 */
6878 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6879 
6880 		sfmmup = hblktosfmmu(hmeblkp);
6881 		addr = tte_to_vaddr(hmeblkp, tte);
6882 
6883 		ttemod = tte;
6884 		TTE_CLR_WRT(&ttemod);
6885 		TTE_CLR_MOD(&ttemod);
6886 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6887 
6888 		/*
6889 		 * if cas failed and the new value is not what
6890 		 * we want retry
6891 		 */
6892 		if (ret < 0)
6893 			goto retry;
6894 
6895 		/* we win the cas */
6896 		if (ret > 0) {
6897 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6898 			cpuset = sfmmup->sfmmu_cpusran;
6899 		}
6900 	}
6901 
6902 	return (cpuset);
6903 }
6904 
6905 /*
6906  * Walk all mappings of a page, removing write permission and clearing the
6907  * ref/mod bits. This code is similar to hat_pagesync()
6908  */
6909 static void
6910 hat_page_clrwrt(page_t *pp)
6911 {
6912 	struct sf_hment *sfhme;
6913 	struct sf_hment *tmphme = NULL;
6914 	kmutex_t *pml;
6915 	cpuset_t cpuset;
6916 	cpuset_t tset;
6917 	int	index;
6918 	int	 cons;
6919 
6920 	CPUSET_ZERO(cpuset);
6921 
6922 	pml = sfmmu_mlist_enter(pp);
6923 	index = PP_MAPINDEX(pp);
6924 	cons = TTE8K;
6925 retry:
6926 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6927 		tmphme = sfhme->hme_next;
6928 
6929 		/*
6930 		 * If we are looking for large mappings and this hme doesn't
6931 		 * reach the range we are seeking, just ignore its.
6932 		 */
6933 
6934 		if (hme_size(sfhme) < cons)
6935 			continue;
6936 
6937 		tset = sfmmu_pageclrwrt(pp, sfhme);
6938 		CPUSET_OR(cpuset, tset);
6939 	}
6940 
6941 	while (index) {
6942 		index = index >> 1;
6943 		cons++;
6944 		if (index & 0x1) {
6945 			/* Go to leading page */
6946 			pp = PP_GROUPLEADER(pp, cons);
6947 			goto retry;
6948 		}
6949 	}
6950 
6951 	xt_sync(cpuset);
6952 	sfmmu_mlist_exit(pml);
6953 }
6954 
6955 /*
6956  * Set the given REF/MOD/RO bits for the given page.
6957  * For a vnode with a sorted v_pages list, we need to change
6958  * the attributes and the v_pages list together under page_vnode_mutex.
6959  */
6960 void
6961 hat_page_setattr(page_t *pp, uint_t flag)
6962 {
6963 	vnode_t		*vp = pp->p_vnode;
6964 	page_t		**listp;
6965 	kmutex_t	*pmtx;
6966 	kmutex_t	*vphm = NULL;
6967 
6968 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6969 
6970 	/*
6971 	 * nothing to do if attribute already set
6972 	 */
6973 	if ((pp->p_nrm & flag) == flag)
6974 		return;
6975 
6976 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6977 		vphm = page_vnode_mutex(vp);
6978 		mutex_enter(vphm);
6979 	}
6980 
6981 	pmtx = sfmmu_page_enter(pp);
6982 	pp->p_nrm |= flag;
6983 	sfmmu_page_exit(pmtx);
6984 
6985 	if (vphm != NULL) {
6986 		/*
6987 		 * Some File Systems examine v_pages for NULL w/o
6988 		 * grabbing the vphm mutex. Must not let it become NULL when
6989 		 * pp is the only page on the list.
6990 		 */
6991 		if (pp->p_vpnext != pp) {
6992 			page_vpsub(&vp->v_pages, pp);
6993 			if (vp->v_pages != NULL)
6994 				listp = &vp->v_pages->p_vpprev->p_vpnext;
6995 			else
6996 				listp = &vp->v_pages;
6997 			page_vpadd(listp, pp);
6998 		}
6999 		mutex_exit(vphm);
7000 	}
7001 }
7002 
7003 void
7004 hat_page_clrattr(page_t *pp, uint_t flag)
7005 {
7006 	vnode_t		*vp = pp->p_vnode;
7007 	kmutex_t	*vphm = NULL;
7008 	kmutex_t	*pmtx;
7009 
7010 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7011 
7012 	/*
7013 	 * For vnode with a sorted v_pages list, we need to change
7014 	 * the attributes and the v_pages list together under page_vnode_mutex.
7015 	 */
7016 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7017 		vphm = page_vnode_mutex(vp);
7018 		mutex_enter(vphm);
7019 	}
7020 
7021 	pmtx = sfmmu_page_enter(pp);
7022 	pp->p_nrm &= ~flag;
7023 	sfmmu_page_exit(pmtx);
7024 
7025 	if (vphm != NULL) {
7026 		/*
7027 		 * Some File Systems examine v_pages for NULL w/o
7028 		 * grabbing the vphm mutex. Must not let it become NULL when
7029 		 * pp is the only page on the list.
7030 		 */
7031 		if (pp->p_vpnext != pp) {
7032 			page_vpsub(&vp->v_pages, pp);
7033 			page_vpadd(&vp->v_pages, pp);
7034 		}
7035 		mutex_exit(vphm);
7036 
7037 		/*
7038 		 * VMODSORT works by removing write permissions and getting
7039 		 * a fault when a page is made dirty. At this point
7040 		 * we need to remove write permission from all mappings
7041 		 * to this page.
7042 		 */
7043 		hat_page_clrwrt(pp);
7044 	}
7045 }
7046 
7047 
7048 uint_t
7049 hat_page_getattr(page_t *pp, uint_t flag)
7050 {
7051 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7052 	return ((uint_t)(pp->p_nrm & flag));
7053 }
7054 
7055 /*
7056  * DEBUG kernels: verify that a kernel va<->pa translation
7057  * is safe by checking the underlying page_t is in a page
7058  * relocation-safe state.
7059  */
7060 #ifdef	DEBUG
7061 void
7062 sfmmu_check_kpfn(pfn_t pfn)
7063 {
7064 	page_t *pp;
7065 	int index, cons;
7066 
7067 	if (hat_check_vtop == 0)
7068 		return;
7069 
7070 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7071 		return;
7072 
7073 	pp = page_numtopp_nolock(pfn);
7074 	if (!pp)
7075 		return;
7076 
7077 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7078 		return;
7079 
7080 	/*
7081 	 * Handed a large kernel page, we dig up the root page since we
7082 	 * know the root page might have the lock also.
7083 	 */
7084 	if (pp->p_szc != 0) {
7085 		index = PP_MAPINDEX(pp);
7086 		cons = TTE8K;
7087 again:
7088 		while (index != 0) {
7089 			index >>= 1;
7090 			if (index != 0)
7091 				cons++;
7092 			if (index & 0x1) {
7093 				pp = PP_GROUPLEADER(pp, cons);
7094 				goto again;
7095 			}
7096 		}
7097 	}
7098 
7099 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7100 		return;
7101 
7102 	/*
7103 	 * Pages need to be locked or allocated "permanent" (either from
7104 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7105 	 * page_create_va()) for VA->PA translations to be valid.
7106 	 */
7107 	if (!PP_ISNORELOC(pp))
7108 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7109 	else
7110 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7111 }
7112 #endif	/* DEBUG */
7113 
7114 /*
7115  * Returns a page frame number for a given virtual address.
7116  * Returns PFN_INVALID to indicate an invalid mapping
7117  */
7118 pfn_t
7119 hat_getpfnum(struct hat *hat, caddr_t addr)
7120 {
7121 	pfn_t pfn;
7122 	tte_t tte;
7123 
7124 	/*
7125 	 * We would like to
7126 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7127 	 * but we can't because the iommu driver will call this
7128 	 * routine at interrupt time and it can't grab the as lock
7129 	 * or it will deadlock: A thread could have the as lock
7130 	 * and be waiting for io.  The io can't complete
7131 	 * because the interrupt thread is blocked trying to grab
7132 	 * the as lock.
7133 	 */
7134 
7135 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7136 
7137 	if (hat == ksfmmup) {
7138 		if (segkpm && IS_KPM_ADDR(addr))
7139 			return (sfmmu_kpm_vatopfn(addr));
7140 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7141 		    == PFN_SUSPENDED) {
7142 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7143 		}
7144 		sfmmu_check_kpfn(pfn);
7145 		return (pfn);
7146 	} else {
7147 		return (sfmmu_uvatopfn(addr, hat));
7148 	}
7149 }
7150 
7151 /*
7152  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7153  * Use hat_getpfnum(kas.a_hat, ...) instead.
7154  *
7155  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7156  * but can't right now due to the fact that some software has grown to use
7157  * this interface incorrectly. So for now when the interface is misused,
7158  * return a warning to the user that in the future it won't work in the
7159  * way they're abusing it, and carry on (after disabling page relocation).
7160  */
7161 pfn_t
7162 hat_getkpfnum(caddr_t addr)
7163 {
7164 	pfn_t pfn;
7165 	tte_t tte;
7166 	int badcaller = 0;
7167 	extern int segkmem_reloc;
7168 
7169 	if (segkpm && IS_KPM_ADDR(addr)) {
7170 		badcaller = 1;
7171 		pfn = sfmmu_kpm_vatopfn(addr);
7172 	} else {
7173 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7174 		    == PFN_SUSPENDED) {
7175 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7176 		}
7177 		badcaller = pf_is_memory(pfn);
7178 	}
7179 
7180 	if (badcaller) {
7181 		/*
7182 		 * We can't return PFN_INVALID or the caller may panic
7183 		 * or corrupt the system.  The only alternative is to
7184 		 * disable page relocation at this point for all kernel
7185 		 * memory.  This will impact any callers of page_relocate()
7186 		 * such as FMA or DR.
7187 		 *
7188 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7189 		 * can be advised that he should upgrade his device driver
7190 		 * so that this doesn't happen.
7191 		 */
7192 		hat_getkpfnum_badcall(caller());
7193 		if (hat_kpr_enabled && segkmem_reloc) {
7194 			hat_kpr_enabled = 0;
7195 			segkmem_reloc = 0;
7196 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7197 		}
7198 	}
7199 	return (pfn);
7200 }
7201 
7202 pfn_t
7203 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7204 {
7205 	struct hmehash_bucket *hmebp;
7206 	hmeblk_tag hblktag;
7207 	int hmeshift, hashno = 1;
7208 	struct hme_blk *hmeblkp = NULL;
7209 
7210 	struct sf_hment *sfhmep;
7211 	tte_t tte;
7212 	pfn_t pfn;
7213 
7214 	/* support for ISM */
7215 	ism_map_t	*ism_map;
7216 	ism_blk_t	*ism_blkp;
7217 	int		i;
7218 	sfmmu_t *ism_hatid = NULL;
7219 	sfmmu_t *locked_hatid = NULL;
7220 
7221 
7222 	ASSERT(sfmmup != ksfmmup);
7223 	SFMMU_STAT(sf_user_vtop);
7224 	/*
7225 	 * Set ism_hatid if vaddr falls in a ISM segment.
7226 	 */
7227 	ism_blkp = sfmmup->sfmmu_iblk;
7228 	if (ism_blkp) {
7229 		sfmmu_ismhat_enter(sfmmup, 0);
7230 		locked_hatid = sfmmup;
7231 	}
7232 	while (ism_blkp && ism_hatid == NULL) {
7233 		ism_map = ism_blkp->iblk_maps;
7234 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7235 			if (vaddr >= ism_start(ism_map[i]) &&
7236 			    vaddr < ism_end(ism_map[i])) {
7237 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7238 				vaddr = (caddr_t)(vaddr -
7239 					ism_start(ism_map[i]));
7240 				break;
7241 			}
7242 		}
7243 		ism_blkp = ism_blkp->iblk_next;
7244 	}
7245 	if (locked_hatid) {
7246 		sfmmu_ismhat_exit(locked_hatid, 0);
7247 	}
7248 
7249 	hblktag.htag_id = sfmmup;
7250 	do {
7251 		hmeshift = HME_HASH_SHIFT(hashno);
7252 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7253 		hblktag.htag_rehash = hashno;
7254 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7255 
7256 		SFMMU_HASH_LOCK(hmebp);
7257 
7258 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7259 		if (hmeblkp != NULL) {
7260 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7261 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7262 			if (TTE_IS_VALID(&tte)) {
7263 				pfn = TTE_TO_PFN(vaddr, &tte);
7264 			} else {
7265 				pfn = PFN_INVALID;
7266 			}
7267 			SFMMU_HASH_UNLOCK(hmebp);
7268 			return (pfn);
7269 		}
7270 		SFMMU_HASH_UNLOCK(hmebp);
7271 		hashno++;
7272 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7273 	return (PFN_INVALID);
7274 }
7275 
7276 
7277 /*
7278  * For compatability with AT&T and later optimizations
7279  */
7280 /* ARGSUSED */
7281 void
7282 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7283 {
7284 	ASSERT(hat != NULL);
7285 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7286 }
7287 
7288 /*
7289  * Return the number of mappings to a particular page.
7290  * This number is an approximation of the number of
7291  * number of people sharing the page.
7292  */
7293 ulong_t
7294 hat_page_getshare(page_t *pp)
7295 {
7296 	page_t *spp = pp;	/* start page */
7297 	kmutex_t *pml;
7298 	ulong_t	cnt;
7299 	int index, sz = TTE64K;
7300 
7301 	/*
7302 	 * We need to grab the mlist lock to make sure any outstanding
7303 	 * load/unloads complete.  Otherwise we could return zero
7304 	 * even though the unload(s) hasn't finished yet.
7305 	 */
7306 	pml = sfmmu_mlist_enter(spp);
7307 	cnt = spp->p_share;
7308 
7309 #ifdef VAC
7310 	if (kpm_enable)
7311 		cnt += spp->p_kpmref;
7312 #endif
7313 
7314 	/*
7315 	 * If we have any large mappings, we count the number of
7316 	 * mappings that this large page is part of.
7317 	 */
7318 	index = PP_MAPINDEX(spp);
7319 	index >>= 1;
7320 	while (index) {
7321 		pp = PP_GROUPLEADER(spp, sz);
7322 		if ((index & 0x1) && pp != spp) {
7323 			cnt += pp->p_share;
7324 			spp = pp;
7325 		}
7326 		index >>= 1;
7327 		sz++;
7328 	}
7329 	sfmmu_mlist_exit(pml);
7330 	return (cnt);
7331 }
7332 
7333 /*
7334  * Unload all large mappings to the pp and reset the p_szc field of every
7335  * constituent page according to the remaining mappings.
7336  *
7337  * pp must be locked SE_EXCL. Even though no other constituent pages are
7338  * locked it's legal to unload the large mappings to the pp because all
7339  * constituent pages of large locked mappings have to be locked SE_SHARED.
7340  * This means if we have SE_EXCL lock on one of constituent pages none of the
7341  * large mappings to pp are locked.
7342  *
7343  * Decrease p_szc field starting from the last constituent page and ending
7344  * with the root page. This method is used because other threads rely on the
7345  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7346  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7347  * ensures that p_szc changes of the constituent pages appears atomic for all
7348  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7349  *
7350  * This mechanism is only used for file system pages where it's not always
7351  * possible to get SE_EXCL locks on all constituent pages to demote the size
7352  * code (as is done for anonymous or kernel large pages).
7353  *
7354  * See more comments in front of sfmmu_mlspl_enter().
7355  */
7356 void
7357 hat_page_demote(page_t *pp)
7358 {
7359 	int index;
7360 	int sz;
7361 	cpuset_t cpuset;
7362 	int sync = 0;
7363 	page_t *rootpp;
7364 	struct sf_hment *sfhme;
7365 	struct sf_hment *tmphme = NULL;
7366 	struct hme_blk *hmeblkp;
7367 	uint_t pszc;
7368 	page_t *lastpp;
7369 	cpuset_t tset;
7370 	pgcnt_t npgs;
7371 	kmutex_t *pml;
7372 	kmutex_t *pmtx = NULL;
7373 
7374 	ASSERT(PAGE_EXCL(pp));
7375 	ASSERT(!PP_ISFREE(pp));
7376 	ASSERT(page_szc_lock_assert(pp));
7377 	pml = sfmmu_mlist_enter(pp);
7378 
7379 	pszc = pp->p_szc;
7380 	if (pszc == 0) {
7381 		goto out;
7382 	}
7383 
7384 	index = PP_MAPINDEX(pp) >> 1;
7385 
7386 	if (index) {
7387 		CPUSET_ZERO(cpuset);
7388 		sz = TTE64K;
7389 		sync = 1;
7390 	}
7391 
7392 	while (index) {
7393 		if (!(index & 0x1)) {
7394 			index >>= 1;
7395 			sz++;
7396 			continue;
7397 		}
7398 		ASSERT(sz <= pszc);
7399 		rootpp = PP_GROUPLEADER(pp, sz);
7400 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7401 			tmphme = sfhme->hme_next;
7402 			hmeblkp = sfmmu_hmetohblk(sfhme);
7403 			if (hme_size(sfhme) != sz) {
7404 				continue;
7405 			}
7406 			if (hmeblkp->hblk_xhat_bit) {
7407 				cmn_err(CE_PANIC,
7408 				    "hat_page_demote: xhat hmeblk");
7409 			}
7410 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7411 			CPUSET_OR(cpuset, tset);
7412 		}
7413 		if (index >>= 1) {
7414 			sz++;
7415 		}
7416 	}
7417 
7418 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7419 
7420 	if (sync) {
7421 		xt_sync(cpuset);
7422 #ifdef VAC
7423 		if (PP_ISTNC(pp)) {
7424 			conv_tnc(rootpp, sz);
7425 		}
7426 #endif	/* VAC */
7427 	}
7428 
7429 	pmtx = sfmmu_page_enter(pp);
7430 
7431 	ASSERT(pp->p_szc == pszc);
7432 	rootpp = PP_PAGEROOT(pp);
7433 	ASSERT(rootpp->p_szc == pszc);
7434 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7435 
7436 	while (lastpp != rootpp) {
7437 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7438 		ASSERT(sz < pszc);
7439 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7440 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7441 		while (--npgs > 0) {
7442 			lastpp->p_szc = (uchar_t)sz;
7443 			lastpp = PP_PAGEPREV(lastpp);
7444 		}
7445 		if (sz) {
7446 			/*
7447 			 * make sure before current root's pszc
7448 			 * is updated all updates to constituent pages pszc
7449 			 * fields are globally visible.
7450 			 */
7451 			membar_producer();
7452 		}
7453 		lastpp->p_szc = sz;
7454 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7455 		if (lastpp != rootpp) {
7456 			lastpp = PP_PAGEPREV(lastpp);
7457 		}
7458 	}
7459 	if (sz == 0) {
7460 		/* the loop above doesn't cover this case */
7461 		rootpp->p_szc = 0;
7462 	}
7463 out:
7464 	ASSERT(pp->p_szc == 0);
7465 	if (pmtx != NULL) {
7466 		sfmmu_page_exit(pmtx);
7467 	}
7468 	sfmmu_mlist_exit(pml);
7469 }
7470 
7471 /*
7472  * Refresh the HAT ismttecnt[] element for size szc.
7473  * Caller must have set ISM busy flag to prevent mapping
7474  * lists from changing while we're traversing them.
7475  */
7476 pgcnt_t
7477 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7478 {
7479 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7480 	ism_map_t	*ism_map;
7481 	pgcnt_t		npgs = 0;
7482 	int		j;
7483 
7484 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7485 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7486 		ism_map = ism_blkp->iblk_maps;
7487 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7488 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7489 	}
7490 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7491 	return (npgs);
7492 }
7493 
7494 /*
7495  * Yield the memory claim requirement for an address space.
7496  *
7497  * This is currently implemented as the number of bytes that have active
7498  * hardware translations that have page structures.  Therefore, it can
7499  * underestimate the traditional resident set size, eg, if the
7500  * physical page is present and the hardware translation is missing;
7501  * and it can overestimate the rss, eg, if there are active
7502  * translations to a frame buffer with page structs.
7503  * Also, it does not take sharing into account.
7504  *
7505  * Note that we don't acquire locks here since this function is most often
7506  * called from the clock thread.
7507  */
7508 size_t
7509 hat_get_mapped_size(struct hat *hat)
7510 {
7511 	size_t		assize = 0;
7512 	int 		i;
7513 
7514 	if (hat == NULL)
7515 		return (0);
7516 
7517 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7518 
7519 	for (i = 0; i < mmu_page_sizes; i++)
7520 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7521 
7522 	if (hat->sfmmu_iblk == NULL)
7523 		return (assize);
7524 
7525 	for (i = 0; i < mmu_page_sizes; i++)
7526 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7527 
7528 	return (assize);
7529 }
7530 
7531 int
7532 hat_stats_enable(struct hat *hat)
7533 {
7534 	hatlock_t	*hatlockp;
7535 
7536 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7537 
7538 	hatlockp = sfmmu_hat_enter(hat);
7539 	hat->sfmmu_rmstat++;
7540 	sfmmu_hat_exit(hatlockp);
7541 	return (1);
7542 }
7543 
7544 void
7545 hat_stats_disable(struct hat *hat)
7546 {
7547 	hatlock_t	*hatlockp;
7548 
7549 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7550 
7551 	hatlockp = sfmmu_hat_enter(hat);
7552 	hat->sfmmu_rmstat--;
7553 	sfmmu_hat_exit(hatlockp);
7554 }
7555 
7556 /*
7557  * Routines for entering or removing  ourselves from the
7558  * ism_hat's mapping list.
7559  */
7560 static void
7561 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7562 {
7563 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7564 
7565 	iment->iment_prev = NULL;
7566 	iment->iment_next = ism_hat->sfmmu_iment;
7567 	if (ism_hat->sfmmu_iment) {
7568 		ism_hat->sfmmu_iment->iment_prev = iment;
7569 	}
7570 	ism_hat->sfmmu_iment = iment;
7571 }
7572 
7573 static void
7574 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7575 {
7576 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7577 
7578 	if (ism_hat->sfmmu_iment == NULL) {
7579 		panic("ism map entry remove - no entries");
7580 	}
7581 
7582 	if (iment->iment_prev) {
7583 		ASSERT(ism_hat->sfmmu_iment != iment);
7584 		iment->iment_prev->iment_next = iment->iment_next;
7585 	} else {
7586 		ASSERT(ism_hat->sfmmu_iment == iment);
7587 		ism_hat->sfmmu_iment = iment->iment_next;
7588 	}
7589 
7590 	if (iment->iment_next) {
7591 		iment->iment_next->iment_prev = iment->iment_prev;
7592 	}
7593 
7594 	/*
7595 	 * zero out the entry
7596 	 */
7597 	iment->iment_next = NULL;
7598 	iment->iment_prev = NULL;
7599 	iment->iment_hat =  NULL;
7600 }
7601 
7602 /*
7603  * Hat_share()/unshare() return an (non-zero) error
7604  * when saddr and daddr are not properly aligned.
7605  *
7606  * The top level mapping element determines the alignment
7607  * requirement for saddr and daddr, depending on different
7608  * architectures.
7609  *
7610  * When hat_share()/unshare() are not supported,
7611  * HATOP_SHARE()/UNSHARE() return 0
7612  */
7613 int
7614 hat_share(struct hat *sfmmup, caddr_t addr,
7615 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7616 {
7617 	ism_blk_t	*ism_blkp;
7618 	ism_blk_t	*new_iblk;
7619 	ism_map_t 	*ism_map;
7620 	ism_ment_t	*ism_ment;
7621 	int		i, added;
7622 	hatlock_t	*hatlockp;
7623 	int		reload_mmu = 0;
7624 	uint_t		ismshift = page_get_shift(ismszc);
7625 	size_t		ismpgsz = page_get_pagesize(ismszc);
7626 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7627 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7628 	ushort_t	ismhatflag;
7629 
7630 #ifdef DEBUG
7631 	caddr_t		eaddr = addr + len;
7632 #endif /* DEBUG */
7633 
7634 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7635 	ASSERT(sptaddr == ISMID_STARTADDR);
7636 	/*
7637 	 * Check the alignment.
7638 	 */
7639 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7640 		return (EINVAL);
7641 
7642 	/*
7643 	 * Check size alignment.
7644 	 */
7645 	if (!ISM_ALIGNED(ismshift, len))
7646 		return (EINVAL);
7647 
7648 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7649 
7650 	/*
7651 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7652 	 * ism map blk in case we need one.  We must do our
7653 	 * allocations before acquiring locks to prevent a deadlock
7654 	 * in the kmem allocator on the mapping list lock.
7655 	 */
7656 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7657 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7658 
7659 	/*
7660 	 * Serialize ISM mappings with the ISM busy flag, and also the
7661 	 * trap handlers.
7662 	 */
7663 	sfmmu_ismhat_enter(sfmmup, 0);
7664 
7665 	/*
7666 	 * Allocate an ism map blk if necessary.
7667 	 */
7668 	if (sfmmup->sfmmu_iblk == NULL) {
7669 		sfmmup->sfmmu_iblk = new_iblk;
7670 		bzero(new_iblk, sizeof (*new_iblk));
7671 		new_iblk->iblk_nextpa = (uint64_t)-1;
7672 		membar_stst();	/* make sure next ptr visible to all CPUs */
7673 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7674 		reload_mmu = 1;
7675 		new_iblk = NULL;
7676 	}
7677 
7678 #ifdef DEBUG
7679 	/*
7680 	 * Make sure mapping does not already exist.
7681 	 */
7682 	ism_blkp = sfmmup->sfmmu_iblk;
7683 	while (ism_blkp) {
7684 		ism_map = ism_blkp->iblk_maps;
7685 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7686 			if ((addr >= ism_start(ism_map[i]) &&
7687 			    addr < ism_end(ism_map[i])) ||
7688 			    eaddr > ism_start(ism_map[i]) &&
7689 			    eaddr <= ism_end(ism_map[i])) {
7690 				panic("sfmmu_share: Already mapped!");
7691 			}
7692 		}
7693 		ism_blkp = ism_blkp->iblk_next;
7694 	}
7695 #endif /* DEBUG */
7696 
7697 	ASSERT(ismszc >= TTE4M);
7698 	if (ismszc == TTE4M) {
7699 		ismhatflag = HAT_4M_FLAG;
7700 	} else if (ismszc == TTE32M) {
7701 		ismhatflag = HAT_32M_FLAG;
7702 	} else if (ismszc == TTE256M) {
7703 		ismhatflag = HAT_256M_FLAG;
7704 	}
7705 	/*
7706 	 * Add mapping to first available mapping slot.
7707 	 */
7708 	ism_blkp = sfmmup->sfmmu_iblk;
7709 	added = 0;
7710 	while (!added) {
7711 		ism_map = ism_blkp->iblk_maps;
7712 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7713 			if (ism_map[i].imap_ismhat == NULL) {
7714 
7715 				ism_map[i].imap_ismhat = ism_hatid;
7716 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7717 				ism_map[i].imap_hatflags = ismhatflag;
7718 				ism_map[i].imap_sz_mask = ismmask;
7719 				/*
7720 				 * imap_seg is checked in ISM_CHECK to see if
7721 				 * non-NULL, then other info assumed valid.
7722 				 */
7723 				membar_stst();
7724 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7725 				ism_map[i].imap_ment = ism_ment;
7726 
7727 				/*
7728 				 * Now add ourselves to the ism_hat's
7729 				 * mapping list.
7730 				 */
7731 				ism_ment->iment_hat = sfmmup;
7732 				ism_ment->iment_base_va = addr;
7733 				ism_hatid->sfmmu_ismhat = 1;
7734 				ism_hatid->sfmmu_flags = 0;
7735 				mutex_enter(&ism_mlist_lock);
7736 				iment_add(ism_ment, ism_hatid);
7737 				mutex_exit(&ism_mlist_lock);
7738 				added = 1;
7739 				break;
7740 			}
7741 		}
7742 		if (!added && ism_blkp->iblk_next == NULL) {
7743 			ism_blkp->iblk_next = new_iblk;
7744 			new_iblk = NULL;
7745 			bzero(ism_blkp->iblk_next,
7746 			    sizeof (*ism_blkp->iblk_next));
7747 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7748 			membar_stst();
7749 			ism_blkp->iblk_nextpa =
7750 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7751 		}
7752 		ism_blkp = ism_blkp->iblk_next;
7753 	}
7754 
7755 	/*
7756 	 * Update our counters for this sfmmup's ism mappings.
7757 	 */
7758 	for (i = 0; i <= ismszc; i++) {
7759 		if (!(disable_ism_large_pages & (1 << i)))
7760 			(void) ism_tsb_entries(sfmmup, i);
7761 	}
7762 
7763 	hatlockp = sfmmu_hat_enter(sfmmup);
7764 
7765 	/*
7766 	 * For ISM and DISM we do not support 512K pages, so we only
7767 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7768 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7769 	 */
7770 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7771 
7772 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7773 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7774 
7775 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7776 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7777 
7778 	/*
7779 	 * If we updated the ismblkpa for this HAT or we need
7780 	 * to start searching the 256M or 32M or 4M hash, we must
7781 	 * make sure all CPUs running this process reload their
7782 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7783 	 * in the tsbmiss handler and will loop calling pagefault().
7784 	 */
7785 	switch (ismszc) {
7786 	case TTE256M:
7787 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7788 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7789 			sfmmu_sync_mmustate(sfmmup);
7790 		}
7791 		break;
7792 	case TTE32M:
7793 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7794 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7795 			sfmmu_sync_mmustate(sfmmup);
7796 		}
7797 		break;
7798 	case TTE4M:
7799 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7800 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7801 			sfmmu_sync_mmustate(sfmmup);
7802 		}
7803 		break;
7804 	default:
7805 		break;
7806 	}
7807 
7808 	/*
7809 	 * Now we can drop the locks.
7810 	 */
7811 	sfmmu_ismhat_exit(sfmmup, 1);
7812 	sfmmu_hat_exit(hatlockp);
7813 
7814 	/*
7815 	 * Free up ismblk if we didn't use it.
7816 	 */
7817 	if (new_iblk != NULL)
7818 		kmem_cache_free(ism_blk_cache, new_iblk);
7819 
7820 	/*
7821 	 * Check TSB and TLB page sizes.
7822 	 */
7823 	sfmmu_check_page_sizes(sfmmup, 1);
7824 
7825 	return (0);
7826 }
7827 
7828 /*
7829  * hat_unshare removes exactly one ism_map from
7830  * this process's as.  It expects multiple calls
7831  * to hat_unshare for multiple shm segments.
7832  */
7833 void
7834 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7835 {
7836 	ism_map_t 	*ism_map;
7837 	ism_ment_t	*free_ment = NULL;
7838 	ism_blk_t	*ism_blkp;
7839 	struct hat	*ism_hatid;
7840 	int 		found, i;
7841 	hatlock_t	*hatlockp;
7842 	struct tsb_info	*tsbinfo;
7843 	uint_t		ismshift = page_get_shift(ismszc);
7844 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7845 
7846 	ASSERT(ISM_ALIGNED(ismshift, addr));
7847 	ASSERT(ISM_ALIGNED(ismshift, len));
7848 	ASSERT(sfmmup != NULL);
7849 	ASSERT(sfmmup != ksfmmup);
7850 
7851 	if (sfmmup->sfmmu_xhat_provider) {
7852 		XHAT_UNSHARE(sfmmup, addr, len);
7853 		return;
7854 	} else {
7855 		/*
7856 		 * This must be a CPU HAT. If the address space has
7857 		 * XHATs attached, inform all XHATs that ISM segment
7858 		 * is going away
7859 		 */
7860 		ASSERT(sfmmup->sfmmu_as != NULL);
7861 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7862 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7863 	}
7864 
7865 	/*
7866 	 * Make sure that during the entire time ISM mappings are removed,
7867 	 * the trap handlers serialize behind us, and that no one else
7868 	 * can be mucking with ISM mappings.  This also lets us get away
7869 	 * with not doing expensive cross calls to flush the TLB -- we
7870 	 * just discard the context, flush the entire TSB, and call it
7871 	 * a day.
7872 	 */
7873 	sfmmu_ismhat_enter(sfmmup, 0);
7874 
7875 	/*
7876 	 * Remove the mapping.
7877 	 *
7878 	 * We can't have any holes in the ism map.
7879 	 * The tsb miss code while searching the ism map will
7880 	 * stop on an empty map slot.  So we must move
7881 	 * everyone past the hole up 1 if any.
7882 	 *
7883 	 * Also empty ism map blks are not freed until the
7884 	 * process exits. This is to prevent a MT race condition
7885 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7886 	 */
7887 	found = 0;
7888 	ism_blkp = sfmmup->sfmmu_iblk;
7889 	while (!found && ism_blkp) {
7890 		ism_map = ism_blkp->iblk_maps;
7891 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7892 			if (addr == ism_start(ism_map[i]) &&
7893 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7894 				found = 1;
7895 				break;
7896 			}
7897 		}
7898 		if (!found)
7899 			ism_blkp = ism_blkp->iblk_next;
7900 	}
7901 
7902 	if (found) {
7903 		ism_hatid = ism_map[i].imap_ismhat;
7904 		ASSERT(ism_hatid != NULL);
7905 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7906 
7907 		/*
7908 		 * First remove ourselves from the ism mapping list.
7909 		 */
7910 		mutex_enter(&ism_mlist_lock);
7911 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7912 		mutex_exit(&ism_mlist_lock);
7913 		free_ment = ism_map[i].imap_ment;
7914 
7915 		/*
7916 		 * Now gurantee that any other cpu
7917 		 * that tries to process an ISM miss
7918 		 * will go to tl=0.
7919 		 */
7920 		hatlockp = sfmmu_hat_enter(sfmmup);
7921 
7922 		sfmmu_invalidate_ctx(sfmmup);
7923 
7924 		sfmmu_hat_exit(hatlockp);
7925 
7926 		/*
7927 		 * We delete the ism map by copying
7928 		 * the next map over the current one.
7929 		 * We will take the next one in the maps
7930 		 * array or from the next ism_blk.
7931 		 */
7932 		while (ism_blkp) {
7933 			ism_map = ism_blkp->iblk_maps;
7934 			while (i < (ISM_MAP_SLOTS - 1)) {
7935 				ism_map[i] = ism_map[i + 1];
7936 				i++;
7937 			}
7938 			/* i == (ISM_MAP_SLOTS - 1) */
7939 			ism_blkp = ism_blkp->iblk_next;
7940 			if (ism_blkp) {
7941 				ism_map[i] = ism_blkp->iblk_maps[0];
7942 				i = 0;
7943 			} else {
7944 				ism_map[i].imap_seg = 0;
7945 				ism_map[i].imap_vb_shift = 0;
7946 				ism_map[i].imap_hatflags = 0;
7947 				ism_map[i].imap_sz_mask = 0;
7948 				ism_map[i].imap_ismhat = NULL;
7949 				ism_map[i].imap_ment = NULL;
7950 			}
7951 		}
7952 
7953 		/*
7954 		 * Now flush entire TSB for the process, since
7955 		 * demapping page by page can be too expensive.
7956 		 * We don't have to flush the TLB here anymore
7957 		 * since we switch to a new TLB ctx instead.
7958 		 * Also, there is no need to flush if the process
7959 		 * is exiting since the TSB will be freed later.
7960 		 */
7961 		if (!sfmmup->sfmmu_free) {
7962 			hatlockp = sfmmu_hat_enter(sfmmup);
7963 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7964 			    tsbinfo = tsbinfo->tsb_next) {
7965 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7966 					continue;
7967 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7968 				    TSB_BYTES(tsbinfo->tsb_szc));
7969 			}
7970 			sfmmu_hat_exit(hatlockp);
7971 		}
7972 	}
7973 
7974 	/*
7975 	 * Update our counters for this sfmmup's ism mappings.
7976 	 */
7977 	for (i = 0; i <= ismszc; i++) {
7978 		if (!(disable_ism_large_pages & (1 << i)))
7979 			(void) ism_tsb_entries(sfmmup, i);
7980 	}
7981 
7982 	sfmmu_ismhat_exit(sfmmup, 0);
7983 
7984 	/*
7985 	 * We must do our freeing here after dropping locks
7986 	 * to prevent a deadlock in the kmem allocator on the
7987 	 * mapping list lock.
7988 	 */
7989 	if (free_ment != NULL)
7990 		kmem_cache_free(ism_ment_cache, free_ment);
7991 
7992 	/*
7993 	 * Check TSB and TLB page sizes if the process isn't exiting.
7994 	 */
7995 	if (!sfmmup->sfmmu_free)
7996 		sfmmu_check_page_sizes(sfmmup, 0);
7997 }
7998 
7999 /* ARGSUSED */
8000 static int
8001 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8002 {
8003 	/* void *buf is sfmmu_t pointer */
8004 	return (0);
8005 }
8006 
8007 /* ARGSUSED */
8008 static void
8009 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8010 {
8011 	/* void *buf is sfmmu_t pointer */
8012 }
8013 
8014 /*
8015  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8016  * field to be the pa of this hmeblk
8017  */
8018 /* ARGSUSED */
8019 static int
8020 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8021 {
8022 	struct hme_blk *hmeblkp;
8023 
8024 	bzero(buf, (size_t)cdrarg);
8025 	hmeblkp = (struct hme_blk *)buf;
8026 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8027 
8028 #ifdef	HBLK_TRACE
8029 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8030 #endif	/* HBLK_TRACE */
8031 
8032 	return (0);
8033 }
8034 
8035 /* ARGSUSED */
8036 static void
8037 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8038 {
8039 
8040 #ifdef	HBLK_TRACE
8041 
8042 	struct hme_blk *hmeblkp;
8043 
8044 	hmeblkp = (struct hme_blk *)buf;
8045 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8046 
8047 #endif	/* HBLK_TRACE */
8048 }
8049 
8050 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8051 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8052 /*
8053  * The kmem allocator will callback into our reclaim routine when the system
8054  * is running low in memory.  We traverse the hash and free up all unused but
8055  * still cached hme_blks.  We also traverse the free list and free them up
8056  * as well.
8057  */
8058 /*ARGSUSED*/
8059 static void
8060 sfmmu_hblkcache_reclaim(void *cdrarg)
8061 {
8062 	int i;
8063 	uint64_t hblkpa, prevpa, nx_pa;
8064 	struct hmehash_bucket *hmebp;
8065 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8066 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8067 	static struct hmehash_bucket *khmehash_reclaim_hand;
8068 	struct hme_blk *list = NULL;
8069 
8070 	hmebp = uhmehash_reclaim_hand;
8071 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8072 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8073 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8074 
8075 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8076 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8077 			hmeblkp = hmebp->hmeblkp;
8078 			hblkpa = hmebp->hmeh_nextpa;
8079 			prevpa = 0;
8080 			pr_hblk = NULL;
8081 			while (hmeblkp) {
8082 				nx_hblk = hmeblkp->hblk_next;
8083 				nx_pa = hmeblkp->hblk_nextpa;
8084 				if (!hmeblkp->hblk_vcnt &&
8085 				    !hmeblkp->hblk_hmecnt) {
8086 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8087 						prevpa, pr_hblk);
8088 					sfmmu_hblk_free(hmebp, hmeblkp,
8089 					    hblkpa, &list);
8090 				} else {
8091 					pr_hblk = hmeblkp;
8092 					prevpa = hblkpa;
8093 				}
8094 				hmeblkp = nx_hblk;
8095 				hblkpa = nx_pa;
8096 			}
8097 			SFMMU_HASH_UNLOCK(hmebp);
8098 		}
8099 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8100 			hmebp = uhme_hash;
8101 	}
8102 
8103 	hmebp = khmehash_reclaim_hand;
8104 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8105 		khmehash_reclaim_hand = hmebp = khme_hash;
8106 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8107 
8108 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8109 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8110 			hmeblkp = hmebp->hmeblkp;
8111 			hblkpa = hmebp->hmeh_nextpa;
8112 			prevpa = 0;
8113 			pr_hblk = NULL;
8114 			while (hmeblkp) {
8115 				nx_hblk = hmeblkp->hblk_next;
8116 				nx_pa = hmeblkp->hblk_nextpa;
8117 				if (!hmeblkp->hblk_vcnt &&
8118 				    !hmeblkp->hblk_hmecnt) {
8119 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8120 						prevpa, pr_hblk);
8121 					sfmmu_hblk_free(hmebp, hmeblkp,
8122 					    hblkpa, &list);
8123 				} else {
8124 					pr_hblk = hmeblkp;
8125 					prevpa = hblkpa;
8126 				}
8127 				hmeblkp = nx_hblk;
8128 				hblkpa = nx_pa;
8129 			}
8130 			SFMMU_HASH_UNLOCK(hmebp);
8131 		}
8132 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8133 			hmebp = khme_hash;
8134 	}
8135 	sfmmu_hblks_list_purge(&list);
8136 }
8137 
8138 /*
8139  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8140  * same goes for sfmmu_get_addrvcolor().
8141  *
8142  * This function will return the virtual color for the specified page. The
8143  * virtual color corresponds to this page current mapping or its last mapping.
8144  * It is used by memory allocators to choose addresses with the correct
8145  * alignment so vac consistency is automatically maintained.  If the page
8146  * has no color it returns -1.
8147  */
8148 /*ARGSUSED*/
8149 int
8150 sfmmu_get_ppvcolor(struct page *pp)
8151 {
8152 #ifdef VAC
8153 	int color;
8154 
8155 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8156 		return (-1);
8157 	}
8158 	color = PP_GET_VCOLOR(pp);
8159 	ASSERT(color < mmu_btop(shm_alignment));
8160 	return (color);
8161 #else
8162 	return (-1);
8163 #endif	/* VAC */
8164 }
8165 
8166 /*
8167  * This function will return the desired alignment for vac consistency
8168  * (vac color) given a virtual address.  If no vac is present it returns -1.
8169  */
8170 /*ARGSUSED*/
8171 int
8172 sfmmu_get_addrvcolor(caddr_t vaddr)
8173 {
8174 #ifdef VAC
8175 	if (cache & CACHE_VAC) {
8176 		return (addr_to_vcolor(vaddr));
8177 	} else {
8178 		return (-1);
8179 	}
8180 #else
8181 	return (-1);
8182 #endif	/* VAC */
8183 }
8184 
8185 #ifdef VAC
8186 /*
8187  * Check for conflicts.
8188  * A conflict exists if the new and existent mappings do not match in
8189  * their "shm_alignment fields. If conflicts exist, the existant mappings
8190  * are flushed unless one of them is locked. If one of them is locked, then
8191  * the mappings are flushed and converted to non-cacheable mappings.
8192  */
8193 static void
8194 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8195 {
8196 	struct hat *tmphat;
8197 	struct sf_hment *sfhmep, *tmphme = NULL;
8198 	struct hme_blk *hmeblkp;
8199 	int vcolor;
8200 	tte_t tte;
8201 
8202 	ASSERT(sfmmu_mlist_held(pp));
8203 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8204 
8205 	vcolor = addr_to_vcolor(addr);
8206 	if (PP_NEWPAGE(pp)) {
8207 		PP_SET_VCOLOR(pp, vcolor);
8208 		return;
8209 	}
8210 
8211 	if (PP_GET_VCOLOR(pp) == vcolor) {
8212 		return;
8213 	}
8214 
8215 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8216 		/*
8217 		 * Previous user of page had a different color
8218 		 * but since there are no current users
8219 		 * we just flush the cache and change the color.
8220 		 */
8221 		SFMMU_STAT(sf_pgcolor_conflict);
8222 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8223 		PP_SET_VCOLOR(pp, vcolor);
8224 		return;
8225 	}
8226 
8227 	/*
8228 	 * If we get here we have a vac conflict with a current
8229 	 * mapping.  VAC conflict policy is as follows.
8230 	 * - The default is to unload the other mappings unless:
8231 	 * - If we have a large mapping we uncache the page.
8232 	 * We need to uncache the rest of the large page too.
8233 	 * - If any of the mappings are locked we uncache the page.
8234 	 * - If the requested mapping is inconsistent
8235 	 * with another mapping and that mapping
8236 	 * is in the same address space we have to
8237 	 * make it non-cached.  The default thing
8238 	 * to do is unload the inconsistent mapping
8239 	 * but if they are in the same address space
8240 	 * we run the risk of unmapping the pc or the
8241 	 * stack which we will use as we return to the user,
8242 	 * in which case we can then fault on the thing
8243 	 * we just unloaded and get into an infinite loop.
8244 	 */
8245 	if (PP_ISMAPPED_LARGE(pp)) {
8246 		int sz;
8247 
8248 		/*
8249 		 * Existing mapping is for big pages. We don't unload
8250 		 * existing big mappings to satisfy new mappings.
8251 		 * Always convert all mappings to TNC.
8252 		 */
8253 		sz = fnd_mapping_sz(pp);
8254 		pp = PP_GROUPLEADER(pp, sz);
8255 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8256 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8257 			TTEPAGES(sz));
8258 
8259 		return;
8260 	}
8261 
8262 	/*
8263 	 * check if any mapping is in same as or if it is locked
8264 	 * since in that case we need to uncache.
8265 	 */
8266 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8267 		tmphme = sfhmep->hme_next;
8268 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8269 		if (hmeblkp->hblk_xhat_bit)
8270 			continue;
8271 		tmphat = hblktosfmmu(hmeblkp);
8272 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8273 		ASSERT(TTE_IS_VALID(&tte));
8274 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8275 			/*
8276 			 * We have an uncache conflict
8277 			 */
8278 			SFMMU_STAT(sf_uncache_conflict);
8279 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8280 			return;
8281 		}
8282 	}
8283 
8284 	/*
8285 	 * We have an unload conflict
8286 	 * We have already checked for LARGE mappings, therefore
8287 	 * the remaining mapping(s) must be TTE8K.
8288 	 */
8289 	SFMMU_STAT(sf_unload_conflict);
8290 
8291 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8292 		tmphme = sfhmep->hme_next;
8293 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8294 		if (hmeblkp->hblk_xhat_bit)
8295 			continue;
8296 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8297 	}
8298 
8299 	if (PP_ISMAPPED_KPM(pp))
8300 		sfmmu_kpm_vac_unload(pp, addr);
8301 
8302 	/*
8303 	 * Unloads only do TLB flushes so we need to flush the
8304 	 * cache here.
8305 	 */
8306 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8307 	PP_SET_VCOLOR(pp, vcolor);
8308 }
8309 
8310 /*
8311  * Whenever a mapping is unloaded and the page is in TNC state,
8312  * we see if the page can be made cacheable again. 'pp' is
8313  * the page that we just unloaded a mapping from, the size
8314  * of mapping that was unloaded is 'ottesz'.
8315  * Remark:
8316  * The recache policy for mpss pages can leave a performance problem
8317  * under the following circumstances:
8318  * . A large page in uncached mode has just been unmapped.
8319  * . All constituent pages are TNC due to a conflicting small mapping.
8320  * . There are many other, non conflicting, small mappings around for
8321  *   a lot of the constituent pages.
8322  * . We're called w/ the "old" groupleader page and the old ottesz,
8323  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8324  *   we end up w/ TTE8K or npages == 1.
8325  * . We call tst_tnc w/ the old groupleader only, and if there is no
8326  *   conflict, we re-cache only this page.
8327  * . All other small mappings are not checked and will be left in TNC mode.
8328  * The problem is not very serious because:
8329  * . mpss is actually only defined for heap and stack, so the probability
8330  *   is not very high that a large page mapping exists in parallel to a small
8331  *   one (this is possible, but seems to be bad programming style in the
8332  *   appl).
8333  * . The problem gets a little bit more serious, when those TNC pages
8334  *   have to be mapped into kernel space, e.g. for networking.
8335  * . When VAC alias conflicts occur in applications, this is regarded
8336  *   as an application bug. So if kstat's show them, the appl should
8337  *   be changed anyway.
8338  */
8339 void
8340 conv_tnc(page_t *pp, int ottesz)
8341 {
8342 	int cursz, dosz;
8343 	pgcnt_t curnpgs, dopgs;
8344 	pgcnt_t pg64k;
8345 	page_t *pp2;
8346 
8347 	/*
8348 	 * Determine how big a range we check for TNC and find
8349 	 * leader page. cursz is the size of the biggest
8350 	 * mapping that still exist on 'pp'.
8351 	 */
8352 	if (PP_ISMAPPED_LARGE(pp)) {
8353 		cursz = fnd_mapping_sz(pp);
8354 	} else {
8355 		cursz = TTE8K;
8356 	}
8357 
8358 	if (ottesz >= cursz) {
8359 		dosz = ottesz;
8360 		pp2 = pp;
8361 	} else {
8362 		dosz = cursz;
8363 		pp2 = PP_GROUPLEADER(pp, dosz);
8364 	}
8365 
8366 	pg64k = TTEPAGES(TTE64K);
8367 	dopgs = TTEPAGES(dosz);
8368 
8369 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8370 
8371 	while (dopgs != 0) {
8372 		curnpgs = TTEPAGES(cursz);
8373 		if (tst_tnc(pp2, curnpgs)) {
8374 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8375 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8376 				curnpgs);
8377 		}
8378 
8379 		ASSERT(dopgs >= curnpgs);
8380 		dopgs -= curnpgs;
8381 
8382 		if (dopgs == 0) {
8383 			break;
8384 		}
8385 
8386 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8387 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8388 			cursz = fnd_mapping_sz(pp2);
8389 		} else {
8390 			cursz = TTE8K;
8391 		}
8392 	}
8393 }
8394 
8395 /*
8396  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8397  * returns 0 otherwise. Note that oaddr argument is valid for only
8398  * 8k pages.
8399  */
8400 int
8401 tst_tnc(page_t *pp, pgcnt_t npages)
8402 {
8403 	struct	sf_hment *sfhme;
8404 	struct	hme_blk *hmeblkp;
8405 	tte_t	tte;
8406 	caddr_t	vaddr;
8407 	int	clr_valid = 0;
8408 	int 	color, color1, bcolor;
8409 	int	i, ncolors;
8410 
8411 	ASSERT(pp != NULL);
8412 	ASSERT(!(cache & CACHE_WRITEBACK));
8413 
8414 	if (npages > 1) {
8415 		ncolors = CACHE_NUM_COLOR;
8416 	}
8417 
8418 	for (i = 0; i < npages; i++) {
8419 		ASSERT(sfmmu_mlist_held(pp));
8420 		ASSERT(PP_ISTNC(pp));
8421 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8422 
8423 		if (PP_ISPNC(pp)) {
8424 			return (0);
8425 		}
8426 
8427 		clr_valid = 0;
8428 		if (PP_ISMAPPED_KPM(pp)) {
8429 			caddr_t kpmvaddr;
8430 
8431 			ASSERT(kpm_enable);
8432 			kpmvaddr = hat_kpm_page2va(pp, 1);
8433 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8434 			color1 = addr_to_vcolor(kpmvaddr);
8435 			clr_valid = 1;
8436 		}
8437 
8438 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8439 			hmeblkp = sfmmu_hmetohblk(sfhme);
8440 			if (hmeblkp->hblk_xhat_bit)
8441 				continue;
8442 
8443 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8444 			ASSERT(TTE_IS_VALID(&tte));
8445 
8446 			vaddr = tte_to_vaddr(hmeblkp, tte);
8447 			color = addr_to_vcolor(vaddr);
8448 
8449 			if (npages > 1) {
8450 				/*
8451 				 * If there is a big mapping, make sure
8452 				 * 8K mapping is consistent with the big
8453 				 * mapping.
8454 				 */
8455 				bcolor = i % ncolors;
8456 				if (color != bcolor) {
8457 					return (0);
8458 				}
8459 			}
8460 			if (!clr_valid) {
8461 				clr_valid = 1;
8462 				color1 = color;
8463 			}
8464 
8465 			if (color1 != color) {
8466 				return (0);
8467 			}
8468 		}
8469 
8470 		pp = PP_PAGENEXT(pp);
8471 	}
8472 
8473 	return (1);
8474 }
8475 
8476 void
8477 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8478 	pgcnt_t npages)
8479 {
8480 	kmutex_t *pmtx;
8481 	int i, ncolors, bcolor;
8482 	kpm_hlk_t *kpmp;
8483 	cpuset_t cpuset;
8484 
8485 	ASSERT(pp != NULL);
8486 	ASSERT(!(cache & CACHE_WRITEBACK));
8487 
8488 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8489 	pmtx = sfmmu_page_enter(pp);
8490 
8491 	/*
8492 	 * Fast path caching single unmapped page
8493 	 */
8494 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8495 	    flags == HAT_CACHE) {
8496 		PP_CLRTNC(pp);
8497 		PP_CLRPNC(pp);
8498 		sfmmu_page_exit(pmtx);
8499 		sfmmu_kpm_kpmp_exit(kpmp);
8500 		return;
8501 	}
8502 
8503 	/*
8504 	 * We need to capture all cpus in order to change cacheability
8505 	 * because we can't allow one cpu to access the same physical
8506 	 * page using a cacheable and a non-cachebale mapping at the same
8507 	 * time. Since we may end up walking the ism mapping list
8508 	 * have to grab it's lock now since we can't after all the
8509 	 * cpus have been captured.
8510 	 */
8511 	sfmmu_hat_lock_all();
8512 	mutex_enter(&ism_mlist_lock);
8513 	kpreempt_disable();
8514 	cpuset = cpu_ready_set;
8515 	xc_attention(cpuset);
8516 
8517 	if (npages > 1) {
8518 		/*
8519 		 * Make sure all colors are flushed since the
8520 		 * sfmmu_page_cache() only flushes one color-
8521 		 * it does not know big pages.
8522 		 */
8523 		ncolors = CACHE_NUM_COLOR;
8524 		if (flags & HAT_TMPNC) {
8525 			for (i = 0; i < ncolors; i++) {
8526 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8527 			}
8528 			cache_flush_flag = CACHE_NO_FLUSH;
8529 		}
8530 	}
8531 
8532 	for (i = 0; i < npages; i++) {
8533 
8534 		ASSERT(sfmmu_mlist_held(pp));
8535 
8536 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8537 
8538 			if (npages > 1) {
8539 				bcolor = i % ncolors;
8540 			} else {
8541 				bcolor = NO_VCOLOR;
8542 			}
8543 
8544 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8545 			    bcolor);
8546 		}
8547 
8548 		pp = PP_PAGENEXT(pp);
8549 	}
8550 
8551 	xt_sync(cpuset);
8552 	xc_dismissed(cpuset);
8553 	mutex_exit(&ism_mlist_lock);
8554 	sfmmu_hat_unlock_all();
8555 	sfmmu_page_exit(pmtx);
8556 	sfmmu_kpm_kpmp_exit(kpmp);
8557 	kpreempt_enable();
8558 }
8559 
8560 /*
8561  * This function changes the virtual cacheability of all mappings to a
8562  * particular page.  When changing from uncache to cacheable the mappings will
8563  * only be changed if all of them have the same virtual color.
8564  * We need to flush the cache in all cpus.  It is possible that
8565  * a process referenced a page as cacheable but has sinced exited
8566  * and cleared the mapping list.  We still to flush it but have no
8567  * state so all cpus is the only alternative.
8568  */
8569 static void
8570 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8571 {
8572 	struct	sf_hment *sfhme;
8573 	struct	hme_blk *hmeblkp;
8574 	sfmmu_t *sfmmup;
8575 	tte_t	tte, ttemod;
8576 	caddr_t	vaddr;
8577 	int	ret, color;
8578 	pfn_t	pfn;
8579 
8580 	color = bcolor;
8581 	pfn = pp->p_pagenum;
8582 
8583 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8584 
8585 		hmeblkp = sfmmu_hmetohblk(sfhme);
8586 
8587 		if (hmeblkp->hblk_xhat_bit)
8588 			continue;
8589 
8590 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8591 		ASSERT(TTE_IS_VALID(&tte));
8592 		vaddr = tte_to_vaddr(hmeblkp, tte);
8593 		color = addr_to_vcolor(vaddr);
8594 
8595 #ifdef DEBUG
8596 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8597 			ASSERT(color == bcolor);
8598 		}
8599 #endif
8600 
8601 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8602 
8603 		ttemod = tte;
8604 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8605 			TTE_CLR_VCACHEABLE(&ttemod);
8606 		} else {	/* flags & HAT_CACHE */
8607 			TTE_SET_VCACHEABLE(&ttemod);
8608 		}
8609 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8610 		if (ret < 0) {
8611 			/*
8612 			 * Since all cpus are captured modifytte should not
8613 			 * fail.
8614 			 */
8615 			panic("sfmmu_page_cache: write to tte failed");
8616 		}
8617 
8618 		sfmmup = hblktosfmmu(hmeblkp);
8619 		if (cache_flush_flag == CACHE_FLUSH) {
8620 			/*
8621 			 * Flush TSBs, TLBs and caches
8622 			 */
8623 			if (sfmmup->sfmmu_ismhat) {
8624 				if (flags & HAT_CACHE) {
8625 					SFMMU_STAT(sf_ism_recache);
8626 				} else {
8627 					SFMMU_STAT(sf_ism_uncache);
8628 				}
8629 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8630 				    pfn, CACHE_FLUSH);
8631 			} else {
8632 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8633 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8634 			}
8635 
8636 			/*
8637 			 * all cache entries belonging to this pfn are
8638 			 * now flushed.
8639 			 */
8640 			cache_flush_flag = CACHE_NO_FLUSH;
8641 		} else {
8642 
8643 			/*
8644 			 * Flush only TSBs and TLBs.
8645 			 */
8646 			if (sfmmup->sfmmu_ismhat) {
8647 				if (flags & HAT_CACHE) {
8648 					SFMMU_STAT(sf_ism_recache);
8649 				} else {
8650 					SFMMU_STAT(sf_ism_uncache);
8651 				}
8652 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8653 				    pfn, CACHE_NO_FLUSH);
8654 			} else {
8655 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8656 			}
8657 		}
8658 	}
8659 
8660 	if (PP_ISMAPPED_KPM(pp))
8661 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8662 
8663 	switch (flags) {
8664 
8665 		default:
8666 			panic("sfmmu_pagecache: unknown flags");
8667 			break;
8668 
8669 		case HAT_CACHE:
8670 			PP_CLRTNC(pp);
8671 			PP_CLRPNC(pp);
8672 			PP_SET_VCOLOR(pp, color);
8673 			break;
8674 
8675 		case HAT_TMPNC:
8676 			PP_SETTNC(pp);
8677 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8678 			break;
8679 
8680 		case HAT_UNCACHE:
8681 			PP_SETPNC(pp);
8682 			PP_CLRTNC(pp);
8683 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8684 			break;
8685 	}
8686 }
8687 #endif	/* VAC */
8688 
8689 
8690 /*
8691  * Wrapper routine used to return a context.
8692  *
8693  * It's the responsibility of the caller to guarantee that the
8694  * process serializes on calls here by taking the HAT lock for
8695  * the hat.
8696  *
8697  */
8698 static void
8699 sfmmu_get_ctx(sfmmu_t *sfmmup)
8700 {
8701 	mmu_ctx_t *mmu_ctxp;
8702 	uint_t pstate_save;
8703 
8704 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8705 	ASSERT(sfmmup != ksfmmup);
8706 
8707 	kpreempt_disable();
8708 
8709 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8710 	ASSERT(mmu_ctxp);
8711 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8712 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8713 
8714 	/*
8715 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8716 	 */
8717 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8718 		sfmmu_ctx_wrap_around(mmu_ctxp);
8719 
8720 	/*
8721 	 * Let the MMU set up the page sizes to use for
8722 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8723 	 */
8724 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8725 		mmu_set_ctx_page_sizes(sfmmup);
8726 	}
8727 
8728 	/*
8729 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8730 	 * interrupts disabled to prevent race condition with wrap-around
8731 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8732 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8733 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8734 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8735 	 */
8736 	pstate_save = sfmmu_disable_intrs();
8737 
8738 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8739 	sfmmu_load_mmustate(sfmmup);
8740 
8741 	sfmmu_enable_intrs(pstate_save);
8742 
8743 	kpreempt_enable();
8744 }
8745 
8746 /*
8747  * When all cnums are used up in a MMU, cnum will wrap around to the
8748  * next generation and start from 2.
8749  */
8750 static void
8751 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8752 {
8753 
8754 	/* caller must have disabled the preemption */
8755 	ASSERT(curthread->t_preempt >= 1);
8756 	ASSERT(mmu_ctxp != NULL);
8757 
8758 	/* acquire Per-MMU (PM) spin lock */
8759 	mutex_enter(&mmu_ctxp->mmu_lock);
8760 
8761 	/* re-check to see if wrap-around is needed */
8762 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8763 		goto done;
8764 
8765 	SFMMU_MMU_STAT(mmu_wrap_around);
8766 
8767 	/* update gnum */
8768 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8769 	mmu_ctxp->mmu_gnum++;
8770 	if (mmu_ctxp->mmu_gnum == 0 ||
8771 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8772 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8773 		    (void *)mmu_ctxp);
8774 	}
8775 
8776 	if (mmu_ctxp->mmu_ncpus > 1) {
8777 		cpuset_t cpuset;
8778 
8779 		membar_enter(); /* make sure updated gnum visible */
8780 
8781 		SFMMU_XCALL_STATS(NULL);
8782 
8783 		/* xcall to others on the same MMU to invalidate ctx */
8784 		cpuset = mmu_ctxp->mmu_cpuset;
8785 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8786 		CPUSET_DEL(cpuset, CPU->cpu_id);
8787 		CPUSET_AND(cpuset, cpu_ready_set);
8788 
8789 		/*
8790 		 * Pass in INVALID_CONTEXT as the first parameter to
8791 		 * sfmmu_raise_tsb_exception, which invalidates the context
8792 		 * of any process running on the CPUs in the MMU.
8793 		 */
8794 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8795 		    INVALID_CONTEXT, INVALID_CONTEXT);
8796 		xt_sync(cpuset);
8797 
8798 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8799 	}
8800 
8801 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8802 		sfmmu_setctx_sec(INVALID_CONTEXT);
8803 		sfmmu_clear_utsbinfo();
8804 	}
8805 
8806 	/*
8807 	 * No xcall is needed here. For sun4u systems all CPUs in context
8808 	 * domain share a single physical MMU therefore it's enough to flush
8809 	 * TLB on local CPU. On sun4v systems we use 1 global context
8810 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8811 	 * handler. Note that vtag_flushall_uctxs() is called
8812 	 * for Ultra II machine, where the equivalent flushall functionality
8813 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8814 	 */
8815 	if (&vtag_flushall_uctxs != NULL) {
8816 		vtag_flushall_uctxs();
8817 	} else {
8818 		vtag_flushall();
8819 	}
8820 
8821 	/* reset mmu cnum, skips cnum 0 and 1 */
8822 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8823 
8824 done:
8825 	mutex_exit(&mmu_ctxp->mmu_lock);
8826 }
8827 
8828 
8829 /*
8830  * For multi-threaded process, set the process context to INVALID_CONTEXT
8831  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8832  * process, we can just load the MMU state directly without having to
8833  * set context invalid. Caller must hold the hat lock since we don't
8834  * acquire it here.
8835  */
8836 static void
8837 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8838 {
8839 	uint_t cnum;
8840 	uint_t pstate_save;
8841 
8842 	ASSERT(sfmmup != ksfmmup);
8843 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8844 
8845 	kpreempt_disable();
8846 
8847 	/*
8848 	 * We check whether the pass'ed-in sfmmup is the same as the
8849 	 * current running proc. This is to makes sure the current proc
8850 	 * stays single-threaded if it already is.
8851 	 */
8852 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8853 	    (curthread->t_procp->p_lwpcnt == 1)) {
8854 		/* single-thread */
8855 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8856 		if (cnum != INVALID_CONTEXT) {
8857 			uint_t curcnum;
8858 			/*
8859 			 * Disable interrupts to prevent race condition
8860 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8861 			 * In sun4v, ctx invalidation involves setting
8862 			 * TSB to NULL, hence, interrupts should be disabled
8863 			 * untill after sfmmu_load_mmustate is completed.
8864 			 */
8865 			pstate_save = sfmmu_disable_intrs();
8866 			curcnum = sfmmu_getctx_sec();
8867 			if (curcnum == cnum)
8868 				sfmmu_load_mmustate(sfmmup);
8869 			sfmmu_enable_intrs(pstate_save);
8870 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8871 		}
8872 	} else {
8873 		/*
8874 		 * multi-thread
8875 		 * or when sfmmup is not the same as the curproc.
8876 		 */
8877 		sfmmu_invalidate_ctx(sfmmup);
8878 	}
8879 
8880 	kpreempt_enable();
8881 }
8882 
8883 
8884 /*
8885  * Replace the specified TSB with a new TSB.  This function gets called when
8886  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8887  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8888  * (8K).
8889  *
8890  * Caller must hold the HAT lock, but should assume any tsb_info
8891  * pointers it has are no longer valid after calling this function.
8892  *
8893  * Return values:
8894  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8895  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8896  *			something to this tsbinfo/TSB
8897  *	TSB_SUCCESS	Operation succeeded
8898  */
8899 static tsb_replace_rc_t
8900 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8901     hatlock_t *hatlockp, uint_t flags)
8902 {
8903 	struct tsb_info *new_tsbinfo = NULL;
8904 	struct tsb_info *curtsb, *prevtsb;
8905 	uint_t tte_sz_mask;
8906 	int i;
8907 
8908 	ASSERT(sfmmup != ksfmmup);
8909 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8910 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8911 	ASSERT(szc <= tsb_max_growsize);
8912 
8913 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8914 		return (TSB_LOSTRACE);
8915 
8916 	/*
8917 	 * Find the tsb_info ahead of this one in the list, and
8918 	 * also make sure that the tsb_info passed in really
8919 	 * exists!
8920 	 */
8921 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8922 	    curtsb != old_tsbinfo && curtsb != NULL;
8923 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8924 	ASSERT(curtsb != NULL);
8925 
8926 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8927 		/*
8928 		 * The process is swapped out, so just set the new size
8929 		 * code.  When it swaps back in, we'll allocate a new one
8930 		 * of the new chosen size.
8931 		 */
8932 		curtsb->tsb_szc = szc;
8933 		return (TSB_SUCCESS);
8934 	}
8935 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8936 
8937 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8938 
8939 	/*
8940 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8941 	 * If we fail to allocate a TSB, exit.
8942 	 */
8943 	sfmmu_hat_exit(hatlockp);
8944 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8945 	    flags, sfmmup)) {
8946 		(void) sfmmu_hat_enter(sfmmup);
8947 		if (!(flags & TSB_SWAPIN))
8948 			SFMMU_STAT(sf_tsb_resize_failures);
8949 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8950 		return (TSB_ALLOCFAIL);
8951 	}
8952 	(void) sfmmu_hat_enter(sfmmup);
8953 
8954 	/*
8955 	 * Re-check to make sure somebody else didn't muck with us while we
8956 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8957 	 * exit; this can happen if we try to shrink the TSB from the context
8958 	 * of another process (such as on an ISM unmap), though it is rare.
8959 	 */
8960 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8961 		SFMMU_STAT(sf_tsb_resize_failures);
8962 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8963 		sfmmu_hat_exit(hatlockp);
8964 		sfmmu_tsbinfo_free(new_tsbinfo);
8965 		(void) sfmmu_hat_enter(sfmmup);
8966 		return (TSB_LOSTRACE);
8967 	}
8968 
8969 #ifdef	DEBUG
8970 	/* Reverify that the tsb_info still exists.. for debugging only */
8971 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8972 	    curtsb != old_tsbinfo && curtsb != NULL;
8973 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8974 	ASSERT(curtsb != NULL);
8975 #endif	/* DEBUG */
8976 
8977 	/*
8978 	 * Quiesce any CPUs running this process on their next TLB miss
8979 	 * so they atomically see the new tsb_info.  We temporarily set the
8980 	 * context to invalid context so new threads that come on processor
8981 	 * after we do the xcall to cpusran will also serialize behind the
8982 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8983 	 * race with a new thread coming on processor is relatively rare,
8984 	 * this synchronization mechanism should be cheaper than always
8985 	 * pausing all CPUs for the duration of the setup, which is what
8986 	 * the old implementation did.  This is particuarly true if we are
8987 	 * copying a huge chunk of memory around during that window.
8988 	 *
8989 	 * The memory barriers are to make sure things stay consistent
8990 	 * with resume() since it does not hold the HAT lock while
8991 	 * walking the list of tsb_info structures.
8992 	 */
8993 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8994 		/* The TSB is either growing or shrinking. */
8995 		sfmmu_invalidate_ctx(sfmmup);
8996 	} else {
8997 		/*
8998 		 * It is illegal to swap in TSBs from a process other
8999 		 * than a process being swapped in.  This in turn
9000 		 * implies we do not have a valid MMU context here
9001 		 * since a process needs one to resolve translation
9002 		 * misses.
9003 		 */
9004 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9005 	}
9006 
9007 #ifdef DEBUG
9008 	ASSERT(max_mmu_ctxdoms > 0);
9009 
9010 	/*
9011 	 * Process should have INVALID_CONTEXT on all MMUs
9012 	 */
9013 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9014 
9015 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9016 	}
9017 #endif
9018 
9019 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9020 	membar_stst();	/* strict ordering required */
9021 	if (prevtsb)
9022 		prevtsb->tsb_next = new_tsbinfo;
9023 	else
9024 		sfmmup->sfmmu_tsb = new_tsbinfo;
9025 	membar_enter();	/* make sure new TSB globally visible */
9026 	sfmmu_setup_tsbinfo(sfmmup);
9027 
9028 	/*
9029 	 * We need to migrate TSB entries from the old TSB to the new TSB
9030 	 * if tsb_remap_ttes is set and the TSB is growing.
9031 	 */
9032 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9033 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9034 
9035 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9036 
9037 	/*
9038 	 * Drop the HAT lock to free our old tsb_info.
9039 	 */
9040 	sfmmu_hat_exit(hatlockp);
9041 
9042 	if ((flags & TSB_GROW) == TSB_GROW) {
9043 		SFMMU_STAT(sf_tsb_grow);
9044 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9045 		SFMMU_STAT(sf_tsb_shrink);
9046 	}
9047 
9048 	sfmmu_tsbinfo_free(old_tsbinfo);
9049 
9050 	(void) sfmmu_hat_enter(sfmmup);
9051 	return (TSB_SUCCESS);
9052 }
9053 
9054 /*
9055  * This function will re-program hat pgsz array, and invalidate the
9056  * process' context, forcing the process to switch to another
9057  * context on the next TLB miss, and therefore start using the
9058  * TLB that is reprogrammed for the new page sizes.
9059  */
9060 void
9061 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9062 {
9063 	int i;
9064 	hatlock_t *hatlockp = NULL;
9065 
9066 	hatlockp = sfmmu_hat_enter(sfmmup);
9067 	/* USIII+-IV+ optimization, requires hat lock */
9068 	if (tmp_pgsz) {
9069 		for (i = 0; i < mmu_page_sizes; i++)
9070 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9071 	}
9072 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9073 
9074 	sfmmu_invalidate_ctx(sfmmup);
9075 
9076 	sfmmu_hat_exit(hatlockp);
9077 }
9078 
9079 /*
9080  * This function assumes that there are either four or six supported page
9081  * sizes and at most two programmable TLBs, so we need to decide which
9082  * page sizes are most important and then tell the MMU layer so it
9083  * can adjust the TLB page sizes accordingly (if supported).
9084  *
9085  * If these assumptions change, this function will need to be
9086  * updated to support whatever the new limits are.
9087  *
9088  * The growing flag is nonzero if we are growing the address space,
9089  * and zero if it is shrinking.  This allows us to decide whether
9090  * to grow or shrink our TSB, depending upon available memory
9091  * conditions.
9092  */
9093 static void
9094 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9095 {
9096 	uint64_t ttecnt[MMU_PAGE_SIZES];
9097 	uint64_t tte8k_cnt, tte4m_cnt;
9098 	uint8_t i;
9099 	int sectsb_thresh;
9100 
9101 	/*
9102 	 * Kernel threads, processes with small address spaces not using
9103 	 * large pages, and dummy ISM HATs need not apply.
9104 	 */
9105 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9106 		return;
9107 
9108 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9109 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9110 		return;
9111 
9112 	for (i = 0; i < mmu_page_sizes; i++) {
9113 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9114 	}
9115 
9116 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9117 	if (&mmu_check_page_sizes)
9118 		mmu_check_page_sizes(sfmmup, ttecnt);
9119 
9120 	/*
9121 	 * Calculate the number of 8k ttes to represent the span of these
9122 	 * pages.
9123 	 */
9124 	tte8k_cnt = ttecnt[TTE8K] +
9125 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9126 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9127 	if (mmu_page_sizes == max_mmu_page_sizes) {
9128 		tte4m_cnt = ttecnt[TTE4M] +
9129 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9130 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9131 	} else {
9132 		tte4m_cnt = ttecnt[TTE4M];
9133 	}
9134 
9135 	/*
9136 	 * Inflate TSB sizes by a factor of 2 if this process
9137 	 * uses 4M text pages to minimize extra conflict misses
9138 	 * in the first TSB since without counting text pages
9139 	 * 8K TSB may become too small.
9140 	 *
9141 	 * Also double the size of the second TSB to minimize
9142 	 * extra conflict misses due to competition between 4M text pages
9143 	 * and data pages.
9144 	 *
9145 	 * We need to adjust the second TSB allocation threshold by the
9146 	 * inflation factor, since there is no point in creating a second
9147 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9148 	 */
9149 	sectsb_thresh = tsb_sectsb_threshold;
9150 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9151 		tte8k_cnt <<= 1;
9152 		tte4m_cnt <<= 1;
9153 		sectsb_thresh <<= 1;
9154 	}
9155 
9156 	/*
9157 	 * Check to see if our TSB is the right size; we may need to
9158 	 * grow or shrink it.  If the process is small, our work is
9159 	 * finished at this point.
9160 	 */
9161 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9162 		return;
9163 	}
9164 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9165 }
9166 
9167 static void
9168 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9169 	uint64_t tte4m_cnt, int sectsb_thresh)
9170 {
9171 	int tsb_bits;
9172 	uint_t tsb_szc;
9173 	struct tsb_info *tsbinfop;
9174 	hatlock_t *hatlockp = NULL;
9175 
9176 	hatlockp = sfmmu_hat_enter(sfmmup);
9177 	ASSERT(hatlockp != NULL);
9178 	tsbinfop = sfmmup->sfmmu_tsb;
9179 	ASSERT(tsbinfop != NULL);
9180 
9181 	/*
9182 	 * If we're growing, select the size based on RSS.  If we're
9183 	 * shrinking, leave some room so we don't have to turn around and
9184 	 * grow again immediately.
9185 	 */
9186 	if (growing)
9187 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9188 	else
9189 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9190 
9191 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9192 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9193 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9194 		    hatlockp, TSB_SHRINK);
9195 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9196 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9197 		    hatlockp, TSB_GROW);
9198 	}
9199 	tsbinfop = sfmmup->sfmmu_tsb;
9200 
9201 	/*
9202 	 * With the TLB and first TSB out of the way, we need to see if
9203 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9204 	 * the TLB page sizes above, the process will start using this new
9205 	 * TSB right away; otherwise, it will start using it on the next
9206 	 * context switch.  Either way, it's no big deal so there's no
9207 	 * synchronization with the trap handlers here unless we grow the
9208 	 * TSB (in which case it's required to prevent using the old one
9209 	 * after it's freed). Note: second tsb is required for 32M/256M
9210 	 * page sizes.
9211 	 */
9212 	if (tte4m_cnt > sectsb_thresh) {
9213 		/*
9214 		 * If we're growing, select the size based on RSS.  If we're
9215 		 * shrinking, leave some room so we don't have to turn
9216 		 * around and grow again immediately.
9217 		 */
9218 		if (growing)
9219 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9220 		else
9221 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9222 		if (tsbinfop->tsb_next == NULL) {
9223 			struct tsb_info *newtsb;
9224 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9225 			    0 : TSB_ALLOC;
9226 
9227 			sfmmu_hat_exit(hatlockp);
9228 
9229 			/*
9230 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9231 			 * can't get the size we want, retry w/a minimum sized
9232 			 * TSB.  If that still didn't work, give up; we can
9233 			 * still run without one.
9234 			 */
9235 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9236 			    TSB4M|TSB32M|TSB256M:TSB4M;
9237 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9238 			    allocflags, sfmmup) != 0) &&
9239 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9240 			    tsb_bits, allocflags, sfmmup) != 0)) {
9241 				return;
9242 			}
9243 
9244 			hatlockp = sfmmu_hat_enter(sfmmup);
9245 
9246 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9247 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9248 				SFMMU_STAT(sf_tsb_sectsb_create);
9249 				sfmmu_setup_tsbinfo(sfmmup);
9250 				sfmmu_hat_exit(hatlockp);
9251 				return;
9252 			} else {
9253 				/*
9254 				 * It's annoying, but possible for us
9255 				 * to get here.. we dropped the HAT lock
9256 				 * because of locking order in the kmem
9257 				 * allocator, and while we were off getting
9258 				 * our memory, some other thread decided to
9259 				 * do us a favor and won the race to get a
9260 				 * second TSB for this process.  Sigh.
9261 				 */
9262 				sfmmu_hat_exit(hatlockp);
9263 				sfmmu_tsbinfo_free(newtsb);
9264 				return;
9265 			}
9266 		}
9267 
9268 		/*
9269 		 * We have a second TSB, see if it's big enough.
9270 		 */
9271 		tsbinfop = tsbinfop->tsb_next;
9272 
9273 		/*
9274 		 * Check to see if our second TSB is the right size;
9275 		 * we may need to grow or shrink it.
9276 		 * To prevent thrashing (e.g. growing the TSB on a
9277 		 * subsequent map operation), only try to shrink if
9278 		 * the TSB reach exceeds twice the virtual address
9279 		 * space size.
9280 		 */
9281 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9282 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9283 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9284 			    tsb_szc, hatlockp, TSB_SHRINK);
9285 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9286 		    TSB_OK_GROW()) {
9287 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9288 			    tsb_szc, hatlockp, TSB_GROW);
9289 		}
9290 	}
9291 
9292 	sfmmu_hat_exit(hatlockp);
9293 }
9294 
9295 /*
9296  * Get the preferred page size code for a hat.
9297  * This is only advice, so locking is not done;
9298  * this transitory information could change
9299  * following the call anyway.  This interface is
9300  * sun4 private.
9301  */
9302 /*ARGSUSED*/
9303 uint_t
9304 hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
9305 {
9306 	sfmmu_t *sfmmup = (sfmmu_t *)hat;
9307 	uint_t szc, maxszc = mmu_page_sizes - 1;
9308 	size_t pgsz;
9309 
9310 	if (maptype == MAPPGSZ_ISM) {
9311 		for (szc = maxszc; szc >= TTE4M; szc--) {
9312 			if (disable_ism_large_pages & (1 << szc))
9313 				continue;
9314 
9315 			pgsz = hw_page_array[szc].hp_size;
9316 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9317 				return (szc);
9318 		}
9319 		return (TTE4M);
9320 	} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
9321 		return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
9322 	} else {	/* USIII, USII, Niagara */
9323 		for (szc = maxszc; szc > TTE8K; szc--) {
9324 			if (disable_large_pages & (1 << szc))
9325 				continue;
9326 
9327 			pgsz = hw_page_array[szc].hp_size;
9328 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9329 				return (szc);
9330 		}
9331 		return (TTE8K);
9332 	}
9333 }
9334 
9335 /*
9336  * Free up a sfmmu
9337  * Since the sfmmu is currently embedded in the hat struct we simply zero
9338  * out our fields and free up the ism map blk list if any.
9339  */
9340 static void
9341 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9342 {
9343 	ism_blk_t	*blkp, *nx_blkp;
9344 #ifdef	DEBUG
9345 	ism_map_t	*map;
9346 	int 		i;
9347 #endif
9348 
9349 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9350 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9351 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9352 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9353 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9354 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9355 
9356 	sfmmup->sfmmu_free = 0;
9357 	sfmmup->sfmmu_ismhat = 0;
9358 
9359 	blkp = sfmmup->sfmmu_iblk;
9360 	sfmmup->sfmmu_iblk = NULL;
9361 
9362 	while (blkp) {
9363 #ifdef	DEBUG
9364 		map = blkp->iblk_maps;
9365 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9366 			ASSERT(map[i].imap_seg == 0);
9367 			ASSERT(map[i].imap_ismhat == NULL);
9368 			ASSERT(map[i].imap_ment == NULL);
9369 		}
9370 #endif
9371 		nx_blkp = blkp->iblk_next;
9372 		blkp->iblk_next = NULL;
9373 		blkp->iblk_nextpa = (uint64_t)-1;
9374 		kmem_cache_free(ism_blk_cache, blkp);
9375 		blkp = nx_blkp;
9376 	}
9377 }
9378 
9379 /*
9380  * Locking primitves accessed by HATLOCK macros
9381  */
9382 
9383 #define	SFMMU_SPL_MTX	(0x0)
9384 #define	SFMMU_ML_MTX	(0x1)
9385 
9386 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9387 					    SPL_HASH(pg) : MLIST_HASH(pg))
9388 
9389 kmutex_t *
9390 sfmmu_page_enter(struct page *pp)
9391 {
9392 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9393 }
9394 
9395 void
9396 sfmmu_page_exit(kmutex_t *spl)
9397 {
9398 	mutex_exit(spl);
9399 }
9400 
9401 int
9402 sfmmu_page_spl_held(struct page *pp)
9403 {
9404 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9405 }
9406 
9407 kmutex_t *
9408 sfmmu_mlist_enter(struct page *pp)
9409 {
9410 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9411 }
9412 
9413 void
9414 sfmmu_mlist_exit(kmutex_t *mml)
9415 {
9416 	mutex_exit(mml);
9417 }
9418 
9419 int
9420 sfmmu_mlist_held(struct page *pp)
9421 {
9422 
9423 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9424 }
9425 
9426 /*
9427  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9428  * sfmmu_mlist_enter() case mml_table lock array is used and for
9429  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9430  *
9431  * The lock is taken on a root page so that it protects an operation on all
9432  * constituent pages of a large page pp belongs to.
9433  *
9434  * The routine takes a lock from the appropriate array. The lock is determined
9435  * by hashing the root page. After taking the lock this routine checks if the
9436  * root page has the same size code that was used to determine the root (i.e
9437  * that root hasn't changed).  If root page has the expected p_szc field we
9438  * have the right lock and it's returned to the caller. If root's p_szc
9439  * decreased we release the lock and retry from the beginning.  This case can
9440  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9441  * value and taking the lock. The number of retries due to p_szc decrease is
9442  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9443  * determined by hashing pp itself.
9444  *
9445  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9446  * possible that p_szc can increase. To increase p_szc a thread has to lock
9447  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9448  * callers that don't hold a page locked recheck if hmeblk through which pp
9449  * was found still maps this pp.  If it doesn't map it anymore returned lock
9450  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9451  * p_szc increase after taking the lock it returns this lock without further
9452  * retries because in this case the caller doesn't care about which lock was
9453  * taken. The caller will drop it right away.
9454  *
9455  * After the routine returns it's guaranteed that hat_page_demote() can't
9456  * change p_szc field of any of constituent pages of a large page pp belongs
9457  * to as long as pp was either locked at least SHARED prior to this call or
9458  * the caller finds that hment that pointed to this pp still references this
9459  * pp (this also assumes that the caller holds hme hash bucket lock so that
9460  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9461  * hat_pageunload()).
9462  */
9463 static kmutex_t *
9464 sfmmu_mlspl_enter(struct page *pp, int type)
9465 {
9466 	kmutex_t	*mtx;
9467 	uint_t		prev_rszc = UINT_MAX;
9468 	page_t		*rootpp;
9469 	uint_t		szc;
9470 	uint_t		rszc;
9471 	uint_t		pszc = pp->p_szc;
9472 
9473 	ASSERT(pp != NULL);
9474 
9475 again:
9476 	if (pszc == 0) {
9477 		mtx = SFMMU_MLSPL_MTX(type, pp);
9478 		mutex_enter(mtx);
9479 		return (mtx);
9480 	}
9481 
9482 	/* The lock lives in the root page */
9483 	rootpp = PP_GROUPLEADER(pp, pszc);
9484 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9485 	mutex_enter(mtx);
9486 
9487 	/*
9488 	 * Return mml in the following 3 cases:
9489 	 *
9490 	 * 1) If pp itself is root since if its p_szc decreased before we took
9491 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9492 	 * increased it doesn't matter what lock we return (see comment in
9493 	 * front of this routine).
9494 	 *
9495 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9496 	 * large page we have the right lock since any previous potential
9497 	 * hat_page_demote() is done demoting from greater than current root's
9498 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9499 	 * further hat_page_demote() can start or be in progress since it
9500 	 * would need the same lock we currently hold.
9501 	 *
9502 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9503 	 * matter what lock we return (see comment in front of this routine).
9504 	 */
9505 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9506 	    rszc >= prev_rszc) {
9507 		return (mtx);
9508 	}
9509 
9510 	/*
9511 	 * hat_page_demote() could have decreased root's p_szc.
9512 	 * In this case pp's p_szc must also be smaller than pszc.
9513 	 * Retry.
9514 	 */
9515 	if (rszc < pszc) {
9516 		szc = pp->p_szc;
9517 		if (szc < pszc) {
9518 			mutex_exit(mtx);
9519 			pszc = szc;
9520 			goto again;
9521 		}
9522 		/*
9523 		 * pp's p_szc increased after it was decreased.
9524 		 * page cannot be mapped. Return current lock. The caller
9525 		 * will drop it right away.
9526 		 */
9527 		return (mtx);
9528 	}
9529 
9530 	/*
9531 	 * root's p_szc is greater than pp's p_szc.
9532 	 * hat_page_demote() is not done with all pages
9533 	 * yet. Wait for it to complete.
9534 	 */
9535 	mutex_exit(mtx);
9536 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9537 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9538 	mutex_enter(mtx);
9539 	mutex_exit(mtx);
9540 	prev_rszc = rszc;
9541 	goto again;
9542 }
9543 
9544 static int
9545 sfmmu_mlspl_held(struct page *pp, int type)
9546 {
9547 	kmutex_t	*mtx;
9548 
9549 	ASSERT(pp != NULL);
9550 	/* The lock lives in the root page */
9551 	pp = PP_PAGEROOT(pp);
9552 	ASSERT(pp != NULL);
9553 
9554 	mtx = SFMMU_MLSPL_MTX(type, pp);
9555 	return (MUTEX_HELD(mtx));
9556 }
9557 
9558 static uint_t
9559 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9560 {
9561 	struct  hme_blk *hblkp;
9562 
9563 	if (freehblkp != NULL) {
9564 		mutex_enter(&freehblkp_lock);
9565 		if (freehblkp != NULL) {
9566 			/*
9567 			 * If the current thread is owning hblk_reserve,
9568 			 * let it succede even if freehblkcnt is really low.
9569 			 */
9570 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9571 				SFMMU_STAT(sf_get_free_throttle);
9572 				mutex_exit(&freehblkp_lock);
9573 				return (0);
9574 			}
9575 			freehblkcnt--;
9576 			*hmeblkpp = freehblkp;
9577 			hblkp = *hmeblkpp;
9578 			freehblkp = hblkp->hblk_next;
9579 			mutex_exit(&freehblkp_lock);
9580 			hblkp->hblk_next = NULL;
9581 			SFMMU_STAT(sf_get_free_success);
9582 			return (1);
9583 		}
9584 		mutex_exit(&freehblkp_lock);
9585 	}
9586 	SFMMU_STAT(sf_get_free_fail);
9587 	return (0);
9588 }
9589 
9590 static uint_t
9591 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9592 {
9593 	struct  hme_blk *hblkp;
9594 
9595 	/*
9596 	 * If the current thread is mapping into kernel space,
9597 	 * let it succede even if freehblkcnt is max
9598 	 * so that it will avoid freeing it to kmem.
9599 	 * This will prevent stack overflow due to
9600 	 * possible recursion since kmem_cache_free()
9601 	 * might require creation of a slab which
9602 	 * in turn needs an hmeblk to map that slab;
9603 	 * let's break this vicious chain at the first
9604 	 * opportunity.
9605 	 */
9606 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9607 		mutex_enter(&freehblkp_lock);
9608 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9609 			SFMMU_STAT(sf_put_free_success);
9610 			freehblkcnt++;
9611 			hmeblkp->hblk_next = freehblkp;
9612 			freehblkp = hmeblkp;
9613 			mutex_exit(&freehblkp_lock);
9614 			return (1);
9615 		}
9616 		mutex_exit(&freehblkp_lock);
9617 	}
9618 
9619 	/*
9620 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9621 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9622 	 * we are not in the process of mapping into kernel space.
9623 	 */
9624 	ASSERT(!critical);
9625 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9626 		mutex_enter(&freehblkp_lock);
9627 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9628 			freehblkcnt--;
9629 			hblkp = freehblkp;
9630 			freehblkp = hblkp->hblk_next;
9631 			mutex_exit(&freehblkp_lock);
9632 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9633 			kmem_cache_free(sfmmu8_cache, hblkp);
9634 			continue;
9635 		}
9636 		mutex_exit(&freehblkp_lock);
9637 	}
9638 	SFMMU_STAT(sf_put_free_fail);
9639 	return (0);
9640 }
9641 
9642 static void
9643 sfmmu_hblk_swap(struct hme_blk *new)
9644 {
9645 	struct hme_blk *old, *hblkp, *prev;
9646 	uint64_t hblkpa, prevpa, newpa;
9647 	caddr_t	base, vaddr, endaddr;
9648 	struct hmehash_bucket *hmebp;
9649 	struct sf_hment *osfhme, *nsfhme;
9650 	page_t *pp;
9651 	kmutex_t *pml;
9652 	tte_t tte;
9653 
9654 #ifdef	DEBUG
9655 	hmeblk_tag		hblktag;
9656 	struct hme_blk		*found;
9657 #endif
9658 	old = HBLK_RESERVE;
9659 
9660 	/*
9661 	 * save pa before bcopy clobbers it
9662 	 */
9663 	newpa = new->hblk_nextpa;
9664 
9665 	base = (caddr_t)get_hblk_base(old);
9666 	endaddr = base + get_hblk_span(old);
9667 
9668 	/*
9669 	 * acquire hash bucket lock.
9670 	 */
9671 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9672 
9673 	/*
9674 	 * copy contents from old to new
9675 	 */
9676 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9677 
9678 	/*
9679 	 * add new to hash chain
9680 	 */
9681 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9682 
9683 	/*
9684 	 * search hash chain for hblk_reserve; this needs to be performed
9685 	 * after adding new, otherwise prevpa and prev won't correspond
9686 	 * to the hblk which is prior to old in hash chain when we call
9687 	 * sfmmu_hblk_hash_rm to remove old later.
9688 	 */
9689 	for (prevpa = 0, prev = NULL,
9690 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9691 	    hblkp != NULL && hblkp != old;
9692 	    prevpa = hblkpa, prev = hblkp,
9693 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9694 
9695 	if (hblkp != old)
9696 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9697 
9698 	/*
9699 	 * p_mapping list is still pointing to hments in hblk_reserve;
9700 	 * fix up p_mapping list so that they point to hments in new.
9701 	 *
9702 	 * Since all these mappings are created by hblk_reserve_thread
9703 	 * on the way and it's using at least one of the buffers from each of
9704 	 * the newly minted slabs, there is no danger of any of these
9705 	 * mappings getting unloaded by another thread.
9706 	 *
9707 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9708 	 * Since all of these hments hold mappings established by segkmem
9709 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9710 	 * have no meaning for the mappings in hblk_reserve.  hments in
9711 	 * old and new are identical except for ref/mod bits.
9712 	 */
9713 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9714 
9715 		HBLKTOHME(osfhme, old, vaddr);
9716 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9717 
9718 		if (TTE_IS_VALID(&tte)) {
9719 			if ((pp = osfhme->hme_page) == NULL)
9720 				panic("sfmmu_hblk_swap: page not mapped");
9721 
9722 			pml = sfmmu_mlist_enter(pp);
9723 
9724 			if (pp != osfhme->hme_page)
9725 				panic("sfmmu_hblk_swap: mapping changed");
9726 
9727 			HBLKTOHME(nsfhme, new, vaddr);
9728 
9729 			HME_ADD(nsfhme, pp);
9730 			HME_SUB(osfhme, pp);
9731 
9732 			sfmmu_mlist_exit(pml);
9733 		}
9734 	}
9735 
9736 	/*
9737 	 * remove old from hash chain
9738 	 */
9739 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9740 
9741 #ifdef	DEBUG
9742 
9743 	hblktag.htag_id = ksfmmup;
9744 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9745 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9746 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9747 
9748 	if (found != new)
9749 		panic("sfmmu_hblk_swap: new hblk not found");
9750 #endif
9751 
9752 	SFMMU_HASH_UNLOCK(hmebp);
9753 
9754 	/*
9755 	 * Reset hblk_reserve
9756 	 */
9757 	bzero((void *)old, HME8BLK_SZ);
9758 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9759 }
9760 
9761 /*
9762  * Grab the mlist mutex for both pages passed in.
9763  *
9764  * low and high will be returned as pointers to the mutexes for these pages.
9765  * low refers to the mutex residing in the lower bin of the mlist hash, while
9766  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9767  * is due to the locking order restrictions on the same thread grabbing
9768  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9769  *
9770  * If both pages hash to the same mutex, only grab that single mutex, and
9771  * high will be returned as NULL
9772  * If the pages hash to different bins in the hash, grab the lower addressed
9773  * lock first and then the higher addressed lock in order to follow the locking
9774  * rules involved with the same thread grabbing multiple mlist mutexes.
9775  * low and high will both have non-NULL values.
9776  */
9777 static void
9778 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9779     kmutex_t **low, kmutex_t **high)
9780 {
9781 	kmutex_t	*mml_targ, *mml_repl;
9782 
9783 	/*
9784 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9785 	 * because this routine is only called by hat_page_relocate() and all
9786 	 * targ and repl pages are already locked EXCL so szc can't change.
9787 	 */
9788 
9789 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9790 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9791 
9792 	if (mml_targ == mml_repl) {
9793 		*low = mml_targ;
9794 		*high = NULL;
9795 	} else {
9796 		if (mml_targ < mml_repl) {
9797 			*low = mml_targ;
9798 			*high = mml_repl;
9799 		} else {
9800 			*low = mml_repl;
9801 			*high = mml_targ;
9802 		}
9803 	}
9804 
9805 	mutex_enter(*low);
9806 	if (*high)
9807 		mutex_enter(*high);
9808 }
9809 
9810 static void
9811 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9812 {
9813 	if (high)
9814 		mutex_exit(high);
9815 	mutex_exit(low);
9816 }
9817 
9818 static hatlock_t *
9819 sfmmu_hat_enter(sfmmu_t *sfmmup)
9820 {
9821 	hatlock_t	*hatlockp;
9822 
9823 	if (sfmmup != ksfmmup) {
9824 		hatlockp = TSB_HASH(sfmmup);
9825 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9826 		return (hatlockp);
9827 	}
9828 	return (NULL);
9829 }
9830 
9831 static hatlock_t *
9832 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9833 {
9834 	hatlock_t	*hatlockp;
9835 
9836 	if (sfmmup != ksfmmup) {
9837 		hatlockp = TSB_HASH(sfmmup);
9838 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9839 			return (NULL);
9840 		return (hatlockp);
9841 	}
9842 	return (NULL);
9843 }
9844 
9845 static void
9846 sfmmu_hat_exit(hatlock_t *hatlockp)
9847 {
9848 	if (hatlockp != NULL)
9849 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9850 }
9851 
9852 static void
9853 sfmmu_hat_lock_all(void)
9854 {
9855 	int i;
9856 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9857 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9858 }
9859 
9860 static void
9861 sfmmu_hat_unlock_all(void)
9862 {
9863 	int i;
9864 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9865 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9866 }
9867 
9868 int
9869 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9870 {
9871 	ASSERT(sfmmup != ksfmmup);
9872 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9873 }
9874 
9875 /*
9876  * Locking primitives to provide consistency between ISM unmap
9877  * and other operations.  Since ISM unmap can take a long time, we
9878  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9879  * contention on the hatlock buckets while ISM segments are being
9880  * unmapped.  The tradeoff is that the flags don't prevent priority
9881  * inversion from occurring, so we must request kernel priority in
9882  * case we have to sleep to keep from getting buried while holding
9883  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9884  * threads from running (for example, in sfmmu_uvatopfn()).
9885  */
9886 static void
9887 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9888 {
9889 	hatlock_t *hatlockp;
9890 
9891 	THREAD_KPRI_REQUEST();
9892 	if (!hatlock_held)
9893 		hatlockp = sfmmu_hat_enter(sfmmup);
9894 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9895 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9896 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9897 	if (!hatlock_held)
9898 		sfmmu_hat_exit(hatlockp);
9899 }
9900 
9901 static void
9902 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9903 {
9904 	hatlock_t *hatlockp;
9905 
9906 	if (!hatlock_held)
9907 		hatlockp = sfmmu_hat_enter(sfmmup);
9908 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9909 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9910 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9911 	if (!hatlock_held)
9912 		sfmmu_hat_exit(hatlockp);
9913 	THREAD_KPRI_RELEASE();
9914 }
9915 
9916 /*
9917  *
9918  * Algorithm:
9919  *
9920  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9921  *	hblks.
9922  *
9923  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9924  *
9925  * 		(a) try to return an hblk from reserve pool of free hblks;
9926  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9927  *		    and return hblk_reserve.
9928  *
9929  * (3) call kmem_cache_alloc() to allocate hblk;
9930  *
9931  *		(a) if hblk_reserve_lock is held by the current thread,
9932  *		    atomically replace hblk_reserve by the hblk that is
9933  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9934  *		    and call kmem_cache_alloc() again.
9935  *		(b) if reserve pool is not full, add the hblk that is
9936  *		    returned by kmem_cache_alloc to reserve pool and
9937  *		    call kmem_cache_alloc again.
9938  *
9939  */
9940 static struct hme_blk *
9941 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9942 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9943 	uint_t flags)
9944 {
9945 	struct hme_blk *hmeblkp = NULL;
9946 	struct hme_blk *newhblkp;
9947 	struct hme_blk *shw_hblkp = NULL;
9948 	struct kmem_cache *sfmmu_cache = NULL;
9949 	uint64_t hblkpa;
9950 	ulong_t index;
9951 	uint_t owner;		/* set to 1 if using hblk_reserve */
9952 	uint_t forcefree;
9953 	int sleep;
9954 
9955 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9956 
9957 	/*
9958 	 * If segkmem is not created yet, allocate from static hmeblks
9959 	 * created at the end of startup_modules().  See the block comment
9960 	 * in startup_modules() describing how we estimate the number of
9961 	 * static hmeblks that will be needed during re-map.
9962 	 */
9963 	if (!hblk_alloc_dynamic) {
9964 
9965 		if (size == TTE8K) {
9966 			index = nucleus_hblk8.index;
9967 			if (index >= nucleus_hblk8.len) {
9968 				/*
9969 				 * If we panic here, see startup_modules() to
9970 				 * make sure that we are calculating the
9971 				 * number of hblk8's that we need correctly.
9972 				 */
9973 				panic("no nucleus hblk8 to allocate");
9974 			}
9975 			hmeblkp =
9976 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9977 			nucleus_hblk8.index++;
9978 			SFMMU_STAT(sf_hblk8_nalloc);
9979 		} else {
9980 			index = nucleus_hblk1.index;
9981 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9982 				/*
9983 				 * If we panic here, see startup_modules()
9984 				 * and H8TOH1; most likely you need to
9985 				 * update the calculation of the number
9986 				 * of hblk1's the kernel needs to boot.
9987 				 */
9988 				panic("no nucleus hblk1 to allocate");
9989 			}
9990 			hmeblkp =
9991 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9992 			nucleus_hblk1.index++;
9993 			SFMMU_STAT(sf_hblk1_nalloc);
9994 		}
9995 
9996 		goto hblk_init;
9997 	}
9998 
9999 	SFMMU_HASH_UNLOCK(hmebp);
10000 
10001 	if (sfmmup != KHATID) {
10002 		if (mmu_page_sizes == max_mmu_page_sizes) {
10003 			if (size < TTE256M)
10004 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10005 				    size, flags);
10006 		} else {
10007 			if (size < TTE4M)
10008 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10009 				    size, flags);
10010 		}
10011 	}
10012 
10013 fill_hblk:
10014 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10015 
10016 	if (owner && size == TTE8K) {
10017 
10018 		/*
10019 		 * We are really in a tight spot. We already own
10020 		 * hblk_reserve and we need another hblk.  In anticipation
10021 		 * of this kind of scenario, we specifically set aside
10022 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10023 		 * by owner of hblk_reserve.
10024 		 */
10025 		SFMMU_STAT(sf_hblk_recurse_cnt);
10026 
10027 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10028 			panic("sfmmu_hblk_alloc: reserve list is empty");
10029 
10030 		goto hblk_verify;
10031 	}
10032 
10033 	ASSERT(!owner);
10034 
10035 	if ((flags & HAT_NO_KALLOC) == 0) {
10036 
10037 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10038 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10039 
10040 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10041 			hmeblkp = sfmmu_hblk_steal(size);
10042 		} else {
10043 			/*
10044 			 * if we are the owner of hblk_reserve,
10045 			 * swap hblk_reserve with hmeblkp and
10046 			 * start a fresh life.  Hope things go
10047 			 * better this time.
10048 			 */
10049 			if (hblk_reserve_thread == curthread) {
10050 				ASSERT(sfmmu_cache == sfmmu8_cache);
10051 				sfmmu_hblk_swap(hmeblkp);
10052 				hblk_reserve_thread = NULL;
10053 				mutex_exit(&hblk_reserve_lock);
10054 				goto fill_hblk;
10055 			}
10056 			/*
10057 			 * let's donate this hblk to our reserve list if
10058 			 * we are not mapping kernel range
10059 			 */
10060 			if (size == TTE8K && sfmmup != KHATID)
10061 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10062 					goto fill_hblk;
10063 		}
10064 	} else {
10065 		/*
10066 		 * We are here to map the slab in sfmmu8_cache; let's
10067 		 * check if we could tap our reserve list; if successful,
10068 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10069 		 */
10070 		SFMMU_STAT(sf_hblk_slab_cnt);
10071 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10072 			/*
10073 			 * let's start hblk_reserve dance
10074 			 */
10075 			SFMMU_STAT(sf_hblk_reserve_cnt);
10076 			owner = 1;
10077 			mutex_enter(&hblk_reserve_lock);
10078 			hmeblkp = HBLK_RESERVE;
10079 			hblk_reserve_thread = curthread;
10080 		}
10081 	}
10082 
10083 hblk_verify:
10084 	ASSERT(hmeblkp != NULL);
10085 	set_hblk_sz(hmeblkp, size);
10086 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10087 	SFMMU_HASH_LOCK(hmebp);
10088 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10089 	if (newhblkp != NULL) {
10090 		SFMMU_HASH_UNLOCK(hmebp);
10091 		if (hmeblkp != HBLK_RESERVE) {
10092 			/*
10093 			 * This is really tricky!
10094 			 *
10095 			 * vmem_alloc(vmem_seg_arena)
10096 			 *  vmem_alloc(vmem_internal_arena)
10097 			 *   segkmem_alloc(heap_arena)
10098 			 *    vmem_alloc(heap_arena)
10099 			 *    page_create()
10100 			 *    hat_memload()
10101 			 *	kmem_cache_free()
10102 			 *	 kmem_cache_alloc()
10103 			 *	  kmem_slab_create()
10104 			 *	   vmem_alloc(kmem_internal_arena)
10105 			 *	    segkmem_alloc(heap_arena)
10106 			 *		vmem_alloc(heap_arena)
10107 			 *		page_create()
10108 			 *		hat_memload()
10109 			 *		  kmem_cache_free()
10110 			 *		...
10111 			 *
10112 			 * Thus, hat_memload() could call kmem_cache_free
10113 			 * for enough number of times that we could easily
10114 			 * hit the bottom of the stack or run out of reserve
10115 			 * list of vmem_seg structs.  So, we must donate
10116 			 * this hblk to reserve list if it's allocated
10117 			 * from sfmmu8_cache *and* mapping kernel range.
10118 			 * We don't need to worry about freeing hmeblk1's
10119 			 * to kmem since they don't map any kmem slabs.
10120 			 *
10121 			 * Note: When segkmem supports largepages, we must
10122 			 * free hmeblk1's to reserve list as well.
10123 			 */
10124 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10125 			if (size == TTE8K &&
10126 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10127 				goto re_verify;
10128 			}
10129 			ASSERT(sfmmup != KHATID);
10130 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10131 		} else {
10132 			/*
10133 			 * Hey! we don't need hblk_reserve any more.
10134 			 */
10135 			ASSERT(owner);
10136 			hblk_reserve_thread = NULL;
10137 			mutex_exit(&hblk_reserve_lock);
10138 			owner = 0;
10139 		}
10140 re_verify:
10141 		/*
10142 		 * let's check if the goodies are still present
10143 		 */
10144 		SFMMU_HASH_LOCK(hmebp);
10145 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10146 		if (newhblkp != NULL) {
10147 			/*
10148 			 * return newhblkp if it's not hblk_reserve;
10149 			 * if newhblkp is hblk_reserve, return it
10150 			 * _only if_ we are the owner of hblk_reserve.
10151 			 */
10152 			if (newhblkp != HBLK_RESERVE || owner) {
10153 				return (newhblkp);
10154 			} else {
10155 				/*
10156 				 * we just hit hblk_reserve in the hash and
10157 				 * we are not the owner of that;
10158 				 *
10159 				 * block until hblk_reserve_thread completes
10160 				 * swapping hblk_reserve and try the dance
10161 				 * once again.
10162 				 */
10163 				SFMMU_HASH_UNLOCK(hmebp);
10164 				mutex_enter(&hblk_reserve_lock);
10165 				mutex_exit(&hblk_reserve_lock);
10166 				SFMMU_STAT(sf_hblk_reserve_hit);
10167 				goto fill_hblk;
10168 			}
10169 		} else {
10170 			/*
10171 			 * it's no more! try the dance once again.
10172 			 */
10173 			SFMMU_HASH_UNLOCK(hmebp);
10174 			goto fill_hblk;
10175 		}
10176 	}
10177 
10178 hblk_init:
10179 	set_hblk_sz(hmeblkp, size);
10180 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10181 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10182 	hmeblkp->hblk_tag = hblktag;
10183 	hmeblkp->hblk_shadow = shw_hblkp;
10184 	hblkpa = hmeblkp->hblk_nextpa;
10185 	hmeblkp->hblk_nextpa = 0;
10186 
10187 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10188 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10189 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10190 	ASSERT(hmeblkp->hblk_vcnt == 0);
10191 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10192 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10193 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10194 	return (hmeblkp);
10195 }
10196 
10197 /*
10198  * This function performs any cleanup required on the hme_blk
10199  * and returns it to the free list.
10200  */
10201 /* ARGSUSED */
10202 static void
10203 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10204 	uint64_t hblkpa, struct hme_blk **listp)
10205 {
10206 	int shw_size, vshift;
10207 	struct hme_blk *shw_hblkp;
10208 	uint_t		shw_mask, newshw_mask;
10209 	uintptr_t	vaddr;
10210 	int		size;
10211 	uint_t		critical;
10212 
10213 	ASSERT(hmeblkp);
10214 	ASSERT(!hmeblkp->hblk_hmecnt);
10215 	ASSERT(!hmeblkp->hblk_vcnt);
10216 	ASSERT(!hmeblkp->hblk_lckcnt);
10217 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10218 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10219 
10220 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10221 
10222 	size = get_hblk_ttesz(hmeblkp);
10223 	shw_hblkp = hmeblkp->hblk_shadow;
10224 	if (shw_hblkp) {
10225 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10226 		if (mmu_page_sizes == max_mmu_page_sizes) {
10227 			ASSERT(size < TTE256M);
10228 		} else {
10229 			ASSERT(size < TTE4M);
10230 		}
10231 
10232 		shw_size = get_hblk_ttesz(shw_hblkp);
10233 		vaddr = get_hblk_base(hmeblkp);
10234 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10235 		ASSERT(vshift < 8);
10236 		/*
10237 		 * Atomically clear shadow mask bit
10238 		 */
10239 		do {
10240 			shw_mask = shw_hblkp->hblk_shw_mask;
10241 			ASSERT(shw_mask & (1 << vshift));
10242 			newshw_mask = shw_mask & ~(1 << vshift);
10243 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10244 				shw_mask, newshw_mask);
10245 		} while (newshw_mask != shw_mask);
10246 		hmeblkp->hblk_shadow = NULL;
10247 	}
10248 	hmeblkp->hblk_next = NULL;
10249 	hmeblkp->hblk_nextpa = hblkpa;
10250 	hmeblkp->hblk_shw_bit = 0;
10251 
10252 	if (hmeblkp->hblk_nuc_bit == 0) {
10253 
10254 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10255 			return;
10256 
10257 		hmeblkp->hblk_next = *listp;
10258 		*listp = hmeblkp;
10259 	}
10260 }
10261 
10262 static void
10263 sfmmu_hblks_list_purge(struct hme_blk **listp)
10264 {
10265 	struct hme_blk	*hmeblkp;
10266 
10267 	while ((hmeblkp = *listp) != NULL) {
10268 		*listp = hmeblkp->hblk_next;
10269 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10270 	}
10271 }
10272 
10273 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10274 
10275 static uint_t sfmmu_hblk_steal_twice;
10276 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10277 
10278 /*
10279  * Steal a hmeblk
10280  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10281  * hmeblks were added dynamically. We should never ever not be able to
10282  * find one. Look for an unused/unlocked hmeblk in user hash table.
10283  */
10284 static struct hme_blk *
10285 sfmmu_hblk_steal(int size)
10286 {
10287 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10288 	struct hmehash_bucket *hmebp;
10289 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10290 	uint64_t hblkpa, prevpa;
10291 	int i;
10292 
10293 	for (;;) {
10294 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10295 			uhmehash_steal_hand;
10296 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10297 
10298 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10299 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10300 			SFMMU_HASH_LOCK(hmebp);
10301 			hmeblkp = hmebp->hmeblkp;
10302 			hblkpa = hmebp->hmeh_nextpa;
10303 			prevpa = 0;
10304 			pr_hblk = NULL;
10305 			while (hmeblkp) {
10306 				/*
10307 				 * check if it is a hmeblk that is not locked
10308 				 * and not shared. skip shadow hmeblks with
10309 				 * shadow_mask set i.e valid count non zero.
10310 				 */
10311 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10312 				    (hmeblkp->hblk_shw_bit == 0 ||
10313 					hmeblkp->hblk_vcnt == 0) &&
10314 				    (hmeblkp->hblk_lckcnt == 0)) {
10315 					/*
10316 					 * there is a high probability that we
10317 					 * will find a free one. search some
10318 					 * buckets for a free hmeblk initially
10319 					 * before unloading a valid hmeblk.
10320 					 */
10321 					if ((hmeblkp->hblk_vcnt == 0 &&
10322 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10323 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10324 						if (sfmmu_steal_this_hblk(hmebp,
10325 						    hmeblkp, hblkpa, prevpa,
10326 						    pr_hblk)) {
10327 							/*
10328 							 * Hblk is unloaded
10329 							 * successfully
10330 							 */
10331 							break;
10332 						}
10333 					}
10334 				}
10335 				pr_hblk = hmeblkp;
10336 				prevpa = hblkpa;
10337 				hblkpa = hmeblkp->hblk_nextpa;
10338 				hmeblkp = hmeblkp->hblk_next;
10339 			}
10340 
10341 			SFMMU_HASH_UNLOCK(hmebp);
10342 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10343 				hmebp = uhme_hash;
10344 		}
10345 		uhmehash_steal_hand = hmebp;
10346 
10347 		if (hmeblkp != NULL)
10348 			break;
10349 
10350 		/*
10351 		 * in the worst case, look for a free one in the kernel
10352 		 * hash table.
10353 		 */
10354 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10355 			SFMMU_HASH_LOCK(hmebp);
10356 			hmeblkp = hmebp->hmeblkp;
10357 			hblkpa = hmebp->hmeh_nextpa;
10358 			prevpa = 0;
10359 			pr_hblk = NULL;
10360 			while (hmeblkp) {
10361 				/*
10362 				 * check if it is free hmeblk
10363 				 */
10364 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10365 				    (hmeblkp->hblk_lckcnt == 0) &&
10366 				    (hmeblkp->hblk_vcnt == 0) &&
10367 				    (hmeblkp->hblk_hmecnt == 0)) {
10368 					if (sfmmu_steal_this_hblk(hmebp,
10369 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10370 						break;
10371 					} else {
10372 						/*
10373 						 * Cannot fail since we have
10374 						 * hash lock.
10375 						 */
10376 						panic("fail to steal?");
10377 					}
10378 				}
10379 
10380 				pr_hblk = hmeblkp;
10381 				prevpa = hblkpa;
10382 				hblkpa = hmeblkp->hblk_nextpa;
10383 				hmeblkp = hmeblkp->hblk_next;
10384 			}
10385 
10386 			SFMMU_HASH_UNLOCK(hmebp);
10387 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10388 				hmebp = khme_hash;
10389 		}
10390 
10391 		if (hmeblkp != NULL)
10392 			break;
10393 		sfmmu_hblk_steal_twice++;
10394 	}
10395 	return (hmeblkp);
10396 }
10397 
10398 /*
10399  * This routine does real work to prepare a hblk to be "stolen" by
10400  * unloading the mappings, updating shadow counts ....
10401  * It returns 1 if the block is ready to be reused (stolen), or 0
10402  * means the block cannot be stolen yet- pageunload is still working
10403  * on this hblk.
10404  */
10405 static int
10406 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10407 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10408 {
10409 	int shw_size, vshift;
10410 	struct hme_blk *shw_hblkp;
10411 	uintptr_t vaddr;
10412 	uint_t shw_mask, newshw_mask;
10413 
10414 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10415 
10416 	/*
10417 	 * check if the hmeblk is free, unload if necessary
10418 	 */
10419 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10420 		sfmmu_t *sfmmup;
10421 		demap_range_t dmr;
10422 
10423 		sfmmup = hblktosfmmu(hmeblkp);
10424 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10425 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10426 		    (caddr_t)get_hblk_base(hmeblkp),
10427 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10428 		DEMAP_RANGE_FLUSH(&dmr);
10429 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10430 			/*
10431 			 * Pageunload is working on the same hblk.
10432 			 */
10433 			return (0);
10434 		}
10435 
10436 		sfmmu_hblk_steal_unload_count++;
10437 	}
10438 
10439 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10440 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10441 
10442 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10443 	hmeblkp->hblk_nextpa = hblkpa;
10444 
10445 	shw_hblkp = hmeblkp->hblk_shadow;
10446 	if (shw_hblkp) {
10447 		shw_size = get_hblk_ttesz(shw_hblkp);
10448 		vaddr = get_hblk_base(hmeblkp);
10449 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10450 		ASSERT(vshift < 8);
10451 		/*
10452 		 * Atomically clear shadow mask bit
10453 		 */
10454 		do {
10455 			shw_mask = shw_hblkp->hblk_shw_mask;
10456 			ASSERT(shw_mask & (1 << vshift));
10457 			newshw_mask = shw_mask & ~(1 << vshift);
10458 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10459 				shw_mask, newshw_mask);
10460 		} while (newshw_mask != shw_mask);
10461 		hmeblkp->hblk_shadow = NULL;
10462 	}
10463 
10464 	/*
10465 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10466 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10467 	 * we are indeed allocating a shadow hmeblk.
10468 	 */
10469 	hmeblkp->hblk_shw_bit = 0;
10470 
10471 	sfmmu_hblk_steal_count++;
10472 	SFMMU_STAT(sf_steal_count);
10473 
10474 	return (1);
10475 }
10476 
10477 struct hme_blk *
10478 sfmmu_hmetohblk(struct sf_hment *sfhme)
10479 {
10480 	struct hme_blk *hmeblkp;
10481 	struct sf_hment *sfhme0;
10482 	struct hme_blk *hblk_dummy = 0;
10483 
10484 	/*
10485 	 * No dummy sf_hments, please.
10486 	 */
10487 	ASSERT(sfhme->hme_tte.ll != 0);
10488 
10489 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10490 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10491 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10492 
10493 	return (hmeblkp);
10494 }
10495 
10496 /*
10497  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10498  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10499  * KM_SLEEP allocation.
10500  *
10501  * Return 0 on success, -1 otherwise.
10502  */
10503 static void
10504 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10505 {
10506 	struct tsb_info *tsbinfop, *next;
10507 	tsb_replace_rc_t rc;
10508 	boolean_t gotfirst = B_FALSE;
10509 
10510 	ASSERT(sfmmup != ksfmmup);
10511 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10512 
10513 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10514 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10515 	}
10516 
10517 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10518 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10519 	} else {
10520 		return;
10521 	}
10522 
10523 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10524 
10525 	/*
10526 	 * Loop over all tsbinfo's replacing them with ones that actually have
10527 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10528 	 */
10529 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10530 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10531 		next = tsbinfop->tsb_next;
10532 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10533 		    hatlockp, TSB_SWAPIN);
10534 		if (rc != TSB_SUCCESS) {
10535 			break;
10536 		}
10537 		gotfirst = B_TRUE;
10538 	}
10539 
10540 	switch (rc) {
10541 	case TSB_SUCCESS:
10542 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10543 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10544 		return;
10545 	case TSB_ALLOCFAIL:
10546 		break;
10547 	default:
10548 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10549 		    "%d", rc);
10550 	}
10551 
10552 	/*
10553 	 * In this case, we failed to get one of our TSBs.  If we failed to
10554 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10555 	 * and throw away the tsbinfos, starting where the allocation failed;
10556 	 * we can get by with just one TSB as long as we don't leave the
10557 	 * SWAPPED tsbinfo structures lying around.
10558 	 */
10559 	tsbinfop = sfmmup->sfmmu_tsb;
10560 	next = tsbinfop->tsb_next;
10561 	tsbinfop->tsb_next = NULL;
10562 
10563 	sfmmu_hat_exit(hatlockp);
10564 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10565 		next = tsbinfop->tsb_next;
10566 		sfmmu_tsbinfo_free(tsbinfop);
10567 	}
10568 	hatlockp = sfmmu_hat_enter(sfmmup);
10569 
10570 	/*
10571 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10572 	 * pages.
10573 	 */
10574 	if (!gotfirst) {
10575 		tsbinfop = sfmmup->sfmmu_tsb;
10576 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10577 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10578 		ASSERT(rc == TSB_SUCCESS);
10579 	}
10580 
10581 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10582 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10583 }
10584 
10585 /*
10586  * Handle exceptions for low level tsb_handler.
10587  *
10588  * There are many scenarios that could land us here:
10589  *
10590  * If the context is invalid we land here. The context can be invalid
10591  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10592  * perform a wrap around operation in order to allocate a new context.
10593  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10594  * TSBs configuration is changeing for this process and we are forced into
10595  * here to do a syncronization operation. If the context is valid we can
10596  * be here from window trap hanlder. In this case just call trap to handle
10597  * the fault.
10598  *
10599  * Note that the process will run in INVALID_CONTEXT before
10600  * faulting into here and subsequently loading the MMU registers
10601  * (including the TSB base register) associated with this process.
10602  * For this reason, the trap handlers must all test for
10603  * INVALID_CONTEXT before attempting to access any registers other
10604  * than the context registers.
10605  */
10606 void
10607 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10608 {
10609 	sfmmu_t *sfmmup;
10610 	uint_t ctxnum;
10611 	klwp_id_t lwp;
10612 	char lwp_save_state;
10613 	hatlock_t *hatlockp;
10614 	struct tsb_info *tsbinfop;
10615 
10616 	SFMMU_STAT(sf_tsb_exceptions);
10617 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10618 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10619 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10620 
10621 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10622 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10623 	/*
10624 	 * First, make sure we come out of here with a valid ctx,
10625 	 * since if we don't get one we'll simply loop on the
10626 	 * faulting instruction.
10627 	 *
10628 	 * If the ISM mappings are changing, the TSB is being relocated, or
10629 	 * the process is swapped out we serialize behind the controlling
10630 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10631 	 * Otherwise we synchronize with the context stealer or the thread
10632 	 * that required us to change out our MMU registers (such
10633 	 * as a thread changing out our TSB while we were running) by
10634 	 * locking the HAT and grabbing the rwlock on the context as a
10635 	 * reader temporarily.
10636 	 */
10637 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10638 	    ctxnum == INVALID_CONTEXT);
10639 
10640 	if (ctxnum == INVALID_CONTEXT) {
10641 		/*
10642 		 * Must set lwp state to LWP_SYS before
10643 		 * trying to acquire any adaptive lock
10644 		 */
10645 		lwp = ttolwp(curthread);
10646 		ASSERT(lwp);
10647 		lwp_save_state = lwp->lwp_state;
10648 		lwp->lwp_state = LWP_SYS;
10649 
10650 		hatlockp = sfmmu_hat_enter(sfmmup);
10651 retry:
10652 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10653 		    tsbinfop = tsbinfop->tsb_next) {
10654 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10655 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10656 				    HATLOCK_MUTEXP(hatlockp));
10657 				goto retry;
10658 			}
10659 		}
10660 
10661 		/*
10662 		 * Wait for ISM maps to be updated.
10663 		 */
10664 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10665 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10666 			    HATLOCK_MUTEXP(hatlockp));
10667 			goto retry;
10668 		}
10669 
10670 		/*
10671 		 * If we're swapping in, get TSB(s).  Note that we must do
10672 		 * this before we get a ctx or load the MMU state.  Once
10673 		 * we swap in we have to recheck to make sure the TSB(s) and
10674 		 * ISM mappings didn't change while we slept.
10675 		 */
10676 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10677 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10678 			goto retry;
10679 		}
10680 
10681 		sfmmu_get_ctx(sfmmup);
10682 
10683 		sfmmu_hat_exit(hatlockp);
10684 		/*
10685 		 * Must restore lwp_state if not calling
10686 		 * trap() for further processing. Restore
10687 		 * it anyway.
10688 		 */
10689 		lwp->lwp_state = lwp_save_state;
10690 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10691 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10692 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10693 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10694 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10695 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10696 			return;
10697 		}
10698 		if (traptype == T_DATA_PROT) {
10699 			traptype = T_DATA_MMU_MISS;
10700 		}
10701 	}
10702 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10703 }
10704 
10705 /*
10706  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10707  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10708  * rather than spinning to avoid send mondo timeouts with
10709  * interrupts enabled. When the lock is acquired it is immediately
10710  * released and we return back to sfmmu_vatopfn just after
10711  * the GET_TTE call.
10712  */
10713 void
10714 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10715 {
10716 	struct page	**pp;
10717 
10718 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10719 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10720 }
10721 
10722 /*
10723  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10724  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10725  * cross traps which cannot be handled while spinning in the
10726  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10727  * mutex, which is held by the holder of the suspend bit, and then
10728  * retry the trapped instruction after unwinding.
10729  */
10730 /*ARGSUSED*/
10731 void
10732 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10733 {
10734 	ASSERT(curthread != kreloc_thread);
10735 	mutex_enter(&kpr_suspendlock);
10736 	mutex_exit(&kpr_suspendlock);
10737 }
10738 
10739 /*
10740  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10741  * This routine may be called with all cpu's captured. Therefore, the
10742  * caller is responsible for holding all locks and disabling kernel
10743  * preemption.
10744  */
10745 /* ARGSUSED */
10746 static void
10747 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10748 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10749 {
10750 	cpuset_t 	cpuset;
10751 	caddr_t 	va;
10752 	ism_ment_t	*ment;
10753 	sfmmu_t		*sfmmup;
10754 #ifdef VAC
10755 	int 		vcolor;
10756 #endif
10757 	int		ttesz;
10758 
10759 	/*
10760 	 * Walk the ism_hat's mapping list and flush the page
10761 	 * from every hat sharing this ism_hat. This routine
10762 	 * may be called while all cpu's have been captured.
10763 	 * Therefore we can't attempt to grab any locks. For now
10764 	 * this means we will protect the ism mapping list under
10765 	 * a single lock which will be grabbed by the caller.
10766 	 * If hat_share/unshare scalibility becomes a performance
10767 	 * problem then we may need to re-think ism mapping list locking.
10768 	 */
10769 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10770 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10771 	addr = addr - ISMID_STARTADDR;
10772 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10773 
10774 		sfmmup = ment->iment_hat;
10775 
10776 		va = ment->iment_base_va;
10777 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10778 
10779 		/*
10780 		 * Flush TSB of ISM mappings.
10781 		 */
10782 		ttesz = get_hblk_ttesz(hmeblkp);
10783 		if (ttesz == TTE8K || ttesz == TTE4M) {
10784 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10785 		} else {
10786 			caddr_t sva = va;
10787 			caddr_t eva;
10788 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10789 			eva = sva + get_hblk_span(hmeblkp);
10790 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10791 		}
10792 
10793 		cpuset = sfmmup->sfmmu_cpusran;
10794 		CPUSET_AND(cpuset, cpu_ready_set);
10795 		CPUSET_DEL(cpuset, CPU->cpu_id);
10796 
10797 		SFMMU_XCALL_STATS(sfmmup);
10798 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10799 		    (uint64_t)sfmmup);
10800 
10801 		vtag_flushpage(va, (uint64_t)sfmmup);
10802 
10803 #ifdef VAC
10804 		/*
10805 		 * Flush D$
10806 		 * When flushing D$ we must flush all
10807 		 * cpu's. See sfmmu_cache_flush().
10808 		 */
10809 		if (cache_flush_flag == CACHE_FLUSH) {
10810 			cpuset = cpu_ready_set;
10811 			CPUSET_DEL(cpuset, CPU->cpu_id);
10812 
10813 			SFMMU_XCALL_STATS(sfmmup);
10814 			vcolor = addr_to_vcolor(va);
10815 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10816 			vac_flushpage(pfnum, vcolor);
10817 		}
10818 #endif	/* VAC */
10819 	}
10820 }
10821 
10822 /*
10823  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10824  * a particular virtual address and ctx.  If noflush is set we do not
10825  * flush the TLB/TSB.  This function may or may not be called with the
10826  * HAT lock held.
10827  */
10828 static void
10829 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10830 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10831 	int hat_lock_held)
10832 {
10833 #ifdef VAC
10834 	int vcolor;
10835 #endif
10836 	cpuset_t cpuset;
10837 	hatlock_t *hatlockp;
10838 
10839 #if defined(lint) && !defined(VAC)
10840 	pfnum = pfnum;
10841 	cpu_flag = cpu_flag;
10842 	cache_flush_flag = cache_flush_flag;
10843 #endif
10844 	/*
10845 	 * There is no longer a need to protect against ctx being
10846 	 * stolen here since we don't store the ctx in the TSB anymore.
10847 	 */
10848 #ifdef VAC
10849 	vcolor = addr_to_vcolor(addr);
10850 #endif
10851 
10852 	/*
10853 	 * We must hold the hat lock during the flush of TLB,
10854 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10855 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10856 	 * causing TLB demap routine to skip flush on that MMU.
10857 	 * If the context on a MMU has already been set to
10858 	 * INVALID_CONTEXT, we just get an extra flush on
10859 	 * that MMU.
10860 	 */
10861 	if (!hat_lock_held && !tlb_noflush)
10862 		hatlockp = sfmmu_hat_enter(sfmmup);
10863 
10864 	kpreempt_disable();
10865 	if (!tlb_noflush) {
10866 		/*
10867 		 * Flush the TSB and TLB.
10868 		 */
10869 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10870 
10871 		cpuset = sfmmup->sfmmu_cpusran;
10872 		CPUSET_AND(cpuset, cpu_ready_set);
10873 		CPUSET_DEL(cpuset, CPU->cpu_id);
10874 
10875 		SFMMU_XCALL_STATS(sfmmup);
10876 
10877 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10878 		    (uint64_t)sfmmup);
10879 
10880 		vtag_flushpage(addr, (uint64_t)sfmmup);
10881 	}
10882 
10883 	if (!hat_lock_held && !tlb_noflush)
10884 		sfmmu_hat_exit(hatlockp);
10885 
10886 #ifdef VAC
10887 	/*
10888 	 * Flush the D$
10889 	 *
10890 	 * Even if the ctx is stolen, we need to flush the
10891 	 * cache. Our ctx stealer only flushes the TLBs.
10892 	 */
10893 	if (cache_flush_flag == CACHE_FLUSH) {
10894 		if (cpu_flag & FLUSH_ALL_CPUS) {
10895 			cpuset = cpu_ready_set;
10896 		} else {
10897 			cpuset = sfmmup->sfmmu_cpusran;
10898 			CPUSET_AND(cpuset, cpu_ready_set);
10899 		}
10900 		CPUSET_DEL(cpuset, CPU->cpu_id);
10901 		SFMMU_XCALL_STATS(sfmmup);
10902 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10903 		vac_flushpage(pfnum, vcolor);
10904 	}
10905 #endif	/* VAC */
10906 	kpreempt_enable();
10907 }
10908 
10909 /*
10910  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10911  * address and ctx.  If noflush is set we do not currently do anything.
10912  * This function may or may not be called with the HAT lock held.
10913  */
10914 static void
10915 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10916 	int tlb_noflush, int hat_lock_held)
10917 {
10918 	cpuset_t cpuset;
10919 	hatlock_t *hatlockp;
10920 
10921 	/*
10922 	 * If the process is exiting we have nothing to do.
10923 	 */
10924 	if (tlb_noflush)
10925 		return;
10926 
10927 	/*
10928 	 * Flush TSB.
10929 	 */
10930 	if (!hat_lock_held)
10931 		hatlockp = sfmmu_hat_enter(sfmmup);
10932 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10933 
10934 	kpreempt_disable();
10935 
10936 	cpuset = sfmmup->sfmmu_cpusran;
10937 	CPUSET_AND(cpuset, cpu_ready_set);
10938 	CPUSET_DEL(cpuset, CPU->cpu_id);
10939 
10940 	SFMMU_XCALL_STATS(sfmmup);
10941 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10942 
10943 	vtag_flushpage(addr, (uint64_t)sfmmup);
10944 
10945 	if (!hat_lock_held)
10946 		sfmmu_hat_exit(hatlockp);
10947 
10948 	kpreempt_enable();
10949 
10950 }
10951 
10952 /*
10953  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10954  * call handler that can flush a range of pages to save on xcalls.
10955  */
10956 static int sfmmu_xcall_save;
10957 
10958 static void
10959 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10960 {
10961 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10962 	hatlock_t *hatlockp;
10963 	cpuset_t cpuset;
10964 	uint64_t sfmmu_pgcnt;
10965 	pgcnt_t pgcnt = 0;
10966 	int pgunload = 0;
10967 	int dirtypg = 0;
10968 	caddr_t addr = dmrp->dmr_addr;
10969 	caddr_t eaddr;
10970 	uint64_t bitvec = dmrp->dmr_bitvec;
10971 
10972 	ASSERT(bitvec & 1);
10973 
10974 	/*
10975 	 * Flush TSB and calculate number of pages to flush.
10976 	 */
10977 	while (bitvec != 0) {
10978 		dirtypg = 0;
10979 		/*
10980 		 * Find the first page to flush and then count how many
10981 		 * pages there are after it that also need to be flushed.
10982 		 * This way the number of TSB flushes is minimized.
10983 		 */
10984 		while ((bitvec & 1) == 0) {
10985 			pgcnt++;
10986 			addr += MMU_PAGESIZE;
10987 			bitvec >>= 1;
10988 		}
10989 		while (bitvec & 1) {
10990 			dirtypg++;
10991 			bitvec >>= 1;
10992 		}
10993 		eaddr = addr + ptob(dirtypg);
10994 		hatlockp = sfmmu_hat_enter(sfmmup);
10995 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
10996 		sfmmu_hat_exit(hatlockp);
10997 		pgunload += dirtypg;
10998 		addr = eaddr;
10999 		pgcnt += dirtypg;
11000 	}
11001 
11002 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11003 	if (sfmmup->sfmmu_free == 0) {
11004 		addr = dmrp->dmr_addr;
11005 		bitvec = dmrp->dmr_bitvec;
11006 
11007 		/*
11008 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
11009 		 * as it will be used to pack argument for xt_some
11010 		 */
11011 		ASSERT((pgcnt > 0) &&
11012 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
11013 
11014 		/*
11015 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
11016 		 * the low 6 bits of sfmmup. This is doable since pgcnt
11017 		 * always >= 1.
11018 		 */
11019 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
11020 		sfmmu_pgcnt = (uint64_t)sfmmup |
11021 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
11022 
11023 		/*
11024 		 * We must hold the hat lock during the flush of TLB,
11025 		 * to avoid a race with sfmmu_invalidate_ctx(), where
11026 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11027 		 * causing TLB demap routine to skip flush on that MMU.
11028 		 * If the context on a MMU has already been set to
11029 		 * INVALID_CONTEXT, we just get an extra flush on
11030 		 * that MMU.
11031 		 */
11032 		hatlockp = sfmmu_hat_enter(sfmmup);
11033 		kpreempt_disable();
11034 
11035 		cpuset = sfmmup->sfmmu_cpusran;
11036 		CPUSET_AND(cpuset, cpu_ready_set);
11037 		CPUSET_DEL(cpuset, CPU->cpu_id);
11038 
11039 		SFMMU_XCALL_STATS(sfmmup);
11040 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11041 		    sfmmu_pgcnt);
11042 
11043 		for (; bitvec != 0; bitvec >>= 1) {
11044 			if (bitvec & 1)
11045 				vtag_flushpage(addr, (uint64_t)sfmmup);
11046 			addr += MMU_PAGESIZE;
11047 		}
11048 		kpreempt_enable();
11049 		sfmmu_hat_exit(hatlockp);
11050 
11051 		sfmmu_xcall_save += (pgunload-1);
11052 	}
11053 	dmrp->dmr_bitvec = 0;
11054 }
11055 
11056 /*
11057  * In cases where we need to synchronize with TLB/TSB miss trap
11058  * handlers, _and_ need to flush the TLB, it's a lot easier to
11059  * throw away the context from the process than to do a
11060  * special song and dance to keep things consistent for the
11061  * handlers.
11062  *
11063  * Since the process suddenly ends up without a context and our caller
11064  * holds the hat lock, threads that fault after this function is called
11065  * will pile up on the lock.  We can then do whatever we need to
11066  * atomically from the context of the caller.  The first blocked thread
11067  * to resume executing will get the process a new context, and the
11068  * process will resume executing.
11069  *
11070  * One added advantage of this approach is that on MMUs that
11071  * support a "flush all" operation, we will delay the flush until
11072  * cnum wrap-around, and then flush the TLB one time.  This
11073  * is rather rare, so it's a lot less expensive than making 8000
11074  * x-calls to flush the TLB 8000 times.
11075  *
11076  * A per-process (PP) lock is used to synchronize ctx allocations in
11077  * resume() and ctx invalidations here.
11078  */
11079 static void
11080 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11081 {
11082 	cpuset_t cpuset;
11083 	int cnum, currcnum;
11084 	mmu_ctx_t *mmu_ctxp;
11085 	int i;
11086 	uint_t pstate_save;
11087 
11088 	SFMMU_STAT(sf_ctx_inv);
11089 
11090 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11091 	ASSERT(sfmmup != ksfmmup);
11092 
11093 	kpreempt_disable();
11094 
11095 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11096 	ASSERT(mmu_ctxp);
11097 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11098 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11099 
11100 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11101 
11102 	pstate_save = sfmmu_disable_intrs();
11103 
11104 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11105 	/* set HAT cnum invalid across all context domains. */
11106 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11107 
11108 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11109 		if (cnum == INVALID_CONTEXT) {
11110 			continue;
11111 		}
11112 
11113 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11114 	}
11115 	membar_enter();	/* make sure globally visible to all CPUs */
11116 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11117 
11118 	sfmmu_enable_intrs(pstate_save);
11119 
11120 	cpuset = sfmmup->sfmmu_cpusran;
11121 	CPUSET_DEL(cpuset, CPU->cpu_id);
11122 	CPUSET_AND(cpuset, cpu_ready_set);
11123 	if (!CPUSET_ISNULL(cpuset)) {
11124 		SFMMU_XCALL_STATS(sfmmup);
11125 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11126 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11127 		xt_sync(cpuset);
11128 		SFMMU_STAT(sf_tsb_raise_exception);
11129 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11130 	}
11131 
11132 	/*
11133 	 * If the hat to-be-invalidated is the same as the current
11134 	 * process on local CPU we need to invalidate
11135 	 * this CPU context as well.
11136 	 */
11137 	if ((sfmmu_getctx_sec() == currcnum) &&
11138 	    (currcnum != INVALID_CONTEXT)) {
11139 		sfmmu_setctx_sec(INVALID_CONTEXT);
11140 		sfmmu_clear_utsbinfo();
11141 	}
11142 
11143 	kpreempt_enable();
11144 
11145 	/*
11146 	 * we hold the hat lock, so nobody should allocate a context
11147 	 * for us yet
11148 	 */
11149 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11150 }
11151 
11152 #ifdef VAC
11153 /*
11154  * We need to flush the cache in all cpus.  It is possible that
11155  * a process referenced a page as cacheable but has sinced exited
11156  * and cleared the mapping list.  We still to flush it but have no
11157  * state so all cpus is the only alternative.
11158  */
11159 void
11160 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11161 {
11162 	cpuset_t cpuset;
11163 
11164 	kpreempt_disable();
11165 	cpuset = cpu_ready_set;
11166 	CPUSET_DEL(cpuset, CPU->cpu_id);
11167 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11168 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11169 	xt_sync(cpuset);
11170 	vac_flushpage(pfnum, vcolor);
11171 	kpreempt_enable();
11172 }
11173 
11174 void
11175 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11176 {
11177 	cpuset_t cpuset;
11178 
11179 	ASSERT(vcolor >= 0);
11180 
11181 	kpreempt_disable();
11182 	cpuset = cpu_ready_set;
11183 	CPUSET_DEL(cpuset, CPU->cpu_id);
11184 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11185 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11186 	xt_sync(cpuset);
11187 	vac_flushcolor(vcolor, pfnum);
11188 	kpreempt_enable();
11189 }
11190 #endif	/* VAC */
11191 
11192 /*
11193  * We need to prevent processes from accessing the TSB using a cached physical
11194  * address.  It's alright if they try to access the TSB via virtual address
11195  * since they will just fault on that virtual address once the mapping has
11196  * been suspended.
11197  */
11198 #pragma weak sendmondo_in_recover
11199 
11200 /* ARGSUSED */
11201 static int
11202 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11203 {
11204 	hatlock_t *hatlockp;
11205 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11206 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11207 	extern uint32_t sendmondo_in_recover;
11208 
11209 	if (flags != HAT_PRESUSPEND)
11210 		return (0);
11211 
11212 	hatlockp = sfmmu_hat_enter(sfmmup);
11213 
11214 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11215 
11216 	/*
11217 	 * For Cheetah+ Erratum 25:
11218 	 * Wait for any active recovery to finish.  We can't risk
11219 	 * relocating the TSB of the thread running mondo_recover_proc()
11220 	 * since, if we did that, we would deadlock.  The scenario we are
11221 	 * trying to avoid is as follows:
11222 	 *
11223 	 * THIS CPU			RECOVER CPU
11224 	 * --------			-----------
11225 	 *				Begins recovery, walking through TSB
11226 	 * hat_pagesuspend() TSB TTE
11227 	 *				TLB miss on TSB TTE, spins at TL1
11228 	 * xt_sync()
11229 	 *	send_mondo_timeout()
11230 	 *	mondo_recover_proc()
11231 	 *	((deadlocked))
11232 	 *
11233 	 * The second half of the workaround is that mondo_recover_proc()
11234 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11235 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11236 	 * and hence avoiding the TLB miss that could result in a deadlock.
11237 	 */
11238 	if (&sendmondo_in_recover) {
11239 		membar_enter();	/* make sure RELOC flag visible */
11240 		while (sendmondo_in_recover) {
11241 			drv_usecwait(1);
11242 			membar_consumer();
11243 		}
11244 	}
11245 
11246 	sfmmu_invalidate_ctx(sfmmup);
11247 	sfmmu_hat_exit(hatlockp);
11248 
11249 	return (0);
11250 }
11251 
11252 /* ARGSUSED */
11253 static int
11254 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11255 	void *tsbinfo, pfn_t newpfn)
11256 {
11257 	hatlock_t *hatlockp;
11258 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11259 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11260 
11261 	if (flags != HAT_POSTUNSUSPEND)
11262 		return (0);
11263 
11264 	hatlockp = sfmmu_hat_enter(sfmmup);
11265 
11266 	SFMMU_STAT(sf_tsb_reloc);
11267 
11268 	/*
11269 	 * The process may have swapped out while we were relocating one
11270 	 * of its TSBs.  If so, don't bother doing the setup since the
11271 	 * process can't be using the memory anymore.
11272 	 */
11273 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11274 		ASSERT(va == tsbinfop->tsb_va);
11275 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11276 		sfmmu_setup_tsbinfo(sfmmup);
11277 
11278 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11279 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11280 			    TSB_BYTES(tsbinfop->tsb_szc));
11281 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11282 		}
11283 	}
11284 
11285 	membar_exit();
11286 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11287 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11288 
11289 	sfmmu_hat_exit(hatlockp);
11290 
11291 	return (0);
11292 }
11293 
11294 /*
11295  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11296  * allocate a TSB here, depending on the flags passed in.
11297  */
11298 static int
11299 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11300 	uint_t flags, sfmmu_t *sfmmup)
11301 {
11302 	int err;
11303 
11304 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11305 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11306 
11307 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11308 	    tsb_szc, flags, sfmmup)) != 0) {
11309 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11310 		SFMMU_STAT(sf_tsb_allocfail);
11311 		*tsbinfopp = NULL;
11312 		return (err);
11313 	}
11314 	SFMMU_STAT(sf_tsb_alloc);
11315 
11316 	/*
11317 	 * Bump the TSB size counters for this TSB size.
11318 	 */
11319 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11320 	return (0);
11321 }
11322 
11323 static void
11324 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11325 {
11326 	caddr_t tsbva = tsbinfo->tsb_va;
11327 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11328 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11329 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11330 
11331 	/*
11332 	 * If we allocated this TSB from relocatable kernel memory, then we
11333 	 * need to uninstall the callback handler.
11334 	 */
11335 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11336 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11337 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11338 		page_t **ppl;
11339 		int ret;
11340 
11341 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11342 		ASSERT(ret == 0);
11343 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11344 		    0, NULL);
11345 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11346 	}
11347 
11348 	if (kmem_cachep != NULL) {
11349 		kmem_cache_free(kmem_cachep, tsbva);
11350 	} else {
11351 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11352 	}
11353 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11354 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11355 }
11356 
11357 static void
11358 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11359 {
11360 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11361 		sfmmu_tsb_free(tsbinfo);
11362 	}
11363 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11364 
11365 }
11366 
11367 /*
11368  * Setup all the references to physical memory for this tsbinfo.
11369  * The underlying page(s) must be locked.
11370  */
11371 static void
11372 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11373 {
11374 	ASSERT(pfn != PFN_INVALID);
11375 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11376 
11377 #ifndef sun4v
11378 	if (tsbinfo->tsb_szc == 0) {
11379 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11380 		    PROT_WRITE|PROT_READ, TTE8K);
11381 	} else {
11382 		/*
11383 		 * Round down PA and use a large mapping; the handlers will
11384 		 * compute the TSB pointer at the correct offset into the
11385 		 * big virtual page.  NOTE: this assumes all TSBs larger
11386 		 * than 8K must come from physically contiguous slabs of
11387 		 * size tsb_slab_size.
11388 		 */
11389 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11390 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11391 	}
11392 	tsbinfo->tsb_pa = ptob(pfn);
11393 
11394 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11395 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11396 
11397 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11398 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11399 #else /* sun4v */
11400 	tsbinfo->tsb_pa = ptob(pfn);
11401 #endif /* sun4v */
11402 }
11403 
11404 
11405 /*
11406  * Returns zero on success, ENOMEM if over the high water mark,
11407  * or EAGAIN if the caller needs to retry with a smaller TSB
11408  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11409  *
11410  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11411  * is specified and the TSB requested is PAGESIZE, though it
11412  * may sleep waiting for memory if sufficient memory is not
11413  * available.
11414  */
11415 static int
11416 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11417     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11418 {
11419 	caddr_t vaddr = NULL;
11420 	caddr_t slab_vaddr;
11421 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11422 	int tsbbytes = TSB_BYTES(tsbcode);
11423 	int lowmem = 0;
11424 	struct kmem_cache *kmem_cachep = NULL;
11425 	vmem_t *vmp = NULL;
11426 	lgrp_id_t lgrpid = LGRP_NONE;
11427 	pfn_t pfn;
11428 	uint_t cbflags = HAC_SLEEP;
11429 	page_t **pplist;
11430 	int ret;
11431 
11432 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11433 		flags |= TSB_ALLOC;
11434 
11435 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11436 
11437 	tsbinfo->tsb_sfmmu = sfmmup;
11438 
11439 	/*
11440 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11441 	 * return.
11442 	 */
11443 	if ((flags & TSB_ALLOC) == 0) {
11444 		tsbinfo->tsb_szc = tsbcode;
11445 		tsbinfo->tsb_ttesz_mask = tteszmask;
11446 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11447 		tsbinfo->tsb_pa = -1;
11448 		tsbinfo->tsb_tte.ll = 0;
11449 		tsbinfo->tsb_next = NULL;
11450 		tsbinfo->tsb_flags = TSB_SWAPPED;
11451 		tsbinfo->tsb_cache = NULL;
11452 		tsbinfo->tsb_vmp = NULL;
11453 		return (0);
11454 	}
11455 
11456 #ifdef DEBUG
11457 	/*
11458 	 * For debugging:
11459 	 * Randomly force allocation failures every tsb_alloc_mtbf
11460 	 * tries if TSB_FORCEALLOC is not specified.  This will
11461 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11462 	 * it is even, to allow testing of both failure paths...
11463 	 */
11464 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11465 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11466 		tsb_alloc_count = 0;
11467 		tsb_alloc_fail_mtbf++;
11468 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11469 	}
11470 #endif	/* DEBUG */
11471 
11472 	/*
11473 	 * Enforce high water mark if we are not doing a forced allocation
11474 	 * and are not shrinking a process' TSB.
11475 	 */
11476 	if ((flags & TSB_SHRINK) == 0 &&
11477 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11478 		if ((flags & TSB_FORCEALLOC) == 0)
11479 			return (ENOMEM);
11480 		lowmem = 1;
11481 	}
11482 
11483 	/*
11484 	 * Allocate from the correct location based upon the size of the TSB
11485 	 * compared to the base page size, and what memory conditions dictate.
11486 	 * Note we always do nonblocking allocations from the TSB arena since
11487 	 * we don't want memory fragmentation to cause processes to block
11488 	 * indefinitely waiting for memory; until the kernel algorithms that
11489 	 * coalesce large pages are improved this is our best option.
11490 	 *
11491 	 * Algorithm:
11492 	 *	If allocating a "large" TSB (>8K), allocate from the
11493 	 *		appropriate kmem_tsb_default_arena vmem arena
11494 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11495 	 *	tsb_forceheap is set
11496 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11497 	 *		KM_SLEEP (never fails)
11498 	 *	else
11499 	 *		Allocate from appropriate sfmmu_tsb_cache with
11500 	 *		KM_NOSLEEP
11501 	 *	endif
11502 	 */
11503 	if (tsb_lgrp_affinity)
11504 		lgrpid = lgrp_home_id(curthread);
11505 	if (lgrpid == LGRP_NONE)
11506 		lgrpid = 0;	/* use lgrp of boot CPU */
11507 
11508 	if (tsbbytes > MMU_PAGESIZE) {
11509 		vmp = kmem_tsb_default_arena[lgrpid];
11510 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11511 		    NULL, NULL, VM_NOSLEEP);
11512 #ifdef	DEBUG
11513 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11514 #else	/* !DEBUG */
11515 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11516 #endif	/* DEBUG */
11517 		kmem_cachep = sfmmu_tsb8k_cache;
11518 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11519 		ASSERT(vaddr != NULL);
11520 	} else {
11521 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11522 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11523 	}
11524 
11525 	tsbinfo->tsb_cache = kmem_cachep;
11526 	tsbinfo->tsb_vmp = vmp;
11527 
11528 	if (vaddr == NULL) {
11529 		return (EAGAIN);
11530 	}
11531 
11532 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11533 	kmem_cachep = tsbinfo->tsb_cache;
11534 
11535 	/*
11536 	 * If we are allocating from outside the cage, then we need to
11537 	 * register a relocation callback handler.  Note that for now
11538 	 * since pseudo mappings always hang off of the slab's root page,
11539 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11540 	 * hacky but it is good for performance.
11541 	 */
11542 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11543 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11544 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11545 		ASSERT(ret == 0);
11546 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11547 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11548 
11549 		/*
11550 		 * Need to free up resources if we could not successfully
11551 		 * add the callback function and return an error condition.
11552 		 */
11553 		if (ret != 0) {
11554 			if (kmem_cachep) {
11555 				kmem_cache_free(kmem_cachep, vaddr);
11556 			} else {
11557 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11558 			}
11559 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11560 			    S_WRITE);
11561 			return (EAGAIN);
11562 		}
11563 	} else {
11564 		/*
11565 		 * Since allocation of 8K TSBs from heap is rare and occurs
11566 		 * during memory pressure we allocate them from permanent
11567 		 * memory rather than using callbacks to get the PFN.
11568 		 */
11569 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11570 	}
11571 
11572 	tsbinfo->tsb_va = vaddr;
11573 	tsbinfo->tsb_szc = tsbcode;
11574 	tsbinfo->tsb_ttesz_mask = tteszmask;
11575 	tsbinfo->tsb_next = NULL;
11576 	tsbinfo->tsb_flags = 0;
11577 
11578 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11579 
11580 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11581 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11582 	}
11583 
11584 	sfmmu_inv_tsb(vaddr, tsbbytes);
11585 	return (0);
11586 }
11587 
11588 /*
11589  * Initialize per cpu tsb and per cpu tsbmiss_area
11590  */
11591 void
11592 sfmmu_init_tsbs(void)
11593 {
11594 	int i;
11595 	struct tsbmiss	*tsbmissp;
11596 	struct kpmtsbm	*kpmtsbmp;
11597 #ifndef sun4v
11598 	extern int	dcache_line_mask;
11599 #endif /* sun4v */
11600 	extern uint_t	vac_colors;
11601 
11602 	/*
11603 	 * Init. tsb miss area.
11604 	 */
11605 	tsbmissp = tsbmiss_area;
11606 
11607 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11608 		/*
11609 		 * initialize the tsbmiss area.
11610 		 * Do this for all possible CPUs as some may be added
11611 		 * while the system is running. There is no cost to this.
11612 		 */
11613 		tsbmissp->ksfmmup = ksfmmup;
11614 #ifndef sun4v
11615 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11616 #endif /* sun4v */
11617 		tsbmissp->khashstart =
11618 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11619 		tsbmissp->uhashstart =
11620 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11621 		tsbmissp->khashsz = khmehash_num;
11622 		tsbmissp->uhashsz = uhmehash_num;
11623 	}
11624 
11625 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11626 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11627 
11628 	if (kpm_enable == 0)
11629 		return;
11630 
11631 	/* -- Begin KPM specific init -- */
11632 
11633 	if (kpm_smallpages) {
11634 		/*
11635 		 * If we're using base pagesize pages for seg_kpm
11636 		 * mappings, we use the kernel TSB since we can't afford
11637 		 * to allocate a second huge TSB for these mappings.
11638 		 */
11639 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11640 		kpm_tsbsz = ktsb_szcode;
11641 		kpmsm_tsbbase = kpm_tsbbase;
11642 		kpmsm_tsbsz = kpm_tsbsz;
11643 	} else {
11644 		/*
11645 		 * In VAC conflict case, just put the entries in the
11646 		 * kernel 8K indexed TSB for now so we can find them.
11647 		 * This could really be changed in the future if we feel
11648 		 * the need...
11649 		 */
11650 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11651 		kpmsm_tsbsz = ktsb_szcode;
11652 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11653 		kpm_tsbsz = ktsb4m_szcode;
11654 	}
11655 
11656 	kpmtsbmp = kpmtsbm_area;
11657 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11658 		/*
11659 		 * Initialize the kpmtsbm area.
11660 		 * Do this for all possible CPUs as some may be added
11661 		 * while the system is running. There is no cost to this.
11662 		 */
11663 		kpmtsbmp->vbase = kpm_vbase;
11664 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11665 		kpmtsbmp->sz_shift = kpm_size_shift;
11666 		kpmtsbmp->kpmp_shift = kpmp_shift;
11667 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11668 		if (kpm_smallpages == 0) {
11669 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11670 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11671 		} else {
11672 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11673 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11674 		}
11675 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11676 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11677 #ifdef	DEBUG
11678 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11679 #endif	/* DEBUG */
11680 		if (ktsb_phys)
11681 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11682 	}
11683 
11684 	/* -- End KPM specific init -- */
11685 }
11686 
11687 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11688 struct tsb_info ktsb_info[2];
11689 
11690 /*
11691  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11692  */
11693 void
11694 sfmmu_init_ktsbinfo()
11695 {
11696 	ASSERT(ksfmmup != NULL);
11697 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11698 	/*
11699 	 * Allocate tsbinfos for kernel and copy in data
11700 	 * to make debug easier and sun4v setup easier.
11701 	 */
11702 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11703 	ktsb_info[0].tsb_szc = ktsb_szcode;
11704 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11705 	ktsb_info[0].tsb_va = ktsb_base;
11706 	ktsb_info[0].tsb_pa = ktsb_pbase;
11707 	ktsb_info[0].tsb_flags = 0;
11708 	ktsb_info[0].tsb_tte.ll = 0;
11709 	ktsb_info[0].tsb_cache = NULL;
11710 
11711 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11712 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11713 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11714 	ktsb_info[1].tsb_va = ktsb4m_base;
11715 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11716 	ktsb_info[1].tsb_flags = 0;
11717 	ktsb_info[1].tsb_tte.ll = 0;
11718 	ktsb_info[1].tsb_cache = NULL;
11719 
11720 	/* Link them into ksfmmup. */
11721 	ktsb_info[0].tsb_next = &ktsb_info[1];
11722 	ktsb_info[1].tsb_next = NULL;
11723 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11724 
11725 	sfmmu_setup_tsbinfo(ksfmmup);
11726 }
11727 
11728 /*
11729  * Cache the last value returned from va_to_pa().  If the VA specified
11730  * in the current call to cached_va_to_pa() maps to the same Page (as the
11731  * previous call to cached_va_to_pa()), then compute the PA using
11732  * cached info, else call va_to_pa().
11733  *
11734  * Note: this function is neither MT-safe nor consistent in the presence
11735  * of multiple, interleaved threads.  This function was created to enable
11736  * an optimization used during boot (at a point when there's only one thread
11737  * executing on the "boot CPU", and before startup_vm() has been called).
11738  */
11739 static uint64_t
11740 cached_va_to_pa(void *vaddr)
11741 {
11742 	static uint64_t prev_vaddr_base = 0;
11743 	static uint64_t prev_pfn = 0;
11744 
11745 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11746 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11747 	} else {
11748 		uint64_t pa = va_to_pa(vaddr);
11749 
11750 		if (pa != ((uint64_t)-1)) {
11751 			/*
11752 			 * Computed physical address is valid.  Cache its
11753 			 * related info for the next cached_va_to_pa() call.
11754 			 */
11755 			prev_pfn = pa & MMU_PAGEMASK;
11756 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11757 		}
11758 
11759 		return (pa);
11760 	}
11761 }
11762 
11763 /*
11764  * Carve up our nucleus hblk region.  We may allocate more hblks than
11765  * asked due to rounding errors but we are guaranteed to have at least
11766  * enough space to allocate the requested number of hblk8's and hblk1's.
11767  */
11768 void
11769 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11770 {
11771 	struct hme_blk *hmeblkp;
11772 	size_t hme8blk_sz, hme1blk_sz;
11773 	size_t i;
11774 	size_t hblk8_bound;
11775 	ulong_t j = 0, k = 0;
11776 
11777 	ASSERT(addr != NULL && size != 0);
11778 
11779 	/* Need to use proper structure alignment */
11780 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11781 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11782 
11783 	nucleus_hblk8.list = (void *)addr;
11784 	nucleus_hblk8.index = 0;
11785 
11786 	/*
11787 	 * Use as much memory as possible for hblk8's since we
11788 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11789 	 * We need to hold back enough space for the hblk1's which
11790 	 * we'll allocate next.
11791 	 */
11792 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11793 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11794 		hmeblkp = (struct hme_blk *)addr;
11795 		addr += hme8blk_sz;
11796 		hmeblkp->hblk_nuc_bit = 1;
11797 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11798 	}
11799 	nucleus_hblk8.len = j;
11800 	ASSERT(j >= nhblk8);
11801 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11802 
11803 	nucleus_hblk1.list = (void *)addr;
11804 	nucleus_hblk1.index = 0;
11805 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11806 		hmeblkp = (struct hme_blk *)addr;
11807 		addr += hme1blk_sz;
11808 		hmeblkp->hblk_nuc_bit = 1;
11809 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11810 	}
11811 	ASSERT(k >= nhblk1);
11812 	nucleus_hblk1.len = k;
11813 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11814 }
11815 
11816 /*
11817  * This function is currently not supported on this platform. For what
11818  * it's supposed to do, see hat.c and hat_srmmu.c
11819  */
11820 /* ARGSUSED */
11821 faultcode_t
11822 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11823     uint_t flags)
11824 {
11825 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11826 	return (FC_NOSUPPORT);
11827 }
11828 
11829 /*
11830  * Searchs the mapping list of the page for a mapping of the same size. If not
11831  * found the corresponding bit is cleared in the p_index field. When large
11832  * pages are more prevalent in the system, we can maintain the mapping list
11833  * in order and we don't have to traverse the list each time. Just check the
11834  * next and prev entries, and if both are of different size, we clear the bit.
11835  */
11836 static void
11837 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11838 {
11839 	struct sf_hment *sfhmep;
11840 	struct hme_blk *hmeblkp;
11841 	int	index;
11842 	pgcnt_t	npgs;
11843 
11844 	ASSERT(ttesz > TTE8K);
11845 
11846 	ASSERT(sfmmu_mlist_held(pp));
11847 
11848 	ASSERT(PP_ISMAPPED_LARGE(pp));
11849 
11850 	/*
11851 	 * Traverse mapping list looking for another mapping of same size.
11852 	 * since we only want to clear index field if all mappings of
11853 	 * that size are gone.
11854 	 */
11855 
11856 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11857 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11858 		if (hmeblkp->hblk_xhat_bit)
11859 			continue;
11860 		if (hme_size(sfhmep) == ttesz) {
11861 			/*
11862 			 * another mapping of the same size. don't clear index.
11863 			 */
11864 			return;
11865 		}
11866 	}
11867 
11868 	/*
11869 	 * Clear the p_index bit for large page.
11870 	 */
11871 	index = PAGESZ_TO_INDEX(ttesz);
11872 	npgs = TTEPAGES(ttesz);
11873 	while (npgs-- > 0) {
11874 		ASSERT(pp->p_index & index);
11875 		pp->p_index &= ~index;
11876 		pp = PP_PAGENEXT(pp);
11877 	}
11878 }
11879 
11880 /*
11881  * return supported features
11882  */
11883 /* ARGSUSED */
11884 int
11885 hat_supported(enum hat_features feature, void *arg)
11886 {
11887 	switch (feature) {
11888 	case    HAT_SHARED_PT:
11889 	case	HAT_DYNAMIC_ISM_UNMAP:
11890 	case	HAT_VMODSORT:
11891 		return (1);
11892 	default:
11893 		return (0);
11894 	}
11895 }
11896 
11897 void
11898 hat_enter(struct hat *hat)
11899 {
11900 	hatlock_t	*hatlockp;
11901 
11902 	if (hat != ksfmmup) {
11903 		hatlockp = TSB_HASH(hat);
11904 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11905 	}
11906 }
11907 
11908 void
11909 hat_exit(struct hat *hat)
11910 {
11911 	hatlock_t	*hatlockp;
11912 
11913 	if (hat != ksfmmup) {
11914 		hatlockp = TSB_HASH(hat);
11915 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11916 	}
11917 }
11918 
11919 /*ARGSUSED*/
11920 void
11921 hat_reserve(struct as *as, caddr_t addr, size_t len)
11922 {
11923 }
11924 
11925 static void
11926 hat_kstat_init(void)
11927 {
11928 	kstat_t *ksp;
11929 
11930 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11931 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11932 		KSTAT_FLAG_VIRTUAL);
11933 	if (ksp) {
11934 		ksp->ks_data = (void *) &sfmmu_global_stat;
11935 		kstat_install(ksp);
11936 	}
11937 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11938 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11939 		KSTAT_FLAG_VIRTUAL);
11940 	if (ksp) {
11941 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11942 		kstat_install(ksp);
11943 	}
11944 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11945 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11946 		KSTAT_FLAG_WRITABLE);
11947 	if (ksp) {
11948 		ksp->ks_update = sfmmu_kstat_percpu_update;
11949 		kstat_install(ksp);
11950 	}
11951 }
11952 
11953 /* ARGSUSED */
11954 static int
11955 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11956 {
11957 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11958 	struct tsbmiss *tsbm = tsbmiss_area;
11959 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11960 	int i;
11961 
11962 	ASSERT(cpu_kstat);
11963 	if (rw == KSTAT_READ) {
11964 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11965 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11966 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11967 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11968 				tsbm->uprot_traps;
11969 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11970 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11971 
11972 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11973 				cpu_kstat->sf_tsb_hits =
11974 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11975 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11976 				kpmtsbm->kpm_tsb_misses);
11977 			} else {
11978 				cpu_kstat->sf_tsb_hits = 0;
11979 			}
11980 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11981 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11982 		}
11983 	} else {
11984 		/* KSTAT_WRITE is used to clear stats */
11985 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11986 			tsbm->itlb_misses = 0;
11987 			tsbm->dtlb_misses = 0;
11988 			tsbm->utsb_misses = 0;
11989 			tsbm->ktsb_misses = 0;
11990 			tsbm->uprot_traps = 0;
11991 			tsbm->kprot_traps = 0;
11992 			kpmtsbm->kpm_dtlb_misses = 0;
11993 			kpmtsbm->kpm_tsb_misses = 0;
11994 		}
11995 	}
11996 	return (0);
11997 }
11998 
11999 #ifdef	DEBUG
12000 
12001 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12002 
12003 /*
12004  * A tte checker. *orig_old is the value we read before cas.
12005  *	*cur is the value returned by cas.
12006  *	*new is the desired value when we do the cas.
12007  *
12008  *	*hmeblkp is currently unused.
12009  */
12010 
12011 /* ARGSUSED */
12012 void
12013 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12014 {
12015 	pfn_t i, j, k;
12016 	int cpuid = CPU->cpu_id;
12017 
12018 	gorig[cpuid] = orig_old;
12019 	gcur[cpuid] = cur;
12020 	gnew[cpuid] = new;
12021 
12022 #ifdef lint
12023 	hmeblkp = hmeblkp;
12024 #endif
12025 
12026 	if (TTE_IS_VALID(orig_old)) {
12027 		if (TTE_IS_VALID(cur)) {
12028 			i = TTE_TO_TTEPFN(orig_old);
12029 			j = TTE_TO_TTEPFN(cur);
12030 			k = TTE_TO_TTEPFN(new);
12031 			if (i != j) {
12032 				/* remap error? */
12033 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12034 			}
12035 
12036 			if (i != k) {
12037 				/* remap error? */
12038 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12039 			}
12040 		} else {
12041 			if (TTE_IS_VALID(new)) {
12042 				panic("chk_tte: invalid cur? ");
12043 			}
12044 
12045 			i = TTE_TO_TTEPFN(orig_old);
12046 			k = TTE_TO_TTEPFN(new);
12047 			if (i != k) {
12048 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12049 			}
12050 		}
12051 	} else {
12052 		if (TTE_IS_VALID(cur)) {
12053 			j = TTE_TO_TTEPFN(cur);
12054 			if (TTE_IS_VALID(new)) {
12055 				k = TTE_TO_TTEPFN(new);
12056 				if (j != k) {
12057 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12058 					    j, k);
12059 				}
12060 			} else {
12061 				panic("chk_tte: why here?");
12062 			}
12063 		} else {
12064 			if (!TTE_IS_VALID(new)) {
12065 				panic("chk_tte: why here2 ?");
12066 			}
12067 		}
12068 	}
12069 }
12070 
12071 #endif /* DEBUG */
12072 
12073 extern void prefetch_tsbe_read(struct tsbe *);
12074 extern void prefetch_tsbe_write(struct tsbe *);
12075 
12076 
12077 /*
12078  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12079  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12080  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12081  * prefetch to make the most utilization of the prefetch capability.
12082  */
12083 #define	TSBE_PREFETCH_STRIDE (7)
12084 
12085 void
12086 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12087 {
12088 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12089 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12090 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12091 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12092 	struct tsbe *old;
12093 	struct tsbe *new;
12094 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12095 	uint64_t va;
12096 	int new_offset;
12097 	int i;
12098 	int vpshift;
12099 	int last_prefetch;
12100 
12101 	if (old_bytes == new_bytes) {
12102 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12103 	} else {
12104 
12105 		/*
12106 		 * A TSBE is 16 bytes which means there are four TSBE's per
12107 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12108 		 */
12109 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12110 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12111 		for (i = 0; i < old_entries; i++, old++) {
12112 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12113 				prefetch_tsbe_read(old);
12114 			if (!old->tte_tag.tag_invalid) {
12115 				/*
12116 				 * We have a valid TTE to remap.  Check the
12117 				 * size.  We won't remap 64K or 512K TTEs
12118 				 * because they span more than one TSB entry
12119 				 * and are indexed using an 8K virt. page.
12120 				 * Ditto for 32M and 256M TTEs.
12121 				 */
12122 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12123 				    TTE_CSZ(&old->tte_data) == TTE512K)
12124 					continue;
12125 				if (mmu_page_sizes == max_mmu_page_sizes) {
12126 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12127 					TTE_CSZ(&old->tte_data) == TTE256M)
12128 					    continue;
12129 				}
12130 
12131 				/* clear the lower 22 bits of the va */
12132 				va = *(uint64_t *)old << 22;
12133 				/* turn va into a virtual pfn */
12134 				va >>= 22 - TSB_START_SIZE;
12135 				/*
12136 				 * or in bits from the offset in the tsb
12137 				 * to get the real virtual pfn. These
12138 				 * correspond to bits [21:13] in the va
12139 				 */
12140 				vpshift =
12141 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12142 				    0x1ff;
12143 				va |= (i << vpshift);
12144 				va >>= vpshift;
12145 				new_offset = va & (new_entries - 1);
12146 				new = new_base + new_offset;
12147 				prefetch_tsbe_write(new);
12148 				*new = *old;
12149 			}
12150 		}
12151 	}
12152 }
12153 
12154 /*
12155  * unused in sfmmu
12156  */
12157 void
12158 hat_dump(void)
12159 {
12160 }
12161 
12162 /*
12163  * Called when a thread is exiting and we have switched to the kernel address
12164  * space.  Perform the same VM initialization resume() uses when switching
12165  * processes.
12166  *
12167  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12168  * we call it anyway in case the semantics change in the future.
12169  */
12170 /*ARGSUSED*/
12171 void
12172 hat_thread_exit(kthread_t *thd)
12173 {
12174 	uint64_t pgsz_cnum;
12175 	uint_t pstate_save;
12176 
12177 	ASSERT(thd->t_procp->p_as == &kas);
12178 
12179 	pgsz_cnum = KCONTEXT;
12180 #ifdef sun4u
12181 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12182 #endif
12183 	/*
12184 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12185 	 * kernel threads. We need to disable interrupts here,
12186 	 * simply because otherwise sfmmu_load_mmustate() would panic
12187 	 * if the caller does not disable interrupts.
12188 	 */
12189 	pstate_save = sfmmu_disable_intrs();
12190 	sfmmu_setctx_sec(pgsz_cnum);
12191 	sfmmu_load_mmustate(ksfmmup);
12192 	sfmmu_enable_intrs(pstate_save);
12193 }
12194