xref: /titanic_51/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 7636cb21f250f0485ca6052ffadc80ace93e6358)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
143  * a process would page fault indefinitely if it tried to
144  * access a 512K page.
145  */
146 int	disable_ism_large_pages = (1 << TTE512K);
147 int	disable_large_pages = 0;
148 int	disable_auto_large_pages = 0;
149 int	disable_shm_large_pages = 0;
150 
151 /*
152  * Private sfmmu data structures for hat management
153  */
154 static struct kmem_cache *sfmmuid_cache;
155 static struct kmem_cache *mmuctxdom_cache;
156 
157 /*
158  * Private sfmmu data structures for tsb management
159  */
160 static struct kmem_cache *sfmmu_tsbinfo_cache;
161 static struct kmem_cache *sfmmu_tsb8k_cache;
162 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
163 static vmem_t *kmem_tsb_arena;
164 
165 /*
166  * sfmmu static variables for hmeblk resource management.
167  */
168 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
169 static struct kmem_cache *sfmmu8_cache;
170 static struct kmem_cache *sfmmu1_cache;
171 static struct kmem_cache *pa_hment_cache;
172 
173 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
174 /*
175  * private data for ism
176  */
177 static struct kmem_cache *ism_blk_cache;
178 static struct kmem_cache *ism_ment_cache;
179 #define	ISMID_STARTADDR	NULL
180 
181 /*
182  * Whether to delay TLB flushes and use Cheetah's flush-all support
183  * when removing contexts from the dirty list.
184  */
185 int delay_tlb_flush;
186 int disable_delay_tlb_flush;
187 
188 /*
189  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
190  * HAT flags, synchronizing TLB/TSB coherency, and context management.
191  * The lock is hashed on the sfmmup since the case where we need to lock
192  * all processes is rare but does occur (e.g. we need to unload a shared
193  * mapping from all processes using the mapping).  We have a lot of buckets,
194  * and each slab of sfmmu_t's can use about a quarter of them, giving us
195  * a fairly good distribution without wasting too much space and overhead
196  * when we have to grab them all.
197  */
198 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
199 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
200 
201 /*
202  * Hash algorithm optimized for a small number of slabs.
203  *  7 is (highbit((sizeof sfmmu_t)) - 1)
204  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
205  * kmem_cache, and thus they will be sequential within that cache.  In
206  * addition, each new slab will have a different "color" up to cache_maxcolor
207  * which will skew the hashing for each successive slab which is allocated.
208  * If the size of sfmmu_t changed to a larger size, this algorithm may need
209  * to be revisited.
210  */
211 #define	TSB_HASH_SHIFT_BITS (7)
212 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
213 
214 #ifdef DEBUG
215 int tsb_hash_debug = 0;
216 #define	TSB_HASH(sfmmup)	\
217 	(tsb_hash_debug ? &hat_lock[0] : \
218 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
219 #else	/* DEBUG */
220 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
221 #endif	/* DEBUG */
222 
223 
224 /* sfmmu_replace_tsb() return codes. */
225 typedef enum tsb_replace_rc {
226 	TSB_SUCCESS,
227 	TSB_ALLOCFAIL,
228 	TSB_LOSTRACE,
229 	TSB_ALREADY_SWAPPED,
230 	TSB_CANTGROW
231 } tsb_replace_rc_t;
232 
233 /*
234  * Flags for TSB allocation routines.
235  */
236 #define	TSB_ALLOC	0x01
237 #define	TSB_FORCEALLOC	0x02
238 #define	TSB_GROW	0x04
239 #define	TSB_SHRINK	0x08
240 #define	TSB_SWAPIN	0x10
241 
242 /*
243  * Support for HAT callbacks.
244  */
245 #define	SFMMU_MAX_RELOC_CALLBACKS	10
246 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
247 static id_t sfmmu_cb_nextid = 0;
248 static id_t sfmmu_tsb_cb_id;
249 struct sfmmu_callback *sfmmu_cb_table;
250 
251 /*
252  * Kernel page relocation is enabled by default for non-caged
253  * kernel pages.  This has little effect unless segkmem_reloc is
254  * set, since by default kernel memory comes from inside the
255  * kernel cage.
256  */
257 int hat_kpr_enabled = 1;
258 
259 kmutex_t	kpr_mutex;
260 kmutex_t	kpr_suspendlock;
261 kthread_t	*kreloc_thread;
262 
263 /*
264  * Enable VA->PA translation sanity checking on DEBUG kernels.
265  * Disabled by default.  This is incompatible with some
266  * drivers (error injector, RSM) so if it breaks you get
267  * to keep both pieces.
268  */
269 int hat_check_vtop = 0;
270 
271 /*
272  * Private sfmmu routines (prototypes)
273  */
274 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
275 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
276 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
277 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
278 			caddr_t, demap_range_t *, uint_t);
279 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
280 			caddr_t, int);
281 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
282 			uint64_t, struct hme_blk **);
283 static void	sfmmu_hblks_list_purge(struct hme_blk **);
284 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
285 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
286 static struct hme_blk *sfmmu_hblk_steal(int);
287 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
288 			struct hme_blk *, uint64_t, uint64_t,
289 			struct hme_blk *);
290 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
291 
292 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
293 		    uint_t, uint_t, pgcnt_t);
294 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
295 			uint_t);
296 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
297 			uint_t);
298 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
299 					caddr_t, int);
300 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
301 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
302 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
303 			caddr_t, page_t **, uint_t);
304 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
305 
306 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
307 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
308 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
309 #ifdef VAC
310 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
311 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
312 int	tst_tnc(page_t *pp, pgcnt_t);
313 void	conv_tnc(page_t *pp, int);
314 #endif
315 
316 static void	sfmmu_get_ctx(sfmmu_t *);
317 static void	sfmmu_free_sfmmu(sfmmu_t *);
318 
319 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
320 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
321 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
322 
323 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
324 static void	hat_pagereload(struct page *, struct page *);
325 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
326 #ifdef VAC
327 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
328 static void	sfmmu_page_cache(page_t *, int, int, int);
329 #endif
330 
331 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
332 			pfn_t, int, int, int, int);
333 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
334 			pfn_t, int);
335 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
336 static void	sfmmu_tlb_range_demap(demap_range_t *);
337 static void	sfmmu_invalidate_ctx(sfmmu_t *);
338 static void	sfmmu_sync_mmustate(sfmmu_t *);
339 
340 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
341 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
342 			sfmmu_t *);
343 static void	sfmmu_tsb_free(struct tsb_info *);
344 static void	sfmmu_tsbinfo_free(struct tsb_info *);
345 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
346 			sfmmu_t *);
347 
348 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
349 static int	sfmmu_select_tsb_szc(pgcnt_t);
350 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
351 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
352 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
353 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
354 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
355 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
356 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
357     hatlock_t *, uint_t);
358 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
359 
360 #ifdef VAC
361 void	sfmmu_cache_flush(pfn_t, int);
362 void	sfmmu_cache_flushcolor(int, pfn_t);
363 #endif
364 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
365 			caddr_t, demap_range_t *, uint_t, int);
366 
367 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
368 static uint_t	sfmmu_ptov_attr(tte_t *);
369 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
370 			caddr_t, demap_range_t *, uint_t);
371 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
372 static int	sfmmu_idcache_constructor(void *, void *, int);
373 static void	sfmmu_idcache_destructor(void *, void *);
374 static int	sfmmu_hblkcache_constructor(void *, void *, int);
375 static void	sfmmu_hblkcache_destructor(void *, void *);
376 static void	sfmmu_hblkcache_reclaim(void *);
377 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
378 			struct hmehash_bucket *);
379 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
380 static void	sfmmu_rm_large_mappings(page_t *, int);
381 
382 static void	hat_lock_init(void);
383 static void	hat_kstat_init(void);
384 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
385 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
386 int	fnd_mapping_sz(page_t *);
387 static void	iment_add(struct ism_ment *,  struct hat *);
388 static void	iment_sub(struct ism_ment *, struct hat *);
389 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
390 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
391 extern void	sfmmu_clear_utsbinfo(void);
392 
393 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
394 
395 /* kpm globals */
396 #ifdef	DEBUG
397 /*
398  * Enable trap level tsbmiss handling
399  */
400 int	kpm_tsbmtl = 1;
401 
402 /*
403  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
404  * required TLB shootdowns in this case, so handle w/ care. Off by default.
405  */
406 int	kpm_tlb_flush;
407 #endif	/* DEBUG */
408 
409 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
410 
411 #ifdef DEBUG
412 static void	sfmmu_check_hblk_flist();
413 #endif
414 
415 /*
416  * Semi-private sfmmu data structures.  Some of them are initialize in
417  * startup or in hat_init. Some of them are private but accessed by
418  * assembly code or mach_sfmmu.c
419  */
420 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
421 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
422 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
423 uint64_t	khme_hash_pa;		/* PA of khme_hash */
424 int 		uhmehash_num;		/* # of buckets in user hash table */
425 int 		khmehash_num;		/* # of buckets in kernel hash table */
426 
427 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
428 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
429 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
430 
431 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
432 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
433 
434 int		cache;			/* describes system cache */
435 
436 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
437 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
438 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
439 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
440 
441 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
442 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
443 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
444 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
445 
446 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
447 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
448 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
449 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
450 
451 #ifndef sun4v
452 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
453 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
454 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
455 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
456 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
457 #endif /* sun4v */
458 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
459 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
460 
461 /*
462  * Size to use for TSB slabs.  Future platforms that support page sizes
463  * larger than 4M may wish to change these values, and provide their own
464  * assembly macros for building and decoding the TSB base register contents.
465  * Note disable_large_pages will override the value set here.
466  */
467 uint_t	tsb_slab_ttesz = TTE4M;
468 uint_t	tsb_slab_size;
469 uint_t	tsb_slab_shift;
470 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
471 
472 /* largest TSB size to grow to, will be smaller on smaller memory systems */
473 int	tsb_max_growsize = UTSB_MAX_SZCODE;
474 
475 /*
476  * Tunable parameters dealing with TSB policies.
477  */
478 
479 /*
480  * This undocumented tunable forces all 8K TSBs to be allocated from
481  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
482  */
483 #ifdef	DEBUG
484 int	tsb_forceheap = 0;
485 #endif	/* DEBUG */
486 
487 /*
488  * Decide whether to use per-lgroup arenas, or one global set of
489  * TSB arenas.  The default is not to break up per-lgroup, since
490  * most platforms don't recognize any tangible benefit from it.
491  */
492 int	tsb_lgrp_affinity = 0;
493 
494 /*
495  * Used for growing the TSB based on the process RSS.
496  * tsb_rss_factor is based on the smallest TSB, and is
497  * shifted by the TSB size to determine if we need to grow.
498  * The default will grow the TSB if the number of TTEs for
499  * this page size exceeds 75% of the number of TSB entries,
500  * which should _almost_ eliminate all conflict misses
501  * (at the expense of using up lots and lots of memory).
502  */
503 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
504 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
505 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
506 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
507 	default_tsb_size)
508 #define	TSB_OK_SHRINK()	\
509 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
510 #define	TSB_OK_GROW()	\
511 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
512 
513 int	enable_tsb_rss_sizing = 1;
514 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
515 
516 /* which TSB size code to use for new address spaces or if rss sizing off */
517 int default_tsb_size = TSB_8K_SZCODE;
518 
519 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
520 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
521 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
522 
523 #ifdef DEBUG
524 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
525 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
526 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
527 static int tsb_alloc_fail_mtbf = 0;
528 static int tsb_alloc_count = 0;
529 #endif /* DEBUG */
530 
531 /* if set to 1, will remap valid TTEs when growing TSB. */
532 int tsb_remap_ttes = 1;
533 
534 /*
535  * If we have more than this many mappings, allocate a second TSB.
536  * This default is chosen because the I/D fully associative TLBs are
537  * assumed to have at least 8 available entries. Platforms with a
538  * larger fully-associative TLB could probably override the default.
539  */
540 int tsb_sectsb_threshold = 8;
541 
542 /*
543  * kstat data
544  */
545 struct sfmmu_global_stat sfmmu_global_stat;
546 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
547 
548 /*
549  * Global data
550  */
551 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
552 
553 #ifdef DEBUG
554 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
555 #endif
556 
557 /* sfmmu locking operations */
558 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
559 static int	sfmmu_mlspl_held(struct page *, int);
560 
561 kmutex_t *sfmmu_page_enter(page_t *);
562 void	sfmmu_page_exit(kmutex_t *);
563 int	sfmmu_page_spl_held(struct page *);
564 
565 /* sfmmu internal locking operations - accessed directly */
566 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
567 				kmutex_t **, kmutex_t **);
568 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
569 static hatlock_t *
570 		sfmmu_hat_enter(sfmmu_t *);
571 static hatlock_t *
572 		sfmmu_hat_tryenter(sfmmu_t *);
573 static void	sfmmu_hat_exit(hatlock_t *);
574 static void	sfmmu_hat_lock_all(void);
575 static void	sfmmu_hat_unlock_all(void);
576 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
577 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
578 
579 /*
580  * Array of mutexes protecting a page's mapping list and p_nrm field.
581  *
582  * The hash function looks complicated, but is made up so that:
583  *
584  * "pp" not shifted, so adjacent pp values will hash to different cache lines
585  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
586  *
587  * "pp" >> mml_shift, incorporates more source bits into the hash result
588  *
589  *  "& (mml_table_size - 1), should be faster than using remainder "%"
590  *
591  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
592  * cacheline, since they get declared next to each other below. We'll trust
593  * ld not to do something random.
594  */
595 #ifdef	DEBUG
596 int mlist_hash_debug = 0;
597 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
598 	&mml_table[((uintptr_t)(pp) + \
599 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
600 #else	/* !DEBUG */
601 #define	MLIST_HASH(pp)   &mml_table[ \
602 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
603 #endif	/* !DEBUG */
604 
605 kmutex_t		*mml_table;
606 uint_t			mml_table_sz;	/* must be a power of 2 */
607 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
608 
609 kpm_hlk_t	*kpmp_table;
610 uint_t		kpmp_table_sz;	/* must be a power of 2 */
611 uchar_t		kpmp_shift;
612 
613 kpm_shlk_t	*kpmp_stable;
614 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
615 
616 /*
617  * SPL_HASH was improved to avoid false cache line sharing
618  */
619 #define	SPL_TABLE_SIZE	128
620 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
621 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
622 
623 #define	SPL_INDEX(pp) \
624 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
625 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
626 	(SPL_TABLE_SIZE - 1))
627 
628 #define	SPL_HASH(pp)    \
629 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
630 
631 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
632 
633 
634 /*
635  * hat_unload_callback() will group together callbacks in order
636  * to avoid xt_sync() calls.  This is the maximum size of the group.
637  */
638 #define	MAX_CB_ADDR	32
639 
640 tte_t	hw_tte;
641 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
642 
643 static char	*mmu_ctx_kstat_names[] = {
644 	"mmu_ctx_tsb_exceptions",
645 	"mmu_ctx_tsb_raise_exception",
646 	"mmu_ctx_wrap_around",
647 };
648 
649 /*
650  * Wrapper for vmem_xalloc since vmem_create only allows limited
651  * parameters for vm_source_alloc functions.  This function allows us
652  * to specify alignment consistent with the size of the object being
653  * allocated.
654  */
655 static void *
656 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
657 {
658 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
659 }
660 
661 /* Common code for setting tsb_alloc_hiwater. */
662 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
663 		ptob(pages) / tsb_alloc_hiwater_factor
664 
665 /*
666  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
667  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
668  * TTEs to represent all those physical pages.  We round this up by using
669  * 1<<highbit().  To figure out which size code to use, remember that the size
670  * code is just an amount to shift the smallest TSB size to get the size of
671  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
672  * highbit() - 1) to get the size code for the smallest TSB that can represent
673  * all of physical memory, while erring on the side of too much.
674  *
675  * If the computed size code is less than the current tsb_max_growsize, we set
676  * tsb_max_growsize to the computed size code.  In the case where the computed
677  * size code is greater than tsb_max_growsize, we have these restrictions that
678  * apply to increasing tsb_max_growsize:
679  *	1) TSBs can't grow larger than the TSB slab size
680  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
681  */
682 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
683 	int	i, szc;							\
684 									\
685 	i = highbit(pages);						\
686 	if ((1 << (i - 1)) == (pages))					\
687 		i--;		/* 2^n case, round down */		\
688 	szc = i - TSB_START_SIZE;					\
689 	if (szc < tsb_max_growsize)					\
690 		tsb_max_growsize = szc;					\
691 	else if ((szc > tsb_max_growsize) &&				\
692 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
693 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
694 }
695 
696 /*
697  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
698  * tsb_info which handles that TTE size.
699  */
700 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
701 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
702 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
703 	if ((tte_szc) >= TTE4M)						\
704 		(tsbinfop) = (tsbinfop)->tsb_next;
705 
706 /*
707  * Return the number of mappings present in the HAT
708  * for a particular process and page size.
709  */
710 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
711 	(sfmmup)->sfmmu_iblk?						\
712 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
713 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
714 	    (sfmmup)->sfmmu_ttecnt[(szc)];
715 
716 /*
717  * Macro to use to unload entries from the TSB.
718  * It has knowledge of which page sizes get replicated in the TSB
719  * and will call the appropriate unload routine for the appropriate size.
720  */
721 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
722 {									\
723 	int ttesz = get_hblk_ttesz(hmeblkp);				\
724 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
725 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
726 	} else {							\
727 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
728 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
729 		ASSERT(addr >= sva && addr < eva);			\
730 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
731 	}								\
732 }
733 
734 
735 /* Update tsb_alloc_hiwater after memory is configured. */
736 /*ARGSUSED*/
737 static void
738 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
739 {
740 	/* Assumes physmem has already been updated. */
741 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
742 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
743 }
744 
745 /*
746  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
747  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
748  * deleted.
749  */
750 /*ARGSUSED*/
751 static int
752 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
753 {
754 	return (0);
755 }
756 
757 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
758 /*ARGSUSED*/
759 static void
760 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
761 {
762 	/*
763 	 * Whether the delete was cancelled or not, just go ahead and update
764 	 * tsb_alloc_hiwater and tsb_max_growsize.
765 	 */
766 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
767 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
768 }
769 
770 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
771 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
772 	sfmmu_update_tsb_post_add,	/* post_add */
773 	sfmmu_update_tsb_pre_del,	/* pre_del */
774 	sfmmu_update_tsb_post_del	/* post_del */
775 };
776 
777 
778 /*
779  * HME_BLK HASH PRIMITIVES
780  */
781 
782 /*
783  * Enter a hme on the mapping list for page pp.
784  * When large pages are more prevalent in the system we might want to
785  * keep the mapping list in ascending order by the hment size. For now,
786  * small pages are more frequent, so don't slow it down.
787  */
788 #define	HME_ADD(hme, pp)					\
789 {								\
790 	ASSERT(sfmmu_mlist_held(pp));				\
791 								\
792 	hme->hme_prev = NULL;					\
793 	hme->hme_next = pp->p_mapping;				\
794 	hme->hme_page = pp;					\
795 	if (pp->p_mapping) {					\
796 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
797 		ASSERT(pp->p_share > 0);			\
798 	} else  {						\
799 		/* EMPTY */					\
800 		ASSERT(pp->p_share == 0);			\
801 	}							\
802 	pp->p_mapping = hme;					\
803 	pp->p_share++;						\
804 }
805 
806 /*
807  * Enter a hme on the mapping list for page pp.
808  * If we are unmapping a large translation, we need to make sure that the
809  * change is reflect in the corresponding bit of the p_index field.
810  */
811 #define	HME_SUB(hme, pp)					\
812 {								\
813 	ASSERT(sfmmu_mlist_held(pp));				\
814 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
815 								\
816 	if (pp->p_mapping == NULL) {				\
817 		panic("hme_remove - no mappings");		\
818 	}							\
819 								\
820 	membar_stst();	/* ensure previous stores finish */	\
821 								\
822 	ASSERT(pp->p_share > 0);				\
823 	pp->p_share--;						\
824 								\
825 	if (hme->hme_prev) {					\
826 		ASSERT(pp->p_mapping != hme);			\
827 		ASSERT(hme->hme_prev->hme_page == pp ||		\
828 			IS_PAHME(hme->hme_prev));		\
829 		hme->hme_prev->hme_next = hme->hme_next;	\
830 	} else {						\
831 		ASSERT(pp->p_mapping == hme);			\
832 		pp->p_mapping = hme->hme_next;			\
833 		ASSERT((pp->p_mapping == NULL) ?		\
834 			(pp->p_share == 0) : 1);		\
835 	}							\
836 								\
837 	if (hme->hme_next) {					\
838 		ASSERT(hme->hme_next->hme_page == pp ||		\
839 			IS_PAHME(hme->hme_next));		\
840 		hme->hme_next->hme_prev = hme->hme_prev;	\
841 	}							\
842 								\
843 	/* zero out the entry */				\
844 	hme->hme_next = NULL;					\
845 	hme->hme_prev = NULL;					\
846 	hme->hme_page = NULL;					\
847 								\
848 	if (hme_size(hme) > TTE8K) {				\
849 		/* remove mappings for remainder of large pg */	\
850 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
851 	}							\
852 }
853 
854 /*
855  * This function returns the hment given the hme_blk and a vaddr.
856  * It assumes addr has already been checked to belong to hme_blk's
857  * range.
858  */
859 #define	HBLKTOHME(hment, hmeblkp, addr)					\
860 {									\
861 	int index;							\
862 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
863 }
864 
865 /*
866  * Version of HBLKTOHME that also returns the index in hmeblkp
867  * of the hment.
868  */
869 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
870 {									\
871 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
872 									\
873 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
874 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
875 	} else								\
876 		idx = 0;						\
877 									\
878 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
879 }
880 
881 /*
882  * Disable any page sizes not supported by the CPU
883  */
884 void
885 hat_init_pagesizes()
886 {
887 	int 		i;
888 
889 	mmu_exported_page_sizes = 0;
890 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
891 		extern int	disable_text_largepages;
892 		extern int	disable_initdata_largepages;
893 
894 		szc_2_userszc[i] = (uint_t)-1;
895 		userszc_2_szc[i] = (uint_t)-1;
896 
897 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
898 			disable_large_pages |= (1 << i);
899 			disable_ism_large_pages |= (1 << i);
900 			disable_text_largepages |= (1 << i);
901 			disable_initdata_largepages |= (1 << i);
902 		} else {
903 			szc_2_userszc[i] = mmu_exported_page_sizes;
904 			userszc_2_szc[mmu_exported_page_sizes] = i;
905 			mmu_exported_page_sizes++;
906 		}
907 	}
908 
909 	disable_auto_large_pages = disable_large_pages;
910 
911 	/*
912 	 * Initialize mmu-specific large page sizes.
913 	 */
914 	if (&mmu_large_pages_disabled) {
915 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
916 		disable_ism_large_pages |=
917 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
918 		disable_auto_large_pages |=
919 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
920 	}
921 
922 	disable_shm_large_pages = disable_auto_large_pages;
923 }
924 
925 /*
926  * Initialize the hardware address translation structures.
927  */
928 void
929 hat_init(void)
930 {
931 	int 		i;
932 	uint_t		sz;
933 	uint_t		maxtsb;
934 	size_t		size;
935 
936 	hat_lock_init();
937 	hat_kstat_init();
938 
939 	/*
940 	 * Hardware-only bits in a TTE
941 	 */
942 	MAKE_TTE_MASK(&hw_tte);
943 
944 	hat_init_pagesizes();
945 
946 	/* Initialize the hash locks */
947 	for (i = 0; i < khmehash_num; i++) {
948 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
949 		    MUTEX_DEFAULT, NULL);
950 	}
951 	for (i = 0; i < uhmehash_num; i++) {
952 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
953 		    MUTEX_DEFAULT, NULL);
954 	}
955 	khmehash_num--;		/* make sure counter starts from 0 */
956 	uhmehash_num--;		/* make sure counter starts from 0 */
957 
958 	/*
959 	 * Allocate context domain structures.
960 	 *
961 	 * A platform may choose to modify max_mmu_ctxdoms in
962 	 * set_platform_defaults(). If a platform does not define
963 	 * a set_platform_defaults() or does not choose to modify
964 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
965 	 *
966 	 * For sun4v, there will be one global context domain, this is to
967 	 * avoid the ldom cpu substitution problem.
968 	 *
969 	 * For all platforms that have CPUs sharing MMUs, this
970 	 * value must be defined.
971 	 */
972 	if (max_mmu_ctxdoms == 0) {
973 #ifndef sun4v
974 		max_mmu_ctxdoms = max_ncpus;
975 #else /* sun4v */
976 		max_mmu_ctxdoms = 1;
977 #endif /* sun4v */
978 	}
979 
980 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
981 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
982 
983 	/* mmu_ctx_t is 64 bytes aligned */
984 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
985 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
986 	/*
987 	 * MMU context domain initialization for the Boot CPU.
988 	 * This needs the context domains array allocated above.
989 	 */
990 	mutex_enter(&cpu_lock);
991 	sfmmu_cpu_init(CPU);
992 	mutex_exit(&cpu_lock);
993 
994 	/*
995 	 * Intialize ism mapping list lock.
996 	 */
997 
998 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
999 
1000 	/*
1001 	 * Each sfmmu structure carries an array of MMU context info
1002 	 * structures, one per context domain. The size of this array depends
1003 	 * on the maximum number of context domains. So, the size of the
1004 	 * sfmmu structure varies per platform.
1005 	 *
1006 	 * sfmmu is allocated from static arena, because trap
1007 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1008 	 * memory. sfmmu's alignment is changed to 64 bytes from
1009 	 * default 8 bytes, as the lower 6 bits will be used to pass
1010 	 * pgcnt to vtag_flush_pgcnt_tl1.
1011 	 */
1012 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1013 
1014 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1015 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1016 	    NULL, NULL, static_arena, 0);
1017 
1018 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1019 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1020 
1021 	/*
1022 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1023 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1024 	 * specified, don't use magazines to cache them--we want to return
1025 	 * them to the system as quickly as possible.
1026 	 */
1027 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1028 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1029 	    static_arena, KMC_NOMAGAZINE);
1030 
1031 	/*
1032 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1033 	 * memory, which corresponds to the old static reserve for TSBs.
1034 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1035 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1036 	 * allocations will be taken from the kernel heap (via
1037 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1038 	 * consumer.
1039 	 */
1040 	if (tsb_alloc_hiwater_factor == 0) {
1041 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1042 	}
1043 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1044 
1045 	/* Set tsb_max_growsize. */
1046 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1047 
1048 	/*
1049 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1050 	 * than the default 4M slab size. We also honor disable_large_pages
1051 	 * here.
1052 	 *
1053 	 * The trap handlers need to be patched with the final slab shift,
1054 	 * since they need to be able to construct the TSB pointer at runtime.
1055 	 */
1056 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1057 		tsb_slab_ttesz = TTE512K;
1058 
1059 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1060 		if (!(disable_large_pages & (1 << sz)))
1061 			break;
1062 	}
1063 
1064 	tsb_slab_ttesz = sz;
1065 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1066 	tsb_slab_size = 1 << tsb_slab_shift;
1067 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1068 
1069 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1070 	if (tsb_max_growsize > maxtsb)
1071 		tsb_max_growsize = maxtsb;
1072 
1073 	/*
1074 	 * Set up memory callback to update tsb_alloc_hiwater and
1075 	 * tsb_max_growsize.
1076 	 */
1077 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1078 	ASSERT(i == 0);
1079 
1080 	/*
1081 	 * kmem_tsb_arena is the source from which large TSB slabs are
1082 	 * drawn.  The quantum of this arena corresponds to the largest
1083 	 * TSB size we can dynamically allocate for user processes.
1084 	 * Currently it must also be a supported page size since we
1085 	 * use exactly one translation entry to map each slab page.
1086 	 *
1087 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1088 	 * which most TSBs are allocated.  Since most TSB allocations are
1089 	 * typically 8K we have a kmem cache we stack on top of each
1090 	 * kmem_tsb_default_arena to speed up those allocations.
1091 	 *
1092 	 * Note the two-level scheme of arenas is required only
1093 	 * because vmem_create doesn't allow us to specify alignment
1094 	 * requirements.  If this ever changes the code could be
1095 	 * simplified to use only one level of arenas.
1096 	 */
1097 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1098 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1099 	    0, VM_SLEEP);
1100 
1101 	if (tsb_lgrp_affinity) {
1102 		char s[50];
1103 		for (i = 0; i < NLGRPS_MAX; i++) {
1104 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1105 			kmem_tsb_default_arena[i] =
1106 			    vmem_create(s, NULL, 0, PAGESIZE,
1107 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1108 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1109 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1110 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1111 			    PAGESIZE, NULL, NULL, NULL, NULL,
1112 			    kmem_tsb_default_arena[i], 0);
1113 		}
1114 	} else {
1115 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1116 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1117 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1118 		    VM_SLEEP | VM_BESTFIT);
1119 
1120 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1121 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1122 		    kmem_tsb_default_arena[0], 0);
1123 	}
1124 
1125 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1126 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1127 		sfmmu_hblkcache_destructor,
1128 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1129 		hat_memload_arena, KMC_NOHASH);
1130 
1131 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1132 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1133 
1134 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1135 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1136 		sfmmu_hblkcache_destructor,
1137 		NULL, (void *)HME1BLK_SZ,
1138 		hat_memload1_arena, KMC_NOHASH);
1139 
1140 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1141 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1142 
1143 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1144 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1145 		NULL, NULL, static_arena, KMC_NOHASH);
1146 
1147 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1148 		sizeof (ism_ment_t), 0, NULL, NULL,
1149 		NULL, NULL, NULL, 0);
1150 
1151 	/*
1152 	 * We grab the first hat for the kernel,
1153 	 */
1154 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1155 	kas.a_hat = hat_alloc(&kas);
1156 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1157 
1158 	/*
1159 	 * Initialize hblk_reserve.
1160 	 */
1161 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1162 				va_to_pa((caddr_t)hblk_reserve);
1163 
1164 #ifndef UTSB_PHYS
1165 	/*
1166 	 * Reserve some kernel virtual address space for the locked TTEs
1167 	 * that allow us to probe the TSB from TL>0.
1168 	 */
1169 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1170 		0, 0, NULL, NULL, VM_SLEEP);
1171 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1172 		0, 0, NULL, NULL, VM_SLEEP);
1173 #endif
1174 
1175 #ifdef VAC
1176 	/*
1177 	 * The big page VAC handling code assumes VAC
1178 	 * will not be bigger than the smallest big
1179 	 * page- which is 64K.
1180 	 */
1181 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1182 		cmn_err(CE_PANIC, "VAC too big!");
1183 	}
1184 #endif
1185 
1186 	(void) xhat_init();
1187 
1188 	uhme_hash_pa = va_to_pa(uhme_hash);
1189 	khme_hash_pa = va_to_pa(khme_hash);
1190 
1191 	/*
1192 	 * Initialize relocation locks. kpr_suspendlock is held
1193 	 * at PIL_MAX to prevent interrupts from pinning the holder
1194 	 * of a suspended TTE which may access it leading to a
1195 	 * deadlock condition.
1196 	 */
1197 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1198 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1199 }
1200 
1201 /*
1202  * Initialize locking for the hat layer, called early during boot.
1203  */
1204 static void
1205 hat_lock_init()
1206 {
1207 	int i;
1208 
1209 	/*
1210 	 * initialize the array of mutexes protecting a page's mapping
1211 	 * list and p_nrm field.
1212 	 */
1213 	for (i = 0; i < mml_table_sz; i++)
1214 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1215 
1216 	if (kpm_enable) {
1217 		for (i = 0; i < kpmp_table_sz; i++) {
1218 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1219 			    MUTEX_DEFAULT, NULL);
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Initialize array of mutex locks that protects sfmmu fields and
1225 	 * TSB lists.
1226 	 */
1227 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1228 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1229 		    NULL);
1230 }
1231 
1232 extern caddr_t kmem64_base, kmem64_end;
1233 
1234 #define	SFMMU_KERNEL_MAXVA \
1235 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1236 
1237 /*
1238  * Allocate a hat structure.
1239  * Called when an address space first uses a hat.
1240  */
1241 struct hat *
1242 hat_alloc(struct as *as)
1243 {
1244 	sfmmu_t *sfmmup;
1245 	int i;
1246 	uint64_t cnum;
1247 	extern uint_t get_color_start(struct as *);
1248 
1249 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1250 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1251 	sfmmup->sfmmu_as = as;
1252 	sfmmup->sfmmu_flags = 0;
1253 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1254 
1255 	if (as == &kas) {
1256 		ksfmmup = sfmmup;
1257 		sfmmup->sfmmu_cext = 0;
1258 		cnum = KCONTEXT;
1259 
1260 		sfmmup->sfmmu_clrstart = 0;
1261 		sfmmup->sfmmu_tsb = NULL;
1262 		/*
1263 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1264 		 * to setup tsb_info for ksfmmup.
1265 		 */
1266 	} else {
1267 
1268 		/*
1269 		 * Just set to invalid ctx. When it faults, it will
1270 		 * get a valid ctx. This would avoid the situation
1271 		 * where we get a ctx, but it gets stolen and then
1272 		 * we fault when we try to run and so have to get
1273 		 * another ctx.
1274 		 */
1275 		sfmmup->sfmmu_cext = 0;
1276 		cnum = INVALID_CONTEXT;
1277 
1278 		/* initialize original physical page coloring bin */
1279 		sfmmup->sfmmu_clrstart = get_color_start(as);
1280 #ifdef DEBUG
1281 		if (tsb_random_size) {
1282 			uint32_t randval = (uint32_t)gettick() >> 4;
1283 			int size = randval % (tsb_max_growsize + 1);
1284 
1285 			/* chose a random tsb size for stress testing */
1286 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1287 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1288 		} else
1289 #endif /* DEBUG */
1290 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1291 			    default_tsb_size,
1292 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1293 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1294 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1295 	}
1296 
1297 	ASSERT(max_mmu_ctxdoms > 0);
1298 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1299 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1300 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1301 	}
1302 
1303 	sfmmu_setup_tsbinfo(sfmmup);
1304 	for (i = 0; i < max_mmu_page_sizes; i++) {
1305 		sfmmup->sfmmu_ttecnt[i] = 0;
1306 		sfmmup->sfmmu_ismttecnt[i] = 0;
1307 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1308 	}
1309 
1310 	sfmmup->sfmmu_iblk = NULL;
1311 	sfmmup->sfmmu_ismhat = 0;
1312 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1313 	if (sfmmup == ksfmmup) {
1314 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1315 	} else {
1316 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1317 	}
1318 	sfmmup->sfmmu_free = 0;
1319 	sfmmup->sfmmu_rmstat = 0;
1320 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1321 	sfmmup->sfmmu_xhat_provider = NULL;
1322 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1323 	return (sfmmup);
1324 }
1325 
1326 /*
1327  * Create per-MMU context domain kstats for a given MMU ctx.
1328  */
1329 static void
1330 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1331 {
1332 	mmu_ctx_stat_t	stat;
1333 	kstat_t		*mmu_kstat;
1334 
1335 	ASSERT(MUTEX_HELD(&cpu_lock));
1336 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1337 
1338 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1339 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1340 
1341 	if (mmu_kstat == NULL) {
1342 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1343 		    mmu_ctxp->mmu_idx);
1344 	} else {
1345 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1346 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1347 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1348 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1349 		mmu_ctxp->mmu_kstat = mmu_kstat;
1350 		kstat_install(mmu_kstat);
1351 	}
1352 }
1353 
1354 /*
1355  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1356  * context domain information for a given CPU. If a platform does not
1357  * specify that interface, then the function below is used instead to return
1358  * default information. The defaults are as follows:
1359  *
1360  *	- For sun4u systems there's one MMU context domain per CPU.
1361  *	  This default is used by all sun4u systems except OPL. OPL systems
1362  *	  provide platform specific interface to map CPU ids to MMU ids
1363  *	  because on OPL more than 1 CPU shares a single MMU.
1364  *        Note that on sun4v, there is one global context domain for
1365  *	  the entire system. This is to avoid running into potential problem
1366  *	  with ldom physical cpu substitution feature.
1367  *	- The number of MMU context IDs supported on any CPU in the
1368  *	  system is 8K.
1369  */
1370 /*ARGSUSED*/
1371 static void
1372 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1373 {
1374 	infop->mmu_nctxs = nctxs;
1375 #ifndef sun4v
1376 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1377 #else /* sun4v */
1378 	infop->mmu_idx = 0;
1379 #endif /* sun4v */
1380 }
1381 
1382 /*
1383  * Called during CPU initialization to set the MMU context-related information
1384  * for a CPU.
1385  *
1386  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1387  */
1388 void
1389 sfmmu_cpu_init(cpu_t *cp)
1390 {
1391 	mmu_ctx_info_t	info;
1392 	mmu_ctx_t	*mmu_ctxp;
1393 
1394 	ASSERT(MUTEX_HELD(&cpu_lock));
1395 
1396 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1397 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1398 	else
1399 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1400 
1401 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1402 
1403 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1404 		/* Each mmu_ctx is cacheline aligned. */
1405 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1406 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1407 
1408 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1409 		    (void *)ipltospl(DISP_LEVEL));
1410 		mmu_ctxp->mmu_idx = info.mmu_idx;
1411 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1412 		/*
1413 		 * Globally for lifetime of a system,
1414 		 * gnum must always increase.
1415 		 * mmu_saved_gnum is protected by the cpu_lock.
1416 		 */
1417 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1418 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1419 
1420 		sfmmu_mmu_kstat_create(mmu_ctxp);
1421 
1422 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1423 	} else {
1424 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1425 	}
1426 
1427 	/*
1428 	 * The mmu_lock is acquired here to prevent races with
1429 	 * the wrap-around code.
1430 	 */
1431 	mutex_enter(&mmu_ctxp->mmu_lock);
1432 
1433 
1434 	mmu_ctxp->mmu_ncpus++;
1435 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1436 	CPU_MMU_IDX(cp) = info.mmu_idx;
1437 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1438 
1439 	mutex_exit(&mmu_ctxp->mmu_lock);
1440 }
1441 
1442 /*
1443  * Called to perform MMU context-related cleanup for a CPU.
1444  */
1445 void
1446 sfmmu_cpu_cleanup(cpu_t *cp)
1447 {
1448 	mmu_ctx_t	*mmu_ctxp;
1449 
1450 	ASSERT(MUTEX_HELD(&cpu_lock));
1451 
1452 	mmu_ctxp = CPU_MMU_CTXP(cp);
1453 	ASSERT(mmu_ctxp != NULL);
1454 
1455 	/*
1456 	 * The mmu_lock is acquired here to prevent races with
1457 	 * the wrap-around code.
1458 	 */
1459 	mutex_enter(&mmu_ctxp->mmu_lock);
1460 
1461 	CPU_MMU_CTXP(cp) = NULL;
1462 
1463 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1464 	if (--mmu_ctxp->mmu_ncpus == 0) {
1465 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1466 		mutex_exit(&mmu_ctxp->mmu_lock);
1467 		mutex_destroy(&mmu_ctxp->mmu_lock);
1468 
1469 		if (mmu_ctxp->mmu_kstat)
1470 			kstat_delete(mmu_ctxp->mmu_kstat);
1471 
1472 		/* mmu_saved_gnum is protected by the cpu_lock. */
1473 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1474 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1475 
1476 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1477 
1478 		return;
1479 	}
1480 
1481 	mutex_exit(&mmu_ctxp->mmu_lock);
1482 }
1483 
1484 /*
1485  * Hat_setup, makes an address space context the current active one.
1486  * In sfmmu this translates to setting the secondary context with the
1487  * corresponding context.
1488  */
1489 void
1490 hat_setup(struct hat *sfmmup, int allocflag)
1491 {
1492 	hatlock_t *hatlockp;
1493 
1494 	/* Init needs some special treatment. */
1495 	if (allocflag == HAT_INIT) {
1496 		/*
1497 		 * Make sure that we have
1498 		 * 1. a TSB
1499 		 * 2. a valid ctx that doesn't get stolen after this point.
1500 		 */
1501 		hatlockp = sfmmu_hat_enter(sfmmup);
1502 
1503 		/*
1504 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1505 		 * TSBs, but we need one for init, since the kernel does some
1506 		 * special things to set up its stack and needs the TSB to
1507 		 * resolve page faults.
1508 		 */
1509 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1510 
1511 		sfmmu_get_ctx(sfmmup);
1512 
1513 		sfmmu_hat_exit(hatlockp);
1514 	} else {
1515 		ASSERT(allocflag == HAT_ALLOC);
1516 
1517 		hatlockp = sfmmu_hat_enter(sfmmup);
1518 		kpreempt_disable();
1519 
1520 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1521 
1522 		/*
1523 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1524 		 * pagesize bits don't matter in this case since we are passing
1525 		 * INVALID_CONTEXT to it.
1526 		 */
1527 		sfmmu_setctx_sec(INVALID_CONTEXT);
1528 		sfmmu_clear_utsbinfo();
1529 
1530 		kpreempt_enable();
1531 		sfmmu_hat_exit(hatlockp);
1532 	}
1533 }
1534 
1535 /*
1536  * Free all the translation resources for the specified address space.
1537  * Called from as_free when an address space is being destroyed.
1538  */
1539 void
1540 hat_free_start(struct hat *sfmmup)
1541 {
1542 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1543 	ASSERT(sfmmup != ksfmmup);
1544 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1545 
1546 	sfmmup->sfmmu_free = 1;
1547 }
1548 
1549 void
1550 hat_free_end(struct hat *sfmmup)
1551 {
1552 	int i;
1553 
1554 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1555 	if (sfmmup->sfmmu_ismhat) {
1556 		for (i = 0; i < mmu_page_sizes; i++) {
1557 			sfmmup->sfmmu_ttecnt[i] = 0;
1558 			sfmmup->sfmmu_ismttecnt[i] = 0;
1559 		}
1560 	} else {
1561 		/* EMPTY */
1562 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1563 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1564 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1565 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1566 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1567 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1568 	}
1569 
1570 	if (sfmmup->sfmmu_rmstat) {
1571 		hat_freestat(sfmmup->sfmmu_as, NULL);
1572 	}
1573 
1574 	while (sfmmup->sfmmu_tsb != NULL) {
1575 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1576 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1577 		sfmmup->sfmmu_tsb = next;
1578 	}
1579 	sfmmu_free_sfmmu(sfmmup);
1580 
1581 	kmem_cache_free(sfmmuid_cache, sfmmup);
1582 }
1583 
1584 /*
1585  * Set up any translation structures, for the specified address space,
1586  * that are needed or preferred when the process is being swapped in.
1587  */
1588 /* ARGSUSED */
1589 void
1590 hat_swapin(struct hat *hat)
1591 {
1592 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1593 }
1594 
1595 /*
1596  * Free all of the translation resources, for the specified address space,
1597  * that can be freed while the process is swapped out. Called from as_swapout.
1598  * Also, free up the ctx that this process was using.
1599  */
1600 void
1601 hat_swapout(struct hat *sfmmup)
1602 {
1603 	struct hmehash_bucket *hmebp;
1604 	struct hme_blk *hmeblkp;
1605 	struct hme_blk *pr_hblk = NULL;
1606 	struct hme_blk *nx_hblk;
1607 	int i;
1608 	uint64_t hblkpa, prevpa, nx_pa;
1609 	struct hme_blk *list = NULL;
1610 	hatlock_t *hatlockp;
1611 	struct tsb_info *tsbinfop;
1612 	struct free_tsb {
1613 		struct free_tsb *next;
1614 		struct tsb_info *tsbinfop;
1615 	};			/* free list of TSBs */
1616 	struct free_tsb *freelist, *last, *next;
1617 
1618 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1619 	SFMMU_STAT(sf_swapout);
1620 
1621 	/*
1622 	 * There is no way to go from an as to all its translations in sfmmu.
1623 	 * Here is one of the times when we take the big hit and traverse
1624 	 * the hash looking for hme_blks to free up.  Not only do we free up
1625 	 * this as hme_blks but all those that are free.  We are obviously
1626 	 * swapping because we need memory so let's free up as much
1627 	 * as we can.
1628 	 *
1629 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1630 	 * because:
1631 	 *  1) we free the ctx we're using and throw away the TSB(s);
1632 	 *  2) processes aren't runnable while being swapped out.
1633 	 */
1634 	ASSERT(sfmmup != KHATID);
1635 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1636 		hmebp = &uhme_hash[i];
1637 		SFMMU_HASH_LOCK(hmebp);
1638 		hmeblkp = hmebp->hmeblkp;
1639 		hblkpa = hmebp->hmeh_nextpa;
1640 		prevpa = 0;
1641 		pr_hblk = NULL;
1642 		while (hmeblkp) {
1643 
1644 			ASSERT(!hmeblkp->hblk_xhat_bit);
1645 
1646 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1647 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1648 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1649 					(caddr_t)get_hblk_base(hmeblkp),
1650 					get_hblk_endaddr(hmeblkp),
1651 					NULL, HAT_UNLOAD);
1652 			}
1653 			nx_hblk = hmeblkp->hblk_next;
1654 			nx_pa = hmeblkp->hblk_nextpa;
1655 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1656 				ASSERT(!hmeblkp->hblk_lckcnt);
1657 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1658 					prevpa, pr_hblk);
1659 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1660 			} else {
1661 				pr_hblk = hmeblkp;
1662 				prevpa = hblkpa;
1663 			}
1664 			hmeblkp = nx_hblk;
1665 			hblkpa = nx_pa;
1666 		}
1667 		SFMMU_HASH_UNLOCK(hmebp);
1668 	}
1669 
1670 	sfmmu_hblks_list_purge(&list);
1671 
1672 	/*
1673 	 * Now free up the ctx so that others can reuse it.
1674 	 */
1675 	hatlockp = sfmmu_hat_enter(sfmmup);
1676 
1677 	sfmmu_invalidate_ctx(sfmmup);
1678 
1679 	/*
1680 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1681 	 * If TSBs were never swapped in, just return.
1682 	 * This implies that we don't support partial swapping
1683 	 * of TSBs -- either all are swapped out, or none are.
1684 	 *
1685 	 * We must hold the HAT lock here to prevent racing with another
1686 	 * thread trying to unmap TTEs from the TSB or running the post-
1687 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1688 	 * can't free memory while holding the HAT lock or we could
1689 	 * deadlock, so we build a list of TSBs to be freed after marking
1690 	 * the tsbinfos as swapped out and free them after dropping the
1691 	 * lock.
1692 	 */
1693 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1694 		sfmmu_hat_exit(hatlockp);
1695 		return;
1696 	}
1697 
1698 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1699 	last = freelist = NULL;
1700 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1701 	    tsbinfop = tsbinfop->tsb_next) {
1702 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1703 
1704 		/*
1705 		 * Cast the TSB into a struct free_tsb and put it on the free
1706 		 * list.
1707 		 */
1708 		if (freelist == NULL) {
1709 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1710 		} else {
1711 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1712 			last = last->next;
1713 		}
1714 		last->next = NULL;
1715 		last->tsbinfop = tsbinfop;
1716 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1717 		/*
1718 		 * Zero out the TTE to clear the valid bit.
1719 		 * Note we can't use a value like 0xbad because we want to
1720 		 * ensure diagnostic bits are NEVER set on TTEs that might
1721 		 * be loaded.  The intent is to catch any invalid access
1722 		 * to the swapped TSB, such as a thread running with a valid
1723 		 * context without first calling sfmmu_tsb_swapin() to
1724 		 * allocate TSB memory.
1725 		 */
1726 		tsbinfop->tsb_tte.ll = 0;
1727 	}
1728 
1729 	/* Now we can drop the lock and free the TSB memory. */
1730 	sfmmu_hat_exit(hatlockp);
1731 	for (; freelist != NULL; freelist = next) {
1732 		next = freelist->next;
1733 		sfmmu_tsb_free(freelist->tsbinfop);
1734 	}
1735 }
1736 
1737 /*
1738  * Duplicate the translations of an as into another newas
1739  */
1740 /* ARGSUSED */
1741 int
1742 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1743 	uint_t flag)
1744 {
1745 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1746 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1747 
1748 	if (flag == HAT_DUP_COW) {
1749 		panic("hat_dup: HAT_DUP_COW not supported");
1750 	}
1751 	return (0);
1752 }
1753 
1754 /*
1755  * Set up addr to map to page pp with protection prot.
1756  * As an optimization we also load the TSB with the
1757  * corresponding tte but it is no big deal if  the tte gets kicked out.
1758  */
1759 void
1760 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1761 	uint_t attr, uint_t flags)
1762 {
1763 	tte_t tte;
1764 
1765 
1766 	ASSERT(hat != NULL);
1767 	ASSERT(PAGE_LOCKED(pp));
1768 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1769 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1770 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1771 
1772 	if (PP_ISFREE(pp)) {
1773 		panic("hat_memload: loading a mapping to free page %p",
1774 		    (void *)pp);
1775 	}
1776 
1777 	if (hat->sfmmu_xhat_provider) {
1778 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1779 		return;
1780 	}
1781 
1782 	ASSERT((hat == ksfmmup) ||
1783 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1784 
1785 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1786 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1787 		    flags & ~SFMMU_LOAD_ALLFLAG);
1788 
1789 	if (hat->sfmmu_rmstat)
1790 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1791 
1792 #if defined(SF_ERRATA_57)
1793 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1794 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1795 	    !(flags & HAT_LOAD_SHARE)) {
1796 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1797 		    " page executable");
1798 		attr &= ~PROT_EXEC;
1799 	}
1800 #endif
1801 
1802 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1803 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1804 
1805 	/*
1806 	 * Check TSB and TLB page sizes.
1807 	 */
1808 	if ((flags & HAT_LOAD_SHARE) == 0) {
1809 		sfmmu_check_page_sizes(hat, 1);
1810 	}
1811 }
1812 
1813 /*
1814  * hat_devload can be called to map real memory (e.g.
1815  * /dev/kmem) and even though hat_devload will determine pf is
1816  * for memory, it will be unable to get a shared lock on the
1817  * page (because someone else has it exclusively) and will
1818  * pass dp = NULL.  If tteload doesn't get a non-NULL
1819  * page pointer it can't cache memory.
1820  */
1821 void
1822 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1823 	uint_t attr, int flags)
1824 {
1825 	tte_t tte;
1826 	struct page *pp = NULL;
1827 	int use_lgpg = 0;
1828 
1829 	ASSERT(hat != NULL);
1830 
1831 	if (hat->sfmmu_xhat_provider) {
1832 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1833 		return;
1834 	}
1835 
1836 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1837 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1838 	ASSERT((hat == ksfmmup) ||
1839 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1840 	if (len == 0)
1841 		panic("hat_devload: zero len");
1842 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1843 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1844 		    flags & ~SFMMU_LOAD_ALLFLAG);
1845 
1846 #if defined(SF_ERRATA_57)
1847 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1848 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1849 	    !(flags & HAT_LOAD_SHARE)) {
1850 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1851 		    " page executable");
1852 		attr &= ~PROT_EXEC;
1853 	}
1854 #endif
1855 
1856 	/*
1857 	 * If it's a memory page find its pp
1858 	 */
1859 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1860 		pp = page_numtopp_nolock(pfn);
1861 		if (pp == NULL) {
1862 			flags |= HAT_LOAD_NOCONSIST;
1863 		} else {
1864 			if (PP_ISFREE(pp)) {
1865 				panic("hat_memload: loading "
1866 				    "a mapping to free page %p",
1867 				    (void *)pp);
1868 			}
1869 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1870 				panic("hat_memload: loading a mapping "
1871 				    "to unlocked relocatable page %p",
1872 				    (void *)pp);
1873 			}
1874 			ASSERT(len == MMU_PAGESIZE);
1875 		}
1876 	}
1877 
1878 	if (hat->sfmmu_rmstat)
1879 		hat_resvstat(len, hat->sfmmu_as, addr);
1880 
1881 	if (flags & HAT_LOAD_NOCONSIST) {
1882 		attr |= SFMMU_UNCACHEVTTE;
1883 		use_lgpg = 1;
1884 	}
1885 	if (!pf_is_memory(pfn)) {
1886 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1887 		use_lgpg = 1;
1888 		switch (attr & HAT_ORDER_MASK) {
1889 			case HAT_STRICTORDER:
1890 			case HAT_UNORDERED_OK:
1891 				/*
1892 				 * we set the side effect bit for all non
1893 				 * memory mappings unless merging is ok
1894 				 */
1895 				attr |= SFMMU_SIDEFFECT;
1896 				break;
1897 			case HAT_MERGING_OK:
1898 			case HAT_LOADCACHING_OK:
1899 			case HAT_STORECACHING_OK:
1900 				break;
1901 			default:
1902 				panic("hat_devload: bad attr");
1903 				break;
1904 		}
1905 	}
1906 	while (len) {
1907 		if (!use_lgpg) {
1908 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1909 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1910 			    flags);
1911 			len -= MMU_PAGESIZE;
1912 			addr += MMU_PAGESIZE;
1913 			pfn++;
1914 			continue;
1915 		}
1916 		/*
1917 		 *  try to use large pages, check va/pa alignments
1918 		 *  Note that 32M/256M page sizes are not (yet) supported.
1919 		 */
1920 		if ((len >= MMU_PAGESIZE4M) &&
1921 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1922 		    !(disable_large_pages & (1 << TTE4M)) &&
1923 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1924 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1925 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1926 			    flags);
1927 			len -= MMU_PAGESIZE4M;
1928 			addr += MMU_PAGESIZE4M;
1929 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1930 		} else if ((len >= MMU_PAGESIZE512K) &&
1931 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1932 		    !(disable_large_pages & (1 << TTE512K)) &&
1933 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1934 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1935 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1936 			    flags);
1937 			len -= MMU_PAGESIZE512K;
1938 			addr += MMU_PAGESIZE512K;
1939 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1940 		} else if ((len >= MMU_PAGESIZE64K) &&
1941 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1942 		    !(disable_large_pages & (1 << TTE64K)) &&
1943 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1944 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1945 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1946 			    flags);
1947 			len -= MMU_PAGESIZE64K;
1948 			addr += MMU_PAGESIZE64K;
1949 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1950 		} else {
1951 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1952 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1953 			    flags);
1954 			len -= MMU_PAGESIZE;
1955 			addr += MMU_PAGESIZE;
1956 			pfn++;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Check TSB and TLB page sizes.
1962 	 */
1963 	if ((flags & HAT_LOAD_SHARE) == 0) {
1964 		sfmmu_check_page_sizes(hat, 1);
1965 	}
1966 }
1967 
1968 /*
1969  * Map the largest extend possible out of the page array. The array may NOT
1970  * be in order.  The largest possible mapping a page can have
1971  * is specified in the p_szc field.  The p_szc field
1972  * cannot change as long as there any mappings (large or small)
1973  * to any of the pages that make up the large page. (ie. any
1974  * promotion/demotion of page size is not up to the hat but up to
1975  * the page free list manager).  The array
1976  * should consist of properly aligned contigous pages that are
1977  * part of a big page for a large mapping to be created.
1978  */
1979 void
1980 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1981 	struct page **pps, uint_t attr, uint_t flags)
1982 {
1983 	int  ttesz;
1984 	size_t mapsz;
1985 	pgcnt_t	numpg, npgs;
1986 	tte_t tte;
1987 	page_t *pp;
1988 	int large_pages_disable;
1989 
1990 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1991 
1992 	if (hat->sfmmu_xhat_provider) {
1993 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1994 		return;
1995 	}
1996 
1997 	if (hat->sfmmu_rmstat)
1998 		hat_resvstat(len, hat->sfmmu_as, addr);
1999 
2000 #if defined(SF_ERRATA_57)
2001 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2002 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2003 	    !(flags & HAT_LOAD_SHARE)) {
2004 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2005 		    "user page executable");
2006 		attr &= ~PROT_EXEC;
2007 	}
2008 #endif
2009 
2010 	/* Get number of pages */
2011 	npgs = len >> MMU_PAGESHIFT;
2012 
2013 	if (flags & HAT_LOAD_SHARE) {
2014 		large_pages_disable = disable_ism_large_pages;
2015 	} else {
2016 		large_pages_disable = disable_large_pages;
2017 	}
2018 
2019 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2020 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2021 		return;
2022 	}
2023 
2024 	while (npgs >= NHMENTS) {
2025 		pp = *pps;
2026 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2027 			/*
2028 			 * Check if this page size is disabled.
2029 			 */
2030 			if (large_pages_disable & (1 << ttesz))
2031 				continue;
2032 
2033 			numpg = TTEPAGES(ttesz);
2034 			mapsz = numpg << MMU_PAGESHIFT;
2035 			if ((npgs >= numpg) &&
2036 			    IS_P2ALIGNED(addr, mapsz) &&
2037 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2038 				/*
2039 				 * At this point we have enough pages and
2040 				 * we know the virtual address and the pfn
2041 				 * are properly aligned.  We still need
2042 				 * to check for physical contiguity but since
2043 				 * it is very likely that this is the case
2044 				 * we will assume they are so and undo
2045 				 * the request if necessary.  It would
2046 				 * be great if we could get a hint flag
2047 				 * like HAT_CONTIG which would tell us
2048 				 * the pages are contigous for sure.
2049 				 */
2050 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2051 					attr, ttesz);
2052 				if (!sfmmu_tteload_array(hat, &tte, addr,
2053 				    pps, flags)) {
2054 					break;
2055 				}
2056 			}
2057 		}
2058 		if (ttesz == TTE8K) {
2059 			/*
2060 			 * We were not able to map array using a large page
2061 			 * batch a hmeblk or fraction at a time.
2062 			 */
2063 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2064 				& (NHMENTS-1);
2065 			numpg = NHMENTS - numpg;
2066 			ASSERT(numpg <= npgs);
2067 			mapsz = numpg * MMU_PAGESIZE;
2068 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2069 							numpg);
2070 		}
2071 		addr += mapsz;
2072 		npgs -= numpg;
2073 		pps += numpg;
2074 	}
2075 
2076 	if (npgs) {
2077 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2078 	}
2079 
2080 	/*
2081 	 * Check TSB and TLB page sizes.
2082 	 */
2083 	if ((flags & HAT_LOAD_SHARE) == 0) {
2084 		sfmmu_check_page_sizes(hat, 1);
2085 	}
2086 }
2087 
2088 /*
2089  * Function tries to batch 8K pages into the same hme blk.
2090  */
2091 static void
2092 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2093 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2094 {
2095 	tte_t	tte;
2096 	page_t *pp;
2097 	struct hmehash_bucket *hmebp;
2098 	struct hme_blk *hmeblkp;
2099 	int	index;
2100 
2101 	while (npgs) {
2102 		/*
2103 		 * Acquire the hash bucket.
2104 		 */
2105 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2106 		ASSERT(hmebp);
2107 
2108 		/*
2109 		 * Find the hment block.
2110 		 */
2111 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2112 				TTE8K, flags);
2113 		ASSERT(hmeblkp);
2114 
2115 		do {
2116 			/*
2117 			 * Make the tte.
2118 			 */
2119 			pp = *pps;
2120 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2121 
2122 			/*
2123 			 * Add the translation.
2124 			 */
2125 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2126 					vaddr, pps, flags);
2127 
2128 			/*
2129 			 * Goto next page.
2130 			 */
2131 			pps++;
2132 			npgs--;
2133 
2134 			/*
2135 			 * Goto next address.
2136 			 */
2137 			vaddr += MMU_PAGESIZE;
2138 
2139 			/*
2140 			 * Don't crossover into a different hmentblk.
2141 			 */
2142 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2143 			    (NHMENTS-1));
2144 
2145 		} while (index != 0 && npgs != 0);
2146 
2147 		/*
2148 		 * Release the hash bucket.
2149 		 */
2150 
2151 		sfmmu_tteload_release_hashbucket(hmebp);
2152 	}
2153 }
2154 
2155 /*
2156  * Construct a tte for a page:
2157  *
2158  * tte_valid = 1
2159  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2160  * tte_size = size
2161  * tte_nfo = attr & HAT_NOFAULT
2162  * tte_ie = attr & HAT_STRUCTURE_LE
2163  * tte_hmenum = hmenum
2164  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2165  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2166  * tte_ref = 1 (optimization)
2167  * tte_wr_perm = attr & PROT_WRITE;
2168  * tte_no_sync = attr & HAT_NOSYNC
2169  * tte_lock = attr & SFMMU_LOCKTTE
2170  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2171  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2172  * tte_e = attr & SFMMU_SIDEFFECT
2173  * tte_priv = !(attr & PROT_USER)
2174  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2175  * tte_glb = 0
2176  */
2177 void
2178 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2179 {
2180 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2181 
2182 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2183 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2184 
2185 	if (TTE_IS_NOSYNC(ttep)) {
2186 		TTE_SET_REF(ttep);
2187 		if (TTE_IS_WRITABLE(ttep)) {
2188 			TTE_SET_MOD(ttep);
2189 		}
2190 	}
2191 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2192 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2193 	}
2194 }
2195 
2196 /*
2197  * This function will add a translation to the hme_blk and allocate the
2198  * hme_blk if one does not exist.
2199  * If a page structure is specified then it will add the
2200  * corresponding hment to the mapping list.
2201  * It will also update the hmenum field for the tte.
2202  */
2203 void
2204 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2205 	uint_t flags)
2206 {
2207 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2208 }
2209 
2210 /*
2211  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2212  * Assumes that a particular page size may only be resident in one TSB.
2213  */
2214 static void
2215 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2216 {
2217 	struct tsb_info *tsbinfop = NULL;
2218 	uint64_t tag;
2219 	struct tsbe *tsbe_addr;
2220 	uint64_t tsb_base;
2221 	uint_t tsb_size;
2222 	int vpshift = MMU_PAGESHIFT;
2223 	int phys = 0;
2224 
2225 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2226 		phys = ktsb_phys;
2227 		if (ttesz >= TTE4M) {
2228 #ifndef sun4v
2229 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2230 #endif
2231 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2232 			tsb_size = ktsb4m_szcode;
2233 		} else {
2234 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2235 			tsb_size = ktsb_szcode;
2236 		}
2237 	} else {
2238 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2239 
2240 		/*
2241 		 * If there isn't a TSB for this page size, or the TSB is
2242 		 * swapped out, there is nothing to do.  Note that the latter
2243 		 * case seems impossible but can occur if hat_pageunload()
2244 		 * is called on an ISM mapping while the process is swapped
2245 		 * out.
2246 		 */
2247 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2248 			return;
2249 
2250 		/*
2251 		 * If another thread is in the middle of relocating a TSB
2252 		 * we can't unload the entry so set a flag so that the
2253 		 * TSB will be flushed before it can be accessed by the
2254 		 * process.
2255 		 */
2256 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2257 			if (ttep == NULL)
2258 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2259 			return;
2260 		}
2261 #if defined(UTSB_PHYS)
2262 		phys = 1;
2263 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2264 #else
2265 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2266 #endif
2267 		tsb_size = tsbinfop->tsb_szc;
2268 	}
2269 	if (ttesz >= TTE4M)
2270 		vpshift = MMU_PAGESHIFT4M;
2271 
2272 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2273 	tag = sfmmu_make_tsbtag(vaddr);
2274 
2275 	if (ttep == NULL) {
2276 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2277 	} else {
2278 		if (ttesz >= TTE4M) {
2279 			SFMMU_STAT(sf_tsb_load4m);
2280 		} else {
2281 			SFMMU_STAT(sf_tsb_load8k);
2282 		}
2283 
2284 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2285 	}
2286 }
2287 
2288 /*
2289  * Unmap all entries from [start, end) matching the given page size.
2290  *
2291  * This function is used primarily to unmap replicated 64K or 512K entries
2292  * from the TSB that are inserted using the base page size TSB pointer, but
2293  * it may also be called to unmap a range of addresses from the TSB.
2294  */
2295 void
2296 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2297 {
2298 	struct tsb_info *tsbinfop;
2299 	uint64_t tag;
2300 	struct tsbe *tsbe_addr;
2301 	caddr_t vaddr;
2302 	uint64_t tsb_base;
2303 	int vpshift, vpgsz;
2304 	uint_t tsb_size;
2305 	int phys = 0;
2306 
2307 	/*
2308 	 * Assumptions:
2309 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2310 	 *  at a time shooting down any valid entries we encounter.
2311 	 *
2312 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2313 	 *  down any valid mappings we find.
2314 	 */
2315 	if (sfmmup == ksfmmup) {
2316 		phys = ktsb_phys;
2317 		if (ttesz >= TTE4M) {
2318 #ifndef sun4v
2319 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2320 #endif
2321 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2322 			tsb_size = ktsb4m_szcode;
2323 		} else {
2324 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2325 			tsb_size = ktsb_szcode;
2326 		}
2327 	} else {
2328 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2329 
2330 		/*
2331 		 * If there isn't a TSB for this page size, or the TSB is
2332 		 * swapped out, there is nothing to do.  Note that the latter
2333 		 * case seems impossible but can occur if hat_pageunload()
2334 		 * is called on an ISM mapping while the process is swapped
2335 		 * out.
2336 		 */
2337 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2338 			return;
2339 
2340 		/*
2341 		 * If another thread is in the middle of relocating a TSB
2342 		 * we can't unload the entry so set a flag so that the
2343 		 * TSB will be flushed before it can be accessed by the
2344 		 * process.
2345 		 */
2346 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2347 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2348 			return;
2349 		}
2350 #if defined(UTSB_PHYS)
2351 		phys = 1;
2352 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2353 #else
2354 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2355 #endif
2356 		tsb_size = tsbinfop->tsb_szc;
2357 	}
2358 	if (ttesz >= TTE4M) {
2359 		vpshift = MMU_PAGESHIFT4M;
2360 		vpgsz = MMU_PAGESIZE4M;
2361 	} else {
2362 		vpshift = MMU_PAGESHIFT;
2363 		vpgsz = MMU_PAGESIZE;
2364 	}
2365 
2366 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2367 		tag = sfmmu_make_tsbtag(vaddr);
2368 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2369 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2370 	}
2371 }
2372 
2373 /*
2374  * Select the optimum TSB size given the number of mappings
2375  * that need to be cached.
2376  */
2377 static int
2378 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2379 {
2380 	int szc = 0;
2381 
2382 #ifdef DEBUG
2383 	if (tsb_grow_stress) {
2384 		uint32_t randval = (uint32_t)gettick() >> 4;
2385 		return (randval % (tsb_max_growsize + 1));
2386 	}
2387 #endif	/* DEBUG */
2388 
2389 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2390 		szc++;
2391 	return (szc);
2392 }
2393 
2394 /*
2395  * This function will add a translation to the hme_blk and allocate the
2396  * hme_blk if one does not exist.
2397  * If a page structure is specified then it will add the
2398  * corresponding hment to the mapping list.
2399  * It will also update the hmenum field for the tte.
2400  * Furthermore, it attempts to create a large page translation
2401  * for <addr,hat> at page array pps.  It assumes addr and first
2402  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2403  */
2404 static int
2405 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2406 	page_t **pps, uint_t flags)
2407 {
2408 	struct hmehash_bucket *hmebp;
2409 	struct hme_blk *hmeblkp;
2410 	int 	ret;
2411 	uint_t	size;
2412 
2413 	/*
2414 	 * Get mapping size.
2415 	 */
2416 	size = TTE_CSZ(ttep);
2417 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2418 
2419 	/*
2420 	 * Acquire the hash bucket.
2421 	 */
2422 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2423 	ASSERT(hmebp);
2424 
2425 	/*
2426 	 * Find the hment block.
2427 	 */
2428 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2429 	ASSERT(hmeblkp);
2430 
2431 	/*
2432 	 * Add the translation.
2433 	 */
2434 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2435 
2436 	/*
2437 	 * Release the hash bucket.
2438 	 */
2439 	sfmmu_tteload_release_hashbucket(hmebp);
2440 
2441 	return (ret);
2442 }
2443 
2444 /*
2445  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2446  */
2447 static struct hmehash_bucket *
2448 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2449 {
2450 	struct hmehash_bucket *hmebp;
2451 	int hmeshift;
2452 
2453 	hmeshift = HME_HASH_SHIFT(size);
2454 
2455 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2456 
2457 	SFMMU_HASH_LOCK(hmebp);
2458 
2459 	return (hmebp);
2460 }
2461 
2462 /*
2463  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2464  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2465  * allocated.
2466  */
2467 static struct hme_blk *
2468 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2469 	caddr_t vaddr, uint_t size, uint_t flags)
2470 {
2471 	hmeblk_tag hblktag;
2472 	int hmeshift;
2473 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2474 	uint64_t hblkpa, prevpa;
2475 	struct kmem_cache *sfmmu_cache;
2476 	uint_t forcefree;
2477 
2478 	hblktag.htag_id = sfmmup;
2479 	hmeshift = HME_HASH_SHIFT(size);
2480 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2481 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2482 
2483 ttearray_realloc:
2484 
2485 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2486 	    pr_hblk, prevpa, &list);
2487 
2488 	/*
2489 	 * We block until hblk_reserve_lock is released; it's held by
2490 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2491 	 * replaced by a hblk from sfmmu8_cache.
2492 	 */
2493 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2494 	    hblk_reserve_thread != curthread) {
2495 		SFMMU_HASH_UNLOCK(hmebp);
2496 		mutex_enter(&hblk_reserve_lock);
2497 		mutex_exit(&hblk_reserve_lock);
2498 		SFMMU_STAT(sf_hblk_reserve_hit);
2499 		SFMMU_HASH_LOCK(hmebp);
2500 		goto ttearray_realloc;
2501 	}
2502 
2503 	if (hmeblkp == NULL) {
2504 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2505 		    hblktag, flags);
2506 	} else {
2507 		/*
2508 		 * It is possible for 8k and 64k hblks to collide since they
2509 		 * have the same rehash value. This is because we
2510 		 * lazily free hblks and 8K/64K blks could be lingering.
2511 		 * If we find size mismatch we free the block and & try again.
2512 		 */
2513 		if (get_hblk_ttesz(hmeblkp) != size) {
2514 			ASSERT(!hmeblkp->hblk_vcnt);
2515 			ASSERT(!hmeblkp->hblk_hmecnt);
2516 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2517 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2518 			goto ttearray_realloc;
2519 		}
2520 		if (hmeblkp->hblk_shw_bit) {
2521 			/*
2522 			 * if the hblk was previously used as a shadow hblk then
2523 			 * we will change it to a normal hblk
2524 			 */
2525 			if (hmeblkp->hblk_shw_mask) {
2526 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2527 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2528 				goto ttearray_realloc;
2529 			} else {
2530 				hmeblkp->hblk_shw_bit = 0;
2531 			}
2532 		}
2533 		SFMMU_STAT(sf_hblk_hit);
2534 	}
2535 
2536 	/*
2537 	 * hat_memload() should never call kmem_cache_free(); see block
2538 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2539 	 * enqueue each hblk in the list to reserve list if it's created
2540 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2541 	 */
2542 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2543 	while ((pr_hblk = list) != NULL) {
2544 		list = pr_hblk->hblk_next;
2545 		sfmmu_cache = get_hblk_cache(pr_hblk);
2546 		if ((sfmmu_cache == sfmmu8_cache) &&
2547 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2548 			continue;
2549 
2550 		ASSERT(sfmmup != KHATID);
2551 		kmem_cache_free(sfmmu_cache, pr_hblk);
2552 	}
2553 
2554 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2555 	ASSERT(!hmeblkp->hblk_shw_bit);
2556 
2557 	return (hmeblkp);
2558 }
2559 
2560 /*
2561  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2562  * otherwise.
2563  */
2564 static int
2565 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2566 	caddr_t vaddr, page_t **pps, uint_t flags)
2567 {
2568 	page_t *pp = *pps;
2569 	int hmenum, size, remap;
2570 	tte_t tteold, flush_tte;
2571 #ifdef DEBUG
2572 	tte_t orig_old;
2573 #endif /* DEBUG */
2574 	struct sf_hment *sfhme;
2575 	kmutex_t *pml, *pmtx;
2576 	hatlock_t *hatlockp;
2577 
2578 	/*
2579 	 * remove this panic when we decide to let user virtual address
2580 	 * space be >= USERLIMIT.
2581 	 */
2582 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2583 		panic("user addr %p in kernel space", vaddr);
2584 #if defined(TTE_IS_GLOBAL)
2585 	if (TTE_IS_GLOBAL(ttep))
2586 		panic("sfmmu_tteload: creating global tte");
2587 #endif
2588 
2589 #ifdef DEBUG
2590 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2591 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2592 		panic("sfmmu_tteload: non cacheable memory tte");
2593 #endif /* DEBUG */
2594 
2595 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2596 	    !TTE_IS_MOD(ttep)) {
2597 		/*
2598 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2599 		 * the TSB if the TTE isn't writable since we're likely to
2600 		 * fault on it again -- preloading can be fairly expensive.
2601 		 */
2602 		flags |= SFMMU_NO_TSBLOAD;
2603 	}
2604 
2605 	size = TTE_CSZ(ttep);
2606 	switch (size) {
2607 	case TTE8K:
2608 		SFMMU_STAT(sf_tteload8k);
2609 		break;
2610 	case TTE64K:
2611 		SFMMU_STAT(sf_tteload64k);
2612 		break;
2613 	case TTE512K:
2614 		SFMMU_STAT(sf_tteload512k);
2615 		break;
2616 	case TTE4M:
2617 		SFMMU_STAT(sf_tteload4m);
2618 		break;
2619 	case (TTE32M):
2620 		SFMMU_STAT(sf_tteload32m);
2621 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2622 		break;
2623 	case (TTE256M):
2624 		SFMMU_STAT(sf_tteload256m);
2625 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2626 		break;
2627 	}
2628 
2629 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2630 
2631 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2632 
2633 	/*
2634 	 * Need to grab mlist lock here so that pageunload
2635 	 * will not change tte behind us.
2636 	 */
2637 	if (pp) {
2638 		pml = sfmmu_mlist_enter(pp);
2639 	}
2640 
2641 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2642 	/*
2643 	 * Look for corresponding hment and if valid verify
2644 	 * pfns are equal.
2645 	 */
2646 	remap = TTE_IS_VALID(&tteold);
2647 	if (remap) {
2648 		pfn_t	new_pfn, old_pfn;
2649 
2650 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2651 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2652 
2653 		if (flags & HAT_LOAD_REMAP) {
2654 			/* make sure we are remapping same type of pages */
2655 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2656 				panic("sfmmu_tteload - tte remap io<->memory");
2657 			}
2658 			if (old_pfn != new_pfn &&
2659 			    (pp != NULL || sfhme->hme_page != NULL)) {
2660 				panic("sfmmu_tteload - tte remap pp != NULL");
2661 			}
2662 		} else if (old_pfn != new_pfn) {
2663 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2664 			    (void *)hmeblkp);
2665 		}
2666 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2667 	}
2668 
2669 	if (pp) {
2670 		if (size == TTE8K) {
2671 #ifdef VAC
2672 			/*
2673 			 * Handle VAC consistency
2674 			 */
2675 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2676 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2677 			}
2678 #endif
2679 
2680 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2681 				pmtx = sfmmu_page_enter(pp);
2682 				PP_CLRRO(pp);
2683 				sfmmu_page_exit(pmtx);
2684 			} else if (!PP_ISMAPPED(pp) &&
2685 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2686 				pmtx = sfmmu_page_enter(pp);
2687 				if (!(PP_ISMOD(pp))) {
2688 					PP_SETRO(pp);
2689 				}
2690 				sfmmu_page_exit(pmtx);
2691 			}
2692 
2693 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2694 			/*
2695 			 * sfmmu_pagearray_setup failed so return
2696 			 */
2697 			sfmmu_mlist_exit(pml);
2698 			return (1);
2699 		}
2700 	}
2701 
2702 	/*
2703 	 * Make sure hment is not on a mapping list.
2704 	 */
2705 	ASSERT(remap || (sfhme->hme_page == NULL));
2706 
2707 	/* if it is not a remap then hme->next better be NULL */
2708 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2709 
2710 	if (flags & HAT_LOAD_LOCK) {
2711 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2712 			panic("too high lckcnt-hmeblk %p",
2713 			    (void *)hmeblkp);
2714 		}
2715 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2716 
2717 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2718 	}
2719 
2720 #ifdef VAC
2721 	if (pp && PP_ISNC(pp)) {
2722 		/*
2723 		 * If the physical page is marked to be uncacheable, like
2724 		 * by a vac conflict, make sure the new mapping is also
2725 		 * uncacheable.
2726 		 */
2727 		TTE_CLR_VCACHEABLE(ttep);
2728 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2729 	}
2730 #endif
2731 	ttep->tte_hmenum = hmenum;
2732 
2733 #ifdef DEBUG
2734 	orig_old = tteold;
2735 #endif /* DEBUG */
2736 
2737 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2738 		if ((sfmmup == KHATID) &&
2739 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2740 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2741 		}
2742 #ifdef DEBUG
2743 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2744 #endif /* DEBUG */
2745 	}
2746 
2747 	if (!TTE_IS_VALID(&tteold)) {
2748 
2749 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2750 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2751 
2752 		/*
2753 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2754 		 */
2755 
2756 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2757 		    sfmmup != ksfmmup) {
2758 			/*
2759 			 * If this is the first large mapping for the process
2760 			 * we must force any CPUs running this process to TL=0
2761 			 * where they will reload the HAT flags from the
2762 			 * tsbmiss area.  This is necessary to make the large
2763 			 * mappings we are about to load visible to those CPUs;
2764 			 * otherwise they'll loop forever calling pagefault()
2765 			 * since we don't search large hash chains by default.
2766 			 */
2767 			hatlockp = sfmmu_hat_enter(sfmmup);
2768 			if (size == TTE512K &&
2769 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2770 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2771 				sfmmu_sync_mmustate(sfmmup);
2772 			} else if (size == TTE4M &&
2773 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2774 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2775 				sfmmu_sync_mmustate(sfmmup);
2776 			} else if (size == TTE64K &&
2777 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2778 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2779 				/* no sync mmustate; 64K shares 8K hashes */
2780 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2781 			    if (size == TTE32M &&
2782 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2783 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2784 				sfmmu_sync_mmustate(sfmmup);
2785 			    } else if (size == TTE256M &&
2786 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2787 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2788 				sfmmu_sync_mmustate(sfmmup);
2789 			    }
2790 			}
2791 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2792 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2793 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2794 			}
2795 			sfmmu_hat_exit(hatlockp);
2796 		}
2797 	}
2798 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2799 
2800 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2801 	    hw_tte.tte_intlo;
2802 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2803 	    hw_tte.tte_inthi;
2804 
2805 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2806 		/*
2807 		 * If remap and new tte differs from old tte we need
2808 		 * to sync the mod bit and flush TLB/TSB.  We don't
2809 		 * need to sync ref bit because we currently always set
2810 		 * ref bit in tteload.
2811 		 */
2812 		ASSERT(TTE_IS_REF(ttep));
2813 		if (TTE_IS_MOD(&tteold)) {
2814 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2815 		}
2816 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2817 		xt_sync(sfmmup->sfmmu_cpusran);
2818 	}
2819 
2820 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2821 		/*
2822 		 * We only preload 8K and 4M mappings into the TSB, since
2823 		 * 64K and 512K mappings are replicated and hence don't
2824 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2825 		 */
2826 		if (size == TTE8K || size == TTE4M) {
2827 			hatlockp = sfmmu_hat_enter(sfmmup);
2828 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2829 			sfmmu_hat_exit(hatlockp);
2830 		}
2831 	}
2832 	if (pp) {
2833 		if (!remap) {
2834 			HME_ADD(sfhme, pp);
2835 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2836 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2837 
2838 			/*
2839 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2840 			 * see pageunload() for comment.
2841 			 */
2842 		}
2843 		sfmmu_mlist_exit(pml);
2844 	}
2845 
2846 	return (0);
2847 }
2848 /*
2849  * Function unlocks hash bucket.
2850  */
2851 static void
2852 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2853 {
2854 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2855 	SFMMU_HASH_UNLOCK(hmebp);
2856 }
2857 
2858 /*
2859  * function which checks and sets up page array for a large
2860  * translation.  Will set p_vcolor, p_index, p_ro fields.
2861  * Assumes addr and pfnum of first page are properly aligned.
2862  * Will check for physical contiguity. If check fails it return
2863  * non null.
2864  */
2865 static int
2866 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2867 {
2868 	int 	i, index, ttesz;
2869 	pfn_t	pfnum;
2870 	pgcnt_t	npgs;
2871 	page_t *pp, *pp1;
2872 	kmutex_t *pmtx;
2873 #ifdef VAC
2874 	int osz;
2875 	int cflags = 0;
2876 	int vac_err = 0;
2877 #endif
2878 	int newidx = 0;
2879 
2880 	ttesz = TTE_CSZ(ttep);
2881 
2882 	ASSERT(ttesz > TTE8K);
2883 
2884 	npgs = TTEPAGES(ttesz);
2885 	index = PAGESZ_TO_INDEX(ttesz);
2886 
2887 	pfnum = (*pps)->p_pagenum;
2888 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2889 
2890 	/*
2891 	 * Save the first pp so we can do HAT_TMPNC at the end.
2892 	 */
2893 	pp1 = *pps;
2894 #ifdef VAC
2895 	osz = fnd_mapping_sz(pp1);
2896 #endif
2897 
2898 	for (i = 0; i < npgs; i++, pps++) {
2899 		pp = *pps;
2900 		ASSERT(PAGE_LOCKED(pp));
2901 		ASSERT(pp->p_szc >= ttesz);
2902 		ASSERT(pp->p_szc == pp1->p_szc);
2903 		ASSERT(sfmmu_mlist_held(pp));
2904 
2905 		/*
2906 		 * XXX is it possible to maintain P_RO on the root only?
2907 		 */
2908 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2909 			pmtx = sfmmu_page_enter(pp);
2910 			PP_CLRRO(pp);
2911 			sfmmu_page_exit(pmtx);
2912 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2913 		    !PP_ISMOD(pp)) {
2914 			pmtx = sfmmu_page_enter(pp);
2915 			if (!(PP_ISMOD(pp))) {
2916 				PP_SETRO(pp);
2917 			}
2918 			sfmmu_page_exit(pmtx);
2919 		}
2920 
2921 		/*
2922 		 * If this is a remap we skip vac & contiguity checks.
2923 		 */
2924 		if (remap)
2925 			continue;
2926 
2927 		/*
2928 		 * set p_vcolor and detect any vac conflicts.
2929 		 */
2930 #ifdef VAC
2931 		if (vac_err == 0) {
2932 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2933 
2934 		}
2935 #endif
2936 
2937 		/*
2938 		 * Save current index in case we need to undo it.
2939 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2940 		 *	"SFMMU_INDEX_SHIFT	6"
2941 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2942 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2943 		 *
2944 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2945 		 *	if ttesz == 1 then index = 0x2
2946 		 *		    2 then index = 0x4
2947 		 *		    3 then index = 0x8
2948 		 *		    4 then index = 0x10
2949 		 *		    5 then index = 0x20
2950 		 * The code below checks if it's a new pagesize (ie, newidx)
2951 		 * in case we need to take it back out of p_index,
2952 		 * and then or's the new index into the existing index.
2953 		 */
2954 		if ((PP_MAPINDEX(pp) & index) == 0)
2955 			newidx = 1;
2956 		pp->p_index = (PP_MAPINDEX(pp) | index);
2957 
2958 		/*
2959 		 * contiguity check
2960 		 */
2961 		if (pp->p_pagenum != pfnum) {
2962 			/*
2963 			 * If we fail the contiguity test then
2964 			 * the only thing we need to fix is the p_index field.
2965 			 * We might get a few extra flushes but since this
2966 			 * path is rare that is ok.  The p_ro field will
2967 			 * get automatically fixed on the next tteload to
2968 			 * the page.  NO TNC bit is set yet.
2969 			 */
2970 			while (i >= 0) {
2971 				pp = *pps;
2972 				if (newidx)
2973 					pp->p_index = (PP_MAPINDEX(pp) &
2974 					    ~index);
2975 				pps--;
2976 				i--;
2977 			}
2978 			return (1);
2979 		}
2980 		pfnum++;
2981 		addr += MMU_PAGESIZE;
2982 	}
2983 
2984 #ifdef VAC
2985 	if (vac_err) {
2986 		if (ttesz > osz) {
2987 			/*
2988 			 * There are some smaller mappings that causes vac
2989 			 * conflicts. Convert all existing small mappings to
2990 			 * TNC.
2991 			 */
2992 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2993 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2994 				npgs);
2995 		} else {
2996 			/* EMPTY */
2997 			/*
2998 			 * If there exists an big page mapping,
2999 			 * that means the whole existing big page
3000 			 * has TNC setting already. No need to covert to
3001 			 * TNC again.
3002 			 */
3003 			ASSERT(PP_ISTNC(pp1));
3004 		}
3005 	}
3006 #endif	/* VAC */
3007 
3008 	return (0);
3009 }
3010 
3011 #ifdef VAC
3012 /*
3013  * Routine that detects vac consistency for a large page. It also
3014  * sets virtual color for all pp's for this big mapping.
3015  */
3016 static int
3017 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3018 {
3019 	int vcolor, ocolor;
3020 
3021 	ASSERT(sfmmu_mlist_held(pp));
3022 
3023 	if (PP_ISNC(pp)) {
3024 		return (HAT_TMPNC);
3025 	}
3026 
3027 	vcolor = addr_to_vcolor(addr);
3028 	if (PP_NEWPAGE(pp)) {
3029 		PP_SET_VCOLOR(pp, vcolor);
3030 		return (0);
3031 	}
3032 
3033 	ocolor = PP_GET_VCOLOR(pp);
3034 	if (ocolor == vcolor) {
3035 		return (0);
3036 	}
3037 
3038 	if (!PP_ISMAPPED(pp)) {
3039 		/*
3040 		 * Previous user of page had a differnet color
3041 		 * but since there are no current users
3042 		 * we just flush the cache and change the color.
3043 		 * As an optimization for large pages we flush the
3044 		 * entire cache of that color and set a flag.
3045 		 */
3046 		SFMMU_STAT(sf_pgcolor_conflict);
3047 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3048 			CacheColor_SetFlushed(*cflags, ocolor);
3049 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3050 		}
3051 		PP_SET_VCOLOR(pp, vcolor);
3052 		return (0);
3053 	}
3054 
3055 	/*
3056 	 * We got a real conflict with a current mapping.
3057 	 * set flags to start unencaching all mappings
3058 	 * and return failure so we restart looping
3059 	 * the pp array from the beginning.
3060 	 */
3061 	return (HAT_TMPNC);
3062 }
3063 #endif	/* VAC */
3064 
3065 /*
3066  * creates a large page shadow hmeblk for a tte.
3067  * The purpose of this routine is to allow us to do quick unloads because
3068  * the vm layer can easily pass a very large but sparsely populated range.
3069  */
3070 static struct hme_blk *
3071 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3072 {
3073 	struct hmehash_bucket *hmebp;
3074 	hmeblk_tag hblktag;
3075 	int hmeshift, size, vshift;
3076 	uint_t shw_mask, newshw_mask;
3077 	struct hme_blk *hmeblkp;
3078 
3079 	ASSERT(sfmmup != KHATID);
3080 	if (mmu_page_sizes == max_mmu_page_sizes) {
3081 		ASSERT(ttesz < TTE256M);
3082 	} else {
3083 		ASSERT(ttesz < TTE4M);
3084 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3085 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3086 	}
3087 
3088 	if (ttesz == TTE8K) {
3089 		size = TTE512K;
3090 	} else {
3091 		size = ++ttesz;
3092 	}
3093 
3094 	hblktag.htag_id = sfmmup;
3095 	hmeshift = HME_HASH_SHIFT(size);
3096 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3097 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3098 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3099 
3100 	SFMMU_HASH_LOCK(hmebp);
3101 
3102 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3103 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3104 	if (hmeblkp == NULL) {
3105 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3106 			hblktag, flags);
3107 	}
3108 	ASSERT(hmeblkp);
3109 	if (!hmeblkp->hblk_shw_mask) {
3110 		/*
3111 		 * if this is a unused hblk it was just allocated or could
3112 		 * potentially be a previous large page hblk so we need to
3113 		 * set the shadow bit.
3114 		 */
3115 		hmeblkp->hblk_shw_bit = 1;
3116 	}
3117 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3118 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3119 	ASSERT(vshift < 8);
3120 	/*
3121 	 * Atomically set shw mask bit
3122 	 */
3123 	do {
3124 		shw_mask = hmeblkp->hblk_shw_mask;
3125 		newshw_mask = shw_mask | (1 << vshift);
3126 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3127 		    newshw_mask);
3128 	} while (newshw_mask != shw_mask);
3129 
3130 	SFMMU_HASH_UNLOCK(hmebp);
3131 
3132 	return (hmeblkp);
3133 }
3134 
3135 /*
3136  * This routine cleanup a previous shadow hmeblk and changes it to
3137  * a regular hblk.  This happens rarely but it is possible
3138  * when a process wants to use large pages and there are hblks still
3139  * lying around from the previous as that used these hmeblks.
3140  * The alternative was to cleanup the shadow hblks at unload time
3141  * but since so few user processes actually use large pages, it is
3142  * better to be lazy and cleanup at this time.
3143  */
3144 static void
3145 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3146 	struct hmehash_bucket *hmebp)
3147 {
3148 	caddr_t addr, endaddr;
3149 	int hashno, size;
3150 
3151 	ASSERT(hmeblkp->hblk_shw_bit);
3152 
3153 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3154 
3155 	if (!hmeblkp->hblk_shw_mask) {
3156 		hmeblkp->hblk_shw_bit = 0;
3157 		return;
3158 	}
3159 	addr = (caddr_t)get_hblk_base(hmeblkp);
3160 	endaddr = get_hblk_endaddr(hmeblkp);
3161 	size = get_hblk_ttesz(hmeblkp);
3162 	hashno = size - 1;
3163 	ASSERT(hashno > 0);
3164 	SFMMU_HASH_UNLOCK(hmebp);
3165 
3166 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3167 
3168 	SFMMU_HASH_LOCK(hmebp);
3169 }
3170 
3171 static void
3172 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3173 	int hashno)
3174 {
3175 	int hmeshift, shadow = 0;
3176 	hmeblk_tag hblktag;
3177 	struct hmehash_bucket *hmebp;
3178 	struct hme_blk *hmeblkp;
3179 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3180 	uint64_t hblkpa, prevpa, nx_pa;
3181 
3182 	ASSERT(hashno > 0);
3183 	hblktag.htag_id = sfmmup;
3184 	hblktag.htag_rehash = hashno;
3185 
3186 	hmeshift = HME_HASH_SHIFT(hashno);
3187 
3188 	while (addr < endaddr) {
3189 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3190 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3191 		SFMMU_HASH_LOCK(hmebp);
3192 		/* inline HME_HASH_SEARCH */
3193 		hmeblkp = hmebp->hmeblkp;
3194 		hblkpa = hmebp->hmeh_nextpa;
3195 		prevpa = 0;
3196 		pr_hblk = NULL;
3197 		while (hmeblkp) {
3198 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3199 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3200 				/* found hme_blk */
3201 				if (hmeblkp->hblk_shw_bit) {
3202 					if (hmeblkp->hblk_shw_mask) {
3203 						shadow = 1;
3204 						sfmmu_shadow_hcleanup(sfmmup,
3205 						    hmeblkp, hmebp);
3206 						break;
3207 					} else {
3208 						hmeblkp->hblk_shw_bit = 0;
3209 					}
3210 				}
3211 
3212 				/*
3213 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3214 				 * since hblk_unload() does not gurantee that.
3215 				 *
3216 				 * XXX - this could cause tteload() to spin
3217 				 * where sfmmu_shadow_hcleanup() is called.
3218 				 */
3219 			}
3220 
3221 			nx_hblk = hmeblkp->hblk_next;
3222 			nx_pa = hmeblkp->hblk_nextpa;
3223 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3224 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3225 					pr_hblk);
3226 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3227 			} else {
3228 				pr_hblk = hmeblkp;
3229 				prevpa = hblkpa;
3230 			}
3231 			hmeblkp = nx_hblk;
3232 			hblkpa = nx_pa;
3233 		}
3234 
3235 		SFMMU_HASH_UNLOCK(hmebp);
3236 
3237 		if (shadow) {
3238 			/*
3239 			 * We found another shadow hblk so cleaned its
3240 			 * children.  We need to go back and cleanup
3241 			 * the original hblk so we don't change the
3242 			 * addr.
3243 			 */
3244 			shadow = 0;
3245 		} else {
3246 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3247 				(1 << hmeshift));
3248 		}
3249 	}
3250 	sfmmu_hblks_list_purge(&list);
3251 }
3252 
3253 /*
3254  * Release one hardware address translation lock on the given address range.
3255  */
3256 void
3257 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3258 {
3259 	struct hmehash_bucket *hmebp;
3260 	hmeblk_tag hblktag;
3261 	int hmeshift, hashno = 1;
3262 	struct hme_blk *hmeblkp, *list = NULL;
3263 	caddr_t endaddr;
3264 
3265 	ASSERT(sfmmup != NULL);
3266 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3267 
3268 	ASSERT((sfmmup == ksfmmup) ||
3269 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3270 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3271 	endaddr = addr + len;
3272 	hblktag.htag_id = sfmmup;
3273 
3274 	/*
3275 	 * Spitfire supports 4 page sizes.
3276 	 * Most pages are expected to be of the smallest page size (8K) and
3277 	 * these will not need to be rehashed. 64K pages also don't need to be
3278 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3279 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3280 	 */
3281 	while (addr < endaddr) {
3282 		hmeshift = HME_HASH_SHIFT(hashno);
3283 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3284 		hblktag.htag_rehash = hashno;
3285 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3286 
3287 		SFMMU_HASH_LOCK(hmebp);
3288 
3289 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3290 		if (hmeblkp != NULL) {
3291 			/*
3292 			 * If we encounter a shadow hmeblk then
3293 			 * we know there are no valid hmeblks mapping
3294 			 * this address at this size or larger.
3295 			 * Just increment address by the smallest
3296 			 * page size.
3297 			 */
3298 			if (hmeblkp->hblk_shw_bit) {
3299 				addr += MMU_PAGESIZE;
3300 			} else {
3301 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3302 				    endaddr);
3303 			}
3304 			SFMMU_HASH_UNLOCK(hmebp);
3305 			hashno = 1;
3306 			continue;
3307 		}
3308 		SFMMU_HASH_UNLOCK(hmebp);
3309 
3310 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3311 			/*
3312 			 * We have traversed the whole list and rehashed
3313 			 * if necessary without finding the address to unlock
3314 			 * which should never happen.
3315 			 */
3316 			panic("sfmmu_unlock: addr not found. "
3317 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3318 		} else {
3319 			hashno++;
3320 		}
3321 	}
3322 
3323 	sfmmu_hblks_list_purge(&list);
3324 }
3325 
3326 /*
3327  * Function to unlock a range of addresses in an hmeblk.  It returns the
3328  * next address that needs to be unlocked.
3329  * Should be called with the hash lock held.
3330  */
3331 static caddr_t
3332 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3333 {
3334 	struct sf_hment *sfhme;
3335 	tte_t tteold, ttemod;
3336 	int ttesz, ret;
3337 
3338 	ASSERT(in_hblk_range(hmeblkp, addr));
3339 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3340 
3341 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3342 	ttesz = get_hblk_ttesz(hmeblkp);
3343 
3344 	HBLKTOHME(sfhme, hmeblkp, addr);
3345 	while (addr < endaddr) {
3346 readtte:
3347 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3348 		if (TTE_IS_VALID(&tteold)) {
3349 
3350 			ttemod = tteold;
3351 
3352 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3353 			    &sfhme->hme_tte);
3354 
3355 			if (ret < 0)
3356 				goto readtte;
3357 
3358 			if (hmeblkp->hblk_lckcnt == 0)
3359 				panic("zero hblk lckcnt");
3360 
3361 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3362 			    (uintptr_t)endaddr)
3363 				panic("can't unlock large tte");
3364 
3365 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3366 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3367 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3368 		} else {
3369 			panic("sfmmu_hblk_unlock: invalid tte");
3370 		}
3371 		addr += TTEBYTES(ttesz);
3372 		sfhme++;
3373 	}
3374 	return (addr);
3375 }
3376 
3377 /*
3378  * Physical Address Mapping Framework
3379  *
3380  * General rules:
3381  *
3382  * (1) Applies only to seg_kmem memory pages. To make things easier,
3383  *     seg_kpm addresses are also accepted by the routines, but nothing
3384  *     is done with them since by definition their PA mappings are static.
3385  * (2) hat_add_callback() may only be called while holding the page lock
3386  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3387  *     or passing HAC_PAGELOCK flag.
3388  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3389  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3390  *     callbacks may not sleep or acquire adaptive mutex locks.
3391  * (4) Either prehandler() or posthandler() (but not both) may be specified
3392  *     as being NULL.  Specifying an errhandler() is optional.
3393  *
3394  * Details of using the framework:
3395  *
3396  * registering a callback (hat_register_callback())
3397  *
3398  *	Pass prehandler, posthandler, errhandler addresses
3399  *	as described below. If capture_cpus argument is nonzero,
3400  *	suspend callback to the prehandler will occur with CPUs
3401  *	captured and executing xc_loop() and CPUs will remain
3402  *	captured until after the posthandler suspend callback
3403  *	occurs.
3404  *
3405  * adding a callback (hat_add_callback())
3406  *
3407  *      as_pagelock();
3408  *	hat_add_callback();
3409  *      save returned pfn in private data structures or program registers;
3410  *      as_pageunlock();
3411  *
3412  * prehandler()
3413  *
3414  *	Stop all accesses by physical address to this memory page.
3415  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3416  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3417  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3418  *	locks must be XCALL_PIL or higher locks).
3419  *
3420  *	May return the following errors:
3421  *		EIO:	A fatal error has occurred. This will result in panic.
3422  *		EAGAIN:	The page cannot be suspended. This will fail the
3423  *			relocation.
3424  *		0:	Success.
3425  *
3426  * posthandler()
3427  *
3428  *      Save new pfn in private data structures or program registers;
3429  *	not allowed to fail (non-zero return values will result in panic).
3430  *
3431  * errhandler()
3432  *
3433  *	called when an error occurs related to the callback.  Currently
3434  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3435  *	a page is being freed, but there are still outstanding callback(s)
3436  *	registered on the page.
3437  *
3438  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3439  *
3440  *	stop using physical address
3441  *	hat_delete_callback();
3442  *
3443  */
3444 
3445 /*
3446  * Register a callback class.  Each subsystem should do this once and
3447  * cache the id_t returned for use in setting up and tearing down callbacks.
3448  *
3449  * There is no facility for removing callback IDs once they are created;
3450  * the "key" should be unique for each module, so in case a module is unloaded
3451  * and subsequently re-loaded, we can recycle the module's previous entry.
3452  */
3453 id_t
3454 hat_register_callback(int key,
3455 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3456 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3457 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3458 	int capture_cpus)
3459 {
3460 	id_t id;
3461 
3462 	/*
3463 	 * Search the table for a pre-existing callback associated with
3464 	 * the identifier "key".  If one exists, we re-use that entry in
3465 	 * the table for this instance, otherwise we assign the next
3466 	 * available table slot.
3467 	 */
3468 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3469 		if (sfmmu_cb_table[id].key == key)
3470 			break;
3471 	}
3472 
3473 	if (id == sfmmu_max_cb_id) {
3474 		id = sfmmu_cb_nextid++;
3475 		if (id >= sfmmu_max_cb_id)
3476 			panic("hat_register_callback: out of callback IDs");
3477 	}
3478 
3479 	ASSERT(prehandler != NULL || posthandler != NULL);
3480 
3481 	sfmmu_cb_table[id].key = key;
3482 	sfmmu_cb_table[id].prehandler = prehandler;
3483 	sfmmu_cb_table[id].posthandler = posthandler;
3484 	sfmmu_cb_table[id].errhandler = errhandler;
3485 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3486 
3487 	return (id);
3488 }
3489 
3490 #define	HAC_COOKIE_NONE	(void *)-1
3491 
3492 /*
3493  * Add relocation callbacks to the specified addr/len which will be called
3494  * when relocating the associated page. See the description of pre and
3495  * posthandler above for more details.
3496  *
3497  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3498  * locked internally so the caller must be able to deal with the callback
3499  * running even before this function has returned.  If HAC_PAGELOCK is not
3500  * set, it is assumed that the underlying memory pages are locked.
3501  *
3502  * Since the caller must track the individual page boundaries anyway,
3503  * we only allow a callback to be added to a single page (large
3504  * or small).  Thus [addr, addr + len) MUST be contained within a single
3505  * page.
3506  *
3507  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3508  * _provided_that_ a unique parameter is specified for each callback.
3509  * If multiple callbacks are registered on the same range the callback will
3510  * be invoked with each unique parameter. Registering the same callback with
3511  * the same argument more than once will result in corrupted kernel state.
3512  *
3513  * Returns the pfn of the underlying kernel page in *rpfn
3514  * on success, or PFN_INVALID on failure.
3515  *
3516  * cookiep (if passed) provides storage space for an opaque cookie
3517  * to return later to hat_delete_callback(). This cookie makes the callback
3518  * deletion significantly quicker by avoiding a potentially lengthy hash
3519  * search.
3520  *
3521  * Returns values:
3522  *    0:      success
3523  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3524  *    EINVAL: callback ID is not valid
3525  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3526  *            space
3527  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3528  */
3529 int
3530 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3531 	void *pvt, pfn_t *rpfn, void **cookiep)
3532 {
3533 	struct 		hmehash_bucket *hmebp;
3534 	hmeblk_tag 	hblktag;
3535 	struct hme_blk	*hmeblkp;
3536 	int 		hmeshift, hashno;
3537 	caddr_t 	saddr, eaddr, baseaddr;
3538 	struct pa_hment *pahmep;
3539 	struct sf_hment *sfhmep, *osfhmep;
3540 	kmutex_t	*pml;
3541 	tte_t   	tte;
3542 	page_t		*pp;
3543 	vnode_t		*vp;
3544 	u_offset_t	off;
3545 	pfn_t		pfn;
3546 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3547 	int		locked = 0;
3548 
3549 	/*
3550 	 * For KPM mappings, just return the physical address since we
3551 	 * don't need to register any callbacks.
3552 	 */
3553 	if (IS_KPM_ADDR(vaddr)) {
3554 		uint64_t paddr;
3555 		SFMMU_KPM_VTOP(vaddr, paddr);
3556 		*rpfn = btop(paddr);
3557 		if (cookiep != NULL)
3558 			*cookiep = HAC_COOKIE_NONE;
3559 		return (0);
3560 	}
3561 
3562 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3563 		*rpfn = PFN_INVALID;
3564 		return (EINVAL);
3565 	}
3566 
3567 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3568 		*rpfn = PFN_INVALID;
3569 		return (ENOMEM);
3570 	}
3571 
3572 	sfhmep = &pahmep->sfment;
3573 
3574 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3575 	eaddr = saddr + len;
3576 
3577 rehash:
3578 	/* Find the mapping(s) for this page */
3579 	for (hashno = TTE64K, hmeblkp = NULL;
3580 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3581 	    hashno++) {
3582 		hmeshift = HME_HASH_SHIFT(hashno);
3583 		hblktag.htag_id = ksfmmup;
3584 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3585 		hblktag.htag_rehash = hashno;
3586 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3587 
3588 		SFMMU_HASH_LOCK(hmebp);
3589 
3590 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3591 
3592 		if (hmeblkp == NULL)
3593 			SFMMU_HASH_UNLOCK(hmebp);
3594 	}
3595 
3596 	if (hmeblkp == NULL) {
3597 		kmem_cache_free(pa_hment_cache, pahmep);
3598 		*rpfn = PFN_INVALID;
3599 		return (ENXIO);
3600 	}
3601 
3602 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3603 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3604 
3605 	if (!TTE_IS_VALID(&tte)) {
3606 		SFMMU_HASH_UNLOCK(hmebp);
3607 		kmem_cache_free(pa_hment_cache, pahmep);
3608 		*rpfn = PFN_INVALID;
3609 		return (ENXIO);
3610 	}
3611 
3612 	/*
3613 	 * Make sure the boundaries for the callback fall within this
3614 	 * single mapping.
3615 	 */
3616 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3617 	ASSERT(saddr >= baseaddr);
3618 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3619 		SFMMU_HASH_UNLOCK(hmebp);
3620 		kmem_cache_free(pa_hment_cache, pahmep);
3621 		*rpfn = PFN_INVALID;
3622 		return (ERANGE);
3623 	}
3624 
3625 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3626 
3627 	/*
3628 	 * The pfn may not have a page_t underneath in which case we
3629 	 * just return it. This can happen if we are doing I/O to a
3630 	 * static portion of the kernel's address space, for instance.
3631 	 */
3632 	pp = osfhmep->hme_page;
3633 	if (pp == NULL) {
3634 		SFMMU_HASH_UNLOCK(hmebp);
3635 		kmem_cache_free(pa_hment_cache, pahmep);
3636 		*rpfn = pfn;
3637 		if (cookiep)
3638 			*cookiep = HAC_COOKIE_NONE;
3639 		return (0);
3640 	}
3641 	ASSERT(pp == PP_PAGEROOT(pp));
3642 
3643 	vp = pp->p_vnode;
3644 	off = pp->p_offset;
3645 
3646 	pml = sfmmu_mlist_enter(pp);
3647 
3648 	if (flags & HAC_PAGELOCK) {
3649 		if (!page_trylock(pp, SE_SHARED)) {
3650 			/*
3651 			 * Somebody is holding SE_EXCL lock. Might
3652 			 * even be hat_page_relocate(). Drop all
3653 			 * our locks, lookup the page in &kvp, and
3654 			 * retry. If it doesn't exist in &kvp, then
3655 			 * we must be dealing with a kernel mapped
3656 			 * page which doesn't actually belong to
3657 			 * segkmem so we punt.
3658 			 */
3659 			sfmmu_mlist_exit(pml);
3660 			SFMMU_HASH_UNLOCK(hmebp);
3661 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3662 			if (pp == NULL) {
3663 				kmem_cache_free(pa_hment_cache, pahmep);
3664 				*rpfn = pfn;
3665 				if (cookiep)
3666 					*cookiep = HAC_COOKIE_NONE;
3667 				return (0);
3668 			}
3669 			page_unlock(pp);
3670 			goto rehash;
3671 		}
3672 		locked = 1;
3673 	}
3674 
3675 	if (!PAGE_LOCKED(pp) && !panicstr)
3676 		panic("hat_add_callback: page 0x%p not locked", pp);
3677 
3678 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3679 	    pp->p_offset != off) {
3680 		/*
3681 		 * The page moved before we got our hands on it.  Drop
3682 		 * all the locks and try again.
3683 		 */
3684 		ASSERT((flags & HAC_PAGELOCK) != 0);
3685 		sfmmu_mlist_exit(pml);
3686 		SFMMU_HASH_UNLOCK(hmebp);
3687 		page_unlock(pp);
3688 		locked = 0;
3689 		goto rehash;
3690 	}
3691 
3692 	if (vp != &kvp) {
3693 		/*
3694 		 * This is not a segkmem page but another page which
3695 		 * has been kernel mapped. It had better have at least
3696 		 * a share lock on it. Return the pfn.
3697 		 */
3698 		sfmmu_mlist_exit(pml);
3699 		SFMMU_HASH_UNLOCK(hmebp);
3700 		if (locked)
3701 			page_unlock(pp);
3702 		kmem_cache_free(pa_hment_cache, pahmep);
3703 		ASSERT(PAGE_LOCKED(pp));
3704 		*rpfn = pfn;
3705 		if (cookiep)
3706 			*cookiep = HAC_COOKIE_NONE;
3707 		return (0);
3708 	}
3709 
3710 	/*
3711 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3712 	 * the mapping list.
3713 	 */
3714 	pp->p_share++;
3715 	pahmep->cb_id = callback_id;
3716 	pahmep->addr = vaddr;
3717 	pahmep->len = len;
3718 	pahmep->refcnt = 1;
3719 	pahmep->flags = 0;
3720 	pahmep->pvt = pvt;
3721 
3722 	sfhmep->hme_tte.ll = 0;
3723 	sfhmep->hme_data = pahmep;
3724 	sfhmep->hme_prev = osfhmep;
3725 	sfhmep->hme_next = osfhmep->hme_next;
3726 
3727 	if (osfhmep->hme_next)
3728 		osfhmep->hme_next->hme_prev = sfhmep;
3729 
3730 	osfhmep->hme_next = sfhmep;
3731 
3732 	sfmmu_mlist_exit(pml);
3733 	SFMMU_HASH_UNLOCK(hmebp);
3734 
3735 	if (locked)
3736 		page_unlock(pp);
3737 
3738 	*rpfn = pfn;
3739 	if (cookiep)
3740 		*cookiep = (void *)pahmep;
3741 
3742 	return (0);
3743 }
3744 
3745 /*
3746  * Remove the relocation callbacks from the specified addr/len.
3747  */
3748 void
3749 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3750 	void *cookie)
3751 {
3752 	struct		hmehash_bucket *hmebp;
3753 	hmeblk_tag	hblktag;
3754 	struct hme_blk	*hmeblkp;
3755 	int		hmeshift, hashno;
3756 	caddr_t		saddr;
3757 	struct pa_hment	*pahmep;
3758 	struct sf_hment	*sfhmep, *osfhmep;
3759 	kmutex_t	*pml;
3760 	tte_t		tte;
3761 	page_t		*pp;
3762 	vnode_t		*vp;
3763 	u_offset_t	off;
3764 	int		locked = 0;
3765 
3766 	/*
3767 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3768 	 * remove so just return.
3769 	 */
3770 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3771 		return;
3772 
3773 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3774 
3775 rehash:
3776 	/* Find the mapping(s) for this page */
3777 	for (hashno = TTE64K, hmeblkp = NULL;
3778 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3779 	    hashno++) {
3780 		hmeshift = HME_HASH_SHIFT(hashno);
3781 		hblktag.htag_id = ksfmmup;
3782 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3783 		hblktag.htag_rehash = hashno;
3784 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3785 
3786 		SFMMU_HASH_LOCK(hmebp);
3787 
3788 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3789 
3790 		if (hmeblkp == NULL)
3791 			SFMMU_HASH_UNLOCK(hmebp);
3792 	}
3793 
3794 	if (hmeblkp == NULL)
3795 		return;
3796 
3797 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3798 
3799 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3800 	if (!TTE_IS_VALID(&tte)) {
3801 		SFMMU_HASH_UNLOCK(hmebp);
3802 		return;
3803 	}
3804 
3805 	pp = osfhmep->hme_page;
3806 	if (pp == NULL) {
3807 		SFMMU_HASH_UNLOCK(hmebp);
3808 		ASSERT(cookie == NULL);
3809 		return;
3810 	}
3811 
3812 	vp = pp->p_vnode;
3813 	off = pp->p_offset;
3814 
3815 	pml = sfmmu_mlist_enter(pp);
3816 
3817 	if (flags & HAC_PAGELOCK) {
3818 		if (!page_trylock(pp, SE_SHARED)) {
3819 			/*
3820 			 * Somebody is holding SE_EXCL lock. Might
3821 			 * even be hat_page_relocate(). Drop all
3822 			 * our locks, lookup the page in &kvp, and
3823 			 * retry. If it doesn't exist in &kvp, then
3824 			 * we must be dealing with a kernel mapped
3825 			 * page which doesn't actually belong to
3826 			 * segkmem so we punt.
3827 			 */
3828 			sfmmu_mlist_exit(pml);
3829 			SFMMU_HASH_UNLOCK(hmebp);
3830 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3831 			if (pp == NULL) {
3832 				ASSERT(cookie == NULL);
3833 				return;
3834 			}
3835 			page_unlock(pp);
3836 			goto rehash;
3837 		}
3838 		locked = 1;
3839 	}
3840 
3841 	ASSERT(PAGE_LOCKED(pp));
3842 
3843 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3844 	    pp->p_offset != off) {
3845 		/*
3846 		 * The page moved before we got our hands on it.  Drop
3847 		 * all the locks and try again.
3848 		 */
3849 		ASSERT((flags & HAC_PAGELOCK) != 0);
3850 		sfmmu_mlist_exit(pml);
3851 		SFMMU_HASH_UNLOCK(hmebp);
3852 		page_unlock(pp);
3853 		locked = 0;
3854 		goto rehash;
3855 	}
3856 
3857 	if (vp != &kvp) {
3858 		/*
3859 		 * This is not a segkmem page but another page which
3860 		 * has been kernel mapped.
3861 		 */
3862 		sfmmu_mlist_exit(pml);
3863 		SFMMU_HASH_UNLOCK(hmebp);
3864 		if (locked)
3865 			page_unlock(pp);
3866 		ASSERT(cookie == NULL);
3867 		return;
3868 	}
3869 
3870 	if (cookie != NULL) {
3871 		pahmep = (struct pa_hment *)cookie;
3872 		sfhmep = &pahmep->sfment;
3873 	} else {
3874 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3875 		    sfhmep = sfhmep->hme_next) {
3876 
3877 			/*
3878 			 * skip va<->pa mappings
3879 			 */
3880 			if (!IS_PAHME(sfhmep))
3881 				continue;
3882 
3883 			pahmep = sfhmep->hme_data;
3884 			ASSERT(pahmep != NULL);
3885 
3886 			/*
3887 			 * if pa_hment matches, remove it
3888 			 */
3889 			if ((pahmep->pvt == pvt) &&
3890 			    (pahmep->addr == vaddr) &&
3891 			    (pahmep->len == len)) {
3892 				break;
3893 			}
3894 		}
3895 	}
3896 
3897 	if (sfhmep == NULL) {
3898 		if (!panicstr) {
3899 			panic("hat_delete_callback: pa_hment not found, pp %p",
3900 			    (void *)pp);
3901 		}
3902 		return;
3903 	}
3904 
3905 	/*
3906 	 * Note: at this point a valid kernel mapping must still be
3907 	 * present on this page.
3908 	 */
3909 	pp->p_share--;
3910 	if (pp->p_share <= 0)
3911 		panic("hat_delete_callback: zero p_share");
3912 
3913 	if (--pahmep->refcnt == 0) {
3914 		if (pahmep->flags != 0)
3915 			panic("hat_delete_callback: pa_hment is busy");
3916 
3917 		/*
3918 		 * Remove sfhmep from the mapping list for the page.
3919 		 */
3920 		if (sfhmep->hme_prev) {
3921 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3922 		} else {
3923 			pp->p_mapping = sfhmep->hme_next;
3924 		}
3925 
3926 		if (sfhmep->hme_next)
3927 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3928 
3929 		sfmmu_mlist_exit(pml);
3930 		SFMMU_HASH_UNLOCK(hmebp);
3931 
3932 		if (locked)
3933 			page_unlock(pp);
3934 
3935 		kmem_cache_free(pa_hment_cache, pahmep);
3936 		return;
3937 	}
3938 
3939 	sfmmu_mlist_exit(pml);
3940 	SFMMU_HASH_UNLOCK(hmebp);
3941 	if (locked)
3942 		page_unlock(pp);
3943 }
3944 
3945 /*
3946  * hat_probe returns 1 if the translation for the address 'addr' is
3947  * loaded, zero otherwise.
3948  *
3949  * hat_probe should be used only for advisorary purposes because it may
3950  * occasionally return the wrong value. The implementation must guarantee that
3951  * returning the wrong value is a very rare event. hat_probe is used
3952  * to implement optimizations in the segment drivers.
3953  *
3954  */
3955 int
3956 hat_probe(struct hat *sfmmup, caddr_t addr)
3957 {
3958 	pfn_t pfn;
3959 	tte_t tte;
3960 
3961 	ASSERT(sfmmup != NULL);
3962 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3963 
3964 	ASSERT((sfmmup == ksfmmup) ||
3965 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3966 
3967 	if (sfmmup == ksfmmup) {
3968 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3969 		    == PFN_SUSPENDED) {
3970 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3971 		}
3972 	} else {
3973 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3974 	}
3975 
3976 	if (pfn != PFN_INVALID)
3977 		return (1);
3978 	else
3979 		return (0);
3980 }
3981 
3982 ssize_t
3983 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3984 {
3985 	tte_t tte;
3986 
3987 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3988 
3989 	sfmmu_gettte(sfmmup, addr, &tte);
3990 	if (TTE_IS_VALID(&tte)) {
3991 		return (TTEBYTES(TTE_CSZ(&tte)));
3992 	}
3993 	return (-1);
3994 }
3995 
3996 static void
3997 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3998 {
3999 	struct hmehash_bucket *hmebp;
4000 	hmeblk_tag hblktag;
4001 	int hmeshift, hashno = 1;
4002 	struct hme_blk *hmeblkp, *list = NULL;
4003 	struct sf_hment *sfhmep;
4004 
4005 	/* support for ISM */
4006 	ism_map_t	*ism_map;
4007 	ism_blk_t	*ism_blkp;
4008 	int		i;
4009 	sfmmu_t		*ism_hatid = NULL;
4010 	sfmmu_t		*locked_hatid = NULL;
4011 
4012 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4013 
4014 	ism_blkp = sfmmup->sfmmu_iblk;
4015 	if (ism_blkp) {
4016 		sfmmu_ismhat_enter(sfmmup, 0);
4017 		locked_hatid = sfmmup;
4018 	}
4019 	while (ism_blkp && ism_hatid == NULL) {
4020 		ism_map = ism_blkp->iblk_maps;
4021 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4022 			if (addr >= ism_start(ism_map[i]) &&
4023 			    addr < ism_end(ism_map[i])) {
4024 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4025 				addr = (caddr_t)(addr -
4026 					ism_start(ism_map[i]));
4027 				break;
4028 			}
4029 		}
4030 		ism_blkp = ism_blkp->iblk_next;
4031 	}
4032 	if (locked_hatid) {
4033 		sfmmu_ismhat_exit(locked_hatid, 0);
4034 	}
4035 
4036 	hblktag.htag_id = sfmmup;
4037 	ttep->ll = 0;
4038 
4039 	do {
4040 		hmeshift = HME_HASH_SHIFT(hashno);
4041 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4042 		hblktag.htag_rehash = hashno;
4043 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4044 
4045 		SFMMU_HASH_LOCK(hmebp);
4046 
4047 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4048 		if (hmeblkp != NULL) {
4049 			HBLKTOHME(sfhmep, hmeblkp, addr);
4050 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4051 			SFMMU_HASH_UNLOCK(hmebp);
4052 			break;
4053 		}
4054 		SFMMU_HASH_UNLOCK(hmebp);
4055 		hashno++;
4056 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4057 
4058 	sfmmu_hblks_list_purge(&list);
4059 }
4060 
4061 uint_t
4062 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4063 {
4064 	tte_t tte;
4065 
4066 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4067 
4068 	sfmmu_gettte(sfmmup, addr, &tte);
4069 	if (TTE_IS_VALID(&tte)) {
4070 		*attr = sfmmu_ptov_attr(&tte);
4071 		return (0);
4072 	}
4073 	*attr = 0;
4074 	return ((uint_t)0xffffffff);
4075 }
4076 
4077 /*
4078  * Enables more attributes on specified address range (ie. logical OR)
4079  */
4080 void
4081 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4082 {
4083 	if (hat->sfmmu_xhat_provider) {
4084 		XHAT_SETATTR(hat, addr, len, attr);
4085 		return;
4086 	} else {
4087 		/*
4088 		 * This must be a CPU HAT. If the address space has
4089 		 * XHATs attached, change attributes for all of them,
4090 		 * just in case
4091 		 */
4092 		ASSERT(hat->sfmmu_as != NULL);
4093 		if (hat->sfmmu_as->a_xhat != NULL)
4094 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4095 	}
4096 
4097 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4098 }
4099 
4100 /*
4101  * Assigns attributes to the specified address range.  All the attributes
4102  * are specified.
4103  */
4104 void
4105 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4106 {
4107 	if (hat->sfmmu_xhat_provider) {
4108 		XHAT_CHGATTR(hat, addr, len, attr);
4109 		return;
4110 	} else {
4111 		/*
4112 		 * This must be a CPU HAT. If the address space has
4113 		 * XHATs attached, change attributes for all of them,
4114 		 * just in case
4115 		 */
4116 		ASSERT(hat->sfmmu_as != NULL);
4117 		if (hat->sfmmu_as->a_xhat != NULL)
4118 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4119 	}
4120 
4121 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4122 }
4123 
4124 /*
4125  * Remove attributes on the specified address range (ie. loginal NAND)
4126  */
4127 void
4128 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4129 {
4130 	if (hat->sfmmu_xhat_provider) {
4131 		XHAT_CLRATTR(hat, addr, len, attr);
4132 		return;
4133 	} else {
4134 		/*
4135 		 * This must be a CPU HAT. If the address space has
4136 		 * XHATs attached, change attributes for all of them,
4137 		 * just in case
4138 		 */
4139 		ASSERT(hat->sfmmu_as != NULL);
4140 		if (hat->sfmmu_as->a_xhat != NULL)
4141 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4142 	}
4143 
4144 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4145 }
4146 
4147 /*
4148  * Change attributes on an address range to that specified by attr and mode.
4149  */
4150 static void
4151 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4152 	int mode)
4153 {
4154 	struct hmehash_bucket *hmebp;
4155 	hmeblk_tag hblktag;
4156 	int hmeshift, hashno = 1;
4157 	struct hme_blk *hmeblkp, *list = NULL;
4158 	caddr_t endaddr;
4159 	cpuset_t cpuset;
4160 	demap_range_t dmr;
4161 
4162 	CPUSET_ZERO(cpuset);
4163 
4164 	ASSERT((sfmmup == ksfmmup) ||
4165 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4166 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4167 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4168 
4169 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4170 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4171 		panic("user addr %p in kernel space",
4172 		    (void *)addr);
4173 	}
4174 
4175 	endaddr = addr + len;
4176 	hblktag.htag_id = sfmmup;
4177 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4178 
4179 	while (addr < endaddr) {
4180 		hmeshift = HME_HASH_SHIFT(hashno);
4181 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4182 		hblktag.htag_rehash = hashno;
4183 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4184 
4185 		SFMMU_HASH_LOCK(hmebp);
4186 
4187 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4188 		if (hmeblkp != NULL) {
4189 			/*
4190 			 * We've encountered a shadow hmeblk so skip the range
4191 			 * of the next smaller mapping size.
4192 			 */
4193 			if (hmeblkp->hblk_shw_bit) {
4194 				ASSERT(sfmmup != ksfmmup);
4195 				ASSERT(hashno > 1);
4196 				addr = (caddr_t)P2END((uintptr_t)addr,
4197 					    TTEBYTES(hashno - 1));
4198 			} else {
4199 				addr = sfmmu_hblk_chgattr(sfmmup,
4200 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4201 			}
4202 			SFMMU_HASH_UNLOCK(hmebp);
4203 			hashno = 1;
4204 			continue;
4205 		}
4206 		SFMMU_HASH_UNLOCK(hmebp);
4207 
4208 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4209 			/*
4210 			 * We have traversed the whole list and rehashed
4211 			 * if necessary without finding the address to chgattr.
4212 			 * This is ok, so we increment the address by the
4213 			 * smallest hmeblk range for kernel mappings or for
4214 			 * user mappings with no large pages, and the largest
4215 			 * hmeblk range, to account for shadow hmeblks, for
4216 			 * user mappings with large pages and continue.
4217 			 */
4218 			if (sfmmup == ksfmmup)
4219 				addr = (caddr_t)P2END((uintptr_t)addr,
4220 					    TTEBYTES(1));
4221 			else
4222 				addr = (caddr_t)P2END((uintptr_t)addr,
4223 					    TTEBYTES(hashno));
4224 			hashno = 1;
4225 		} else {
4226 			hashno++;
4227 		}
4228 	}
4229 
4230 	sfmmu_hblks_list_purge(&list);
4231 	DEMAP_RANGE_FLUSH(&dmr);
4232 	cpuset = sfmmup->sfmmu_cpusran;
4233 	xt_sync(cpuset);
4234 }
4235 
4236 /*
4237  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4238  * next addres that needs to be chgattr.
4239  * It should be called with the hash lock held.
4240  * XXX It should be possible to optimize chgattr by not flushing every time but
4241  * on the other hand:
4242  * 1. do one flush crosscall.
4243  * 2. only flush if we are increasing permissions (make sure this will work)
4244  */
4245 static caddr_t
4246 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4247 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4248 {
4249 	tte_t tte, tteattr, tteflags, ttemod;
4250 	struct sf_hment *sfhmep;
4251 	int ttesz;
4252 	struct page *pp = NULL;
4253 	kmutex_t *pml, *pmtx;
4254 	int ret;
4255 	int use_demap_range;
4256 #if defined(SF_ERRATA_57)
4257 	int check_exec;
4258 #endif
4259 
4260 	ASSERT(in_hblk_range(hmeblkp, addr));
4261 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4262 
4263 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4264 	ttesz = get_hblk_ttesz(hmeblkp);
4265 
4266 	/*
4267 	 * Flush the current demap region if addresses have been
4268 	 * skipped or the page size doesn't match.
4269 	 */
4270 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4271 	if (use_demap_range) {
4272 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4273 	} else {
4274 		DEMAP_RANGE_FLUSH(dmrp);
4275 	}
4276 
4277 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4278 #if defined(SF_ERRATA_57)
4279 	check_exec = (sfmmup != ksfmmup) &&
4280 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4281 	    TTE_IS_EXECUTABLE(&tteattr);
4282 #endif
4283 	HBLKTOHME(sfhmep, hmeblkp, addr);
4284 	while (addr < endaddr) {
4285 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4286 		if (TTE_IS_VALID(&tte)) {
4287 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4288 				/*
4289 				 * if the new attr is the same as old
4290 				 * continue
4291 				 */
4292 				goto next_addr;
4293 			}
4294 			if (!TTE_IS_WRITABLE(&tteattr)) {
4295 				/*
4296 				 * make sure we clear hw modify bit if we
4297 				 * removing write protections
4298 				 */
4299 				tteflags.tte_intlo |= TTE_HWWR_INT;
4300 			}
4301 
4302 			pml = NULL;
4303 			pp = sfhmep->hme_page;
4304 			if (pp) {
4305 				pml = sfmmu_mlist_enter(pp);
4306 			}
4307 
4308 			if (pp != sfhmep->hme_page) {
4309 				/*
4310 				 * tte must have been unloaded.
4311 				 */
4312 				ASSERT(pml);
4313 				sfmmu_mlist_exit(pml);
4314 				continue;
4315 			}
4316 
4317 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4318 
4319 			ttemod = tte;
4320 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4321 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4322 
4323 #if defined(SF_ERRATA_57)
4324 			if (check_exec && addr < errata57_limit)
4325 				ttemod.tte_exec_perm = 0;
4326 #endif
4327 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4328 			    &sfhmep->hme_tte);
4329 
4330 			if (ret < 0) {
4331 				/* tte changed underneath us */
4332 				if (pml) {
4333 					sfmmu_mlist_exit(pml);
4334 				}
4335 				continue;
4336 			}
4337 
4338 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4339 				/*
4340 				 * need to sync if we are clearing modify bit.
4341 				 */
4342 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4343 			}
4344 
4345 			if (pp && PP_ISRO(pp)) {
4346 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4347 					pmtx = sfmmu_page_enter(pp);
4348 					PP_CLRRO(pp);
4349 					sfmmu_page_exit(pmtx);
4350 				}
4351 			}
4352 
4353 			if (ret > 0 && use_demap_range) {
4354 				DEMAP_RANGE_MARKPG(dmrp, addr);
4355 			} else if (ret > 0) {
4356 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4357 			}
4358 
4359 			if (pml) {
4360 				sfmmu_mlist_exit(pml);
4361 			}
4362 		}
4363 next_addr:
4364 		addr += TTEBYTES(ttesz);
4365 		sfhmep++;
4366 		DEMAP_RANGE_NEXTPG(dmrp);
4367 	}
4368 	return (addr);
4369 }
4370 
4371 /*
4372  * This routine converts virtual attributes to physical ones.  It will
4373  * update the tteflags field with the tte mask corresponding to the attributes
4374  * affected and it returns the new attributes.  It will also clear the modify
4375  * bit if we are taking away write permission.  This is necessary since the
4376  * modify bit is the hardware permission bit and we need to clear it in order
4377  * to detect write faults.
4378  */
4379 static uint64_t
4380 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4381 {
4382 	tte_t ttevalue;
4383 
4384 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4385 
4386 	switch (mode) {
4387 	case SFMMU_CHGATTR:
4388 		/* all attributes specified */
4389 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4390 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4391 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4392 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4393 		break;
4394 	case SFMMU_SETATTR:
4395 		ASSERT(!(attr & ~HAT_PROT_MASK));
4396 		ttemaskp->ll = 0;
4397 		ttevalue.ll = 0;
4398 		/*
4399 		 * a valid tte implies exec and read for sfmmu
4400 		 * so no need to do anything about them.
4401 		 * since priviledged access implies user access
4402 		 * PROT_USER doesn't make sense either.
4403 		 */
4404 		if (attr & PROT_WRITE) {
4405 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4406 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4407 		}
4408 		break;
4409 	case SFMMU_CLRATTR:
4410 		/* attributes will be nand with current ones */
4411 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4412 			panic("sfmmu: attr %x not supported", attr);
4413 		}
4414 		ttemaskp->ll = 0;
4415 		ttevalue.ll = 0;
4416 		if (attr & PROT_WRITE) {
4417 			/* clear both writable and modify bit */
4418 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4419 		}
4420 		if (attr & PROT_USER) {
4421 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4422 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4423 		}
4424 		break;
4425 	default:
4426 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4427 	}
4428 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4429 	return (ttevalue.ll);
4430 }
4431 
4432 static uint_t
4433 sfmmu_ptov_attr(tte_t *ttep)
4434 {
4435 	uint_t attr;
4436 
4437 	ASSERT(TTE_IS_VALID(ttep));
4438 
4439 	attr = PROT_READ;
4440 
4441 	if (TTE_IS_WRITABLE(ttep)) {
4442 		attr |= PROT_WRITE;
4443 	}
4444 	if (TTE_IS_EXECUTABLE(ttep)) {
4445 		attr |= PROT_EXEC;
4446 	}
4447 	if (!TTE_IS_PRIVILEGED(ttep)) {
4448 		attr |= PROT_USER;
4449 	}
4450 	if (TTE_IS_NFO(ttep)) {
4451 		attr |= HAT_NOFAULT;
4452 	}
4453 	if (TTE_IS_NOSYNC(ttep)) {
4454 		attr |= HAT_NOSYNC;
4455 	}
4456 	if (TTE_IS_SIDEFFECT(ttep)) {
4457 		attr |= SFMMU_SIDEFFECT;
4458 	}
4459 	if (!TTE_IS_VCACHEABLE(ttep)) {
4460 		attr |= SFMMU_UNCACHEVTTE;
4461 	}
4462 	if (!TTE_IS_PCACHEABLE(ttep)) {
4463 		attr |= SFMMU_UNCACHEPTTE;
4464 	}
4465 	return (attr);
4466 }
4467 
4468 /*
4469  * hat_chgprot is a deprecated hat call.  New segment drivers
4470  * should store all attributes and use hat_*attr calls.
4471  *
4472  * Change the protections in the virtual address range
4473  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4474  * then remove write permission, leaving the other
4475  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4476  *
4477  */
4478 void
4479 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4480 {
4481 	struct hmehash_bucket *hmebp;
4482 	hmeblk_tag hblktag;
4483 	int hmeshift, hashno = 1;
4484 	struct hme_blk *hmeblkp, *list = NULL;
4485 	caddr_t endaddr;
4486 	cpuset_t cpuset;
4487 	demap_range_t dmr;
4488 
4489 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4490 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4491 
4492 	if (sfmmup->sfmmu_xhat_provider) {
4493 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4494 		return;
4495 	} else {
4496 		/*
4497 		 * This must be a CPU HAT. If the address space has
4498 		 * XHATs attached, change attributes for all of them,
4499 		 * just in case
4500 		 */
4501 		ASSERT(sfmmup->sfmmu_as != NULL);
4502 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4503 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4504 	}
4505 
4506 	CPUSET_ZERO(cpuset);
4507 
4508 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4509 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4510 		panic("user addr %p vprot %x in kernel space",
4511 		    (void *)addr, vprot);
4512 	}
4513 	endaddr = addr + len;
4514 	hblktag.htag_id = sfmmup;
4515 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4516 
4517 	while (addr < endaddr) {
4518 		hmeshift = HME_HASH_SHIFT(hashno);
4519 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4520 		hblktag.htag_rehash = hashno;
4521 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4522 
4523 		SFMMU_HASH_LOCK(hmebp);
4524 
4525 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4526 		if (hmeblkp != NULL) {
4527 			/*
4528 			 * We've encountered a shadow hmeblk so skip the range
4529 			 * of the next smaller mapping size.
4530 			 */
4531 			if (hmeblkp->hblk_shw_bit) {
4532 				ASSERT(sfmmup != ksfmmup);
4533 				ASSERT(hashno > 1);
4534 				addr = (caddr_t)P2END((uintptr_t)addr,
4535 					    TTEBYTES(hashno - 1));
4536 			} else {
4537 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4538 					addr, endaddr, &dmr, vprot);
4539 			}
4540 			SFMMU_HASH_UNLOCK(hmebp);
4541 			hashno = 1;
4542 			continue;
4543 		}
4544 		SFMMU_HASH_UNLOCK(hmebp);
4545 
4546 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4547 			/*
4548 			 * We have traversed the whole list and rehashed
4549 			 * if necessary without finding the address to chgprot.
4550 			 * This is ok so we increment the address by the
4551 			 * smallest hmeblk range for kernel mappings and the
4552 			 * largest hmeblk range, to account for shadow hmeblks,
4553 			 * for user mappings and continue.
4554 			 */
4555 			if (sfmmup == ksfmmup)
4556 				addr = (caddr_t)P2END((uintptr_t)addr,
4557 					    TTEBYTES(1));
4558 			else
4559 				addr = (caddr_t)P2END((uintptr_t)addr,
4560 					    TTEBYTES(hashno));
4561 			hashno = 1;
4562 		} else {
4563 			hashno++;
4564 		}
4565 	}
4566 
4567 	sfmmu_hblks_list_purge(&list);
4568 	DEMAP_RANGE_FLUSH(&dmr);
4569 	cpuset = sfmmup->sfmmu_cpusran;
4570 	xt_sync(cpuset);
4571 }
4572 
4573 /*
4574  * This function chgprots a range of addresses in an hmeblk.  It returns the
4575  * next addres that needs to be chgprot.
4576  * It should be called with the hash lock held.
4577  * XXX It shold be possible to optimize chgprot by not flushing every time but
4578  * on the other hand:
4579  * 1. do one flush crosscall.
4580  * 2. only flush if we are increasing permissions (make sure this will work)
4581  */
4582 static caddr_t
4583 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4584 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4585 {
4586 	uint_t pprot;
4587 	tte_t tte, ttemod;
4588 	struct sf_hment *sfhmep;
4589 	uint_t tteflags;
4590 	int ttesz;
4591 	struct page *pp = NULL;
4592 	kmutex_t *pml, *pmtx;
4593 	int ret;
4594 	int use_demap_range;
4595 #if defined(SF_ERRATA_57)
4596 	int check_exec;
4597 #endif
4598 
4599 	ASSERT(in_hblk_range(hmeblkp, addr));
4600 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4601 
4602 #ifdef DEBUG
4603 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4604 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4605 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4606 	}
4607 #endif /* DEBUG */
4608 
4609 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4610 	ttesz = get_hblk_ttesz(hmeblkp);
4611 
4612 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4613 #if defined(SF_ERRATA_57)
4614 	check_exec = (sfmmup != ksfmmup) &&
4615 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4616 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4617 #endif
4618 	HBLKTOHME(sfhmep, hmeblkp, addr);
4619 
4620 	/*
4621 	 * Flush the current demap region if addresses have been
4622 	 * skipped or the page size doesn't match.
4623 	 */
4624 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4625 	if (use_demap_range) {
4626 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4627 	} else {
4628 		DEMAP_RANGE_FLUSH(dmrp);
4629 	}
4630 
4631 	while (addr < endaddr) {
4632 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4633 		if (TTE_IS_VALID(&tte)) {
4634 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4635 				/*
4636 				 * if the new protection is the same as old
4637 				 * continue
4638 				 */
4639 				goto next_addr;
4640 			}
4641 			pml = NULL;
4642 			pp = sfhmep->hme_page;
4643 			if (pp) {
4644 				pml = sfmmu_mlist_enter(pp);
4645 			}
4646 			if (pp != sfhmep->hme_page) {
4647 				/*
4648 				 * tte most have been unloaded
4649 				 * underneath us.  Recheck
4650 				 */
4651 				ASSERT(pml);
4652 				sfmmu_mlist_exit(pml);
4653 				continue;
4654 			}
4655 
4656 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4657 
4658 			ttemod = tte;
4659 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4660 #if defined(SF_ERRATA_57)
4661 			if (check_exec && addr < errata57_limit)
4662 				ttemod.tte_exec_perm = 0;
4663 #endif
4664 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4665 			    &sfhmep->hme_tte);
4666 
4667 			if (ret < 0) {
4668 				/* tte changed underneath us */
4669 				if (pml) {
4670 					sfmmu_mlist_exit(pml);
4671 				}
4672 				continue;
4673 			}
4674 
4675 			if (tteflags & TTE_HWWR_INT) {
4676 				/*
4677 				 * need to sync if we are clearing modify bit.
4678 				 */
4679 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4680 			}
4681 
4682 			if (pp && PP_ISRO(pp)) {
4683 				if (pprot & TTE_WRPRM_INT) {
4684 					pmtx = sfmmu_page_enter(pp);
4685 					PP_CLRRO(pp);
4686 					sfmmu_page_exit(pmtx);
4687 				}
4688 			}
4689 
4690 			if (ret > 0 && use_demap_range) {
4691 				DEMAP_RANGE_MARKPG(dmrp, addr);
4692 			} else if (ret > 0) {
4693 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4694 			}
4695 
4696 			if (pml) {
4697 				sfmmu_mlist_exit(pml);
4698 			}
4699 		}
4700 next_addr:
4701 		addr += TTEBYTES(ttesz);
4702 		sfhmep++;
4703 		DEMAP_RANGE_NEXTPG(dmrp);
4704 	}
4705 	return (addr);
4706 }
4707 
4708 /*
4709  * This routine is deprecated and should only be used by hat_chgprot.
4710  * The correct routine is sfmmu_vtop_attr.
4711  * This routine converts virtual page protections to physical ones.  It will
4712  * update the tteflags field with the tte mask corresponding to the protections
4713  * affected and it returns the new protections.  It will also clear the modify
4714  * bit if we are taking away write permission.  This is necessary since the
4715  * modify bit is the hardware permission bit and we need to clear it in order
4716  * to detect write faults.
4717  * It accepts the following special protections:
4718  * ~PROT_WRITE = remove write permissions.
4719  * ~PROT_USER = remove user permissions.
4720  */
4721 static uint_t
4722 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4723 {
4724 	if (vprot == (uint_t)~PROT_WRITE) {
4725 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4726 		return (0);		/* will cause wrprm to be cleared */
4727 	}
4728 	if (vprot == (uint_t)~PROT_USER) {
4729 		*tteflagsp = TTE_PRIV_INT;
4730 		return (0);		/* will cause privprm to be cleared */
4731 	}
4732 	if ((vprot == 0) || (vprot == PROT_USER) ||
4733 		((vprot & PROT_ALL) != vprot)) {
4734 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4735 	}
4736 
4737 	switch (vprot) {
4738 	case (PROT_READ):
4739 	case (PROT_EXEC):
4740 	case (PROT_EXEC | PROT_READ):
4741 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4742 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4743 	case (PROT_WRITE):
4744 	case (PROT_WRITE | PROT_READ):
4745 	case (PROT_EXEC | PROT_WRITE):
4746 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4747 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4748 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4749 	case (PROT_USER | PROT_READ):
4750 	case (PROT_USER | PROT_EXEC):
4751 	case (PROT_USER | PROT_EXEC | PROT_READ):
4752 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4753 		return (0); 			/* clr prv and wrt */
4754 	case (PROT_USER | PROT_WRITE):
4755 	case (PROT_USER | PROT_WRITE | PROT_READ):
4756 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4757 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4758 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4759 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4760 	default:
4761 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4762 	}
4763 	return (0);
4764 }
4765 
4766 /*
4767  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4768  * the normal algorithm would take too long for a very large VA range with
4769  * few real mappings. This routine just walks thru all HMEs in the global
4770  * hash table to find and remove mappings.
4771  */
4772 static void
4773 hat_unload_large_virtual(
4774 	struct hat		*sfmmup,
4775 	caddr_t			startaddr,
4776 	size_t			len,
4777 	uint_t			flags,
4778 	hat_callback_t		*callback)
4779 {
4780 	struct hmehash_bucket *hmebp;
4781 	struct hme_blk *hmeblkp;
4782 	struct hme_blk *pr_hblk = NULL;
4783 	struct hme_blk *nx_hblk;
4784 	struct hme_blk *list = NULL;
4785 	int i;
4786 	uint64_t hblkpa, prevpa, nx_pa;
4787 	demap_range_t dmr, *dmrp;
4788 	cpuset_t cpuset;
4789 	caddr_t	endaddr = startaddr + len;
4790 	caddr_t	sa;
4791 	caddr_t	ea;
4792 	caddr_t	cb_sa[MAX_CB_ADDR];
4793 	caddr_t	cb_ea[MAX_CB_ADDR];
4794 	int	addr_cnt = 0;
4795 	int	a = 0;
4796 
4797 	if (sfmmup->sfmmu_free) {
4798 		dmrp = NULL;
4799 	} else {
4800 		dmrp = &dmr;
4801 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4802 	}
4803 
4804 	/*
4805 	 * Loop through all the hash buckets of HME blocks looking for matches.
4806 	 */
4807 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4808 		hmebp = &uhme_hash[i];
4809 		SFMMU_HASH_LOCK(hmebp);
4810 		hmeblkp = hmebp->hmeblkp;
4811 		hblkpa = hmebp->hmeh_nextpa;
4812 		prevpa = 0;
4813 		pr_hblk = NULL;
4814 		while (hmeblkp) {
4815 			nx_hblk = hmeblkp->hblk_next;
4816 			nx_pa = hmeblkp->hblk_nextpa;
4817 
4818 			/*
4819 			 * skip if not this context, if a shadow block or
4820 			 * if the mapping is not in the requested range
4821 			 */
4822 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4823 			    hmeblkp->hblk_shw_bit ||
4824 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4825 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4826 				pr_hblk = hmeblkp;
4827 				prevpa = hblkpa;
4828 				goto next_block;
4829 			}
4830 
4831 			/*
4832 			 * unload if there are any current valid mappings
4833 			 */
4834 			if (hmeblkp->hblk_vcnt != 0 ||
4835 			    hmeblkp->hblk_hmecnt != 0)
4836 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4837 				    sa, ea, dmrp, flags);
4838 
4839 			/*
4840 			 * on unmap we also release the HME block itself, once
4841 			 * all mappings are gone.
4842 			 */
4843 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4844 			    !hmeblkp->hblk_vcnt &&
4845 			    !hmeblkp->hblk_hmecnt) {
4846 				ASSERT(!hmeblkp->hblk_lckcnt);
4847 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4848 					prevpa, pr_hblk);
4849 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4850 			} else {
4851 				pr_hblk = hmeblkp;
4852 				prevpa = hblkpa;
4853 			}
4854 
4855 			if (callback == NULL)
4856 				goto next_block;
4857 
4858 			/*
4859 			 * HME blocks may span more than one page, but we may be
4860 			 * unmapping only one page, so check for a smaller range
4861 			 * for the callback
4862 			 */
4863 			if (sa < startaddr)
4864 				sa = startaddr;
4865 			if (--ea > endaddr)
4866 				ea = endaddr - 1;
4867 
4868 			cb_sa[addr_cnt] = sa;
4869 			cb_ea[addr_cnt] = ea;
4870 			if (++addr_cnt == MAX_CB_ADDR) {
4871 				if (dmrp != NULL) {
4872 					DEMAP_RANGE_FLUSH(dmrp);
4873 					cpuset = sfmmup->sfmmu_cpusran;
4874 					xt_sync(cpuset);
4875 				}
4876 
4877 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4878 					callback->hcb_start_addr = cb_sa[a];
4879 					callback->hcb_end_addr = cb_ea[a];
4880 					callback->hcb_function(callback);
4881 				}
4882 				addr_cnt = 0;
4883 			}
4884 
4885 next_block:
4886 			hmeblkp = nx_hblk;
4887 			hblkpa = nx_pa;
4888 		}
4889 		SFMMU_HASH_UNLOCK(hmebp);
4890 	}
4891 
4892 	sfmmu_hblks_list_purge(&list);
4893 	if (dmrp != NULL) {
4894 		DEMAP_RANGE_FLUSH(dmrp);
4895 		cpuset = sfmmup->sfmmu_cpusran;
4896 		xt_sync(cpuset);
4897 	}
4898 
4899 	for (a = 0; a < addr_cnt; ++a) {
4900 		callback->hcb_start_addr = cb_sa[a];
4901 		callback->hcb_end_addr = cb_ea[a];
4902 		callback->hcb_function(callback);
4903 	}
4904 
4905 	/*
4906 	 * Check TSB and TLB page sizes if the process isn't exiting.
4907 	 */
4908 	if (!sfmmup->sfmmu_free)
4909 		sfmmu_check_page_sizes(sfmmup, 0);
4910 }
4911 
4912 /*
4913  * Unload all the mappings in the range [addr..addr+len). addr and len must
4914  * be MMU_PAGESIZE aligned.
4915  */
4916 
4917 extern struct seg *segkmap;
4918 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4919 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4920 
4921 
4922 void
4923 hat_unload_callback(
4924 	struct hat *sfmmup,
4925 	caddr_t addr,
4926 	size_t len,
4927 	uint_t flags,
4928 	hat_callback_t *callback)
4929 {
4930 	struct hmehash_bucket *hmebp;
4931 	hmeblk_tag hblktag;
4932 	int hmeshift, hashno, iskernel;
4933 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4934 	caddr_t endaddr;
4935 	cpuset_t cpuset;
4936 	uint64_t hblkpa, prevpa;
4937 	int addr_count = 0;
4938 	int a;
4939 	caddr_t cb_start_addr[MAX_CB_ADDR];
4940 	caddr_t cb_end_addr[MAX_CB_ADDR];
4941 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4942 	demap_range_t dmr, *dmrp;
4943 
4944 	if (sfmmup->sfmmu_xhat_provider) {
4945 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4946 		return;
4947 	} else {
4948 		/*
4949 		 * This must be a CPU HAT. If the address space has
4950 		 * XHATs attached, unload the mappings for all of them,
4951 		 * just in case
4952 		 */
4953 		ASSERT(sfmmup->sfmmu_as != NULL);
4954 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4955 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4956 			    len, flags, callback);
4957 	}
4958 
4959 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4960 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4961 
4962 	ASSERT(sfmmup != NULL);
4963 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4964 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4965 
4966 	/*
4967 	 * Probing through a large VA range (say 63 bits) will be slow, even
4968 	 * at 4 Meg steps between the probes. So, when the virtual address range
4969 	 * is very large, search the HME entries for what to unload.
4970 	 *
4971 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4972 	 *
4973 	 *	UHMEHASH_SZ is number of hash buckets to examine
4974 	 *
4975 	 */
4976 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4977 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4978 		return;
4979 	}
4980 
4981 	CPUSET_ZERO(cpuset);
4982 
4983 	/*
4984 	 * If the process is exiting, we can save a lot of fuss since
4985 	 * we'll flush the TLB when we free the ctx anyway.
4986 	 */
4987 	if (sfmmup->sfmmu_free)
4988 		dmrp = NULL;
4989 	else
4990 		dmrp = &dmr;
4991 
4992 	DEMAP_RANGE_INIT(sfmmup, dmrp);
4993 	endaddr = addr + len;
4994 	hblktag.htag_id = sfmmup;
4995 
4996 	/*
4997 	 * It is likely for the vm to call unload over a wide range of
4998 	 * addresses that are actually very sparsely populated by
4999 	 * translations.  In order to speed this up the sfmmu hat supports
5000 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5001 	 * correspond to actual small translations are allocated at tteload
5002 	 * time and are referred to as shadow hmeblks.  Now, during unload
5003 	 * time, we first check if we have a shadow hmeblk for that
5004 	 * translation.  The absence of one means the corresponding address
5005 	 * range is empty and can be skipped.
5006 	 *
5007 	 * The kernel is an exception to above statement and that is why
5008 	 * we don't use shadow hmeblks and hash starting from the smallest
5009 	 * page size.
5010 	 */
5011 	if (sfmmup == KHATID) {
5012 		iskernel = 1;
5013 		hashno = TTE64K;
5014 	} else {
5015 		iskernel = 0;
5016 		if (mmu_page_sizes == max_mmu_page_sizes) {
5017 			hashno = TTE256M;
5018 		} else {
5019 			hashno = TTE4M;
5020 		}
5021 	}
5022 	while (addr < endaddr) {
5023 		hmeshift = HME_HASH_SHIFT(hashno);
5024 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5025 		hblktag.htag_rehash = hashno;
5026 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5027 
5028 		SFMMU_HASH_LOCK(hmebp);
5029 
5030 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5031 			prevpa, &list);
5032 		if (hmeblkp == NULL) {
5033 			/*
5034 			 * didn't find an hmeblk. skip the appropiate
5035 			 * address range.
5036 			 */
5037 			SFMMU_HASH_UNLOCK(hmebp);
5038 			if (iskernel) {
5039 				if (hashno < mmu_hashcnt) {
5040 					hashno++;
5041 					continue;
5042 				} else {
5043 					hashno = TTE64K;
5044 					addr = (caddr_t)roundup((uintptr_t)addr
5045 						+ 1, MMU_PAGESIZE64K);
5046 					continue;
5047 				}
5048 			}
5049 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5050 				(1 << hmeshift));
5051 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5052 				ASSERT(hashno == TTE64K);
5053 				continue;
5054 			}
5055 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5056 				hashno = TTE512K;
5057 				continue;
5058 			}
5059 			if (mmu_page_sizes == max_mmu_page_sizes) {
5060 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5061 					hashno = TTE4M;
5062 					continue;
5063 				}
5064 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5065 					hashno = TTE32M;
5066 					continue;
5067 				}
5068 				hashno = TTE256M;
5069 				continue;
5070 			} else {
5071 				hashno = TTE4M;
5072 				continue;
5073 			}
5074 		}
5075 		ASSERT(hmeblkp);
5076 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5077 			/*
5078 			 * If the valid count is zero we can skip the range
5079 			 * mapped by this hmeblk.
5080 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5081 			 * is used by segment drivers as a hint
5082 			 * that the mapping resource won't be used any longer.
5083 			 * The best example of this is during exit().
5084 			 */
5085 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5086 				get_hblk_span(hmeblkp));
5087 			if ((flags & HAT_UNLOAD_UNMAP) ||
5088 			    (iskernel && !issegkmap)) {
5089 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5090 				    pr_hblk);
5091 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5092 			}
5093 			SFMMU_HASH_UNLOCK(hmebp);
5094 
5095 			if (iskernel) {
5096 				hashno = TTE64K;
5097 				continue;
5098 			}
5099 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5100 				ASSERT(hashno == TTE64K);
5101 				continue;
5102 			}
5103 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5104 				hashno = TTE512K;
5105 				continue;
5106 			}
5107 			if (mmu_page_sizes == max_mmu_page_sizes) {
5108 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5109 					hashno = TTE4M;
5110 					continue;
5111 				}
5112 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5113 					hashno = TTE32M;
5114 					continue;
5115 				}
5116 				hashno = TTE256M;
5117 				continue;
5118 			} else {
5119 				hashno = TTE4M;
5120 				continue;
5121 			}
5122 		}
5123 		if (hmeblkp->hblk_shw_bit) {
5124 			/*
5125 			 * If we encounter a shadow hmeblk we know there is
5126 			 * smaller sized hmeblks mapping the same address space.
5127 			 * Decrement the hash size and rehash.
5128 			 */
5129 			ASSERT(sfmmup != KHATID);
5130 			hashno--;
5131 			SFMMU_HASH_UNLOCK(hmebp);
5132 			continue;
5133 		}
5134 
5135 		/*
5136 		 * track callback address ranges.
5137 		 * only start a new range when it's not contiguous
5138 		 */
5139 		if (callback != NULL) {
5140 			if (addr_count > 0 &&
5141 			    addr == cb_end_addr[addr_count - 1])
5142 				--addr_count;
5143 			else
5144 				cb_start_addr[addr_count] = addr;
5145 		}
5146 
5147 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5148 				dmrp, flags);
5149 
5150 		if (callback != NULL)
5151 			cb_end_addr[addr_count++] = addr;
5152 
5153 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5154 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5155 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5156 			    pr_hblk);
5157 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5158 		}
5159 		SFMMU_HASH_UNLOCK(hmebp);
5160 
5161 		/*
5162 		 * Notify our caller as to exactly which pages
5163 		 * have been unloaded. We do these in clumps,
5164 		 * to minimize the number of xt_sync()s that need to occur.
5165 		 */
5166 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5167 			DEMAP_RANGE_FLUSH(dmrp);
5168 			if (dmrp != NULL) {
5169 				cpuset = sfmmup->sfmmu_cpusran;
5170 				xt_sync(cpuset);
5171 			}
5172 
5173 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5174 				callback->hcb_start_addr = cb_start_addr[a];
5175 				callback->hcb_end_addr = cb_end_addr[a];
5176 				callback->hcb_function(callback);
5177 			}
5178 			addr_count = 0;
5179 		}
5180 		if (iskernel) {
5181 			hashno = TTE64K;
5182 			continue;
5183 		}
5184 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5185 			ASSERT(hashno == TTE64K);
5186 			continue;
5187 		}
5188 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5189 			hashno = TTE512K;
5190 			continue;
5191 		}
5192 		if (mmu_page_sizes == max_mmu_page_sizes) {
5193 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5194 				hashno = TTE4M;
5195 				continue;
5196 			}
5197 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5198 				hashno = TTE32M;
5199 				continue;
5200 			}
5201 			hashno = TTE256M;
5202 		} else {
5203 			hashno = TTE4M;
5204 		}
5205 	}
5206 
5207 	sfmmu_hblks_list_purge(&list);
5208 	DEMAP_RANGE_FLUSH(dmrp);
5209 	if (dmrp != NULL) {
5210 		cpuset = sfmmup->sfmmu_cpusran;
5211 		xt_sync(cpuset);
5212 	}
5213 	if (callback && addr_count != 0) {
5214 		for (a = 0; a < addr_count; ++a) {
5215 			callback->hcb_start_addr = cb_start_addr[a];
5216 			callback->hcb_end_addr = cb_end_addr[a];
5217 			callback->hcb_function(callback);
5218 		}
5219 	}
5220 
5221 	/*
5222 	 * Check TSB and TLB page sizes if the process isn't exiting.
5223 	 */
5224 	if (!sfmmup->sfmmu_free)
5225 		sfmmu_check_page_sizes(sfmmup, 0);
5226 }
5227 
5228 /*
5229  * Unload all the mappings in the range [addr..addr+len). addr and len must
5230  * be MMU_PAGESIZE aligned.
5231  */
5232 void
5233 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5234 {
5235 	if (sfmmup->sfmmu_xhat_provider) {
5236 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5237 		return;
5238 	}
5239 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5240 }
5241 
5242 
5243 /*
5244  * Find the largest mapping size for this page.
5245  */
5246 int
5247 fnd_mapping_sz(page_t *pp)
5248 {
5249 	int sz;
5250 	int p_index;
5251 
5252 	p_index = PP_MAPINDEX(pp);
5253 
5254 	sz = 0;
5255 	p_index >>= 1;	/* don't care about 8K bit */
5256 	for (; p_index; p_index >>= 1) {
5257 		sz++;
5258 	}
5259 
5260 	return (sz);
5261 }
5262 
5263 /*
5264  * This function unloads a range of addresses for an hmeblk.
5265  * It returns the next address to be unloaded.
5266  * It should be called with the hash lock held.
5267  */
5268 static caddr_t
5269 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5270 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5271 {
5272 	tte_t	tte, ttemod;
5273 	struct	sf_hment *sfhmep;
5274 	int	ttesz;
5275 	long	ttecnt;
5276 	page_t *pp;
5277 	kmutex_t *pml;
5278 	int ret;
5279 	int use_demap_range;
5280 
5281 	ASSERT(in_hblk_range(hmeblkp, addr));
5282 	ASSERT(!hmeblkp->hblk_shw_bit);
5283 #ifdef DEBUG
5284 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5285 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5286 		panic("sfmmu_hblk_unload: partial unload of large page");
5287 	}
5288 #endif /* DEBUG */
5289 
5290 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5291 	ttesz = get_hblk_ttesz(hmeblkp);
5292 
5293 	use_demap_range = (do_virtual_coloring &&
5294 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5295 	if (use_demap_range) {
5296 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5297 	} else {
5298 		DEMAP_RANGE_FLUSH(dmrp);
5299 	}
5300 	ttecnt = 0;
5301 	HBLKTOHME(sfhmep, hmeblkp, addr);
5302 
5303 	while (addr < endaddr) {
5304 		pml = NULL;
5305 again:
5306 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5307 		if (TTE_IS_VALID(&tte)) {
5308 			pp = sfhmep->hme_page;
5309 			if (pp && pml == NULL) {
5310 				pml = sfmmu_mlist_enter(pp);
5311 			}
5312 
5313 			/*
5314 			 * Verify if hme still points to 'pp' now that
5315 			 * we have p_mapping lock.
5316 			 */
5317 			if (sfhmep->hme_page != pp) {
5318 				if (pp != NULL && sfhmep->hme_page != NULL) {
5319 					if (pml) {
5320 						sfmmu_mlist_exit(pml);
5321 					}
5322 					/* Re-start this iteration. */
5323 					continue;
5324 				}
5325 				ASSERT((pp != NULL) &&
5326 				    (sfhmep->hme_page == NULL));
5327 				goto tte_unloaded;
5328 			}
5329 
5330 			/*
5331 			 * This point on we have both HASH and p_mapping
5332 			 * lock.
5333 			 */
5334 			ASSERT(pp == sfhmep->hme_page);
5335 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5336 
5337 			/*
5338 			 * We need to loop on modify tte because it is
5339 			 * possible for pagesync to come along and
5340 			 * change the software bits beneath us.
5341 			 *
5342 			 * Page_unload can also invalidate the tte after
5343 			 * we read tte outside of p_mapping lock.
5344 			 */
5345 			ttemod = tte;
5346 
5347 			TTE_SET_INVALID(&ttemod);
5348 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5349 			    &sfhmep->hme_tte);
5350 
5351 			if (ret <= 0) {
5352 				if (TTE_IS_VALID(&tte)) {
5353 					goto again;
5354 				} else {
5355 					/*
5356 					 * We read in a valid pte, but it
5357 					 * is unloaded by page_unload.
5358 					 * hme_page has become NULL and
5359 					 * we hold no p_mapping lock.
5360 					 */
5361 					ASSERT(pp == NULL && pml == NULL);
5362 					goto tte_unloaded;
5363 				}
5364 			}
5365 
5366 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5367 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5368 			}
5369 
5370 			/*
5371 			 * Ok- we invalidated the tte. Do the rest of the job.
5372 			 */
5373 			ttecnt++;
5374 
5375 			if (flags & HAT_UNLOAD_UNLOCK) {
5376 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5377 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5378 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5379 			}
5380 
5381 			/*
5382 			 * Normally we would need to flush the page
5383 			 * from the virtual cache at this point in
5384 			 * order to prevent a potential cache alias
5385 			 * inconsistency.
5386 			 * The particular scenario we need to worry
5387 			 * about is:
5388 			 * Given:  va1 and va2 are two virtual address
5389 			 * that alias and map the same physical
5390 			 * address.
5391 			 * 1.	mapping exists from va1 to pa and data
5392 			 * has been read into the cache.
5393 			 * 2.	unload va1.
5394 			 * 3.	load va2 and modify data using va2.
5395 			 * 4	unload va2.
5396 			 * 5.	load va1 and reference data.  Unless we
5397 			 * flush the data cache when we unload we will
5398 			 * get stale data.
5399 			 * Fortunately, page coloring eliminates the
5400 			 * above scenario by remembering the color a
5401 			 * physical page was last or is currently
5402 			 * mapped to.  Now, we delay the flush until
5403 			 * the loading of translations.  Only when the
5404 			 * new translation is of a different color
5405 			 * are we forced to flush.
5406 			 */
5407 			if (use_demap_range) {
5408 				/*
5409 				 * Mark this page as needing a demap.
5410 				 */
5411 				DEMAP_RANGE_MARKPG(dmrp, addr);
5412 			} else {
5413 				if (do_virtual_coloring) {
5414 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5415 					    sfmmup->sfmmu_free, 0);
5416 				} else {
5417 					pfn_t pfnum;
5418 
5419 					pfnum = TTE_TO_PFN(addr, &tte);
5420 					sfmmu_tlbcache_demap(addr, sfmmup,
5421 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5422 					    FLUSH_NECESSARY_CPUS,
5423 					    CACHE_FLUSH, 0);
5424 				}
5425 			}
5426 
5427 			if (pp) {
5428 				/*
5429 				 * Remove the hment from the mapping list
5430 				 */
5431 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5432 
5433 				/*
5434 				 * Again, we cannot
5435 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5436 				 */
5437 				HME_SUB(sfhmep, pp);
5438 				membar_stst();
5439 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5440 			}
5441 
5442 			ASSERT(hmeblkp->hblk_vcnt > 0);
5443 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5444 
5445 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5446 			    !hmeblkp->hblk_lckcnt);
5447 
5448 #ifdef VAC
5449 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5450 				if (PP_ISTNC(pp)) {
5451 					/*
5452 					 * If page was temporary
5453 					 * uncached, try to recache
5454 					 * it. Note that HME_SUB() was
5455 					 * called above so p_index and
5456 					 * mlist had been updated.
5457 					 */
5458 					conv_tnc(pp, ttesz);
5459 				} else if (pp->p_mapping == NULL) {
5460 					ASSERT(kpm_enable);
5461 					/*
5462 					 * Page is marked to be in VAC conflict
5463 					 * to an existing kpm mapping and/or is
5464 					 * kpm mapped using only the regular
5465 					 * pagesize.
5466 					 */
5467 					sfmmu_kpm_hme_unload(pp);
5468 				}
5469 			}
5470 #endif	/* VAC */
5471 		} else if ((pp = sfhmep->hme_page) != NULL) {
5472 				/*
5473 				 * TTE is invalid but the hme
5474 				 * still exists. let pageunload
5475 				 * complete its job.
5476 				 */
5477 				ASSERT(pml == NULL);
5478 				pml = sfmmu_mlist_enter(pp);
5479 				if (sfhmep->hme_page != NULL) {
5480 					sfmmu_mlist_exit(pml);
5481 					pml = NULL;
5482 					goto again;
5483 				}
5484 				ASSERT(sfhmep->hme_page == NULL);
5485 		} else if (hmeblkp->hblk_hmecnt != 0) {
5486 			/*
5487 			 * pageunload may have not finished decrementing
5488 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5489 			 * wait for pageunload to finish. Rely on pageunload
5490 			 * to decrement hblk_hmecnt after hblk_vcnt.
5491 			 */
5492 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5493 			ASSERT(pml == NULL);
5494 			if (pf_is_memory(pfn)) {
5495 				pp = page_numtopp_nolock(pfn);
5496 				if (pp != NULL) {
5497 					pml = sfmmu_mlist_enter(pp);
5498 					sfmmu_mlist_exit(pml);
5499 					pml = NULL;
5500 				}
5501 			}
5502 		}
5503 
5504 tte_unloaded:
5505 		/*
5506 		 * At this point, the tte we are looking at
5507 		 * should be unloaded, and hme has been unlinked
5508 		 * from page too. This is important because in
5509 		 * pageunload, it does ttesync() then HME_SUB.
5510 		 * We need to make sure HME_SUB has been completed
5511 		 * so we know ttesync() has been completed. Otherwise,
5512 		 * at exit time, after return from hat layer, VM will
5513 		 * release as structure which hat_setstat() (called
5514 		 * by ttesync()) needs.
5515 		 */
5516 #ifdef DEBUG
5517 		{
5518 			tte_t	dtte;
5519 
5520 			ASSERT(sfhmep->hme_page == NULL);
5521 
5522 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5523 			ASSERT(!TTE_IS_VALID(&dtte));
5524 		}
5525 #endif
5526 
5527 		if (pml) {
5528 			sfmmu_mlist_exit(pml);
5529 		}
5530 
5531 		addr += TTEBYTES(ttesz);
5532 		sfhmep++;
5533 		DEMAP_RANGE_NEXTPG(dmrp);
5534 	}
5535 	if (ttecnt > 0)
5536 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5537 	return (addr);
5538 }
5539 
5540 /*
5541  * Synchronize all the mappings in the range [addr..addr+len).
5542  * Can be called with clearflag having two states:
5543  * HAT_SYNC_DONTZERO means just return the rm stats
5544  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5545  */
5546 void
5547 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5548 {
5549 	struct hmehash_bucket *hmebp;
5550 	hmeblk_tag hblktag;
5551 	int hmeshift, hashno = 1;
5552 	struct hme_blk *hmeblkp, *list = NULL;
5553 	caddr_t endaddr;
5554 	cpuset_t cpuset;
5555 
5556 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5557 	ASSERT((sfmmup == ksfmmup) ||
5558 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5559 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5560 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5561 		(clearflag == HAT_SYNC_ZERORM));
5562 
5563 	CPUSET_ZERO(cpuset);
5564 
5565 	endaddr = addr + len;
5566 	hblktag.htag_id = sfmmup;
5567 	/*
5568 	 * Spitfire supports 4 page sizes.
5569 	 * Most pages are expected to be of the smallest page
5570 	 * size (8K) and these will not need to be rehashed. 64K
5571 	 * pages also don't need to be rehashed because the an hmeblk
5572 	 * spans 64K of address space. 512K pages might need 1 rehash and
5573 	 * and 4M pages 2 rehashes.
5574 	 */
5575 	while (addr < endaddr) {
5576 		hmeshift = HME_HASH_SHIFT(hashno);
5577 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5578 		hblktag.htag_rehash = hashno;
5579 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5580 
5581 		SFMMU_HASH_LOCK(hmebp);
5582 
5583 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5584 		if (hmeblkp != NULL) {
5585 			/*
5586 			 * We've encountered a shadow hmeblk so skip the range
5587 			 * of the next smaller mapping size.
5588 			 */
5589 			if (hmeblkp->hblk_shw_bit) {
5590 				ASSERT(sfmmup != ksfmmup);
5591 				ASSERT(hashno > 1);
5592 				addr = (caddr_t)P2END((uintptr_t)addr,
5593 					    TTEBYTES(hashno - 1));
5594 			} else {
5595 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5596 				    addr, endaddr, clearflag);
5597 			}
5598 			SFMMU_HASH_UNLOCK(hmebp);
5599 			hashno = 1;
5600 			continue;
5601 		}
5602 		SFMMU_HASH_UNLOCK(hmebp);
5603 
5604 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5605 			/*
5606 			 * We have traversed the whole list and rehashed
5607 			 * if necessary without finding the address to sync.
5608 			 * This is ok so we increment the address by the
5609 			 * smallest hmeblk range for kernel mappings and the
5610 			 * largest hmeblk range, to account for shadow hmeblks,
5611 			 * for user mappings and continue.
5612 			 */
5613 			if (sfmmup == ksfmmup)
5614 				addr = (caddr_t)P2END((uintptr_t)addr,
5615 					    TTEBYTES(1));
5616 			else
5617 				addr = (caddr_t)P2END((uintptr_t)addr,
5618 					    TTEBYTES(hashno));
5619 			hashno = 1;
5620 		} else {
5621 			hashno++;
5622 		}
5623 	}
5624 	sfmmu_hblks_list_purge(&list);
5625 	cpuset = sfmmup->sfmmu_cpusran;
5626 	xt_sync(cpuset);
5627 }
5628 
5629 static caddr_t
5630 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5631 	caddr_t endaddr, int clearflag)
5632 {
5633 	tte_t	tte, ttemod;
5634 	struct sf_hment *sfhmep;
5635 	int ttesz;
5636 	struct page *pp;
5637 	kmutex_t *pml;
5638 	int ret;
5639 
5640 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5641 
5642 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5643 
5644 	ttesz = get_hblk_ttesz(hmeblkp);
5645 	HBLKTOHME(sfhmep, hmeblkp, addr);
5646 
5647 	while (addr < endaddr) {
5648 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5649 		if (TTE_IS_VALID(&tte)) {
5650 			pml = NULL;
5651 			pp = sfhmep->hme_page;
5652 			if (pp) {
5653 				pml = sfmmu_mlist_enter(pp);
5654 			}
5655 			if (pp != sfhmep->hme_page) {
5656 				/*
5657 				 * tte most have been unloaded
5658 				 * underneath us.  Recheck
5659 				 */
5660 				ASSERT(pml);
5661 				sfmmu_mlist_exit(pml);
5662 				continue;
5663 			}
5664 
5665 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5666 
5667 			if (clearflag == HAT_SYNC_ZERORM) {
5668 				ttemod = tte;
5669 				TTE_CLR_RM(&ttemod);
5670 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5671 				    &sfhmep->hme_tte);
5672 				if (ret < 0) {
5673 					if (pml) {
5674 						sfmmu_mlist_exit(pml);
5675 					}
5676 					continue;
5677 				}
5678 
5679 				if (ret > 0) {
5680 					sfmmu_tlb_demap(addr, sfmmup,
5681 						hmeblkp, 0, 0);
5682 				}
5683 			}
5684 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5685 			if (pml) {
5686 				sfmmu_mlist_exit(pml);
5687 			}
5688 		}
5689 		addr += TTEBYTES(ttesz);
5690 		sfhmep++;
5691 	}
5692 	return (addr);
5693 }
5694 
5695 /*
5696  * This function will sync a tte to the page struct and it will
5697  * update the hat stats. Currently it allows us to pass a NULL pp
5698  * and we will simply update the stats.  We may want to change this
5699  * so we only keep stats for pages backed by pp's.
5700  */
5701 static void
5702 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5703 {
5704 	uint_t rm = 0;
5705 	int   	sz;
5706 	pgcnt_t	npgs;
5707 
5708 	ASSERT(TTE_IS_VALID(ttep));
5709 
5710 	if (TTE_IS_NOSYNC(ttep)) {
5711 		return;
5712 	}
5713 
5714 	if (TTE_IS_REF(ttep))  {
5715 		rm = P_REF;
5716 	}
5717 	if (TTE_IS_MOD(ttep))  {
5718 		rm |= P_MOD;
5719 	}
5720 
5721 	if (rm == 0) {
5722 		return;
5723 	}
5724 
5725 	sz = TTE_CSZ(ttep);
5726 	if (sfmmup->sfmmu_rmstat) {
5727 		int i;
5728 		caddr_t	vaddr = addr;
5729 
5730 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5731 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5732 		}
5733 
5734 	}
5735 
5736 	/*
5737 	 * XXX I want to use cas to update nrm bits but they
5738 	 * currently belong in common/vm and not in hat where
5739 	 * they should be.
5740 	 * The nrm bits are protected by the same mutex as
5741 	 * the one that protects the page's mapping list.
5742 	 */
5743 	if (!pp)
5744 		return;
5745 	ASSERT(sfmmu_mlist_held(pp));
5746 	/*
5747 	 * If the tte is for a large page, we need to sync all the
5748 	 * pages covered by the tte.
5749 	 */
5750 	if (sz != TTE8K) {
5751 		ASSERT(pp->p_szc != 0);
5752 		pp = PP_GROUPLEADER(pp, sz);
5753 		ASSERT(sfmmu_mlist_held(pp));
5754 	}
5755 
5756 	/* Get number of pages from tte size. */
5757 	npgs = TTEPAGES(sz);
5758 
5759 	do {
5760 		ASSERT(pp);
5761 		ASSERT(sfmmu_mlist_held(pp));
5762 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5763 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5764 			hat_page_setattr(pp, rm);
5765 
5766 		/*
5767 		 * Are we done? If not, we must have a large mapping.
5768 		 * For large mappings we need to sync the rest of the pages
5769 		 * covered by this tte; goto the next page.
5770 		 */
5771 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5772 }
5773 
5774 /*
5775  * Execute pre-callback handler of each pa_hment linked to pp
5776  *
5777  * Inputs:
5778  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5779  *   capture_cpus: pointer to return value (below)
5780  *
5781  * Returns:
5782  *   Propagates the subsystem callback return values back to the caller;
5783  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5784  *   is zero if all of the pa_hments are of a type that do not require
5785  *   capturing CPUs prior to suspending the mapping, else it is 1.
5786  */
5787 static int
5788 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5789 {
5790 	struct sf_hment	*sfhmep;
5791 	struct pa_hment *pahmep;
5792 	int (*f)(caddr_t, uint_t, uint_t, void *);
5793 	int		ret;
5794 	id_t		id;
5795 	int		locked = 0;
5796 	kmutex_t	*pml;
5797 
5798 	ASSERT(PAGE_EXCL(pp));
5799 	if (!sfmmu_mlist_held(pp)) {
5800 		pml = sfmmu_mlist_enter(pp);
5801 		locked = 1;
5802 	}
5803 
5804 	if (capture_cpus)
5805 		*capture_cpus = 0;
5806 
5807 top:
5808 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5809 		/*
5810 		 * skip sf_hments corresponding to VA<->PA mappings;
5811 		 * for pa_hment's, hme_tte.ll is zero
5812 		 */
5813 		if (!IS_PAHME(sfhmep))
5814 			continue;
5815 
5816 		pahmep = sfhmep->hme_data;
5817 		ASSERT(pahmep != NULL);
5818 
5819 		/*
5820 		 * skip if pre-handler has been called earlier in this loop
5821 		 */
5822 		if (pahmep->flags & flag)
5823 			continue;
5824 
5825 		id = pahmep->cb_id;
5826 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5827 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5828 			*capture_cpus = 1;
5829 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5830 			pahmep->flags |= flag;
5831 			continue;
5832 		}
5833 
5834 		/*
5835 		 * Drop the mapping list lock to avoid locking order issues.
5836 		 */
5837 		if (locked)
5838 			sfmmu_mlist_exit(pml);
5839 
5840 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5841 		if (ret != 0)
5842 			return (ret);	/* caller must do the cleanup */
5843 
5844 		if (locked) {
5845 			pml = sfmmu_mlist_enter(pp);
5846 			pahmep->flags |= flag;
5847 			goto top;
5848 		}
5849 
5850 		pahmep->flags |= flag;
5851 	}
5852 
5853 	if (locked)
5854 		sfmmu_mlist_exit(pml);
5855 
5856 	return (0);
5857 }
5858 
5859 /*
5860  * Execute post-callback handler of each pa_hment linked to pp
5861  *
5862  * Same overall assumptions and restrictions apply as for
5863  * hat_pageprocess_precallbacks().
5864  */
5865 static void
5866 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5867 {
5868 	pfn_t pgpfn = pp->p_pagenum;
5869 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5870 	pfn_t newpfn;
5871 	struct sf_hment *sfhmep;
5872 	struct pa_hment *pahmep;
5873 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5874 	id_t	id;
5875 	int	locked = 0;
5876 	kmutex_t *pml;
5877 
5878 	ASSERT(PAGE_EXCL(pp));
5879 	if (!sfmmu_mlist_held(pp)) {
5880 		pml = sfmmu_mlist_enter(pp);
5881 		locked = 1;
5882 	}
5883 
5884 top:
5885 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5886 		/*
5887 		 * skip sf_hments corresponding to VA<->PA mappings;
5888 		 * for pa_hment's, hme_tte.ll is zero
5889 		 */
5890 		if (!IS_PAHME(sfhmep))
5891 			continue;
5892 
5893 		pahmep = sfhmep->hme_data;
5894 		ASSERT(pahmep != NULL);
5895 
5896 		if ((pahmep->flags & flag) == 0)
5897 			continue;
5898 
5899 		pahmep->flags &= ~flag;
5900 
5901 		id = pahmep->cb_id;
5902 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5903 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5904 			continue;
5905 
5906 		/*
5907 		 * Convert the base page PFN into the constituent PFN
5908 		 * which is needed by the callback handler.
5909 		 */
5910 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5911 
5912 		/*
5913 		 * Drop the mapping list lock to avoid locking order issues.
5914 		 */
5915 		if (locked)
5916 			sfmmu_mlist_exit(pml);
5917 
5918 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5919 		    != 0)
5920 			panic("sfmmu: posthandler failed");
5921 
5922 		if (locked) {
5923 			pml = sfmmu_mlist_enter(pp);
5924 			goto top;
5925 		}
5926 	}
5927 
5928 	if (locked)
5929 		sfmmu_mlist_exit(pml);
5930 }
5931 
5932 /*
5933  * Suspend locked kernel mapping
5934  */
5935 void
5936 hat_pagesuspend(struct page *pp)
5937 {
5938 	struct sf_hment *sfhmep;
5939 	sfmmu_t *sfmmup;
5940 	tte_t tte, ttemod;
5941 	struct hme_blk *hmeblkp;
5942 	caddr_t addr;
5943 	int index, cons;
5944 	cpuset_t cpuset;
5945 
5946 	ASSERT(PAGE_EXCL(pp));
5947 	ASSERT(sfmmu_mlist_held(pp));
5948 
5949 	mutex_enter(&kpr_suspendlock);
5950 
5951 	/*
5952 	 * Call into dtrace to tell it we're about to suspend a
5953 	 * kernel mapping. This prevents us from running into issues
5954 	 * with probe context trying to touch a suspended page
5955 	 * in the relocation codepath itself.
5956 	 */
5957 	if (dtrace_kreloc_init)
5958 		(*dtrace_kreloc_init)();
5959 
5960 	index = PP_MAPINDEX(pp);
5961 	cons = TTE8K;
5962 
5963 retry:
5964 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5965 
5966 		if (IS_PAHME(sfhmep))
5967 			continue;
5968 
5969 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5970 			continue;
5971 
5972 		/*
5973 		 * Loop until we successfully set the suspend bit in
5974 		 * the TTE.
5975 		 */
5976 again:
5977 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5978 		ASSERT(TTE_IS_VALID(&tte));
5979 
5980 		ttemod = tte;
5981 		TTE_SET_SUSPEND(&ttemod);
5982 		if (sfmmu_modifytte_try(&tte, &ttemod,
5983 		    &sfhmep->hme_tte) < 0)
5984 			goto again;
5985 
5986 		/*
5987 		 * Invalidate TSB entry
5988 		 */
5989 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5990 
5991 		sfmmup = hblktosfmmu(hmeblkp);
5992 		ASSERT(sfmmup == ksfmmup);
5993 
5994 		addr = tte_to_vaddr(hmeblkp, tte);
5995 
5996 		/*
5997 		 * No need to make sure that the TSB for this sfmmu is
5998 		 * not being relocated since it is ksfmmup and thus it
5999 		 * will never be relocated.
6000 		 */
6001 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6002 
6003 		/*
6004 		 * Update xcall stats
6005 		 */
6006 		cpuset = cpu_ready_set;
6007 		CPUSET_DEL(cpuset, CPU->cpu_id);
6008 
6009 		/* LINTED: constant in conditional context */
6010 		SFMMU_XCALL_STATS(ksfmmup);
6011 
6012 		/*
6013 		 * Flush TLB entry on remote CPU's
6014 		 */
6015 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6016 		    (uint64_t)ksfmmup);
6017 		xt_sync(cpuset);
6018 
6019 		/*
6020 		 * Flush TLB entry on local CPU
6021 		 */
6022 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6023 	}
6024 
6025 	while (index != 0) {
6026 		index = index >> 1;
6027 		if (index != 0)
6028 			cons++;
6029 		if (index & 0x1) {
6030 			pp = PP_GROUPLEADER(pp, cons);
6031 			goto retry;
6032 		}
6033 	}
6034 }
6035 
6036 #ifdef	DEBUG
6037 
6038 #define	N_PRLE	1024
6039 struct prle {
6040 	page_t *targ;
6041 	page_t *repl;
6042 	int status;
6043 	int pausecpus;
6044 	hrtime_t whence;
6045 };
6046 
6047 static struct prle page_relocate_log[N_PRLE];
6048 static int prl_entry;
6049 static kmutex_t prl_mutex;
6050 
6051 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6052 	mutex_enter(&prl_mutex);					\
6053 	page_relocate_log[prl_entry].targ = *(t);			\
6054 	page_relocate_log[prl_entry].repl = *(r);			\
6055 	page_relocate_log[prl_entry].status = (s);			\
6056 	page_relocate_log[prl_entry].pausecpus = (p);			\
6057 	page_relocate_log[prl_entry].whence = gethrtime();		\
6058 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6059 	mutex_exit(&prl_mutex);
6060 
6061 #else	/* !DEBUG */
6062 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6063 #endif
6064 
6065 /*
6066  * Core Kernel Page Relocation Algorithm
6067  *
6068  * Input:
6069  *
6070  * target : 	constituent pages are SE_EXCL locked.
6071  * replacement:	constituent pages are SE_EXCL locked.
6072  *
6073  * Output:
6074  *
6075  * nrelocp:	number of pages relocated
6076  */
6077 int
6078 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6079 {
6080 	page_t		*targ, *repl;
6081 	page_t		*tpp, *rpp;
6082 	kmutex_t	*low, *high;
6083 	spgcnt_t	npages, i;
6084 	page_t		*pl = NULL;
6085 	int		old_pil;
6086 	cpuset_t	cpuset;
6087 	int		cap_cpus;
6088 	int		ret;
6089 
6090 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6091 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6092 		return (EAGAIN);
6093 	}
6094 
6095 	mutex_enter(&kpr_mutex);
6096 	kreloc_thread = curthread;
6097 
6098 	targ = *target;
6099 	repl = *replacement;
6100 	ASSERT(repl != NULL);
6101 	ASSERT(targ->p_szc == repl->p_szc);
6102 
6103 	npages = page_get_pagecnt(targ->p_szc);
6104 
6105 	/*
6106 	 * unload VA<->PA mappings that are not locked
6107 	 */
6108 	tpp = targ;
6109 	for (i = 0; i < npages; i++) {
6110 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6111 		tpp++;
6112 	}
6113 
6114 	/*
6115 	 * Do "presuspend" callbacks, in a context from which we can still
6116 	 * block as needed. Note that we don't hold the mapping list lock
6117 	 * of "targ" at this point due to potential locking order issues;
6118 	 * we assume that between the hat_pageunload() above and holding
6119 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6120 	 * point.
6121 	 */
6122 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6123 	if (ret != 0) {
6124 		/*
6125 		 * EIO translates to fatal error, for all others cleanup
6126 		 * and return EAGAIN.
6127 		 */
6128 		ASSERT(ret != EIO);
6129 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6130 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6131 		kreloc_thread = NULL;
6132 		mutex_exit(&kpr_mutex);
6133 		return (EAGAIN);
6134 	}
6135 
6136 	/*
6137 	 * acquire p_mapping list lock for both the target and replacement
6138 	 * root pages.
6139 	 *
6140 	 * low and high refer to the need to grab the mlist locks in a
6141 	 * specific order in order to prevent race conditions.  Thus the
6142 	 * lower lock must be grabbed before the higher lock.
6143 	 *
6144 	 * This will block hat_unload's accessing p_mapping list.  Since
6145 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6146 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6147 	 * while we suspend and reload the locked mapping below.
6148 	 */
6149 	tpp = targ;
6150 	rpp = repl;
6151 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6152 
6153 	kpreempt_disable();
6154 
6155 #ifdef VAC
6156 	/*
6157 	 * If the replacement page is of a different virtual color
6158 	 * than the page it is replacing, we need to handle the VAC
6159 	 * consistency for it just as we would if we were setting up
6160 	 * a new mapping to a page.
6161 	 */
6162 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6163 		if (tpp->p_vcolor != rpp->p_vcolor) {
6164 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6165 			    rpp->p_pagenum);
6166 		}
6167 	}
6168 #endif
6169 
6170 	/*
6171 	 * We raise our PIL to 13 so that we don't get captured by
6172 	 * another CPU or pinned by an interrupt thread.  We can't go to
6173 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6174 	 * that level in the case of IOMMU pseudo mappings.
6175 	 */
6176 	cpuset = cpu_ready_set;
6177 	CPUSET_DEL(cpuset, CPU->cpu_id);
6178 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6179 		old_pil = splr(XCALL_PIL);
6180 	} else {
6181 		old_pil = -1;
6182 		xc_attention(cpuset);
6183 	}
6184 	ASSERT(getpil() == XCALL_PIL);
6185 
6186 	/*
6187 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6188 	 * this will suspend all DMA activity to the page while it is
6189 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6190 	 * may be captured at this point we should have acquired any needed
6191 	 * locks in the presuspend callback.
6192 	 */
6193 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6194 	if (ret != 0) {
6195 		repl = targ;
6196 		goto suspend_fail;
6197 	}
6198 
6199 	/*
6200 	 * Raise the PIL yet again, this time to block all high-level
6201 	 * interrupts on this CPU. This is necessary to prevent an
6202 	 * interrupt routine from pinning the thread which holds the
6203 	 * mapping suspended and then touching the suspended page.
6204 	 *
6205 	 * Once the page is suspended we also need to be careful to
6206 	 * avoid calling any functions which touch any seg_kmem memory
6207 	 * since that memory may be backed by the very page we are
6208 	 * relocating in here!
6209 	 */
6210 	hat_pagesuspend(targ);
6211 
6212 	/*
6213 	 * Now that we are confident everybody has stopped using this page,
6214 	 * copy the page contents.  Note we use a physical copy to prevent
6215 	 * locking issues and to avoid fpRAS because we can't handle it in
6216 	 * this context.
6217 	 */
6218 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6219 		/*
6220 		 * Copy the contents of the page.
6221 		 */
6222 		ppcopy_kernel(tpp, rpp);
6223 	}
6224 
6225 	tpp = targ;
6226 	rpp = repl;
6227 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6228 		/*
6229 		 * Copy attributes.  VAC consistency was handled above,
6230 		 * if required.
6231 		 */
6232 		rpp->p_nrm = tpp->p_nrm;
6233 		tpp->p_nrm = 0;
6234 		rpp->p_index = tpp->p_index;
6235 		tpp->p_index = 0;
6236 #ifdef VAC
6237 		rpp->p_vcolor = tpp->p_vcolor;
6238 #endif
6239 	}
6240 
6241 	/*
6242 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6243 	 * the mapping list from the target page to the replacement page.
6244 	 * Next process postcallbacks; since pa_hment's are linked only to the
6245 	 * p_mapping list of root page, we don't iterate over the constituent
6246 	 * pages.
6247 	 */
6248 	hat_pagereload(targ, repl);
6249 
6250 suspend_fail:
6251 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6252 
6253 	/*
6254 	 * Now lower our PIL and release any captured CPUs since we
6255 	 * are out of the "danger zone".  After this it will again be
6256 	 * safe to acquire adaptive mutex locks, or to drop them...
6257 	 */
6258 	if (old_pil != -1) {
6259 		splx(old_pil);
6260 	} else {
6261 		xc_dismissed(cpuset);
6262 	}
6263 
6264 	kpreempt_enable();
6265 
6266 	sfmmu_mlist_reloc_exit(low, high);
6267 
6268 	/*
6269 	 * Postsuspend callbacks should drop any locks held across
6270 	 * the suspend callbacks.  As before, we don't hold the mapping
6271 	 * list lock at this point.. our assumption is that the mapping
6272 	 * list still can't change due to our holding SE_EXCL lock and
6273 	 * there being no unlocked mappings left. Hence the restriction
6274 	 * on calling context to hat_delete_callback()
6275 	 */
6276 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6277 	if (ret != 0) {
6278 		/*
6279 		 * The second presuspend call failed: we got here through
6280 		 * the suspend_fail label above.
6281 		 */
6282 		ASSERT(ret != EIO);
6283 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6284 		kreloc_thread = NULL;
6285 		mutex_exit(&kpr_mutex);
6286 		return (EAGAIN);
6287 	}
6288 
6289 	/*
6290 	 * Now that we're out of the performance critical section we can
6291 	 * take care of updating the hash table, since we still
6292 	 * hold all the pages locked SE_EXCL at this point we
6293 	 * needn't worry about things changing out from under us.
6294 	 */
6295 	tpp = targ;
6296 	rpp = repl;
6297 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6298 
6299 		/*
6300 		 * replace targ with replacement in page_hash table
6301 		 */
6302 		targ = tpp;
6303 		page_relocate_hash(rpp, targ);
6304 
6305 		/*
6306 		 * concatenate target; caller of platform_page_relocate()
6307 		 * expects target to be concatenated after returning.
6308 		 */
6309 		ASSERT(targ->p_next == targ);
6310 		ASSERT(targ->p_prev == targ);
6311 		page_list_concat(&pl, &targ);
6312 	}
6313 
6314 	ASSERT(*target == pl);
6315 	*nrelocp = npages;
6316 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6317 	kreloc_thread = NULL;
6318 	mutex_exit(&kpr_mutex);
6319 	return (0);
6320 }
6321 
6322 /*
6323  * Called when stray pa_hments are found attached to a page which is
6324  * being freed.  Notify the subsystem which attached the pa_hment of
6325  * the error if it registered a suitable handler, else panic.
6326  */
6327 static void
6328 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6329 {
6330 	id_t cb_id = pahmep->cb_id;
6331 
6332 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6333 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6334 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6335 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6336 			return;		/* non-fatal */
6337 	}
6338 	panic("pa_hment leaked: 0x%p", pahmep);
6339 }
6340 
6341 /*
6342  * Remove all mappings to page 'pp'.
6343  */
6344 int
6345 hat_pageunload(struct page *pp, uint_t forceflag)
6346 {
6347 	struct page *origpp = pp;
6348 	struct sf_hment *sfhme, *tmphme;
6349 	struct hme_blk *hmeblkp;
6350 	kmutex_t *pml;
6351 #ifdef VAC
6352 	kmutex_t *pmtx;
6353 #endif
6354 	cpuset_t cpuset, tset;
6355 	int index, cons;
6356 	int xhme_blks;
6357 	int pa_hments;
6358 
6359 	ASSERT(PAGE_EXCL(pp));
6360 
6361 retry_xhat:
6362 	tmphme = NULL;
6363 	xhme_blks = 0;
6364 	pa_hments = 0;
6365 	CPUSET_ZERO(cpuset);
6366 
6367 	pml = sfmmu_mlist_enter(pp);
6368 
6369 #ifdef VAC
6370 	if (pp->p_kpmref)
6371 		sfmmu_kpm_pageunload(pp);
6372 	ASSERT(!PP_ISMAPPED_KPM(pp));
6373 #endif
6374 
6375 	index = PP_MAPINDEX(pp);
6376 	cons = TTE8K;
6377 retry:
6378 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6379 		tmphme = sfhme->hme_next;
6380 
6381 		if (IS_PAHME(sfhme)) {
6382 			ASSERT(sfhme->hme_data != NULL);
6383 			pa_hments++;
6384 			continue;
6385 		}
6386 
6387 		hmeblkp = sfmmu_hmetohblk(sfhme);
6388 		if (hmeblkp->hblk_xhat_bit) {
6389 			struct xhat_hme_blk *xblk =
6390 			    (struct xhat_hme_blk *)hmeblkp;
6391 
6392 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6393 			    pp, forceflag, XBLK2PROVBLK(xblk));
6394 
6395 			xhme_blks = 1;
6396 			continue;
6397 		}
6398 
6399 		/*
6400 		 * If there are kernel mappings don't unload them, they will
6401 		 * be suspended.
6402 		 */
6403 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6404 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6405 			continue;
6406 
6407 		tset = sfmmu_pageunload(pp, sfhme, cons);
6408 		CPUSET_OR(cpuset, tset);
6409 	}
6410 
6411 	while (index != 0) {
6412 		index = index >> 1;
6413 		if (index != 0)
6414 			cons++;
6415 		if (index & 0x1) {
6416 			/* Go to leading page */
6417 			pp = PP_GROUPLEADER(pp, cons);
6418 			ASSERT(sfmmu_mlist_held(pp));
6419 			goto retry;
6420 		}
6421 	}
6422 
6423 	/*
6424 	 * cpuset may be empty if the page was only mapped by segkpm,
6425 	 * in which case we won't actually cross-trap.
6426 	 */
6427 	xt_sync(cpuset);
6428 
6429 	/*
6430 	 * The page should have no mappings at this point, unless
6431 	 * we were called from hat_page_relocate() in which case we
6432 	 * leave the locked mappings which will be suspended later.
6433 	 */
6434 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6435 	    (forceflag == SFMMU_KERNEL_RELOC));
6436 
6437 #ifdef VAC
6438 	if (PP_ISTNC(pp)) {
6439 		if (cons == TTE8K) {
6440 			pmtx = sfmmu_page_enter(pp);
6441 			PP_CLRTNC(pp);
6442 			sfmmu_page_exit(pmtx);
6443 		} else {
6444 			conv_tnc(pp, cons);
6445 		}
6446 	}
6447 #endif	/* VAC */
6448 
6449 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6450 		/*
6451 		 * Unlink any pa_hments and free them, calling back
6452 		 * the responsible subsystem to notify it of the error.
6453 		 * This can occur in situations such as drivers leaking
6454 		 * DMA handles: naughty, but common enough that we'd like
6455 		 * to keep the system running rather than bringing it
6456 		 * down with an obscure error like "pa_hment leaked"
6457 		 * which doesn't aid the user in debugging their driver.
6458 		 */
6459 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6460 			tmphme = sfhme->hme_next;
6461 			if (IS_PAHME(sfhme)) {
6462 				struct pa_hment *pahmep = sfhme->hme_data;
6463 				sfmmu_pahment_leaked(pahmep);
6464 				HME_SUB(sfhme, pp);
6465 				kmem_cache_free(pa_hment_cache, pahmep);
6466 			}
6467 		}
6468 
6469 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6470 	}
6471 
6472 	sfmmu_mlist_exit(pml);
6473 
6474 	/*
6475 	 * XHAT may not have finished unloading pages
6476 	 * because some other thread was waiting for
6477 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6478 	 * the job.
6479 	 */
6480 	if (xhme_blks) {
6481 		pp = origpp;
6482 		goto retry_xhat;
6483 	}
6484 
6485 	return (0);
6486 }
6487 
6488 cpuset_t
6489 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6490 {
6491 	struct hme_blk *hmeblkp;
6492 	sfmmu_t *sfmmup;
6493 	tte_t tte, ttemod;
6494 #ifdef DEBUG
6495 	tte_t orig_old;
6496 #endif /* DEBUG */
6497 	caddr_t addr;
6498 	int ttesz;
6499 	int ret;
6500 	cpuset_t cpuset;
6501 
6502 	ASSERT(pp != NULL);
6503 	ASSERT(sfmmu_mlist_held(pp));
6504 	ASSERT(pp->p_vnode != &kvp);
6505 
6506 	CPUSET_ZERO(cpuset);
6507 
6508 	hmeblkp = sfmmu_hmetohblk(sfhme);
6509 
6510 readtte:
6511 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6512 	if (TTE_IS_VALID(&tte)) {
6513 		sfmmup = hblktosfmmu(hmeblkp);
6514 		ttesz = get_hblk_ttesz(hmeblkp);
6515 		/*
6516 		 * Only unload mappings of 'cons' size.
6517 		 */
6518 		if (ttesz != cons)
6519 			return (cpuset);
6520 
6521 		/*
6522 		 * Note that we have p_mapping lock, but no hash lock here.
6523 		 * hblk_unload() has to have both hash lock AND p_mapping
6524 		 * lock before it tries to modify tte. So, the tte could
6525 		 * not become invalid in the sfmmu_modifytte_try() below.
6526 		 */
6527 		ttemod = tte;
6528 #ifdef DEBUG
6529 		orig_old = tte;
6530 #endif /* DEBUG */
6531 
6532 		TTE_SET_INVALID(&ttemod);
6533 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6534 		if (ret < 0) {
6535 #ifdef DEBUG
6536 			/* only R/M bits can change. */
6537 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6538 #endif /* DEBUG */
6539 			goto readtte;
6540 		}
6541 
6542 		if (ret == 0) {
6543 			panic("pageunload: cas failed?");
6544 		}
6545 
6546 		addr = tte_to_vaddr(hmeblkp, tte);
6547 
6548 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6549 
6550 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6551 
6552 		/*
6553 		 * We need to flush the page from the virtual cache
6554 		 * in order to prevent a virtual cache alias
6555 		 * inconsistency. The particular scenario we need
6556 		 * to worry about is:
6557 		 * Given:  va1 and va2 are two virtual address that
6558 		 * alias and will map the same physical address.
6559 		 * 1.	mapping exists from va1 to pa and data has
6560 		 *	been read into the cache.
6561 		 * 2.	unload va1.
6562 		 * 3.	load va2 and modify data using va2.
6563 		 * 4	unload va2.
6564 		 * 5.	load va1 and reference data.  Unless we flush
6565 		 *	the data cache when we unload we will get
6566 		 *	stale data.
6567 		 * This scenario is taken care of by using virtual
6568 		 * page coloring.
6569 		 */
6570 		if (sfmmup->sfmmu_ismhat) {
6571 			/*
6572 			 * Flush TSBs, TLBs and caches
6573 			 * of every process
6574 			 * sharing this ism segment.
6575 			 */
6576 			sfmmu_hat_lock_all();
6577 			mutex_enter(&ism_mlist_lock);
6578 			kpreempt_disable();
6579 			if (do_virtual_coloring)
6580 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6581 					pp->p_pagenum, CACHE_NO_FLUSH);
6582 			else
6583 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6584 					pp->p_pagenum, CACHE_FLUSH);
6585 			kpreempt_enable();
6586 			mutex_exit(&ism_mlist_lock);
6587 			sfmmu_hat_unlock_all();
6588 			cpuset = cpu_ready_set;
6589 		} else if (do_virtual_coloring) {
6590 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6591 			cpuset = sfmmup->sfmmu_cpusran;
6592 		} else {
6593 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6594 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6595 				CACHE_FLUSH, 0);
6596 			cpuset = sfmmup->sfmmu_cpusran;
6597 		}
6598 
6599 		/*
6600 		 * Hme_sub has to run after ttesync() and a_rss update.
6601 		 * See hblk_unload().
6602 		 */
6603 		HME_SUB(sfhme, pp);
6604 		membar_stst();
6605 
6606 		/*
6607 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6608 		 * since pteload may have done a HME_ADD() right after
6609 		 * we did the HME_SUB() above. Hmecnt is now maintained
6610 		 * by cas only. no lock guranteed its value. The only
6611 		 * gurantee we have is the hmecnt should not be less than
6612 		 * what it should be so the hblk will not be taken away.
6613 		 * It's also important that we decremented the hmecnt after
6614 		 * we are done with hmeblkp so that this hmeblk won't be
6615 		 * stolen.
6616 		 */
6617 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6618 		ASSERT(hmeblkp->hblk_vcnt > 0);
6619 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6620 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6621 		/*
6622 		 * This is bug 4063182.
6623 		 * XXX: fixme
6624 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6625 		 *	!hmeblkp->hblk_lckcnt);
6626 		 */
6627 	} else {
6628 		panic("invalid tte? pp %p &tte %p",
6629 		    (void *)pp, (void *)&tte);
6630 	}
6631 
6632 	return (cpuset);
6633 }
6634 
6635 /*
6636  * While relocating a kernel page, this function will move the mappings
6637  * from tpp to dpp and modify any associated data with these mappings.
6638  * It also unsuspends the suspended kernel mapping.
6639  */
6640 static void
6641 hat_pagereload(struct page *tpp, struct page *dpp)
6642 {
6643 	struct sf_hment *sfhme;
6644 	tte_t tte, ttemod;
6645 	int index, cons;
6646 
6647 	ASSERT(getpil() == PIL_MAX);
6648 	ASSERT(sfmmu_mlist_held(tpp));
6649 	ASSERT(sfmmu_mlist_held(dpp));
6650 
6651 	index = PP_MAPINDEX(tpp);
6652 	cons = TTE8K;
6653 
6654 	/* Update real mappings to the page */
6655 retry:
6656 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6657 		if (IS_PAHME(sfhme))
6658 			continue;
6659 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6660 		ttemod = tte;
6661 
6662 		/*
6663 		 * replace old pfn with new pfn in TTE
6664 		 */
6665 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6666 
6667 		/*
6668 		 * clear suspend bit
6669 		 */
6670 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6671 		TTE_CLR_SUSPEND(&ttemod);
6672 
6673 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6674 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6675 
6676 		/*
6677 		 * set hme_page point to new page
6678 		 */
6679 		sfhme->hme_page = dpp;
6680 	}
6681 
6682 	/*
6683 	 * move p_mapping list from old page to new page
6684 	 */
6685 	dpp->p_mapping = tpp->p_mapping;
6686 	tpp->p_mapping = NULL;
6687 	dpp->p_share = tpp->p_share;
6688 	tpp->p_share = 0;
6689 
6690 	while (index != 0) {
6691 		index = index >> 1;
6692 		if (index != 0)
6693 			cons++;
6694 		if (index & 0x1) {
6695 			tpp = PP_GROUPLEADER(tpp, cons);
6696 			dpp = PP_GROUPLEADER(dpp, cons);
6697 			goto retry;
6698 		}
6699 	}
6700 
6701 	if (dtrace_kreloc_fini)
6702 		(*dtrace_kreloc_fini)();
6703 	mutex_exit(&kpr_suspendlock);
6704 }
6705 
6706 uint_t
6707 hat_pagesync(struct page *pp, uint_t clearflag)
6708 {
6709 	struct sf_hment *sfhme, *tmphme = NULL;
6710 	struct hme_blk *hmeblkp;
6711 	kmutex_t *pml;
6712 	cpuset_t cpuset, tset;
6713 	int	index, cons;
6714 	extern	ulong_t po_share;
6715 	page_t	*save_pp = pp;
6716 
6717 	CPUSET_ZERO(cpuset);
6718 
6719 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6720 		return (PP_GENERIC_ATTR(pp));
6721 	}
6722 
6723 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6724 	    PP_ISREF(pp)) {
6725 		return (PP_GENERIC_ATTR(pp));
6726 	}
6727 
6728 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6729 	    PP_ISMOD(pp)) {
6730 		return (PP_GENERIC_ATTR(pp));
6731 	}
6732 
6733 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6734 	    (pp->p_share > po_share) &&
6735 	    !(clearflag & HAT_SYNC_ZERORM)) {
6736 		if (PP_ISRO(pp))
6737 			hat_page_setattr(pp, P_REF);
6738 		return (PP_GENERIC_ATTR(pp));
6739 	}
6740 
6741 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6742 	pml = sfmmu_mlist_enter(pp);
6743 	index = PP_MAPINDEX(pp);
6744 	cons = TTE8K;
6745 retry:
6746 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6747 		/*
6748 		 * We need to save the next hment on the list since
6749 		 * it is possible for pagesync to remove an invalid hment
6750 		 * from the list.
6751 		 */
6752 		tmphme = sfhme->hme_next;
6753 		/*
6754 		 * If we are looking for large mappings and this hme doesn't
6755 		 * reach the range we are seeking, just ignore its.
6756 		 */
6757 		hmeblkp = sfmmu_hmetohblk(sfhme);
6758 		if (hmeblkp->hblk_xhat_bit)
6759 			continue;
6760 
6761 		if (hme_size(sfhme) < cons)
6762 			continue;
6763 		tset = sfmmu_pagesync(pp, sfhme,
6764 			clearflag & ~HAT_SYNC_STOPON_RM);
6765 		CPUSET_OR(cpuset, tset);
6766 		/*
6767 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6768 		 * as the "ref" or "mod" is set.
6769 		 */
6770 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6771 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6772 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6773 			index = 0;
6774 			break;
6775 		}
6776 	}
6777 
6778 	while (index) {
6779 		index = index >> 1;
6780 		cons++;
6781 		if (index & 0x1) {
6782 			/* Go to leading page */
6783 			pp = PP_GROUPLEADER(pp, cons);
6784 			goto retry;
6785 		}
6786 	}
6787 
6788 	xt_sync(cpuset);
6789 	sfmmu_mlist_exit(pml);
6790 	return (PP_GENERIC_ATTR(save_pp));
6791 }
6792 
6793 /*
6794  * Get all the hardware dependent attributes for a page struct
6795  */
6796 static cpuset_t
6797 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6798 	uint_t clearflag)
6799 {
6800 	caddr_t addr;
6801 	tte_t tte, ttemod;
6802 	struct hme_blk *hmeblkp;
6803 	int ret;
6804 	sfmmu_t *sfmmup;
6805 	cpuset_t cpuset;
6806 
6807 	ASSERT(pp != NULL);
6808 	ASSERT(sfmmu_mlist_held(pp));
6809 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6810 		(clearflag == HAT_SYNC_ZERORM));
6811 
6812 	SFMMU_STAT(sf_pagesync);
6813 
6814 	CPUSET_ZERO(cpuset);
6815 
6816 sfmmu_pagesync_retry:
6817 
6818 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6819 	if (TTE_IS_VALID(&tte)) {
6820 		hmeblkp = sfmmu_hmetohblk(sfhme);
6821 		sfmmup = hblktosfmmu(hmeblkp);
6822 		addr = tte_to_vaddr(hmeblkp, tte);
6823 		if (clearflag == HAT_SYNC_ZERORM) {
6824 			ttemod = tte;
6825 			TTE_CLR_RM(&ttemod);
6826 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6827 				&sfhme->hme_tte);
6828 			if (ret < 0) {
6829 				/*
6830 				 * cas failed and the new value is not what
6831 				 * we want.
6832 				 */
6833 				goto sfmmu_pagesync_retry;
6834 			}
6835 
6836 			if (ret > 0) {
6837 				/* we win the cas */
6838 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6839 				cpuset = sfmmup->sfmmu_cpusran;
6840 			}
6841 		}
6842 
6843 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6844 	}
6845 	return (cpuset);
6846 }
6847 
6848 /*
6849  * Remove write permission from a mappings to a page, so that
6850  * we can detect the next modification of it. This requires modifying
6851  * the TTE then invalidating (demap) any TLB entry using that TTE.
6852  * This code is similar to sfmmu_pagesync().
6853  */
6854 static cpuset_t
6855 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6856 {
6857 	caddr_t addr;
6858 	tte_t tte;
6859 	tte_t ttemod;
6860 	struct hme_blk *hmeblkp;
6861 	int ret;
6862 	sfmmu_t *sfmmup;
6863 	cpuset_t cpuset;
6864 
6865 	ASSERT(pp != NULL);
6866 	ASSERT(sfmmu_mlist_held(pp));
6867 
6868 	CPUSET_ZERO(cpuset);
6869 	SFMMU_STAT(sf_clrwrt);
6870 
6871 retry:
6872 
6873 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6874 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6875 		hmeblkp = sfmmu_hmetohblk(sfhme);
6876 
6877 		/*
6878 		 * xhat mappings should never be to a VMODSORT page.
6879 		 */
6880 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6881 
6882 		sfmmup = hblktosfmmu(hmeblkp);
6883 		addr = tte_to_vaddr(hmeblkp, tte);
6884 
6885 		ttemod = tte;
6886 		TTE_CLR_WRT(&ttemod);
6887 		TTE_CLR_MOD(&ttemod);
6888 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6889 
6890 		/*
6891 		 * if cas failed and the new value is not what
6892 		 * we want retry
6893 		 */
6894 		if (ret < 0)
6895 			goto retry;
6896 
6897 		/* we win the cas */
6898 		if (ret > 0) {
6899 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6900 			cpuset = sfmmup->sfmmu_cpusran;
6901 		}
6902 	}
6903 
6904 	return (cpuset);
6905 }
6906 
6907 /*
6908  * Walk all mappings of a page, removing write permission and clearing the
6909  * ref/mod bits. This code is similar to hat_pagesync()
6910  */
6911 static void
6912 hat_page_clrwrt(page_t *pp)
6913 {
6914 	struct sf_hment *sfhme;
6915 	struct sf_hment *tmphme = NULL;
6916 	kmutex_t *pml;
6917 	cpuset_t cpuset;
6918 	cpuset_t tset;
6919 	int	index;
6920 	int	 cons;
6921 
6922 	CPUSET_ZERO(cpuset);
6923 
6924 	pml = sfmmu_mlist_enter(pp);
6925 	index = PP_MAPINDEX(pp);
6926 	cons = TTE8K;
6927 retry:
6928 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6929 		tmphme = sfhme->hme_next;
6930 
6931 		/*
6932 		 * If we are looking for large mappings and this hme doesn't
6933 		 * reach the range we are seeking, just ignore its.
6934 		 */
6935 
6936 		if (hme_size(sfhme) < cons)
6937 			continue;
6938 
6939 		tset = sfmmu_pageclrwrt(pp, sfhme);
6940 		CPUSET_OR(cpuset, tset);
6941 	}
6942 
6943 	while (index) {
6944 		index = index >> 1;
6945 		cons++;
6946 		if (index & 0x1) {
6947 			/* Go to leading page */
6948 			pp = PP_GROUPLEADER(pp, cons);
6949 			goto retry;
6950 		}
6951 	}
6952 
6953 	xt_sync(cpuset);
6954 	sfmmu_mlist_exit(pml);
6955 }
6956 
6957 /*
6958  * Set the given REF/MOD/RO bits for the given page.
6959  * For a vnode with a sorted v_pages list, we need to change
6960  * the attributes and the v_pages list together under page_vnode_mutex.
6961  */
6962 void
6963 hat_page_setattr(page_t *pp, uint_t flag)
6964 {
6965 	vnode_t		*vp = pp->p_vnode;
6966 	page_t		**listp;
6967 	kmutex_t	*pmtx;
6968 	kmutex_t	*vphm = NULL;
6969 
6970 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6971 
6972 	/*
6973 	 * nothing to do if attribute already set
6974 	 */
6975 	if ((pp->p_nrm & flag) == flag)
6976 		return;
6977 
6978 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6979 		vphm = page_vnode_mutex(vp);
6980 		mutex_enter(vphm);
6981 	}
6982 
6983 	pmtx = sfmmu_page_enter(pp);
6984 	pp->p_nrm |= flag;
6985 	sfmmu_page_exit(pmtx);
6986 
6987 	if (vphm != NULL) {
6988 		/*
6989 		 * Some File Systems examine v_pages for NULL w/o
6990 		 * grabbing the vphm mutex. Must not let it become NULL when
6991 		 * pp is the only page on the list.
6992 		 */
6993 		if (pp->p_vpnext != pp) {
6994 			page_vpsub(&vp->v_pages, pp);
6995 			if (vp->v_pages != NULL)
6996 				listp = &vp->v_pages->p_vpprev->p_vpnext;
6997 			else
6998 				listp = &vp->v_pages;
6999 			page_vpadd(listp, pp);
7000 		}
7001 		mutex_exit(vphm);
7002 	}
7003 }
7004 
7005 void
7006 hat_page_clrattr(page_t *pp, uint_t flag)
7007 {
7008 	vnode_t		*vp = pp->p_vnode;
7009 	kmutex_t	*vphm = NULL;
7010 	kmutex_t	*pmtx;
7011 
7012 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7013 
7014 	/*
7015 	 * For vnode with a sorted v_pages list, we need to change
7016 	 * the attributes and the v_pages list together under page_vnode_mutex.
7017 	 */
7018 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7019 		vphm = page_vnode_mutex(vp);
7020 		mutex_enter(vphm);
7021 	}
7022 
7023 	pmtx = sfmmu_page_enter(pp);
7024 	pp->p_nrm &= ~flag;
7025 	sfmmu_page_exit(pmtx);
7026 
7027 	if (vphm != NULL) {
7028 		/*
7029 		 * Some File Systems examine v_pages for NULL w/o
7030 		 * grabbing the vphm mutex. Must not let it become NULL when
7031 		 * pp is the only page on the list.
7032 		 */
7033 		if (pp->p_vpnext != pp) {
7034 			page_vpsub(&vp->v_pages, pp);
7035 			page_vpadd(&vp->v_pages, pp);
7036 		}
7037 		mutex_exit(vphm);
7038 
7039 		/*
7040 		 * VMODSORT works by removing write permissions and getting
7041 		 * a fault when a page is made dirty. At this point
7042 		 * we need to remove write permission from all mappings
7043 		 * to this page.
7044 		 */
7045 		hat_page_clrwrt(pp);
7046 	}
7047 }
7048 
7049 
7050 uint_t
7051 hat_page_getattr(page_t *pp, uint_t flag)
7052 {
7053 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7054 	return ((uint_t)(pp->p_nrm & flag));
7055 }
7056 
7057 /*
7058  * DEBUG kernels: verify that a kernel va<->pa translation
7059  * is safe by checking the underlying page_t is in a page
7060  * relocation-safe state.
7061  */
7062 #ifdef	DEBUG
7063 void
7064 sfmmu_check_kpfn(pfn_t pfn)
7065 {
7066 	page_t *pp;
7067 	int index, cons;
7068 
7069 	if (hat_check_vtop == 0)
7070 		return;
7071 
7072 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7073 		return;
7074 
7075 	pp = page_numtopp_nolock(pfn);
7076 	if (!pp)
7077 		return;
7078 
7079 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7080 		return;
7081 
7082 	/*
7083 	 * Handed a large kernel page, we dig up the root page since we
7084 	 * know the root page might have the lock also.
7085 	 */
7086 	if (pp->p_szc != 0) {
7087 		index = PP_MAPINDEX(pp);
7088 		cons = TTE8K;
7089 again:
7090 		while (index != 0) {
7091 			index >>= 1;
7092 			if (index != 0)
7093 				cons++;
7094 			if (index & 0x1) {
7095 				pp = PP_GROUPLEADER(pp, cons);
7096 				goto again;
7097 			}
7098 		}
7099 	}
7100 
7101 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7102 		return;
7103 
7104 	/*
7105 	 * Pages need to be locked or allocated "permanent" (either from
7106 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7107 	 * page_create_va()) for VA->PA translations to be valid.
7108 	 */
7109 	if (!PP_ISNORELOC(pp))
7110 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7111 	else
7112 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7113 }
7114 #endif	/* DEBUG */
7115 
7116 /*
7117  * Returns a page frame number for a given virtual address.
7118  * Returns PFN_INVALID to indicate an invalid mapping
7119  */
7120 pfn_t
7121 hat_getpfnum(struct hat *hat, caddr_t addr)
7122 {
7123 	pfn_t pfn;
7124 	tte_t tte;
7125 
7126 	/*
7127 	 * We would like to
7128 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7129 	 * but we can't because the iommu driver will call this
7130 	 * routine at interrupt time and it can't grab the as lock
7131 	 * or it will deadlock: A thread could have the as lock
7132 	 * and be waiting for io.  The io can't complete
7133 	 * because the interrupt thread is blocked trying to grab
7134 	 * the as lock.
7135 	 */
7136 
7137 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7138 
7139 	if (hat == ksfmmup) {
7140 		if (segkpm && IS_KPM_ADDR(addr))
7141 			return (sfmmu_kpm_vatopfn(addr));
7142 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7143 		    == PFN_SUSPENDED) {
7144 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7145 		}
7146 		sfmmu_check_kpfn(pfn);
7147 		return (pfn);
7148 	} else {
7149 		return (sfmmu_uvatopfn(addr, hat));
7150 	}
7151 }
7152 
7153 /*
7154  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7155  * Use hat_getpfnum(kas.a_hat, ...) instead.
7156  *
7157  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7158  * but can't right now due to the fact that some software has grown to use
7159  * this interface incorrectly. So for now when the interface is misused,
7160  * return a warning to the user that in the future it won't work in the
7161  * way they're abusing it, and carry on (after disabling page relocation).
7162  */
7163 pfn_t
7164 hat_getkpfnum(caddr_t addr)
7165 {
7166 	pfn_t pfn;
7167 	tte_t tte;
7168 	int badcaller = 0;
7169 	extern int segkmem_reloc;
7170 
7171 	if (segkpm && IS_KPM_ADDR(addr)) {
7172 		badcaller = 1;
7173 		pfn = sfmmu_kpm_vatopfn(addr);
7174 	} else {
7175 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7176 		    == PFN_SUSPENDED) {
7177 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7178 		}
7179 		badcaller = pf_is_memory(pfn);
7180 	}
7181 
7182 	if (badcaller) {
7183 		/*
7184 		 * We can't return PFN_INVALID or the caller may panic
7185 		 * or corrupt the system.  The only alternative is to
7186 		 * disable page relocation at this point for all kernel
7187 		 * memory.  This will impact any callers of page_relocate()
7188 		 * such as FMA or DR.
7189 		 *
7190 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7191 		 * can be advised that he should upgrade his device driver
7192 		 * so that this doesn't happen.
7193 		 */
7194 		hat_getkpfnum_badcall(caller());
7195 		if (hat_kpr_enabled && segkmem_reloc) {
7196 			hat_kpr_enabled = 0;
7197 			segkmem_reloc = 0;
7198 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7199 		}
7200 	}
7201 	return (pfn);
7202 }
7203 
7204 pfn_t
7205 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7206 {
7207 	struct hmehash_bucket *hmebp;
7208 	hmeblk_tag hblktag;
7209 	int hmeshift, hashno = 1;
7210 	struct hme_blk *hmeblkp = NULL;
7211 
7212 	struct sf_hment *sfhmep;
7213 	tte_t tte;
7214 	pfn_t pfn;
7215 
7216 	/* support for ISM */
7217 	ism_map_t	*ism_map;
7218 	ism_blk_t	*ism_blkp;
7219 	int		i;
7220 	sfmmu_t *ism_hatid = NULL;
7221 	sfmmu_t *locked_hatid = NULL;
7222 
7223 
7224 	ASSERT(sfmmup != ksfmmup);
7225 	SFMMU_STAT(sf_user_vtop);
7226 	/*
7227 	 * Set ism_hatid if vaddr falls in a ISM segment.
7228 	 */
7229 	ism_blkp = sfmmup->sfmmu_iblk;
7230 	if (ism_blkp) {
7231 		sfmmu_ismhat_enter(sfmmup, 0);
7232 		locked_hatid = sfmmup;
7233 	}
7234 	while (ism_blkp && ism_hatid == NULL) {
7235 		ism_map = ism_blkp->iblk_maps;
7236 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7237 			if (vaddr >= ism_start(ism_map[i]) &&
7238 			    vaddr < ism_end(ism_map[i])) {
7239 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7240 				vaddr = (caddr_t)(vaddr -
7241 					ism_start(ism_map[i]));
7242 				break;
7243 			}
7244 		}
7245 		ism_blkp = ism_blkp->iblk_next;
7246 	}
7247 	if (locked_hatid) {
7248 		sfmmu_ismhat_exit(locked_hatid, 0);
7249 	}
7250 
7251 	hblktag.htag_id = sfmmup;
7252 	do {
7253 		hmeshift = HME_HASH_SHIFT(hashno);
7254 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7255 		hblktag.htag_rehash = hashno;
7256 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7257 
7258 		SFMMU_HASH_LOCK(hmebp);
7259 
7260 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7261 		if (hmeblkp != NULL) {
7262 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7263 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7264 			if (TTE_IS_VALID(&tte)) {
7265 				pfn = TTE_TO_PFN(vaddr, &tte);
7266 			} else {
7267 				pfn = PFN_INVALID;
7268 			}
7269 			SFMMU_HASH_UNLOCK(hmebp);
7270 			return (pfn);
7271 		}
7272 		SFMMU_HASH_UNLOCK(hmebp);
7273 		hashno++;
7274 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7275 	return (PFN_INVALID);
7276 }
7277 
7278 
7279 /*
7280  * For compatability with AT&T and later optimizations
7281  */
7282 /* ARGSUSED */
7283 void
7284 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7285 {
7286 	ASSERT(hat != NULL);
7287 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7288 }
7289 
7290 /*
7291  * Return the number of mappings to a particular page.
7292  * This number is an approximation of the number of
7293  * number of people sharing the page.
7294  */
7295 ulong_t
7296 hat_page_getshare(page_t *pp)
7297 {
7298 	page_t *spp = pp;	/* start page */
7299 	kmutex_t *pml;
7300 	ulong_t	cnt;
7301 	int index, sz = TTE64K;
7302 
7303 	/*
7304 	 * We need to grab the mlist lock to make sure any outstanding
7305 	 * load/unloads complete.  Otherwise we could return zero
7306 	 * even though the unload(s) hasn't finished yet.
7307 	 */
7308 	pml = sfmmu_mlist_enter(spp);
7309 	cnt = spp->p_share;
7310 
7311 #ifdef VAC
7312 	if (kpm_enable)
7313 		cnt += spp->p_kpmref;
7314 #endif
7315 
7316 	/*
7317 	 * If we have any large mappings, we count the number of
7318 	 * mappings that this large page is part of.
7319 	 */
7320 	index = PP_MAPINDEX(spp);
7321 	index >>= 1;
7322 	while (index) {
7323 		pp = PP_GROUPLEADER(spp, sz);
7324 		if ((index & 0x1) && pp != spp) {
7325 			cnt += pp->p_share;
7326 			spp = pp;
7327 		}
7328 		index >>= 1;
7329 		sz++;
7330 	}
7331 	sfmmu_mlist_exit(pml);
7332 	return (cnt);
7333 }
7334 
7335 /*
7336  * Unload all large mappings to the pp and reset the p_szc field of every
7337  * constituent page according to the remaining mappings.
7338  *
7339  * pp must be locked SE_EXCL. Even though no other constituent pages are
7340  * locked it's legal to unload the large mappings to the pp because all
7341  * constituent pages of large locked mappings have to be locked SE_SHARED.
7342  * This means if we have SE_EXCL lock on one of constituent pages none of the
7343  * large mappings to pp are locked.
7344  *
7345  * Decrease p_szc field starting from the last constituent page and ending
7346  * with the root page. This method is used because other threads rely on the
7347  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7348  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7349  * ensures that p_szc changes of the constituent pages appears atomic for all
7350  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7351  *
7352  * This mechanism is only used for file system pages where it's not always
7353  * possible to get SE_EXCL locks on all constituent pages to demote the size
7354  * code (as is done for anonymous or kernel large pages).
7355  *
7356  * See more comments in front of sfmmu_mlspl_enter().
7357  */
7358 void
7359 hat_page_demote(page_t *pp)
7360 {
7361 	int index;
7362 	int sz;
7363 	cpuset_t cpuset;
7364 	int sync = 0;
7365 	page_t *rootpp;
7366 	struct sf_hment *sfhme;
7367 	struct sf_hment *tmphme = NULL;
7368 	struct hme_blk *hmeblkp;
7369 	uint_t pszc;
7370 	page_t *lastpp;
7371 	cpuset_t tset;
7372 	pgcnt_t npgs;
7373 	kmutex_t *pml;
7374 	kmutex_t *pmtx = NULL;
7375 
7376 	ASSERT(PAGE_EXCL(pp));
7377 	ASSERT(!PP_ISFREE(pp));
7378 	ASSERT(page_szc_lock_assert(pp));
7379 	pml = sfmmu_mlist_enter(pp);
7380 
7381 	pszc = pp->p_szc;
7382 	if (pszc == 0) {
7383 		goto out;
7384 	}
7385 
7386 	index = PP_MAPINDEX(pp) >> 1;
7387 
7388 	if (index) {
7389 		CPUSET_ZERO(cpuset);
7390 		sz = TTE64K;
7391 		sync = 1;
7392 	}
7393 
7394 	while (index) {
7395 		if (!(index & 0x1)) {
7396 			index >>= 1;
7397 			sz++;
7398 			continue;
7399 		}
7400 		ASSERT(sz <= pszc);
7401 		rootpp = PP_GROUPLEADER(pp, sz);
7402 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7403 			tmphme = sfhme->hme_next;
7404 			hmeblkp = sfmmu_hmetohblk(sfhme);
7405 			if (hme_size(sfhme) != sz) {
7406 				continue;
7407 			}
7408 			if (hmeblkp->hblk_xhat_bit) {
7409 				cmn_err(CE_PANIC,
7410 				    "hat_page_demote: xhat hmeblk");
7411 			}
7412 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7413 			CPUSET_OR(cpuset, tset);
7414 		}
7415 		if (index >>= 1) {
7416 			sz++;
7417 		}
7418 	}
7419 
7420 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7421 
7422 	if (sync) {
7423 		xt_sync(cpuset);
7424 #ifdef VAC
7425 		if (PP_ISTNC(pp)) {
7426 			conv_tnc(rootpp, sz);
7427 		}
7428 #endif	/* VAC */
7429 	}
7430 
7431 	pmtx = sfmmu_page_enter(pp);
7432 
7433 	ASSERT(pp->p_szc == pszc);
7434 	rootpp = PP_PAGEROOT(pp);
7435 	ASSERT(rootpp->p_szc == pszc);
7436 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7437 
7438 	while (lastpp != rootpp) {
7439 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7440 		ASSERT(sz < pszc);
7441 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7442 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7443 		while (--npgs > 0) {
7444 			lastpp->p_szc = (uchar_t)sz;
7445 			lastpp = PP_PAGEPREV(lastpp);
7446 		}
7447 		if (sz) {
7448 			/*
7449 			 * make sure before current root's pszc
7450 			 * is updated all updates to constituent pages pszc
7451 			 * fields are globally visible.
7452 			 */
7453 			membar_producer();
7454 		}
7455 		lastpp->p_szc = sz;
7456 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7457 		if (lastpp != rootpp) {
7458 			lastpp = PP_PAGEPREV(lastpp);
7459 		}
7460 	}
7461 	if (sz == 0) {
7462 		/* the loop above doesn't cover this case */
7463 		rootpp->p_szc = 0;
7464 	}
7465 out:
7466 	ASSERT(pp->p_szc == 0);
7467 	if (pmtx != NULL) {
7468 		sfmmu_page_exit(pmtx);
7469 	}
7470 	sfmmu_mlist_exit(pml);
7471 }
7472 
7473 /*
7474  * Refresh the HAT ismttecnt[] element for size szc.
7475  * Caller must have set ISM busy flag to prevent mapping
7476  * lists from changing while we're traversing them.
7477  */
7478 pgcnt_t
7479 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7480 {
7481 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7482 	ism_map_t	*ism_map;
7483 	pgcnt_t		npgs = 0;
7484 	int		j;
7485 
7486 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7487 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7488 		ism_map = ism_blkp->iblk_maps;
7489 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7490 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7491 	}
7492 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7493 	return (npgs);
7494 }
7495 
7496 /*
7497  * Yield the memory claim requirement for an address space.
7498  *
7499  * This is currently implemented as the number of bytes that have active
7500  * hardware translations that have page structures.  Therefore, it can
7501  * underestimate the traditional resident set size, eg, if the
7502  * physical page is present and the hardware translation is missing;
7503  * and it can overestimate the rss, eg, if there are active
7504  * translations to a frame buffer with page structs.
7505  * Also, it does not take sharing into account.
7506  *
7507  * Note that we don't acquire locks here since this function is most often
7508  * called from the clock thread.
7509  */
7510 size_t
7511 hat_get_mapped_size(struct hat *hat)
7512 {
7513 	size_t		assize = 0;
7514 	int 		i;
7515 
7516 	if (hat == NULL)
7517 		return (0);
7518 
7519 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7520 
7521 	for (i = 0; i < mmu_page_sizes; i++)
7522 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7523 
7524 	if (hat->sfmmu_iblk == NULL)
7525 		return (assize);
7526 
7527 	for (i = 0; i < mmu_page_sizes; i++)
7528 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7529 
7530 	return (assize);
7531 }
7532 
7533 int
7534 hat_stats_enable(struct hat *hat)
7535 {
7536 	hatlock_t	*hatlockp;
7537 
7538 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7539 
7540 	hatlockp = sfmmu_hat_enter(hat);
7541 	hat->sfmmu_rmstat++;
7542 	sfmmu_hat_exit(hatlockp);
7543 	return (1);
7544 }
7545 
7546 void
7547 hat_stats_disable(struct hat *hat)
7548 {
7549 	hatlock_t	*hatlockp;
7550 
7551 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7552 
7553 	hatlockp = sfmmu_hat_enter(hat);
7554 	hat->sfmmu_rmstat--;
7555 	sfmmu_hat_exit(hatlockp);
7556 }
7557 
7558 /*
7559  * Routines for entering or removing  ourselves from the
7560  * ism_hat's mapping list.
7561  */
7562 static void
7563 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7564 {
7565 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7566 
7567 	iment->iment_prev = NULL;
7568 	iment->iment_next = ism_hat->sfmmu_iment;
7569 	if (ism_hat->sfmmu_iment) {
7570 		ism_hat->sfmmu_iment->iment_prev = iment;
7571 	}
7572 	ism_hat->sfmmu_iment = iment;
7573 }
7574 
7575 static void
7576 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7577 {
7578 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7579 
7580 	if (ism_hat->sfmmu_iment == NULL) {
7581 		panic("ism map entry remove - no entries");
7582 	}
7583 
7584 	if (iment->iment_prev) {
7585 		ASSERT(ism_hat->sfmmu_iment != iment);
7586 		iment->iment_prev->iment_next = iment->iment_next;
7587 	} else {
7588 		ASSERT(ism_hat->sfmmu_iment == iment);
7589 		ism_hat->sfmmu_iment = iment->iment_next;
7590 	}
7591 
7592 	if (iment->iment_next) {
7593 		iment->iment_next->iment_prev = iment->iment_prev;
7594 	}
7595 
7596 	/*
7597 	 * zero out the entry
7598 	 */
7599 	iment->iment_next = NULL;
7600 	iment->iment_prev = NULL;
7601 	iment->iment_hat =  NULL;
7602 }
7603 
7604 /*
7605  * Hat_share()/unshare() return an (non-zero) error
7606  * when saddr and daddr are not properly aligned.
7607  *
7608  * The top level mapping element determines the alignment
7609  * requirement for saddr and daddr, depending on different
7610  * architectures.
7611  *
7612  * When hat_share()/unshare() are not supported,
7613  * HATOP_SHARE()/UNSHARE() return 0
7614  */
7615 int
7616 hat_share(struct hat *sfmmup, caddr_t addr,
7617 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7618 {
7619 	ism_blk_t	*ism_blkp;
7620 	ism_blk_t	*new_iblk;
7621 	ism_map_t 	*ism_map;
7622 	ism_ment_t	*ism_ment;
7623 	int		i, added;
7624 	hatlock_t	*hatlockp;
7625 	int		reload_mmu = 0;
7626 	uint_t		ismshift = page_get_shift(ismszc);
7627 	size_t		ismpgsz = page_get_pagesize(ismszc);
7628 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7629 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7630 	ushort_t	ismhatflag;
7631 
7632 #ifdef DEBUG
7633 	caddr_t		eaddr = addr + len;
7634 #endif /* DEBUG */
7635 
7636 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7637 	ASSERT(sptaddr == ISMID_STARTADDR);
7638 	/*
7639 	 * Check the alignment.
7640 	 */
7641 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7642 		return (EINVAL);
7643 
7644 	/*
7645 	 * Check size alignment.
7646 	 */
7647 	if (!ISM_ALIGNED(ismshift, len))
7648 		return (EINVAL);
7649 
7650 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7651 
7652 	/*
7653 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7654 	 * ism map blk in case we need one.  We must do our
7655 	 * allocations before acquiring locks to prevent a deadlock
7656 	 * in the kmem allocator on the mapping list lock.
7657 	 */
7658 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7659 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7660 
7661 	/*
7662 	 * Serialize ISM mappings with the ISM busy flag, and also the
7663 	 * trap handlers.
7664 	 */
7665 	sfmmu_ismhat_enter(sfmmup, 0);
7666 
7667 	/*
7668 	 * Allocate an ism map blk if necessary.
7669 	 */
7670 	if (sfmmup->sfmmu_iblk == NULL) {
7671 		sfmmup->sfmmu_iblk = new_iblk;
7672 		bzero(new_iblk, sizeof (*new_iblk));
7673 		new_iblk->iblk_nextpa = (uint64_t)-1;
7674 		membar_stst();	/* make sure next ptr visible to all CPUs */
7675 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7676 		reload_mmu = 1;
7677 		new_iblk = NULL;
7678 	}
7679 
7680 #ifdef DEBUG
7681 	/*
7682 	 * Make sure mapping does not already exist.
7683 	 */
7684 	ism_blkp = sfmmup->sfmmu_iblk;
7685 	while (ism_blkp) {
7686 		ism_map = ism_blkp->iblk_maps;
7687 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7688 			if ((addr >= ism_start(ism_map[i]) &&
7689 			    addr < ism_end(ism_map[i])) ||
7690 			    eaddr > ism_start(ism_map[i]) &&
7691 			    eaddr <= ism_end(ism_map[i])) {
7692 				panic("sfmmu_share: Already mapped!");
7693 			}
7694 		}
7695 		ism_blkp = ism_blkp->iblk_next;
7696 	}
7697 #endif /* DEBUG */
7698 
7699 	ASSERT(ismszc >= TTE4M);
7700 	if (ismszc == TTE4M) {
7701 		ismhatflag = HAT_4M_FLAG;
7702 	} else if (ismszc == TTE32M) {
7703 		ismhatflag = HAT_32M_FLAG;
7704 	} else if (ismszc == TTE256M) {
7705 		ismhatflag = HAT_256M_FLAG;
7706 	}
7707 	/*
7708 	 * Add mapping to first available mapping slot.
7709 	 */
7710 	ism_blkp = sfmmup->sfmmu_iblk;
7711 	added = 0;
7712 	while (!added) {
7713 		ism_map = ism_blkp->iblk_maps;
7714 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7715 			if (ism_map[i].imap_ismhat == NULL) {
7716 
7717 				ism_map[i].imap_ismhat = ism_hatid;
7718 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7719 				ism_map[i].imap_hatflags = ismhatflag;
7720 				ism_map[i].imap_sz_mask = ismmask;
7721 				/*
7722 				 * imap_seg is checked in ISM_CHECK to see if
7723 				 * non-NULL, then other info assumed valid.
7724 				 */
7725 				membar_stst();
7726 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7727 				ism_map[i].imap_ment = ism_ment;
7728 
7729 				/*
7730 				 * Now add ourselves to the ism_hat's
7731 				 * mapping list.
7732 				 */
7733 				ism_ment->iment_hat = sfmmup;
7734 				ism_ment->iment_base_va = addr;
7735 				ism_hatid->sfmmu_ismhat = 1;
7736 				ism_hatid->sfmmu_flags = 0;
7737 				mutex_enter(&ism_mlist_lock);
7738 				iment_add(ism_ment, ism_hatid);
7739 				mutex_exit(&ism_mlist_lock);
7740 				added = 1;
7741 				break;
7742 			}
7743 		}
7744 		if (!added && ism_blkp->iblk_next == NULL) {
7745 			ism_blkp->iblk_next = new_iblk;
7746 			new_iblk = NULL;
7747 			bzero(ism_blkp->iblk_next,
7748 			    sizeof (*ism_blkp->iblk_next));
7749 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7750 			membar_stst();
7751 			ism_blkp->iblk_nextpa =
7752 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7753 		}
7754 		ism_blkp = ism_blkp->iblk_next;
7755 	}
7756 
7757 	/*
7758 	 * Update our counters for this sfmmup's ism mappings.
7759 	 */
7760 	for (i = 0; i <= ismszc; i++) {
7761 		if (!(disable_ism_large_pages & (1 << i)))
7762 			(void) ism_tsb_entries(sfmmup, i);
7763 	}
7764 
7765 	hatlockp = sfmmu_hat_enter(sfmmup);
7766 
7767 	/*
7768 	 * For ISM and DISM we do not support 512K pages, so we only
7769 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7770 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7771 	 */
7772 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7773 
7774 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7775 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7776 
7777 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7778 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7779 
7780 	/*
7781 	 * If we updated the ismblkpa for this HAT or we need
7782 	 * to start searching the 256M or 32M or 4M hash, we must
7783 	 * make sure all CPUs running this process reload their
7784 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7785 	 * in the tsbmiss handler and will loop calling pagefault().
7786 	 */
7787 	switch (ismszc) {
7788 	case TTE256M:
7789 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7790 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7791 			sfmmu_sync_mmustate(sfmmup);
7792 		}
7793 		break;
7794 	case TTE32M:
7795 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7796 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7797 			sfmmu_sync_mmustate(sfmmup);
7798 		}
7799 		break;
7800 	case TTE4M:
7801 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7802 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7803 			sfmmu_sync_mmustate(sfmmup);
7804 		}
7805 		break;
7806 	default:
7807 		break;
7808 	}
7809 
7810 	/*
7811 	 * Now we can drop the locks.
7812 	 */
7813 	sfmmu_ismhat_exit(sfmmup, 1);
7814 	sfmmu_hat_exit(hatlockp);
7815 
7816 	/*
7817 	 * Free up ismblk if we didn't use it.
7818 	 */
7819 	if (new_iblk != NULL)
7820 		kmem_cache_free(ism_blk_cache, new_iblk);
7821 
7822 	/*
7823 	 * Check TSB and TLB page sizes.
7824 	 */
7825 	sfmmu_check_page_sizes(sfmmup, 1);
7826 
7827 	return (0);
7828 }
7829 
7830 /*
7831  * hat_unshare removes exactly one ism_map from
7832  * this process's as.  It expects multiple calls
7833  * to hat_unshare for multiple shm segments.
7834  */
7835 void
7836 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7837 {
7838 	ism_map_t 	*ism_map;
7839 	ism_ment_t	*free_ment = NULL;
7840 	ism_blk_t	*ism_blkp;
7841 	struct hat	*ism_hatid;
7842 	int 		found, i;
7843 	hatlock_t	*hatlockp;
7844 	struct tsb_info	*tsbinfo;
7845 	uint_t		ismshift = page_get_shift(ismszc);
7846 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7847 
7848 	ASSERT(ISM_ALIGNED(ismshift, addr));
7849 	ASSERT(ISM_ALIGNED(ismshift, len));
7850 	ASSERT(sfmmup != NULL);
7851 	ASSERT(sfmmup != ksfmmup);
7852 
7853 	if (sfmmup->sfmmu_xhat_provider) {
7854 		XHAT_UNSHARE(sfmmup, addr, len);
7855 		return;
7856 	} else {
7857 		/*
7858 		 * This must be a CPU HAT. If the address space has
7859 		 * XHATs attached, inform all XHATs that ISM segment
7860 		 * is going away
7861 		 */
7862 		ASSERT(sfmmup->sfmmu_as != NULL);
7863 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7864 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7865 	}
7866 
7867 	/*
7868 	 * Make sure that during the entire time ISM mappings are removed,
7869 	 * the trap handlers serialize behind us, and that no one else
7870 	 * can be mucking with ISM mappings.  This also lets us get away
7871 	 * with not doing expensive cross calls to flush the TLB -- we
7872 	 * just discard the context, flush the entire TSB, and call it
7873 	 * a day.
7874 	 */
7875 	sfmmu_ismhat_enter(sfmmup, 0);
7876 
7877 	/*
7878 	 * Remove the mapping.
7879 	 *
7880 	 * We can't have any holes in the ism map.
7881 	 * The tsb miss code while searching the ism map will
7882 	 * stop on an empty map slot.  So we must move
7883 	 * everyone past the hole up 1 if any.
7884 	 *
7885 	 * Also empty ism map blks are not freed until the
7886 	 * process exits. This is to prevent a MT race condition
7887 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7888 	 */
7889 	found = 0;
7890 	ism_blkp = sfmmup->sfmmu_iblk;
7891 	while (!found && ism_blkp) {
7892 		ism_map = ism_blkp->iblk_maps;
7893 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7894 			if (addr == ism_start(ism_map[i]) &&
7895 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7896 				found = 1;
7897 				break;
7898 			}
7899 		}
7900 		if (!found)
7901 			ism_blkp = ism_blkp->iblk_next;
7902 	}
7903 
7904 	if (found) {
7905 		ism_hatid = ism_map[i].imap_ismhat;
7906 		ASSERT(ism_hatid != NULL);
7907 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7908 
7909 		/*
7910 		 * First remove ourselves from the ism mapping list.
7911 		 */
7912 		mutex_enter(&ism_mlist_lock);
7913 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7914 		mutex_exit(&ism_mlist_lock);
7915 		free_ment = ism_map[i].imap_ment;
7916 
7917 		/*
7918 		 * Now gurantee that any other cpu
7919 		 * that tries to process an ISM miss
7920 		 * will go to tl=0.
7921 		 */
7922 		hatlockp = sfmmu_hat_enter(sfmmup);
7923 
7924 		sfmmu_invalidate_ctx(sfmmup);
7925 
7926 		sfmmu_hat_exit(hatlockp);
7927 
7928 		/*
7929 		 * We delete the ism map by copying
7930 		 * the next map over the current one.
7931 		 * We will take the next one in the maps
7932 		 * array or from the next ism_blk.
7933 		 */
7934 		while (ism_blkp) {
7935 			ism_map = ism_blkp->iblk_maps;
7936 			while (i < (ISM_MAP_SLOTS - 1)) {
7937 				ism_map[i] = ism_map[i + 1];
7938 				i++;
7939 			}
7940 			/* i == (ISM_MAP_SLOTS - 1) */
7941 			ism_blkp = ism_blkp->iblk_next;
7942 			if (ism_blkp) {
7943 				ism_map[i] = ism_blkp->iblk_maps[0];
7944 				i = 0;
7945 			} else {
7946 				ism_map[i].imap_seg = 0;
7947 				ism_map[i].imap_vb_shift = 0;
7948 				ism_map[i].imap_hatflags = 0;
7949 				ism_map[i].imap_sz_mask = 0;
7950 				ism_map[i].imap_ismhat = NULL;
7951 				ism_map[i].imap_ment = NULL;
7952 			}
7953 		}
7954 
7955 		/*
7956 		 * Now flush entire TSB for the process, since
7957 		 * demapping page by page can be too expensive.
7958 		 * We don't have to flush the TLB here anymore
7959 		 * since we switch to a new TLB ctx instead.
7960 		 * Also, there is no need to flush if the process
7961 		 * is exiting since the TSB will be freed later.
7962 		 */
7963 		if (!sfmmup->sfmmu_free) {
7964 			hatlockp = sfmmu_hat_enter(sfmmup);
7965 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7966 			    tsbinfo = tsbinfo->tsb_next) {
7967 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7968 					continue;
7969 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7970 				    TSB_BYTES(tsbinfo->tsb_szc));
7971 			}
7972 			sfmmu_hat_exit(hatlockp);
7973 		}
7974 	}
7975 
7976 	/*
7977 	 * Update our counters for this sfmmup's ism mappings.
7978 	 */
7979 	for (i = 0; i <= ismszc; i++) {
7980 		if (!(disable_ism_large_pages & (1 << i)))
7981 			(void) ism_tsb_entries(sfmmup, i);
7982 	}
7983 
7984 	sfmmu_ismhat_exit(sfmmup, 0);
7985 
7986 	/*
7987 	 * We must do our freeing here after dropping locks
7988 	 * to prevent a deadlock in the kmem allocator on the
7989 	 * mapping list lock.
7990 	 */
7991 	if (free_ment != NULL)
7992 		kmem_cache_free(ism_ment_cache, free_ment);
7993 
7994 	/*
7995 	 * Check TSB and TLB page sizes if the process isn't exiting.
7996 	 */
7997 	if (!sfmmup->sfmmu_free)
7998 		sfmmu_check_page_sizes(sfmmup, 0);
7999 }
8000 
8001 /* ARGSUSED */
8002 static int
8003 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8004 {
8005 	/* void *buf is sfmmu_t pointer */
8006 	return (0);
8007 }
8008 
8009 /* ARGSUSED */
8010 static void
8011 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8012 {
8013 	/* void *buf is sfmmu_t pointer */
8014 }
8015 
8016 /*
8017  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8018  * field to be the pa of this hmeblk
8019  */
8020 /* ARGSUSED */
8021 static int
8022 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8023 {
8024 	struct hme_blk *hmeblkp;
8025 
8026 	bzero(buf, (size_t)cdrarg);
8027 	hmeblkp = (struct hme_blk *)buf;
8028 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8029 
8030 #ifdef	HBLK_TRACE
8031 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8032 #endif	/* HBLK_TRACE */
8033 
8034 	return (0);
8035 }
8036 
8037 /* ARGSUSED */
8038 static void
8039 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8040 {
8041 
8042 #ifdef	HBLK_TRACE
8043 
8044 	struct hme_blk *hmeblkp;
8045 
8046 	hmeblkp = (struct hme_blk *)buf;
8047 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8048 
8049 #endif	/* HBLK_TRACE */
8050 }
8051 
8052 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8053 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8054 /*
8055  * The kmem allocator will callback into our reclaim routine when the system
8056  * is running low in memory.  We traverse the hash and free up all unused but
8057  * still cached hme_blks.  We also traverse the free list and free them up
8058  * as well.
8059  */
8060 /*ARGSUSED*/
8061 static void
8062 sfmmu_hblkcache_reclaim(void *cdrarg)
8063 {
8064 	int i;
8065 	uint64_t hblkpa, prevpa, nx_pa;
8066 	struct hmehash_bucket *hmebp;
8067 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8068 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8069 	static struct hmehash_bucket *khmehash_reclaim_hand;
8070 	struct hme_blk *list = NULL;
8071 
8072 	hmebp = uhmehash_reclaim_hand;
8073 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8074 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8075 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8076 
8077 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8078 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8079 			hmeblkp = hmebp->hmeblkp;
8080 			hblkpa = hmebp->hmeh_nextpa;
8081 			prevpa = 0;
8082 			pr_hblk = NULL;
8083 			while (hmeblkp) {
8084 				nx_hblk = hmeblkp->hblk_next;
8085 				nx_pa = hmeblkp->hblk_nextpa;
8086 				if (!hmeblkp->hblk_vcnt &&
8087 				    !hmeblkp->hblk_hmecnt) {
8088 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8089 						prevpa, pr_hblk);
8090 					sfmmu_hblk_free(hmebp, hmeblkp,
8091 					    hblkpa, &list);
8092 				} else {
8093 					pr_hblk = hmeblkp;
8094 					prevpa = hblkpa;
8095 				}
8096 				hmeblkp = nx_hblk;
8097 				hblkpa = nx_pa;
8098 			}
8099 			SFMMU_HASH_UNLOCK(hmebp);
8100 		}
8101 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8102 			hmebp = uhme_hash;
8103 	}
8104 
8105 	hmebp = khmehash_reclaim_hand;
8106 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8107 		khmehash_reclaim_hand = hmebp = khme_hash;
8108 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8109 
8110 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8111 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8112 			hmeblkp = hmebp->hmeblkp;
8113 			hblkpa = hmebp->hmeh_nextpa;
8114 			prevpa = 0;
8115 			pr_hblk = NULL;
8116 			while (hmeblkp) {
8117 				nx_hblk = hmeblkp->hblk_next;
8118 				nx_pa = hmeblkp->hblk_nextpa;
8119 				if (!hmeblkp->hblk_vcnt &&
8120 				    !hmeblkp->hblk_hmecnt) {
8121 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8122 						prevpa, pr_hblk);
8123 					sfmmu_hblk_free(hmebp, hmeblkp,
8124 					    hblkpa, &list);
8125 				} else {
8126 					pr_hblk = hmeblkp;
8127 					prevpa = hblkpa;
8128 				}
8129 				hmeblkp = nx_hblk;
8130 				hblkpa = nx_pa;
8131 			}
8132 			SFMMU_HASH_UNLOCK(hmebp);
8133 		}
8134 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8135 			hmebp = khme_hash;
8136 	}
8137 	sfmmu_hblks_list_purge(&list);
8138 }
8139 
8140 /*
8141  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8142  * same goes for sfmmu_get_addrvcolor().
8143  *
8144  * This function will return the virtual color for the specified page. The
8145  * virtual color corresponds to this page current mapping or its last mapping.
8146  * It is used by memory allocators to choose addresses with the correct
8147  * alignment so vac consistency is automatically maintained.  If the page
8148  * has no color it returns -1.
8149  */
8150 /*ARGSUSED*/
8151 int
8152 sfmmu_get_ppvcolor(struct page *pp)
8153 {
8154 #ifdef VAC
8155 	int color;
8156 
8157 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8158 		return (-1);
8159 	}
8160 	color = PP_GET_VCOLOR(pp);
8161 	ASSERT(color < mmu_btop(shm_alignment));
8162 	return (color);
8163 #else
8164 	return (-1);
8165 #endif	/* VAC */
8166 }
8167 
8168 /*
8169  * This function will return the desired alignment for vac consistency
8170  * (vac color) given a virtual address.  If no vac is present it returns -1.
8171  */
8172 /*ARGSUSED*/
8173 int
8174 sfmmu_get_addrvcolor(caddr_t vaddr)
8175 {
8176 #ifdef VAC
8177 	if (cache & CACHE_VAC) {
8178 		return (addr_to_vcolor(vaddr));
8179 	} else {
8180 		return (-1);
8181 	}
8182 #else
8183 	return (-1);
8184 #endif	/* VAC */
8185 }
8186 
8187 #ifdef VAC
8188 /*
8189  * Check for conflicts.
8190  * A conflict exists if the new and existent mappings do not match in
8191  * their "shm_alignment fields. If conflicts exist, the existant mappings
8192  * are flushed unless one of them is locked. If one of them is locked, then
8193  * the mappings are flushed and converted to non-cacheable mappings.
8194  */
8195 static void
8196 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8197 {
8198 	struct hat *tmphat;
8199 	struct sf_hment *sfhmep, *tmphme = NULL;
8200 	struct hme_blk *hmeblkp;
8201 	int vcolor;
8202 	tte_t tte;
8203 
8204 	ASSERT(sfmmu_mlist_held(pp));
8205 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8206 
8207 	vcolor = addr_to_vcolor(addr);
8208 	if (PP_NEWPAGE(pp)) {
8209 		PP_SET_VCOLOR(pp, vcolor);
8210 		return;
8211 	}
8212 
8213 	if (PP_GET_VCOLOR(pp) == vcolor) {
8214 		return;
8215 	}
8216 
8217 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8218 		/*
8219 		 * Previous user of page had a different color
8220 		 * but since there are no current users
8221 		 * we just flush the cache and change the color.
8222 		 */
8223 		SFMMU_STAT(sf_pgcolor_conflict);
8224 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8225 		PP_SET_VCOLOR(pp, vcolor);
8226 		return;
8227 	}
8228 
8229 	/*
8230 	 * If we get here we have a vac conflict with a current
8231 	 * mapping.  VAC conflict policy is as follows.
8232 	 * - The default is to unload the other mappings unless:
8233 	 * - If we have a large mapping we uncache the page.
8234 	 * We need to uncache the rest of the large page too.
8235 	 * - If any of the mappings are locked we uncache the page.
8236 	 * - If the requested mapping is inconsistent
8237 	 * with another mapping and that mapping
8238 	 * is in the same address space we have to
8239 	 * make it non-cached.  The default thing
8240 	 * to do is unload the inconsistent mapping
8241 	 * but if they are in the same address space
8242 	 * we run the risk of unmapping the pc or the
8243 	 * stack which we will use as we return to the user,
8244 	 * in which case we can then fault on the thing
8245 	 * we just unloaded and get into an infinite loop.
8246 	 */
8247 	if (PP_ISMAPPED_LARGE(pp)) {
8248 		int sz;
8249 
8250 		/*
8251 		 * Existing mapping is for big pages. We don't unload
8252 		 * existing big mappings to satisfy new mappings.
8253 		 * Always convert all mappings to TNC.
8254 		 */
8255 		sz = fnd_mapping_sz(pp);
8256 		pp = PP_GROUPLEADER(pp, sz);
8257 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8258 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8259 			TTEPAGES(sz));
8260 
8261 		return;
8262 	}
8263 
8264 	/*
8265 	 * check if any mapping is in same as or if it is locked
8266 	 * since in that case we need to uncache.
8267 	 */
8268 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8269 		tmphme = sfhmep->hme_next;
8270 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8271 		if (hmeblkp->hblk_xhat_bit)
8272 			continue;
8273 		tmphat = hblktosfmmu(hmeblkp);
8274 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8275 		ASSERT(TTE_IS_VALID(&tte));
8276 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8277 			/*
8278 			 * We have an uncache conflict
8279 			 */
8280 			SFMMU_STAT(sf_uncache_conflict);
8281 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8282 			return;
8283 		}
8284 	}
8285 
8286 	/*
8287 	 * We have an unload conflict
8288 	 * We have already checked for LARGE mappings, therefore
8289 	 * the remaining mapping(s) must be TTE8K.
8290 	 */
8291 	SFMMU_STAT(sf_unload_conflict);
8292 
8293 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8294 		tmphme = sfhmep->hme_next;
8295 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8296 		if (hmeblkp->hblk_xhat_bit)
8297 			continue;
8298 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8299 	}
8300 
8301 	if (PP_ISMAPPED_KPM(pp))
8302 		sfmmu_kpm_vac_unload(pp, addr);
8303 
8304 	/*
8305 	 * Unloads only do TLB flushes so we need to flush the
8306 	 * cache here.
8307 	 */
8308 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8309 	PP_SET_VCOLOR(pp, vcolor);
8310 }
8311 
8312 /*
8313  * Whenever a mapping is unloaded and the page is in TNC state,
8314  * we see if the page can be made cacheable again. 'pp' is
8315  * the page that we just unloaded a mapping from, the size
8316  * of mapping that was unloaded is 'ottesz'.
8317  * Remark:
8318  * The recache policy for mpss pages can leave a performance problem
8319  * under the following circumstances:
8320  * . A large page in uncached mode has just been unmapped.
8321  * . All constituent pages are TNC due to a conflicting small mapping.
8322  * . There are many other, non conflicting, small mappings around for
8323  *   a lot of the constituent pages.
8324  * . We're called w/ the "old" groupleader page and the old ottesz,
8325  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8326  *   we end up w/ TTE8K or npages == 1.
8327  * . We call tst_tnc w/ the old groupleader only, and if there is no
8328  *   conflict, we re-cache only this page.
8329  * . All other small mappings are not checked and will be left in TNC mode.
8330  * The problem is not very serious because:
8331  * . mpss is actually only defined for heap and stack, so the probability
8332  *   is not very high that a large page mapping exists in parallel to a small
8333  *   one (this is possible, but seems to be bad programming style in the
8334  *   appl).
8335  * . The problem gets a little bit more serious, when those TNC pages
8336  *   have to be mapped into kernel space, e.g. for networking.
8337  * . When VAC alias conflicts occur in applications, this is regarded
8338  *   as an application bug. So if kstat's show them, the appl should
8339  *   be changed anyway.
8340  */
8341 void
8342 conv_tnc(page_t *pp, int ottesz)
8343 {
8344 	int cursz, dosz;
8345 	pgcnt_t curnpgs, dopgs;
8346 	pgcnt_t pg64k;
8347 	page_t *pp2;
8348 
8349 	/*
8350 	 * Determine how big a range we check for TNC and find
8351 	 * leader page. cursz is the size of the biggest
8352 	 * mapping that still exist on 'pp'.
8353 	 */
8354 	if (PP_ISMAPPED_LARGE(pp)) {
8355 		cursz = fnd_mapping_sz(pp);
8356 	} else {
8357 		cursz = TTE8K;
8358 	}
8359 
8360 	if (ottesz >= cursz) {
8361 		dosz = ottesz;
8362 		pp2 = pp;
8363 	} else {
8364 		dosz = cursz;
8365 		pp2 = PP_GROUPLEADER(pp, dosz);
8366 	}
8367 
8368 	pg64k = TTEPAGES(TTE64K);
8369 	dopgs = TTEPAGES(dosz);
8370 
8371 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8372 
8373 	while (dopgs != 0) {
8374 		curnpgs = TTEPAGES(cursz);
8375 		if (tst_tnc(pp2, curnpgs)) {
8376 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8377 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8378 				curnpgs);
8379 		}
8380 
8381 		ASSERT(dopgs >= curnpgs);
8382 		dopgs -= curnpgs;
8383 
8384 		if (dopgs == 0) {
8385 			break;
8386 		}
8387 
8388 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8389 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8390 			cursz = fnd_mapping_sz(pp2);
8391 		} else {
8392 			cursz = TTE8K;
8393 		}
8394 	}
8395 }
8396 
8397 /*
8398  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8399  * returns 0 otherwise. Note that oaddr argument is valid for only
8400  * 8k pages.
8401  */
8402 int
8403 tst_tnc(page_t *pp, pgcnt_t npages)
8404 {
8405 	struct	sf_hment *sfhme;
8406 	struct	hme_blk *hmeblkp;
8407 	tte_t	tte;
8408 	caddr_t	vaddr;
8409 	int	clr_valid = 0;
8410 	int 	color, color1, bcolor;
8411 	int	i, ncolors;
8412 
8413 	ASSERT(pp != NULL);
8414 	ASSERT(!(cache & CACHE_WRITEBACK));
8415 
8416 	if (npages > 1) {
8417 		ncolors = CACHE_NUM_COLOR;
8418 	}
8419 
8420 	for (i = 0; i < npages; i++) {
8421 		ASSERT(sfmmu_mlist_held(pp));
8422 		ASSERT(PP_ISTNC(pp));
8423 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8424 
8425 		if (PP_ISPNC(pp)) {
8426 			return (0);
8427 		}
8428 
8429 		clr_valid = 0;
8430 		if (PP_ISMAPPED_KPM(pp)) {
8431 			caddr_t kpmvaddr;
8432 
8433 			ASSERT(kpm_enable);
8434 			kpmvaddr = hat_kpm_page2va(pp, 1);
8435 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8436 			color1 = addr_to_vcolor(kpmvaddr);
8437 			clr_valid = 1;
8438 		}
8439 
8440 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8441 			hmeblkp = sfmmu_hmetohblk(sfhme);
8442 			if (hmeblkp->hblk_xhat_bit)
8443 				continue;
8444 
8445 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8446 			ASSERT(TTE_IS_VALID(&tte));
8447 
8448 			vaddr = tte_to_vaddr(hmeblkp, tte);
8449 			color = addr_to_vcolor(vaddr);
8450 
8451 			if (npages > 1) {
8452 				/*
8453 				 * If there is a big mapping, make sure
8454 				 * 8K mapping is consistent with the big
8455 				 * mapping.
8456 				 */
8457 				bcolor = i % ncolors;
8458 				if (color != bcolor) {
8459 					return (0);
8460 				}
8461 			}
8462 			if (!clr_valid) {
8463 				clr_valid = 1;
8464 				color1 = color;
8465 			}
8466 
8467 			if (color1 != color) {
8468 				return (0);
8469 			}
8470 		}
8471 
8472 		pp = PP_PAGENEXT(pp);
8473 	}
8474 
8475 	return (1);
8476 }
8477 
8478 void
8479 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8480 	pgcnt_t npages)
8481 {
8482 	kmutex_t *pmtx;
8483 	int i, ncolors, bcolor;
8484 	kpm_hlk_t *kpmp;
8485 	cpuset_t cpuset;
8486 
8487 	ASSERT(pp != NULL);
8488 	ASSERT(!(cache & CACHE_WRITEBACK));
8489 
8490 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8491 	pmtx = sfmmu_page_enter(pp);
8492 
8493 	/*
8494 	 * Fast path caching single unmapped page
8495 	 */
8496 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8497 	    flags == HAT_CACHE) {
8498 		PP_CLRTNC(pp);
8499 		PP_CLRPNC(pp);
8500 		sfmmu_page_exit(pmtx);
8501 		sfmmu_kpm_kpmp_exit(kpmp);
8502 		return;
8503 	}
8504 
8505 	/*
8506 	 * We need to capture all cpus in order to change cacheability
8507 	 * because we can't allow one cpu to access the same physical
8508 	 * page using a cacheable and a non-cachebale mapping at the same
8509 	 * time. Since we may end up walking the ism mapping list
8510 	 * have to grab it's lock now since we can't after all the
8511 	 * cpus have been captured.
8512 	 */
8513 	sfmmu_hat_lock_all();
8514 	mutex_enter(&ism_mlist_lock);
8515 	kpreempt_disable();
8516 	cpuset = cpu_ready_set;
8517 	xc_attention(cpuset);
8518 
8519 	if (npages > 1) {
8520 		/*
8521 		 * Make sure all colors are flushed since the
8522 		 * sfmmu_page_cache() only flushes one color-
8523 		 * it does not know big pages.
8524 		 */
8525 		ncolors = CACHE_NUM_COLOR;
8526 		if (flags & HAT_TMPNC) {
8527 			for (i = 0; i < ncolors; i++) {
8528 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8529 			}
8530 			cache_flush_flag = CACHE_NO_FLUSH;
8531 		}
8532 	}
8533 
8534 	for (i = 0; i < npages; i++) {
8535 
8536 		ASSERT(sfmmu_mlist_held(pp));
8537 
8538 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8539 
8540 			if (npages > 1) {
8541 				bcolor = i % ncolors;
8542 			} else {
8543 				bcolor = NO_VCOLOR;
8544 			}
8545 
8546 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8547 			    bcolor);
8548 		}
8549 
8550 		pp = PP_PAGENEXT(pp);
8551 	}
8552 
8553 	xt_sync(cpuset);
8554 	xc_dismissed(cpuset);
8555 	mutex_exit(&ism_mlist_lock);
8556 	sfmmu_hat_unlock_all();
8557 	sfmmu_page_exit(pmtx);
8558 	sfmmu_kpm_kpmp_exit(kpmp);
8559 	kpreempt_enable();
8560 }
8561 
8562 /*
8563  * This function changes the virtual cacheability of all mappings to a
8564  * particular page.  When changing from uncache to cacheable the mappings will
8565  * only be changed if all of them have the same virtual color.
8566  * We need to flush the cache in all cpus.  It is possible that
8567  * a process referenced a page as cacheable but has sinced exited
8568  * and cleared the mapping list.  We still to flush it but have no
8569  * state so all cpus is the only alternative.
8570  */
8571 static void
8572 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8573 {
8574 	struct	sf_hment *sfhme;
8575 	struct	hme_blk *hmeblkp;
8576 	sfmmu_t *sfmmup;
8577 	tte_t	tte, ttemod;
8578 	caddr_t	vaddr;
8579 	int	ret, color;
8580 	pfn_t	pfn;
8581 
8582 	color = bcolor;
8583 	pfn = pp->p_pagenum;
8584 
8585 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8586 
8587 		hmeblkp = sfmmu_hmetohblk(sfhme);
8588 
8589 		if (hmeblkp->hblk_xhat_bit)
8590 			continue;
8591 
8592 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8593 		ASSERT(TTE_IS_VALID(&tte));
8594 		vaddr = tte_to_vaddr(hmeblkp, tte);
8595 		color = addr_to_vcolor(vaddr);
8596 
8597 #ifdef DEBUG
8598 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8599 			ASSERT(color == bcolor);
8600 		}
8601 #endif
8602 
8603 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8604 
8605 		ttemod = tte;
8606 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8607 			TTE_CLR_VCACHEABLE(&ttemod);
8608 		} else {	/* flags & HAT_CACHE */
8609 			TTE_SET_VCACHEABLE(&ttemod);
8610 		}
8611 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8612 		if (ret < 0) {
8613 			/*
8614 			 * Since all cpus are captured modifytte should not
8615 			 * fail.
8616 			 */
8617 			panic("sfmmu_page_cache: write to tte failed");
8618 		}
8619 
8620 		sfmmup = hblktosfmmu(hmeblkp);
8621 		if (cache_flush_flag == CACHE_FLUSH) {
8622 			/*
8623 			 * Flush TSBs, TLBs and caches
8624 			 */
8625 			if (sfmmup->sfmmu_ismhat) {
8626 				if (flags & HAT_CACHE) {
8627 					SFMMU_STAT(sf_ism_recache);
8628 				} else {
8629 					SFMMU_STAT(sf_ism_uncache);
8630 				}
8631 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8632 				    pfn, CACHE_FLUSH);
8633 			} else {
8634 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8635 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8636 			}
8637 
8638 			/*
8639 			 * all cache entries belonging to this pfn are
8640 			 * now flushed.
8641 			 */
8642 			cache_flush_flag = CACHE_NO_FLUSH;
8643 		} else {
8644 
8645 			/*
8646 			 * Flush only TSBs and TLBs.
8647 			 */
8648 			if (sfmmup->sfmmu_ismhat) {
8649 				if (flags & HAT_CACHE) {
8650 					SFMMU_STAT(sf_ism_recache);
8651 				} else {
8652 					SFMMU_STAT(sf_ism_uncache);
8653 				}
8654 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8655 				    pfn, CACHE_NO_FLUSH);
8656 			} else {
8657 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8658 			}
8659 		}
8660 	}
8661 
8662 	if (PP_ISMAPPED_KPM(pp))
8663 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8664 
8665 	switch (flags) {
8666 
8667 		default:
8668 			panic("sfmmu_pagecache: unknown flags");
8669 			break;
8670 
8671 		case HAT_CACHE:
8672 			PP_CLRTNC(pp);
8673 			PP_CLRPNC(pp);
8674 			PP_SET_VCOLOR(pp, color);
8675 			break;
8676 
8677 		case HAT_TMPNC:
8678 			PP_SETTNC(pp);
8679 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8680 			break;
8681 
8682 		case HAT_UNCACHE:
8683 			PP_SETPNC(pp);
8684 			PP_CLRTNC(pp);
8685 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8686 			break;
8687 	}
8688 }
8689 #endif	/* VAC */
8690 
8691 
8692 /*
8693  * Wrapper routine used to return a context.
8694  *
8695  * It's the responsibility of the caller to guarantee that the
8696  * process serializes on calls here by taking the HAT lock for
8697  * the hat.
8698  *
8699  */
8700 static void
8701 sfmmu_get_ctx(sfmmu_t *sfmmup)
8702 {
8703 	mmu_ctx_t *mmu_ctxp;
8704 	uint_t pstate_save;
8705 
8706 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8707 	ASSERT(sfmmup != ksfmmup);
8708 
8709 	kpreempt_disable();
8710 
8711 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8712 	ASSERT(mmu_ctxp);
8713 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8714 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8715 
8716 	/*
8717 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8718 	 */
8719 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8720 		sfmmu_ctx_wrap_around(mmu_ctxp);
8721 
8722 	/*
8723 	 * Let the MMU set up the page sizes to use for
8724 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8725 	 */
8726 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8727 		mmu_set_ctx_page_sizes(sfmmup);
8728 	}
8729 
8730 	/*
8731 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8732 	 * interrupts disabled to prevent race condition with wrap-around
8733 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8734 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8735 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8736 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8737 	 */
8738 	pstate_save = sfmmu_disable_intrs();
8739 
8740 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8741 	sfmmu_load_mmustate(sfmmup);
8742 
8743 	sfmmu_enable_intrs(pstate_save);
8744 
8745 	kpreempt_enable();
8746 }
8747 
8748 /*
8749  * When all cnums are used up in a MMU, cnum will wrap around to the
8750  * next generation and start from 2.
8751  */
8752 static void
8753 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8754 {
8755 
8756 	/* caller must have disabled the preemption */
8757 	ASSERT(curthread->t_preempt >= 1);
8758 	ASSERT(mmu_ctxp != NULL);
8759 
8760 	/* acquire Per-MMU (PM) spin lock */
8761 	mutex_enter(&mmu_ctxp->mmu_lock);
8762 
8763 	/* re-check to see if wrap-around is needed */
8764 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8765 		goto done;
8766 
8767 	SFMMU_MMU_STAT(mmu_wrap_around);
8768 
8769 	/* update gnum */
8770 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8771 	mmu_ctxp->mmu_gnum++;
8772 	if (mmu_ctxp->mmu_gnum == 0 ||
8773 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8774 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8775 		    (void *)mmu_ctxp);
8776 	}
8777 
8778 	if (mmu_ctxp->mmu_ncpus > 1) {
8779 		cpuset_t cpuset;
8780 
8781 		membar_enter(); /* make sure updated gnum visible */
8782 
8783 		SFMMU_XCALL_STATS(NULL);
8784 
8785 		/* xcall to others on the same MMU to invalidate ctx */
8786 		cpuset = mmu_ctxp->mmu_cpuset;
8787 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8788 		CPUSET_DEL(cpuset, CPU->cpu_id);
8789 		CPUSET_AND(cpuset, cpu_ready_set);
8790 
8791 		/*
8792 		 * Pass in INVALID_CONTEXT as the first parameter to
8793 		 * sfmmu_raise_tsb_exception, which invalidates the context
8794 		 * of any process running on the CPUs in the MMU.
8795 		 */
8796 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8797 		    INVALID_CONTEXT, INVALID_CONTEXT);
8798 		xt_sync(cpuset);
8799 
8800 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8801 	}
8802 
8803 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8804 		sfmmu_setctx_sec(INVALID_CONTEXT);
8805 		sfmmu_clear_utsbinfo();
8806 	}
8807 
8808 	/*
8809 	 * No xcall is needed here. For sun4u systems all CPUs in context
8810 	 * domain share a single physical MMU therefore it's enough to flush
8811 	 * TLB on local CPU. On sun4v systems we use 1 global context
8812 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8813 	 * handler. Note that vtag_flushall_uctxs() is called
8814 	 * for Ultra II machine, where the equivalent flushall functionality
8815 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8816 	 */
8817 	if (&vtag_flushall_uctxs != NULL) {
8818 		vtag_flushall_uctxs();
8819 	} else {
8820 		vtag_flushall();
8821 	}
8822 
8823 	/* reset mmu cnum, skips cnum 0 and 1 */
8824 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8825 
8826 done:
8827 	mutex_exit(&mmu_ctxp->mmu_lock);
8828 }
8829 
8830 
8831 /*
8832  * For multi-threaded process, set the process context to INVALID_CONTEXT
8833  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8834  * process, we can just load the MMU state directly without having to
8835  * set context invalid. Caller must hold the hat lock since we don't
8836  * acquire it here.
8837  */
8838 static void
8839 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8840 {
8841 	uint_t cnum;
8842 	uint_t pstate_save;
8843 
8844 	ASSERT(sfmmup != ksfmmup);
8845 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8846 
8847 	kpreempt_disable();
8848 
8849 	/*
8850 	 * We check whether the pass'ed-in sfmmup is the same as the
8851 	 * current running proc. This is to makes sure the current proc
8852 	 * stays single-threaded if it already is.
8853 	 */
8854 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8855 	    (curthread->t_procp->p_lwpcnt == 1)) {
8856 		/* single-thread */
8857 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8858 		if (cnum != INVALID_CONTEXT) {
8859 			uint_t curcnum;
8860 			/*
8861 			 * Disable interrupts to prevent race condition
8862 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8863 			 * In sun4v, ctx invalidation involves setting
8864 			 * TSB to NULL, hence, interrupts should be disabled
8865 			 * untill after sfmmu_load_mmustate is completed.
8866 			 */
8867 			pstate_save = sfmmu_disable_intrs();
8868 			curcnum = sfmmu_getctx_sec();
8869 			if (curcnum == cnum)
8870 				sfmmu_load_mmustate(sfmmup);
8871 			sfmmu_enable_intrs(pstate_save);
8872 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8873 		}
8874 	} else {
8875 		/*
8876 		 * multi-thread
8877 		 * or when sfmmup is not the same as the curproc.
8878 		 */
8879 		sfmmu_invalidate_ctx(sfmmup);
8880 	}
8881 
8882 	kpreempt_enable();
8883 }
8884 
8885 
8886 /*
8887  * Replace the specified TSB with a new TSB.  This function gets called when
8888  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8889  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8890  * (8K).
8891  *
8892  * Caller must hold the HAT lock, but should assume any tsb_info
8893  * pointers it has are no longer valid after calling this function.
8894  *
8895  * Return values:
8896  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8897  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8898  *			something to this tsbinfo/TSB
8899  *	TSB_SUCCESS	Operation succeeded
8900  */
8901 static tsb_replace_rc_t
8902 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8903     hatlock_t *hatlockp, uint_t flags)
8904 {
8905 	struct tsb_info *new_tsbinfo = NULL;
8906 	struct tsb_info *curtsb, *prevtsb;
8907 	uint_t tte_sz_mask;
8908 	int i;
8909 
8910 	ASSERT(sfmmup != ksfmmup);
8911 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8912 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8913 	ASSERT(szc <= tsb_max_growsize);
8914 
8915 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8916 		return (TSB_LOSTRACE);
8917 
8918 	/*
8919 	 * Find the tsb_info ahead of this one in the list, and
8920 	 * also make sure that the tsb_info passed in really
8921 	 * exists!
8922 	 */
8923 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8924 	    curtsb != old_tsbinfo && curtsb != NULL;
8925 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8926 	ASSERT(curtsb != NULL);
8927 
8928 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8929 		/*
8930 		 * The process is swapped out, so just set the new size
8931 		 * code.  When it swaps back in, we'll allocate a new one
8932 		 * of the new chosen size.
8933 		 */
8934 		curtsb->tsb_szc = szc;
8935 		return (TSB_SUCCESS);
8936 	}
8937 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8938 
8939 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8940 
8941 	/*
8942 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8943 	 * If we fail to allocate a TSB, exit.
8944 	 */
8945 	sfmmu_hat_exit(hatlockp);
8946 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8947 	    flags, sfmmup)) {
8948 		(void) sfmmu_hat_enter(sfmmup);
8949 		if (!(flags & TSB_SWAPIN))
8950 			SFMMU_STAT(sf_tsb_resize_failures);
8951 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8952 		return (TSB_ALLOCFAIL);
8953 	}
8954 	(void) sfmmu_hat_enter(sfmmup);
8955 
8956 	/*
8957 	 * Re-check to make sure somebody else didn't muck with us while we
8958 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8959 	 * exit; this can happen if we try to shrink the TSB from the context
8960 	 * of another process (such as on an ISM unmap), though it is rare.
8961 	 */
8962 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8963 		SFMMU_STAT(sf_tsb_resize_failures);
8964 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8965 		sfmmu_hat_exit(hatlockp);
8966 		sfmmu_tsbinfo_free(new_tsbinfo);
8967 		(void) sfmmu_hat_enter(sfmmup);
8968 		return (TSB_LOSTRACE);
8969 	}
8970 
8971 #ifdef	DEBUG
8972 	/* Reverify that the tsb_info still exists.. for debugging only */
8973 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8974 	    curtsb != old_tsbinfo && curtsb != NULL;
8975 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8976 	ASSERT(curtsb != NULL);
8977 #endif	/* DEBUG */
8978 
8979 	/*
8980 	 * Quiesce any CPUs running this process on their next TLB miss
8981 	 * so they atomically see the new tsb_info.  We temporarily set the
8982 	 * context to invalid context so new threads that come on processor
8983 	 * after we do the xcall to cpusran will also serialize behind the
8984 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8985 	 * race with a new thread coming on processor is relatively rare,
8986 	 * this synchronization mechanism should be cheaper than always
8987 	 * pausing all CPUs for the duration of the setup, which is what
8988 	 * the old implementation did.  This is particuarly true if we are
8989 	 * copying a huge chunk of memory around during that window.
8990 	 *
8991 	 * The memory barriers are to make sure things stay consistent
8992 	 * with resume() since it does not hold the HAT lock while
8993 	 * walking the list of tsb_info structures.
8994 	 */
8995 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8996 		/* The TSB is either growing or shrinking. */
8997 		sfmmu_invalidate_ctx(sfmmup);
8998 	} else {
8999 		/*
9000 		 * It is illegal to swap in TSBs from a process other
9001 		 * than a process being swapped in.  This in turn
9002 		 * implies we do not have a valid MMU context here
9003 		 * since a process needs one to resolve translation
9004 		 * misses.
9005 		 */
9006 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9007 	}
9008 
9009 #ifdef DEBUG
9010 	ASSERT(max_mmu_ctxdoms > 0);
9011 
9012 	/*
9013 	 * Process should have INVALID_CONTEXT on all MMUs
9014 	 */
9015 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9016 
9017 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9018 	}
9019 #endif
9020 
9021 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9022 	membar_stst();	/* strict ordering required */
9023 	if (prevtsb)
9024 		prevtsb->tsb_next = new_tsbinfo;
9025 	else
9026 		sfmmup->sfmmu_tsb = new_tsbinfo;
9027 	membar_enter();	/* make sure new TSB globally visible */
9028 	sfmmu_setup_tsbinfo(sfmmup);
9029 
9030 	/*
9031 	 * We need to migrate TSB entries from the old TSB to the new TSB
9032 	 * if tsb_remap_ttes is set and the TSB is growing.
9033 	 */
9034 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9035 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9036 
9037 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9038 
9039 	/*
9040 	 * Drop the HAT lock to free our old tsb_info.
9041 	 */
9042 	sfmmu_hat_exit(hatlockp);
9043 
9044 	if ((flags & TSB_GROW) == TSB_GROW) {
9045 		SFMMU_STAT(sf_tsb_grow);
9046 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9047 		SFMMU_STAT(sf_tsb_shrink);
9048 	}
9049 
9050 	sfmmu_tsbinfo_free(old_tsbinfo);
9051 
9052 	(void) sfmmu_hat_enter(sfmmup);
9053 	return (TSB_SUCCESS);
9054 }
9055 
9056 /*
9057  * This function will re-program hat pgsz array, and invalidate the
9058  * process' context, forcing the process to switch to another
9059  * context on the next TLB miss, and therefore start using the
9060  * TLB that is reprogrammed for the new page sizes.
9061  */
9062 void
9063 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9064 {
9065 	int i;
9066 	hatlock_t *hatlockp = NULL;
9067 
9068 	hatlockp = sfmmu_hat_enter(sfmmup);
9069 	/* USIII+-IV+ optimization, requires hat lock */
9070 	if (tmp_pgsz) {
9071 		for (i = 0; i < mmu_page_sizes; i++)
9072 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9073 	}
9074 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9075 
9076 	sfmmu_invalidate_ctx(sfmmup);
9077 
9078 	sfmmu_hat_exit(hatlockp);
9079 }
9080 
9081 /*
9082  * This function assumes that there are either four or six supported page
9083  * sizes and at most two programmable TLBs, so we need to decide which
9084  * page sizes are most important and then tell the MMU layer so it
9085  * can adjust the TLB page sizes accordingly (if supported).
9086  *
9087  * If these assumptions change, this function will need to be
9088  * updated to support whatever the new limits are.
9089  *
9090  * The growing flag is nonzero if we are growing the address space,
9091  * and zero if it is shrinking.  This allows us to decide whether
9092  * to grow or shrink our TSB, depending upon available memory
9093  * conditions.
9094  */
9095 static void
9096 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9097 {
9098 	uint64_t ttecnt[MMU_PAGE_SIZES];
9099 	uint64_t tte8k_cnt, tte4m_cnt;
9100 	uint8_t i;
9101 	int sectsb_thresh;
9102 
9103 	/*
9104 	 * Kernel threads, processes with small address spaces not using
9105 	 * large pages, and dummy ISM HATs need not apply.
9106 	 */
9107 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9108 		return;
9109 
9110 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9111 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9112 		return;
9113 
9114 	for (i = 0; i < mmu_page_sizes; i++) {
9115 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9116 	}
9117 
9118 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9119 	if (&mmu_check_page_sizes)
9120 		mmu_check_page_sizes(sfmmup, ttecnt);
9121 
9122 	/*
9123 	 * Calculate the number of 8k ttes to represent the span of these
9124 	 * pages.
9125 	 */
9126 	tte8k_cnt = ttecnt[TTE8K] +
9127 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9128 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9129 	if (mmu_page_sizes == max_mmu_page_sizes) {
9130 		tte4m_cnt = ttecnt[TTE4M] +
9131 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9132 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9133 	} else {
9134 		tte4m_cnt = ttecnt[TTE4M];
9135 	}
9136 
9137 	/*
9138 	 * Inflate TSB sizes by a factor of 2 if this process
9139 	 * uses 4M text pages to minimize extra conflict misses
9140 	 * in the first TSB since without counting text pages
9141 	 * 8K TSB may become too small.
9142 	 *
9143 	 * Also double the size of the second TSB to minimize
9144 	 * extra conflict misses due to competition between 4M text pages
9145 	 * and data pages.
9146 	 *
9147 	 * We need to adjust the second TSB allocation threshold by the
9148 	 * inflation factor, since there is no point in creating a second
9149 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9150 	 */
9151 	sectsb_thresh = tsb_sectsb_threshold;
9152 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9153 		tte8k_cnt <<= 1;
9154 		tte4m_cnt <<= 1;
9155 		sectsb_thresh <<= 1;
9156 	}
9157 
9158 	/*
9159 	 * Check to see if our TSB is the right size; we may need to
9160 	 * grow or shrink it.  If the process is small, our work is
9161 	 * finished at this point.
9162 	 */
9163 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9164 		return;
9165 	}
9166 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9167 }
9168 
9169 static void
9170 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9171 	uint64_t tte4m_cnt, int sectsb_thresh)
9172 {
9173 	int tsb_bits;
9174 	uint_t tsb_szc;
9175 	struct tsb_info *tsbinfop;
9176 	hatlock_t *hatlockp = NULL;
9177 
9178 	hatlockp = sfmmu_hat_enter(sfmmup);
9179 	ASSERT(hatlockp != NULL);
9180 	tsbinfop = sfmmup->sfmmu_tsb;
9181 	ASSERT(tsbinfop != NULL);
9182 
9183 	/*
9184 	 * If we're growing, select the size based on RSS.  If we're
9185 	 * shrinking, leave some room so we don't have to turn around and
9186 	 * grow again immediately.
9187 	 */
9188 	if (growing)
9189 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9190 	else
9191 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9192 
9193 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9194 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9195 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9196 		    hatlockp, TSB_SHRINK);
9197 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9198 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9199 		    hatlockp, TSB_GROW);
9200 	}
9201 	tsbinfop = sfmmup->sfmmu_tsb;
9202 
9203 	/*
9204 	 * With the TLB and first TSB out of the way, we need to see if
9205 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9206 	 * the TLB page sizes above, the process will start using this new
9207 	 * TSB right away; otherwise, it will start using it on the next
9208 	 * context switch.  Either way, it's no big deal so there's no
9209 	 * synchronization with the trap handlers here unless we grow the
9210 	 * TSB (in which case it's required to prevent using the old one
9211 	 * after it's freed). Note: second tsb is required for 32M/256M
9212 	 * page sizes.
9213 	 */
9214 	if (tte4m_cnt > sectsb_thresh) {
9215 		/*
9216 		 * If we're growing, select the size based on RSS.  If we're
9217 		 * shrinking, leave some room so we don't have to turn
9218 		 * around and grow again immediately.
9219 		 */
9220 		if (growing)
9221 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9222 		else
9223 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9224 		if (tsbinfop->tsb_next == NULL) {
9225 			struct tsb_info *newtsb;
9226 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9227 			    0 : TSB_ALLOC;
9228 
9229 			sfmmu_hat_exit(hatlockp);
9230 
9231 			/*
9232 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9233 			 * can't get the size we want, retry w/a minimum sized
9234 			 * TSB.  If that still didn't work, give up; we can
9235 			 * still run without one.
9236 			 */
9237 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9238 			    TSB4M|TSB32M|TSB256M:TSB4M;
9239 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9240 			    allocflags, sfmmup) != 0) &&
9241 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9242 			    tsb_bits, allocflags, sfmmup) != 0)) {
9243 				return;
9244 			}
9245 
9246 			hatlockp = sfmmu_hat_enter(sfmmup);
9247 
9248 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9249 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9250 				SFMMU_STAT(sf_tsb_sectsb_create);
9251 				sfmmu_setup_tsbinfo(sfmmup);
9252 				sfmmu_hat_exit(hatlockp);
9253 				return;
9254 			} else {
9255 				/*
9256 				 * It's annoying, but possible for us
9257 				 * to get here.. we dropped the HAT lock
9258 				 * because of locking order in the kmem
9259 				 * allocator, and while we were off getting
9260 				 * our memory, some other thread decided to
9261 				 * do us a favor and won the race to get a
9262 				 * second TSB for this process.  Sigh.
9263 				 */
9264 				sfmmu_hat_exit(hatlockp);
9265 				sfmmu_tsbinfo_free(newtsb);
9266 				return;
9267 			}
9268 		}
9269 
9270 		/*
9271 		 * We have a second TSB, see if it's big enough.
9272 		 */
9273 		tsbinfop = tsbinfop->tsb_next;
9274 
9275 		/*
9276 		 * Check to see if our second TSB is the right size;
9277 		 * we may need to grow or shrink it.
9278 		 * To prevent thrashing (e.g. growing the TSB on a
9279 		 * subsequent map operation), only try to shrink if
9280 		 * the TSB reach exceeds twice the virtual address
9281 		 * space size.
9282 		 */
9283 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9284 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9285 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9286 			    tsb_szc, hatlockp, TSB_SHRINK);
9287 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9288 		    TSB_OK_GROW()) {
9289 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9290 			    tsb_szc, hatlockp, TSB_GROW);
9291 		}
9292 	}
9293 
9294 	sfmmu_hat_exit(hatlockp);
9295 }
9296 
9297 /*
9298  * Free up a sfmmu
9299  * Since the sfmmu is currently embedded in the hat struct we simply zero
9300  * out our fields and free up the ism map blk list if any.
9301  */
9302 static void
9303 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9304 {
9305 	ism_blk_t	*blkp, *nx_blkp;
9306 #ifdef	DEBUG
9307 	ism_map_t	*map;
9308 	int 		i;
9309 #endif
9310 
9311 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9312 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9313 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9314 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9315 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9316 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9317 
9318 	sfmmup->sfmmu_free = 0;
9319 	sfmmup->sfmmu_ismhat = 0;
9320 
9321 	blkp = sfmmup->sfmmu_iblk;
9322 	sfmmup->sfmmu_iblk = NULL;
9323 
9324 	while (blkp) {
9325 #ifdef	DEBUG
9326 		map = blkp->iblk_maps;
9327 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9328 			ASSERT(map[i].imap_seg == 0);
9329 			ASSERT(map[i].imap_ismhat == NULL);
9330 			ASSERT(map[i].imap_ment == NULL);
9331 		}
9332 #endif
9333 		nx_blkp = blkp->iblk_next;
9334 		blkp->iblk_next = NULL;
9335 		blkp->iblk_nextpa = (uint64_t)-1;
9336 		kmem_cache_free(ism_blk_cache, blkp);
9337 		blkp = nx_blkp;
9338 	}
9339 }
9340 
9341 /*
9342  * Locking primitves accessed by HATLOCK macros
9343  */
9344 
9345 #define	SFMMU_SPL_MTX	(0x0)
9346 #define	SFMMU_ML_MTX	(0x1)
9347 
9348 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9349 					    SPL_HASH(pg) : MLIST_HASH(pg))
9350 
9351 kmutex_t *
9352 sfmmu_page_enter(struct page *pp)
9353 {
9354 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9355 }
9356 
9357 void
9358 sfmmu_page_exit(kmutex_t *spl)
9359 {
9360 	mutex_exit(spl);
9361 }
9362 
9363 int
9364 sfmmu_page_spl_held(struct page *pp)
9365 {
9366 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9367 }
9368 
9369 kmutex_t *
9370 sfmmu_mlist_enter(struct page *pp)
9371 {
9372 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9373 }
9374 
9375 void
9376 sfmmu_mlist_exit(kmutex_t *mml)
9377 {
9378 	mutex_exit(mml);
9379 }
9380 
9381 int
9382 sfmmu_mlist_held(struct page *pp)
9383 {
9384 
9385 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9386 }
9387 
9388 /*
9389  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9390  * sfmmu_mlist_enter() case mml_table lock array is used and for
9391  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9392  *
9393  * The lock is taken on a root page so that it protects an operation on all
9394  * constituent pages of a large page pp belongs to.
9395  *
9396  * The routine takes a lock from the appropriate array. The lock is determined
9397  * by hashing the root page. After taking the lock this routine checks if the
9398  * root page has the same size code that was used to determine the root (i.e
9399  * that root hasn't changed).  If root page has the expected p_szc field we
9400  * have the right lock and it's returned to the caller. If root's p_szc
9401  * decreased we release the lock and retry from the beginning.  This case can
9402  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9403  * value and taking the lock. The number of retries due to p_szc decrease is
9404  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9405  * determined by hashing pp itself.
9406  *
9407  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9408  * possible that p_szc can increase. To increase p_szc a thread has to lock
9409  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9410  * callers that don't hold a page locked recheck if hmeblk through which pp
9411  * was found still maps this pp.  If it doesn't map it anymore returned lock
9412  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9413  * p_szc increase after taking the lock it returns this lock without further
9414  * retries because in this case the caller doesn't care about which lock was
9415  * taken. The caller will drop it right away.
9416  *
9417  * After the routine returns it's guaranteed that hat_page_demote() can't
9418  * change p_szc field of any of constituent pages of a large page pp belongs
9419  * to as long as pp was either locked at least SHARED prior to this call or
9420  * the caller finds that hment that pointed to this pp still references this
9421  * pp (this also assumes that the caller holds hme hash bucket lock so that
9422  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9423  * hat_pageunload()).
9424  */
9425 static kmutex_t *
9426 sfmmu_mlspl_enter(struct page *pp, int type)
9427 {
9428 	kmutex_t	*mtx;
9429 	uint_t		prev_rszc = UINT_MAX;
9430 	page_t		*rootpp;
9431 	uint_t		szc;
9432 	uint_t		rszc;
9433 	uint_t		pszc = pp->p_szc;
9434 
9435 	ASSERT(pp != NULL);
9436 
9437 again:
9438 	if (pszc == 0) {
9439 		mtx = SFMMU_MLSPL_MTX(type, pp);
9440 		mutex_enter(mtx);
9441 		return (mtx);
9442 	}
9443 
9444 	/* The lock lives in the root page */
9445 	rootpp = PP_GROUPLEADER(pp, pszc);
9446 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9447 	mutex_enter(mtx);
9448 
9449 	/*
9450 	 * Return mml in the following 3 cases:
9451 	 *
9452 	 * 1) If pp itself is root since if its p_szc decreased before we took
9453 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9454 	 * increased it doesn't matter what lock we return (see comment in
9455 	 * front of this routine).
9456 	 *
9457 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9458 	 * large page we have the right lock since any previous potential
9459 	 * hat_page_demote() is done demoting from greater than current root's
9460 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9461 	 * further hat_page_demote() can start or be in progress since it
9462 	 * would need the same lock we currently hold.
9463 	 *
9464 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9465 	 * matter what lock we return (see comment in front of this routine).
9466 	 */
9467 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9468 	    rszc >= prev_rszc) {
9469 		return (mtx);
9470 	}
9471 
9472 	/*
9473 	 * hat_page_demote() could have decreased root's p_szc.
9474 	 * In this case pp's p_szc must also be smaller than pszc.
9475 	 * Retry.
9476 	 */
9477 	if (rszc < pszc) {
9478 		szc = pp->p_szc;
9479 		if (szc < pszc) {
9480 			mutex_exit(mtx);
9481 			pszc = szc;
9482 			goto again;
9483 		}
9484 		/*
9485 		 * pp's p_szc increased after it was decreased.
9486 		 * page cannot be mapped. Return current lock. The caller
9487 		 * will drop it right away.
9488 		 */
9489 		return (mtx);
9490 	}
9491 
9492 	/*
9493 	 * root's p_szc is greater than pp's p_szc.
9494 	 * hat_page_demote() is not done with all pages
9495 	 * yet. Wait for it to complete.
9496 	 */
9497 	mutex_exit(mtx);
9498 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9499 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9500 	mutex_enter(mtx);
9501 	mutex_exit(mtx);
9502 	prev_rszc = rszc;
9503 	goto again;
9504 }
9505 
9506 static int
9507 sfmmu_mlspl_held(struct page *pp, int type)
9508 {
9509 	kmutex_t	*mtx;
9510 
9511 	ASSERT(pp != NULL);
9512 	/* The lock lives in the root page */
9513 	pp = PP_PAGEROOT(pp);
9514 	ASSERT(pp != NULL);
9515 
9516 	mtx = SFMMU_MLSPL_MTX(type, pp);
9517 	return (MUTEX_HELD(mtx));
9518 }
9519 
9520 static uint_t
9521 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9522 {
9523 	struct  hme_blk *hblkp;
9524 
9525 	if (freehblkp != NULL) {
9526 		mutex_enter(&freehblkp_lock);
9527 		if (freehblkp != NULL) {
9528 			/*
9529 			 * If the current thread is owning hblk_reserve,
9530 			 * let it succede even if freehblkcnt is really low.
9531 			 */
9532 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9533 				SFMMU_STAT(sf_get_free_throttle);
9534 				mutex_exit(&freehblkp_lock);
9535 				return (0);
9536 			}
9537 			freehblkcnt--;
9538 			*hmeblkpp = freehblkp;
9539 			hblkp = *hmeblkpp;
9540 			freehblkp = hblkp->hblk_next;
9541 			mutex_exit(&freehblkp_lock);
9542 			hblkp->hblk_next = NULL;
9543 			SFMMU_STAT(sf_get_free_success);
9544 			return (1);
9545 		}
9546 		mutex_exit(&freehblkp_lock);
9547 	}
9548 	SFMMU_STAT(sf_get_free_fail);
9549 	return (0);
9550 }
9551 
9552 static uint_t
9553 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9554 {
9555 	struct  hme_blk *hblkp;
9556 
9557 	/*
9558 	 * If the current thread is mapping into kernel space,
9559 	 * let it succede even if freehblkcnt is max
9560 	 * so that it will avoid freeing it to kmem.
9561 	 * This will prevent stack overflow due to
9562 	 * possible recursion since kmem_cache_free()
9563 	 * might require creation of a slab which
9564 	 * in turn needs an hmeblk to map that slab;
9565 	 * let's break this vicious chain at the first
9566 	 * opportunity.
9567 	 */
9568 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9569 		mutex_enter(&freehblkp_lock);
9570 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9571 			SFMMU_STAT(sf_put_free_success);
9572 			freehblkcnt++;
9573 			hmeblkp->hblk_next = freehblkp;
9574 			freehblkp = hmeblkp;
9575 			mutex_exit(&freehblkp_lock);
9576 			return (1);
9577 		}
9578 		mutex_exit(&freehblkp_lock);
9579 	}
9580 
9581 	/*
9582 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9583 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9584 	 * we are not in the process of mapping into kernel space.
9585 	 */
9586 	ASSERT(!critical);
9587 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9588 		mutex_enter(&freehblkp_lock);
9589 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9590 			freehblkcnt--;
9591 			hblkp = freehblkp;
9592 			freehblkp = hblkp->hblk_next;
9593 			mutex_exit(&freehblkp_lock);
9594 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9595 			kmem_cache_free(sfmmu8_cache, hblkp);
9596 			continue;
9597 		}
9598 		mutex_exit(&freehblkp_lock);
9599 	}
9600 	SFMMU_STAT(sf_put_free_fail);
9601 	return (0);
9602 }
9603 
9604 static void
9605 sfmmu_hblk_swap(struct hme_blk *new)
9606 {
9607 	struct hme_blk *old, *hblkp, *prev;
9608 	uint64_t hblkpa, prevpa, newpa;
9609 	caddr_t	base, vaddr, endaddr;
9610 	struct hmehash_bucket *hmebp;
9611 	struct sf_hment *osfhme, *nsfhme;
9612 	page_t *pp;
9613 	kmutex_t *pml;
9614 	tte_t tte;
9615 
9616 #ifdef	DEBUG
9617 	hmeblk_tag		hblktag;
9618 	struct hme_blk		*found;
9619 #endif
9620 	old = HBLK_RESERVE;
9621 
9622 	/*
9623 	 * save pa before bcopy clobbers it
9624 	 */
9625 	newpa = new->hblk_nextpa;
9626 
9627 	base = (caddr_t)get_hblk_base(old);
9628 	endaddr = base + get_hblk_span(old);
9629 
9630 	/*
9631 	 * acquire hash bucket lock.
9632 	 */
9633 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9634 
9635 	/*
9636 	 * copy contents from old to new
9637 	 */
9638 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9639 
9640 	/*
9641 	 * add new to hash chain
9642 	 */
9643 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9644 
9645 	/*
9646 	 * search hash chain for hblk_reserve; this needs to be performed
9647 	 * after adding new, otherwise prevpa and prev won't correspond
9648 	 * to the hblk which is prior to old in hash chain when we call
9649 	 * sfmmu_hblk_hash_rm to remove old later.
9650 	 */
9651 	for (prevpa = 0, prev = NULL,
9652 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9653 	    hblkp != NULL && hblkp != old;
9654 	    prevpa = hblkpa, prev = hblkp,
9655 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9656 
9657 	if (hblkp != old)
9658 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9659 
9660 	/*
9661 	 * p_mapping list is still pointing to hments in hblk_reserve;
9662 	 * fix up p_mapping list so that they point to hments in new.
9663 	 *
9664 	 * Since all these mappings are created by hblk_reserve_thread
9665 	 * on the way and it's using at least one of the buffers from each of
9666 	 * the newly minted slabs, there is no danger of any of these
9667 	 * mappings getting unloaded by another thread.
9668 	 *
9669 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9670 	 * Since all of these hments hold mappings established by segkmem
9671 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9672 	 * have no meaning for the mappings in hblk_reserve.  hments in
9673 	 * old and new are identical except for ref/mod bits.
9674 	 */
9675 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9676 
9677 		HBLKTOHME(osfhme, old, vaddr);
9678 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9679 
9680 		if (TTE_IS_VALID(&tte)) {
9681 			if ((pp = osfhme->hme_page) == NULL)
9682 				panic("sfmmu_hblk_swap: page not mapped");
9683 
9684 			pml = sfmmu_mlist_enter(pp);
9685 
9686 			if (pp != osfhme->hme_page)
9687 				panic("sfmmu_hblk_swap: mapping changed");
9688 
9689 			HBLKTOHME(nsfhme, new, vaddr);
9690 
9691 			HME_ADD(nsfhme, pp);
9692 			HME_SUB(osfhme, pp);
9693 
9694 			sfmmu_mlist_exit(pml);
9695 		}
9696 	}
9697 
9698 	/*
9699 	 * remove old from hash chain
9700 	 */
9701 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9702 
9703 #ifdef	DEBUG
9704 
9705 	hblktag.htag_id = ksfmmup;
9706 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9707 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9708 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9709 
9710 	if (found != new)
9711 		panic("sfmmu_hblk_swap: new hblk not found");
9712 #endif
9713 
9714 	SFMMU_HASH_UNLOCK(hmebp);
9715 
9716 	/*
9717 	 * Reset hblk_reserve
9718 	 */
9719 	bzero((void *)old, HME8BLK_SZ);
9720 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9721 }
9722 
9723 /*
9724  * Grab the mlist mutex for both pages passed in.
9725  *
9726  * low and high will be returned as pointers to the mutexes for these pages.
9727  * low refers to the mutex residing in the lower bin of the mlist hash, while
9728  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9729  * is due to the locking order restrictions on the same thread grabbing
9730  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9731  *
9732  * If both pages hash to the same mutex, only grab that single mutex, and
9733  * high will be returned as NULL
9734  * If the pages hash to different bins in the hash, grab the lower addressed
9735  * lock first and then the higher addressed lock in order to follow the locking
9736  * rules involved with the same thread grabbing multiple mlist mutexes.
9737  * low and high will both have non-NULL values.
9738  */
9739 static void
9740 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9741     kmutex_t **low, kmutex_t **high)
9742 {
9743 	kmutex_t	*mml_targ, *mml_repl;
9744 
9745 	/*
9746 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9747 	 * because this routine is only called by hat_page_relocate() and all
9748 	 * targ and repl pages are already locked EXCL so szc can't change.
9749 	 */
9750 
9751 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9752 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9753 
9754 	if (mml_targ == mml_repl) {
9755 		*low = mml_targ;
9756 		*high = NULL;
9757 	} else {
9758 		if (mml_targ < mml_repl) {
9759 			*low = mml_targ;
9760 			*high = mml_repl;
9761 		} else {
9762 			*low = mml_repl;
9763 			*high = mml_targ;
9764 		}
9765 	}
9766 
9767 	mutex_enter(*low);
9768 	if (*high)
9769 		mutex_enter(*high);
9770 }
9771 
9772 static void
9773 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9774 {
9775 	if (high)
9776 		mutex_exit(high);
9777 	mutex_exit(low);
9778 }
9779 
9780 static hatlock_t *
9781 sfmmu_hat_enter(sfmmu_t *sfmmup)
9782 {
9783 	hatlock_t	*hatlockp;
9784 
9785 	if (sfmmup != ksfmmup) {
9786 		hatlockp = TSB_HASH(sfmmup);
9787 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9788 		return (hatlockp);
9789 	}
9790 	return (NULL);
9791 }
9792 
9793 static hatlock_t *
9794 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9795 {
9796 	hatlock_t	*hatlockp;
9797 
9798 	if (sfmmup != ksfmmup) {
9799 		hatlockp = TSB_HASH(sfmmup);
9800 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9801 			return (NULL);
9802 		return (hatlockp);
9803 	}
9804 	return (NULL);
9805 }
9806 
9807 static void
9808 sfmmu_hat_exit(hatlock_t *hatlockp)
9809 {
9810 	if (hatlockp != NULL)
9811 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9812 }
9813 
9814 static void
9815 sfmmu_hat_lock_all(void)
9816 {
9817 	int i;
9818 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9819 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9820 }
9821 
9822 static void
9823 sfmmu_hat_unlock_all(void)
9824 {
9825 	int i;
9826 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9827 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9828 }
9829 
9830 int
9831 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9832 {
9833 	ASSERT(sfmmup != ksfmmup);
9834 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9835 }
9836 
9837 /*
9838  * Locking primitives to provide consistency between ISM unmap
9839  * and other operations.  Since ISM unmap can take a long time, we
9840  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9841  * contention on the hatlock buckets while ISM segments are being
9842  * unmapped.  The tradeoff is that the flags don't prevent priority
9843  * inversion from occurring, so we must request kernel priority in
9844  * case we have to sleep to keep from getting buried while holding
9845  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9846  * threads from running (for example, in sfmmu_uvatopfn()).
9847  */
9848 static void
9849 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9850 {
9851 	hatlock_t *hatlockp;
9852 
9853 	THREAD_KPRI_REQUEST();
9854 	if (!hatlock_held)
9855 		hatlockp = sfmmu_hat_enter(sfmmup);
9856 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9857 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9858 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9859 	if (!hatlock_held)
9860 		sfmmu_hat_exit(hatlockp);
9861 }
9862 
9863 static void
9864 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9865 {
9866 	hatlock_t *hatlockp;
9867 
9868 	if (!hatlock_held)
9869 		hatlockp = sfmmu_hat_enter(sfmmup);
9870 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9871 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9872 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9873 	if (!hatlock_held)
9874 		sfmmu_hat_exit(hatlockp);
9875 	THREAD_KPRI_RELEASE();
9876 }
9877 
9878 /*
9879  *
9880  * Algorithm:
9881  *
9882  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9883  *	hblks.
9884  *
9885  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9886  *
9887  * 		(a) try to return an hblk from reserve pool of free hblks;
9888  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9889  *		    and return hblk_reserve.
9890  *
9891  * (3) call kmem_cache_alloc() to allocate hblk;
9892  *
9893  *		(a) if hblk_reserve_lock is held by the current thread,
9894  *		    atomically replace hblk_reserve by the hblk that is
9895  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9896  *		    and call kmem_cache_alloc() again.
9897  *		(b) if reserve pool is not full, add the hblk that is
9898  *		    returned by kmem_cache_alloc to reserve pool and
9899  *		    call kmem_cache_alloc again.
9900  *
9901  */
9902 static struct hme_blk *
9903 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9904 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9905 	uint_t flags)
9906 {
9907 	struct hme_blk *hmeblkp = NULL;
9908 	struct hme_blk *newhblkp;
9909 	struct hme_blk *shw_hblkp = NULL;
9910 	struct kmem_cache *sfmmu_cache = NULL;
9911 	uint64_t hblkpa;
9912 	ulong_t index;
9913 	uint_t owner;		/* set to 1 if using hblk_reserve */
9914 	uint_t forcefree;
9915 	int sleep;
9916 
9917 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9918 
9919 	/*
9920 	 * If segkmem is not created yet, allocate from static hmeblks
9921 	 * created at the end of startup_modules().  See the block comment
9922 	 * in startup_modules() describing how we estimate the number of
9923 	 * static hmeblks that will be needed during re-map.
9924 	 */
9925 	if (!hblk_alloc_dynamic) {
9926 
9927 		if (size == TTE8K) {
9928 			index = nucleus_hblk8.index;
9929 			if (index >= nucleus_hblk8.len) {
9930 				/*
9931 				 * If we panic here, see startup_modules() to
9932 				 * make sure that we are calculating the
9933 				 * number of hblk8's that we need correctly.
9934 				 */
9935 				panic("no nucleus hblk8 to allocate");
9936 			}
9937 			hmeblkp =
9938 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9939 			nucleus_hblk8.index++;
9940 			SFMMU_STAT(sf_hblk8_nalloc);
9941 		} else {
9942 			index = nucleus_hblk1.index;
9943 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9944 				/*
9945 				 * If we panic here, see startup_modules()
9946 				 * and H8TOH1; most likely you need to
9947 				 * update the calculation of the number
9948 				 * of hblk1's the kernel needs to boot.
9949 				 */
9950 				panic("no nucleus hblk1 to allocate");
9951 			}
9952 			hmeblkp =
9953 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9954 			nucleus_hblk1.index++;
9955 			SFMMU_STAT(sf_hblk1_nalloc);
9956 		}
9957 
9958 		goto hblk_init;
9959 	}
9960 
9961 	SFMMU_HASH_UNLOCK(hmebp);
9962 
9963 	if (sfmmup != KHATID) {
9964 		if (mmu_page_sizes == max_mmu_page_sizes) {
9965 			if (size < TTE256M)
9966 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9967 				    size, flags);
9968 		} else {
9969 			if (size < TTE4M)
9970 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9971 				    size, flags);
9972 		}
9973 	}
9974 
9975 fill_hblk:
9976 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
9977 
9978 	if (owner && size == TTE8K) {
9979 
9980 		/*
9981 		 * We are really in a tight spot. We already own
9982 		 * hblk_reserve and we need another hblk.  In anticipation
9983 		 * of this kind of scenario, we specifically set aside
9984 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
9985 		 * by owner of hblk_reserve.
9986 		 */
9987 		SFMMU_STAT(sf_hblk_recurse_cnt);
9988 
9989 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
9990 			panic("sfmmu_hblk_alloc: reserve list is empty");
9991 
9992 		goto hblk_verify;
9993 	}
9994 
9995 	ASSERT(!owner);
9996 
9997 	if ((flags & HAT_NO_KALLOC) == 0) {
9998 
9999 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10000 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10001 
10002 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10003 			hmeblkp = sfmmu_hblk_steal(size);
10004 		} else {
10005 			/*
10006 			 * if we are the owner of hblk_reserve,
10007 			 * swap hblk_reserve with hmeblkp and
10008 			 * start a fresh life.  Hope things go
10009 			 * better this time.
10010 			 */
10011 			if (hblk_reserve_thread == curthread) {
10012 				ASSERT(sfmmu_cache == sfmmu8_cache);
10013 				sfmmu_hblk_swap(hmeblkp);
10014 				hblk_reserve_thread = NULL;
10015 				mutex_exit(&hblk_reserve_lock);
10016 				goto fill_hblk;
10017 			}
10018 			/*
10019 			 * let's donate this hblk to our reserve list if
10020 			 * we are not mapping kernel range
10021 			 */
10022 			if (size == TTE8K && sfmmup != KHATID)
10023 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10024 					goto fill_hblk;
10025 		}
10026 	} else {
10027 		/*
10028 		 * We are here to map the slab in sfmmu8_cache; let's
10029 		 * check if we could tap our reserve list; if successful,
10030 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10031 		 */
10032 		SFMMU_STAT(sf_hblk_slab_cnt);
10033 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10034 			/*
10035 			 * let's start hblk_reserve dance
10036 			 */
10037 			SFMMU_STAT(sf_hblk_reserve_cnt);
10038 			owner = 1;
10039 			mutex_enter(&hblk_reserve_lock);
10040 			hmeblkp = HBLK_RESERVE;
10041 			hblk_reserve_thread = curthread;
10042 		}
10043 	}
10044 
10045 hblk_verify:
10046 	ASSERT(hmeblkp != NULL);
10047 	set_hblk_sz(hmeblkp, size);
10048 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10049 	SFMMU_HASH_LOCK(hmebp);
10050 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10051 	if (newhblkp != NULL) {
10052 		SFMMU_HASH_UNLOCK(hmebp);
10053 		if (hmeblkp != HBLK_RESERVE) {
10054 			/*
10055 			 * This is really tricky!
10056 			 *
10057 			 * vmem_alloc(vmem_seg_arena)
10058 			 *  vmem_alloc(vmem_internal_arena)
10059 			 *   segkmem_alloc(heap_arena)
10060 			 *    vmem_alloc(heap_arena)
10061 			 *    page_create()
10062 			 *    hat_memload()
10063 			 *	kmem_cache_free()
10064 			 *	 kmem_cache_alloc()
10065 			 *	  kmem_slab_create()
10066 			 *	   vmem_alloc(kmem_internal_arena)
10067 			 *	    segkmem_alloc(heap_arena)
10068 			 *		vmem_alloc(heap_arena)
10069 			 *		page_create()
10070 			 *		hat_memload()
10071 			 *		  kmem_cache_free()
10072 			 *		...
10073 			 *
10074 			 * Thus, hat_memload() could call kmem_cache_free
10075 			 * for enough number of times that we could easily
10076 			 * hit the bottom of the stack or run out of reserve
10077 			 * list of vmem_seg structs.  So, we must donate
10078 			 * this hblk to reserve list if it's allocated
10079 			 * from sfmmu8_cache *and* mapping kernel range.
10080 			 * We don't need to worry about freeing hmeblk1's
10081 			 * to kmem since they don't map any kmem slabs.
10082 			 *
10083 			 * Note: When segkmem supports largepages, we must
10084 			 * free hmeblk1's to reserve list as well.
10085 			 */
10086 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10087 			if (size == TTE8K &&
10088 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10089 				goto re_verify;
10090 			}
10091 			ASSERT(sfmmup != KHATID);
10092 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10093 		} else {
10094 			/*
10095 			 * Hey! we don't need hblk_reserve any more.
10096 			 */
10097 			ASSERT(owner);
10098 			hblk_reserve_thread = NULL;
10099 			mutex_exit(&hblk_reserve_lock);
10100 			owner = 0;
10101 		}
10102 re_verify:
10103 		/*
10104 		 * let's check if the goodies are still present
10105 		 */
10106 		SFMMU_HASH_LOCK(hmebp);
10107 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10108 		if (newhblkp != NULL) {
10109 			/*
10110 			 * return newhblkp if it's not hblk_reserve;
10111 			 * if newhblkp is hblk_reserve, return it
10112 			 * _only if_ we are the owner of hblk_reserve.
10113 			 */
10114 			if (newhblkp != HBLK_RESERVE || owner) {
10115 				return (newhblkp);
10116 			} else {
10117 				/*
10118 				 * we just hit hblk_reserve in the hash and
10119 				 * we are not the owner of that;
10120 				 *
10121 				 * block until hblk_reserve_thread completes
10122 				 * swapping hblk_reserve and try the dance
10123 				 * once again.
10124 				 */
10125 				SFMMU_HASH_UNLOCK(hmebp);
10126 				mutex_enter(&hblk_reserve_lock);
10127 				mutex_exit(&hblk_reserve_lock);
10128 				SFMMU_STAT(sf_hblk_reserve_hit);
10129 				goto fill_hblk;
10130 			}
10131 		} else {
10132 			/*
10133 			 * it's no more! try the dance once again.
10134 			 */
10135 			SFMMU_HASH_UNLOCK(hmebp);
10136 			goto fill_hblk;
10137 		}
10138 	}
10139 
10140 hblk_init:
10141 	set_hblk_sz(hmeblkp, size);
10142 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10143 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10144 	hmeblkp->hblk_tag = hblktag;
10145 	hmeblkp->hblk_shadow = shw_hblkp;
10146 	hblkpa = hmeblkp->hblk_nextpa;
10147 	hmeblkp->hblk_nextpa = 0;
10148 
10149 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10150 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10151 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10152 	ASSERT(hmeblkp->hblk_vcnt == 0);
10153 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10154 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10155 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10156 	return (hmeblkp);
10157 }
10158 
10159 /*
10160  * This function performs any cleanup required on the hme_blk
10161  * and returns it to the free list.
10162  */
10163 /* ARGSUSED */
10164 static void
10165 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10166 	uint64_t hblkpa, struct hme_blk **listp)
10167 {
10168 	int shw_size, vshift;
10169 	struct hme_blk *shw_hblkp;
10170 	uint_t		shw_mask, newshw_mask;
10171 	uintptr_t	vaddr;
10172 	int		size;
10173 	uint_t		critical;
10174 
10175 	ASSERT(hmeblkp);
10176 	ASSERT(!hmeblkp->hblk_hmecnt);
10177 	ASSERT(!hmeblkp->hblk_vcnt);
10178 	ASSERT(!hmeblkp->hblk_lckcnt);
10179 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10180 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10181 
10182 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10183 
10184 	size = get_hblk_ttesz(hmeblkp);
10185 	shw_hblkp = hmeblkp->hblk_shadow;
10186 	if (shw_hblkp) {
10187 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10188 		if (mmu_page_sizes == max_mmu_page_sizes) {
10189 			ASSERT(size < TTE256M);
10190 		} else {
10191 			ASSERT(size < TTE4M);
10192 		}
10193 
10194 		shw_size = get_hblk_ttesz(shw_hblkp);
10195 		vaddr = get_hblk_base(hmeblkp);
10196 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10197 		ASSERT(vshift < 8);
10198 		/*
10199 		 * Atomically clear shadow mask bit
10200 		 */
10201 		do {
10202 			shw_mask = shw_hblkp->hblk_shw_mask;
10203 			ASSERT(shw_mask & (1 << vshift));
10204 			newshw_mask = shw_mask & ~(1 << vshift);
10205 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10206 				shw_mask, newshw_mask);
10207 		} while (newshw_mask != shw_mask);
10208 		hmeblkp->hblk_shadow = NULL;
10209 	}
10210 	hmeblkp->hblk_next = NULL;
10211 	hmeblkp->hblk_nextpa = hblkpa;
10212 	hmeblkp->hblk_shw_bit = 0;
10213 
10214 	if (hmeblkp->hblk_nuc_bit == 0) {
10215 
10216 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10217 			return;
10218 
10219 		hmeblkp->hblk_next = *listp;
10220 		*listp = hmeblkp;
10221 	}
10222 }
10223 
10224 static void
10225 sfmmu_hblks_list_purge(struct hme_blk **listp)
10226 {
10227 	struct hme_blk	*hmeblkp;
10228 
10229 	while ((hmeblkp = *listp) != NULL) {
10230 		*listp = hmeblkp->hblk_next;
10231 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10232 	}
10233 }
10234 
10235 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10236 
10237 static uint_t sfmmu_hblk_steal_twice;
10238 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10239 
10240 /*
10241  * Steal a hmeblk
10242  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10243  * hmeblks were added dynamically. We should never ever not be able to
10244  * find one. Look for an unused/unlocked hmeblk in user hash table.
10245  */
10246 static struct hme_blk *
10247 sfmmu_hblk_steal(int size)
10248 {
10249 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10250 	struct hmehash_bucket *hmebp;
10251 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10252 	uint64_t hblkpa, prevpa;
10253 	int i;
10254 
10255 	for (;;) {
10256 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10257 			uhmehash_steal_hand;
10258 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10259 
10260 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10261 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10262 			SFMMU_HASH_LOCK(hmebp);
10263 			hmeblkp = hmebp->hmeblkp;
10264 			hblkpa = hmebp->hmeh_nextpa;
10265 			prevpa = 0;
10266 			pr_hblk = NULL;
10267 			while (hmeblkp) {
10268 				/*
10269 				 * check if it is a hmeblk that is not locked
10270 				 * and not shared. skip shadow hmeblks with
10271 				 * shadow_mask set i.e valid count non zero.
10272 				 */
10273 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10274 				    (hmeblkp->hblk_shw_bit == 0 ||
10275 					hmeblkp->hblk_vcnt == 0) &&
10276 				    (hmeblkp->hblk_lckcnt == 0)) {
10277 					/*
10278 					 * there is a high probability that we
10279 					 * will find a free one. search some
10280 					 * buckets for a free hmeblk initially
10281 					 * before unloading a valid hmeblk.
10282 					 */
10283 					if ((hmeblkp->hblk_vcnt == 0 &&
10284 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10285 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10286 						if (sfmmu_steal_this_hblk(hmebp,
10287 						    hmeblkp, hblkpa, prevpa,
10288 						    pr_hblk)) {
10289 							/*
10290 							 * Hblk is unloaded
10291 							 * successfully
10292 							 */
10293 							break;
10294 						}
10295 					}
10296 				}
10297 				pr_hblk = hmeblkp;
10298 				prevpa = hblkpa;
10299 				hblkpa = hmeblkp->hblk_nextpa;
10300 				hmeblkp = hmeblkp->hblk_next;
10301 			}
10302 
10303 			SFMMU_HASH_UNLOCK(hmebp);
10304 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10305 				hmebp = uhme_hash;
10306 		}
10307 		uhmehash_steal_hand = hmebp;
10308 
10309 		if (hmeblkp != NULL)
10310 			break;
10311 
10312 		/*
10313 		 * in the worst case, look for a free one in the kernel
10314 		 * hash table.
10315 		 */
10316 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10317 			SFMMU_HASH_LOCK(hmebp);
10318 			hmeblkp = hmebp->hmeblkp;
10319 			hblkpa = hmebp->hmeh_nextpa;
10320 			prevpa = 0;
10321 			pr_hblk = NULL;
10322 			while (hmeblkp) {
10323 				/*
10324 				 * check if it is free hmeblk
10325 				 */
10326 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10327 				    (hmeblkp->hblk_lckcnt == 0) &&
10328 				    (hmeblkp->hblk_vcnt == 0) &&
10329 				    (hmeblkp->hblk_hmecnt == 0)) {
10330 					if (sfmmu_steal_this_hblk(hmebp,
10331 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10332 						break;
10333 					} else {
10334 						/*
10335 						 * Cannot fail since we have
10336 						 * hash lock.
10337 						 */
10338 						panic("fail to steal?");
10339 					}
10340 				}
10341 
10342 				pr_hblk = hmeblkp;
10343 				prevpa = hblkpa;
10344 				hblkpa = hmeblkp->hblk_nextpa;
10345 				hmeblkp = hmeblkp->hblk_next;
10346 			}
10347 
10348 			SFMMU_HASH_UNLOCK(hmebp);
10349 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10350 				hmebp = khme_hash;
10351 		}
10352 
10353 		if (hmeblkp != NULL)
10354 			break;
10355 		sfmmu_hblk_steal_twice++;
10356 	}
10357 	return (hmeblkp);
10358 }
10359 
10360 /*
10361  * This routine does real work to prepare a hblk to be "stolen" by
10362  * unloading the mappings, updating shadow counts ....
10363  * It returns 1 if the block is ready to be reused (stolen), or 0
10364  * means the block cannot be stolen yet- pageunload is still working
10365  * on this hblk.
10366  */
10367 static int
10368 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10369 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10370 {
10371 	int shw_size, vshift;
10372 	struct hme_blk *shw_hblkp;
10373 	uintptr_t vaddr;
10374 	uint_t shw_mask, newshw_mask;
10375 
10376 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10377 
10378 	/*
10379 	 * check if the hmeblk is free, unload if necessary
10380 	 */
10381 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10382 		sfmmu_t *sfmmup;
10383 		demap_range_t dmr;
10384 
10385 		sfmmup = hblktosfmmu(hmeblkp);
10386 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10387 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10388 		    (caddr_t)get_hblk_base(hmeblkp),
10389 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10390 		DEMAP_RANGE_FLUSH(&dmr);
10391 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10392 			/*
10393 			 * Pageunload is working on the same hblk.
10394 			 */
10395 			return (0);
10396 		}
10397 
10398 		sfmmu_hblk_steal_unload_count++;
10399 	}
10400 
10401 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10402 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10403 
10404 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10405 	hmeblkp->hblk_nextpa = hblkpa;
10406 
10407 	shw_hblkp = hmeblkp->hblk_shadow;
10408 	if (shw_hblkp) {
10409 		shw_size = get_hblk_ttesz(shw_hblkp);
10410 		vaddr = get_hblk_base(hmeblkp);
10411 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10412 		ASSERT(vshift < 8);
10413 		/*
10414 		 * Atomically clear shadow mask bit
10415 		 */
10416 		do {
10417 			shw_mask = shw_hblkp->hblk_shw_mask;
10418 			ASSERT(shw_mask & (1 << vshift));
10419 			newshw_mask = shw_mask & ~(1 << vshift);
10420 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10421 				shw_mask, newshw_mask);
10422 		} while (newshw_mask != shw_mask);
10423 		hmeblkp->hblk_shadow = NULL;
10424 	}
10425 
10426 	/*
10427 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10428 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10429 	 * we are indeed allocating a shadow hmeblk.
10430 	 */
10431 	hmeblkp->hblk_shw_bit = 0;
10432 
10433 	sfmmu_hblk_steal_count++;
10434 	SFMMU_STAT(sf_steal_count);
10435 
10436 	return (1);
10437 }
10438 
10439 struct hme_blk *
10440 sfmmu_hmetohblk(struct sf_hment *sfhme)
10441 {
10442 	struct hme_blk *hmeblkp;
10443 	struct sf_hment *sfhme0;
10444 	struct hme_blk *hblk_dummy = 0;
10445 
10446 	/*
10447 	 * No dummy sf_hments, please.
10448 	 */
10449 	ASSERT(sfhme->hme_tte.ll != 0);
10450 
10451 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10452 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10453 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10454 
10455 	return (hmeblkp);
10456 }
10457 
10458 /*
10459  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10460  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10461  * KM_SLEEP allocation.
10462  *
10463  * Return 0 on success, -1 otherwise.
10464  */
10465 static void
10466 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10467 {
10468 	struct tsb_info *tsbinfop, *next;
10469 	tsb_replace_rc_t rc;
10470 	boolean_t gotfirst = B_FALSE;
10471 
10472 	ASSERT(sfmmup != ksfmmup);
10473 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10474 
10475 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10476 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10477 	}
10478 
10479 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10480 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10481 	} else {
10482 		return;
10483 	}
10484 
10485 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10486 
10487 	/*
10488 	 * Loop over all tsbinfo's replacing them with ones that actually have
10489 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10490 	 */
10491 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10492 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10493 		next = tsbinfop->tsb_next;
10494 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10495 		    hatlockp, TSB_SWAPIN);
10496 		if (rc != TSB_SUCCESS) {
10497 			break;
10498 		}
10499 		gotfirst = B_TRUE;
10500 	}
10501 
10502 	switch (rc) {
10503 	case TSB_SUCCESS:
10504 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10505 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10506 		return;
10507 	case TSB_ALLOCFAIL:
10508 		break;
10509 	default:
10510 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10511 		    "%d", rc);
10512 	}
10513 
10514 	/*
10515 	 * In this case, we failed to get one of our TSBs.  If we failed to
10516 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10517 	 * and throw away the tsbinfos, starting where the allocation failed;
10518 	 * we can get by with just one TSB as long as we don't leave the
10519 	 * SWAPPED tsbinfo structures lying around.
10520 	 */
10521 	tsbinfop = sfmmup->sfmmu_tsb;
10522 	next = tsbinfop->tsb_next;
10523 	tsbinfop->tsb_next = NULL;
10524 
10525 	sfmmu_hat_exit(hatlockp);
10526 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10527 		next = tsbinfop->tsb_next;
10528 		sfmmu_tsbinfo_free(tsbinfop);
10529 	}
10530 	hatlockp = sfmmu_hat_enter(sfmmup);
10531 
10532 	/*
10533 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10534 	 * pages.
10535 	 */
10536 	if (!gotfirst) {
10537 		tsbinfop = sfmmup->sfmmu_tsb;
10538 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10539 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10540 		ASSERT(rc == TSB_SUCCESS);
10541 	}
10542 
10543 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10544 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10545 }
10546 
10547 /*
10548  * Handle exceptions for low level tsb_handler.
10549  *
10550  * There are many scenarios that could land us here:
10551  *
10552  * If the context is invalid we land here. The context can be invalid
10553  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10554  * perform a wrap around operation in order to allocate a new context.
10555  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10556  * TSBs configuration is changeing for this process and we are forced into
10557  * here to do a syncronization operation. If the context is valid we can
10558  * be here from window trap hanlder. In this case just call trap to handle
10559  * the fault.
10560  *
10561  * Note that the process will run in INVALID_CONTEXT before
10562  * faulting into here and subsequently loading the MMU registers
10563  * (including the TSB base register) associated with this process.
10564  * For this reason, the trap handlers must all test for
10565  * INVALID_CONTEXT before attempting to access any registers other
10566  * than the context registers.
10567  */
10568 void
10569 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10570 {
10571 	sfmmu_t *sfmmup;
10572 	uint_t ctxnum;
10573 	klwp_id_t lwp;
10574 	char lwp_save_state;
10575 	hatlock_t *hatlockp;
10576 	struct tsb_info *tsbinfop;
10577 
10578 	SFMMU_STAT(sf_tsb_exceptions);
10579 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10580 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10581 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10582 
10583 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10584 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10585 	/*
10586 	 * First, make sure we come out of here with a valid ctx,
10587 	 * since if we don't get one we'll simply loop on the
10588 	 * faulting instruction.
10589 	 *
10590 	 * If the ISM mappings are changing, the TSB is being relocated, or
10591 	 * the process is swapped out we serialize behind the controlling
10592 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10593 	 * Otherwise we synchronize with the context stealer or the thread
10594 	 * that required us to change out our MMU registers (such
10595 	 * as a thread changing out our TSB while we were running) by
10596 	 * locking the HAT and grabbing the rwlock on the context as a
10597 	 * reader temporarily.
10598 	 */
10599 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10600 	    ctxnum == INVALID_CONTEXT);
10601 
10602 	if (ctxnum == INVALID_CONTEXT) {
10603 		/*
10604 		 * Must set lwp state to LWP_SYS before
10605 		 * trying to acquire any adaptive lock
10606 		 */
10607 		lwp = ttolwp(curthread);
10608 		ASSERT(lwp);
10609 		lwp_save_state = lwp->lwp_state;
10610 		lwp->lwp_state = LWP_SYS;
10611 
10612 		hatlockp = sfmmu_hat_enter(sfmmup);
10613 retry:
10614 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10615 		    tsbinfop = tsbinfop->tsb_next) {
10616 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10617 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10618 				    HATLOCK_MUTEXP(hatlockp));
10619 				goto retry;
10620 			}
10621 		}
10622 
10623 		/*
10624 		 * Wait for ISM maps to be updated.
10625 		 */
10626 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10627 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10628 			    HATLOCK_MUTEXP(hatlockp));
10629 			goto retry;
10630 		}
10631 
10632 		/*
10633 		 * If we're swapping in, get TSB(s).  Note that we must do
10634 		 * this before we get a ctx or load the MMU state.  Once
10635 		 * we swap in we have to recheck to make sure the TSB(s) and
10636 		 * ISM mappings didn't change while we slept.
10637 		 */
10638 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10639 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10640 			goto retry;
10641 		}
10642 
10643 		sfmmu_get_ctx(sfmmup);
10644 
10645 		sfmmu_hat_exit(hatlockp);
10646 		/*
10647 		 * Must restore lwp_state if not calling
10648 		 * trap() for further processing. Restore
10649 		 * it anyway.
10650 		 */
10651 		lwp->lwp_state = lwp_save_state;
10652 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10653 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10654 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10655 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10656 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10657 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10658 			return;
10659 		}
10660 		if (traptype == T_DATA_PROT) {
10661 			traptype = T_DATA_MMU_MISS;
10662 		}
10663 	}
10664 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10665 }
10666 
10667 /*
10668  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10669  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10670  * rather than spinning to avoid send mondo timeouts with
10671  * interrupts enabled. When the lock is acquired it is immediately
10672  * released and we return back to sfmmu_vatopfn just after
10673  * the GET_TTE call.
10674  */
10675 void
10676 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10677 {
10678 	struct page	**pp;
10679 
10680 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10681 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10682 }
10683 
10684 /*
10685  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10686  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10687  * cross traps which cannot be handled while spinning in the
10688  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10689  * mutex, which is held by the holder of the suspend bit, and then
10690  * retry the trapped instruction after unwinding.
10691  */
10692 /*ARGSUSED*/
10693 void
10694 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10695 {
10696 	ASSERT(curthread != kreloc_thread);
10697 	mutex_enter(&kpr_suspendlock);
10698 	mutex_exit(&kpr_suspendlock);
10699 }
10700 
10701 /*
10702  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10703  * This routine may be called with all cpu's captured. Therefore, the
10704  * caller is responsible for holding all locks and disabling kernel
10705  * preemption.
10706  */
10707 /* ARGSUSED */
10708 static void
10709 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10710 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10711 {
10712 	cpuset_t 	cpuset;
10713 	caddr_t 	va;
10714 	ism_ment_t	*ment;
10715 	sfmmu_t		*sfmmup;
10716 #ifdef VAC
10717 	int 		vcolor;
10718 #endif
10719 	int		ttesz;
10720 
10721 	/*
10722 	 * Walk the ism_hat's mapping list and flush the page
10723 	 * from every hat sharing this ism_hat. This routine
10724 	 * may be called while all cpu's have been captured.
10725 	 * Therefore we can't attempt to grab any locks. For now
10726 	 * this means we will protect the ism mapping list under
10727 	 * a single lock which will be grabbed by the caller.
10728 	 * If hat_share/unshare scalibility becomes a performance
10729 	 * problem then we may need to re-think ism mapping list locking.
10730 	 */
10731 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10732 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10733 	addr = addr - ISMID_STARTADDR;
10734 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10735 
10736 		sfmmup = ment->iment_hat;
10737 
10738 		va = ment->iment_base_va;
10739 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10740 
10741 		/*
10742 		 * Flush TSB of ISM mappings.
10743 		 */
10744 		ttesz = get_hblk_ttesz(hmeblkp);
10745 		if (ttesz == TTE8K || ttesz == TTE4M) {
10746 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10747 		} else {
10748 			caddr_t sva = va;
10749 			caddr_t eva;
10750 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10751 			eva = sva + get_hblk_span(hmeblkp);
10752 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10753 		}
10754 
10755 		cpuset = sfmmup->sfmmu_cpusran;
10756 		CPUSET_AND(cpuset, cpu_ready_set);
10757 		CPUSET_DEL(cpuset, CPU->cpu_id);
10758 
10759 		SFMMU_XCALL_STATS(sfmmup);
10760 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10761 		    (uint64_t)sfmmup);
10762 
10763 		vtag_flushpage(va, (uint64_t)sfmmup);
10764 
10765 #ifdef VAC
10766 		/*
10767 		 * Flush D$
10768 		 * When flushing D$ we must flush all
10769 		 * cpu's. See sfmmu_cache_flush().
10770 		 */
10771 		if (cache_flush_flag == CACHE_FLUSH) {
10772 			cpuset = cpu_ready_set;
10773 			CPUSET_DEL(cpuset, CPU->cpu_id);
10774 
10775 			SFMMU_XCALL_STATS(sfmmup);
10776 			vcolor = addr_to_vcolor(va);
10777 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10778 			vac_flushpage(pfnum, vcolor);
10779 		}
10780 #endif	/* VAC */
10781 	}
10782 }
10783 
10784 /*
10785  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10786  * a particular virtual address and ctx.  If noflush is set we do not
10787  * flush the TLB/TSB.  This function may or may not be called with the
10788  * HAT lock held.
10789  */
10790 static void
10791 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10792 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10793 	int hat_lock_held)
10794 {
10795 #ifdef VAC
10796 	int vcolor;
10797 #endif
10798 	cpuset_t cpuset;
10799 	hatlock_t *hatlockp;
10800 
10801 #if defined(lint) && !defined(VAC)
10802 	pfnum = pfnum;
10803 	cpu_flag = cpu_flag;
10804 	cache_flush_flag = cache_flush_flag;
10805 #endif
10806 	/*
10807 	 * There is no longer a need to protect against ctx being
10808 	 * stolen here since we don't store the ctx in the TSB anymore.
10809 	 */
10810 #ifdef VAC
10811 	vcolor = addr_to_vcolor(addr);
10812 #endif
10813 
10814 	/*
10815 	 * We must hold the hat lock during the flush of TLB,
10816 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10817 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10818 	 * causing TLB demap routine to skip flush on that MMU.
10819 	 * If the context on a MMU has already been set to
10820 	 * INVALID_CONTEXT, we just get an extra flush on
10821 	 * that MMU.
10822 	 */
10823 	if (!hat_lock_held && !tlb_noflush)
10824 		hatlockp = sfmmu_hat_enter(sfmmup);
10825 
10826 	kpreempt_disable();
10827 	if (!tlb_noflush) {
10828 		/*
10829 		 * Flush the TSB and TLB.
10830 		 */
10831 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10832 
10833 		cpuset = sfmmup->sfmmu_cpusran;
10834 		CPUSET_AND(cpuset, cpu_ready_set);
10835 		CPUSET_DEL(cpuset, CPU->cpu_id);
10836 
10837 		SFMMU_XCALL_STATS(sfmmup);
10838 
10839 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10840 		    (uint64_t)sfmmup);
10841 
10842 		vtag_flushpage(addr, (uint64_t)sfmmup);
10843 	}
10844 
10845 	if (!hat_lock_held && !tlb_noflush)
10846 		sfmmu_hat_exit(hatlockp);
10847 
10848 #ifdef VAC
10849 	/*
10850 	 * Flush the D$
10851 	 *
10852 	 * Even if the ctx is stolen, we need to flush the
10853 	 * cache. Our ctx stealer only flushes the TLBs.
10854 	 */
10855 	if (cache_flush_flag == CACHE_FLUSH) {
10856 		if (cpu_flag & FLUSH_ALL_CPUS) {
10857 			cpuset = cpu_ready_set;
10858 		} else {
10859 			cpuset = sfmmup->sfmmu_cpusran;
10860 			CPUSET_AND(cpuset, cpu_ready_set);
10861 		}
10862 		CPUSET_DEL(cpuset, CPU->cpu_id);
10863 		SFMMU_XCALL_STATS(sfmmup);
10864 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10865 		vac_flushpage(pfnum, vcolor);
10866 	}
10867 #endif	/* VAC */
10868 	kpreempt_enable();
10869 }
10870 
10871 /*
10872  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10873  * address and ctx.  If noflush is set we do not currently do anything.
10874  * This function may or may not be called with the HAT lock held.
10875  */
10876 static void
10877 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10878 	int tlb_noflush, int hat_lock_held)
10879 {
10880 	cpuset_t cpuset;
10881 	hatlock_t *hatlockp;
10882 
10883 	/*
10884 	 * If the process is exiting we have nothing to do.
10885 	 */
10886 	if (tlb_noflush)
10887 		return;
10888 
10889 	/*
10890 	 * Flush TSB.
10891 	 */
10892 	if (!hat_lock_held)
10893 		hatlockp = sfmmu_hat_enter(sfmmup);
10894 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10895 
10896 	kpreempt_disable();
10897 
10898 	cpuset = sfmmup->sfmmu_cpusran;
10899 	CPUSET_AND(cpuset, cpu_ready_set);
10900 	CPUSET_DEL(cpuset, CPU->cpu_id);
10901 
10902 	SFMMU_XCALL_STATS(sfmmup);
10903 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10904 
10905 	vtag_flushpage(addr, (uint64_t)sfmmup);
10906 
10907 	if (!hat_lock_held)
10908 		sfmmu_hat_exit(hatlockp);
10909 
10910 	kpreempt_enable();
10911 
10912 }
10913 
10914 /*
10915  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10916  * call handler that can flush a range of pages to save on xcalls.
10917  */
10918 static int sfmmu_xcall_save;
10919 
10920 static void
10921 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10922 {
10923 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10924 	hatlock_t *hatlockp;
10925 	cpuset_t cpuset;
10926 	uint64_t sfmmu_pgcnt;
10927 	pgcnt_t pgcnt = 0;
10928 	int pgunload = 0;
10929 	int dirtypg = 0;
10930 	caddr_t addr = dmrp->dmr_addr;
10931 	caddr_t eaddr;
10932 	uint64_t bitvec = dmrp->dmr_bitvec;
10933 
10934 	ASSERT(bitvec & 1);
10935 
10936 	/*
10937 	 * Flush TSB and calculate number of pages to flush.
10938 	 */
10939 	while (bitvec != 0) {
10940 		dirtypg = 0;
10941 		/*
10942 		 * Find the first page to flush and then count how many
10943 		 * pages there are after it that also need to be flushed.
10944 		 * This way the number of TSB flushes is minimized.
10945 		 */
10946 		while ((bitvec & 1) == 0) {
10947 			pgcnt++;
10948 			addr += MMU_PAGESIZE;
10949 			bitvec >>= 1;
10950 		}
10951 		while (bitvec & 1) {
10952 			dirtypg++;
10953 			bitvec >>= 1;
10954 		}
10955 		eaddr = addr + ptob(dirtypg);
10956 		hatlockp = sfmmu_hat_enter(sfmmup);
10957 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
10958 		sfmmu_hat_exit(hatlockp);
10959 		pgunload += dirtypg;
10960 		addr = eaddr;
10961 		pgcnt += dirtypg;
10962 	}
10963 
10964 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
10965 	if (sfmmup->sfmmu_free == 0) {
10966 		addr = dmrp->dmr_addr;
10967 		bitvec = dmrp->dmr_bitvec;
10968 
10969 		/*
10970 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
10971 		 * as it will be used to pack argument for xt_some
10972 		 */
10973 		ASSERT((pgcnt > 0) &&
10974 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
10975 
10976 		/*
10977 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
10978 		 * the low 6 bits of sfmmup. This is doable since pgcnt
10979 		 * always >= 1.
10980 		 */
10981 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
10982 		sfmmu_pgcnt = (uint64_t)sfmmup |
10983 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
10984 
10985 		/*
10986 		 * We must hold the hat lock during the flush of TLB,
10987 		 * to avoid a race with sfmmu_invalidate_ctx(), where
10988 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10989 		 * causing TLB demap routine to skip flush on that MMU.
10990 		 * If the context on a MMU has already been set to
10991 		 * INVALID_CONTEXT, we just get an extra flush on
10992 		 * that MMU.
10993 		 */
10994 		hatlockp = sfmmu_hat_enter(sfmmup);
10995 		kpreempt_disable();
10996 
10997 		cpuset = sfmmup->sfmmu_cpusran;
10998 		CPUSET_AND(cpuset, cpu_ready_set);
10999 		CPUSET_DEL(cpuset, CPU->cpu_id);
11000 
11001 		SFMMU_XCALL_STATS(sfmmup);
11002 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11003 		    sfmmu_pgcnt);
11004 
11005 		for (; bitvec != 0; bitvec >>= 1) {
11006 			if (bitvec & 1)
11007 				vtag_flushpage(addr, (uint64_t)sfmmup);
11008 			addr += MMU_PAGESIZE;
11009 		}
11010 		kpreempt_enable();
11011 		sfmmu_hat_exit(hatlockp);
11012 
11013 		sfmmu_xcall_save += (pgunload-1);
11014 	}
11015 	dmrp->dmr_bitvec = 0;
11016 }
11017 
11018 /*
11019  * In cases where we need to synchronize with TLB/TSB miss trap
11020  * handlers, _and_ need to flush the TLB, it's a lot easier to
11021  * throw away the context from the process than to do a
11022  * special song and dance to keep things consistent for the
11023  * handlers.
11024  *
11025  * Since the process suddenly ends up without a context and our caller
11026  * holds the hat lock, threads that fault after this function is called
11027  * will pile up on the lock.  We can then do whatever we need to
11028  * atomically from the context of the caller.  The first blocked thread
11029  * to resume executing will get the process a new context, and the
11030  * process will resume executing.
11031  *
11032  * One added advantage of this approach is that on MMUs that
11033  * support a "flush all" operation, we will delay the flush until
11034  * cnum wrap-around, and then flush the TLB one time.  This
11035  * is rather rare, so it's a lot less expensive than making 8000
11036  * x-calls to flush the TLB 8000 times.
11037  *
11038  * A per-process (PP) lock is used to synchronize ctx allocations in
11039  * resume() and ctx invalidations here.
11040  */
11041 static void
11042 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11043 {
11044 	cpuset_t cpuset;
11045 	int cnum, currcnum;
11046 	mmu_ctx_t *mmu_ctxp;
11047 	int i;
11048 	uint_t pstate_save;
11049 
11050 	SFMMU_STAT(sf_ctx_inv);
11051 
11052 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11053 	ASSERT(sfmmup != ksfmmup);
11054 
11055 	kpreempt_disable();
11056 
11057 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11058 	ASSERT(mmu_ctxp);
11059 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11060 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11061 
11062 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11063 
11064 	pstate_save = sfmmu_disable_intrs();
11065 
11066 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11067 	/* set HAT cnum invalid across all context domains. */
11068 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11069 
11070 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11071 		if (cnum == INVALID_CONTEXT) {
11072 			continue;
11073 		}
11074 
11075 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11076 	}
11077 	membar_enter();	/* make sure globally visible to all CPUs */
11078 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11079 
11080 	sfmmu_enable_intrs(pstate_save);
11081 
11082 	cpuset = sfmmup->sfmmu_cpusran;
11083 	CPUSET_DEL(cpuset, CPU->cpu_id);
11084 	CPUSET_AND(cpuset, cpu_ready_set);
11085 	if (!CPUSET_ISNULL(cpuset)) {
11086 		SFMMU_XCALL_STATS(sfmmup);
11087 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11088 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11089 		xt_sync(cpuset);
11090 		SFMMU_STAT(sf_tsb_raise_exception);
11091 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11092 	}
11093 
11094 	/*
11095 	 * If the hat to-be-invalidated is the same as the current
11096 	 * process on local CPU we need to invalidate
11097 	 * this CPU context as well.
11098 	 */
11099 	if ((sfmmu_getctx_sec() == currcnum) &&
11100 	    (currcnum != INVALID_CONTEXT)) {
11101 		sfmmu_setctx_sec(INVALID_CONTEXT);
11102 		sfmmu_clear_utsbinfo();
11103 	}
11104 
11105 	kpreempt_enable();
11106 
11107 	/*
11108 	 * we hold the hat lock, so nobody should allocate a context
11109 	 * for us yet
11110 	 */
11111 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11112 }
11113 
11114 #ifdef VAC
11115 /*
11116  * We need to flush the cache in all cpus.  It is possible that
11117  * a process referenced a page as cacheable but has sinced exited
11118  * and cleared the mapping list.  We still to flush it but have no
11119  * state so all cpus is the only alternative.
11120  */
11121 void
11122 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11123 {
11124 	cpuset_t cpuset;
11125 
11126 	kpreempt_disable();
11127 	cpuset = cpu_ready_set;
11128 	CPUSET_DEL(cpuset, CPU->cpu_id);
11129 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11130 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11131 	xt_sync(cpuset);
11132 	vac_flushpage(pfnum, vcolor);
11133 	kpreempt_enable();
11134 }
11135 
11136 void
11137 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11138 {
11139 	cpuset_t cpuset;
11140 
11141 	ASSERT(vcolor >= 0);
11142 
11143 	kpreempt_disable();
11144 	cpuset = cpu_ready_set;
11145 	CPUSET_DEL(cpuset, CPU->cpu_id);
11146 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11147 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11148 	xt_sync(cpuset);
11149 	vac_flushcolor(vcolor, pfnum);
11150 	kpreempt_enable();
11151 }
11152 #endif	/* VAC */
11153 
11154 /*
11155  * We need to prevent processes from accessing the TSB using a cached physical
11156  * address.  It's alright if they try to access the TSB via virtual address
11157  * since they will just fault on that virtual address once the mapping has
11158  * been suspended.
11159  */
11160 #pragma weak sendmondo_in_recover
11161 
11162 /* ARGSUSED */
11163 static int
11164 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11165 {
11166 	hatlock_t *hatlockp;
11167 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11168 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11169 	extern uint32_t sendmondo_in_recover;
11170 
11171 	if (flags != HAT_PRESUSPEND)
11172 		return (0);
11173 
11174 	hatlockp = sfmmu_hat_enter(sfmmup);
11175 
11176 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11177 
11178 	/*
11179 	 * For Cheetah+ Erratum 25:
11180 	 * Wait for any active recovery to finish.  We can't risk
11181 	 * relocating the TSB of the thread running mondo_recover_proc()
11182 	 * since, if we did that, we would deadlock.  The scenario we are
11183 	 * trying to avoid is as follows:
11184 	 *
11185 	 * THIS CPU			RECOVER CPU
11186 	 * --------			-----------
11187 	 *				Begins recovery, walking through TSB
11188 	 * hat_pagesuspend() TSB TTE
11189 	 *				TLB miss on TSB TTE, spins at TL1
11190 	 * xt_sync()
11191 	 *	send_mondo_timeout()
11192 	 *	mondo_recover_proc()
11193 	 *	((deadlocked))
11194 	 *
11195 	 * The second half of the workaround is that mondo_recover_proc()
11196 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11197 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11198 	 * and hence avoiding the TLB miss that could result in a deadlock.
11199 	 */
11200 	if (&sendmondo_in_recover) {
11201 		membar_enter();	/* make sure RELOC flag visible */
11202 		while (sendmondo_in_recover) {
11203 			drv_usecwait(1);
11204 			membar_consumer();
11205 		}
11206 	}
11207 
11208 	sfmmu_invalidate_ctx(sfmmup);
11209 	sfmmu_hat_exit(hatlockp);
11210 
11211 	return (0);
11212 }
11213 
11214 /* ARGSUSED */
11215 static int
11216 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11217 	void *tsbinfo, pfn_t newpfn)
11218 {
11219 	hatlock_t *hatlockp;
11220 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11221 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11222 
11223 	if (flags != HAT_POSTUNSUSPEND)
11224 		return (0);
11225 
11226 	hatlockp = sfmmu_hat_enter(sfmmup);
11227 
11228 	SFMMU_STAT(sf_tsb_reloc);
11229 
11230 	/*
11231 	 * The process may have swapped out while we were relocating one
11232 	 * of its TSBs.  If so, don't bother doing the setup since the
11233 	 * process can't be using the memory anymore.
11234 	 */
11235 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11236 		ASSERT(va == tsbinfop->tsb_va);
11237 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11238 		sfmmu_setup_tsbinfo(sfmmup);
11239 
11240 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11241 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11242 			    TSB_BYTES(tsbinfop->tsb_szc));
11243 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11244 		}
11245 	}
11246 
11247 	membar_exit();
11248 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11249 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11250 
11251 	sfmmu_hat_exit(hatlockp);
11252 
11253 	return (0);
11254 }
11255 
11256 /*
11257  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11258  * allocate a TSB here, depending on the flags passed in.
11259  */
11260 static int
11261 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11262 	uint_t flags, sfmmu_t *sfmmup)
11263 {
11264 	int err;
11265 
11266 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11267 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11268 
11269 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11270 	    tsb_szc, flags, sfmmup)) != 0) {
11271 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11272 		SFMMU_STAT(sf_tsb_allocfail);
11273 		*tsbinfopp = NULL;
11274 		return (err);
11275 	}
11276 	SFMMU_STAT(sf_tsb_alloc);
11277 
11278 	/*
11279 	 * Bump the TSB size counters for this TSB size.
11280 	 */
11281 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11282 	return (0);
11283 }
11284 
11285 static void
11286 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11287 {
11288 	caddr_t tsbva = tsbinfo->tsb_va;
11289 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11290 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11291 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11292 
11293 	/*
11294 	 * If we allocated this TSB from relocatable kernel memory, then we
11295 	 * need to uninstall the callback handler.
11296 	 */
11297 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11298 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11299 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11300 		page_t **ppl;
11301 		int ret;
11302 
11303 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11304 		ASSERT(ret == 0);
11305 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11306 		    0, NULL);
11307 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11308 	}
11309 
11310 	if (kmem_cachep != NULL) {
11311 		kmem_cache_free(kmem_cachep, tsbva);
11312 	} else {
11313 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11314 	}
11315 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11316 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11317 }
11318 
11319 static void
11320 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11321 {
11322 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11323 		sfmmu_tsb_free(tsbinfo);
11324 	}
11325 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11326 
11327 }
11328 
11329 /*
11330  * Setup all the references to physical memory for this tsbinfo.
11331  * The underlying page(s) must be locked.
11332  */
11333 static void
11334 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11335 {
11336 	ASSERT(pfn != PFN_INVALID);
11337 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11338 
11339 #ifndef sun4v
11340 	if (tsbinfo->tsb_szc == 0) {
11341 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11342 		    PROT_WRITE|PROT_READ, TTE8K);
11343 	} else {
11344 		/*
11345 		 * Round down PA and use a large mapping; the handlers will
11346 		 * compute the TSB pointer at the correct offset into the
11347 		 * big virtual page.  NOTE: this assumes all TSBs larger
11348 		 * than 8K must come from physically contiguous slabs of
11349 		 * size tsb_slab_size.
11350 		 */
11351 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11352 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11353 	}
11354 	tsbinfo->tsb_pa = ptob(pfn);
11355 
11356 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11357 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11358 
11359 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11360 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11361 #else /* sun4v */
11362 	tsbinfo->tsb_pa = ptob(pfn);
11363 #endif /* sun4v */
11364 }
11365 
11366 
11367 /*
11368  * Returns zero on success, ENOMEM if over the high water mark,
11369  * or EAGAIN if the caller needs to retry with a smaller TSB
11370  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11371  *
11372  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11373  * is specified and the TSB requested is PAGESIZE, though it
11374  * may sleep waiting for memory if sufficient memory is not
11375  * available.
11376  */
11377 static int
11378 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11379     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11380 {
11381 	caddr_t vaddr = NULL;
11382 	caddr_t slab_vaddr;
11383 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11384 	int tsbbytes = TSB_BYTES(tsbcode);
11385 	int lowmem = 0;
11386 	struct kmem_cache *kmem_cachep = NULL;
11387 	vmem_t *vmp = NULL;
11388 	lgrp_id_t lgrpid = LGRP_NONE;
11389 	pfn_t pfn;
11390 	uint_t cbflags = HAC_SLEEP;
11391 	page_t **pplist;
11392 	int ret;
11393 
11394 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11395 		flags |= TSB_ALLOC;
11396 
11397 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11398 
11399 	tsbinfo->tsb_sfmmu = sfmmup;
11400 
11401 	/*
11402 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11403 	 * return.
11404 	 */
11405 	if ((flags & TSB_ALLOC) == 0) {
11406 		tsbinfo->tsb_szc = tsbcode;
11407 		tsbinfo->tsb_ttesz_mask = tteszmask;
11408 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11409 		tsbinfo->tsb_pa = -1;
11410 		tsbinfo->tsb_tte.ll = 0;
11411 		tsbinfo->tsb_next = NULL;
11412 		tsbinfo->tsb_flags = TSB_SWAPPED;
11413 		tsbinfo->tsb_cache = NULL;
11414 		tsbinfo->tsb_vmp = NULL;
11415 		return (0);
11416 	}
11417 
11418 #ifdef DEBUG
11419 	/*
11420 	 * For debugging:
11421 	 * Randomly force allocation failures every tsb_alloc_mtbf
11422 	 * tries if TSB_FORCEALLOC is not specified.  This will
11423 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11424 	 * it is even, to allow testing of both failure paths...
11425 	 */
11426 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11427 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11428 		tsb_alloc_count = 0;
11429 		tsb_alloc_fail_mtbf++;
11430 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11431 	}
11432 #endif	/* DEBUG */
11433 
11434 	/*
11435 	 * Enforce high water mark if we are not doing a forced allocation
11436 	 * and are not shrinking a process' TSB.
11437 	 */
11438 	if ((flags & TSB_SHRINK) == 0 &&
11439 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11440 		if ((flags & TSB_FORCEALLOC) == 0)
11441 			return (ENOMEM);
11442 		lowmem = 1;
11443 	}
11444 
11445 	/*
11446 	 * Allocate from the correct location based upon the size of the TSB
11447 	 * compared to the base page size, and what memory conditions dictate.
11448 	 * Note we always do nonblocking allocations from the TSB arena since
11449 	 * we don't want memory fragmentation to cause processes to block
11450 	 * indefinitely waiting for memory; until the kernel algorithms that
11451 	 * coalesce large pages are improved this is our best option.
11452 	 *
11453 	 * Algorithm:
11454 	 *	If allocating a "large" TSB (>8K), allocate from the
11455 	 *		appropriate kmem_tsb_default_arena vmem arena
11456 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11457 	 *	tsb_forceheap is set
11458 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11459 	 *		KM_SLEEP (never fails)
11460 	 *	else
11461 	 *		Allocate from appropriate sfmmu_tsb_cache with
11462 	 *		KM_NOSLEEP
11463 	 *	endif
11464 	 */
11465 	if (tsb_lgrp_affinity)
11466 		lgrpid = lgrp_home_id(curthread);
11467 	if (lgrpid == LGRP_NONE)
11468 		lgrpid = 0;	/* use lgrp of boot CPU */
11469 
11470 	if (tsbbytes > MMU_PAGESIZE) {
11471 		vmp = kmem_tsb_default_arena[lgrpid];
11472 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11473 		    NULL, NULL, VM_NOSLEEP);
11474 #ifdef	DEBUG
11475 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11476 #else	/* !DEBUG */
11477 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11478 #endif	/* DEBUG */
11479 		kmem_cachep = sfmmu_tsb8k_cache;
11480 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11481 		ASSERT(vaddr != NULL);
11482 	} else {
11483 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11484 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11485 	}
11486 
11487 	tsbinfo->tsb_cache = kmem_cachep;
11488 	tsbinfo->tsb_vmp = vmp;
11489 
11490 	if (vaddr == NULL) {
11491 		return (EAGAIN);
11492 	}
11493 
11494 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11495 	kmem_cachep = tsbinfo->tsb_cache;
11496 
11497 	/*
11498 	 * If we are allocating from outside the cage, then we need to
11499 	 * register a relocation callback handler.  Note that for now
11500 	 * since pseudo mappings always hang off of the slab's root page,
11501 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11502 	 * hacky but it is good for performance.
11503 	 */
11504 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11505 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11506 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11507 		ASSERT(ret == 0);
11508 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11509 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11510 
11511 		/*
11512 		 * Need to free up resources if we could not successfully
11513 		 * add the callback function and return an error condition.
11514 		 */
11515 		if (ret != 0) {
11516 			if (kmem_cachep) {
11517 				kmem_cache_free(kmem_cachep, vaddr);
11518 			} else {
11519 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11520 			}
11521 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11522 			    S_WRITE);
11523 			return (EAGAIN);
11524 		}
11525 	} else {
11526 		/*
11527 		 * Since allocation of 8K TSBs from heap is rare and occurs
11528 		 * during memory pressure we allocate them from permanent
11529 		 * memory rather than using callbacks to get the PFN.
11530 		 */
11531 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11532 	}
11533 
11534 	tsbinfo->tsb_va = vaddr;
11535 	tsbinfo->tsb_szc = tsbcode;
11536 	tsbinfo->tsb_ttesz_mask = tteszmask;
11537 	tsbinfo->tsb_next = NULL;
11538 	tsbinfo->tsb_flags = 0;
11539 
11540 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11541 
11542 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11543 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11544 	}
11545 
11546 	sfmmu_inv_tsb(vaddr, tsbbytes);
11547 	return (0);
11548 }
11549 
11550 /*
11551  * Initialize per cpu tsb and per cpu tsbmiss_area
11552  */
11553 void
11554 sfmmu_init_tsbs(void)
11555 {
11556 	int i;
11557 	struct tsbmiss	*tsbmissp;
11558 	struct kpmtsbm	*kpmtsbmp;
11559 #ifndef sun4v
11560 	extern int	dcache_line_mask;
11561 #endif /* sun4v */
11562 	extern uint_t	vac_colors;
11563 
11564 	/*
11565 	 * Init. tsb miss area.
11566 	 */
11567 	tsbmissp = tsbmiss_area;
11568 
11569 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11570 		/*
11571 		 * initialize the tsbmiss area.
11572 		 * Do this for all possible CPUs as some may be added
11573 		 * while the system is running. There is no cost to this.
11574 		 */
11575 		tsbmissp->ksfmmup = ksfmmup;
11576 #ifndef sun4v
11577 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11578 #endif /* sun4v */
11579 		tsbmissp->khashstart =
11580 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11581 		tsbmissp->uhashstart =
11582 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11583 		tsbmissp->khashsz = khmehash_num;
11584 		tsbmissp->uhashsz = uhmehash_num;
11585 	}
11586 
11587 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11588 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11589 
11590 	if (kpm_enable == 0)
11591 		return;
11592 
11593 	/* -- Begin KPM specific init -- */
11594 
11595 	if (kpm_smallpages) {
11596 		/*
11597 		 * If we're using base pagesize pages for seg_kpm
11598 		 * mappings, we use the kernel TSB since we can't afford
11599 		 * to allocate a second huge TSB for these mappings.
11600 		 */
11601 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11602 		kpm_tsbsz = ktsb_szcode;
11603 		kpmsm_tsbbase = kpm_tsbbase;
11604 		kpmsm_tsbsz = kpm_tsbsz;
11605 	} else {
11606 		/*
11607 		 * In VAC conflict case, just put the entries in the
11608 		 * kernel 8K indexed TSB for now so we can find them.
11609 		 * This could really be changed in the future if we feel
11610 		 * the need...
11611 		 */
11612 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11613 		kpmsm_tsbsz = ktsb_szcode;
11614 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11615 		kpm_tsbsz = ktsb4m_szcode;
11616 	}
11617 
11618 	kpmtsbmp = kpmtsbm_area;
11619 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11620 		/*
11621 		 * Initialize the kpmtsbm area.
11622 		 * Do this for all possible CPUs as some may be added
11623 		 * while the system is running. There is no cost to this.
11624 		 */
11625 		kpmtsbmp->vbase = kpm_vbase;
11626 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11627 		kpmtsbmp->sz_shift = kpm_size_shift;
11628 		kpmtsbmp->kpmp_shift = kpmp_shift;
11629 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11630 		if (kpm_smallpages == 0) {
11631 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11632 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11633 		} else {
11634 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11635 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11636 		}
11637 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11638 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11639 #ifdef	DEBUG
11640 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11641 #endif	/* DEBUG */
11642 		if (ktsb_phys)
11643 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11644 	}
11645 
11646 	/* -- End KPM specific init -- */
11647 }
11648 
11649 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11650 struct tsb_info ktsb_info[2];
11651 
11652 /*
11653  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11654  */
11655 void
11656 sfmmu_init_ktsbinfo()
11657 {
11658 	ASSERT(ksfmmup != NULL);
11659 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11660 	/*
11661 	 * Allocate tsbinfos for kernel and copy in data
11662 	 * to make debug easier and sun4v setup easier.
11663 	 */
11664 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11665 	ktsb_info[0].tsb_szc = ktsb_szcode;
11666 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11667 	ktsb_info[0].tsb_va = ktsb_base;
11668 	ktsb_info[0].tsb_pa = ktsb_pbase;
11669 	ktsb_info[0].tsb_flags = 0;
11670 	ktsb_info[0].tsb_tte.ll = 0;
11671 	ktsb_info[0].tsb_cache = NULL;
11672 
11673 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11674 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11675 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11676 	ktsb_info[1].tsb_va = ktsb4m_base;
11677 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11678 	ktsb_info[1].tsb_flags = 0;
11679 	ktsb_info[1].tsb_tte.ll = 0;
11680 	ktsb_info[1].tsb_cache = NULL;
11681 
11682 	/* Link them into ksfmmup. */
11683 	ktsb_info[0].tsb_next = &ktsb_info[1];
11684 	ktsb_info[1].tsb_next = NULL;
11685 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11686 
11687 	sfmmu_setup_tsbinfo(ksfmmup);
11688 }
11689 
11690 /*
11691  * Cache the last value returned from va_to_pa().  If the VA specified
11692  * in the current call to cached_va_to_pa() maps to the same Page (as the
11693  * previous call to cached_va_to_pa()), then compute the PA using
11694  * cached info, else call va_to_pa().
11695  *
11696  * Note: this function is neither MT-safe nor consistent in the presence
11697  * of multiple, interleaved threads.  This function was created to enable
11698  * an optimization used during boot (at a point when there's only one thread
11699  * executing on the "boot CPU", and before startup_vm() has been called).
11700  */
11701 static uint64_t
11702 cached_va_to_pa(void *vaddr)
11703 {
11704 	static uint64_t prev_vaddr_base = 0;
11705 	static uint64_t prev_pfn = 0;
11706 
11707 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11708 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11709 	} else {
11710 		uint64_t pa = va_to_pa(vaddr);
11711 
11712 		if (pa != ((uint64_t)-1)) {
11713 			/*
11714 			 * Computed physical address is valid.  Cache its
11715 			 * related info for the next cached_va_to_pa() call.
11716 			 */
11717 			prev_pfn = pa & MMU_PAGEMASK;
11718 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11719 		}
11720 
11721 		return (pa);
11722 	}
11723 }
11724 
11725 /*
11726  * Carve up our nucleus hblk region.  We may allocate more hblks than
11727  * asked due to rounding errors but we are guaranteed to have at least
11728  * enough space to allocate the requested number of hblk8's and hblk1's.
11729  */
11730 void
11731 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11732 {
11733 	struct hme_blk *hmeblkp;
11734 	size_t hme8blk_sz, hme1blk_sz;
11735 	size_t i;
11736 	size_t hblk8_bound;
11737 	ulong_t j = 0, k = 0;
11738 
11739 	ASSERT(addr != NULL && size != 0);
11740 
11741 	/* Need to use proper structure alignment */
11742 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11743 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11744 
11745 	nucleus_hblk8.list = (void *)addr;
11746 	nucleus_hblk8.index = 0;
11747 
11748 	/*
11749 	 * Use as much memory as possible for hblk8's since we
11750 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11751 	 * We need to hold back enough space for the hblk1's which
11752 	 * we'll allocate next.
11753 	 */
11754 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11755 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11756 		hmeblkp = (struct hme_blk *)addr;
11757 		addr += hme8blk_sz;
11758 		hmeblkp->hblk_nuc_bit = 1;
11759 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11760 	}
11761 	nucleus_hblk8.len = j;
11762 	ASSERT(j >= nhblk8);
11763 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11764 
11765 	nucleus_hblk1.list = (void *)addr;
11766 	nucleus_hblk1.index = 0;
11767 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11768 		hmeblkp = (struct hme_blk *)addr;
11769 		addr += hme1blk_sz;
11770 		hmeblkp->hblk_nuc_bit = 1;
11771 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11772 	}
11773 	ASSERT(k >= nhblk1);
11774 	nucleus_hblk1.len = k;
11775 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11776 }
11777 
11778 /*
11779  * This function is currently not supported on this platform. For what
11780  * it's supposed to do, see hat.c and hat_srmmu.c
11781  */
11782 /* ARGSUSED */
11783 faultcode_t
11784 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11785     uint_t flags)
11786 {
11787 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11788 	return (FC_NOSUPPORT);
11789 }
11790 
11791 /*
11792  * Searchs the mapping list of the page for a mapping of the same size. If not
11793  * found the corresponding bit is cleared in the p_index field. When large
11794  * pages are more prevalent in the system, we can maintain the mapping list
11795  * in order and we don't have to traverse the list each time. Just check the
11796  * next and prev entries, and if both are of different size, we clear the bit.
11797  */
11798 static void
11799 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11800 {
11801 	struct sf_hment *sfhmep;
11802 	struct hme_blk *hmeblkp;
11803 	int	index;
11804 	pgcnt_t	npgs;
11805 
11806 	ASSERT(ttesz > TTE8K);
11807 
11808 	ASSERT(sfmmu_mlist_held(pp));
11809 
11810 	ASSERT(PP_ISMAPPED_LARGE(pp));
11811 
11812 	/*
11813 	 * Traverse mapping list looking for another mapping of same size.
11814 	 * since we only want to clear index field if all mappings of
11815 	 * that size are gone.
11816 	 */
11817 
11818 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11819 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11820 		if (hmeblkp->hblk_xhat_bit)
11821 			continue;
11822 		if (hme_size(sfhmep) == ttesz) {
11823 			/*
11824 			 * another mapping of the same size. don't clear index.
11825 			 */
11826 			return;
11827 		}
11828 	}
11829 
11830 	/*
11831 	 * Clear the p_index bit for large page.
11832 	 */
11833 	index = PAGESZ_TO_INDEX(ttesz);
11834 	npgs = TTEPAGES(ttesz);
11835 	while (npgs-- > 0) {
11836 		ASSERT(pp->p_index & index);
11837 		pp->p_index &= ~index;
11838 		pp = PP_PAGENEXT(pp);
11839 	}
11840 }
11841 
11842 /*
11843  * return supported features
11844  */
11845 /* ARGSUSED */
11846 int
11847 hat_supported(enum hat_features feature, void *arg)
11848 {
11849 	switch (feature) {
11850 	case    HAT_SHARED_PT:
11851 	case	HAT_DYNAMIC_ISM_UNMAP:
11852 	case	HAT_VMODSORT:
11853 		return (1);
11854 	default:
11855 		return (0);
11856 	}
11857 }
11858 
11859 void
11860 hat_enter(struct hat *hat)
11861 {
11862 	hatlock_t	*hatlockp;
11863 
11864 	if (hat != ksfmmup) {
11865 		hatlockp = TSB_HASH(hat);
11866 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11867 	}
11868 }
11869 
11870 void
11871 hat_exit(struct hat *hat)
11872 {
11873 	hatlock_t	*hatlockp;
11874 
11875 	if (hat != ksfmmup) {
11876 		hatlockp = TSB_HASH(hat);
11877 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11878 	}
11879 }
11880 
11881 /*ARGSUSED*/
11882 void
11883 hat_reserve(struct as *as, caddr_t addr, size_t len)
11884 {
11885 }
11886 
11887 static void
11888 hat_kstat_init(void)
11889 {
11890 	kstat_t *ksp;
11891 
11892 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11893 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11894 		KSTAT_FLAG_VIRTUAL);
11895 	if (ksp) {
11896 		ksp->ks_data = (void *) &sfmmu_global_stat;
11897 		kstat_install(ksp);
11898 	}
11899 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11900 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11901 		KSTAT_FLAG_VIRTUAL);
11902 	if (ksp) {
11903 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11904 		kstat_install(ksp);
11905 	}
11906 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11907 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11908 		KSTAT_FLAG_WRITABLE);
11909 	if (ksp) {
11910 		ksp->ks_update = sfmmu_kstat_percpu_update;
11911 		kstat_install(ksp);
11912 	}
11913 }
11914 
11915 /* ARGSUSED */
11916 static int
11917 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11918 {
11919 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11920 	struct tsbmiss *tsbm = tsbmiss_area;
11921 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11922 	int i;
11923 
11924 	ASSERT(cpu_kstat);
11925 	if (rw == KSTAT_READ) {
11926 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11927 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11928 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11929 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11930 				tsbm->uprot_traps;
11931 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11932 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11933 
11934 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11935 				cpu_kstat->sf_tsb_hits =
11936 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11937 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11938 				kpmtsbm->kpm_tsb_misses);
11939 			} else {
11940 				cpu_kstat->sf_tsb_hits = 0;
11941 			}
11942 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11943 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11944 		}
11945 	} else {
11946 		/* KSTAT_WRITE is used to clear stats */
11947 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11948 			tsbm->itlb_misses = 0;
11949 			tsbm->dtlb_misses = 0;
11950 			tsbm->utsb_misses = 0;
11951 			tsbm->ktsb_misses = 0;
11952 			tsbm->uprot_traps = 0;
11953 			tsbm->kprot_traps = 0;
11954 			kpmtsbm->kpm_dtlb_misses = 0;
11955 			kpmtsbm->kpm_tsb_misses = 0;
11956 		}
11957 	}
11958 	return (0);
11959 }
11960 
11961 #ifdef	DEBUG
11962 
11963 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
11964 
11965 /*
11966  * A tte checker. *orig_old is the value we read before cas.
11967  *	*cur is the value returned by cas.
11968  *	*new is the desired value when we do the cas.
11969  *
11970  *	*hmeblkp is currently unused.
11971  */
11972 
11973 /* ARGSUSED */
11974 void
11975 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
11976 {
11977 	pfn_t i, j, k;
11978 	int cpuid = CPU->cpu_id;
11979 
11980 	gorig[cpuid] = orig_old;
11981 	gcur[cpuid] = cur;
11982 	gnew[cpuid] = new;
11983 
11984 #ifdef lint
11985 	hmeblkp = hmeblkp;
11986 #endif
11987 
11988 	if (TTE_IS_VALID(orig_old)) {
11989 		if (TTE_IS_VALID(cur)) {
11990 			i = TTE_TO_TTEPFN(orig_old);
11991 			j = TTE_TO_TTEPFN(cur);
11992 			k = TTE_TO_TTEPFN(new);
11993 			if (i != j) {
11994 				/* remap error? */
11995 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
11996 			}
11997 
11998 			if (i != k) {
11999 				/* remap error? */
12000 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12001 			}
12002 		} else {
12003 			if (TTE_IS_VALID(new)) {
12004 				panic("chk_tte: invalid cur? ");
12005 			}
12006 
12007 			i = TTE_TO_TTEPFN(orig_old);
12008 			k = TTE_TO_TTEPFN(new);
12009 			if (i != k) {
12010 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12011 			}
12012 		}
12013 	} else {
12014 		if (TTE_IS_VALID(cur)) {
12015 			j = TTE_TO_TTEPFN(cur);
12016 			if (TTE_IS_VALID(new)) {
12017 				k = TTE_TO_TTEPFN(new);
12018 				if (j != k) {
12019 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12020 					    j, k);
12021 				}
12022 			} else {
12023 				panic("chk_tte: why here?");
12024 			}
12025 		} else {
12026 			if (!TTE_IS_VALID(new)) {
12027 				panic("chk_tte: why here2 ?");
12028 			}
12029 		}
12030 	}
12031 }
12032 
12033 #endif /* DEBUG */
12034 
12035 extern void prefetch_tsbe_read(struct tsbe *);
12036 extern void prefetch_tsbe_write(struct tsbe *);
12037 
12038 
12039 /*
12040  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12041  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12042  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12043  * prefetch to make the most utilization of the prefetch capability.
12044  */
12045 #define	TSBE_PREFETCH_STRIDE (7)
12046 
12047 void
12048 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12049 {
12050 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12051 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12052 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12053 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12054 	struct tsbe *old;
12055 	struct tsbe *new;
12056 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12057 	uint64_t va;
12058 	int new_offset;
12059 	int i;
12060 	int vpshift;
12061 	int last_prefetch;
12062 
12063 	if (old_bytes == new_bytes) {
12064 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12065 	} else {
12066 
12067 		/*
12068 		 * A TSBE is 16 bytes which means there are four TSBE's per
12069 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12070 		 */
12071 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12072 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12073 		for (i = 0; i < old_entries; i++, old++) {
12074 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12075 				prefetch_tsbe_read(old);
12076 			if (!old->tte_tag.tag_invalid) {
12077 				/*
12078 				 * We have a valid TTE to remap.  Check the
12079 				 * size.  We won't remap 64K or 512K TTEs
12080 				 * because they span more than one TSB entry
12081 				 * and are indexed using an 8K virt. page.
12082 				 * Ditto for 32M and 256M TTEs.
12083 				 */
12084 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12085 				    TTE_CSZ(&old->tte_data) == TTE512K)
12086 					continue;
12087 				if (mmu_page_sizes == max_mmu_page_sizes) {
12088 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12089 					TTE_CSZ(&old->tte_data) == TTE256M)
12090 					    continue;
12091 				}
12092 
12093 				/* clear the lower 22 bits of the va */
12094 				va = *(uint64_t *)old << 22;
12095 				/* turn va into a virtual pfn */
12096 				va >>= 22 - TSB_START_SIZE;
12097 				/*
12098 				 * or in bits from the offset in the tsb
12099 				 * to get the real virtual pfn. These
12100 				 * correspond to bits [21:13] in the va
12101 				 */
12102 				vpshift =
12103 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12104 				    0x1ff;
12105 				va |= (i << vpshift);
12106 				va >>= vpshift;
12107 				new_offset = va & (new_entries - 1);
12108 				new = new_base + new_offset;
12109 				prefetch_tsbe_write(new);
12110 				*new = *old;
12111 			}
12112 		}
12113 	}
12114 }
12115 
12116 /*
12117  * unused in sfmmu
12118  */
12119 void
12120 hat_dump(void)
12121 {
12122 }
12123 
12124 /*
12125  * Called when a thread is exiting and we have switched to the kernel address
12126  * space.  Perform the same VM initialization resume() uses when switching
12127  * processes.
12128  *
12129  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12130  * we call it anyway in case the semantics change in the future.
12131  */
12132 /*ARGSUSED*/
12133 void
12134 hat_thread_exit(kthread_t *thd)
12135 {
12136 	uint64_t pgsz_cnum;
12137 	uint_t pstate_save;
12138 
12139 	ASSERT(thd->t_procp->p_as == &kas);
12140 
12141 	pgsz_cnum = KCONTEXT;
12142 #ifdef sun4u
12143 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12144 #endif
12145 	/*
12146 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12147 	 * kernel threads. We need to disable interrupts here,
12148 	 * simply because otherwise sfmmu_load_mmustate() would panic
12149 	 * if the caller does not disable interrupts.
12150 	 */
12151 	pstate_save = sfmmu_disable_intrs();
12152 	sfmmu_setctx_sec(pgsz_cnum);
12153 	sfmmu_load_mmustate(ksfmmup);
12154 	sfmmu_enable_intrs(pstate_save);
12155 }
12156