xref: /titanic_51/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 75d01c9ab5ef6f1bbac9f9d4eb379d5c38583d82)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * VM - Hardware Address Translation management for Spitfire MMU.
31  *
32  * This file implements the machine specific hardware translation
33  * needed by the VM system.  The machine independent interface is
34  * described in <vm/hat.h> while the machine dependent interface
35  * and data structures are described in <vm/hat_sfmmu.h>.
36  *
37  * The hat layer manages the address translation hardware as a cache
38  * driven by calls from the higher levels in the VM system.
39  */
40 
41 #include <sys/types.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 
88 #if defined(SF_ERRATA_57)
89 extern caddr_t errata57_limit;
90 #endif
91 
92 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
93 				(sizeof (int64_t)))
94 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
95 
96 #define	HBLK_RESERVE_CNT	128
97 #define	HBLK_RESERVE_MIN	20
98 
99 static struct hme_blk		*freehblkp;
100 static kmutex_t			freehblkp_lock;
101 static int			freehblkcnt;
102 
103 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
104 static kmutex_t			hblk_reserve_lock;
105 static kthread_t		*hblk_reserve_thread;
106 
107 static nucleus_hblk8_info_t	nucleus_hblk8;
108 static nucleus_hblk1_info_t	nucleus_hblk1;
109 
110 /*
111  * SFMMU specific hat functions
112  */
113 void	hat_pagecachectl(struct page *, int);
114 
115 /* flags for hat_pagecachectl */
116 #define	HAT_CACHE	0x1
117 #define	HAT_UNCACHE	0x2
118 #define	HAT_TMPNC	0x4
119 
120 /*
121  * Flag to allow the creation of non-cacheable translations
122  * to system memory. It is off by default. At the moment this
123  * flag is used by the ecache error injector. The error injector
124  * will turn it on when creating such a translation then shut it
125  * off when it's finished.
126  */
127 
128 int	sfmmu_allow_nc_trans = 0;
129 
130 /*
131  * Flag to disable large page support.
132  * 	value of 1 => disable all large pages.
133  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
134  *
135  * For example, use the value 0x4 to disable 512K pages.
136  *
137  */
138 #define	LARGE_PAGES_OFF		0x1
139 
140 /*
141  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
142  * a process would page fault indefinitely if it tried to
143  * access a 512K page.
144  */
145 int	disable_ism_large_pages = (1 << TTE512K);
146 int	disable_large_pages = 0;
147 int	disable_auto_large_pages = 0;
148 
149 /*
150  * Private sfmmu data structures for hat management
151  */
152 static struct kmem_cache *sfmmuid_cache;
153 
154 /*
155  * Private sfmmu data structures for ctx management
156  */
157 static struct ctx	*ctxhand;	/* hand used while stealing ctxs */
158 static struct ctx	*ctxfree;	/* head of free ctx list */
159 static struct ctx	*ctxdirty;	/* head of dirty ctx list */
160 
161 /*
162  * Private sfmmu data structures for tsb management
163  */
164 static struct kmem_cache *sfmmu_tsbinfo_cache;
165 static struct kmem_cache *sfmmu_tsb8k_cache;
166 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
167 static vmem_t *kmem_tsb_arena;
168 
169 /*
170  * sfmmu static variables for hmeblk resource management.
171  */
172 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
173 static struct kmem_cache *sfmmu8_cache;
174 static struct kmem_cache *sfmmu1_cache;
175 static struct kmem_cache *pa_hment_cache;
176 
177 static kmutex_t 	ctx_list_lock;	/* mutex for ctx free/dirty lists */
178 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
179 /*
180  * private data for ism
181  */
182 static struct kmem_cache *ism_blk_cache;
183 static struct kmem_cache *ism_ment_cache;
184 #define	ISMID_STARTADDR	NULL
185 
186 /*
187  * Whether to delay TLB flushes and use Cheetah's flush-all support
188  * when removing contexts from the dirty list.
189  */
190 int delay_tlb_flush;
191 int disable_delay_tlb_flush;
192 
193 /*
194  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
195  * HAT flags, synchronizing TLB/TSB coherency, and context management.
196  * The lock is hashed on the sfmmup since the case where we need to lock
197  * all processes is rare but does occur (e.g. we need to unload a shared
198  * mapping from all processes using the mapping).  We have a lot of buckets,
199  * and each slab of sfmmu_t's can use about a quarter of them, giving us
200  * a fairly good distribution without wasting too much space and overhead
201  * when we have to grab them all.
202  */
203 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
204 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
205 
206 /*
207  * Hash algorithm optimized for a small number of slabs.
208  *  7 is (highbit((sizeof sfmmu_t)) - 1)
209  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
210  * kmem_cache, and thus they will be sequential within that cache.  In
211  * addition, each new slab will have a different "color" up to cache_maxcolor
212  * which will skew the hashing for each successive slab which is allocated.
213  * If the size of sfmmu_t changed to a larger size, this algorithm may need
214  * to be revisited.
215  */
216 #define	TSB_HASH_SHIFT_BITS (7)
217 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
218 
219 #ifdef DEBUG
220 int tsb_hash_debug = 0;
221 #define	TSB_HASH(sfmmup)	\
222 	(tsb_hash_debug ? &hat_lock[0] : \
223 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
224 #else	/* DEBUG */
225 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
226 #endif	/* DEBUG */
227 
228 
229 /* sfmmu_replace_tsb() return codes. */
230 typedef enum tsb_replace_rc {
231 	TSB_SUCCESS,
232 	TSB_ALLOCFAIL,
233 	TSB_LOSTRACE,
234 	TSB_ALREADY_SWAPPED,
235 	TSB_CANTGROW
236 } tsb_replace_rc_t;
237 
238 /*
239  * Flags for TSB allocation routines.
240  */
241 #define	TSB_ALLOC	0x01
242 #define	TSB_FORCEALLOC	0x02
243 #define	TSB_GROW	0x04
244 #define	TSB_SHRINK	0x08
245 #define	TSB_SWAPIN	0x10
246 
247 /*
248  * Support for HAT callbacks.
249  */
250 #define	SFMMU_MAX_RELOC_CALLBACKS	10
251 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
252 static id_t sfmmu_cb_nextid = 0;
253 static id_t sfmmu_tsb_cb_id;
254 struct sfmmu_callback *sfmmu_cb_table;
255 
256 /*
257  * Kernel page relocation is enabled by default for non-caged
258  * kernel pages.  This has little effect unless segkmem_reloc is
259  * set, since by default kernel memory comes from inside the
260  * kernel cage.
261  */
262 int hat_kpr_enabled = 1;
263 
264 kmutex_t	kpr_mutex;
265 kmutex_t	kpr_suspendlock;
266 kthread_t	*kreloc_thread;
267 
268 /*
269  * Enable VA->PA translation sanity checking on DEBUG kernels.
270  * Disabled by default.  This is incompatible with some
271  * drivers (error injector, RSM) so if it breaks you get
272  * to keep both pieces.
273  */
274 int hat_check_vtop = 0;
275 
276 /*
277  * Private sfmmu routines (prototypes)
278  */
279 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
280 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
281 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
282 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
283 			caddr_t, demap_range_t *, uint_t);
284 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
285 			caddr_t, int);
286 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
287 			uint64_t, struct hme_blk **);
288 static void	sfmmu_hblks_list_purge(struct hme_blk **);
289 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
290 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
291 static struct hme_blk *sfmmu_hblk_steal(int);
292 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
293 			struct hme_blk *, uint64_t, uint64_t,
294 			struct hme_blk *);
295 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
296 
297 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
298 		    uint_t, uint_t, pgcnt_t);
299 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
300 			uint_t);
301 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
302 			uint_t);
303 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
304 					caddr_t, int);
305 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
306 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
307 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
308 			caddr_t, page_t **, uint_t);
309 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
310 
311 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
312 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
313 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
314 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
315 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
316 static int	tst_tnc(page_t *pp, pgcnt_t);
317 static void	conv_tnc(page_t *pp, int);
318 
319 static struct ctx *sfmmu_get_ctx(sfmmu_t *);
320 static void	sfmmu_free_ctx(sfmmu_t *, struct ctx *);
321 static void	sfmmu_free_sfmmu(sfmmu_t *);
322 
323 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
324 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
325 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
326 
327 static cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
328 static void	hat_pagereload(struct page *, struct page *);
329 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
330 static void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
331 static void	sfmmu_page_cache(page_t *, int, int, int);
332 
333 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
334 			pfn_t, int, int, int, int);
335 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
336 			pfn_t, int);
337 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
338 static void	sfmmu_tlb_range_demap(demap_range_t *);
339 static void	sfmmu_tlb_ctx_demap(sfmmu_t *);
340 static void	sfmmu_tlb_all_demap(void);
341 static void	sfmmu_tlb_swap_ctx(sfmmu_t *, struct ctx *);
342 static void	sfmmu_sync_mmustate(sfmmu_t *);
343 
344 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
345 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
346 			sfmmu_t *);
347 static void	sfmmu_tsb_free(struct tsb_info *);
348 static void	sfmmu_tsbinfo_free(struct tsb_info *);
349 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
350 			sfmmu_t *);
351 
352 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
353 static int	sfmmu_select_tsb_szc(pgcnt_t);
354 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
355 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
356 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
357 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
358 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
359 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
360 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
361     hatlock_t *, uint_t);
362 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
363 
364 static void	sfmmu_cache_flush(pfn_t, int);
365 void		sfmmu_cache_flushcolor(int, pfn_t);
366 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
367 			caddr_t, demap_range_t *, uint_t, int);
368 
369 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
370 static uint_t	sfmmu_ptov_attr(tte_t *);
371 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
372 			caddr_t, demap_range_t *, uint_t);
373 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
374 static int	sfmmu_idcache_constructor(void *, void *, int);
375 static void	sfmmu_idcache_destructor(void *, void *);
376 static int	sfmmu_hblkcache_constructor(void *, void *, int);
377 static void	sfmmu_hblkcache_destructor(void *, void *);
378 static void	sfmmu_hblkcache_reclaim(void *);
379 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
380 			struct hmehash_bucket *);
381 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
382 
383 static void	sfmmu_reuse_ctx(struct ctx *, sfmmu_t *);
384 static void	sfmmu_disallow_ctx_steal(sfmmu_t *);
385 static void	sfmmu_allow_ctx_steal(sfmmu_t *);
386 
387 static void	sfmmu_rm_large_mappings(page_t *, int);
388 
389 static void	hat_lock_init(void);
390 static void	hat_kstat_init(void);
391 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
392 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
393 static int	fnd_mapping_sz(page_t *);
394 static void	iment_add(struct ism_ment *,  struct hat *);
395 static void	iment_sub(struct ism_ment *, struct hat *);
396 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
397 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
398 extern void	sfmmu_clear_utsbinfo(void);
399 
400 /* kpm prototypes */
401 static caddr_t	sfmmu_kpm_mapin(page_t *);
402 static void	sfmmu_kpm_mapout(page_t *, caddr_t);
403 static int	sfmmu_kpme_lookup(struct kpme *, page_t *);
404 static void	sfmmu_kpme_add(struct kpme *, page_t *);
405 static void	sfmmu_kpme_sub(struct kpme *, page_t *);
406 static caddr_t	sfmmu_kpm_getvaddr(page_t *, int *);
407 static int	sfmmu_kpm_fault(caddr_t, struct memseg *, page_t *);
408 static int	sfmmu_kpm_fault_small(caddr_t, struct memseg *, page_t *);
409 static void	sfmmu_kpm_vac_conflict(page_t *, caddr_t);
410 static void	sfmmu_kpm_pageunload(page_t *);
411 static void	sfmmu_kpm_vac_unload(page_t *, caddr_t);
412 static void	sfmmu_kpm_demap_large(caddr_t);
413 static void	sfmmu_kpm_demap_small(caddr_t);
414 static void	sfmmu_kpm_demap_tlbs(caddr_t, int);
415 static void	sfmmu_kpm_hme_unload(page_t *);
416 static kpm_hlk_t *sfmmu_kpm_kpmp_enter(page_t *, pgcnt_t);
417 static void	sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp);
418 static void	sfmmu_kpm_page_cache(page_t *, int, int);
419 
420 /* kpm globals */
421 #ifdef	DEBUG
422 /*
423  * Enable trap level tsbmiss handling
424  */
425 int	kpm_tsbmtl = 1;
426 
427 /*
428  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
429  * required TLB shootdowns in this case, so handle w/ care. Off by default.
430  */
431 int	kpm_tlb_flush;
432 #endif	/* DEBUG */
433 
434 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
435 
436 #ifdef DEBUG
437 static void	sfmmu_check_hblk_flist();
438 #endif
439 
440 /*
441  * Semi-private sfmmu data structures.  Some of them are initialize in
442  * startup or in hat_init. Some of them are private but accessed by
443  * assembly code or mach_sfmmu.c
444  */
445 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
446 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
447 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
448 uint64_t	khme_hash_pa;		/* PA of khme_hash */
449 int 		uhmehash_num;		/* # of buckets in user hash table */
450 int 		khmehash_num;		/* # of buckets in kernel hash table */
451 struct ctx	*ctxs;			/* used by <machine/mmu.c> */
452 uint_t		nctxs;			/* total number of contexts */
453 
454 int		cache;			/* describes system cache */
455 
456 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
457 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
458 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
459 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
460 
461 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
462 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
463 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
464 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
465 
466 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
467 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
468 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
469 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
470 
471 #ifndef sun4v
472 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
473 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
474 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
475 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
476 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
477 #endif /* sun4v */
478 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
479 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
480 
481 /*
482  * Size to use for TSB slabs.  Future platforms that support page sizes
483  * larger than 4M may wish to change these values, and provide their own
484  * assembly macros for building and decoding the TSB base register contents.
485  */
486 uint_t	tsb_slab_size = MMU_PAGESIZE4M;
487 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
488 uint_t	tsb_slab_ttesz = TTE4M;
489 uint_t	tsb_slab_mask = 0x1ff;	/* 4M page alignment for 8K pfn */
490 
491 /* largest TSB size to grow to, will be smaller on smaller memory systems */
492 int	tsb_max_growsize = UTSB_MAX_SZCODE;
493 
494 /*
495  * Tunable parameters dealing with TSB policies.
496  */
497 
498 /*
499  * This undocumented tunable forces all 8K TSBs to be allocated from
500  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
501  */
502 #ifdef	DEBUG
503 int	tsb_forceheap = 0;
504 #endif	/* DEBUG */
505 
506 /*
507  * Decide whether to use per-lgroup arenas, or one global set of
508  * TSB arenas.  The default is not to break up per-lgroup, since
509  * most platforms don't recognize any tangible benefit from it.
510  */
511 int	tsb_lgrp_affinity = 0;
512 
513 /*
514  * Used for growing the TSB based on the process RSS.
515  * tsb_rss_factor is based on the smallest TSB, and is
516  * shifted by the TSB size to determine if we need to grow.
517  * The default will grow the TSB if the number of TTEs for
518  * this page size exceeds 75% of the number of TSB entries,
519  * which should _almost_ eliminate all conflict misses
520  * (at the expense of using up lots and lots of memory).
521  */
522 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
523 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
524 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
525 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
526 	default_tsb_size)
527 #define	TSB_OK_SHRINK()	\
528 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
529 #define	TSB_OK_GROW()	\
530 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
531 
532 int	enable_tsb_rss_sizing = 1;
533 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
534 
535 /* which TSB size code to use for new address spaces or if rss sizing off */
536 int default_tsb_size = TSB_8K_SZCODE;
537 
538 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
539 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
540 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
541 
542 #ifdef DEBUG
543 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
544 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
545 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
546 static int tsb_alloc_fail_mtbf = 0;
547 static int tsb_alloc_count = 0;
548 #endif /* DEBUG */
549 
550 /* if set to 1, will remap valid TTEs when growing TSB. */
551 int tsb_remap_ttes = 1;
552 
553 /*
554  * If we have more than this many mappings, allocate a second TSB.
555  * This default is chosen because the I/D fully associative TLBs are
556  * assumed to have at least 8 available entries. Platforms with a
557  * larger fully-associative TLB could probably override the default.
558  */
559 int tsb_sectsb_threshold = 8;
560 
561 /*
562  * kstat data
563  */
564 struct sfmmu_global_stat sfmmu_global_stat;
565 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
566 
567 /*
568  * Global data
569  */
570 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
571 struct ctx 	*kctx;			/* kernel's context */
572 
573 #ifdef DEBUG
574 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
575 #endif
576 
577 /* sfmmu locking operations */
578 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
579 static int	sfmmu_mlspl_held(struct page *, int);
580 
581 static kmutex_t *sfmmu_page_enter(page_t *);
582 static void	sfmmu_page_exit(kmutex_t *);
583 static int	sfmmu_page_spl_held(struct page *);
584 
585 /* sfmmu internal locking operations - accessed directly */
586 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
587 				kmutex_t **, kmutex_t **);
588 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
589 static hatlock_t *
590 		sfmmu_hat_enter(sfmmu_t *);
591 static hatlock_t *
592 		sfmmu_hat_tryenter(sfmmu_t *);
593 static void	sfmmu_hat_exit(hatlock_t *);
594 static void	sfmmu_hat_lock_all(void);
595 static void	sfmmu_hat_unlock_all(void);
596 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
597 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
598 
599 /*
600  * Array of mutexes protecting a page's mapping list and p_nrm field.
601  *
602  * The hash function looks complicated, but is made up so that:
603  *
604  * "pp" not shifted, so adjacent pp values will hash to different cache lines
605  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
606  *
607  * "pp" >> mml_shift, incorporates more source bits into the hash result
608  *
609  *  "& (mml_table_size - 1), should be faster than using remainder "%"
610  *
611  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
612  * cacheline, since they get declared next to each other below. We'll trust
613  * ld not to do something random.
614  */
615 #ifdef	DEBUG
616 int mlist_hash_debug = 0;
617 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
618 	&mml_table[((uintptr_t)(pp) + \
619 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
620 #else	/* !DEBUG */
621 #define	MLIST_HASH(pp)   &mml_table[ \
622 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
623 #endif	/* !DEBUG */
624 
625 kmutex_t		*mml_table;
626 uint_t			mml_table_sz;	/* must be a power of 2 */
627 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
628 
629 /*
630  * kpm_page lock hash.
631  * All slots should be used equally and 2 adjacent kpm_page_t's
632  * shouldn't have their mutexes in the same cache line.
633  */
634 #ifdef	DEBUG
635 int kpmp_hash_debug = 0;
636 #define	KPMP_HASH(kpp)	(kpmp_hash_debug ? &kpmp_table[0] : &kpmp_table[ \
637 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
638 	& (kpmp_table_sz - 1)])
639 #else	/* !DEBUG */
640 #define	KPMP_HASH(kpp)	&kpmp_table[ \
641 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
642 	& (kpmp_table_sz - 1)]
643 #endif	/* DEBUG */
644 
645 kpm_hlk_t	*kpmp_table;
646 uint_t		kpmp_table_sz;	/* must be a power of 2 */
647 uchar_t		kpmp_shift;
648 
649 #ifdef	DEBUG
650 #define	KPMP_SHASH(kpp)	(kpmp_hash_debug ? &kpmp_stable[0] : &kpmp_stable[ \
651 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
652 	& (kpmp_stable_sz - 1)])
653 #else	/* !DEBUG */
654 #define	KPMP_SHASH(kpp)	&kpmp_stable[ \
655 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
656 	& (kpmp_stable_sz - 1)]
657 #endif	/* DEBUG */
658 
659 kpm_shlk_t	*kpmp_stable;
660 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
661 
662 /*
663  * SPL_HASH was improved to avoid false cache line sharing
664  */
665 #define	SPL_TABLE_SIZE	128
666 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
667 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
668 
669 #define	SPL_INDEX(pp) \
670 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
671 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
672 	(SPL_TABLE_SIZE - 1))
673 
674 #define	SPL_HASH(pp)    \
675 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
676 
677 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
678 
679 
680 /*
681  * hat_unload_callback() will group together callbacks in order
682  * to avoid xt_sync() calls.  This is the maximum size of the group.
683  */
684 #define	MAX_CB_ADDR	32
685 
686 #ifdef DEBUG
687 
688 /*
689  * Debugging trace ring buffer for stolen and freed ctxs.  The
690  * stolen_ctxs[] array is protected by the ctx_trace_mutex.
691  */
692 struct ctx_trace stolen_ctxs[TRSIZE];
693 struct ctx_trace *ctx_trace_first = &stolen_ctxs[0];
694 struct ctx_trace *ctx_trace_last = &stolen_ctxs[TRSIZE-1];
695 struct ctx_trace *ctx_trace_ptr = &stolen_ctxs[0];
696 kmutex_t ctx_trace_mutex;
697 uint_t	num_ctx_stolen = 0;
698 
699 int	ism_debug = 0;
700 
701 #endif /* DEBUG */
702 
703 tte_t	hw_tte;
704 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
705 
706 /*
707  * kpm virtual address to physical address
708  */
709 #define	SFMMU_KPM_VTOP(vaddr, paddr) {					\
710 	uintptr_t r, v;							\
711 									\
712 	r = ((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift;		\
713 	(paddr) = (vaddr) - kpm_vbase;					\
714 	if (r != 0) {							\
715 		v = ((uintptr_t)(vaddr) >> MMU_PAGESHIFT) &		\
716 		    vac_colors_mask;					\
717 		(paddr) -= r << kpm_size_shift;				\
718 		if (r > v)						\
719 			(paddr) += (r - v) << MMU_PAGESHIFT;		\
720 		else							\
721 			(paddr) -= r << MMU_PAGESHIFT;			\
722 	}								\
723 }
724 
725 /*
726  * Wrapper for vmem_xalloc since vmem_create only allows limited
727  * parameters for vm_source_alloc functions.  This function allows us
728  * to specify alignment consistent with the size of the object being
729  * allocated.
730  */
731 static void *
732 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
733 {
734 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
735 }
736 
737 /* Common code for setting tsb_alloc_hiwater. */
738 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
739 		ptob(pages) / tsb_alloc_hiwater_factor
740 
741 /*
742  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
743  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
744  * TTEs to represent all those physical pages.  We round this up by using
745  * 1<<highbit().  To figure out which size code to use, remember that the size
746  * code is just an amount to shift the smallest TSB size to get the size of
747  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
748  * highbit() - 1) to get the size code for the smallest TSB that can represent
749  * all of physical memory, while erring on the side of too much.
750  *
751  * If the computed size code is less than the current tsb_max_growsize, we set
752  * tsb_max_growsize to the computed size code.  In the case where the computed
753  * size code is greater than tsb_max_growsize, we have these restrictions that
754  * apply to increasing tsb_max_growsize:
755  *	1) TSBs can't grow larger than the TSB slab size
756  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
757  */
758 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
759 	int	i, szc;							\
760 									\
761 	i = highbit(pages);						\
762 	if ((1 << (i - 1)) == (pages))					\
763 		i--;		/* 2^n case, round down */		\
764 	szc = i - TSB_START_SIZE;					\
765 	if (szc < tsb_max_growsize)					\
766 		tsb_max_growsize = szc;					\
767 	else if ((szc > tsb_max_growsize) &&				\
768 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
769 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
770 }
771 
772 /*
773  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
774  * tsb_info which handles that TTE size.
775  */
776 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
777 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
778 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
779 	if ((tte_szc) >= TTE4M)						\
780 		(tsbinfop) = (tsbinfop)->tsb_next;
781 
782 /*
783  * Return the number of mappings present in the HAT
784  * for a particular process and page size.
785  */
786 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
787 	(sfmmup)->sfmmu_iblk?						\
788 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
789 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
790 	    (sfmmup)->sfmmu_ttecnt[(szc)];
791 
792 /*
793  * Macro to use to unload entries from the TSB.
794  * It has knowledge of which page sizes get replicated in the TSB
795  * and will call the appropriate unload routine for the appropriate size.
796  */
797 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
798 {									\
799 	int ttesz = get_hblk_ttesz(hmeblkp);				\
800 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
801 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
802 	} else {							\
803 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
804 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
805 		ASSERT(addr >= sva && addr < eva);			\
806 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
807 	}								\
808 }
809 
810 
811 /* Update tsb_alloc_hiwater after memory is configured. */
812 /*ARGSUSED*/
813 static void
814 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
815 {
816 	/* Assumes physmem has already been updated. */
817 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
818 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
819 }
820 
821 /*
822  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
823  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
824  * deleted.
825  */
826 /*ARGSUSED*/
827 static int
828 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
829 {
830 	return (0);
831 }
832 
833 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
834 /*ARGSUSED*/
835 static void
836 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
837 {
838 	/*
839 	 * Whether the delete was cancelled or not, just go ahead and update
840 	 * tsb_alloc_hiwater and tsb_max_growsize.
841 	 */
842 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
843 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
844 }
845 
846 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
847 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
848 	sfmmu_update_tsb_post_add,	/* post_add */
849 	sfmmu_update_tsb_pre_del,	/* pre_del */
850 	sfmmu_update_tsb_post_del	/* post_del */
851 };
852 
853 
854 /*
855  * HME_BLK HASH PRIMITIVES
856  */
857 
858 /*
859  * Enter a hme on the mapping list for page pp.
860  * When large pages are more prevalent in the system we might want to
861  * keep the mapping list in ascending order by the hment size. For now,
862  * small pages are more frequent, so don't slow it down.
863  */
864 #define	HME_ADD(hme, pp)					\
865 {								\
866 	ASSERT(sfmmu_mlist_held(pp));				\
867 								\
868 	hme->hme_prev = NULL;					\
869 	hme->hme_next = pp->p_mapping;				\
870 	hme->hme_page = pp;					\
871 	if (pp->p_mapping) {					\
872 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
873 		ASSERT(pp->p_share > 0);			\
874 	} else  {						\
875 		/* EMPTY */					\
876 		ASSERT(pp->p_share == 0);			\
877 	}							\
878 	pp->p_mapping = hme;					\
879 	pp->p_share++;						\
880 }
881 
882 /*
883  * Enter a hme on the mapping list for page pp.
884  * If we are unmapping a large translation, we need to make sure that the
885  * change is reflect in the corresponding bit of the p_index field.
886  */
887 #define	HME_SUB(hme, pp)					\
888 {								\
889 	ASSERT(sfmmu_mlist_held(pp));				\
890 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
891 								\
892 	if (pp->p_mapping == NULL) {				\
893 		panic("hme_remove - no mappings");		\
894 	}							\
895 								\
896 	membar_stst();	/* ensure previous stores finish */	\
897 								\
898 	ASSERT(pp->p_share > 0);				\
899 	pp->p_share--;						\
900 								\
901 	if (hme->hme_prev) {					\
902 		ASSERT(pp->p_mapping != hme);			\
903 		ASSERT(hme->hme_prev->hme_page == pp ||		\
904 			IS_PAHME(hme->hme_prev));		\
905 		hme->hme_prev->hme_next = hme->hme_next;	\
906 	} else {						\
907 		ASSERT(pp->p_mapping == hme);			\
908 		pp->p_mapping = hme->hme_next;			\
909 		ASSERT((pp->p_mapping == NULL) ?		\
910 			(pp->p_share == 0) : 1);		\
911 	}							\
912 								\
913 	if (hme->hme_next) {					\
914 		ASSERT(hme->hme_next->hme_page == pp ||		\
915 			IS_PAHME(hme->hme_next));		\
916 		hme->hme_next->hme_prev = hme->hme_prev;	\
917 	}							\
918 								\
919 	/* zero out the entry */				\
920 	hme->hme_next = NULL;					\
921 	hme->hme_prev = NULL;					\
922 	hme->hme_page = NULL;					\
923 								\
924 	if (hme_size(hme) > TTE8K) {				\
925 		/* remove mappings for remainder of large pg */	\
926 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
927 	}							\
928 }
929 
930 /*
931  * This function returns the hment given the hme_blk and a vaddr.
932  * It assumes addr has already been checked to belong to hme_blk's
933  * range.
934  */
935 #define	HBLKTOHME(hment, hmeblkp, addr)					\
936 {									\
937 	int index;							\
938 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
939 }
940 
941 /*
942  * Version of HBLKTOHME that also returns the index in hmeblkp
943  * of the hment.
944  */
945 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
946 {									\
947 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
948 									\
949 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
950 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
951 	} else								\
952 		idx = 0;						\
953 									\
954 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
955 }
956 
957 /*
958  * Disable any page sizes not supported by the CPU
959  */
960 void
961 hat_init_pagesizes()
962 {
963 	int 		i;
964 
965 	mmu_exported_page_sizes = 0;
966 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
967 		extern int	disable_text_largepages;
968 		extern int	disable_initdata_largepages;
969 
970 		szc_2_userszc[i] = (uint_t)-1;
971 		userszc_2_szc[i] = (uint_t)-1;
972 
973 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
974 			disable_large_pages |= (1 << i);
975 			disable_ism_large_pages |= (1 << i);
976 			disable_text_largepages |= (1 << i);
977 			disable_initdata_largepages |= (1 << i);
978 		} else {
979 			szc_2_userszc[i] = mmu_exported_page_sizes;
980 			userszc_2_szc[mmu_exported_page_sizes] = i;
981 			mmu_exported_page_sizes++;
982 		}
983 	}
984 
985 	disable_auto_large_pages = disable_large_pages;
986 
987 	/*
988 	 * Initialize mmu-specific large page sizes.
989 	 */
990 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
991 	    (&mmu_large_pages_disabled)) {
992 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
993 		disable_ism_large_pages |=
994 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
995 		disable_auto_large_pages |=
996 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
997 	}
998 
999 }
1000 
1001 /*
1002  * Initialize the hardware address translation structures.
1003  */
1004 void
1005 hat_init(void)
1006 {
1007 	struct ctx	*ctx;
1008 	struct ctx	*cur_ctx = NULL;
1009 	int 		i;
1010 
1011 	hat_lock_init();
1012 	hat_kstat_init();
1013 
1014 	/*
1015 	 * Hardware-only bits in a TTE
1016 	 */
1017 	MAKE_TTE_MASK(&hw_tte);
1018 
1019 	hat_init_pagesizes();
1020 
1021 	/* Initialize the hash locks */
1022 	for (i = 0; i < khmehash_num; i++) {
1023 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1024 		    MUTEX_DEFAULT, NULL);
1025 	}
1026 	for (i = 0; i < uhmehash_num; i++) {
1027 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1028 		    MUTEX_DEFAULT, NULL);
1029 	}
1030 	khmehash_num--;		/* make sure counter starts from 0 */
1031 	uhmehash_num--;		/* make sure counter starts from 0 */
1032 
1033 	/*
1034 	 * Initialize ctx structures and list lock.
1035 	 * We keep two lists of ctxs. The "free" list contains contexts
1036 	 * ready to use.  The "dirty" list contains contexts that are OK
1037 	 * to use after flushing the TLBs of any stale mappings.
1038 	 */
1039 	mutex_init(&ctx_list_lock, NULL, MUTEX_DEFAULT, NULL);
1040 	kctx = &ctxs[KCONTEXT];
1041 	ctx = &ctxs[NUM_LOCKED_CTXS];
1042 	ctxhand = ctxfree = ctx;		/* head of free list */
1043 	ctxdirty = NULL;
1044 	for (i = NUM_LOCKED_CTXS; i < nctxs; i++) {
1045 		cur_ctx = &ctxs[i];
1046 		cur_ctx->ctx_flags = CTX_FREE_FLAG;
1047 		cur_ctx->ctx_free = &ctxs[i + 1];
1048 	}
1049 	cur_ctx->ctx_free = NULL;		/* tail of free list */
1050 
1051 	/*
1052 	 * Intialize ism mapping list lock.
1053 	 */
1054 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1055 
1056 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", sizeof (sfmmu_t),
1057 	    0, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1058 	    NULL, NULL, NULL, 0);
1059 
1060 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1061 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1062 
1063 	/*
1064 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1065 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1066 	 * specified, don't use magazines to cache them--we want to return
1067 	 * them to the system as quickly as possible.
1068 	 */
1069 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1070 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1071 	    static_arena, KMC_NOMAGAZINE);
1072 
1073 	/*
1074 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1075 	 * memory, which corresponds to the old static reserve for TSBs.
1076 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1077 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1078 	 * allocations will be taken from the kernel heap (via
1079 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1080 	 * consumer.
1081 	 */
1082 	if (tsb_alloc_hiwater_factor == 0) {
1083 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1084 	}
1085 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1086 
1087 	/* Set tsb_max_growsize. */
1088 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1089 
1090 	/*
1091 	 * On smaller memory systems, allocate TSB memory in 512K chunks
1092 	 * instead of the default 4M slab size.  The trap handlers need to
1093 	 * be patched with the final slab shift since they need to be able
1094 	 * to construct the TSB pointer at runtime.
1095 	 */
1096 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1097 	    !(disable_large_pages & (1 << TTE512K))) {
1098 		tsb_slab_size = MMU_PAGESIZE512K;
1099 		tsb_slab_shift = MMU_PAGESHIFT512K;
1100 		tsb_slab_ttesz = TTE512K;
1101 		tsb_slab_mask = 0x3f;	/* 512K page alignment for 8K pfn */
1102 	}
1103 
1104 	/*
1105 	 * Set up memory callback to update tsb_alloc_hiwater and
1106 	 * tsb_max_growsize.
1107 	 */
1108 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1109 	ASSERT(i == 0);
1110 
1111 	/*
1112 	 * kmem_tsb_arena is the source from which large TSB slabs are
1113 	 * drawn.  The quantum of this arena corresponds to the largest
1114 	 * TSB size we can dynamically allocate for user processes.
1115 	 * Currently it must also be a supported page size since we
1116 	 * use exactly one translation entry to map each slab page.
1117 	 *
1118 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1119 	 * which most TSBs are allocated.  Since most TSB allocations are
1120 	 * typically 8K we have a kmem cache we stack on top of each
1121 	 * kmem_tsb_default_arena to speed up those allocations.
1122 	 *
1123 	 * Note the two-level scheme of arenas is required only
1124 	 * because vmem_create doesn't allow us to specify alignment
1125 	 * requirements.  If this ever changes the code could be
1126 	 * simplified to use only one level of arenas.
1127 	 */
1128 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1129 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1130 	    0, VM_SLEEP);
1131 
1132 	if (tsb_lgrp_affinity) {
1133 		char s[50];
1134 		for (i = 0; i < NLGRPS_MAX; i++) {
1135 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1136 			kmem_tsb_default_arena[i] =
1137 			    vmem_create(s, NULL, 0, PAGESIZE,
1138 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1139 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1140 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1141 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1142 			    PAGESIZE, NULL, NULL, NULL, NULL,
1143 			    kmem_tsb_default_arena[i], 0);
1144 		}
1145 	} else {
1146 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1147 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1148 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1149 		    VM_SLEEP | VM_BESTFIT);
1150 
1151 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1152 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1153 		    kmem_tsb_default_arena[0], 0);
1154 	}
1155 
1156 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1157 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1158 		sfmmu_hblkcache_destructor,
1159 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1160 		hat_memload_arena, KMC_NOHASH);
1161 
1162 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1163 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1164 
1165 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1166 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1167 		sfmmu_hblkcache_destructor,
1168 		NULL, (void *)HME1BLK_SZ,
1169 		hat_memload1_arena, KMC_NOHASH);
1170 
1171 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1172 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1173 
1174 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1175 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1176 		NULL, NULL, static_arena, KMC_NOHASH);
1177 
1178 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1179 		sizeof (ism_ment_t), 0, NULL, NULL,
1180 		NULL, NULL, NULL, 0);
1181 
1182 	/*
1183 	 * We grab the first hat for the kernel,
1184 	 */
1185 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1186 	kas.a_hat = hat_alloc(&kas);
1187 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1188 
1189 	/*
1190 	 * Initialize hblk_reserve.
1191 	 */
1192 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1193 				va_to_pa((caddr_t)hblk_reserve);
1194 
1195 #ifndef sun4v
1196 	/*
1197 	 * Reserve some kernel virtual address space for the locked TTEs
1198 	 * that allow us to probe the TSB from TL>0.
1199 	 */
1200 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1201 		0, 0, NULL, NULL, VM_SLEEP);
1202 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1203 		0, 0, NULL, NULL, VM_SLEEP);
1204 #endif
1205 
1206 	/*
1207 	 * The big page VAC handling code assumes VAC
1208 	 * will not be bigger than the smallest big
1209 	 * page- which is 64K.
1210 	 */
1211 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1212 		cmn_err(CE_PANIC, "VAC too big!");
1213 	}
1214 
1215 	(void) xhat_init();
1216 
1217 	uhme_hash_pa = va_to_pa(uhme_hash);
1218 	khme_hash_pa = va_to_pa(khme_hash);
1219 
1220 	/*
1221 	 * Initialize relocation locks. kpr_suspendlock is held
1222 	 * at PIL_MAX to prevent interrupts from pinning the holder
1223 	 * of a suspended TTE which may access it leading to a
1224 	 * deadlock condition.
1225 	 */
1226 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1227 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1228 }
1229 
1230 /*
1231  * Initialize locking for the hat layer, called early during boot.
1232  */
1233 static void
1234 hat_lock_init()
1235 {
1236 	int i;
1237 	struct ctx *ctx;
1238 
1239 	/*
1240 	 * initialize the array of mutexes protecting a page's mapping
1241 	 * list and p_nrm field.
1242 	 */
1243 	for (i = 0; i < mml_table_sz; i++)
1244 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1245 
1246 	if (kpm_enable) {
1247 		for (i = 0; i < kpmp_table_sz; i++) {
1248 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1249 			    MUTEX_DEFAULT, NULL);
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * Initialize array of mutex locks that protects sfmmu fields and
1255 	 * TSB lists.
1256 	 */
1257 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1258 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1259 		    NULL);
1260 
1261 #ifdef	DEBUG
1262 	mutex_init(&ctx_trace_mutex, NULL, MUTEX_DEFAULT, NULL);
1263 #endif	/* DEBUG */
1264 
1265 	for (ctx = ctxs, i = 0; i < nctxs; i++, ctx++) {
1266 		rw_init(&ctx->ctx_rwlock, NULL, RW_DEFAULT, NULL);
1267 	}
1268 }
1269 
1270 extern caddr_t kmem64_base, kmem64_end;
1271 
1272 #define	SFMMU_KERNEL_MAXVA \
1273 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1274 
1275 /*
1276  * Allocate a hat structure.
1277  * Called when an address space first uses a hat.
1278  */
1279 struct hat *
1280 hat_alloc(struct as *as)
1281 {
1282 	sfmmu_t *sfmmup;
1283 	struct ctx *ctx;
1284 	int i;
1285 	extern uint_t get_color_start(struct as *);
1286 
1287 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1288 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1289 	sfmmup->sfmmu_as = as;
1290 	sfmmup->sfmmu_flags = 0;
1291 
1292 	if (as == &kas) {
1293 		ctx = kctx;
1294 		ksfmmup = sfmmup;
1295 		sfmmup->sfmmu_cnum = ctxtoctxnum(ctx);
1296 		ASSERT(sfmmup->sfmmu_cnum == KCONTEXT);
1297 		sfmmup->sfmmu_cext = 0;
1298 		ctx->ctx_sfmmu = sfmmup;
1299 		ctx->ctx_flags = 0;
1300 		sfmmup->sfmmu_clrstart = 0;
1301 		sfmmup->sfmmu_tsb = NULL;
1302 		/*
1303 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1304 		 * to setup tsb_info for ksfmmup.
1305 		 */
1306 	} else {
1307 
1308 		/*
1309 		 * Just set to invalid ctx. When it faults, it will
1310 		 * get a valid ctx. This would avoid the situation
1311 		 * where we get a ctx, but it gets stolen and then
1312 		 * we fault when we try to run and so have to get
1313 		 * another ctx.
1314 		 */
1315 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
1316 		sfmmup->sfmmu_cext = 0;
1317 		/* initialize original physical page coloring bin */
1318 		sfmmup->sfmmu_clrstart = get_color_start(as);
1319 #ifdef DEBUG
1320 		if (tsb_random_size) {
1321 			uint32_t randval = (uint32_t)gettick() >> 4;
1322 			int size = randval % (tsb_max_growsize + 1);
1323 
1324 			/* chose a random tsb size for stress testing */
1325 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1326 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1327 		} else
1328 #endif /* DEBUG */
1329 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1330 			    default_tsb_size,
1331 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1332 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1333 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1334 	}
1335 	sfmmu_setup_tsbinfo(sfmmup);
1336 	for (i = 0; i < max_mmu_page_sizes; i++) {
1337 		sfmmup->sfmmu_ttecnt[i] = 0;
1338 		sfmmup->sfmmu_ismttecnt[i] = 0;
1339 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1340 	}
1341 
1342 	sfmmup->sfmmu_iblk = NULL;
1343 	sfmmup->sfmmu_ismhat = 0;
1344 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1345 	if (sfmmup == ksfmmup) {
1346 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1347 	} else {
1348 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1349 	}
1350 	sfmmup->sfmmu_free = 0;
1351 	sfmmup->sfmmu_rmstat = 0;
1352 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1353 	sfmmup->sfmmu_xhat_provider = NULL;
1354 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1355 	return (sfmmup);
1356 }
1357 
1358 /*
1359  * Hat_setup, makes an address space context the current active one.
1360  * In sfmmu this translates to setting the secondary context with the
1361  * corresponding context.
1362  */
1363 void
1364 hat_setup(struct hat *sfmmup, int allocflag)
1365 {
1366 	struct ctx *ctx;
1367 	uint_t ctx_num;
1368 	hatlock_t *hatlockp;
1369 
1370 	/* Init needs some special treatment. */
1371 	if (allocflag == HAT_INIT) {
1372 		/*
1373 		 * Make sure that we have
1374 		 * 1. a TSB
1375 		 * 2. a valid ctx that doesn't get stolen after this point.
1376 		 */
1377 		hatlockp = sfmmu_hat_enter(sfmmup);
1378 
1379 		/*
1380 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1381 		 * TSBs, but we need one for init, since the kernel does some
1382 		 * special things to set up its stack and needs the TSB to
1383 		 * resolve page faults.
1384 		 */
1385 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1386 
1387 		sfmmu_disallow_ctx_steal(sfmmup);
1388 
1389 		kpreempt_disable();
1390 
1391 		ctx = sfmmutoctx(sfmmup);
1392 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1393 		ctx_num = ctxtoctxnum(ctx);
1394 		ASSERT(sfmmup == ctx->ctx_sfmmu);
1395 		ASSERT(ctx_num >= NUM_LOCKED_CTXS);
1396 		sfmmu_setctx_sec(ctx_num);
1397 		sfmmu_load_mmustate(sfmmup);
1398 
1399 		kpreempt_enable();
1400 
1401 		/*
1402 		 * Allow ctx to be stolen.
1403 		 */
1404 		sfmmu_allow_ctx_steal(sfmmup);
1405 		sfmmu_hat_exit(hatlockp);
1406 	} else {
1407 		ASSERT(allocflag == HAT_ALLOC);
1408 
1409 		hatlockp = sfmmu_hat_enter(sfmmup);
1410 		kpreempt_disable();
1411 
1412 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1413 		sfmmu_setctx_sec(INVALID_CONTEXT);
1414 		sfmmu_clear_utsbinfo();
1415 
1416 		kpreempt_enable();
1417 		sfmmu_hat_exit(hatlockp);
1418 	}
1419 }
1420 
1421 /*
1422  * Free all the translation resources for the specified address space.
1423  * Called from as_free when an address space is being destroyed.
1424  */
1425 void
1426 hat_free_start(struct hat *sfmmup)
1427 {
1428 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1429 	ASSERT(sfmmup != ksfmmup);
1430 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1431 
1432 	sfmmup->sfmmu_free = 1;
1433 }
1434 
1435 void
1436 hat_free_end(struct hat *sfmmup)
1437 {
1438 	int i;
1439 
1440 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1441 	if (sfmmup->sfmmu_ismhat) {
1442 		for (i = 0; i < mmu_page_sizes; i++) {
1443 			sfmmup->sfmmu_ttecnt[i] = 0;
1444 			sfmmup->sfmmu_ismttecnt[i] = 0;
1445 		}
1446 	} else {
1447 		/* EMPTY */
1448 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1449 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1450 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1451 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1452 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1453 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1454 	}
1455 
1456 	if (sfmmup->sfmmu_rmstat) {
1457 		hat_freestat(sfmmup->sfmmu_as, NULL);
1458 	}
1459 	if (!delay_tlb_flush) {
1460 		sfmmu_tlb_ctx_demap(sfmmup);
1461 		xt_sync(sfmmup->sfmmu_cpusran);
1462 	} else {
1463 		SFMMU_STAT(sf_tlbflush_deferred);
1464 	}
1465 	sfmmu_free_ctx(sfmmup, sfmmutoctx(sfmmup));
1466 	while (sfmmup->sfmmu_tsb != NULL) {
1467 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1468 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1469 		sfmmup->sfmmu_tsb = next;
1470 	}
1471 	sfmmu_free_sfmmu(sfmmup);
1472 
1473 	kmem_cache_free(sfmmuid_cache, sfmmup);
1474 }
1475 
1476 /*
1477  * Set up any translation structures, for the specified address space,
1478  * that are needed or preferred when the process is being swapped in.
1479  */
1480 /* ARGSUSED */
1481 void
1482 hat_swapin(struct hat *hat)
1483 {
1484 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1485 }
1486 
1487 /*
1488  * Free all of the translation resources, for the specified address space,
1489  * that can be freed while the process is swapped out. Called from as_swapout.
1490  * Also, free up the ctx that this process was using.
1491  */
1492 void
1493 hat_swapout(struct hat *sfmmup)
1494 {
1495 	struct hmehash_bucket *hmebp;
1496 	struct hme_blk *hmeblkp;
1497 	struct hme_blk *pr_hblk = NULL;
1498 	struct hme_blk *nx_hblk;
1499 	struct ctx *ctx;
1500 	int cnum;
1501 	int i;
1502 	uint64_t hblkpa, prevpa, nx_pa;
1503 	struct hme_blk *list = NULL;
1504 	hatlock_t *hatlockp;
1505 	struct tsb_info *tsbinfop;
1506 	struct free_tsb {
1507 		struct free_tsb *next;
1508 		struct tsb_info *tsbinfop;
1509 	};			/* free list of TSBs */
1510 	struct free_tsb *freelist, *last, *next;
1511 
1512 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1513 	SFMMU_STAT(sf_swapout);
1514 
1515 	/*
1516 	 * There is no way to go from an as to all its translations in sfmmu.
1517 	 * Here is one of the times when we take the big hit and traverse
1518 	 * the hash looking for hme_blks to free up.  Not only do we free up
1519 	 * this as hme_blks but all those that are free.  We are obviously
1520 	 * swapping because we need memory so let's free up as much
1521 	 * as we can.
1522 	 *
1523 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1524 	 * because:
1525 	 *  1) we free the ctx we're using and throw away the TSB(s);
1526 	 *  2) processes aren't runnable while being swapped out.
1527 	 */
1528 	ASSERT(sfmmup != KHATID);
1529 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1530 		hmebp = &uhme_hash[i];
1531 		SFMMU_HASH_LOCK(hmebp);
1532 		hmeblkp = hmebp->hmeblkp;
1533 		hblkpa = hmebp->hmeh_nextpa;
1534 		prevpa = 0;
1535 		pr_hblk = NULL;
1536 		while (hmeblkp) {
1537 
1538 			ASSERT(!hmeblkp->hblk_xhat_bit);
1539 
1540 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1541 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1542 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1543 					(caddr_t)get_hblk_base(hmeblkp),
1544 					get_hblk_endaddr(hmeblkp),
1545 					NULL, HAT_UNLOAD);
1546 			}
1547 			nx_hblk = hmeblkp->hblk_next;
1548 			nx_pa = hmeblkp->hblk_nextpa;
1549 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1550 				ASSERT(!hmeblkp->hblk_lckcnt);
1551 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1552 					prevpa, pr_hblk);
1553 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1554 			} else {
1555 				pr_hblk = hmeblkp;
1556 				prevpa = hblkpa;
1557 			}
1558 			hmeblkp = nx_hblk;
1559 			hblkpa = nx_pa;
1560 		}
1561 		SFMMU_HASH_UNLOCK(hmebp);
1562 	}
1563 
1564 	sfmmu_hblks_list_purge(&list);
1565 
1566 	/*
1567 	 * Now free up the ctx so that others can reuse it.
1568 	 */
1569 	hatlockp = sfmmu_hat_enter(sfmmup);
1570 	ctx = sfmmutoctx(sfmmup);
1571 	cnum = ctxtoctxnum(ctx);
1572 
1573 	if (cnum != INVALID_CONTEXT) {
1574 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
1575 		if (sfmmup->sfmmu_cnum == cnum) {
1576 			sfmmu_reuse_ctx(ctx, sfmmup);
1577 			/*
1578 			 * Put ctx back to the free list.
1579 			 */
1580 			mutex_enter(&ctx_list_lock);
1581 			CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
1582 			ctx->ctx_free = ctxfree;
1583 			ctxfree = ctx;
1584 			mutex_exit(&ctx_list_lock);
1585 		}
1586 		rw_exit(&ctx->ctx_rwlock);
1587 	}
1588 
1589 	/*
1590 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1591 	 * If TSBs were never swapped in, just return.
1592 	 * This implies that we don't support partial swapping
1593 	 * of TSBs -- either all are swapped out, or none are.
1594 	 *
1595 	 * We must hold the HAT lock here to prevent racing with another
1596 	 * thread trying to unmap TTEs from the TSB or running the post-
1597 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1598 	 * can't free memory while holding the HAT lock or we could
1599 	 * deadlock, so we build a list of TSBs to be freed after marking
1600 	 * the tsbinfos as swapped out and free them after dropping the
1601 	 * lock.
1602 	 */
1603 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1604 		sfmmu_hat_exit(hatlockp);
1605 		return;
1606 	}
1607 
1608 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1609 	last = freelist = NULL;
1610 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1611 	    tsbinfop = tsbinfop->tsb_next) {
1612 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1613 
1614 		/*
1615 		 * Cast the TSB into a struct free_tsb and put it on the free
1616 		 * list.
1617 		 */
1618 		if (freelist == NULL) {
1619 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1620 		} else {
1621 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1622 			last = last->next;
1623 		}
1624 		last->next = NULL;
1625 		last->tsbinfop = tsbinfop;
1626 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1627 		/*
1628 		 * Zero out the TTE to clear the valid bit.
1629 		 * Note we can't use a value like 0xbad because we want to
1630 		 * ensure diagnostic bits are NEVER set on TTEs that might
1631 		 * be loaded.  The intent is to catch any invalid access
1632 		 * to the swapped TSB, such as a thread running with a valid
1633 		 * context without first calling sfmmu_tsb_swapin() to
1634 		 * allocate TSB memory.
1635 		 */
1636 		tsbinfop->tsb_tte.ll = 0;
1637 	}
1638 
1639 	/* Now we can drop the lock and free the TSB memory. */
1640 	sfmmu_hat_exit(hatlockp);
1641 	for (; freelist != NULL; freelist = next) {
1642 		next = freelist->next;
1643 		sfmmu_tsb_free(freelist->tsbinfop);
1644 	}
1645 }
1646 
1647 /*
1648  * Duplicate the translations of an as into another newas
1649  */
1650 /* ARGSUSED */
1651 int
1652 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1653 	uint_t flag)
1654 {
1655 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1656 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1657 
1658 	if (flag == HAT_DUP_COW) {
1659 		panic("hat_dup: HAT_DUP_COW not supported");
1660 	}
1661 	return (0);
1662 }
1663 
1664 /*
1665  * Set up addr to map to page pp with protection prot.
1666  * As an optimization we also load the TSB with the
1667  * corresponding tte but it is no big deal if  the tte gets kicked out.
1668  */
1669 void
1670 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1671 	uint_t attr, uint_t flags)
1672 {
1673 	tte_t tte;
1674 
1675 
1676 	ASSERT(hat != NULL);
1677 	ASSERT(PAGE_LOCKED(pp));
1678 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1679 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1680 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1681 
1682 	if (PP_ISFREE(pp)) {
1683 		panic("hat_memload: loading a mapping to free page %p",
1684 		    (void *)pp);
1685 	}
1686 
1687 	if (hat->sfmmu_xhat_provider) {
1688 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1689 		return;
1690 	}
1691 
1692 	ASSERT((hat == ksfmmup) ||
1693 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1694 
1695 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1696 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1697 		    flags & ~SFMMU_LOAD_ALLFLAG);
1698 
1699 	if (hat->sfmmu_rmstat)
1700 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1701 
1702 #if defined(SF_ERRATA_57)
1703 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1704 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1705 	    !(flags & HAT_LOAD_SHARE)) {
1706 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1707 		    " page executable");
1708 		attr &= ~PROT_EXEC;
1709 	}
1710 #endif
1711 
1712 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1713 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1714 
1715 	/*
1716 	 * Check TSB and TLB page sizes.
1717 	 */
1718 	if ((flags & HAT_LOAD_SHARE) == 0) {
1719 		sfmmu_check_page_sizes(hat, 1);
1720 	}
1721 }
1722 
1723 /*
1724  * hat_devload can be called to map real memory (e.g.
1725  * /dev/kmem) and even though hat_devload will determine pf is
1726  * for memory, it will be unable to get a shared lock on the
1727  * page (because someone else has it exclusively) and will
1728  * pass dp = NULL.  If tteload doesn't get a non-NULL
1729  * page pointer it can't cache memory.
1730  */
1731 void
1732 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1733 	uint_t attr, int flags)
1734 {
1735 	tte_t tte;
1736 	struct page *pp = NULL;
1737 	int use_lgpg = 0;
1738 
1739 	ASSERT(hat != NULL);
1740 
1741 	if (hat->sfmmu_xhat_provider) {
1742 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1743 		return;
1744 	}
1745 
1746 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1747 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1748 	ASSERT((hat == ksfmmup) ||
1749 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1750 	if (len == 0)
1751 		panic("hat_devload: zero len");
1752 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1753 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1754 		    flags & ~SFMMU_LOAD_ALLFLAG);
1755 
1756 #if defined(SF_ERRATA_57)
1757 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1758 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1759 	    !(flags & HAT_LOAD_SHARE)) {
1760 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1761 		    " page executable");
1762 		attr &= ~PROT_EXEC;
1763 	}
1764 #endif
1765 
1766 	/*
1767 	 * If it's a memory page find its pp
1768 	 */
1769 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1770 		pp = page_numtopp_nolock(pfn);
1771 		if (pp == NULL) {
1772 			flags |= HAT_LOAD_NOCONSIST;
1773 		} else {
1774 			if (PP_ISFREE(pp)) {
1775 				panic("hat_memload: loading "
1776 				    "a mapping to free page %p",
1777 				    (void *)pp);
1778 			}
1779 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1780 				panic("hat_memload: loading a mapping "
1781 				    "to unlocked relocatable page %p",
1782 				    (void *)pp);
1783 			}
1784 			ASSERT(len == MMU_PAGESIZE);
1785 		}
1786 	}
1787 
1788 	if (hat->sfmmu_rmstat)
1789 		hat_resvstat(len, hat->sfmmu_as, addr);
1790 
1791 	if (flags & HAT_LOAD_NOCONSIST) {
1792 		attr |= SFMMU_UNCACHEVTTE;
1793 		use_lgpg = 1;
1794 	}
1795 	if (!pf_is_memory(pfn)) {
1796 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1797 		use_lgpg = 1;
1798 		switch (attr & HAT_ORDER_MASK) {
1799 			case HAT_STRICTORDER:
1800 			case HAT_UNORDERED_OK:
1801 				/*
1802 				 * we set the side effect bit for all non
1803 				 * memory mappings unless merging is ok
1804 				 */
1805 				attr |= SFMMU_SIDEFFECT;
1806 				break;
1807 			case HAT_MERGING_OK:
1808 			case HAT_LOADCACHING_OK:
1809 			case HAT_STORECACHING_OK:
1810 				break;
1811 			default:
1812 				panic("hat_devload: bad attr");
1813 				break;
1814 		}
1815 	}
1816 	while (len) {
1817 		if (!use_lgpg) {
1818 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1819 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1820 			    flags);
1821 			len -= MMU_PAGESIZE;
1822 			addr += MMU_PAGESIZE;
1823 			pfn++;
1824 			continue;
1825 		}
1826 		/*
1827 		 *  try to use large pages, check va/pa alignments
1828 		 *  Note that 32M/256M page sizes are not (yet) supported.
1829 		 */
1830 		if ((len >= MMU_PAGESIZE4M) &&
1831 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1832 		    !(disable_large_pages & (1 << TTE4M)) &&
1833 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1834 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1835 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1836 			    flags);
1837 			len -= MMU_PAGESIZE4M;
1838 			addr += MMU_PAGESIZE4M;
1839 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1840 		} else if ((len >= MMU_PAGESIZE512K) &&
1841 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1842 		    !(disable_large_pages & (1 << TTE512K)) &&
1843 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1844 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1845 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1846 			    flags);
1847 			len -= MMU_PAGESIZE512K;
1848 			addr += MMU_PAGESIZE512K;
1849 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1850 		} else if ((len >= MMU_PAGESIZE64K) &&
1851 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1852 		    !(disable_large_pages & (1 << TTE64K)) &&
1853 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1854 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1855 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1856 			    flags);
1857 			len -= MMU_PAGESIZE64K;
1858 			addr += MMU_PAGESIZE64K;
1859 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1860 		} else {
1861 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1862 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1863 			    flags);
1864 			len -= MMU_PAGESIZE;
1865 			addr += MMU_PAGESIZE;
1866 			pfn++;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Check TSB and TLB page sizes.
1872 	 */
1873 	if ((flags & HAT_LOAD_SHARE) == 0) {
1874 		sfmmu_check_page_sizes(hat, 1);
1875 	}
1876 }
1877 
1878 /*
1879  * Map the largest extend possible out of the page array. The array may NOT
1880  * be in order.  The largest possible mapping a page can have
1881  * is specified in the p_szc field.  The p_szc field
1882  * cannot change as long as there any mappings (large or small)
1883  * to any of the pages that make up the large page. (ie. any
1884  * promotion/demotion of page size is not up to the hat but up to
1885  * the page free list manager).  The array
1886  * should consist of properly aligned contigous pages that are
1887  * part of a big page for a large mapping to be created.
1888  */
1889 void
1890 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1891 	struct page **pps, uint_t attr, uint_t flags)
1892 {
1893 	int  ttesz;
1894 	size_t mapsz;
1895 	pgcnt_t	numpg, npgs;
1896 	tte_t tte;
1897 	page_t *pp;
1898 	int large_pages_disable;
1899 
1900 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1901 
1902 	if (hat->sfmmu_xhat_provider) {
1903 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1904 		return;
1905 	}
1906 
1907 	if (hat->sfmmu_rmstat)
1908 		hat_resvstat(len, hat->sfmmu_as, addr);
1909 
1910 #if defined(SF_ERRATA_57)
1911 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1912 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1913 	    !(flags & HAT_LOAD_SHARE)) {
1914 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
1915 		    "user page executable");
1916 		attr &= ~PROT_EXEC;
1917 	}
1918 #endif
1919 
1920 	/* Get number of pages */
1921 	npgs = len >> MMU_PAGESHIFT;
1922 
1923 	if (flags & HAT_LOAD_SHARE) {
1924 		large_pages_disable = disable_ism_large_pages;
1925 	} else {
1926 		large_pages_disable = disable_large_pages;
1927 	}
1928 
1929 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
1930 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1931 		return;
1932 	}
1933 
1934 	while (npgs >= NHMENTS) {
1935 		pp = *pps;
1936 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
1937 			/*
1938 			 * Check if this page size is disabled.
1939 			 */
1940 			if (large_pages_disable & (1 << ttesz))
1941 				continue;
1942 
1943 			numpg = TTEPAGES(ttesz);
1944 			mapsz = numpg << MMU_PAGESHIFT;
1945 			if ((npgs >= numpg) &&
1946 			    IS_P2ALIGNED(addr, mapsz) &&
1947 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
1948 				/*
1949 				 * At this point we have enough pages and
1950 				 * we know the virtual address and the pfn
1951 				 * are properly aligned.  We still need
1952 				 * to check for physical contiguity but since
1953 				 * it is very likely that this is the case
1954 				 * we will assume they are so and undo
1955 				 * the request if necessary.  It would
1956 				 * be great if we could get a hint flag
1957 				 * like HAT_CONTIG which would tell us
1958 				 * the pages are contigous for sure.
1959 				 */
1960 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
1961 					attr, ttesz);
1962 				if (!sfmmu_tteload_array(hat, &tte, addr,
1963 				    pps, flags)) {
1964 					break;
1965 				}
1966 			}
1967 		}
1968 		if (ttesz == TTE8K) {
1969 			/*
1970 			 * We were not able to map array using a large page
1971 			 * batch a hmeblk or fraction at a time.
1972 			 */
1973 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
1974 				& (NHMENTS-1);
1975 			numpg = NHMENTS - numpg;
1976 			ASSERT(numpg <= npgs);
1977 			mapsz = numpg * MMU_PAGESIZE;
1978 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
1979 							numpg);
1980 		}
1981 		addr += mapsz;
1982 		npgs -= numpg;
1983 		pps += numpg;
1984 	}
1985 
1986 	if (npgs) {
1987 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1988 	}
1989 
1990 	/*
1991 	 * Check TSB and TLB page sizes.
1992 	 */
1993 	if ((flags & HAT_LOAD_SHARE) == 0) {
1994 		sfmmu_check_page_sizes(hat, 1);
1995 	}
1996 }
1997 
1998 /*
1999  * Function tries to batch 8K pages into the same hme blk.
2000  */
2001 static void
2002 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2003 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2004 {
2005 	tte_t	tte;
2006 	page_t *pp;
2007 	struct hmehash_bucket *hmebp;
2008 	struct hme_blk *hmeblkp;
2009 	int	index;
2010 
2011 	while (npgs) {
2012 		/*
2013 		 * Acquire the hash bucket.
2014 		 */
2015 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2016 		ASSERT(hmebp);
2017 
2018 		/*
2019 		 * Find the hment block.
2020 		 */
2021 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2022 				TTE8K, flags);
2023 		ASSERT(hmeblkp);
2024 
2025 		do {
2026 			/*
2027 			 * Make the tte.
2028 			 */
2029 			pp = *pps;
2030 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2031 
2032 			/*
2033 			 * Add the translation.
2034 			 */
2035 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2036 					vaddr, pps, flags);
2037 
2038 			/*
2039 			 * Goto next page.
2040 			 */
2041 			pps++;
2042 			npgs--;
2043 
2044 			/*
2045 			 * Goto next address.
2046 			 */
2047 			vaddr += MMU_PAGESIZE;
2048 
2049 			/*
2050 			 * Don't crossover into a different hmentblk.
2051 			 */
2052 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2053 			    (NHMENTS-1));
2054 
2055 		} while (index != 0 && npgs != 0);
2056 
2057 		/*
2058 		 * Release the hash bucket.
2059 		 */
2060 
2061 		sfmmu_tteload_release_hashbucket(hmebp);
2062 	}
2063 }
2064 
2065 /*
2066  * Construct a tte for a page:
2067  *
2068  * tte_valid = 1
2069  * tte_size2 = size & TTE_SZ2_BITS (Panther-only)
2070  * tte_size = size
2071  * tte_nfo = attr & HAT_NOFAULT
2072  * tte_ie = attr & HAT_STRUCTURE_LE
2073  * tte_hmenum = hmenum
2074  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2075  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2076  * tte_ref = 1 (optimization)
2077  * tte_wr_perm = attr & PROT_WRITE;
2078  * tte_no_sync = attr & HAT_NOSYNC
2079  * tte_lock = attr & SFMMU_LOCKTTE
2080  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2081  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2082  * tte_e = attr & SFMMU_SIDEFFECT
2083  * tte_priv = !(attr & PROT_USER)
2084  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2085  * tte_glb = 0
2086  */
2087 void
2088 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2089 {
2090 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2091 
2092 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2093 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2094 
2095 	if (TTE_IS_NOSYNC(ttep)) {
2096 		TTE_SET_REF(ttep);
2097 		if (TTE_IS_WRITABLE(ttep)) {
2098 			TTE_SET_MOD(ttep);
2099 		}
2100 	}
2101 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2102 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2103 	}
2104 }
2105 
2106 /*
2107  * This function will add a translation to the hme_blk and allocate the
2108  * hme_blk if one does not exist.
2109  * If a page structure is specified then it will add the
2110  * corresponding hment to the mapping list.
2111  * It will also update the hmenum field for the tte.
2112  */
2113 void
2114 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2115 	uint_t flags)
2116 {
2117 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2118 }
2119 
2120 /*
2121  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2122  * Assumes that a particular page size may only be resident in one TSB.
2123  */
2124 static void
2125 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2126 {
2127 	struct tsb_info *tsbinfop = NULL;
2128 	uint64_t tag;
2129 	struct tsbe *tsbe_addr;
2130 	uint64_t tsb_base;
2131 	uint_t tsb_size;
2132 	int vpshift = MMU_PAGESHIFT;
2133 	int phys = 0;
2134 
2135 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2136 		phys = ktsb_phys;
2137 		if (ttesz >= TTE4M) {
2138 #ifndef sun4v
2139 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2140 #endif
2141 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2142 			tsb_size = ktsb4m_szcode;
2143 		} else {
2144 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2145 			tsb_size = ktsb_szcode;
2146 		}
2147 	} else {
2148 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2149 
2150 		/*
2151 		 * If there isn't a TSB for this page size, or the TSB is
2152 		 * swapped out, there is nothing to do.  Note that the latter
2153 		 * case seems impossible but can occur if hat_pageunload()
2154 		 * is called on an ISM mapping while the process is swapped
2155 		 * out.
2156 		 */
2157 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2158 			return;
2159 
2160 		/*
2161 		 * If another thread is in the middle of relocating a TSB
2162 		 * we can't unload the entry so set a flag so that the
2163 		 * TSB will be flushed before it can be accessed by the
2164 		 * process.
2165 		 */
2166 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2167 			if (ttep == NULL)
2168 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2169 			return;
2170 		}
2171 #if defined(UTSB_PHYS)
2172 		phys = 1;
2173 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2174 #else
2175 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2176 #endif
2177 		tsb_size = tsbinfop->tsb_szc;
2178 	}
2179 	if (ttesz >= TTE4M)
2180 		vpshift = MMU_PAGESHIFT4M;
2181 
2182 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2183 	tag = sfmmu_make_tsbtag(vaddr);
2184 
2185 	if (ttep == NULL) {
2186 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2187 	} else {
2188 		if (ttesz >= TTE4M) {
2189 			SFMMU_STAT(sf_tsb_load4m);
2190 		} else {
2191 			SFMMU_STAT(sf_tsb_load8k);
2192 		}
2193 
2194 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2195 	}
2196 }
2197 
2198 /*
2199  * Unmap all entries from [start, end) matching the given page size.
2200  *
2201  * This function is used primarily to unmap replicated 64K or 512K entries
2202  * from the TSB that are inserted using the base page size TSB pointer, but
2203  * it may also be called to unmap a range of addresses from the TSB.
2204  */
2205 void
2206 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2207 {
2208 	struct tsb_info *tsbinfop;
2209 	uint64_t tag;
2210 	struct tsbe *tsbe_addr;
2211 	caddr_t vaddr;
2212 	uint64_t tsb_base;
2213 	int vpshift, vpgsz;
2214 	uint_t tsb_size;
2215 	int phys = 0;
2216 
2217 	/*
2218 	 * Assumptions:
2219 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2220 	 *  at a time shooting down any valid entries we encounter.
2221 	 *
2222 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2223 	 *  down any valid mappings we find.
2224 	 */
2225 	if (sfmmup == ksfmmup) {
2226 		phys = ktsb_phys;
2227 		if (ttesz >= TTE4M) {
2228 #ifndef sun4v
2229 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2230 #endif
2231 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2232 			tsb_size = ktsb4m_szcode;
2233 		} else {
2234 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2235 			tsb_size = ktsb_szcode;
2236 		}
2237 	} else {
2238 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2239 
2240 		/*
2241 		 * If there isn't a TSB for this page size, or the TSB is
2242 		 * swapped out, there is nothing to do.  Note that the latter
2243 		 * case seems impossible but can occur if hat_pageunload()
2244 		 * is called on an ISM mapping while the process is swapped
2245 		 * out.
2246 		 */
2247 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2248 			return;
2249 
2250 		/*
2251 		 * If another thread is in the middle of relocating a TSB
2252 		 * we can't unload the entry so set a flag so that the
2253 		 * TSB will be flushed before it can be accessed by the
2254 		 * process.
2255 		 */
2256 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2257 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2258 			return;
2259 		}
2260 #if defined(UTSB_PHYS)
2261 		phys = 1;
2262 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2263 #else
2264 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2265 #endif
2266 		tsb_size = tsbinfop->tsb_szc;
2267 	}
2268 	if (ttesz >= TTE4M) {
2269 		vpshift = MMU_PAGESHIFT4M;
2270 		vpgsz = MMU_PAGESIZE4M;
2271 	} else {
2272 		vpshift = MMU_PAGESHIFT;
2273 		vpgsz = MMU_PAGESIZE;
2274 	}
2275 
2276 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2277 		tag = sfmmu_make_tsbtag(vaddr);
2278 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2279 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2280 	}
2281 }
2282 
2283 /*
2284  * Select the optimum TSB size given the number of mappings
2285  * that need to be cached.
2286  */
2287 static int
2288 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2289 {
2290 	int szc = 0;
2291 
2292 #ifdef DEBUG
2293 	if (tsb_grow_stress) {
2294 		uint32_t randval = (uint32_t)gettick() >> 4;
2295 		return (randval % (tsb_max_growsize + 1));
2296 	}
2297 #endif	/* DEBUG */
2298 
2299 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2300 		szc++;
2301 	return (szc);
2302 }
2303 
2304 /*
2305  * This function will add a translation to the hme_blk and allocate the
2306  * hme_blk if one does not exist.
2307  * If a page structure is specified then it will add the
2308  * corresponding hment to the mapping list.
2309  * It will also update the hmenum field for the tte.
2310  * Furthermore, it attempts to create a large page translation
2311  * for <addr,hat> at page array pps.  It assumes addr and first
2312  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2313  */
2314 static int
2315 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2316 	page_t **pps, uint_t flags)
2317 {
2318 	struct hmehash_bucket *hmebp;
2319 	struct hme_blk *hmeblkp;
2320 	int 	ret;
2321 	uint_t	size;
2322 
2323 	/*
2324 	 * Get mapping size.
2325 	 */
2326 	size = TTE_CSZ(ttep);
2327 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2328 
2329 	/*
2330 	 * Acquire the hash bucket.
2331 	 */
2332 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2333 	ASSERT(hmebp);
2334 
2335 	/*
2336 	 * Find the hment block.
2337 	 */
2338 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2339 	ASSERT(hmeblkp);
2340 
2341 	/*
2342 	 * Add the translation.
2343 	 */
2344 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2345 
2346 	/*
2347 	 * Release the hash bucket.
2348 	 */
2349 	sfmmu_tteload_release_hashbucket(hmebp);
2350 
2351 	return (ret);
2352 }
2353 
2354 /*
2355  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2356  */
2357 static struct hmehash_bucket *
2358 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2359 {
2360 	struct hmehash_bucket *hmebp;
2361 	int hmeshift;
2362 
2363 	hmeshift = HME_HASH_SHIFT(size);
2364 
2365 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2366 
2367 	SFMMU_HASH_LOCK(hmebp);
2368 
2369 	return (hmebp);
2370 }
2371 
2372 /*
2373  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2374  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2375  * allocated.
2376  */
2377 static struct hme_blk *
2378 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2379 	caddr_t vaddr, uint_t size, uint_t flags)
2380 {
2381 	hmeblk_tag hblktag;
2382 	int hmeshift;
2383 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2384 	uint64_t hblkpa, prevpa;
2385 	struct kmem_cache *sfmmu_cache;
2386 	uint_t forcefree;
2387 
2388 	hblktag.htag_id = sfmmup;
2389 	hmeshift = HME_HASH_SHIFT(size);
2390 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2391 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2392 
2393 ttearray_realloc:
2394 
2395 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2396 	    pr_hblk, prevpa, &list);
2397 
2398 	/*
2399 	 * We block until hblk_reserve_lock is released; it's held by
2400 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2401 	 * replaced by a hblk from sfmmu8_cache.
2402 	 */
2403 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2404 	    hblk_reserve_thread != curthread) {
2405 		SFMMU_HASH_UNLOCK(hmebp);
2406 		mutex_enter(&hblk_reserve_lock);
2407 		mutex_exit(&hblk_reserve_lock);
2408 		SFMMU_STAT(sf_hblk_reserve_hit);
2409 		SFMMU_HASH_LOCK(hmebp);
2410 		goto ttearray_realloc;
2411 	}
2412 
2413 	if (hmeblkp == NULL) {
2414 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2415 		    hblktag, flags);
2416 	} else {
2417 		/*
2418 		 * It is possible for 8k and 64k hblks to collide since they
2419 		 * have the same rehash value. This is because we
2420 		 * lazily free hblks and 8K/64K blks could be lingering.
2421 		 * If we find size mismatch we free the block and & try again.
2422 		 */
2423 		if (get_hblk_ttesz(hmeblkp) != size) {
2424 			ASSERT(!hmeblkp->hblk_vcnt);
2425 			ASSERT(!hmeblkp->hblk_hmecnt);
2426 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2427 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2428 			goto ttearray_realloc;
2429 		}
2430 		if (hmeblkp->hblk_shw_bit) {
2431 			/*
2432 			 * if the hblk was previously used as a shadow hblk then
2433 			 * we will change it to a normal hblk
2434 			 */
2435 			if (hmeblkp->hblk_shw_mask) {
2436 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2437 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2438 				goto ttearray_realloc;
2439 			} else {
2440 				hmeblkp->hblk_shw_bit = 0;
2441 			}
2442 		}
2443 		SFMMU_STAT(sf_hblk_hit);
2444 	}
2445 
2446 	/*
2447 	 * hat_memload() should never call kmem_cache_free(); see block
2448 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2449 	 * enqueue each hblk in the list to reserve list if it's created
2450 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2451 	 */
2452 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2453 	while ((pr_hblk = list) != NULL) {
2454 		list = pr_hblk->hblk_next;
2455 		sfmmu_cache = get_hblk_cache(pr_hblk);
2456 		if ((sfmmu_cache == sfmmu8_cache) &&
2457 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2458 			continue;
2459 
2460 		ASSERT(sfmmup != KHATID);
2461 		kmem_cache_free(sfmmu_cache, pr_hblk);
2462 	}
2463 
2464 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2465 	ASSERT(!hmeblkp->hblk_shw_bit);
2466 
2467 	return (hmeblkp);
2468 }
2469 
2470 /*
2471  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2472  * otherwise.
2473  */
2474 static int
2475 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2476 	caddr_t vaddr, page_t **pps, uint_t flags)
2477 {
2478 	page_t *pp = *pps;
2479 	int hmenum, size, remap;
2480 	tte_t tteold, flush_tte;
2481 #ifdef DEBUG
2482 	tte_t orig_old;
2483 #endif /* DEBUG */
2484 	struct sf_hment *sfhme;
2485 	kmutex_t *pml, *pmtx;
2486 	hatlock_t *hatlockp;
2487 
2488 	/*
2489 	 * remove this panic when we decide to let user virtual address
2490 	 * space be >= USERLIMIT.
2491 	 */
2492 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2493 		panic("user addr %p in kernel space", vaddr);
2494 #if defined(TTE_IS_GLOBAL)
2495 	if (TTE_IS_GLOBAL(ttep))
2496 		panic("sfmmu_tteload: creating global tte");
2497 #endif
2498 
2499 #ifdef DEBUG
2500 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2501 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2502 		panic("sfmmu_tteload: non cacheable memory tte");
2503 #endif /* DEBUG */
2504 
2505 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2506 	    !TTE_IS_MOD(ttep)) {
2507 		/*
2508 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2509 		 * the TSB if the TTE isn't writable since we're likely to
2510 		 * fault on it again -- preloading can be fairly expensive.
2511 		 */
2512 		flags |= SFMMU_NO_TSBLOAD;
2513 	}
2514 
2515 	size = TTE_CSZ(ttep);
2516 	switch (size) {
2517 	case TTE8K:
2518 		SFMMU_STAT(sf_tteload8k);
2519 		break;
2520 	case TTE64K:
2521 		SFMMU_STAT(sf_tteload64k);
2522 		break;
2523 	case TTE512K:
2524 		SFMMU_STAT(sf_tteload512k);
2525 		break;
2526 	case TTE4M:
2527 		SFMMU_STAT(sf_tteload4m);
2528 		break;
2529 	case (TTE32M):
2530 		SFMMU_STAT(sf_tteload32m);
2531 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2532 		break;
2533 	case (TTE256M):
2534 		SFMMU_STAT(sf_tteload256m);
2535 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2536 		break;
2537 	}
2538 
2539 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2540 
2541 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2542 
2543 	/*
2544 	 * Need to grab mlist lock here so that pageunload
2545 	 * will not change tte behind us.
2546 	 */
2547 	if (pp) {
2548 		pml = sfmmu_mlist_enter(pp);
2549 	}
2550 
2551 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2552 	/*
2553 	 * Look for corresponding hment and if valid verify
2554 	 * pfns are equal.
2555 	 */
2556 	remap = TTE_IS_VALID(&tteold);
2557 	if (remap) {
2558 		pfn_t	new_pfn, old_pfn;
2559 
2560 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2561 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2562 
2563 		if (flags & HAT_LOAD_REMAP) {
2564 			/* make sure we are remapping same type of pages */
2565 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2566 				panic("sfmmu_tteload - tte remap io<->memory");
2567 			}
2568 			if (old_pfn != new_pfn &&
2569 			    (pp != NULL || sfhme->hme_page != NULL)) {
2570 				panic("sfmmu_tteload - tte remap pp != NULL");
2571 			}
2572 		} else if (old_pfn != new_pfn) {
2573 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2574 			    (void *)hmeblkp);
2575 		}
2576 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2577 	}
2578 
2579 	if (pp) {
2580 		if (size == TTE8K) {
2581 			/*
2582 			 * Handle VAC consistency
2583 			 */
2584 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2585 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2586 			}
2587 
2588 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2589 				pmtx = sfmmu_page_enter(pp);
2590 				PP_CLRRO(pp);
2591 				sfmmu_page_exit(pmtx);
2592 			} else if (!PP_ISMAPPED(pp) &&
2593 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2594 				pmtx = sfmmu_page_enter(pp);
2595 				if (!(PP_ISMOD(pp))) {
2596 					PP_SETRO(pp);
2597 				}
2598 				sfmmu_page_exit(pmtx);
2599 			}
2600 
2601 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2602 			/*
2603 			 * sfmmu_pagearray_setup failed so return
2604 			 */
2605 			sfmmu_mlist_exit(pml);
2606 			return (1);
2607 		}
2608 	}
2609 
2610 	/*
2611 	 * Make sure hment is not on a mapping list.
2612 	 */
2613 	ASSERT(remap || (sfhme->hme_page == NULL));
2614 
2615 	/* if it is not a remap then hme->next better be NULL */
2616 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2617 
2618 	if (flags & HAT_LOAD_LOCK) {
2619 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2620 			panic("too high lckcnt-hmeblk %p",
2621 			    (void *)hmeblkp);
2622 		}
2623 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2624 
2625 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2626 	}
2627 
2628 	if (pp && PP_ISNC(pp)) {
2629 		/*
2630 		 * If the physical page is marked to be uncacheable, like
2631 		 * by a vac conflict, make sure the new mapping is also
2632 		 * uncacheable.
2633 		 */
2634 		TTE_CLR_VCACHEABLE(ttep);
2635 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2636 	}
2637 	ttep->tte_hmenum = hmenum;
2638 
2639 #ifdef DEBUG
2640 	orig_old = tteold;
2641 #endif /* DEBUG */
2642 
2643 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2644 		if ((sfmmup == KHATID) &&
2645 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2646 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2647 		}
2648 #ifdef DEBUG
2649 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2650 #endif /* DEBUG */
2651 	}
2652 
2653 	if (!TTE_IS_VALID(&tteold)) {
2654 
2655 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2656 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2657 
2658 		/*
2659 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2660 		 */
2661 
2662 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2663 		    sfmmup != ksfmmup) {
2664 			/*
2665 			 * If this is the first large mapping for the process
2666 			 * we must force any CPUs running this process to TL=0
2667 			 * where they will reload the HAT flags from the
2668 			 * tsbmiss area.  This is necessary to make the large
2669 			 * mappings we are about to load visible to those CPUs;
2670 			 * otherwise they'll loop forever calling pagefault()
2671 			 * since we don't search large hash chains by default.
2672 			 */
2673 			hatlockp = sfmmu_hat_enter(sfmmup);
2674 			if (size == TTE512K &&
2675 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2676 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2677 				sfmmu_sync_mmustate(sfmmup);
2678 			} else if (size == TTE4M &&
2679 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2680 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2681 				sfmmu_sync_mmustate(sfmmup);
2682 			} else if (size == TTE64K &&
2683 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2684 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2685 				/* no sync mmustate; 64K shares 8K hashes */
2686 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2687 			    if (size == TTE32M &&
2688 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2689 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2690 				sfmmu_sync_mmustate(sfmmup);
2691 			    } else if (size == TTE256M &&
2692 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2693 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2694 				sfmmu_sync_mmustate(sfmmup);
2695 			    }
2696 			}
2697 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2698 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2699 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2700 			}
2701 			sfmmu_hat_exit(hatlockp);
2702 		}
2703 	}
2704 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2705 
2706 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2707 	    hw_tte.tte_intlo;
2708 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2709 	    hw_tte.tte_inthi;
2710 
2711 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2712 		/*
2713 		 * If remap and new tte differs from old tte we need
2714 		 * to sync the mod bit and flush TLB/TSB.  We don't
2715 		 * need to sync ref bit because we currently always set
2716 		 * ref bit in tteload.
2717 		 */
2718 		ASSERT(TTE_IS_REF(ttep));
2719 		if (TTE_IS_MOD(&tteold)) {
2720 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2721 		}
2722 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2723 		xt_sync(sfmmup->sfmmu_cpusran);
2724 	}
2725 
2726 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2727 		/*
2728 		 * We only preload 8K and 4M mappings into the TSB, since
2729 		 * 64K and 512K mappings are replicated and hence don't
2730 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2731 		 */
2732 		if (size == TTE8K || size == TTE4M) {
2733 			hatlockp = sfmmu_hat_enter(sfmmup);
2734 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2735 			sfmmu_hat_exit(hatlockp);
2736 		}
2737 	}
2738 	if (pp) {
2739 		if (!remap) {
2740 			HME_ADD(sfhme, pp);
2741 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2742 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2743 
2744 			/*
2745 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2746 			 * see pageunload() for comment.
2747 			 */
2748 		}
2749 		sfmmu_mlist_exit(pml);
2750 	}
2751 
2752 	return (0);
2753 }
2754 /*
2755  * Function unlocks hash bucket.
2756  */
2757 static void
2758 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2759 {
2760 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2761 	SFMMU_HASH_UNLOCK(hmebp);
2762 }
2763 
2764 /*
2765  * function which checks and sets up page array for a large
2766  * translation.  Will set p_vcolor, p_index, p_ro fields.
2767  * Assumes addr and pfnum of first page are properly aligned.
2768  * Will check for physical contiguity. If check fails it return
2769  * non null.
2770  */
2771 static int
2772 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2773 {
2774 	int 	i, index, ttesz, osz;
2775 	pfn_t	pfnum;
2776 	pgcnt_t	npgs;
2777 	int cflags = 0;
2778 	page_t *pp, *pp1;
2779 	kmutex_t *pmtx;
2780 	int vac_err = 0;
2781 	int newidx = 0;
2782 
2783 	ttesz = TTE_CSZ(ttep);
2784 
2785 	ASSERT(ttesz > TTE8K);
2786 
2787 	npgs = TTEPAGES(ttesz);
2788 	index = PAGESZ_TO_INDEX(ttesz);
2789 
2790 	pfnum = (*pps)->p_pagenum;
2791 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2792 
2793 	/*
2794 	 * Save the first pp so we can do HAT_TMPNC at the end.
2795 	 */
2796 	pp1 = *pps;
2797 	osz = fnd_mapping_sz(pp1);
2798 
2799 	for (i = 0; i < npgs; i++, pps++) {
2800 		pp = *pps;
2801 		ASSERT(PAGE_LOCKED(pp));
2802 		ASSERT(pp->p_szc >= ttesz);
2803 		ASSERT(pp->p_szc == pp1->p_szc);
2804 		ASSERT(sfmmu_mlist_held(pp));
2805 
2806 		/*
2807 		 * XXX is it possible to maintain P_RO on the root only?
2808 		 */
2809 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2810 			pmtx = sfmmu_page_enter(pp);
2811 			PP_CLRRO(pp);
2812 			sfmmu_page_exit(pmtx);
2813 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2814 		    !PP_ISMOD(pp)) {
2815 			pmtx = sfmmu_page_enter(pp);
2816 			if (!(PP_ISMOD(pp))) {
2817 				PP_SETRO(pp);
2818 			}
2819 			sfmmu_page_exit(pmtx);
2820 		}
2821 
2822 		/*
2823 		 * If this is a remap we skip vac & contiguity checks.
2824 		 */
2825 		if (remap)
2826 			continue;
2827 
2828 		/*
2829 		 * set p_vcolor and detect any vac conflicts.
2830 		 */
2831 		if (vac_err == 0) {
2832 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2833 
2834 		}
2835 
2836 		/*
2837 		 * Save current index in case we need to undo it.
2838 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2839 		 *	"SFMMU_INDEX_SHIFT	6"
2840 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2841 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2842 		 *
2843 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2844 		 *	if ttesz == 1 then index = 0x2
2845 		 *		    2 then index = 0x4
2846 		 *		    3 then index = 0x8
2847 		 *		    4 then index = 0x10
2848 		 *		    5 then index = 0x20
2849 		 * The code below checks if it's a new pagesize (ie, newidx)
2850 		 * in case we need to take it back out of p_index,
2851 		 * and then or's the new index into the existing index.
2852 		 */
2853 		if ((PP_MAPINDEX(pp) & index) == 0)
2854 			newidx = 1;
2855 		pp->p_index = (PP_MAPINDEX(pp) | index);
2856 
2857 		/*
2858 		 * contiguity check
2859 		 */
2860 		if (pp->p_pagenum != pfnum) {
2861 			/*
2862 			 * If we fail the contiguity test then
2863 			 * the only thing we need to fix is the p_index field.
2864 			 * We might get a few extra flushes but since this
2865 			 * path is rare that is ok.  The p_ro field will
2866 			 * get automatically fixed on the next tteload to
2867 			 * the page.  NO TNC bit is set yet.
2868 			 */
2869 			while (i >= 0) {
2870 				pp = *pps;
2871 				if (newidx)
2872 					pp->p_index = (PP_MAPINDEX(pp) &
2873 					    ~index);
2874 				pps--;
2875 				i--;
2876 			}
2877 			return (1);
2878 		}
2879 		pfnum++;
2880 		addr += MMU_PAGESIZE;
2881 	}
2882 
2883 	if (vac_err) {
2884 		if (ttesz > osz) {
2885 			/*
2886 			 * There are some smaller mappings that causes vac
2887 			 * conflicts. Convert all existing small mappings to
2888 			 * TNC.
2889 			 */
2890 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2891 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2892 				npgs);
2893 		} else {
2894 			/* EMPTY */
2895 			/*
2896 			 * If there exists an big page mapping,
2897 			 * that means the whole existing big page
2898 			 * has TNC setting already. No need to covert to
2899 			 * TNC again.
2900 			 */
2901 			ASSERT(PP_ISTNC(pp1));
2902 		}
2903 	}
2904 
2905 	return (0);
2906 }
2907 
2908 /*
2909  * Routine that detects vac consistency for a large page. It also
2910  * sets virtual color for all pp's for this big mapping.
2911  */
2912 static int
2913 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
2914 {
2915 	int vcolor, ocolor;
2916 
2917 	ASSERT(sfmmu_mlist_held(pp));
2918 
2919 	if (PP_ISNC(pp)) {
2920 		return (HAT_TMPNC);
2921 	}
2922 
2923 	vcolor = addr_to_vcolor(addr);
2924 	if (PP_NEWPAGE(pp)) {
2925 		PP_SET_VCOLOR(pp, vcolor);
2926 		return (0);
2927 	}
2928 
2929 	ocolor = PP_GET_VCOLOR(pp);
2930 	if (ocolor == vcolor) {
2931 		return (0);
2932 	}
2933 
2934 	if (!PP_ISMAPPED(pp)) {
2935 		/*
2936 		 * Previous user of page had a differnet color
2937 		 * but since there are no current users
2938 		 * we just flush the cache and change the color.
2939 		 * As an optimization for large pages we flush the
2940 		 * entire cache of that color and set a flag.
2941 		 */
2942 		SFMMU_STAT(sf_pgcolor_conflict);
2943 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
2944 			CacheColor_SetFlushed(*cflags, ocolor);
2945 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
2946 		}
2947 		PP_SET_VCOLOR(pp, vcolor);
2948 		return (0);
2949 	}
2950 
2951 	/*
2952 	 * We got a real conflict with a current mapping.
2953 	 * set flags to start unencaching all mappings
2954 	 * and return failure so we restart looping
2955 	 * the pp array from the beginning.
2956 	 */
2957 	return (HAT_TMPNC);
2958 }
2959 
2960 /*
2961  * creates a large page shadow hmeblk for a tte.
2962  * The purpose of this routine is to allow us to do quick unloads because
2963  * the vm layer can easily pass a very large but sparsely populated range.
2964  */
2965 static struct hme_blk *
2966 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
2967 {
2968 	struct hmehash_bucket *hmebp;
2969 	hmeblk_tag hblktag;
2970 	int hmeshift, size, vshift;
2971 	uint_t shw_mask, newshw_mask;
2972 	struct hme_blk *hmeblkp;
2973 
2974 	ASSERT(sfmmup != KHATID);
2975 	if (mmu_page_sizes == max_mmu_page_sizes) {
2976 		ASSERT(ttesz < TTE256M);
2977 	} else {
2978 		ASSERT(ttesz < TTE4M);
2979 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
2980 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
2981 	}
2982 
2983 	if (ttesz == TTE8K) {
2984 		size = TTE512K;
2985 	} else {
2986 		size = ++ttesz;
2987 	}
2988 
2989 	hblktag.htag_id = sfmmup;
2990 	hmeshift = HME_HASH_SHIFT(size);
2991 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2992 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2993 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2994 
2995 	SFMMU_HASH_LOCK(hmebp);
2996 
2997 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
2998 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
2999 	if (hmeblkp == NULL) {
3000 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3001 			hblktag, flags);
3002 	}
3003 	ASSERT(hmeblkp);
3004 	if (!hmeblkp->hblk_shw_mask) {
3005 		/*
3006 		 * if this is a unused hblk it was just allocated or could
3007 		 * potentially be a previous large page hblk so we need to
3008 		 * set the shadow bit.
3009 		 */
3010 		hmeblkp->hblk_shw_bit = 1;
3011 	}
3012 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3013 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3014 	ASSERT(vshift < 8);
3015 	/*
3016 	 * Atomically set shw mask bit
3017 	 */
3018 	do {
3019 		shw_mask = hmeblkp->hblk_shw_mask;
3020 		newshw_mask = shw_mask | (1 << vshift);
3021 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3022 		    newshw_mask);
3023 	} while (newshw_mask != shw_mask);
3024 
3025 	SFMMU_HASH_UNLOCK(hmebp);
3026 
3027 	return (hmeblkp);
3028 }
3029 
3030 /*
3031  * This routine cleanup a previous shadow hmeblk and changes it to
3032  * a regular hblk.  This happens rarely but it is possible
3033  * when a process wants to use large pages and there are hblks still
3034  * lying around from the previous as that used these hmeblks.
3035  * The alternative was to cleanup the shadow hblks at unload time
3036  * but since so few user processes actually use large pages, it is
3037  * better to be lazy and cleanup at this time.
3038  */
3039 static void
3040 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3041 	struct hmehash_bucket *hmebp)
3042 {
3043 	caddr_t addr, endaddr;
3044 	int hashno, size;
3045 
3046 	ASSERT(hmeblkp->hblk_shw_bit);
3047 
3048 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3049 
3050 	if (!hmeblkp->hblk_shw_mask) {
3051 		hmeblkp->hblk_shw_bit = 0;
3052 		return;
3053 	}
3054 	addr = (caddr_t)get_hblk_base(hmeblkp);
3055 	endaddr = get_hblk_endaddr(hmeblkp);
3056 	size = get_hblk_ttesz(hmeblkp);
3057 	hashno = size - 1;
3058 	ASSERT(hashno > 0);
3059 	SFMMU_HASH_UNLOCK(hmebp);
3060 
3061 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3062 
3063 	SFMMU_HASH_LOCK(hmebp);
3064 }
3065 
3066 static void
3067 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3068 	int hashno)
3069 {
3070 	int hmeshift, shadow = 0;
3071 	hmeblk_tag hblktag;
3072 	struct hmehash_bucket *hmebp;
3073 	struct hme_blk *hmeblkp;
3074 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3075 	uint64_t hblkpa, prevpa, nx_pa;
3076 
3077 	ASSERT(hashno > 0);
3078 	hblktag.htag_id = sfmmup;
3079 	hblktag.htag_rehash = hashno;
3080 
3081 	hmeshift = HME_HASH_SHIFT(hashno);
3082 
3083 	while (addr < endaddr) {
3084 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3085 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3086 		SFMMU_HASH_LOCK(hmebp);
3087 		/* inline HME_HASH_SEARCH */
3088 		hmeblkp = hmebp->hmeblkp;
3089 		hblkpa = hmebp->hmeh_nextpa;
3090 		prevpa = 0;
3091 		pr_hblk = NULL;
3092 		while (hmeblkp) {
3093 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3094 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3095 				/* found hme_blk */
3096 				if (hmeblkp->hblk_shw_bit) {
3097 					if (hmeblkp->hblk_shw_mask) {
3098 						shadow = 1;
3099 						sfmmu_shadow_hcleanup(sfmmup,
3100 						    hmeblkp, hmebp);
3101 						break;
3102 					} else {
3103 						hmeblkp->hblk_shw_bit = 0;
3104 					}
3105 				}
3106 
3107 				/*
3108 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3109 				 * since hblk_unload() does not gurantee that.
3110 				 *
3111 				 * XXX - this could cause tteload() to spin
3112 				 * where sfmmu_shadow_hcleanup() is called.
3113 				 */
3114 			}
3115 
3116 			nx_hblk = hmeblkp->hblk_next;
3117 			nx_pa = hmeblkp->hblk_nextpa;
3118 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3119 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3120 					pr_hblk);
3121 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3122 			} else {
3123 				pr_hblk = hmeblkp;
3124 				prevpa = hblkpa;
3125 			}
3126 			hmeblkp = nx_hblk;
3127 			hblkpa = nx_pa;
3128 		}
3129 
3130 		SFMMU_HASH_UNLOCK(hmebp);
3131 
3132 		if (shadow) {
3133 			/*
3134 			 * We found another shadow hblk so cleaned its
3135 			 * children.  We need to go back and cleanup
3136 			 * the original hblk so we don't change the
3137 			 * addr.
3138 			 */
3139 			shadow = 0;
3140 		} else {
3141 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3142 				(1 << hmeshift));
3143 		}
3144 	}
3145 	sfmmu_hblks_list_purge(&list);
3146 }
3147 
3148 /*
3149  * Release one hardware address translation lock on the given address range.
3150  */
3151 void
3152 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3153 {
3154 	struct hmehash_bucket *hmebp;
3155 	hmeblk_tag hblktag;
3156 	int hmeshift, hashno = 1;
3157 	struct hme_blk *hmeblkp, *list = NULL;
3158 	caddr_t endaddr;
3159 
3160 	ASSERT(sfmmup != NULL);
3161 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3162 
3163 	ASSERT((sfmmup == ksfmmup) ||
3164 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3165 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3166 	endaddr = addr + len;
3167 	hblktag.htag_id = sfmmup;
3168 
3169 	/*
3170 	 * Spitfire supports 4 page sizes.
3171 	 * Most pages are expected to be of the smallest page size (8K) and
3172 	 * these will not need to be rehashed. 64K pages also don't need to be
3173 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3174 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3175 	 */
3176 	while (addr < endaddr) {
3177 		hmeshift = HME_HASH_SHIFT(hashno);
3178 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3179 		hblktag.htag_rehash = hashno;
3180 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3181 
3182 		SFMMU_HASH_LOCK(hmebp);
3183 
3184 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3185 		if (hmeblkp != NULL) {
3186 			/*
3187 			 * If we encounter a shadow hmeblk then
3188 			 * we know there are no valid hmeblks mapping
3189 			 * this address at this size or larger.
3190 			 * Just increment address by the smallest
3191 			 * page size.
3192 			 */
3193 			if (hmeblkp->hblk_shw_bit) {
3194 				addr += MMU_PAGESIZE;
3195 			} else {
3196 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3197 				    endaddr);
3198 			}
3199 			SFMMU_HASH_UNLOCK(hmebp);
3200 			hashno = 1;
3201 			continue;
3202 		}
3203 		SFMMU_HASH_UNLOCK(hmebp);
3204 
3205 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3206 			/*
3207 			 * We have traversed the whole list and rehashed
3208 			 * if necessary without finding the address to unlock
3209 			 * which should never happen.
3210 			 */
3211 			panic("sfmmu_unlock: addr not found. "
3212 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3213 		} else {
3214 			hashno++;
3215 		}
3216 	}
3217 
3218 	sfmmu_hblks_list_purge(&list);
3219 }
3220 
3221 /*
3222  * Function to unlock a range of addresses in an hmeblk.  It returns the
3223  * next address that needs to be unlocked.
3224  * Should be called with the hash lock held.
3225  */
3226 static caddr_t
3227 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3228 {
3229 	struct sf_hment *sfhme;
3230 	tte_t tteold, ttemod;
3231 	int ttesz, ret;
3232 
3233 	ASSERT(in_hblk_range(hmeblkp, addr));
3234 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3235 
3236 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3237 	ttesz = get_hblk_ttesz(hmeblkp);
3238 
3239 	HBLKTOHME(sfhme, hmeblkp, addr);
3240 	while (addr < endaddr) {
3241 readtte:
3242 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3243 		if (TTE_IS_VALID(&tteold)) {
3244 
3245 			ttemod = tteold;
3246 
3247 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3248 			    &sfhme->hme_tte);
3249 
3250 			if (ret < 0)
3251 				goto readtte;
3252 
3253 			if (hmeblkp->hblk_lckcnt == 0)
3254 				panic("zero hblk lckcnt");
3255 
3256 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3257 			    (uintptr_t)endaddr)
3258 				panic("can't unlock large tte");
3259 
3260 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3261 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3262 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3263 		} else {
3264 			panic("sfmmu_hblk_unlock: invalid tte");
3265 		}
3266 		addr += TTEBYTES(ttesz);
3267 		sfhme++;
3268 	}
3269 	return (addr);
3270 }
3271 
3272 /*
3273  * Physical Address Mapping Framework
3274  *
3275  * General rules:
3276  *
3277  * (1) Applies only to seg_kmem memory pages. To make things easier,
3278  *     seg_kpm addresses are also accepted by the routines, but nothing
3279  *     is done with them since by definition their PA mappings are static.
3280  * (2) hat_add_callback() may only be called while holding the page lock
3281  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()).
3282  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3283  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3284  *     callbacks may not sleep or acquire adaptive mutex locks.
3285  * (4) Either prehandler() or posthandler() (but not both) may be specified
3286  *     as being NULL.  Specifying an errhandler() is optional.
3287  *
3288  * Details of using the framework:
3289  *
3290  * registering a callback (hat_register_callback())
3291  *
3292  *	Pass prehandler, posthandler, errhandler addresses
3293  *	as described below. If capture_cpus argument is nonzero,
3294  *	suspend callback to the prehandler will occur with CPUs
3295  *	captured and executing xc_loop() and CPUs will remain
3296  *	captured until after the posthandler suspend callback
3297  *	occurs.
3298  *
3299  * adding a callback (hat_add_callback())
3300  *
3301  *      as_pagelock();
3302  *	hat_add_callback();
3303  *      save returned pfn in private data structures or program registers;
3304  *      as_pageunlock();
3305  *
3306  * prehandler()
3307  *
3308  *	Stop all accesses by physical address to this memory page.
3309  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3310  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3311  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3312  *	locks must be XCALL_PIL or higher locks).
3313  *
3314  *	May return the following errors:
3315  *		EIO:	A fatal error has occurred. This will result in panic.
3316  *		EAGAIN:	The page cannot be suspended. This will fail the
3317  *			relocation.
3318  *		0:	Success.
3319  *
3320  * posthandler()
3321  *
3322  *      Save new pfn in private data structures or program registers;
3323  *	not allowed to fail (non-zero return values will result in panic).
3324  *
3325  * errhandler()
3326  *
3327  *	called when an error occurs related to the callback.  Currently
3328  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3329  *	a page is being freed, but there are still outstanding callback(s)
3330  *	registered on the page.
3331  *
3332  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3333  *
3334  *	stop using physical address
3335  *	hat_delete_callback();
3336  *
3337  */
3338 
3339 /*
3340  * Register a callback class.  Each subsystem should do this once and
3341  * cache the id_t returned for use in setting up and tearing down callbacks.
3342  *
3343  * There is no facility for removing callback IDs once they are created;
3344  * the "key" should be unique for each module, so in case a module is unloaded
3345  * and subsequently re-loaded, we can recycle the module's previous entry.
3346  */
3347 id_t
3348 hat_register_callback(int key,
3349 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3350 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3351 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3352 	int capture_cpus)
3353 {
3354 	id_t id;
3355 
3356 	/*
3357 	 * Search the table for a pre-existing callback associated with
3358 	 * the identifier "key".  If one exists, we re-use that entry in
3359 	 * the table for this instance, otherwise we assign the next
3360 	 * available table slot.
3361 	 */
3362 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3363 		if (sfmmu_cb_table[id].key == key)
3364 			break;
3365 	}
3366 
3367 	if (id == sfmmu_max_cb_id) {
3368 		id = sfmmu_cb_nextid++;
3369 		if (id >= sfmmu_max_cb_id)
3370 			panic("hat_register_callback: out of callback IDs");
3371 	}
3372 
3373 	ASSERT(prehandler != NULL || posthandler != NULL);
3374 
3375 	sfmmu_cb_table[id].key = key;
3376 	sfmmu_cb_table[id].prehandler = prehandler;
3377 	sfmmu_cb_table[id].posthandler = posthandler;
3378 	sfmmu_cb_table[id].errhandler = errhandler;
3379 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3380 
3381 	return (id);
3382 }
3383 
3384 /*
3385  * Add relocation callbacks to the specified addr/len which will be called
3386  * when relocating the associated page.  See the description of pre and
3387  * posthandler above for more details.  IMPT: this operation is only valid
3388  * on seg_kmem pages!!
3389  *
3390  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3391  * locked internally so the caller must be able to deal with the callback
3392  * running even before this function has returned.  If HAC_PAGELOCK is not
3393  * set, it is assumed that the underlying memory pages are locked.
3394  *
3395  * Since the caller must track the individual page boundaries anyway,
3396  * we only allow a callback to be added to a single page (large
3397  * or small).  Thus [addr, addr + len) MUST be contained within a single
3398  * page.
3399  *
3400  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3401  * in which case the corresponding callback will be called once with each
3402  * unique parameter specified. The number of subsequent deletes must match
3403  * since reference counts are held.  If a callback is desired for each
3404  * virtual object with the same parameter specified for multiple callbacks,
3405  * a different virtual address should be specified at the time of
3406  * callback registration.
3407  *
3408  * Returns the pfn of the underlying kernel page in *rpfn
3409  * on success, or PFN_INVALID on failure.
3410  *
3411  * Returns values:
3412  *    0:      success
3413  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3414  *    EINVAL: callback ID is not valid
3415  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3416  *            space, or crosses a page boundary
3417  */
3418 int
3419 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3420 	void *pvt, pfn_t *rpfn)
3421 {
3422 	struct 		hmehash_bucket *hmebp;
3423 	hmeblk_tag 	hblktag;
3424 	struct hme_blk	*hmeblkp;
3425 	int 		hmeshift, hashno;
3426 	caddr_t 	saddr, eaddr, baseaddr;
3427 	struct pa_hment *pahmep, *tpahmep;
3428 	struct sf_hment *sfhmep, *osfhmep, *tsfhmep;
3429 	kmutex_t	*pml;
3430 	tte_t   	tte;
3431 	page_t		*pp, *rpp;
3432 	pfn_t		pfn;
3433 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3434 	int		locked = 0;
3435 
3436 	/*
3437 	 * For KPM mappings, just return the physical address since we
3438 	 * don't need to register any callbacks.
3439 	 */
3440 	if (IS_KPM_ADDR(vaddr)) {
3441 		uint64_t paddr;
3442 		SFMMU_KPM_VTOP(vaddr, paddr);
3443 		*rpfn = btop(paddr);
3444 		return (0);
3445 	}
3446 
3447 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3448 		*rpfn = PFN_INVALID;
3449 		return (EINVAL);
3450 	}
3451 
3452 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3453 		*rpfn = PFN_INVALID;
3454 		return (ENOMEM);
3455 	}
3456 
3457 	sfhmep = &pahmep->sfment;
3458 
3459 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3460 	eaddr = saddr + len;
3461 
3462 rehash:
3463 	/* Find the mapping(s) for this page */
3464 	for (hashno = TTE64K, hmeblkp = NULL;
3465 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3466 	    hashno++) {
3467 		hmeshift = HME_HASH_SHIFT(hashno);
3468 		hblktag.htag_id = ksfmmup;
3469 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3470 		hblktag.htag_rehash = hashno;
3471 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3472 
3473 		SFMMU_HASH_LOCK(hmebp);
3474 
3475 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3476 
3477 		if (hmeblkp == NULL)
3478 			SFMMU_HASH_UNLOCK(hmebp);
3479 	}
3480 
3481 	if (hmeblkp == NULL) {
3482 		kmem_cache_free(pa_hment_cache, pahmep);
3483 		*rpfn = PFN_INVALID;
3484 		return (ENXIO);
3485 	}
3486 
3487 	/*
3488 	 * Make sure the boundaries for the callback fall within this
3489 	 * single mapping.
3490 	 */
3491 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3492 	ASSERT(saddr >= baseaddr);
3493 	if (eaddr > (caddr_t)get_hblk_endaddr(hmeblkp)) {
3494 		SFMMU_HASH_UNLOCK(hmebp);
3495 		kmem_cache_free(pa_hment_cache, pahmep);
3496 		*rpfn = PFN_INVALID;
3497 		return (ENXIO);
3498 	}
3499 
3500 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3501 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3502 
3503 	ASSERT(TTE_IS_VALID(&tte));
3504 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3505 
3506 	/*
3507 	 * The pfn may not have a page_t underneath in which case we
3508 	 * just return it. This can happen if we are doing I/O to a
3509 	 * static portion of the kernel's address space, for instance.
3510 	 */
3511 	pp = osfhmep->hme_page;
3512 	if (pp == NULL || pp->p_vnode != &kvp) {
3513 		SFMMU_HASH_UNLOCK(hmebp);
3514 		kmem_cache_free(pa_hment_cache, pahmep);
3515 		*rpfn = pfn;
3516 		return (0);
3517 	}
3518 
3519 	pml = sfmmu_mlist_enter(pp);
3520 
3521 	if ((flags & HAC_PAGELOCK) && !locked) {
3522 		if (!page_trylock(pp, SE_SHARED)) {
3523 			page_t *tpp;
3524 
3525 			/*
3526 			 * Somebody is holding SE_EXCL lock.  Drop all
3527 			 * our locks, lookup the page in &kvp, and
3528 			 * retry. If it doesn't exist in &kvp, then we
3529 			 * die here; we should have caught it above,
3530 			 * meaning the page must have changed identity
3531 			 * (e.g. the caller didn't hold onto the page
3532 			 * lock after establishing the kernel mapping)
3533 			 */
3534 			sfmmu_mlist_exit(pml);
3535 			SFMMU_HASH_UNLOCK(hmebp);
3536 			tpp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3537 			if (tpp == NULL) {
3538 				panic("hat_add_callback: page not found: 0x%p",
3539 				    pp);
3540 			}
3541 			pp = tpp;
3542 			rpp = PP_PAGEROOT(pp);
3543 			if (rpp != pp) {
3544 				page_unlock(pp);
3545 				(void) page_lock(rpp, SE_SHARED, NULL,
3546 				    P_NO_RECLAIM);
3547 			}
3548 			locked = 1;
3549 			goto rehash;
3550 		}
3551 		locked = 1;
3552 	}
3553 
3554 	if (!PAGE_LOCKED(pp) && !panicstr)
3555 		panic("hat_add_callback: page 0x%p not locked", pp);
3556 
3557 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3558 	    pp->p_offset < (u_offset_t)baseaddr ||
3559 	    pp->p_offset > (u_offset_t)eaddr) {
3560 		/*
3561 		 * The page moved before we got our hands on it.  Drop
3562 		 * all the locks and try again.
3563 		 */
3564 		ASSERT((flags & HAC_PAGELOCK) != 0);
3565 		sfmmu_mlist_exit(pml);
3566 		SFMMU_HASH_UNLOCK(hmebp);
3567 		page_unlock(pp);
3568 		locked = 0;
3569 		goto rehash;
3570 	}
3571 
3572 	ASSERT(osfhmep->hme_page == pp);
3573 
3574 	for (tsfhmep = pp->p_mapping; tsfhmep != NULL;
3575 	    tsfhmep = tsfhmep->hme_next) {
3576 
3577 		/*
3578 		 * skip va to pa mappings
3579 		 */
3580 		if (!IS_PAHME(tsfhmep))
3581 			continue;
3582 
3583 		tpahmep = tsfhmep->hme_data;
3584 		ASSERT(tpahmep != NULL);
3585 
3586 		/*
3587 		 * See if the pahment already exists.
3588 		 */
3589 		if ((tpahmep->pvt == pvt) &&
3590 		    (tpahmep->addr == vaddr) &&
3591 		    (tpahmep->len == len)) {
3592 			ASSERT(tpahmep->cb_id == callback_id);
3593 			tpahmep->refcnt++;
3594 			pp->p_share++;
3595 
3596 			sfmmu_mlist_exit(pml);
3597 			SFMMU_HASH_UNLOCK(hmebp);
3598 
3599 			if (locked)
3600 				page_unlock(pp);
3601 
3602 			kmem_cache_free(pa_hment_cache, pahmep);
3603 
3604 			*rpfn = pfn;
3605 			return (0);
3606 		}
3607 	}
3608 
3609 	/*
3610 	 * setup this shiny new pa_hment ..
3611 	 */
3612 	pp->p_share++;
3613 	pahmep->cb_id = callback_id;
3614 	pahmep->addr = vaddr;
3615 	pahmep->len = len;
3616 	pahmep->refcnt = 1;
3617 	pahmep->flags = 0;
3618 	pahmep->pvt = pvt;
3619 
3620 	/*
3621 	 * .. and also set up the sf_hment and link to p_mapping list.
3622 	 */
3623 	sfhmep->hme_tte.ll = 0;
3624 	sfhmep->hme_data = pahmep;
3625 	sfhmep->hme_prev = osfhmep;
3626 	sfhmep->hme_next = osfhmep->hme_next;
3627 
3628 	if (osfhmep->hme_next)
3629 		osfhmep->hme_next->hme_prev = sfhmep;
3630 
3631 	osfhmep->hme_next = sfhmep;
3632 
3633 	sfmmu_mlist_exit(pml);
3634 	SFMMU_HASH_UNLOCK(hmebp);
3635 
3636 	*rpfn = pfn;
3637 	if (locked)
3638 		page_unlock(pp);
3639 
3640 	return (0);
3641 }
3642 
3643 /*
3644  * Remove the relocation callbacks from the specified addr/len.
3645  */
3646 void
3647 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags)
3648 {
3649 	struct		hmehash_bucket *hmebp;
3650 	hmeblk_tag	hblktag;
3651 	struct hme_blk	*hmeblkp;
3652 	int		hmeshift, hashno;
3653 	caddr_t		saddr, eaddr, baseaddr;
3654 	struct pa_hment	*pahmep;
3655 	struct sf_hment	*sfhmep, *osfhmep;
3656 	kmutex_t	*pml;
3657 	tte_t		tte;
3658 	page_t		*pp, *rpp;
3659 	int		locked = 0;
3660 
3661 	if (IS_KPM_ADDR(vaddr))
3662 		return;
3663 
3664 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3665 	eaddr = saddr + len;
3666 
3667 rehash:
3668 	/* Find the mapping(s) for this page */
3669 	for (hashno = TTE64K, hmeblkp = NULL;
3670 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3671 	    hashno++) {
3672 		hmeshift = HME_HASH_SHIFT(hashno);
3673 		hblktag.htag_id = ksfmmup;
3674 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3675 		hblktag.htag_rehash = hashno;
3676 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3677 
3678 		SFMMU_HASH_LOCK(hmebp);
3679 
3680 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3681 
3682 		if (hmeblkp == NULL)
3683 			SFMMU_HASH_UNLOCK(hmebp);
3684 	}
3685 
3686 	if (hmeblkp == NULL) {
3687 		if (!panicstr) {
3688 			panic("hat_delete_callback: addr 0x%p not found",
3689 			    saddr);
3690 		}
3691 		return;
3692 	}
3693 
3694 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3695 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3696 
3697 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3698 	ASSERT(TTE_IS_VALID(&tte));
3699 
3700 	pp = osfhmep->hme_page;
3701 	if (pp == NULL || pp->p_vnode != &kvp) {
3702 		SFMMU_HASH_UNLOCK(hmebp);
3703 		return;
3704 	}
3705 
3706 	pml = sfmmu_mlist_enter(pp);
3707 
3708 	if ((flags & HAC_PAGELOCK) && !locked) {
3709 		if (!page_trylock(pp, SE_SHARED)) {
3710 			/*
3711 			 * Somebody is holding SE_EXCL lock.  Drop all
3712 			 * our locks, lookup the page in &kvp, and
3713 			 * retry.
3714 			 */
3715 			sfmmu_mlist_exit(pml);
3716 			SFMMU_HASH_UNLOCK(hmebp);
3717 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3718 			ASSERT(pp != NULL);
3719 			rpp = PP_PAGEROOT(pp);
3720 			if (rpp != pp) {
3721 				page_unlock(pp);
3722 				(void) page_lock(rpp, SE_SHARED, NULL,
3723 				    P_NO_RECLAIM);
3724 			}
3725 			locked = 1;
3726 			goto rehash;
3727 		}
3728 		locked = 1;
3729 	}
3730 
3731 	ASSERT(PAGE_LOCKED(pp));
3732 
3733 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3734 	    pp->p_offset < (u_offset_t)baseaddr ||
3735 	    pp->p_offset > (u_offset_t)eaddr) {
3736 		/*
3737 		 * The page moved before we got our hands on it.  Drop
3738 		 * all the locks and try again.
3739 		 */
3740 		ASSERT((flags & HAC_PAGELOCK) != 0);
3741 		sfmmu_mlist_exit(pml);
3742 		SFMMU_HASH_UNLOCK(hmebp);
3743 		page_unlock(pp);
3744 		locked = 0;
3745 		goto rehash;
3746 	}
3747 
3748 	ASSERT(osfhmep->hme_page == pp);
3749 
3750 	for (sfhmep = pp->p_mapping; sfhmep != NULL;
3751 	    sfhmep = sfhmep->hme_next) {
3752 
3753 		/*
3754 		 * skip va<->pa mappings
3755 		 */
3756 		if (!IS_PAHME(sfhmep))
3757 			continue;
3758 
3759 		pahmep = sfhmep->hme_data;
3760 		ASSERT(pahmep != NULL);
3761 
3762 		/*
3763 		 * if pa_hment matches, remove it
3764 		 */
3765 		if ((pahmep->pvt == pvt) &&
3766 		    (pahmep->addr == vaddr) &&
3767 		    (pahmep->len == len)) {
3768 			break;
3769 		}
3770 	}
3771 
3772 	if (sfhmep == NULL) {
3773 		if (!panicstr) {
3774 			panic("hat_delete_callback: pa_hment not found, pp %p",
3775 			    (void *)pp);
3776 		}
3777 		return;
3778 	}
3779 
3780 	/*
3781 	 * Note: at this point a valid kernel mapping must still be
3782 	 * present on this page.
3783 	 */
3784 	pp->p_share--;
3785 	if (pp->p_share <= 0)
3786 		panic("hat_delete_callback: zero p_share");
3787 
3788 	if (--pahmep->refcnt == 0) {
3789 		if (pahmep->flags != 0)
3790 			panic("hat_delete_callback: pa_hment is busy");
3791 
3792 		/*
3793 		 * Remove sfhmep from the mapping list for the page.
3794 		 */
3795 		if (sfhmep->hme_prev) {
3796 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3797 		} else {
3798 			pp->p_mapping = sfhmep->hme_next;
3799 		}
3800 
3801 		if (sfhmep->hme_next)
3802 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3803 
3804 		sfmmu_mlist_exit(pml);
3805 		SFMMU_HASH_UNLOCK(hmebp);
3806 
3807 		if (locked)
3808 			page_unlock(pp);
3809 
3810 		kmem_cache_free(pa_hment_cache, pahmep);
3811 		return;
3812 	}
3813 
3814 	sfmmu_mlist_exit(pml);
3815 	SFMMU_HASH_UNLOCK(hmebp);
3816 	if (locked)
3817 		page_unlock(pp);
3818 }
3819 
3820 /*
3821  * hat_probe returns 1 if the translation for the address 'addr' is
3822  * loaded, zero otherwise.
3823  *
3824  * hat_probe should be used only for advisorary purposes because it may
3825  * occasionally return the wrong value. The implementation must guarantee that
3826  * returning the wrong value is a very rare event. hat_probe is used
3827  * to implement optimizations in the segment drivers.
3828  *
3829  */
3830 int
3831 hat_probe(struct hat *sfmmup, caddr_t addr)
3832 {
3833 	pfn_t pfn;
3834 	tte_t tte;
3835 
3836 	ASSERT(sfmmup != NULL);
3837 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3838 
3839 	ASSERT((sfmmup == ksfmmup) ||
3840 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3841 
3842 	if (sfmmup == ksfmmup) {
3843 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3844 		    == PFN_SUSPENDED) {
3845 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3846 		}
3847 	} else {
3848 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3849 	}
3850 
3851 	if (pfn != PFN_INVALID)
3852 		return (1);
3853 	else
3854 		return (0);
3855 }
3856 
3857 ssize_t
3858 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3859 {
3860 	tte_t tte;
3861 
3862 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3863 
3864 	sfmmu_gettte(sfmmup, addr, &tte);
3865 	if (TTE_IS_VALID(&tte)) {
3866 		return (TTEBYTES(TTE_CSZ(&tte)));
3867 	}
3868 	return (-1);
3869 }
3870 
3871 static void
3872 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3873 {
3874 	struct hmehash_bucket *hmebp;
3875 	hmeblk_tag hblktag;
3876 	int hmeshift, hashno = 1;
3877 	struct hme_blk *hmeblkp, *list = NULL;
3878 	struct sf_hment *sfhmep;
3879 
3880 	/* support for ISM */
3881 	ism_map_t	*ism_map;
3882 	ism_blk_t	*ism_blkp;
3883 	int		i;
3884 	sfmmu_t		*ism_hatid = NULL;
3885 	sfmmu_t		*locked_hatid = NULL;
3886 
3887 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
3888 
3889 	ism_blkp = sfmmup->sfmmu_iblk;
3890 	if (ism_blkp) {
3891 		sfmmu_ismhat_enter(sfmmup, 0);
3892 		locked_hatid = sfmmup;
3893 	}
3894 	while (ism_blkp && ism_hatid == NULL) {
3895 		ism_map = ism_blkp->iblk_maps;
3896 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
3897 			if (addr >= ism_start(ism_map[i]) &&
3898 			    addr < ism_end(ism_map[i])) {
3899 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
3900 				addr = (caddr_t)(addr -
3901 					ism_start(ism_map[i]));
3902 				break;
3903 			}
3904 		}
3905 		ism_blkp = ism_blkp->iblk_next;
3906 	}
3907 	if (locked_hatid) {
3908 		sfmmu_ismhat_exit(locked_hatid, 0);
3909 	}
3910 
3911 	hblktag.htag_id = sfmmup;
3912 	ttep->ll = 0;
3913 
3914 	do {
3915 		hmeshift = HME_HASH_SHIFT(hashno);
3916 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3917 		hblktag.htag_rehash = hashno;
3918 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3919 
3920 		SFMMU_HASH_LOCK(hmebp);
3921 
3922 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3923 		if (hmeblkp != NULL) {
3924 			HBLKTOHME(sfhmep, hmeblkp, addr);
3925 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
3926 			SFMMU_HASH_UNLOCK(hmebp);
3927 			break;
3928 		}
3929 		SFMMU_HASH_UNLOCK(hmebp);
3930 		hashno++;
3931 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
3932 
3933 	sfmmu_hblks_list_purge(&list);
3934 }
3935 
3936 uint_t
3937 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
3938 {
3939 	tte_t tte;
3940 
3941 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3942 
3943 	sfmmu_gettte(sfmmup, addr, &tte);
3944 	if (TTE_IS_VALID(&tte)) {
3945 		*attr = sfmmu_ptov_attr(&tte);
3946 		return (0);
3947 	}
3948 	*attr = 0;
3949 	return ((uint_t)0xffffffff);
3950 }
3951 
3952 /*
3953  * Enables more attributes on specified address range (ie. logical OR)
3954  */
3955 void
3956 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3957 {
3958 	if (hat->sfmmu_xhat_provider) {
3959 		XHAT_SETATTR(hat, addr, len, attr);
3960 		return;
3961 	} else {
3962 		/*
3963 		 * This must be a CPU HAT. If the address space has
3964 		 * XHATs attached, change attributes for all of them,
3965 		 * just in case
3966 		 */
3967 		ASSERT(hat->sfmmu_as != NULL);
3968 		if (hat->sfmmu_as->a_xhat != NULL)
3969 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
3970 	}
3971 
3972 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
3973 }
3974 
3975 /*
3976  * Assigns attributes to the specified address range.  All the attributes
3977  * are specified.
3978  */
3979 void
3980 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3981 {
3982 	if (hat->sfmmu_xhat_provider) {
3983 		XHAT_CHGATTR(hat, addr, len, attr);
3984 		return;
3985 	} else {
3986 		/*
3987 		 * This must be a CPU HAT. If the address space has
3988 		 * XHATs attached, change attributes for all of them,
3989 		 * just in case
3990 		 */
3991 		ASSERT(hat->sfmmu_as != NULL);
3992 		if (hat->sfmmu_as->a_xhat != NULL)
3993 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
3994 	}
3995 
3996 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
3997 }
3998 
3999 /*
4000  * Remove attributes on the specified address range (ie. loginal NAND)
4001  */
4002 void
4003 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4004 {
4005 	if (hat->sfmmu_xhat_provider) {
4006 		XHAT_CLRATTR(hat, addr, len, attr);
4007 		return;
4008 	} else {
4009 		/*
4010 		 * This must be a CPU HAT. If the address space has
4011 		 * XHATs attached, change attributes for all of them,
4012 		 * just in case
4013 		 */
4014 		ASSERT(hat->sfmmu_as != NULL);
4015 		if (hat->sfmmu_as->a_xhat != NULL)
4016 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4017 	}
4018 
4019 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4020 }
4021 
4022 /*
4023  * Change attributes on an address range to that specified by attr and mode.
4024  */
4025 static void
4026 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4027 	int mode)
4028 {
4029 	struct hmehash_bucket *hmebp;
4030 	hmeblk_tag hblktag;
4031 	int hmeshift, hashno = 1;
4032 	struct hme_blk *hmeblkp, *list = NULL;
4033 	caddr_t endaddr;
4034 	cpuset_t cpuset;
4035 	demap_range_t dmr;
4036 
4037 	CPUSET_ZERO(cpuset);
4038 
4039 	ASSERT((sfmmup == ksfmmup) ||
4040 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4041 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4042 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4043 
4044 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4045 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4046 		panic("user addr %p in kernel space",
4047 		    (void *)addr);
4048 	}
4049 
4050 	endaddr = addr + len;
4051 	hblktag.htag_id = sfmmup;
4052 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4053 
4054 	while (addr < endaddr) {
4055 		hmeshift = HME_HASH_SHIFT(hashno);
4056 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4057 		hblktag.htag_rehash = hashno;
4058 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4059 
4060 		SFMMU_HASH_LOCK(hmebp);
4061 
4062 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4063 		if (hmeblkp != NULL) {
4064 			/*
4065 			 * We've encountered a shadow hmeblk so skip the range
4066 			 * of the next smaller mapping size.
4067 			 */
4068 			if (hmeblkp->hblk_shw_bit) {
4069 				ASSERT(sfmmup != ksfmmup);
4070 				ASSERT(hashno > 1);
4071 				addr = (caddr_t)P2END((uintptr_t)addr,
4072 					    TTEBYTES(hashno - 1));
4073 			} else {
4074 				addr = sfmmu_hblk_chgattr(sfmmup,
4075 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4076 			}
4077 			SFMMU_HASH_UNLOCK(hmebp);
4078 			hashno = 1;
4079 			continue;
4080 		}
4081 		SFMMU_HASH_UNLOCK(hmebp);
4082 
4083 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4084 			/*
4085 			 * We have traversed the whole list and rehashed
4086 			 * if necessary without finding the address to chgattr.
4087 			 * This is ok, so we increment the address by the
4088 			 * smallest hmeblk range for kernel mappings or for
4089 			 * user mappings with no large pages, and the largest
4090 			 * hmeblk range, to account for shadow hmeblks, for
4091 			 * user mappings with large pages and continue.
4092 			 */
4093 			if (sfmmup == ksfmmup)
4094 				addr = (caddr_t)P2END((uintptr_t)addr,
4095 					    TTEBYTES(1));
4096 			else
4097 				addr = (caddr_t)P2END((uintptr_t)addr,
4098 					    TTEBYTES(hashno));
4099 			hashno = 1;
4100 		} else {
4101 			hashno++;
4102 		}
4103 	}
4104 
4105 	sfmmu_hblks_list_purge(&list);
4106 	DEMAP_RANGE_FLUSH(&dmr);
4107 	cpuset = sfmmup->sfmmu_cpusran;
4108 	xt_sync(cpuset);
4109 }
4110 
4111 /*
4112  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4113  * next addres that needs to be chgattr.
4114  * It should be called with the hash lock held.
4115  * XXX It should be possible to optimize chgattr by not flushing every time but
4116  * on the other hand:
4117  * 1. do one flush crosscall.
4118  * 2. only flush if we are increasing permissions (make sure this will work)
4119  */
4120 static caddr_t
4121 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4122 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4123 {
4124 	tte_t tte, tteattr, tteflags, ttemod;
4125 	struct sf_hment *sfhmep;
4126 	int ttesz;
4127 	struct page *pp = NULL;
4128 	kmutex_t *pml, *pmtx;
4129 	int ret;
4130 	int use_demap_range;
4131 #if defined(SF_ERRATA_57)
4132 	int check_exec;
4133 #endif
4134 
4135 	ASSERT(in_hblk_range(hmeblkp, addr));
4136 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4137 
4138 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4139 	ttesz = get_hblk_ttesz(hmeblkp);
4140 
4141 	/*
4142 	 * Flush the current demap region if addresses have been
4143 	 * skipped or the page size doesn't match.
4144 	 */
4145 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4146 	if (use_demap_range) {
4147 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4148 	} else {
4149 		DEMAP_RANGE_FLUSH(dmrp);
4150 	}
4151 
4152 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4153 #if defined(SF_ERRATA_57)
4154 	check_exec = (sfmmup != ksfmmup) &&
4155 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4156 	    TTE_IS_EXECUTABLE(&tteattr);
4157 #endif
4158 	HBLKTOHME(sfhmep, hmeblkp, addr);
4159 	while (addr < endaddr) {
4160 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4161 		if (TTE_IS_VALID(&tte)) {
4162 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4163 				/*
4164 				 * if the new attr is the same as old
4165 				 * continue
4166 				 */
4167 				goto next_addr;
4168 			}
4169 			if (!TTE_IS_WRITABLE(&tteattr)) {
4170 				/*
4171 				 * make sure we clear hw modify bit if we
4172 				 * removing write protections
4173 				 */
4174 				tteflags.tte_intlo |= TTE_HWWR_INT;
4175 			}
4176 
4177 			pml = NULL;
4178 			pp = sfhmep->hme_page;
4179 			if (pp) {
4180 				pml = sfmmu_mlist_enter(pp);
4181 			}
4182 
4183 			if (pp != sfhmep->hme_page) {
4184 				/*
4185 				 * tte must have been unloaded.
4186 				 */
4187 				ASSERT(pml);
4188 				sfmmu_mlist_exit(pml);
4189 				continue;
4190 			}
4191 
4192 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4193 
4194 			ttemod = tte;
4195 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4196 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4197 
4198 #if defined(SF_ERRATA_57)
4199 			if (check_exec && addr < errata57_limit)
4200 				ttemod.tte_exec_perm = 0;
4201 #endif
4202 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4203 			    &sfhmep->hme_tte);
4204 
4205 			if (ret < 0) {
4206 				/* tte changed underneath us */
4207 				if (pml) {
4208 					sfmmu_mlist_exit(pml);
4209 				}
4210 				continue;
4211 			}
4212 
4213 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4214 				/*
4215 				 * need to sync if we are clearing modify bit.
4216 				 */
4217 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4218 			}
4219 
4220 			if (pp && PP_ISRO(pp)) {
4221 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4222 					pmtx = sfmmu_page_enter(pp);
4223 					PP_CLRRO(pp);
4224 					sfmmu_page_exit(pmtx);
4225 				}
4226 			}
4227 
4228 			if (ret > 0 && use_demap_range) {
4229 				DEMAP_RANGE_MARKPG(dmrp, addr);
4230 			} else if (ret > 0) {
4231 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4232 			}
4233 
4234 			if (pml) {
4235 				sfmmu_mlist_exit(pml);
4236 			}
4237 		}
4238 next_addr:
4239 		addr += TTEBYTES(ttesz);
4240 		sfhmep++;
4241 		DEMAP_RANGE_NEXTPG(dmrp);
4242 	}
4243 	return (addr);
4244 }
4245 
4246 /*
4247  * This routine converts virtual attributes to physical ones.  It will
4248  * update the tteflags field with the tte mask corresponding to the attributes
4249  * affected and it returns the new attributes.  It will also clear the modify
4250  * bit if we are taking away write permission.  This is necessary since the
4251  * modify bit is the hardware permission bit and we need to clear it in order
4252  * to detect write faults.
4253  */
4254 static uint64_t
4255 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4256 {
4257 	tte_t ttevalue;
4258 
4259 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4260 
4261 	switch (mode) {
4262 	case SFMMU_CHGATTR:
4263 		/* all attributes specified */
4264 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4265 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4266 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4267 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4268 		break;
4269 	case SFMMU_SETATTR:
4270 		ASSERT(!(attr & ~HAT_PROT_MASK));
4271 		ttemaskp->ll = 0;
4272 		ttevalue.ll = 0;
4273 		/*
4274 		 * a valid tte implies exec and read for sfmmu
4275 		 * so no need to do anything about them.
4276 		 * since priviledged access implies user access
4277 		 * PROT_USER doesn't make sense either.
4278 		 */
4279 		if (attr & PROT_WRITE) {
4280 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4281 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4282 		}
4283 		break;
4284 	case SFMMU_CLRATTR:
4285 		/* attributes will be nand with current ones */
4286 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4287 			panic("sfmmu: attr %x not supported", attr);
4288 		}
4289 		ttemaskp->ll = 0;
4290 		ttevalue.ll = 0;
4291 		if (attr & PROT_WRITE) {
4292 			/* clear both writable and modify bit */
4293 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4294 		}
4295 		if (attr & PROT_USER) {
4296 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4297 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4298 		}
4299 		break;
4300 	default:
4301 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4302 	}
4303 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4304 	return (ttevalue.ll);
4305 }
4306 
4307 static uint_t
4308 sfmmu_ptov_attr(tte_t *ttep)
4309 {
4310 	uint_t attr;
4311 
4312 	ASSERT(TTE_IS_VALID(ttep));
4313 
4314 	attr = PROT_READ;
4315 
4316 	if (TTE_IS_WRITABLE(ttep)) {
4317 		attr |= PROT_WRITE;
4318 	}
4319 	if (TTE_IS_EXECUTABLE(ttep)) {
4320 		attr |= PROT_EXEC;
4321 	}
4322 	if (!TTE_IS_PRIVILEGED(ttep)) {
4323 		attr |= PROT_USER;
4324 	}
4325 	if (TTE_IS_NFO(ttep)) {
4326 		attr |= HAT_NOFAULT;
4327 	}
4328 	if (TTE_IS_NOSYNC(ttep)) {
4329 		attr |= HAT_NOSYNC;
4330 	}
4331 	if (TTE_IS_SIDEFFECT(ttep)) {
4332 		attr |= SFMMU_SIDEFFECT;
4333 	}
4334 	if (!TTE_IS_VCACHEABLE(ttep)) {
4335 		attr |= SFMMU_UNCACHEVTTE;
4336 	}
4337 	if (!TTE_IS_PCACHEABLE(ttep)) {
4338 		attr |= SFMMU_UNCACHEPTTE;
4339 	}
4340 	return (attr);
4341 }
4342 
4343 /*
4344  * hat_chgprot is a deprecated hat call.  New segment drivers
4345  * should store all attributes and use hat_*attr calls.
4346  *
4347  * Change the protections in the virtual address range
4348  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4349  * then remove write permission, leaving the other
4350  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4351  *
4352  */
4353 void
4354 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4355 {
4356 	struct hmehash_bucket *hmebp;
4357 	hmeblk_tag hblktag;
4358 	int hmeshift, hashno = 1;
4359 	struct hme_blk *hmeblkp, *list = NULL;
4360 	caddr_t endaddr;
4361 	cpuset_t cpuset;
4362 	demap_range_t dmr;
4363 
4364 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4365 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4366 
4367 	if (sfmmup->sfmmu_xhat_provider) {
4368 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4369 		return;
4370 	} else {
4371 		/*
4372 		 * This must be a CPU HAT. If the address space has
4373 		 * XHATs attached, change attributes for all of them,
4374 		 * just in case
4375 		 */
4376 		ASSERT(sfmmup->sfmmu_as != NULL);
4377 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4378 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4379 	}
4380 
4381 	CPUSET_ZERO(cpuset);
4382 
4383 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4384 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4385 		panic("user addr %p vprot %x in kernel space",
4386 		    (void *)addr, vprot);
4387 	}
4388 	endaddr = addr + len;
4389 	hblktag.htag_id = sfmmup;
4390 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4391 
4392 	while (addr < endaddr) {
4393 		hmeshift = HME_HASH_SHIFT(hashno);
4394 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4395 		hblktag.htag_rehash = hashno;
4396 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4397 
4398 		SFMMU_HASH_LOCK(hmebp);
4399 
4400 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4401 		if (hmeblkp != NULL) {
4402 			/*
4403 			 * We've encountered a shadow hmeblk so skip the range
4404 			 * of the next smaller mapping size.
4405 			 */
4406 			if (hmeblkp->hblk_shw_bit) {
4407 				ASSERT(sfmmup != ksfmmup);
4408 				ASSERT(hashno > 1);
4409 				addr = (caddr_t)P2END((uintptr_t)addr,
4410 					    TTEBYTES(hashno - 1));
4411 			} else {
4412 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4413 					addr, endaddr, &dmr, vprot);
4414 			}
4415 			SFMMU_HASH_UNLOCK(hmebp);
4416 			hashno = 1;
4417 			continue;
4418 		}
4419 		SFMMU_HASH_UNLOCK(hmebp);
4420 
4421 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4422 			/*
4423 			 * We have traversed the whole list and rehashed
4424 			 * if necessary without finding the address to chgprot.
4425 			 * This is ok so we increment the address by the
4426 			 * smallest hmeblk range for kernel mappings and the
4427 			 * largest hmeblk range, to account for shadow hmeblks,
4428 			 * for user mappings and continue.
4429 			 */
4430 			if (sfmmup == ksfmmup)
4431 				addr = (caddr_t)P2END((uintptr_t)addr,
4432 					    TTEBYTES(1));
4433 			else
4434 				addr = (caddr_t)P2END((uintptr_t)addr,
4435 					    TTEBYTES(hashno));
4436 			hashno = 1;
4437 		} else {
4438 			hashno++;
4439 		}
4440 	}
4441 
4442 	sfmmu_hblks_list_purge(&list);
4443 	DEMAP_RANGE_FLUSH(&dmr);
4444 	cpuset = sfmmup->sfmmu_cpusran;
4445 	xt_sync(cpuset);
4446 }
4447 
4448 /*
4449  * This function chgprots a range of addresses in an hmeblk.  It returns the
4450  * next addres that needs to be chgprot.
4451  * It should be called with the hash lock held.
4452  * XXX It shold be possible to optimize chgprot by not flushing every time but
4453  * on the other hand:
4454  * 1. do one flush crosscall.
4455  * 2. only flush if we are increasing permissions (make sure this will work)
4456  */
4457 static caddr_t
4458 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4459 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4460 {
4461 	uint_t pprot;
4462 	tte_t tte, ttemod;
4463 	struct sf_hment *sfhmep;
4464 	uint_t tteflags;
4465 	int ttesz;
4466 	struct page *pp = NULL;
4467 	kmutex_t *pml, *pmtx;
4468 	int ret;
4469 	int use_demap_range;
4470 #if defined(SF_ERRATA_57)
4471 	int check_exec;
4472 #endif
4473 
4474 	ASSERT(in_hblk_range(hmeblkp, addr));
4475 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4476 
4477 #ifdef DEBUG
4478 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4479 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4480 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4481 	}
4482 #endif /* DEBUG */
4483 
4484 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4485 	ttesz = get_hblk_ttesz(hmeblkp);
4486 
4487 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4488 #if defined(SF_ERRATA_57)
4489 	check_exec = (sfmmup != ksfmmup) &&
4490 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4491 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4492 #endif
4493 	HBLKTOHME(sfhmep, hmeblkp, addr);
4494 
4495 	/*
4496 	 * Flush the current demap region if addresses have been
4497 	 * skipped or the page size doesn't match.
4498 	 */
4499 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4500 	if (use_demap_range) {
4501 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4502 	} else {
4503 		DEMAP_RANGE_FLUSH(dmrp);
4504 	}
4505 
4506 	while (addr < endaddr) {
4507 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4508 		if (TTE_IS_VALID(&tte)) {
4509 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4510 				/*
4511 				 * if the new protection is the same as old
4512 				 * continue
4513 				 */
4514 				goto next_addr;
4515 			}
4516 			pml = NULL;
4517 			pp = sfhmep->hme_page;
4518 			if (pp) {
4519 				pml = sfmmu_mlist_enter(pp);
4520 			}
4521 			if (pp != sfhmep->hme_page) {
4522 				/*
4523 				 * tte most have been unloaded
4524 				 * underneath us.  Recheck
4525 				 */
4526 				ASSERT(pml);
4527 				sfmmu_mlist_exit(pml);
4528 				continue;
4529 			}
4530 
4531 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4532 
4533 			ttemod = tte;
4534 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4535 #if defined(SF_ERRATA_57)
4536 			if (check_exec && addr < errata57_limit)
4537 				ttemod.tte_exec_perm = 0;
4538 #endif
4539 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4540 			    &sfhmep->hme_tte);
4541 
4542 			if (ret < 0) {
4543 				/* tte changed underneath us */
4544 				if (pml) {
4545 					sfmmu_mlist_exit(pml);
4546 				}
4547 				continue;
4548 			}
4549 
4550 			if (tteflags & TTE_HWWR_INT) {
4551 				/*
4552 				 * need to sync if we are clearing modify bit.
4553 				 */
4554 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4555 			}
4556 
4557 			if (pp && PP_ISRO(pp)) {
4558 				if (pprot & TTE_WRPRM_INT) {
4559 					pmtx = sfmmu_page_enter(pp);
4560 					PP_CLRRO(pp);
4561 					sfmmu_page_exit(pmtx);
4562 				}
4563 			}
4564 
4565 			if (ret > 0 && use_demap_range) {
4566 				DEMAP_RANGE_MARKPG(dmrp, addr);
4567 			} else if (ret > 0) {
4568 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4569 			}
4570 
4571 			if (pml) {
4572 				sfmmu_mlist_exit(pml);
4573 			}
4574 		}
4575 next_addr:
4576 		addr += TTEBYTES(ttesz);
4577 		sfhmep++;
4578 		DEMAP_RANGE_NEXTPG(dmrp);
4579 	}
4580 	return (addr);
4581 }
4582 
4583 /*
4584  * This routine is deprecated and should only be used by hat_chgprot.
4585  * The correct routine is sfmmu_vtop_attr.
4586  * This routine converts virtual page protections to physical ones.  It will
4587  * update the tteflags field with the tte mask corresponding to the protections
4588  * affected and it returns the new protections.  It will also clear the modify
4589  * bit if we are taking away write permission.  This is necessary since the
4590  * modify bit is the hardware permission bit and we need to clear it in order
4591  * to detect write faults.
4592  * It accepts the following special protections:
4593  * ~PROT_WRITE = remove write permissions.
4594  * ~PROT_USER = remove user permissions.
4595  */
4596 static uint_t
4597 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4598 {
4599 	if (vprot == (uint_t)~PROT_WRITE) {
4600 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4601 		return (0);		/* will cause wrprm to be cleared */
4602 	}
4603 	if (vprot == (uint_t)~PROT_USER) {
4604 		*tteflagsp = TTE_PRIV_INT;
4605 		return (0);		/* will cause privprm to be cleared */
4606 	}
4607 	if ((vprot == 0) || (vprot == PROT_USER) ||
4608 		((vprot & PROT_ALL) != vprot)) {
4609 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4610 	}
4611 
4612 	switch (vprot) {
4613 	case (PROT_READ):
4614 	case (PROT_EXEC):
4615 	case (PROT_EXEC | PROT_READ):
4616 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4617 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4618 	case (PROT_WRITE):
4619 	case (PROT_WRITE | PROT_READ):
4620 	case (PROT_EXEC | PROT_WRITE):
4621 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4622 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4623 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4624 	case (PROT_USER | PROT_READ):
4625 	case (PROT_USER | PROT_EXEC):
4626 	case (PROT_USER | PROT_EXEC | PROT_READ):
4627 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4628 		return (0); 			/* clr prv and wrt */
4629 	case (PROT_USER | PROT_WRITE):
4630 	case (PROT_USER | PROT_WRITE | PROT_READ):
4631 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4632 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4633 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4634 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4635 	default:
4636 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4637 	}
4638 	return (0);
4639 }
4640 
4641 /*
4642  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4643  * the normal algorithm would take too long for a very large VA range with
4644  * few real mappings. This routine just walks thru all HMEs in the global
4645  * hash table to find and remove mappings.
4646  */
4647 static void
4648 hat_unload_large_virtual(
4649 	struct hat		*sfmmup,
4650 	caddr_t			startaddr,
4651 	size_t			len,
4652 	uint_t			flags,
4653 	hat_callback_t		*callback)
4654 {
4655 	struct hmehash_bucket *hmebp;
4656 	struct hme_blk *hmeblkp;
4657 	struct hme_blk *pr_hblk = NULL;
4658 	struct hme_blk *nx_hblk;
4659 	struct hme_blk *list = NULL;
4660 	int i;
4661 	uint64_t hblkpa, prevpa, nx_pa;
4662 	hatlock_t	*hatlockp;
4663 	struct tsb_info	*tsbinfop;
4664 	struct ctx	*ctx;
4665 	caddr_t	endaddr = startaddr + len;
4666 	caddr_t	sa;
4667 	caddr_t	ea;
4668 	caddr_t	cb_sa[MAX_CB_ADDR];
4669 	caddr_t	cb_ea[MAX_CB_ADDR];
4670 	int	addr_cnt = 0;
4671 	int	a = 0;
4672 	int	cnum;
4673 
4674 	hatlockp = sfmmu_hat_enter(sfmmup);
4675 
4676 	/*
4677 	 * Since we know we're unmapping a huge range of addresses,
4678 	 * just throw away the context and switch to another.  It's
4679 	 * cheaper than trying to unmap all of the TTEs we may find
4680 	 * from the TLB individually, which is too expensive in terms
4681 	 * of xcalls.  Better yet, if we're exiting, no need to flush
4682 	 * anything at all!
4683 	 */
4684 	if (!sfmmup->sfmmu_free) {
4685 		ctx = sfmmutoctx(sfmmup);
4686 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
4687 		cnum = sfmmutoctxnum(sfmmup);
4688 		if (cnum != INVALID_CONTEXT) {
4689 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
4690 		}
4691 		rw_exit(&ctx->ctx_rwlock);
4692 
4693 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
4694 		    tsbinfop = tsbinfop->tsb_next) {
4695 			if (tsbinfop->tsb_flags & TSB_SWAPPED)
4696 				continue;
4697 			sfmmu_inv_tsb(tsbinfop->tsb_va,
4698 			    TSB_BYTES(tsbinfop->tsb_szc));
4699 		}
4700 	}
4701 
4702 	/*
4703 	 * Loop through all the hash buckets of HME blocks looking for matches.
4704 	 */
4705 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4706 		hmebp = &uhme_hash[i];
4707 		SFMMU_HASH_LOCK(hmebp);
4708 		hmeblkp = hmebp->hmeblkp;
4709 		hblkpa = hmebp->hmeh_nextpa;
4710 		prevpa = 0;
4711 		pr_hblk = NULL;
4712 		while (hmeblkp) {
4713 			nx_hblk = hmeblkp->hblk_next;
4714 			nx_pa = hmeblkp->hblk_nextpa;
4715 
4716 			/*
4717 			 * skip if not this context, if a shadow block or
4718 			 * if the mapping is not in the requested range
4719 			 */
4720 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4721 			    hmeblkp->hblk_shw_bit ||
4722 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4723 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4724 				pr_hblk = hmeblkp;
4725 				prevpa = hblkpa;
4726 				goto next_block;
4727 			}
4728 
4729 			/*
4730 			 * unload if there are any current valid mappings
4731 			 */
4732 			if (hmeblkp->hblk_vcnt != 0 ||
4733 			    hmeblkp->hblk_hmecnt != 0)
4734 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4735 				    sa, ea, NULL, flags);
4736 
4737 			/*
4738 			 * on unmap we also release the HME block itself, once
4739 			 * all mappings are gone.
4740 			 */
4741 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4742 			    !hmeblkp->hblk_vcnt &&
4743 			    !hmeblkp->hblk_hmecnt) {
4744 				ASSERT(!hmeblkp->hblk_lckcnt);
4745 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4746 					prevpa, pr_hblk);
4747 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4748 			} else {
4749 				pr_hblk = hmeblkp;
4750 				prevpa = hblkpa;
4751 			}
4752 
4753 			if (callback == NULL)
4754 				goto next_block;
4755 
4756 			/*
4757 			 * HME blocks may span more than one page, but we may be
4758 			 * unmapping only one page, so check for a smaller range
4759 			 * for the callback
4760 			 */
4761 			if (sa < startaddr)
4762 				sa = startaddr;
4763 			if (--ea > endaddr)
4764 				ea = endaddr - 1;
4765 
4766 			cb_sa[addr_cnt] = sa;
4767 			cb_ea[addr_cnt] = ea;
4768 			if (++addr_cnt == MAX_CB_ADDR) {
4769 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4770 					callback->hcb_start_addr = cb_sa[a];
4771 					callback->hcb_end_addr = cb_ea[a];
4772 					callback->hcb_function(callback);
4773 				}
4774 				addr_cnt = 0;
4775 			}
4776 
4777 next_block:
4778 			hmeblkp = nx_hblk;
4779 			hblkpa = nx_pa;
4780 		}
4781 		SFMMU_HASH_UNLOCK(hmebp);
4782 	}
4783 
4784 	sfmmu_hblks_list_purge(&list);
4785 
4786 	for (a = 0; a < addr_cnt; ++a) {
4787 		callback->hcb_start_addr = cb_sa[a];
4788 		callback->hcb_end_addr = cb_ea[a];
4789 		callback->hcb_function(callback);
4790 	}
4791 
4792 	sfmmu_hat_exit(hatlockp);
4793 
4794 	/*
4795 	 * Check TSB and TLB page sizes if the process isn't exiting.
4796 	 */
4797 	if (!sfmmup->sfmmu_free)
4798 		sfmmu_check_page_sizes(sfmmup, 0);
4799 }
4800 
4801 
4802 /*
4803  * Unload all the mappings in the range [addr..addr+len). addr and len must
4804  * be MMU_PAGESIZE aligned.
4805  */
4806 
4807 extern struct seg *segkmap;
4808 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4809 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4810 
4811 
4812 void
4813 hat_unload_callback(
4814 	struct hat *sfmmup,
4815 	caddr_t addr,
4816 	size_t len,
4817 	uint_t flags,
4818 	hat_callback_t *callback)
4819 {
4820 	struct hmehash_bucket *hmebp;
4821 	hmeblk_tag hblktag;
4822 	int hmeshift, hashno, iskernel;
4823 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4824 	caddr_t endaddr;
4825 	cpuset_t cpuset;
4826 	uint64_t hblkpa, prevpa;
4827 	int addr_count = 0;
4828 	int a;
4829 	caddr_t cb_start_addr[MAX_CB_ADDR];
4830 	caddr_t cb_end_addr[MAX_CB_ADDR];
4831 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4832 	demap_range_t dmr, *dmrp;
4833 
4834 	if (sfmmup->sfmmu_xhat_provider) {
4835 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4836 		return;
4837 	} else {
4838 		/*
4839 		 * This must be a CPU HAT. If the address space has
4840 		 * XHATs attached, unload the mappings for all of them,
4841 		 * just in case
4842 		 */
4843 		ASSERT(sfmmup->sfmmu_as != NULL);
4844 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4845 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4846 			    len, flags, callback);
4847 	}
4848 
4849 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4850 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4851 
4852 	ASSERT(sfmmup != NULL);
4853 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4854 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4855 
4856 	/*
4857 	 * Probing through a large VA range (say 63 bits) will be slow, even
4858 	 * at 4 Meg steps between the probes. So, when the virtual address range
4859 	 * is very large, search the HME entries for what to unload.
4860 	 *
4861 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4862 	 *
4863 	 *	UHMEHASH_SZ is number of hash buckets to examine
4864 	 *
4865 	 */
4866 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4867 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4868 		return;
4869 	}
4870 
4871 	CPUSET_ZERO(cpuset);
4872 
4873 	/*
4874 	 * If the process is exiting, we can save a lot of fuss since
4875 	 * we'll flush the TLB when we free the ctx anyway.
4876 	 */
4877 	if (sfmmup->sfmmu_free)
4878 		dmrp = NULL;
4879 	else
4880 		dmrp = &dmr;
4881 
4882 	DEMAP_RANGE_INIT(sfmmup, dmrp);
4883 	endaddr = addr + len;
4884 	hblktag.htag_id = sfmmup;
4885 
4886 	/*
4887 	 * It is likely for the vm to call unload over a wide range of
4888 	 * addresses that are actually very sparsely populated by
4889 	 * translations.  In order to speed this up the sfmmu hat supports
4890 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
4891 	 * correspond to actual small translations are allocated at tteload
4892 	 * time and are referred to as shadow hmeblks.  Now, during unload
4893 	 * time, we first check if we have a shadow hmeblk for that
4894 	 * translation.  The absence of one means the corresponding address
4895 	 * range is empty and can be skipped.
4896 	 *
4897 	 * The kernel is an exception to above statement and that is why
4898 	 * we don't use shadow hmeblks and hash starting from the smallest
4899 	 * page size.
4900 	 */
4901 	if (sfmmup == KHATID) {
4902 		iskernel = 1;
4903 		hashno = TTE64K;
4904 	} else {
4905 		iskernel = 0;
4906 		if (mmu_page_sizes == max_mmu_page_sizes) {
4907 			hashno = TTE256M;
4908 		} else {
4909 			hashno = TTE4M;
4910 		}
4911 	}
4912 	while (addr < endaddr) {
4913 		hmeshift = HME_HASH_SHIFT(hashno);
4914 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4915 		hblktag.htag_rehash = hashno;
4916 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4917 
4918 		SFMMU_HASH_LOCK(hmebp);
4919 
4920 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
4921 			prevpa, &list);
4922 		if (hmeblkp == NULL) {
4923 			/*
4924 			 * didn't find an hmeblk. skip the appropiate
4925 			 * address range.
4926 			 */
4927 			SFMMU_HASH_UNLOCK(hmebp);
4928 			if (iskernel) {
4929 				if (hashno < mmu_hashcnt) {
4930 					hashno++;
4931 					continue;
4932 				} else {
4933 					hashno = TTE64K;
4934 					addr = (caddr_t)roundup((uintptr_t)addr
4935 						+ 1, MMU_PAGESIZE64K);
4936 					continue;
4937 				}
4938 			}
4939 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4940 				(1 << hmeshift));
4941 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4942 				ASSERT(hashno == TTE64K);
4943 				continue;
4944 			}
4945 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4946 				hashno = TTE512K;
4947 				continue;
4948 			}
4949 			if (mmu_page_sizes == max_mmu_page_sizes) {
4950 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4951 					hashno = TTE4M;
4952 					continue;
4953 				}
4954 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
4955 					hashno = TTE32M;
4956 					continue;
4957 				}
4958 				hashno = TTE256M;
4959 				continue;
4960 			} else {
4961 				hashno = TTE4M;
4962 				continue;
4963 			}
4964 		}
4965 		ASSERT(hmeblkp);
4966 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
4967 			/*
4968 			 * If the valid count is zero we can skip the range
4969 			 * mapped by this hmeblk.
4970 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
4971 			 * is used by segment drivers as a hint
4972 			 * that the mapping resource won't be used any longer.
4973 			 * The best example of this is during exit().
4974 			 */
4975 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4976 				get_hblk_span(hmeblkp));
4977 			if ((flags & HAT_UNLOAD_UNMAP) ||
4978 			    (iskernel && !issegkmap)) {
4979 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
4980 				    pr_hblk);
4981 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4982 			}
4983 			SFMMU_HASH_UNLOCK(hmebp);
4984 
4985 			if (iskernel) {
4986 				hashno = TTE64K;
4987 				continue;
4988 			}
4989 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4990 				ASSERT(hashno == TTE64K);
4991 				continue;
4992 			}
4993 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4994 				hashno = TTE512K;
4995 				continue;
4996 			}
4997 			if (mmu_page_sizes == max_mmu_page_sizes) {
4998 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4999 					hashno = TTE4M;
5000 					continue;
5001 				}
5002 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5003 					hashno = TTE32M;
5004 					continue;
5005 				}
5006 				hashno = TTE256M;
5007 				continue;
5008 			} else {
5009 				hashno = TTE4M;
5010 				continue;
5011 			}
5012 		}
5013 		if (hmeblkp->hblk_shw_bit) {
5014 			/*
5015 			 * If we encounter a shadow hmeblk we know there is
5016 			 * smaller sized hmeblks mapping the same address space.
5017 			 * Decrement the hash size and rehash.
5018 			 */
5019 			ASSERT(sfmmup != KHATID);
5020 			hashno--;
5021 			SFMMU_HASH_UNLOCK(hmebp);
5022 			continue;
5023 		}
5024 
5025 		/*
5026 		 * track callback address ranges.
5027 		 * only start a new range when it's not contiguous
5028 		 */
5029 		if (callback != NULL) {
5030 			if (addr_count > 0 &&
5031 			    addr == cb_end_addr[addr_count - 1])
5032 				--addr_count;
5033 			else
5034 				cb_start_addr[addr_count] = addr;
5035 		}
5036 
5037 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5038 				dmrp, flags);
5039 
5040 		if (callback != NULL)
5041 			cb_end_addr[addr_count++] = addr;
5042 
5043 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5044 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5045 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5046 			    pr_hblk);
5047 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5048 		}
5049 		SFMMU_HASH_UNLOCK(hmebp);
5050 
5051 		/*
5052 		 * Notify our caller as to exactly which pages
5053 		 * have been unloaded. We do these in clumps,
5054 		 * to minimize the number of xt_sync()s that need to occur.
5055 		 */
5056 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5057 			DEMAP_RANGE_FLUSH(dmrp);
5058 			if (dmrp != NULL) {
5059 				cpuset = sfmmup->sfmmu_cpusran;
5060 				xt_sync(cpuset);
5061 			}
5062 
5063 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5064 				callback->hcb_start_addr = cb_start_addr[a];
5065 				callback->hcb_end_addr = cb_end_addr[a];
5066 				callback->hcb_function(callback);
5067 			}
5068 			addr_count = 0;
5069 		}
5070 		if (iskernel) {
5071 			hashno = TTE64K;
5072 			continue;
5073 		}
5074 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5075 			ASSERT(hashno == TTE64K);
5076 			continue;
5077 		}
5078 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5079 			hashno = TTE512K;
5080 			continue;
5081 		}
5082 		if (mmu_page_sizes == max_mmu_page_sizes) {
5083 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5084 				hashno = TTE4M;
5085 				continue;
5086 			}
5087 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5088 				hashno = TTE32M;
5089 				continue;
5090 			}
5091 			hashno = TTE256M;
5092 		} else {
5093 			hashno = TTE4M;
5094 		}
5095 	}
5096 
5097 	sfmmu_hblks_list_purge(&list);
5098 	DEMAP_RANGE_FLUSH(dmrp);
5099 	if (dmrp != NULL) {
5100 		cpuset = sfmmup->sfmmu_cpusran;
5101 		xt_sync(cpuset);
5102 	}
5103 	if (callback && addr_count != 0) {
5104 		for (a = 0; a < addr_count; ++a) {
5105 			callback->hcb_start_addr = cb_start_addr[a];
5106 			callback->hcb_end_addr = cb_end_addr[a];
5107 			callback->hcb_function(callback);
5108 		}
5109 	}
5110 
5111 	/*
5112 	 * Check TSB and TLB page sizes if the process isn't exiting.
5113 	 */
5114 	if (!sfmmup->sfmmu_free)
5115 		sfmmu_check_page_sizes(sfmmup, 0);
5116 }
5117 
5118 /*
5119  * Unload all the mappings in the range [addr..addr+len). addr and len must
5120  * be MMU_PAGESIZE aligned.
5121  */
5122 void
5123 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5124 {
5125 	if (sfmmup->sfmmu_xhat_provider) {
5126 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5127 		return;
5128 	}
5129 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5130 }
5131 
5132 
5133 /*
5134  * Find the largest mapping size for this page.
5135  */
5136 static int
5137 fnd_mapping_sz(page_t *pp)
5138 {
5139 	int sz;
5140 	int p_index;
5141 
5142 	p_index = PP_MAPINDEX(pp);
5143 
5144 	sz = 0;
5145 	p_index >>= 1;	/* don't care about 8K bit */
5146 	for (; p_index; p_index >>= 1) {
5147 		sz++;
5148 	}
5149 
5150 	return (sz);
5151 }
5152 
5153 /*
5154  * This function unloads a range of addresses for an hmeblk.
5155  * It returns the next address to be unloaded.
5156  * It should be called with the hash lock held.
5157  */
5158 static caddr_t
5159 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5160 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5161 {
5162 	tte_t	tte, ttemod;
5163 	struct	sf_hment *sfhmep;
5164 	int	ttesz;
5165 	long	ttecnt;
5166 	page_t *pp;
5167 	kmutex_t *pml;
5168 	int ret;
5169 	int use_demap_range;
5170 
5171 	ASSERT(in_hblk_range(hmeblkp, addr));
5172 	ASSERT(!hmeblkp->hblk_shw_bit);
5173 #ifdef DEBUG
5174 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5175 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5176 		panic("sfmmu_hblk_unload: partial unload of large page");
5177 	}
5178 #endif /* DEBUG */
5179 
5180 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5181 	ttesz = get_hblk_ttesz(hmeblkp);
5182 
5183 	use_demap_range = (do_virtual_coloring &&
5184 				TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
5185 	if (use_demap_range) {
5186 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5187 	} else {
5188 		DEMAP_RANGE_FLUSH(dmrp);
5189 	}
5190 	ttecnt = 0;
5191 	HBLKTOHME(sfhmep, hmeblkp, addr);
5192 
5193 	while (addr < endaddr) {
5194 		pml = NULL;
5195 again:
5196 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5197 		if (TTE_IS_VALID(&tte)) {
5198 			pp = sfhmep->hme_page;
5199 			if (pp && pml == NULL) {
5200 				pml = sfmmu_mlist_enter(pp);
5201 			}
5202 
5203 			/*
5204 			 * Verify if hme still points to 'pp' now that
5205 			 * we have p_mapping lock.
5206 			 */
5207 			if (sfhmep->hme_page != pp) {
5208 				if (pp != NULL && sfhmep->hme_page != NULL) {
5209 					if (pml) {
5210 						sfmmu_mlist_exit(pml);
5211 					}
5212 					/* Re-start this iteration. */
5213 					continue;
5214 				}
5215 				ASSERT((pp != NULL) &&
5216 				    (sfhmep->hme_page == NULL));
5217 				goto tte_unloaded;
5218 			}
5219 
5220 			/*
5221 			 * This point on we have both HASH and p_mapping
5222 			 * lock.
5223 			 */
5224 			ASSERT(pp == sfhmep->hme_page);
5225 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5226 
5227 			/*
5228 			 * We need to loop on modify tte because it is
5229 			 * possible for pagesync to come along and
5230 			 * change the software bits beneath us.
5231 			 *
5232 			 * Page_unload can also invalidate the tte after
5233 			 * we read tte outside of p_mapping lock.
5234 			 */
5235 			ttemod = tte;
5236 
5237 			TTE_SET_INVALID(&ttemod);
5238 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5239 			    &sfhmep->hme_tte);
5240 
5241 			if (ret <= 0) {
5242 				if (TTE_IS_VALID(&tte)) {
5243 					goto again;
5244 				} else {
5245 					/*
5246 					 * We read in a valid pte, but it
5247 					 * is unloaded by page_unload.
5248 					 * hme_page has become NULL and
5249 					 * we hold no p_mapping lock.
5250 					 */
5251 					ASSERT(pp == NULL && pml == NULL);
5252 					goto tte_unloaded;
5253 				}
5254 			}
5255 
5256 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5257 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5258 			}
5259 
5260 			/*
5261 			 * Ok- we invalidated the tte. Do the rest of the job.
5262 			 */
5263 			ttecnt++;
5264 
5265 			if (flags & HAT_UNLOAD_UNLOCK) {
5266 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5267 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5268 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5269 			}
5270 
5271 			/*
5272 			 * Normally we would need to flush the page
5273 			 * from the virtual cache at this point in
5274 			 * order to prevent a potential cache alias
5275 			 * inconsistency.
5276 			 * The particular scenario we need to worry
5277 			 * about is:
5278 			 * Given:  va1 and va2 are two virtual address
5279 			 * that alias and map the same physical
5280 			 * address.
5281 			 * 1.	mapping exists from va1 to pa and data
5282 			 * has been read into the cache.
5283 			 * 2.	unload va1.
5284 			 * 3.	load va2 and modify data using va2.
5285 			 * 4	unload va2.
5286 			 * 5.	load va1 and reference data.  Unless we
5287 			 * flush the data cache when we unload we will
5288 			 * get stale data.
5289 			 * Fortunately, page coloring eliminates the
5290 			 * above scenario by remembering the color a
5291 			 * physical page was last or is currently
5292 			 * mapped to.  Now, we delay the flush until
5293 			 * the loading of translations.  Only when the
5294 			 * new translation is of a different color
5295 			 * are we forced to flush.
5296 			 */
5297 			if (use_demap_range) {
5298 				/*
5299 				 * Mark this page as needing a demap.
5300 				 */
5301 				DEMAP_RANGE_MARKPG(dmrp, addr);
5302 			} else {
5303 				if (do_virtual_coloring) {
5304 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5305 					    sfmmup->sfmmu_free, 0);
5306 				} else {
5307 					pfn_t pfnum;
5308 
5309 					pfnum = TTE_TO_PFN(addr, &tte);
5310 					sfmmu_tlbcache_demap(addr, sfmmup,
5311 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5312 					    FLUSH_NECESSARY_CPUS,
5313 					    CACHE_FLUSH, 0);
5314 				}
5315 			}
5316 
5317 			if (pp) {
5318 				/*
5319 				 * Remove the hment from the mapping list
5320 				 */
5321 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5322 
5323 				/*
5324 				 * Again, we cannot
5325 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5326 				 */
5327 				HME_SUB(sfhmep, pp);
5328 				membar_stst();
5329 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5330 			}
5331 
5332 			ASSERT(hmeblkp->hblk_vcnt > 0);
5333 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5334 
5335 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5336 			    !hmeblkp->hblk_lckcnt);
5337 
5338 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5339 				if (PP_ISTNC(pp)) {
5340 					/*
5341 					 * If page was temporary
5342 					 * uncached, try to recache
5343 					 * it. Note that HME_SUB() was
5344 					 * called above so p_index and
5345 					 * mlist had been updated.
5346 					 */
5347 					conv_tnc(pp, ttesz);
5348 				} else if (pp->p_mapping == NULL) {
5349 					ASSERT(kpm_enable);
5350 					/*
5351 					 * Page is marked to be in VAC conflict
5352 					 * to an existing kpm mapping and/or is
5353 					 * kpm mapped using only the regular
5354 					 * pagesize.
5355 					 */
5356 					sfmmu_kpm_hme_unload(pp);
5357 				}
5358 			}
5359 		} else if ((pp = sfhmep->hme_page) != NULL) {
5360 				/*
5361 				 * TTE is invalid but the hme
5362 				 * still exists. let pageunload
5363 				 * complete its job.
5364 				 */
5365 				ASSERT(pml == NULL);
5366 				pml = sfmmu_mlist_enter(pp);
5367 				if (sfhmep->hme_page != NULL) {
5368 					sfmmu_mlist_exit(pml);
5369 					pml = NULL;
5370 					goto again;
5371 				}
5372 				ASSERT(sfhmep->hme_page == NULL);
5373 		} else if (hmeblkp->hblk_hmecnt != 0) {
5374 			/*
5375 			 * pageunload may have not finished decrementing
5376 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5377 			 * wait for pageunload to finish. Rely on pageunload
5378 			 * to decrement hblk_hmecnt after hblk_vcnt.
5379 			 */
5380 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5381 			ASSERT(pml == NULL);
5382 			if (pf_is_memory(pfn)) {
5383 				pp = page_numtopp_nolock(pfn);
5384 				if (pp != NULL) {
5385 					pml = sfmmu_mlist_enter(pp);
5386 					sfmmu_mlist_exit(pml);
5387 					pml = NULL;
5388 				}
5389 			}
5390 		}
5391 
5392 tte_unloaded:
5393 		/*
5394 		 * At this point, the tte we are looking at
5395 		 * should be unloaded, and hme has been unlinked
5396 		 * from page too. This is important because in
5397 		 * pageunload, it does ttesync() then HME_SUB.
5398 		 * We need to make sure HME_SUB has been completed
5399 		 * so we know ttesync() has been completed. Otherwise,
5400 		 * at exit time, after return from hat layer, VM will
5401 		 * release as structure which hat_setstat() (called
5402 		 * by ttesync()) needs.
5403 		 */
5404 #ifdef DEBUG
5405 		{
5406 			tte_t	dtte;
5407 
5408 			ASSERT(sfhmep->hme_page == NULL);
5409 
5410 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5411 			ASSERT(!TTE_IS_VALID(&dtte));
5412 		}
5413 #endif
5414 
5415 		if (pml) {
5416 			sfmmu_mlist_exit(pml);
5417 		}
5418 
5419 		addr += TTEBYTES(ttesz);
5420 		sfhmep++;
5421 		DEMAP_RANGE_NEXTPG(dmrp);
5422 	}
5423 	if (ttecnt > 0)
5424 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5425 	return (addr);
5426 }
5427 
5428 /*
5429  * Synchronize all the mappings in the range [addr..addr+len).
5430  * Can be called with clearflag having two states:
5431  * HAT_SYNC_DONTZERO means just return the rm stats
5432  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5433  */
5434 void
5435 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5436 {
5437 	struct hmehash_bucket *hmebp;
5438 	hmeblk_tag hblktag;
5439 	int hmeshift, hashno = 1;
5440 	struct hme_blk *hmeblkp, *list = NULL;
5441 	caddr_t endaddr;
5442 	cpuset_t cpuset;
5443 
5444 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5445 	ASSERT((sfmmup == ksfmmup) ||
5446 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5447 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5448 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5449 		(clearflag == HAT_SYNC_ZERORM));
5450 
5451 	CPUSET_ZERO(cpuset);
5452 
5453 	endaddr = addr + len;
5454 	hblktag.htag_id = sfmmup;
5455 	/*
5456 	 * Spitfire supports 4 page sizes.
5457 	 * Most pages are expected to be of the smallest page
5458 	 * size (8K) and these will not need to be rehashed. 64K
5459 	 * pages also don't need to be rehashed because the an hmeblk
5460 	 * spans 64K of address space. 512K pages might need 1 rehash and
5461 	 * and 4M pages 2 rehashes.
5462 	 */
5463 	while (addr < endaddr) {
5464 		hmeshift = HME_HASH_SHIFT(hashno);
5465 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5466 		hblktag.htag_rehash = hashno;
5467 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5468 
5469 		SFMMU_HASH_LOCK(hmebp);
5470 
5471 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5472 		if (hmeblkp != NULL) {
5473 			/*
5474 			 * We've encountered a shadow hmeblk so skip the range
5475 			 * of the next smaller mapping size.
5476 			 */
5477 			if (hmeblkp->hblk_shw_bit) {
5478 				ASSERT(sfmmup != ksfmmup);
5479 				ASSERT(hashno > 1);
5480 				addr = (caddr_t)P2END((uintptr_t)addr,
5481 					    TTEBYTES(hashno - 1));
5482 			} else {
5483 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5484 				    addr, endaddr, clearflag);
5485 			}
5486 			SFMMU_HASH_UNLOCK(hmebp);
5487 			hashno = 1;
5488 			continue;
5489 		}
5490 		SFMMU_HASH_UNLOCK(hmebp);
5491 
5492 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5493 			/*
5494 			 * We have traversed the whole list and rehashed
5495 			 * if necessary without finding the address to sync.
5496 			 * This is ok so we increment the address by the
5497 			 * smallest hmeblk range for kernel mappings and the
5498 			 * largest hmeblk range, to account for shadow hmeblks,
5499 			 * for user mappings and continue.
5500 			 */
5501 			if (sfmmup == ksfmmup)
5502 				addr = (caddr_t)P2END((uintptr_t)addr,
5503 					    TTEBYTES(1));
5504 			else
5505 				addr = (caddr_t)P2END((uintptr_t)addr,
5506 					    TTEBYTES(hashno));
5507 			hashno = 1;
5508 		} else {
5509 			hashno++;
5510 		}
5511 	}
5512 	sfmmu_hblks_list_purge(&list);
5513 	cpuset = sfmmup->sfmmu_cpusran;
5514 	xt_sync(cpuset);
5515 }
5516 
5517 static caddr_t
5518 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5519 	caddr_t endaddr, int clearflag)
5520 {
5521 	tte_t	tte, ttemod;
5522 	struct sf_hment *sfhmep;
5523 	int ttesz;
5524 	struct page *pp;
5525 	kmutex_t *pml;
5526 	int ret;
5527 
5528 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5529 
5530 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5531 
5532 	ttesz = get_hblk_ttesz(hmeblkp);
5533 	HBLKTOHME(sfhmep, hmeblkp, addr);
5534 
5535 	while (addr < endaddr) {
5536 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5537 		if (TTE_IS_VALID(&tte)) {
5538 			pml = NULL;
5539 			pp = sfhmep->hme_page;
5540 			if (pp) {
5541 				pml = sfmmu_mlist_enter(pp);
5542 			}
5543 			if (pp != sfhmep->hme_page) {
5544 				/*
5545 				 * tte most have been unloaded
5546 				 * underneath us.  Recheck
5547 				 */
5548 				ASSERT(pml);
5549 				sfmmu_mlist_exit(pml);
5550 				continue;
5551 			}
5552 
5553 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5554 
5555 			if (clearflag == HAT_SYNC_ZERORM) {
5556 				ttemod = tte;
5557 				TTE_CLR_RM(&ttemod);
5558 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5559 				    &sfhmep->hme_tte);
5560 				if (ret < 0) {
5561 					if (pml) {
5562 						sfmmu_mlist_exit(pml);
5563 					}
5564 					continue;
5565 				}
5566 
5567 				if (ret > 0) {
5568 					sfmmu_tlb_demap(addr, sfmmup,
5569 						hmeblkp, 0, 0);
5570 				}
5571 			}
5572 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5573 			if (pml) {
5574 				sfmmu_mlist_exit(pml);
5575 			}
5576 		}
5577 		addr += TTEBYTES(ttesz);
5578 		sfhmep++;
5579 	}
5580 	return (addr);
5581 }
5582 
5583 /*
5584  * This function will sync a tte to the page struct and it will
5585  * update the hat stats. Currently it allows us to pass a NULL pp
5586  * and we will simply update the stats.  We may want to change this
5587  * so we only keep stats for pages backed by pp's.
5588  */
5589 static void
5590 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5591 {
5592 	uint_t rm = 0;
5593 	int   	sz;
5594 	pgcnt_t	npgs;
5595 
5596 	ASSERT(TTE_IS_VALID(ttep));
5597 
5598 	if (TTE_IS_NOSYNC(ttep)) {
5599 		return;
5600 	}
5601 
5602 	if (TTE_IS_REF(ttep))  {
5603 		rm = P_REF;
5604 	}
5605 	if (TTE_IS_MOD(ttep))  {
5606 		rm |= P_MOD;
5607 	}
5608 
5609 	if (rm == 0) {
5610 		return;
5611 	}
5612 
5613 	sz = TTE_CSZ(ttep);
5614 	if (sfmmup->sfmmu_rmstat) {
5615 		int i;
5616 		caddr_t	vaddr = addr;
5617 
5618 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5619 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5620 		}
5621 
5622 	}
5623 
5624 	/*
5625 	 * XXX I want to use cas to update nrm bits but they
5626 	 * currently belong in common/vm and not in hat where
5627 	 * they should be.
5628 	 * The nrm bits are protected by the same mutex as
5629 	 * the one that protects the page's mapping list.
5630 	 */
5631 	if (!pp)
5632 		return;
5633 	ASSERT(sfmmu_mlist_held(pp));
5634 	/*
5635 	 * If the tte is for a large page, we need to sync all the
5636 	 * pages covered by the tte.
5637 	 */
5638 	if (sz != TTE8K) {
5639 		ASSERT(pp->p_szc != 0);
5640 		pp = PP_GROUPLEADER(pp, sz);
5641 		ASSERT(sfmmu_mlist_held(pp));
5642 	}
5643 
5644 	/* Get number of pages from tte size. */
5645 	npgs = TTEPAGES(sz);
5646 
5647 	do {
5648 		ASSERT(pp);
5649 		ASSERT(sfmmu_mlist_held(pp));
5650 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5651 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5652 			hat_page_setattr(pp, rm);
5653 
5654 		/*
5655 		 * Are we done? If not, we must have a large mapping.
5656 		 * For large mappings we need to sync the rest of the pages
5657 		 * covered by this tte; goto the next page.
5658 		 */
5659 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5660 }
5661 
5662 /*
5663  * Execute pre-callback handler of each pa_hment linked to pp
5664  *
5665  * Inputs:
5666  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5667  *   capture_cpus: pointer to return value (below)
5668  *
5669  * Returns:
5670  *   Propagates the subsystem callback return values back to the caller;
5671  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5672  *   is zero if all of the pa_hments are of a type that do not require
5673  *   capturing CPUs prior to suspending the mapping, else it is 1.
5674  */
5675 static int
5676 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5677 {
5678 	struct sf_hment	*sfhmep;
5679 	struct pa_hment *pahmep;
5680 	int (*f)(caddr_t, uint_t, uint_t, void *);
5681 	int		ret;
5682 	id_t		id;
5683 	int		locked = 0;
5684 	kmutex_t	*pml;
5685 
5686 	ASSERT(PAGE_EXCL(pp));
5687 	if (!sfmmu_mlist_held(pp)) {
5688 		pml = sfmmu_mlist_enter(pp);
5689 		locked = 1;
5690 	}
5691 
5692 	if (capture_cpus)
5693 		*capture_cpus = 0;
5694 
5695 top:
5696 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5697 		/*
5698 		 * skip sf_hments corresponding to VA<->PA mappings;
5699 		 * for pa_hment's, hme_tte.ll is zero
5700 		 */
5701 		if (!IS_PAHME(sfhmep))
5702 			continue;
5703 
5704 		pahmep = sfhmep->hme_data;
5705 		ASSERT(pahmep != NULL);
5706 
5707 		/*
5708 		 * skip if pre-handler has been called earlier in this loop
5709 		 */
5710 		if (pahmep->flags & flag)
5711 			continue;
5712 
5713 		id = pahmep->cb_id;
5714 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5715 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5716 			*capture_cpus = 1;
5717 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5718 			pahmep->flags |= flag;
5719 			continue;
5720 		}
5721 
5722 		/*
5723 		 * Drop the mapping list lock to avoid locking order issues.
5724 		 */
5725 		if (locked)
5726 			sfmmu_mlist_exit(pml);
5727 
5728 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5729 		if (ret != 0)
5730 			return (ret);	/* caller must do the cleanup */
5731 
5732 		if (locked) {
5733 			pml = sfmmu_mlist_enter(pp);
5734 			pahmep->flags |= flag;
5735 			goto top;
5736 		}
5737 
5738 		pahmep->flags |= flag;
5739 	}
5740 
5741 	if (locked)
5742 		sfmmu_mlist_exit(pml);
5743 
5744 	return (0);
5745 }
5746 
5747 /*
5748  * Execute post-callback handler of each pa_hment linked to pp
5749  *
5750  * Same overall assumptions and restrictions apply as for
5751  * hat_pageprocess_precallbacks().
5752  */
5753 static void
5754 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5755 {
5756 	pfn_t pgpfn = pp->p_pagenum;
5757 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5758 	pfn_t newpfn;
5759 	struct sf_hment *sfhmep;
5760 	struct pa_hment *pahmep;
5761 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5762 	id_t	id;
5763 	int	locked = 0;
5764 	kmutex_t *pml;
5765 
5766 	ASSERT(PAGE_EXCL(pp));
5767 	if (!sfmmu_mlist_held(pp)) {
5768 		pml = sfmmu_mlist_enter(pp);
5769 		locked = 1;
5770 	}
5771 
5772 top:
5773 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5774 		/*
5775 		 * skip sf_hments corresponding to VA<->PA mappings;
5776 		 * for pa_hment's, hme_tte.ll is zero
5777 		 */
5778 		if (!IS_PAHME(sfhmep))
5779 			continue;
5780 
5781 		pahmep = sfhmep->hme_data;
5782 		ASSERT(pahmep != NULL);
5783 
5784 		if ((pahmep->flags & flag) == 0)
5785 			continue;
5786 
5787 		pahmep->flags &= ~flag;
5788 
5789 		id = pahmep->cb_id;
5790 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5791 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5792 			continue;
5793 
5794 		/*
5795 		 * Convert the base page PFN into the constituent PFN
5796 		 * which is needed by the callback handler.
5797 		 */
5798 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5799 
5800 		/*
5801 		 * Drop the mapping list lock to avoid locking order issues.
5802 		 */
5803 		if (locked)
5804 			sfmmu_mlist_exit(pml);
5805 
5806 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5807 		    != 0)
5808 			panic("sfmmu: posthandler failed");
5809 
5810 		if (locked) {
5811 			pml = sfmmu_mlist_enter(pp);
5812 			goto top;
5813 		}
5814 	}
5815 
5816 	if (locked)
5817 		sfmmu_mlist_exit(pml);
5818 }
5819 
5820 /*
5821  * Suspend locked kernel mapping
5822  */
5823 void
5824 hat_pagesuspend(struct page *pp)
5825 {
5826 	struct sf_hment *sfhmep;
5827 	sfmmu_t *sfmmup;
5828 	tte_t tte, ttemod;
5829 	struct hme_blk *hmeblkp;
5830 	caddr_t addr;
5831 	int index, cons;
5832 	cpuset_t cpuset;
5833 
5834 	ASSERT(PAGE_EXCL(pp));
5835 	ASSERT(sfmmu_mlist_held(pp));
5836 
5837 	mutex_enter(&kpr_suspendlock);
5838 
5839 	/*
5840 	 * Call into dtrace to tell it we're about to suspend a
5841 	 * kernel mapping. This prevents us from running into issues
5842 	 * with probe context trying to touch a suspended page
5843 	 * in the relocation codepath itself.
5844 	 */
5845 	if (dtrace_kreloc_init)
5846 		(*dtrace_kreloc_init)();
5847 
5848 	index = PP_MAPINDEX(pp);
5849 	cons = TTE8K;
5850 
5851 retry:
5852 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5853 
5854 		if (IS_PAHME(sfhmep))
5855 			continue;
5856 
5857 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5858 			continue;
5859 
5860 		/*
5861 		 * Loop until we successfully set the suspend bit in
5862 		 * the TTE.
5863 		 */
5864 again:
5865 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5866 		ASSERT(TTE_IS_VALID(&tte));
5867 
5868 		ttemod = tte;
5869 		TTE_SET_SUSPEND(&ttemod);
5870 		if (sfmmu_modifytte_try(&tte, &ttemod,
5871 		    &sfhmep->hme_tte) < 0)
5872 			goto again;
5873 
5874 		/*
5875 		 * Invalidate TSB entry
5876 		 */
5877 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5878 
5879 		sfmmup = hblktosfmmu(hmeblkp);
5880 		ASSERT(sfmmup == ksfmmup);
5881 
5882 		addr = tte_to_vaddr(hmeblkp, tte);
5883 
5884 		/*
5885 		 * No need to make sure that the TSB for this sfmmu is
5886 		 * not being relocated since it is ksfmmup and thus it
5887 		 * will never be relocated.
5888 		 */
5889 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
5890 
5891 		/*
5892 		 * Update xcall stats
5893 		 */
5894 		cpuset = cpu_ready_set;
5895 		CPUSET_DEL(cpuset, CPU->cpu_id);
5896 
5897 		/* LINTED: constant in conditional context */
5898 		SFMMU_XCALL_STATS(KCONTEXT);
5899 
5900 		/*
5901 		 * Flush TLB entry on remote CPU's
5902 		 */
5903 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, KCONTEXT);
5904 		xt_sync(cpuset);
5905 
5906 		/*
5907 		 * Flush TLB entry on local CPU
5908 		 */
5909 		vtag_flushpage(addr, KCONTEXT);
5910 	}
5911 
5912 	while (index != 0) {
5913 		index = index >> 1;
5914 		if (index != 0)
5915 			cons++;
5916 		if (index & 0x1) {
5917 			pp = PP_GROUPLEADER(pp, cons);
5918 			goto retry;
5919 		}
5920 	}
5921 }
5922 
5923 #ifdef	DEBUG
5924 
5925 #define	N_PRLE	1024
5926 struct prle {
5927 	page_t *targ;
5928 	page_t *repl;
5929 	int status;
5930 	int pausecpus;
5931 	hrtime_t whence;
5932 };
5933 
5934 static struct prle page_relocate_log[N_PRLE];
5935 static int prl_entry;
5936 static kmutex_t prl_mutex;
5937 
5938 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
5939 	mutex_enter(&prl_mutex);					\
5940 	page_relocate_log[prl_entry].targ = *(t);			\
5941 	page_relocate_log[prl_entry].repl = *(r);			\
5942 	page_relocate_log[prl_entry].status = (s);			\
5943 	page_relocate_log[prl_entry].pausecpus = (p);			\
5944 	page_relocate_log[prl_entry].whence = gethrtime();		\
5945 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
5946 	mutex_exit(&prl_mutex);
5947 
5948 #else	/* !DEBUG */
5949 #define	PAGE_RELOCATE_LOG(t, r, s, p)
5950 #endif
5951 
5952 /*
5953  * Core Kernel Page Relocation Algorithm
5954  *
5955  * Input:
5956  *
5957  * target : 	constituent pages are SE_EXCL locked.
5958  * replacement:	constituent pages are SE_EXCL locked.
5959  *
5960  * Output:
5961  *
5962  * nrelocp:	number of pages relocated
5963  */
5964 int
5965 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
5966 {
5967 	page_t		*targ, *repl;
5968 	page_t		*tpp, *rpp;
5969 	kmutex_t	*low, *high;
5970 	spgcnt_t	npages, i;
5971 	page_t		*pl = NULL;
5972 	int		old_pil;
5973 	cpuset_t	cpuset;
5974 	int		cap_cpus;
5975 	int		ret;
5976 
5977 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
5978 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
5979 		return (EAGAIN);
5980 	}
5981 
5982 	mutex_enter(&kpr_mutex);
5983 	kreloc_thread = curthread;
5984 
5985 	targ = *target;
5986 	repl = *replacement;
5987 	ASSERT(repl != NULL);
5988 	ASSERT(targ->p_szc == repl->p_szc);
5989 
5990 	npages = page_get_pagecnt(targ->p_szc);
5991 
5992 	/*
5993 	 * unload VA<->PA mappings that are not locked
5994 	 */
5995 	tpp = targ;
5996 	for (i = 0; i < npages; i++) {
5997 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
5998 		tpp++;
5999 	}
6000 
6001 	/*
6002 	 * Do "presuspend" callbacks, in a context from which we can still
6003 	 * block as needed. Note that we don't hold the mapping list lock
6004 	 * of "targ" at this point due to potential locking order issues;
6005 	 * we assume that between the hat_pageunload() above and holding
6006 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6007 	 * point.
6008 	 */
6009 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6010 	if (ret != 0) {
6011 		/*
6012 		 * EIO translates to fatal error, for all others cleanup
6013 		 * and return EAGAIN.
6014 		 */
6015 		ASSERT(ret != EIO);
6016 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6017 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6018 		kreloc_thread = NULL;
6019 		mutex_exit(&kpr_mutex);
6020 		return (EAGAIN);
6021 	}
6022 
6023 	/*
6024 	 * acquire p_mapping list lock for both the target and replacement
6025 	 * root pages.
6026 	 *
6027 	 * low and high refer to the need to grab the mlist locks in a
6028 	 * specific order in order to prevent race conditions.  Thus the
6029 	 * lower lock must be grabbed before the higher lock.
6030 	 *
6031 	 * This will block hat_unload's accessing p_mapping list.  Since
6032 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6033 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6034 	 * while we suspend and reload the locked mapping below.
6035 	 */
6036 	tpp = targ;
6037 	rpp = repl;
6038 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6039 
6040 	kpreempt_disable();
6041 
6042 	/*
6043 	 * If the replacement page is of a different virtual color
6044 	 * than the page it is replacing, we need to handle the VAC
6045 	 * consistency for it just as we would if we were setting up
6046 	 * a new mapping to a page.
6047 	 */
6048 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6049 		if (tpp->p_vcolor != rpp->p_vcolor) {
6050 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6051 			    rpp->p_pagenum);
6052 		}
6053 	}
6054 
6055 	/*
6056 	 * We raise our PIL to 13 so that we don't get captured by
6057 	 * another CPU or pinned by an interrupt thread.  We can't go to
6058 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6059 	 * that level in the case of IOMMU pseudo mappings.
6060 	 */
6061 	cpuset = cpu_ready_set;
6062 	CPUSET_DEL(cpuset, CPU->cpu_id);
6063 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6064 		old_pil = splr(XCALL_PIL);
6065 	} else {
6066 		old_pil = -1;
6067 		xc_attention(cpuset);
6068 	}
6069 	ASSERT(getpil() == XCALL_PIL);
6070 
6071 	/*
6072 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6073 	 * this will suspend all DMA activity to the page while it is
6074 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6075 	 * may be captured at this point we should have acquired any needed
6076 	 * locks in the presuspend callback.
6077 	 */
6078 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6079 	if (ret != 0) {
6080 		repl = targ;
6081 		goto suspend_fail;
6082 	}
6083 
6084 	/*
6085 	 * Raise the PIL yet again, this time to block all high-level
6086 	 * interrupts on this CPU. This is necessary to prevent an
6087 	 * interrupt routine from pinning the thread which holds the
6088 	 * mapping suspended and then touching the suspended page.
6089 	 *
6090 	 * Once the page is suspended we also need to be careful to
6091 	 * avoid calling any functions which touch any seg_kmem memory
6092 	 * since that memory may be backed by the very page we are
6093 	 * relocating in here!
6094 	 */
6095 	hat_pagesuspend(targ);
6096 
6097 	/*
6098 	 * Now that we are confident everybody has stopped using this page,
6099 	 * copy the page contents.  Note we use a physical copy to prevent
6100 	 * locking issues and to avoid fpRAS because we can't handle it in
6101 	 * this context.
6102 	 */
6103 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6104 		/*
6105 		 * Copy the contents of the page.
6106 		 */
6107 		ppcopy_kernel(tpp, rpp);
6108 	}
6109 
6110 	tpp = targ;
6111 	rpp = repl;
6112 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6113 		/*
6114 		 * Copy attributes.  VAC consistency was handled above,
6115 		 * if required.
6116 		 */
6117 		rpp->p_nrm = tpp->p_nrm;
6118 		tpp->p_nrm = 0;
6119 		rpp->p_index = tpp->p_index;
6120 		tpp->p_index = 0;
6121 		rpp->p_vcolor = tpp->p_vcolor;
6122 	}
6123 
6124 	/*
6125 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6126 	 * the mapping list from the target page to the replacement page.
6127 	 * Next process postcallbacks; since pa_hment's are linked only to the
6128 	 * p_mapping list of root page, we don't iterate over the constituent
6129 	 * pages.
6130 	 */
6131 	hat_pagereload(targ, repl);
6132 
6133 suspend_fail:
6134 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6135 
6136 	/*
6137 	 * Now lower our PIL and release any captured CPUs since we
6138 	 * are out of the "danger zone".  After this it will again be
6139 	 * safe to acquire adaptive mutex locks, or to drop them...
6140 	 */
6141 	if (old_pil != -1) {
6142 		splx(old_pil);
6143 	} else {
6144 		xc_dismissed(cpuset);
6145 	}
6146 
6147 	kpreempt_enable();
6148 
6149 	sfmmu_mlist_reloc_exit(low, high);
6150 
6151 	/*
6152 	 * Postsuspend callbacks should drop any locks held across
6153 	 * the suspend callbacks.  As before, we don't hold the mapping
6154 	 * list lock at this point.. our assumption is that the mapping
6155 	 * list still can't change due to our holding SE_EXCL lock and
6156 	 * there being no unlocked mappings left. Hence the restriction
6157 	 * on calling context to hat_delete_callback()
6158 	 */
6159 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6160 	if (ret != 0) {
6161 		/*
6162 		 * The second presuspend call failed: we got here through
6163 		 * the suspend_fail label above.
6164 		 */
6165 		ASSERT(ret != EIO);
6166 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6167 		kreloc_thread = NULL;
6168 		mutex_exit(&kpr_mutex);
6169 		return (EAGAIN);
6170 	}
6171 
6172 	/*
6173 	 * Now that we're out of the performance critical section we can
6174 	 * take care of updating the hash table, since we still
6175 	 * hold all the pages locked SE_EXCL at this point we
6176 	 * needn't worry about things changing out from under us.
6177 	 */
6178 	tpp = targ;
6179 	rpp = repl;
6180 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6181 
6182 		/*
6183 		 * replace targ with replacement in page_hash table
6184 		 */
6185 		targ = tpp;
6186 		page_relocate_hash(rpp, targ);
6187 
6188 		/*
6189 		 * concatenate target; caller of platform_page_relocate()
6190 		 * expects target to be concatenated after returning.
6191 		 */
6192 		ASSERT(targ->p_next == targ);
6193 		ASSERT(targ->p_prev == targ);
6194 		page_list_concat(&pl, &targ);
6195 	}
6196 
6197 	ASSERT(*target == pl);
6198 	*nrelocp = npages;
6199 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6200 	kreloc_thread = NULL;
6201 	mutex_exit(&kpr_mutex);
6202 	return (0);
6203 }
6204 
6205 /*
6206  * Called when stray pa_hments are found attached to a page which is
6207  * being freed.  Notify the subsystem which attached the pa_hment of
6208  * the error if it registered a suitable handler, else panic.
6209  */
6210 static void
6211 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6212 {
6213 	id_t cb_id = pahmep->cb_id;
6214 
6215 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6216 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6217 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6218 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6219 			return;		/* non-fatal */
6220 	}
6221 	panic("pa_hment leaked: 0x%p", pahmep);
6222 }
6223 
6224 /*
6225  * Remove all mappings to page 'pp'.
6226  */
6227 int
6228 hat_pageunload(struct page *pp, uint_t forceflag)
6229 {
6230 	struct page *origpp = pp;
6231 	struct sf_hment *sfhme, *tmphme;
6232 	struct hme_blk *hmeblkp;
6233 	kmutex_t *pml, *pmtx;
6234 	cpuset_t cpuset, tset;
6235 	int index, cons;
6236 	int xhme_blks;
6237 	int pa_hments;
6238 
6239 	ASSERT(PAGE_EXCL(pp));
6240 
6241 retry_xhat:
6242 	tmphme = NULL;
6243 	xhme_blks = 0;
6244 	pa_hments = 0;
6245 	CPUSET_ZERO(cpuset);
6246 
6247 	pml = sfmmu_mlist_enter(pp);
6248 
6249 	if (pp->p_kpmref)
6250 		sfmmu_kpm_pageunload(pp);
6251 	ASSERT(!PP_ISMAPPED_KPM(pp));
6252 
6253 	index = PP_MAPINDEX(pp);
6254 	cons = TTE8K;
6255 retry:
6256 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6257 		tmphme = sfhme->hme_next;
6258 
6259 		if (IS_PAHME(sfhme)) {
6260 			ASSERT(sfhme->hme_data != NULL);
6261 			pa_hments++;
6262 			continue;
6263 		}
6264 
6265 		hmeblkp = sfmmu_hmetohblk(sfhme);
6266 		if (hmeblkp->hblk_xhat_bit) {
6267 			struct xhat_hme_blk *xblk =
6268 			    (struct xhat_hme_blk *)hmeblkp;
6269 
6270 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6271 			    pp, forceflag, XBLK2PROVBLK(xblk));
6272 
6273 			xhme_blks = 1;
6274 			continue;
6275 		}
6276 
6277 		/*
6278 		 * If there are kernel mappings don't unload them, they will
6279 		 * be suspended.
6280 		 */
6281 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6282 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6283 			continue;
6284 
6285 		tset = sfmmu_pageunload(pp, sfhme, cons);
6286 		CPUSET_OR(cpuset, tset);
6287 	}
6288 
6289 	while (index != 0) {
6290 		index = index >> 1;
6291 		if (index != 0)
6292 			cons++;
6293 		if (index & 0x1) {
6294 			/* Go to leading page */
6295 			pp = PP_GROUPLEADER(pp, cons);
6296 			ASSERT(sfmmu_mlist_held(pp));
6297 			goto retry;
6298 		}
6299 	}
6300 
6301 	/*
6302 	 * cpuset may be empty if the page was only mapped by segkpm,
6303 	 * in which case we won't actually cross-trap.
6304 	 */
6305 	xt_sync(cpuset);
6306 
6307 	/*
6308 	 * The page should have no mappings at this point, unless
6309 	 * we were called from hat_page_relocate() in which case we
6310 	 * leave the locked mappings which will be suspended later.
6311 	 */
6312 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6313 	    (forceflag == SFMMU_KERNEL_RELOC));
6314 
6315 	if (PP_ISTNC(pp)) {
6316 		if (cons == TTE8K) {
6317 			pmtx = sfmmu_page_enter(pp);
6318 			PP_CLRTNC(pp);
6319 			sfmmu_page_exit(pmtx);
6320 		} else {
6321 			conv_tnc(pp, cons);
6322 		}
6323 	}
6324 
6325 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6326 		/*
6327 		 * Unlink any pa_hments and free them, calling back
6328 		 * the responsible subsystem to notify it of the error.
6329 		 * This can occur in situations such as drivers leaking
6330 		 * DMA handles: naughty, but common enough that we'd like
6331 		 * to keep the system running rather than bringing it
6332 		 * down with an obscure error like "pa_hment leaked"
6333 		 * which doesn't aid the user in debugging their driver.
6334 		 */
6335 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6336 			tmphme = sfhme->hme_next;
6337 			if (IS_PAHME(sfhme)) {
6338 				struct pa_hment *pahmep = sfhme->hme_data;
6339 				sfmmu_pahment_leaked(pahmep);
6340 				HME_SUB(sfhme, pp);
6341 				kmem_cache_free(pa_hment_cache, pahmep);
6342 			}
6343 		}
6344 
6345 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6346 	}
6347 
6348 	sfmmu_mlist_exit(pml);
6349 
6350 	/*
6351 	 * XHAT may not have finished unloading pages
6352 	 * because some other thread was waiting for
6353 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6354 	 * the job.
6355 	 */
6356 	if (xhme_blks) {
6357 		pp = origpp;
6358 		goto retry_xhat;
6359 	}
6360 
6361 	return (0);
6362 }
6363 
6364 static cpuset_t
6365 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6366 {
6367 	struct hme_blk *hmeblkp;
6368 	sfmmu_t *sfmmup;
6369 	tte_t tte, ttemod;
6370 #ifdef DEBUG
6371 	tte_t orig_old;
6372 #endif /* DEBUG */
6373 	caddr_t addr;
6374 	int ttesz;
6375 	int ret;
6376 	cpuset_t cpuset;
6377 
6378 	ASSERT(pp != NULL);
6379 	ASSERT(sfmmu_mlist_held(pp));
6380 	ASSERT(pp->p_vnode != &kvp);
6381 
6382 	CPUSET_ZERO(cpuset);
6383 
6384 	hmeblkp = sfmmu_hmetohblk(sfhme);
6385 
6386 readtte:
6387 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6388 	if (TTE_IS_VALID(&tte)) {
6389 		sfmmup = hblktosfmmu(hmeblkp);
6390 		ttesz = get_hblk_ttesz(hmeblkp);
6391 		/*
6392 		 * Only unload mappings of 'cons' size.
6393 		 */
6394 		if (ttesz != cons)
6395 			return (cpuset);
6396 
6397 		/*
6398 		 * Note that we have p_mapping lock, but no hash lock here.
6399 		 * hblk_unload() has to have both hash lock AND p_mapping
6400 		 * lock before it tries to modify tte. So, the tte could
6401 		 * not become invalid in the sfmmu_modifytte_try() below.
6402 		 */
6403 		ttemod = tte;
6404 #ifdef DEBUG
6405 		orig_old = tte;
6406 #endif /* DEBUG */
6407 
6408 		TTE_SET_INVALID(&ttemod);
6409 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6410 		if (ret < 0) {
6411 #ifdef DEBUG
6412 			/* only R/M bits can change. */
6413 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6414 #endif /* DEBUG */
6415 			goto readtte;
6416 		}
6417 
6418 		if (ret == 0) {
6419 			panic("pageunload: cas failed?");
6420 		}
6421 
6422 		addr = tte_to_vaddr(hmeblkp, tte);
6423 
6424 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6425 
6426 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6427 
6428 		/*
6429 		 * We need to flush the page from the virtual cache
6430 		 * in order to prevent a virtual cache alias
6431 		 * inconsistency. The particular scenario we need
6432 		 * to worry about is:
6433 		 * Given:  va1 and va2 are two virtual address that
6434 		 * alias and will map the same physical address.
6435 		 * 1.	mapping exists from va1 to pa and data has
6436 		 *	been read into the cache.
6437 		 * 2.	unload va1.
6438 		 * 3.	load va2 and modify data using va2.
6439 		 * 4	unload va2.
6440 		 * 5.	load va1 and reference data.  Unless we flush
6441 		 *	the data cache when we unload we will get
6442 		 *	stale data.
6443 		 * This scenario is taken care of by using virtual
6444 		 * page coloring.
6445 		 */
6446 		if (sfmmup->sfmmu_ismhat) {
6447 			/*
6448 			 * Flush TSBs, TLBs and caches
6449 			 * of every process
6450 			 * sharing this ism segment.
6451 			 */
6452 			sfmmu_hat_lock_all();
6453 			mutex_enter(&ism_mlist_lock);
6454 			kpreempt_disable();
6455 			if (do_virtual_coloring)
6456 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6457 					pp->p_pagenum, CACHE_NO_FLUSH);
6458 			else
6459 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6460 					pp->p_pagenum, CACHE_FLUSH);
6461 			kpreempt_enable();
6462 			mutex_exit(&ism_mlist_lock);
6463 			sfmmu_hat_unlock_all();
6464 			cpuset = cpu_ready_set;
6465 		} else if (do_virtual_coloring) {
6466 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6467 			cpuset = sfmmup->sfmmu_cpusran;
6468 		} else {
6469 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6470 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6471 				CACHE_FLUSH, 0);
6472 			cpuset = sfmmup->sfmmu_cpusran;
6473 		}
6474 
6475 		/*
6476 		 * Hme_sub has to run after ttesync() and a_rss update.
6477 		 * See hblk_unload().
6478 		 */
6479 		HME_SUB(sfhme, pp);
6480 		membar_stst();
6481 
6482 		/*
6483 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6484 		 * since pteload may have done a HME_ADD() right after
6485 		 * we did the HME_SUB() above. Hmecnt is now maintained
6486 		 * by cas only. no lock guranteed its value. The only
6487 		 * gurantee we have is the hmecnt should not be less than
6488 		 * what it should be so the hblk will not be taken away.
6489 		 * It's also important that we decremented the hmecnt after
6490 		 * we are done with hmeblkp so that this hmeblk won't be
6491 		 * stolen.
6492 		 */
6493 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6494 		ASSERT(hmeblkp->hblk_vcnt > 0);
6495 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6496 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6497 		/*
6498 		 * This is bug 4063182.
6499 		 * XXX: fixme
6500 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6501 		 *	!hmeblkp->hblk_lckcnt);
6502 		 */
6503 	} else {
6504 		panic("invalid tte? pp %p &tte %p",
6505 		    (void *)pp, (void *)&tte);
6506 	}
6507 
6508 	return (cpuset);
6509 }
6510 
6511 /*
6512  * While relocating a kernel page, this function will move the mappings
6513  * from tpp to dpp and modify any associated data with these mappings.
6514  * It also unsuspends the suspended kernel mapping.
6515  */
6516 static void
6517 hat_pagereload(struct page *tpp, struct page *dpp)
6518 {
6519 	struct sf_hment *sfhme;
6520 	tte_t tte, ttemod;
6521 	int index, cons;
6522 
6523 	ASSERT(getpil() == PIL_MAX);
6524 	ASSERT(sfmmu_mlist_held(tpp));
6525 	ASSERT(sfmmu_mlist_held(dpp));
6526 
6527 	index = PP_MAPINDEX(tpp);
6528 	cons = TTE8K;
6529 
6530 	/* Update real mappings to the page */
6531 retry:
6532 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6533 		if (IS_PAHME(sfhme))
6534 			continue;
6535 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6536 		ttemod = tte;
6537 
6538 		/*
6539 		 * replace old pfn with new pfn in TTE
6540 		 */
6541 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6542 
6543 		/*
6544 		 * clear suspend bit
6545 		 */
6546 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6547 		TTE_CLR_SUSPEND(&ttemod);
6548 
6549 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6550 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6551 
6552 		/*
6553 		 * set hme_page point to new page
6554 		 */
6555 		sfhme->hme_page = dpp;
6556 	}
6557 
6558 	/*
6559 	 * move p_mapping list from old page to new page
6560 	 */
6561 	dpp->p_mapping = tpp->p_mapping;
6562 	tpp->p_mapping = NULL;
6563 	dpp->p_share = tpp->p_share;
6564 	tpp->p_share = 0;
6565 
6566 	while (index != 0) {
6567 		index = index >> 1;
6568 		if (index != 0)
6569 			cons++;
6570 		if (index & 0x1) {
6571 			tpp = PP_GROUPLEADER(tpp, cons);
6572 			dpp = PP_GROUPLEADER(dpp, cons);
6573 			goto retry;
6574 		}
6575 	}
6576 
6577 	if (dtrace_kreloc_fini)
6578 		(*dtrace_kreloc_fini)();
6579 	mutex_exit(&kpr_suspendlock);
6580 }
6581 
6582 uint_t
6583 hat_pagesync(struct page *pp, uint_t clearflag)
6584 {
6585 	struct sf_hment *sfhme, *tmphme = NULL;
6586 	struct hme_blk *hmeblkp;
6587 	kmutex_t *pml;
6588 	cpuset_t cpuset, tset;
6589 	int	index, cons;
6590 	extern	ulong_t po_share;
6591 	page_t	*save_pp = pp;
6592 
6593 	CPUSET_ZERO(cpuset);
6594 
6595 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6596 		return (PP_GENERIC_ATTR(pp));
6597 	}
6598 
6599 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6600 	    PP_ISREF(pp)) {
6601 		return (PP_GENERIC_ATTR(pp));
6602 	}
6603 
6604 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6605 	    PP_ISMOD(pp)) {
6606 		return (PP_GENERIC_ATTR(pp));
6607 	}
6608 
6609 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6610 	    (pp->p_share > po_share) &&
6611 	    !(clearflag & HAT_SYNC_ZERORM)) {
6612 		if (PP_ISRO(pp))
6613 			hat_page_setattr(pp, P_REF);
6614 		return (PP_GENERIC_ATTR(pp));
6615 	}
6616 
6617 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6618 	pml = sfmmu_mlist_enter(pp);
6619 	index = PP_MAPINDEX(pp);
6620 	cons = TTE8K;
6621 retry:
6622 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6623 		/*
6624 		 * We need to save the next hment on the list since
6625 		 * it is possible for pagesync to remove an invalid hment
6626 		 * from the list.
6627 		 */
6628 		tmphme = sfhme->hme_next;
6629 		/*
6630 		 * If we are looking for large mappings and this hme doesn't
6631 		 * reach the range we are seeking, just ignore its.
6632 		 */
6633 		hmeblkp = sfmmu_hmetohblk(sfhme);
6634 		if (hmeblkp->hblk_xhat_bit)
6635 			continue;
6636 
6637 		if (hme_size(sfhme) < cons)
6638 			continue;
6639 		tset = sfmmu_pagesync(pp, sfhme,
6640 			clearflag & ~HAT_SYNC_STOPON_RM);
6641 		CPUSET_OR(cpuset, tset);
6642 		/*
6643 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6644 		 * as the "ref" or "mod" is set.
6645 		 */
6646 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6647 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6648 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6649 			index = 0;
6650 			break;
6651 		}
6652 	}
6653 
6654 	while (index) {
6655 		index = index >> 1;
6656 		cons++;
6657 		if (index & 0x1) {
6658 			/* Go to leading page */
6659 			pp = PP_GROUPLEADER(pp, cons);
6660 			goto retry;
6661 		}
6662 	}
6663 
6664 	xt_sync(cpuset);
6665 	sfmmu_mlist_exit(pml);
6666 	return (PP_GENERIC_ATTR(save_pp));
6667 }
6668 
6669 /*
6670  * Get all the hardware dependent attributes for a page struct
6671  */
6672 static cpuset_t
6673 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6674 	uint_t clearflag)
6675 {
6676 	caddr_t addr;
6677 	tte_t tte, ttemod;
6678 	struct hme_blk *hmeblkp;
6679 	int ret;
6680 	sfmmu_t *sfmmup;
6681 	cpuset_t cpuset;
6682 
6683 	ASSERT(pp != NULL);
6684 	ASSERT(sfmmu_mlist_held(pp));
6685 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6686 		(clearflag == HAT_SYNC_ZERORM));
6687 
6688 	SFMMU_STAT(sf_pagesync);
6689 
6690 	CPUSET_ZERO(cpuset);
6691 
6692 sfmmu_pagesync_retry:
6693 
6694 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6695 	if (TTE_IS_VALID(&tte)) {
6696 		hmeblkp = sfmmu_hmetohblk(sfhme);
6697 		sfmmup = hblktosfmmu(hmeblkp);
6698 		addr = tte_to_vaddr(hmeblkp, tte);
6699 		if (clearflag == HAT_SYNC_ZERORM) {
6700 			ttemod = tte;
6701 			TTE_CLR_RM(&ttemod);
6702 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6703 				&sfhme->hme_tte);
6704 			if (ret < 0) {
6705 				/*
6706 				 * cas failed and the new value is not what
6707 				 * we want.
6708 				 */
6709 				goto sfmmu_pagesync_retry;
6710 			}
6711 
6712 			if (ret > 0) {
6713 				/* we win the cas */
6714 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6715 				cpuset = sfmmup->sfmmu_cpusran;
6716 			}
6717 		}
6718 
6719 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6720 	}
6721 	return (cpuset);
6722 }
6723 
6724 /*
6725  * Remove write permission from a mappings to a page, so that
6726  * we can detect the next modification of it. This requires modifying
6727  * the TTE then invalidating (demap) any TLB entry using that TTE.
6728  * This code is similar to sfmmu_pagesync().
6729  */
6730 static cpuset_t
6731 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6732 {
6733 	caddr_t addr;
6734 	tte_t tte;
6735 	tte_t ttemod;
6736 	struct hme_blk *hmeblkp;
6737 	int ret;
6738 	sfmmu_t *sfmmup;
6739 	cpuset_t cpuset;
6740 
6741 	ASSERT(pp != NULL);
6742 	ASSERT(sfmmu_mlist_held(pp));
6743 
6744 	CPUSET_ZERO(cpuset);
6745 	SFMMU_STAT(sf_clrwrt);
6746 
6747 retry:
6748 
6749 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6750 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6751 		hmeblkp = sfmmu_hmetohblk(sfhme);
6752 
6753 		/*
6754 		 * xhat mappings should never be to a VMODSORT page.
6755 		 */
6756 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6757 
6758 		sfmmup = hblktosfmmu(hmeblkp);
6759 		addr = tte_to_vaddr(hmeblkp, tte);
6760 
6761 		ttemod = tte;
6762 		TTE_CLR_WRT(&ttemod);
6763 		TTE_CLR_MOD(&ttemod);
6764 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6765 
6766 		/*
6767 		 * if cas failed and the new value is not what
6768 		 * we want retry
6769 		 */
6770 		if (ret < 0)
6771 			goto retry;
6772 
6773 		/* we win the cas */
6774 		if (ret > 0) {
6775 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6776 			cpuset = sfmmup->sfmmu_cpusran;
6777 		}
6778 	}
6779 
6780 	return (cpuset);
6781 }
6782 
6783 /*
6784  * Walk all mappings of a page, removing write permission and clearing the
6785  * ref/mod bits. This code is similar to hat_pagesync()
6786  */
6787 static void
6788 hat_page_clrwrt(page_t *pp)
6789 {
6790 	struct sf_hment *sfhme;
6791 	struct sf_hment *tmphme = NULL;
6792 	kmutex_t *pml;
6793 	cpuset_t cpuset;
6794 	cpuset_t tset;
6795 	int	index;
6796 	int	 cons;
6797 
6798 	CPUSET_ZERO(cpuset);
6799 
6800 	pml = sfmmu_mlist_enter(pp);
6801 	index = PP_MAPINDEX(pp);
6802 	cons = TTE8K;
6803 retry:
6804 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6805 		tmphme = sfhme->hme_next;
6806 
6807 		/*
6808 		 * If we are looking for large mappings and this hme doesn't
6809 		 * reach the range we are seeking, just ignore its.
6810 		 */
6811 
6812 		if (hme_size(sfhme) < cons)
6813 			continue;
6814 
6815 		tset = sfmmu_pageclrwrt(pp, sfhme);
6816 		CPUSET_OR(cpuset, tset);
6817 	}
6818 
6819 	while (index) {
6820 		index = index >> 1;
6821 		cons++;
6822 		if (index & 0x1) {
6823 			/* Go to leading page */
6824 			pp = PP_GROUPLEADER(pp, cons);
6825 			goto retry;
6826 		}
6827 	}
6828 
6829 	xt_sync(cpuset);
6830 	sfmmu_mlist_exit(pml);
6831 }
6832 
6833 /*
6834  * Set the given REF/MOD/RO bits for the given page.
6835  * For a vnode with a sorted v_pages list, we need to change
6836  * the attributes and the v_pages list together under page_vnode_mutex.
6837  */
6838 void
6839 hat_page_setattr(page_t *pp, uint_t flag)
6840 {
6841 	vnode_t		*vp = pp->p_vnode;
6842 	page_t		**listp;
6843 	kmutex_t	*pmtx;
6844 	kmutex_t	*vphm = NULL;
6845 
6846 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6847 
6848 	/*
6849 	 * nothing to do if attribute already set
6850 	 */
6851 	if ((pp->p_nrm & flag) == flag)
6852 		return;
6853 
6854 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6855 		vphm = page_vnode_mutex(vp);
6856 		mutex_enter(vphm);
6857 	}
6858 
6859 	pmtx = sfmmu_page_enter(pp);
6860 	pp->p_nrm |= flag;
6861 	sfmmu_page_exit(pmtx);
6862 
6863 	if (vphm != NULL) {
6864 		/*
6865 		 * Some File Systems examine v_pages for NULL w/o
6866 		 * grabbing the vphm mutex. Must not let it become NULL when
6867 		 * pp is the only page on the list.
6868 		 */
6869 		if (pp->p_vpnext != pp) {
6870 			page_vpsub(&vp->v_pages, pp);
6871 			if (vp->v_pages != NULL)
6872 				listp = &vp->v_pages->p_vpprev->p_vpnext;
6873 			else
6874 				listp = &vp->v_pages;
6875 			page_vpadd(listp, pp);
6876 		}
6877 		mutex_exit(vphm);
6878 	}
6879 }
6880 
6881 void
6882 hat_page_clrattr(page_t *pp, uint_t flag)
6883 {
6884 	vnode_t		*vp = pp->p_vnode;
6885 	kmutex_t	*vphm = NULL;
6886 	kmutex_t	*pmtx;
6887 
6888 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6889 
6890 	/*
6891 	 * For vnode with a sorted v_pages list, we need to change
6892 	 * the attributes and the v_pages list together under page_vnode_mutex.
6893 	 */
6894 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6895 		vphm = page_vnode_mutex(vp);
6896 		mutex_enter(vphm);
6897 	}
6898 
6899 	pmtx = sfmmu_page_enter(pp);
6900 	pp->p_nrm &= ~flag;
6901 	sfmmu_page_exit(pmtx);
6902 
6903 	if (vphm != NULL) {
6904 		/*
6905 		 * Some File Systems examine v_pages for NULL w/o
6906 		 * grabbing the vphm mutex. Must not let it become NULL when
6907 		 * pp is the only page on the list.
6908 		 */
6909 		if (pp->p_vpnext != pp) {
6910 			page_vpsub(&vp->v_pages, pp);
6911 			page_vpadd(&vp->v_pages, pp);
6912 		}
6913 		mutex_exit(vphm);
6914 
6915 		/*
6916 		 * VMODSORT works by removing write permissions and getting
6917 		 * a fault when a page is made dirty. At this point
6918 		 * we need to remove write permission from all mappings
6919 		 * to this page.
6920 		 */
6921 		hat_page_clrwrt(pp);
6922 	}
6923 }
6924 
6925 
6926 uint_t
6927 hat_page_getattr(page_t *pp, uint_t flag)
6928 {
6929 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6930 	return ((uint_t)(pp->p_nrm & flag));
6931 }
6932 
6933 /*
6934  * DEBUG kernels: verify that a kernel va<->pa translation
6935  * is safe by checking the underlying page_t is in a page
6936  * relocation-safe state.
6937  */
6938 #ifdef	DEBUG
6939 void
6940 sfmmu_check_kpfn(pfn_t pfn)
6941 {
6942 	page_t *pp;
6943 	int index, cons;
6944 
6945 	if (hat_check_vtop == 0)
6946 		return;
6947 
6948 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
6949 		return;
6950 
6951 	pp = page_numtopp_nolock(pfn);
6952 	if (!pp)
6953 		return;
6954 
6955 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6956 		return;
6957 
6958 	/*
6959 	 * Handed a large kernel page, we dig up the root page since we
6960 	 * know the root page might have the lock also.
6961 	 */
6962 	if (pp->p_szc != 0) {
6963 		index = PP_MAPINDEX(pp);
6964 		cons = TTE8K;
6965 again:
6966 		while (index != 0) {
6967 			index >>= 1;
6968 			if (index != 0)
6969 				cons++;
6970 			if (index & 0x1) {
6971 				pp = PP_GROUPLEADER(pp, cons);
6972 				goto again;
6973 			}
6974 		}
6975 	}
6976 
6977 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6978 		return;
6979 
6980 	/*
6981 	 * Pages need to be locked or allocated "permanent" (either from
6982 	 * static_arena arena or explicitly setting PG_NORELOC when calling
6983 	 * page_create_va()) for VA->PA translations to be valid.
6984 	 */
6985 	if (!PP_ISNORELOC(pp))
6986 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
6987 	else
6988 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
6989 }
6990 #endif	/* DEBUG */
6991 
6992 /*
6993  * Returns a page frame number for a given virtual address.
6994  * Returns PFN_INVALID to indicate an invalid mapping
6995  */
6996 pfn_t
6997 hat_getpfnum(struct hat *hat, caddr_t addr)
6998 {
6999 	pfn_t pfn;
7000 	tte_t tte;
7001 
7002 	/*
7003 	 * We would like to
7004 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7005 	 * but we can't because the iommu driver will call this
7006 	 * routine at interrupt time and it can't grab the as lock
7007 	 * or it will deadlock: A thread could have the as lock
7008 	 * and be waiting for io.  The io can't complete
7009 	 * because the interrupt thread is blocked trying to grab
7010 	 * the as lock.
7011 	 */
7012 
7013 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7014 
7015 	if (hat == ksfmmup) {
7016 		if (segkpm && IS_KPM_ADDR(addr))
7017 			return (sfmmu_kpm_vatopfn(addr));
7018 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7019 		    == PFN_SUSPENDED) {
7020 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7021 		}
7022 		sfmmu_check_kpfn(pfn);
7023 		return (pfn);
7024 	} else {
7025 		return (sfmmu_uvatopfn(addr, hat));
7026 	}
7027 }
7028 
7029 /*
7030  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7031  * Use hat_getpfnum(kas.a_hat, ...) instead.
7032  *
7033  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7034  * but can't right now due to the fact that some software has grown to use
7035  * this interface incorrectly. So for now when the interface is misused,
7036  * return a warning to the user that in the future it won't work in the
7037  * way they're abusing it, and carry on (after disabling page relocation).
7038  */
7039 pfn_t
7040 hat_getkpfnum(caddr_t addr)
7041 {
7042 	pfn_t pfn;
7043 	tte_t tte;
7044 	int badcaller = 0;
7045 	extern int segkmem_reloc;
7046 
7047 	if (segkpm && IS_KPM_ADDR(addr)) {
7048 		badcaller = 1;
7049 		pfn = sfmmu_kpm_vatopfn(addr);
7050 	} else {
7051 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7052 		    == PFN_SUSPENDED) {
7053 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7054 		}
7055 		badcaller = pf_is_memory(pfn);
7056 	}
7057 
7058 	if (badcaller) {
7059 		/*
7060 		 * We can't return PFN_INVALID or the caller may panic
7061 		 * or corrupt the system.  The only alternative is to
7062 		 * disable page relocation at this point for all kernel
7063 		 * memory.  This will impact any callers of page_relocate()
7064 		 * such as FMA or DR.
7065 		 *
7066 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7067 		 * can be advised that he should upgrade his device driver
7068 		 * so that this doesn't happen.
7069 		 */
7070 		hat_getkpfnum_badcall(caller());
7071 		if (hat_kpr_enabled && segkmem_reloc) {
7072 			hat_kpr_enabled = 0;
7073 			segkmem_reloc = 0;
7074 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7075 		}
7076 	}
7077 	return (pfn);
7078 }
7079 
7080 pfn_t
7081 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7082 {
7083 	struct hmehash_bucket *hmebp;
7084 	hmeblk_tag hblktag;
7085 	int hmeshift, hashno = 1;
7086 	struct hme_blk *hmeblkp = NULL;
7087 
7088 	struct sf_hment *sfhmep;
7089 	tte_t tte;
7090 	pfn_t pfn;
7091 
7092 	/* support for ISM */
7093 	ism_map_t	*ism_map;
7094 	ism_blk_t	*ism_blkp;
7095 	int		i;
7096 	sfmmu_t *ism_hatid = NULL;
7097 	sfmmu_t *locked_hatid = NULL;
7098 
7099 
7100 	ASSERT(sfmmup != ksfmmup);
7101 	SFMMU_STAT(sf_user_vtop);
7102 	/*
7103 	 * Set ism_hatid if vaddr falls in a ISM segment.
7104 	 */
7105 	ism_blkp = sfmmup->sfmmu_iblk;
7106 	if (ism_blkp) {
7107 		sfmmu_ismhat_enter(sfmmup, 0);
7108 		locked_hatid = sfmmup;
7109 	}
7110 	while (ism_blkp && ism_hatid == NULL) {
7111 		ism_map = ism_blkp->iblk_maps;
7112 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7113 			if (vaddr >= ism_start(ism_map[i]) &&
7114 			    vaddr < ism_end(ism_map[i])) {
7115 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7116 				vaddr = (caddr_t)(vaddr -
7117 					ism_start(ism_map[i]));
7118 				break;
7119 			}
7120 		}
7121 		ism_blkp = ism_blkp->iblk_next;
7122 	}
7123 	if (locked_hatid) {
7124 		sfmmu_ismhat_exit(locked_hatid, 0);
7125 	}
7126 
7127 	hblktag.htag_id = sfmmup;
7128 	do {
7129 		hmeshift = HME_HASH_SHIFT(hashno);
7130 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7131 		hblktag.htag_rehash = hashno;
7132 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7133 
7134 		SFMMU_HASH_LOCK(hmebp);
7135 
7136 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7137 		if (hmeblkp != NULL) {
7138 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7139 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7140 			if (TTE_IS_VALID(&tte)) {
7141 				pfn = TTE_TO_PFN(vaddr, &tte);
7142 			} else {
7143 				pfn = PFN_INVALID;
7144 			}
7145 			SFMMU_HASH_UNLOCK(hmebp);
7146 			return (pfn);
7147 		}
7148 		SFMMU_HASH_UNLOCK(hmebp);
7149 		hashno++;
7150 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7151 	return (PFN_INVALID);
7152 }
7153 
7154 
7155 /*
7156  * For compatability with AT&T and later optimizations
7157  */
7158 /* ARGSUSED */
7159 void
7160 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7161 {
7162 	ASSERT(hat != NULL);
7163 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7164 }
7165 
7166 /*
7167  * Return the number of mappings to a particular page.
7168  * This number is an approximation of the number of
7169  * number of people sharing the page.
7170  */
7171 ulong_t
7172 hat_page_getshare(page_t *pp)
7173 {
7174 	page_t *spp = pp;	/* start page */
7175 	kmutex_t *pml;
7176 	ulong_t	cnt;
7177 	int index, sz = TTE64K;
7178 
7179 	/*
7180 	 * We need to grab the mlist lock to make sure any outstanding
7181 	 * load/unloads complete.  Otherwise we could return zero
7182 	 * even though the unload(s) hasn't finished yet.
7183 	 */
7184 	pml = sfmmu_mlist_enter(spp);
7185 	cnt = spp->p_share;
7186 
7187 	if (kpm_enable)
7188 		cnt += spp->p_kpmref;
7189 
7190 	/*
7191 	 * If we have any large mappings, we count the number of
7192 	 * mappings that this large page is part of.
7193 	 */
7194 	index = PP_MAPINDEX(spp);
7195 	index >>= 1;
7196 	while (index) {
7197 		pp = PP_GROUPLEADER(spp, sz);
7198 		if ((index & 0x1) && pp != spp) {
7199 			cnt += pp->p_share;
7200 			spp = pp;
7201 		}
7202 		index >>= 1;
7203 		sz++;
7204 	}
7205 	sfmmu_mlist_exit(pml);
7206 	return (cnt);
7207 }
7208 
7209 /*
7210  * Unload all large mappings to the pp and reset the p_szc field of every
7211  * constituent page according to the remaining mappings.
7212  *
7213  * pp must be locked SE_EXCL. Even though no other constituent pages are
7214  * locked it's legal to unload the large mappings to the pp because all
7215  * constituent pages of large locked mappings have to be locked SE_SHARED.
7216  * This means if we have SE_EXCL lock on one of constituent pages none of the
7217  * large mappings to pp are locked.
7218  *
7219  * Decrease p_szc field starting from the last constituent page and ending
7220  * with the root page. This method is used because other threads rely on the
7221  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7222  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7223  * ensures that p_szc changes of the constituent pages appears atomic for all
7224  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7225  *
7226  * This mechanism is only used for file system pages where it's not always
7227  * possible to get SE_EXCL locks on all constituent pages to demote the size
7228  * code (as is done for anonymous or kernel large pages).
7229  *
7230  * See more comments in front of sfmmu_mlspl_enter().
7231  */
7232 void
7233 hat_page_demote(page_t *pp)
7234 {
7235 	int index;
7236 	int sz;
7237 	cpuset_t cpuset;
7238 	int sync = 0;
7239 	page_t *rootpp;
7240 	struct sf_hment *sfhme;
7241 	struct sf_hment *tmphme = NULL;
7242 	struct hme_blk *hmeblkp;
7243 	uint_t pszc;
7244 	page_t *lastpp;
7245 	cpuset_t tset;
7246 	pgcnt_t npgs;
7247 	kmutex_t *pml;
7248 	kmutex_t *pmtx = NULL;
7249 
7250 	ASSERT(PAGE_EXCL(pp));
7251 	ASSERT(!PP_ISFREE(pp));
7252 	ASSERT(page_szc_lock_assert(pp));
7253 	pml = sfmmu_mlist_enter(pp);
7254 
7255 	pszc = pp->p_szc;
7256 	if (pszc == 0) {
7257 		goto out;
7258 	}
7259 
7260 	index = PP_MAPINDEX(pp) >> 1;
7261 
7262 	if (index) {
7263 		CPUSET_ZERO(cpuset);
7264 		sz = TTE64K;
7265 		sync = 1;
7266 	}
7267 
7268 	while (index) {
7269 		if (!(index & 0x1)) {
7270 			index >>= 1;
7271 			sz++;
7272 			continue;
7273 		}
7274 		ASSERT(sz <= pszc);
7275 		rootpp = PP_GROUPLEADER(pp, sz);
7276 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7277 			tmphme = sfhme->hme_next;
7278 			hmeblkp = sfmmu_hmetohblk(sfhme);
7279 			if (hme_size(sfhme) != sz) {
7280 				continue;
7281 			}
7282 			if (hmeblkp->hblk_xhat_bit) {
7283 				cmn_err(CE_PANIC,
7284 				    "hat_page_demote: xhat hmeblk");
7285 			}
7286 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7287 			CPUSET_OR(cpuset, tset);
7288 		}
7289 		if (index >>= 1) {
7290 			sz++;
7291 		}
7292 	}
7293 
7294 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7295 
7296 	if (sync) {
7297 		xt_sync(cpuset);
7298 		if (PP_ISTNC(pp)) {
7299 			conv_tnc(rootpp, sz);
7300 		}
7301 	}
7302 
7303 	pmtx = sfmmu_page_enter(pp);
7304 
7305 	ASSERT(pp->p_szc == pszc);
7306 	rootpp = PP_PAGEROOT(pp);
7307 	ASSERT(rootpp->p_szc == pszc);
7308 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7309 
7310 	while (lastpp != rootpp) {
7311 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7312 		ASSERT(sz < pszc);
7313 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7314 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7315 		while (--npgs > 0) {
7316 			lastpp->p_szc = (uchar_t)sz;
7317 			lastpp = PP_PAGEPREV(lastpp);
7318 		}
7319 		if (sz) {
7320 			/*
7321 			 * make sure before current root's pszc
7322 			 * is updated all updates to constituent pages pszc
7323 			 * fields are globally visible.
7324 			 */
7325 			membar_producer();
7326 		}
7327 		lastpp->p_szc = sz;
7328 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7329 		if (lastpp != rootpp) {
7330 			lastpp = PP_PAGEPREV(lastpp);
7331 		}
7332 	}
7333 	if (sz == 0) {
7334 		/* the loop above doesn't cover this case */
7335 		rootpp->p_szc = 0;
7336 	}
7337 out:
7338 	ASSERT(pp->p_szc == 0);
7339 	if (pmtx != NULL) {
7340 		sfmmu_page_exit(pmtx);
7341 	}
7342 	sfmmu_mlist_exit(pml);
7343 }
7344 
7345 /*
7346  * Refresh the HAT ismttecnt[] element for size szc.
7347  * Caller must have set ISM busy flag to prevent mapping
7348  * lists from changing while we're traversing them.
7349  */
7350 pgcnt_t
7351 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7352 {
7353 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7354 	ism_map_t	*ism_map;
7355 	pgcnt_t		npgs = 0;
7356 	int		j;
7357 
7358 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7359 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7360 		ism_map = ism_blkp->iblk_maps;
7361 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7362 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7363 	}
7364 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7365 	return (npgs);
7366 }
7367 
7368 /*
7369  * Yield the memory claim requirement for an address space.
7370  *
7371  * This is currently implemented as the number of bytes that have active
7372  * hardware translations that have page structures.  Therefore, it can
7373  * underestimate the traditional resident set size, eg, if the
7374  * physical page is present and the hardware translation is missing;
7375  * and it can overestimate the rss, eg, if there are active
7376  * translations to a frame buffer with page structs.
7377  * Also, it does not take sharing into account.
7378  *
7379  * Note that we don't acquire locks here since this function is most often
7380  * called from the clock thread.
7381  */
7382 size_t
7383 hat_get_mapped_size(struct hat *hat)
7384 {
7385 	size_t		assize = 0;
7386 	int 		i;
7387 
7388 	if (hat == NULL)
7389 		return (0);
7390 
7391 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7392 
7393 	for (i = 0; i < mmu_page_sizes; i++)
7394 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7395 
7396 	if (hat->sfmmu_iblk == NULL)
7397 		return (assize);
7398 
7399 	for (i = 0; i < mmu_page_sizes; i++)
7400 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7401 
7402 	return (assize);
7403 }
7404 
7405 int
7406 hat_stats_enable(struct hat *hat)
7407 {
7408 	hatlock_t	*hatlockp;
7409 
7410 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7411 
7412 	hatlockp = sfmmu_hat_enter(hat);
7413 	hat->sfmmu_rmstat++;
7414 	sfmmu_hat_exit(hatlockp);
7415 	return (1);
7416 }
7417 
7418 void
7419 hat_stats_disable(struct hat *hat)
7420 {
7421 	hatlock_t	*hatlockp;
7422 
7423 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7424 
7425 	hatlockp = sfmmu_hat_enter(hat);
7426 	hat->sfmmu_rmstat--;
7427 	sfmmu_hat_exit(hatlockp);
7428 }
7429 
7430 /*
7431  * Routines for entering or removing  ourselves from the
7432  * ism_hat's mapping list.
7433  */
7434 static void
7435 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7436 {
7437 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7438 
7439 	iment->iment_prev = NULL;
7440 	iment->iment_next = ism_hat->sfmmu_iment;
7441 	if (ism_hat->sfmmu_iment) {
7442 		ism_hat->sfmmu_iment->iment_prev = iment;
7443 	}
7444 	ism_hat->sfmmu_iment = iment;
7445 }
7446 
7447 static void
7448 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7449 {
7450 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7451 
7452 	if (ism_hat->sfmmu_iment == NULL) {
7453 		panic("ism map entry remove - no entries");
7454 	}
7455 
7456 	if (iment->iment_prev) {
7457 		ASSERT(ism_hat->sfmmu_iment != iment);
7458 		iment->iment_prev->iment_next = iment->iment_next;
7459 	} else {
7460 		ASSERT(ism_hat->sfmmu_iment == iment);
7461 		ism_hat->sfmmu_iment = iment->iment_next;
7462 	}
7463 
7464 	if (iment->iment_next) {
7465 		iment->iment_next->iment_prev = iment->iment_prev;
7466 	}
7467 
7468 	/*
7469 	 * zero out the entry
7470 	 */
7471 	iment->iment_next = NULL;
7472 	iment->iment_prev = NULL;
7473 	iment->iment_hat =  NULL;
7474 }
7475 
7476 /*
7477  * Hat_share()/unshare() return an (non-zero) error
7478  * when saddr and daddr are not properly aligned.
7479  *
7480  * The top level mapping element determines the alignment
7481  * requirement for saddr and daddr, depending on different
7482  * architectures.
7483  *
7484  * When hat_share()/unshare() are not supported,
7485  * HATOP_SHARE()/UNSHARE() return 0
7486  */
7487 int
7488 hat_share(struct hat *sfmmup, caddr_t addr,
7489 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7490 {
7491 	ism_blk_t	*ism_blkp;
7492 	ism_blk_t	*new_iblk;
7493 	ism_map_t 	*ism_map;
7494 	ism_ment_t	*ism_ment;
7495 	int		i, added;
7496 	hatlock_t	*hatlockp;
7497 	int		reload_mmu = 0;
7498 	uint_t		ismshift = page_get_shift(ismszc);
7499 	size_t		ismpgsz = page_get_pagesize(ismszc);
7500 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7501 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7502 	ushort_t	ismhatflag;
7503 
7504 #ifdef DEBUG
7505 	caddr_t		eaddr = addr + len;
7506 #endif /* DEBUG */
7507 
7508 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7509 	ASSERT(sptaddr == ISMID_STARTADDR);
7510 	/*
7511 	 * Check the alignment.
7512 	 */
7513 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7514 		return (EINVAL);
7515 
7516 	/*
7517 	 * Check size alignment.
7518 	 */
7519 	if (!ISM_ALIGNED(ismshift, len))
7520 		return (EINVAL);
7521 
7522 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7523 
7524 	/*
7525 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7526 	 * ism map blk in case we need one.  We must do our
7527 	 * allocations before acquiring locks to prevent a deadlock
7528 	 * in the kmem allocator on the mapping list lock.
7529 	 */
7530 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7531 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7532 
7533 	/*
7534 	 * Serialize ISM mappings with the ISM busy flag, and also the
7535 	 * trap handlers.
7536 	 */
7537 	sfmmu_ismhat_enter(sfmmup, 0);
7538 
7539 	/*
7540 	 * Allocate an ism map blk if necessary.
7541 	 */
7542 	if (sfmmup->sfmmu_iblk == NULL) {
7543 		sfmmup->sfmmu_iblk = new_iblk;
7544 		bzero(new_iblk, sizeof (*new_iblk));
7545 		new_iblk->iblk_nextpa = (uint64_t)-1;
7546 		membar_stst();	/* make sure next ptr visible to all CPUs */
7547 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7548 		reload_mmu = 1;
7549 		new_iblk = NULL;
7550 	}
7551 
7552 #ifdef DEBUG
7553 	/*
7554 	 * Make sure mapping does not already exist.
7555 	 */
7556 	ism_blkp = sfmmup->sfmmu_iblk;
7557 	while (ism_blkp) {
7558 		ism_map = ism_blkp->iblk_maps;
7559 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7560 			if ((addr >= ism_start(ism_map[i]) &&
7561 			    addr < ism_end(ism_map[i])) ||
7562 			    eaddr > ism_start(ism_map[i]) &&
7563 			    eaddr <= ism_end(ism_map[i])) {
7564 				panic("sfmmu_share: Already mapped!");
7565 			}
7566 		}
7567 		ism_blkp = ism_blkp->iblk_next;
7568 	}
7569 #endif /* DEBUG */
7570 
7571 	ASSERT(ismszc >= TTE4M);
7572 	if (ismszc == TTE4M) {
7573 		ismhatflag = HAT_4M_FLAG;
7574 	} else if (ismszc == TTE32M) {
7575 		ismhatflag = HAT_32M_FLAG;
7576 	} else if (ismszc == TTE256M) {
7577 		ismhatflag = HAT_256M_FLAG;
7578 	}
7579 	/*
7580 	 * Add mapping to first available mapping slot.
7581 	 */
7582 	ism_blkp = sfmmup->sfmmu_iblk;
7583 	added = 0;
7584 	while (!added) {
7585 		ism_map = ism_blkp->iblk_maps;
7586 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7587 			if (ism_map[i].imap_ismhat == NULL) {
7588 
7589 				ism_map[i].imap_ismhat = ism_hatid;
7590 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7591 				ism_map[i].imap_hatflags = ismhatflag;
7592 				ism_map[i].imap_sz_mask = ismmask;
7593 				/*
7594 				 * imap_seg is checked in ISM_CHECK to see if
7595 				 * non-NULL, then other info assumed valid.
7596 				 */
7597 				membar_stst();
7598 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7599 				ism_map[i].imap_ment = ism_ment;
7600 
7601 				/*
7602 				 * Now add ourselves to the ism_hat's
7603 				 * mapping list.
7604 				 */
7605 				ism_ment->iment_hat = sfmmup;
7606 				ism_ment->iment_base_va = addr;
7607 				ism_hatid->sfmmu_ismhat = 1;
7608 				ism_hatid->sfmmu_flags = 0;
7609 				mutex_enter(&ism_mlist_lock);
7610 				iment_add(ism_ment, ism_hatid);
7611 				mutex_exit(&ism_mlist_lock);
7612 				added = 1;
7613 				break;
7614 			}
7615 		}
7616 		if (!added && ism_blkp->iblk_next == NULL) {
7617 			ism_blkp->iblk_next = new_iblk;
7618 			new_iblk = NULL;
7619 			bzero(ism_blkp->iblk_next,
7620 			    sizeof (*ism_blkp->iblk_next));
7621 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7622 			membar_stst();
7623 			ism_blkp->iblk_nextpa =
7624 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7625 		}
7626 		ism_blkp = ism_blkp->iblk_next;
7627 	}
7628 
7629 	/*
7630 	 * Update our counters for this sfmmup's ism mappings.
7631 	 */
7632 	for (i = 0; i <= ismszc; i++) {
7633 		if (!(disable_ism_large_pages & (1 << i)))
7634 			(void) ism_tsb_entries(sfmmup, i);
7635 	}
7636 
7637 	hatlockp = sfmmu_hat_enter(sfmmup);
7638 
7639 	/*
7640 	 * For ISM and DISM we do not support 512K pages, so we only
7641 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7642 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7643 	 */
7644 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7645 
7646 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7647 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7648 
7649 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7650 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7651 
7652 	/*
7653 	 * If we updated the ismblkpa for this HAT or we need
7654 	 * to start searching the 256M or 32M or 4M hash, we must
7655 	 * make sure all CPUs running this process reload their
7656 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7657 	 * in the tsbmiss handler and will loop calling pagefault().
7658 	 */
7659 	switch (ismszc) {
7660 	case TTE256M:
7661 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7662 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7663 			sfmmu_sync_mmustate(sfmmup);
7664 		}
7665 		break;
7666 	case TTE32M:
7667 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7668 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7669 			sfmmu_sync_mmustate(sfmmup);
7670 		}
7671 		break;
7672 	case TTE4M:
7673 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7674 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7675 			sfmmu_sync_mmustate(sfmmup);
7676 		}
7677 		break;
7678 	default:
7679 		break;
7680 	}
7681 
7682 	/*
7683 	 * Now we can drop the locks.
7684 	 */
7685 	sfmmu_ismhat_exit(sfmmup, 1);
7686 	sfmmu_hat_exit(hatlockp);
7687 
7688 	/*
7689 	 * Free up ismblk if we didn't use it.
7690 	 */
7691 	if (new_iblk != NULL)
7692 		kmem_cache_free(ism_blk_cache, new_iblk);
7693 
7694 	/*
7695 	 * Check TSB and TLB page sizes.
7696 	 */
7697 	sfmmu_check_page_sizes(sfmmup, 1);
7698 
7699 	return (0);
7700 }
7701 
7702 /*
7703  * hat_unshare removes exactly one ism_map from
7704  * this process's as.  It expects multiple calls
7705  * to hat_unshare for multiple shm segments.
7706  */
7707 void
7708 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7709 {
7710 	ism_map_t 	*ism_map;
7711 	ism_ment_t	*free_ment = NULL;
7712 	ism_blk_t	*ism_blkp;
7713 	struct hat	*ism_hatid;
7714 	struct ctx	*ctx;
7715 	int 		cnum, found, i;
7716 	hatlock_t	*hatlockp;
7717 	struct tsb_info	*tsbinfo;
7718 	uint_t		ismshift = page_get_shift(ismszc);
7719 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7720 
7721 	ASSERT(ISM_ALIGNED(ismshift, addr));
7722 	ASSERT(ISM_ALIGNED(ismshift, len));
7723 	ASSERT(sfmmup != NULL);
7724 	ASSERT(sfmmup != ksfmmup);
7725 
7726 	if (sfmmup->sfmmu_xhat_provider) {
7727 		XHAT_UNSHARE(sfmmup, addr, len);
7728 		return;
7729 	} else {
7730 		/*
7731 		 * This must be a CPU HAT. If the address space has
7732 		 * XHATs attached, inform all XHATs that ISM segment
7733 		 * is going away
7734 		 */
7735 		ASSERT(sfmmup->sfmmu_as != NULL);
7736 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7737 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7738 	}
7739 
7740 	/*
7741 	 * Make sure that during the entire time ISM mappings are removed,
7742 	 * the trap handlers serialize behind us, and that no one else
7743 	 * can be mucking with ISM mappings.  This also lets us get away
7744 	 * with not doing expensive cross calls to flush the TLB -- we
7745 	 * just discard the context, flush the entire TSB, and call it
7746 	 * a day.
7747 	 */
7748 	sfmmu_ismhat_enter(sfmmup, 0);
7749 
7750 	/*
7751 	 * Remove the mapping.
7752 	 *
7753 	 * We can't have any holes in the ism map.
7754 	 * The tsb miss code while searching the ism map will
7755 	 * stop on an empty map slot.  So we must move
7756 	 * everyone past the hole up 1 if any.
7757 	 *
7758 	 * Also empty ism map blks are not freed until the
7759 	 * process exits. This is to prevent a MT race condition
7760 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7761 	 */
7762 	found = 0;
7763 	ism_blkp = sfmmup->sfmmu_iblk;
7764 	while (!found && ism_blkp) {
7765 		ism_map = ism_blkp->iblk_maps;
7766 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7767 			if (addr == ism_start(ism_map[i]) &&
7768 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7769 				found = 1;
7770 				break;
7771 			}
7772 		}
7773 		if (!found)
7774 			ism_blkp = ism_blkp->iblk_next;
7775 	}
7776 
7777 	if (found) {
7778 		ism_hatid = ism_map[i].imap_ismhat;
7779 		ASSERT(ism_hatid != NULL);
7780 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7781 		ASSERT(ism_hatid->sfmmu_cnum == INVALID_CONTEXT);
7782 
7783 		/*
7784 		 * First remove ourselves from the ism mapping list.
7785 		 */
7786 		mutex_enter(&ism_mlist_lock);
7787 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7788 		mutex_exit(&ism_mlist_lock);
7789 		free_ment = ism_map[i].imap_ment;
7790 
7791 		/*
7792 		 * Now gurantee that any other cpu
7793 		 * that tries to process an ISM miss
7794 		 * will go to tl=0.
7795 		 */
7796 		hatlockp = sfmmu_hat_enter(sfmmup);
7797 		ctx = sfmmutoctx(sfmmup);
7798 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
7799 		cnum = sfmmutoctxnum(sfmmup);
7800 
7801 		if (cnum != INVALID_CONTEXT) {
7802 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
7803 		}
7804 		rw_exit(&ctx->ctx_rwlock);
7805 		sfmmu_hat_exit(hatlockp);
7806 
7807 		/*
7808 		 * We delete the ism map by copying
7809 		 * the next map over the current one.
7810 		 * We will take the next one in the maps
7811 		 * array or from the next ism_blk.
7812 		 */
7813 		while (ism_blkp) {
7814 			ism_map = ism_blkp->iblk_maps;
7815 			while (i < (ISM_MAP_SLOTS - 1)) {
7816 				ism_map[i] = ism_map[i + 1];
7817 				i++;
7818 			}
7819 			/* i == (ISM_MAP_SLOTS - 1) */
7820 			ism_blkp = ism_blkp->iblk_next;
7821 			if (ism_blkp) {
7822 				ism_map[i] = ism_blkp->iblk_maps[0];
7823 				i = 0;
7824 			} else {
7825 				ism_map[i].imap_seg = 0;
7826 				ism_map[i].imap_vb_shift = 0;
7827 				ism_map[i].imap_hatflags = 0;
7828 				ism_map[i].imap_sz_mask = 0;
7829 				ism_map[i].imap_ismhat = NULL;
7830 				ism_map[i].imap_ment = NULL;
7831 			}
7832 		}
7833 
7834 		/*
7835 		 * Now flush entire TSB for the process, since
7836 		 * demapping page by page can be too expensive.
7837 		 * We don't have to flush the TLB here anymore
7838 		 * since we switch to a new TLB ctx instead.
7839 		 * Also, there is no need to flush if the process
7840 		 * is exiting since the TSB will be freed later.
7841 		 */
7842 		if (!sfmmup->sfmmu_free) {
7843 			hatlockp = sfmmu_hat_enter(sfmmup);
7844 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7845 			    tsbinfo = tsbinfo->tsb_next) {
7846 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7847 					continue;
7848 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7849 				    TSB_BYTES(tsbinfo->tsb_szc));
7850 			}
7851 			sfmmu_hat_exit(hatlockp);
7852 		}
7853 	}
7854 
7855 	/*
7856 	 * Update our counters for this sfmmup's ism mappings.
7857 	 */
7858 	for (i = 0; i <= ismszc; i++) {
7859 		if (!(disable_ism_large_pages & (1 << i)))
7860 			(void) ism_tsb_entries(sfmmup, i);
7861 	}
7862 
7863 	sfmmu_ismhat_exit(sfmmup, 0);
7864 
7865 	/*
7866 	 * We must do our freeing here after dropping locks
7867 	 * to prevent a deadlock in the kmem allocator on the
7868 	 * mapping list lock.
7869 	 */
7870 	if (free_ment != NULL)
7871 		kmem_cache_free(ism_ment_cache, free_ment);
7872 
7873 	/*
7874 	 * Check TSB and TLB page sizes if the process isn't exiting.
7875 	 */
7876 	if (!sfmmup->sfmmu_free)
7877 		sfmmu_check_page_sizes(sfmmup, 0);
7878 }
7879 
7880 /* ARGSUSED */
7881 static int
7882 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
7883 {
7884 	/* void *buf is sfmmu_t pointer */
7885 	return (0);
7886 }
7887 
7888 /* ARGSUSED */
7889 static void
7890 sfmmu_idcache_destructor(void *buf, void *cdrarg)
7891 {
7892 	/* void *buf is sfmmu_t pointer */
7893 }
7894 
7895 /*
7896  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
7897  * field to be the pa of this hmeblk
7898  */
7899 /* ARGSUSED */
7900 static int
7901 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
7902 {
7903 	struct hme_blk *hmeblkp;
7904 
7905 	bzero(buf, (size_t)cdrarg);
7906 	hmeblkp = (struct hme_blk *)buf;
7907 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
7908 
7909 #ifdef	HBLK_TRACE
7910 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
7911 #endif	/* HBLK_TRACE */
7912 
7913 	return (0);
7914 }
7915 
7916 /* ARGSUSED */
7917 static void
7918 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
7919 {
7920 
7921 #ifdef	HBLK_TRACE
7922 
7923 	struct hme_blk *hmeblkp;
7924 
7925 	hmeblkp = (struct hme_blk *)buf;
7926 	mutex_destroy(&hmeblkp->hblk_audit_lock);
7927 
7928 #endif	/* HBLK_TRACE */
7929 }
7930 
7931 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
7932 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
7933 /*
7934  * The kmem allocator will callback into our reclaim routine when the system
7935  * is running low in memory.  We traverse the hash and free up all unused but
7936  * still cached hme_blks.  We also traverse the free list and free them up
7937  * as well.
7938  */
7939 /*ARGSUSED*/
7940 static void
7941 sfmmu_hblkcache_reclaim(void *cdrarg)
7942 {
7943 	int i;
7944 	uint64_t hblkpa, prevpa, nx_pa;
7945 	struct hmehash_bucket *hmebp;
7946 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
7947 	static struct hmehash_bucket *uhmehash_reclaim_hand;
7948 	static struct hmehash_bucket *khmehash_reclaim_hand;
7949 	struct hme_blk *list = NULL;
7950 
7951 	hmebp = uhmehash_reclaim_hand;
7952 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
7953 		uhmehash_reclaim_hand = hmebp = uhme_hash;
7954 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7955 
7956 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7957 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7958 			hmeblkp = hmebp->hmeblkp;
7959 			hblkpa = hmebp->hmeh_nextpa;
7960 			prevpa = 0;
7961 			pr_hblk = NULL;
7962 			while (hmeblkp) {
7963 				nx_hblk = hmeblkp->hblk_next;
7964 				nx_pa = hmeblkp->hblk_nextpa;
7965 				if (!hmeblkp->hblk_vcnt &&
7966 				    !hmeblkp->hblk_hmecnt) {
7967 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
7968 						prevpa, pr_hblk);
7969 					sfmmu_hblk_free(hmebp, hmeblkp,
7970 					    hblkpa, &list);
7971 				} else {
7972 					pr_hblk = hmeblkp;
7973 					prevpa = hblkpa;
7974 				}
7975 				hmeblkp = nx_hblk;
7976 				hblkpa = nx_pa;
7977 			}
7978 			SFMMU_HASH_UNLOCK(hmebp);
7979 		}
7980 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
7981 			hmebp = uhme_hash;
7982 	}
7983 
7984 	hmebp = khmehash_reclaim_hand;
7985 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
7986 		khmehash_reclaim_hand = hmebp = khme_hash;
7987 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7988 
7989 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7990 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7991 			hmeblkp = hmebp->hmeblkp;
7992 			hblkpa = hmebp->hmeh_nextpa;
7993 			prevpa = 0;
7994 			pr_hblk = NULL;
7995 			while (hmeblkp) {
7996 				nx_hblk = hmeblkp->hblk_next;
7997 				nx_pa = hmeblkp->hblk_nextpa;
7998 				if (!hmeblkp->hblk_vcnt &&
7999 				    !hmeblkp->hblk_hmecnt) {
8000 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8001 						prevpa, pr_hblk);
8002 					sfmmu_hblk_free(hmebp, hmeblkp,
8003 					    hblkpa, &list);
8004 				} else {
8005 					pr_hblk = hmeblkp;
8006 					prevpa = hblkpa;
8007 				}
8008 				hmeblkp = nx_hblk;
8009 				hblkpa = nx_pa;
8010 			}
8011 			SFMMU_HASH_UNLOCK(hmebp);
8012 		}
8013 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8014 			hmebp = khme_hash;
8015 	}
8016 	sfmmu_hblks_list_purge(&list);
8017 }
8018 
8019 /*
8020  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8021  * same goes for sfmmu_get_addrvcolor().
8022  *
8023  * This function will return the virtual color for the specified page. The
8024  * virtual color corresponds to this page current mapping or its last mapping.
8025  * It is used by memory allocators to choose addresses with the correct
8026  * alignment so vac consistency is automatically maintained.  If the page
8027  * has no color it returns -1.
8028  */
8029 int
8030 sfmmu_get_ppvcolor(struct page *pp)
8031 {
8032 	int color;
8033 
8034 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8035 		return (-1);
8036 	}
8037 	color = PP_GET_VCOLOR(pp);
8038 	ASSERT(color < mmu_btop(shm_alignment));
8039 	return (color);
8040 }
8041 
8042 /*
8043  * This function will return the desired alignment for vac consistency
8044  * (vac color) given a virtual address.  If no vac is present it returns -1.
8045  */
8046 int
8047 sfmmu_get_addrvcolor(caddr_t vaddr)
8048 {
8049 	if (cache & CACHE_VAC) {
8050 		return (addr_to_vcolor(vaddr));
8051 	} else {
8052 		return (-1);
8053 	}
8054 
8055 }
8056 
8057 /*
8058  * Check for conflicts.
8059  * A conflict exists if the new and existent mappings do not match in
8060  * their "shm_alignment fields. If conflicts exist, the existant mappings
8061  * are flushed unless one of them is locked. If one of them is locked, then
8062  * the mappings are flushed and converted to non-cacheable mappings.
8063  */
8064 static void
8065 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8066 {
8067 	struct hat *tmphat;
8068 	struct sf_hment *sfhmep, *tmphme = NULL;
8069 	struct hme_blk *hmeblkp;
8070 	int vcolor;
8071 	tte_t tte;
8072 
8073 	ASSERT(sfmmu_mlist_held(pp));
8074 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8075 
8076 	vcolor = addr_to_vcolor(addr);
8077 	if (PP_NEWPAGE(pp)) {
8078 		PP_SET_VCOLOR(pp, vcolor);
8079 		return;
8080 	}
8081 
8082 	if (PP_GET_VCOLOR(pp) == vcolor) {
8083 		return;
8084 	}
8085 
8086 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8087 		/*
8088 		 * Previous user of page had a different color
8089 		 * but since there are no current users
8090 		 * we just flush the cache and change the color.
8091 		 */
8092 		SFMMU_STAT(sf_pgcolor_conflict);
8093 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8094 		PP_SET_VCOLOR(pp, vcolor);
8095 		return;
8096 	}
8097 
8098 	/*
8099 	 * If we get here we have a vac conflict with a current
8100 	 * mapping.  VAC conflict policy is as follows.
8101 	 * - The default is to unload the other mappings unless:
8102 	 * - If we have a large mapping we uncache the page.
8103 	 * We need to uncache the rest of the large page too.
8104 	 * - If any of the mappings are locked we uncache the page.
8105 	 * - If the requested mapping is inconsistent
8106 	 * with another mapping and that mapping
8107 	 * is in the same address space we have to
8108 	 * make it non-cached.  The default thing
8109 	 * to do is unload the inconsistent mapping
8110 	 * but if they are in the same address space
8111 	 * we run the risk of unmapping the pc or the
8112 	 * stack which we will use as we return to the user,
8113 	 * in which case we can then fault on the thing
8114 	 * we just unloaded and get into an infinite loop.
8115 	 */
8116 	if (PP_ISMAPPED_LARGE(pp)) {
8117 		int sz;
8118 
8119 		/*
8120 		 * Existing mapping is for big pages. We don't unload
8121 		 * existing big mappings to satisfy new mappings.
8122 		 * Always convert all mappings to TNC.
8123 		 */
8124 		sz = fnd_mapping_sz(pp);
8125 		pp = PP_GROUPLEADER(pp, sz);
8126 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8127 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8128 			TTEPAGES(sz));
8129 
8130 		return;
8131 	}
8132 
8133 	/*
8134 	 * check if any mapping is in same as or if it is locked
8135 	 * since in that case we need to uncache.
8136 	 */
8137 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8138 		tmphme = sfhmep->hme_next;
8139 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8140 		if (hmeblkp->hblk_xhat_bit)
8141 			continue;
8142 		tmphat = hblktosfmmu(hmeblkp);
8143 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8144 		ASSERT(TTE_IS_VALID(&tte));
8145 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8146 			/*
8147 			 * We have an uncache conflict
8148 			 */
8149 			SFMMU_STAT(sf_uncache_conflict);
8150 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8151 			return;
8152 		}
8153 	}
8154 
8155 	/*
8156 	 * We have an unload conflict
8157 	 * We have already checked for LARGE mappings, therefore
8158 	 * the remaining mapping(s) must be TTE8K.
8159 	 */
8160 	SFMMU_STAT(sf_unload_conflict);
8161 
8162 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8163 		tmphme = sfhmep->hme_next;
8164 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8165 		if (hmeblkp->hblk_xhat_bit)
8166 			continue;
8167 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8168 	}
8169 
8170 	if (PP_ISMAPPED_KPM(pp))
8171 		sfmmu_kpm_vac_unload(pp, addr);
8172 
8173 	/*
8174 	 * Unloads only do TLB flushes so we need to flush the
8175 	 * cache here.
8176 	 */
8177 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8178 	PP_SET_VCOLOR(pp, vcolor);
8179 }
8180 
8181 /*
8182  * Whenever a mapping is unloaded and the page is in TNC state,
8183  * we see if the page can be made cacheable again. 'pp' is
8184  * the page that we just unloaded a mapping from, the size
8185  * of mapping that was unloaded is 'ottesz'.
8186  * Remark:
8187  * The recache policy for mpss pages can leave a performance problem
8188  * under the following circumstances:
8189  * . A large page in uncached mode has just been unmapped.
8190  * . All constituent pages are TNC due to a conflicting small mapping.
8191  * . There are many other, non conflicting, small mappings around for
8192  *   a lot of the constituent pages.
8193  * . We're called w/ the "old" groupleader page and the old ottesz,
8194  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8195  *   we end up w/ TTE8K or npages == 1.
8196  * . We call tst_tnc w/ the old groupleader only, and if there is no
8197  *   conflict, we re-cache only this page.
8198  * . All other small mappings are not checked and will be left in TNC mode.
8199  * The problem is not very serious because:
8200  * . mpss is actually only defined for heap and stack, so the probability
8201  *   is not very high that a large page mapping exists in parallel to a small
8202  *   one (this is possible, but seems to be bad programming style in the
8203  *   appl).
8204  * . The problem gets a little bit more serious, when those TNC pages
8205  *   have to be mapped into kernel space, e.g. for networking.
8206  * . When VAC alias conflicts occur in applications, this is regarded
8207  *   as an application bug. So if kstat's show them, the appl should
8208  *   be changed anyway.
8209  */
8210 static void
8211 conv_tnc(page_t *pp, int ottesz)
8212 {
8213 	int cursz, dosz;
8214 	pgcnt_t curnpgs, dopgs;
8215 	pgcnt_t pg64k;
8216 	page_t *pp2;
8217 
8218 	/*
8219 	 * Determine how big a range we check for TNC and find
8220 	 * leader page. cursz is the size of the biggest
8221 	 * mapping that still exist on 'pp'.
8222 	 */
8223 	if (PP_ISMAPPED_LARGE(pp)) {
8224 		cursz = fnd_mapping_sz(pp);
8225 	} else {
8226 		cursz = TTE8K;
8227 	}
8228 
8229 	if (ottesz >= cursz) {
8230 		dosz = ottesz;
8231 		pp2 = pp;
8232 	} else {
8233 		dosz = cursz;
8234 		pp2 = PP_GROUPLEADER(pp, dosz);
8235 	}
8236 
8237 	pg64k = TTEPAGES(TTE64K);
8238 	dopgs = TTEPAGES(dosz);
8239 
8240 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8241 
8242 	while (dopgs != 0) {
8243 		curnpgs = TTEPAGES(cursz);
8244 		if (tst_tnc(pp2, curnpgs)) {
8245 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8246 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8247 				curnpgs);
8248 		}
8249 
8250 		ASSERT(dopgs >= curnpgs);
8251 		dopgs -= curnpgs;
8252 
8253 		if (dopgs == 0) {
8254 			break;
8255 		}
8256 
8257 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8258 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8259 			cursz = fnd_mapping_sz(pp2);
8260 		} else {
8261 			cursz = TTE8K;
8262 		}
8263 	}
8264 }
8265 
8266 /*
8267  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8268  * returns 0 otherwise. Note that oaddr argument is valid for only
8269  * 8k pages.
8270  */
8271 static int
8272 tst_tnc(page_t *pp, pgcnt_t npages)
8273 {
8274 	struct	sf_hment *sfhme;
8275 	struct	hme_blk *hmeblkp;
8276 	tte_t	tte;
8277 	caddr_t	vaddr;
8278 	int	clr_valid = 0;
8279 	int 	color, color1, bcolor;
8280 	int	i, ncolors;
8281 
8282 	ASSERT(pp != NULL);
8283 	ASSERT(!(cache & CACHE_WRITEBACK));
8284 
8285 	if (npages > 1) {
8286 		ncolors = CACHE_NUM_COLOR;
8287 	}
8288 
8289 	for (i = 0; i < npages; i++) {
8290 		ASSERT(sfmmu_mlist_held(pp));
8291 		ASSERT(PP_ISTNC(pp));
8292 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8293 
8294 		if (PP_ISPNC(pp)) {
8295 			return (0);
8296 		}
8297 
8298 		clr_valid = 0;
8299 		if (PP_ISMAPPED_KPM(pp)) {
8300 			caddr_t kpmvaddr;
8301 
8302 			ASSERT(kpm_enable);
8303 			kpmvaddr = hat_kpm_page2va(pp, 1);
8304 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8305 			color1 = addr_to_vcolor(kpmvaddr);
8306 			clr_valid = 1;
8307 		}
8308 
8309 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8310 			hmeblkp = sfmmu_hmetohblk(sfhme);
8311 			if (hmeblkp->hblk_xhat_bit)
8312 				continue;
8313 
8314 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8315 			ASSERT(TTE_IS_VALID(&tte));
8316 
8317 			vaddr = tte_to_vaddr(hmeblkp, tte);
8318 			color = addr_to_vcolor(vaddr);
8319 
8320 			if (npages > 1) {
8321 				/*
8322 				 * If there is a big mapping, make sure
8323 				 * 8K mapping is consistent with the big
8324 				 * mapping.
8325 				 */
8326 				bcolor = i % ncolors;
8327 				if (color != bcolor) {
8328 					return (0);
8329 				}
8330 			}
8331 			if (!clr_valid) {
8332 				clr_valid = 1;
8333 				color1 = color;
8334 			}
8335 
8336 			if (color1 != color) {
8337 				return (0);
8338 			}
8339 		}
8340 
8341 		pp = PP_PAGENEXT(pp);
8342 	}
8343 
8344 	return (1);
8345 }
8346 
8347 static void
8348 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8349 	pgcnt_t npages)
8350 {
8351 	kmutex_t *pmtx;
8352 	int i, ncolors, bcolor;
8353 	kpm_hlk_t *kpmp;
8354 	cpuset_t cpuset;
8355 
8356 	ASSERT(pp != NULL);
8357 	ASSERT(!(cache & CACHE_WRITEBACK));
8358 
8359 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8360 	pmtx = sfmmu_page_enter(pp);
8361 
8362 	/*
8363 	 * Fast path caching single unmapped page
8364 	 */
8365 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8366 	    flags == HAT_CACHE) {
8367 		PP_CLRTNC(pp);
8368 		PP_CLRPNC(pp);
8369 		sfmmu_page_exit(pmtx);
8370 		sfmmu_kpm_kpmp_exit(kpmp);
8371 		return;
8372 	}
8373 
8374 	/*
8375 	 * We need to capture all cpus in order to change cacheability
8376 	 * because we can't allow one cpu to access the same physical
8377 	 * page using a cacheable and a non-cachebale mapping at the same
8378 	 * time. Since we may end up walking the ism mapping list
8379 	 * have to grab it's lock now since we can't after all the
8380 	 * cpus have been captured.
8381 	 */
8382 	sfmmu_hat_lock_all();
8383 	mutex_enter(&ism_mlist_lock);
8384 	kpreempt_disable();
8385 	cpuset = cpu_ready_set;
8386 	xc_attention(cpuset);
8387 
8388 	if (npages > 1) {
8389 		/*
8390 		 * Make sure all colors are flushed since the
8391 		 * sfmmu_page_cache() only flushes one color-
8392 		 * it does not know big pages.
8393 		 */
8394 		ncolors = CACHE_NUM_COLOR;
8395 		if (flags & HAT_TMPNC) {
8396 			for (i = 0; i < ncolors; i++) {
8397 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8398 			}
8399 			cache_flush_flag = CACHE_NO_FLUSH;
8400 		}
8401 	}
8402 
8403 	for (i = 0; i < npages; i++) {
8404 
8405 		ASSERT(sfmmu_mlist_held(pp));
8406 
8407 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8408 
8409 			if (npages > 1) {
8410 				bcolor = i % ncolors;
8411 			} else {
8412 				bcolor = NO_VCOLOR;
8413 			}
8414 
8415 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8416 			    bcolor);
8417 		}
8418 
8419 		pp = PP_PAGENEXT(pp);
8420 	}
8421 
8422 	xt_sync(cpuset);
8423 	xc_dismissed(cpuset);
8424 	mutex_exit(&ism_mlist_lock);
8425 	sfmmu_hat_unlock_all();
8426 	sfmmu_page_exit(pmtx);
8427 	sfmmu_kpm_kpmp_exit(kpmp);
8428 	kpreempt_enable();
8429 }
8430 
8431 /*
8432  * This function changes the virtual cacheability of all mappings to a
8433  * particular page.  When changing from uncache to cacheable the mappings will
8434  * only be changed if all of them have the same virtual color.
8435  * We need to flush the cache in all cpus.  It is possible that
8436  * a process referenced a page as cacheable but has sinced exited
8437  * and cleared the mapping list.  We still to flush it but have no
8438  * state so all cpus is the only alternative.
8439  */
8440 static void
8441 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8442 {
8443 	struct	sf_hment *sfhme;
8444 	struct	hme_blk *hmeblkp;
8445 	sfmmu_t *sfmmup;
8446 	tte_t	tte, ttemod;
8447 	caddr_t	vaddr;
8448 	int	ret, color;
8449 	pfn_t	pfn;
8450 
8451 	color = bcolor;
8452 	pfn = pp->p_pagenum;
8453 
8454 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8455 
8456 		hmeblkp = sfmmu_hmetohblk(sfhme);
8457 
8458 		if (hmeblkp->hblk_xhat_bit)
8459 			continue;
8460 
8461 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8462 		ASSERT(TTE_IS_VALID(&tte));
8463 		vaddr = tte_to_vaddr(hmeblkp, tte);
8464 		color = addr_to_vcolor(vaddr);
8465 
8466 #ifdef DEBUG
8467 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8468 			ASSERT(color == bcolor);
8469 		}
8470 #endif
8471 
8472 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8473 
8474 		ttemod = tte;
8475 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8476 			TTE_CLR_VCACHEABLE(&ttemod);
8477 		} else {	/* flags & HAT_CACHE */
8478 			TTE_SET_VCACHEABLE(&ttemod);
8479 		}
8480 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8481 		if (ret < 0) {
8482 			/*
8483 			 * Since all cpus are captured modifytte should not
8484 			 * fail.
8485 			 */
8486 			panic("sfmmu_page_cache: write to tte failed");
8487 		}
8488 
8489 		sfmmup = hblktosfmmu(hmeblkp);
8490 		if (cache_flush_flag == CACHE_FLUSH) {
8491 			/*
8492 			 * Flush TSBs, TLBs and caches
8493 			 */
8494 			if (sfmmup->sfmmu_ismhat) {
8495 				if (flags & HAT_CACHE) {
8496 					SFMMU_STAT(sf_ism_recache);
8497 				} else {
8498 					SFMMU_STAT(sf_ism_uncache);
8499 				}
8500 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8501 				    pfn, CACHE_FLUSH);
8502 			} else {
8503 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8504 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8505 			}
8506 
8507 			/*
8508 			 * all cache entries belonging to this pfn are
8509 			 * now flushed.
8510 			 */
8511 			cache_flush_flag = CACHE_NO_FLUSH;
8512 		} else {
8513 
8514 			/*
8515 			 * Flush only TSBs and TLBs.
8516 			 */
8517 			if (sfmmup->sfmmu_ismhat) {
8518 				if (flags & HAT_CACHE) {
8519 					SFMMU_STAT(sf_ism_recache);
8520 				} else {
8521 					SFMMU_STAT(sf_ism_uncache);
8522 				}
8523 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8524 				    pfn, CACHE_NO_FLUSH);
8525 			} else {
8526 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8527 			}
8528 		}
8529 	}
8530 
8531 	if (PP_ISMAPPED_KPM(pp))
8532 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8533 
8534 	switch (flags) {
8535 
8536 		default:
8537 			panic("sfmmu_pagecache: unknown flags");
8538 			break;
8539 
8540 		case HAT_CACHE:
8541 			PP_CLRTNC(pp);
8542 			PP_CLRPNC(pp);
8543 			PP_SET_VCOLOR(pp, color);
8544 			break;
8545 
8546 		case HAT_TMPNC:
8547 			PP_SETTNC(pp);
8548 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8549 			break;
8550 
8551 		case HAT_UNCACHE:
8552 			PP_SETPNC(pp);
8553 			PP_CLRTNC(pp);
8554 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8555 			break;
8556 	}
8557 }
8558 
8559 /*
8560  * This routine gets called when the system has run out of free contexts.
8561  * This will simply choose context passed to it to be stolen and reused.
8562  */
8563 /* ARGSUSED */
8564 static void
8565 sfmmu_reuse_ctx(struct ctx *ctx, sfmmu_t *sfmmup)
8566 {
8567 	sfmmu_t *stolen_sfmmup;
8568 	cpuset_t cpuset;
8569 	ushort_t	cnum = ctxtoctxnum(ctx);
8570 
8571 	ASSERT(cnum != KCONTEXT);
8572 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8573 
8574 	/*
8575 	 * simply steal and reuse the ctx passed to us.
8576 	 */
8577 	stolen_sfmmup = ctx->ctx_sfmmu;
8578 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8579 	ASSERT(stolen_sfmmup->sfmmu_cnum == cnum);
8580 	ASSERT(stolen_sfmmup != ksfmmup);
8581 
8582 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, cnum, stolen_sfmmup,
8583 	    sfmmup, CTX_TRC_STEAL);
8584 	SFMMU_STAT(sf_ctxsteal);
8585 
8586 	/*
8587 	 * Update sfmmu and ctx structs. After this point all threads
8588 	 * belonging to this hat/proc will fault and not use the ctx
8589 	 * being stolen.
8590 	 */
8591 	kpreempt_disable();
8592 	/*
8593 	 * Enforce reverse order of assignments from sfmmu_get_ctx().  This
8594 	 * is done to prevent a race where a thread faults with the context
8595 	 * but the TSB has changed.
8596 	 */
8597 	stolen_sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8598 	membar_enter();
8599 	ctx->ctx_sfmmu = NULL;
8600 
8601 	/*
8602 	 * 1. flush TLB in all CPUs that ran the process whose ctx
8603 	 * we are stealing.
8604 	 * 2. change context for all other CPUs to INVALID_CONTEXT,
8605 	 * if they are running in the context that we are going to steal.
8606 	 */
8607 	cpuset = stolen_sfmmup->sfmmu_cpusran;
8608 	CPUSET_DEL(cpuset, CPU->cpu_id);
8609 	CPUSET_AND(cpuset, cpu_ready_set);
8610 	SFMMU_XCALL_STATS(cnum);
8611 	xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
8612 	xt_sync(cpuset);
8613 
8614 	/*
8615 	 * flush TLB of local processor
8616 	 */
8617 	vtag_flushctx(cnum);
8618 
8619 	/*
8620 	 * If we just stole the ctx from the current process
8621 	 * on local cpu then we also invalidate his context
8622 	 * here.
8623 	 */
8624 	if (sfmmu_getctx_sec() == cnum) {
8625 		sfmmu_setctx_sec(INVALID_CONTEXT);
8626 		sfmmu_clear_utsbinfo();
8627 	}
8628 
8629 	kpreempt_enable();
8630 	SFMMU_STAT(sf_tlbflush_ctx);
8631 }
8632 
8633 /*
8634  * Returns a context with the reader lock held.
8635  *
8636  * We maintain 2 different list of contexts.  The first list
8637  * is the free list and it is headed by ctxfree.  These contexts
8638  * are ready to use.  The second list is the dirty list and is
8639  * headed by ctxdirty. These contexts have been freed but haven't
8640  * been flushed from the TLB.
8641  *
8642  * It's the responsibility of the caller to guarantee that the
8643  * process serializes on calls here by taking the HAT lock for
8644  * the hat.
8645  *
8646  * Changing the page size is a rather complicated process, so
8647  * rather than jump through lots of hoops to special case it,
8648  * the easiest way to go about it is to tell the MMU we want
8649  * to change page sizes and then switch to using a different
8650  * context.  When we program the context registers for the
8651  * process, we can take care of setting up the (new) page size
8652  * for that context at that point.
8653  */
8654 
8655 static struct ctx *
8656 sfmmu_get_ctx(sfmmu_t *sfmmup)
8657 {
8658 	struct ctx *ctx;
8659 	ushort_t cnum;
8660 	struct ctx *lastctx = &ctxs[nctxs-1];
8661 	struct ctx *firstctx = &ctxs[NUM_LOCKED_CTXS];
8662 	uint_t	found_stealable_ctx;
8663 	uint_t	retry_count = 0;
8664 
8665 #define	NEXT_CTX(ctx)   (((ctx) >= lastctx) ? firstctx : ((ctx) + 1))
8666 
8667 retry:
8668 
8669 	ASSERT(sfmmup->sfmmu_cnum != KCONTEXT);
8670 	/*
8671 	 * Check to see if this process has already got a ctx.
8672 	 * In that case just set the sec-ctx, grab a readers lock, and
8673 	 * return.
8674 	 *
8675 	 * We have to double check after we get the readers lock on the
8676 	 * context, since it could be stolen in this short window.
8677 	 */
8678 	if (sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS) {
8679 		ctx = sfmmutoctx(sfmmup);
8680 		rw_enter(&ctx->ctx_rwlock, RW_READER);
8681 		if (ctx->ctx_sfmmu == sfmmup) {
8682 			return (ctx);
8683 		} else {
8684 			rw_exit(&ctx->ctx_rwlock);
8685 		}
8686 	}
8687 
8688 	found_stealable_ctx = 0;
8689 	mutex_enter(&ctx_list_lock);
8690 	if ((ctx = ctxfree) != NULL) {
8691 		/*
8692 		 * Found a ctx in free list. Delete it from the list and
8693 		 * use it.  There's a short window where the stealer can
8694 		 * look at the context before we grab the lock on the
8695 		 * context, so we have to handle that with the free flag.
8696 		 */
8697 		SFMMU_STAT(sf_ctxfree);
8698 		ctxfree = ctx->ctx_free;
8699 		ctx->ctx_sfmmu = NULL;
8700 		mutex_exit(&ctx_list_lock);
8701 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8702 		ASSERT(ctx->ctx_sfmmu == NULL);
8703 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8704 	} else if ((ctx = ctxdirty) != NULL) {
8705 		/*
8706 		 * No free contexts.  If we have at least one dirty ctx
8707 		 * then flush the TLBs on all cpus if necessary and move
8708 		 * the dirty list to the free list.
8709 		 */
8710 		SFMMU_STAT(sf_ctxdirty);
8711 		ctxdirty = NULL;
8712 		if (delay_tlb_flush)
8713 			sfmmu_tlb_all_demap();
8714 		ctxfree = ctx->ctx_free;
8715 		ctx->ctx_sfmmu = NULL;
8716 		mutex_exit(&ctx_list_lock);
8717 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8718 		ASSERT(ctx->ctx_sfmmu == NULL);
8719 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8720 	} else {
8721 		/*
8722 		 * No free context available, so steal one.
8723 		 *
8724 		 * The policy to choose the appropriate context is simple;
8725 		 * just sweep all the ctxs using ctxhand. This will steal
8726 		 * the LRU ctx.
8727 		 *
8728 		 * We however only steal a non-free context that can be
8729 		 * write locked.  Keep searching till we find a stealable
8730 		 * ctx.
8731 		 */
8732 		mutex_exit(&ctx_list_lock);
8733 		ctx = ctxhand;
8734 		do {
8735 			/*
8736 			 * If you get the writers lock, and the ctx isn't
8737 			 * a free ctx, THEN you can steal this ctx.
8738 			 */
8739 			if ((ctx->ctx_flags & CTX_FREE_FLAG) == 0 &&
8740 			    rw_tryenter(&ctx->ctx_rwlock, RW_WRITER) != 0) {
8741 				if (ctx->ctx_flags & CTX_FREE_FLAG) {
8742 					/* let the first guy have it */
8743 					rw_exit(&ctx->ctx_rwlock);
8744 				} else {
8745 					found_stealable_ctx = 1;
8746 					break;
8747 				}
8748 			}
8749 			ctx = NEXT_CTX(ctx);
8750 		} while (ctx != ctxhand);
8751 
8752 		if (found_stealable_ctx) {
8753 			/*
8754 			 * Try and reuse the ctx.
8755 			 */
8756 			sfmmu_reuse_ctx(ctx, sfmmup);
8757 
8758 		} else if (retry_count++ < GET_CTX_RETRY_CNT) {
8759 			goto retry;
8760 
8761 		} else {
8762 			panic("Can't find any stealable context");
8763 		}
8764 	}
8765 
8766 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8767 	ctx->ctx_sfmmu = sfmmup;
8768 
8769 	/*
8770 	 * Clear the ctx_flags field.
8771 	 */
8772 	ctx->ctx_flags = 0;
8773 
8774 	cnum = ctxtoctxnum(ctx);
8775 	membar_exit();
8776 	sfmmup->sfmmu_cnum = cnum;
8777 
8778 	/*
8779 	 * Let the MMU set up the page sizes to use for
8780 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8781 	 */
8782 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0))
8783 		mmu_set_ctx_page_sizes(sfmmup);
8784 
8785 	/*
8786 	 * Downgrade to reader's lock.
8787 	 */
8788 	rw_downgrade(&ctx->ctx_rwlock);
8789 
8790 	/*
8791 	 * If this value doesn't get set to what we want
8792 	 * it won't matter, so don't worry about locking.
8793 	 */
8794 	ctxhand = NEXT_CTX(ctx);
8795 
8796 	/*
8797 	 * Better not have been stolen while we held the ctx'
8798 	 * lock or we're hosed.
8799 	 */
8800 	ASSERT(sfmmup == sfmmutoctx(sfmmup)->ctx_sfmmu);
8801 
8802 	return (ctx);
8803 
8804 #undef NEXT_CTX
8805 }
8806 
8807 
8808 /*
8809  * Set the process context to INVALID_CONTEXT (but
8810  * without stealing the ctx) so that it faults and
8811  * reloads the MMU state from TL=0.  Caller must
8812  * hold the hat lock since we don't acquire it here.
8813  */
8814 static void
8815 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8816 {
8817 	int cnum;
8818 	cpuset_t cpuset;
8819 
8820 	ASSERT(sfmmup != ksfmmup);
8821 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8822 
8823 	kpreempt_disable();
8824 
8825 	cnum = sfmmutoctxnum(sfmmup);
8826 	if (cnum != INVALID_CONTEXT) {
8827 		cpuset = sfmmup->sfmmu_cpusran;
8828 		CPUSET_DEL(cpuset, CPU->cpu_id);
8829 		CPUSET_AND(cpuset, cpu_ready_set);
8830 		SFMMU_XCALL_STATS(cnum);
8831 
8832 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8833 		    cnum, INVALID_CONTEXT);
8834 		xt_sync(cpuset);
8835 
8836 		/*
8837 		 * If the process is running on the local CPU
8838 		 * we need to update the MMU state here as well.
8839 		 */
8840 		if (sfmmu_getctx_sec() == cnum)
8841 			sfmmu_load_mmustate(sfmmup);
8842 
8843 		SFMMU_STAT(sf_tsb_raise_exception);
8844 	}
8845 
8846 	kpreempt_enable();
8847 }
8848 
8849 
8850 /*
8851  * Replace the specified TSB with a new TSB.  This function gets called when
8852  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8853  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8854  * (8K).
8855  *
8856  * Caller must hold the HAT lock, but should assume any tsb_info
8857  * pointers it has are no longer valid after calling this function.
8858  *
8859  * Return values:
8860  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8861  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8862  *			something to this tsbinfo/TSB
8863  *	TSB_SUCCESS	Operation succeeded
8864  */
8865 static tsb_replace_rc_t
8866 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8867     hatlock_t *hatlockp, uint_t flags)
8868 {
8869 	struct tsb_info *new_tsbinfo = NULL;
8870 	struct tsb_info *curtsb, *prevtsb;
8871 	uint_t tte_sz_mask;
8872 	cpuset_t cpuset;
8873 	struct ctx *ctx = NULL;
8874 	int ctxnum;
8875 
8876 	ASSERT(sfmmup != ksfmmup);
8877 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8878 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8879 	ASSERT(szc <= tsb_max_growsize);
8880 
8881 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8882 		return (TSB_LOSTRACE);
8883 
8884 	/*
8885 	 * Find the tsb_info ahead of this one in the list, and
8886 	 * also make sure that the tsb_info passed in really
8887 	 * exists!
8888 	 */
8889 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8890 	    curtsb != old_tsbinfo && curtsb != NULL;
8891 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8892 	ASSERT(curtsb != NULL);
8893 
8894 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8895 		/*
8896 		 * The process is swapped out, so just set the new size
8897 		 * code.  When it swaps back in, we'll allocate a new one
8898 		 * of the new chosen size.
8899 		 */
8900 		curtsb->tsb_szc = szc;
8901 		return (TSB_SUCCESS);
8902 	}
8903 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8904 
8905 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8906 
8907 	/*
8908 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8909 	 * If we fail to allocate a TSB, exit.
8910 	 */
8911 	sfmmu_hat_exit(hatlockp);
8912 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8913 	    flags, sfmmup)) {
8914 		(void) sfmmu_hat_enter(sfmmup);
8915 		if (!(flags & TSB_SWAPIN))
8916 			SFMMU_STAT(sf_tsb_resize_failures);
8917 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8918 		return (TSB_ALLOCFAIL);
8919 	}
8920 	(void) sfmmu_hat_enter(sfmmup);
8921 
8922 	/*
8923 	 * Re-check to make sure somebody else didn't muck with us while we
8924 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8925 	 * exit; this can happen if we try to shrink the TSB from the context
8926 	 * of another process (such as on an ISM unmap), though it is rare.
8927 	 */
8928 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8929 		SFMMU_STAT(sf_tsb_resize_failures);
8930 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8931 		sfmmu_hat_exit(hatlockp);
8932 		sfmmu_tsbinfo_free(new_tsbinfo);
8933 		(void) sfmmu_hat_enter(sfmmup);
8934 		return (TSB_LOSTRACE);
8935 	}
8936 
8937 #ifdef	DEBUG
8938 	/* Reverify that the tsb_info still exists.. for debugging only */
8939 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8940 	    curtsb != old_tsbinfo && curtsb != NULL;
8941 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8942 	ASSERT(curtsb != NULL);
8943 #endif	/* DEBUG */
8944 
8945 	/*
8946 	 * Quiesce any CPUs running this process on their next TLB miss
8947 	 * so they atomically see the new tsb_info.  We temporarily set the
8948 	 * context to invalid context so new threads that come on processor
8949 	 * after we do the xcall to cpusran will also serialize behind the
8950 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8951 	 * race with a new thread coming on processor is relatively rare,
8952 	 * this synchronization mechanism should be cheaper than always
8953 	 * pausing all CPUs for the duration of the setup, which is what
8954 	 * the old implementation did.  This is particuarly true if we are
8955 	 * copying a huge chunk of memory around during that window.
8956 	 *
8957 	 * The memory barriers are to make sure things stay consistent
8958 	 * with resume() since it does not hold the HAT lock while
8959 	 * walking the list of tsb_info structures.
8960 	 */
8961 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8962 		/* The TSB is either growing or shrinking. */
8963 		ctx = sfmmutoctx(sfmmup);
8964 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8965 
8966 		ctxnum = sfmmutoctxnum(sfmmup);
8967 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8968 		membar_enter();	/* make sure visible on all CPUs */
8969 
8970 		kpreempt_disable();
8971 		if (ctxnum != INVALID_CONTEXT) {
8972 			cpuset = sfmmup->sfmmu_cpusran;
8973 			CPUSET_DEL(cpuset, CPU->cpu_id);
8974 			CPUSET_AND(cpuset, cpu_ready_set);
8975 			SFMMU_XCALL_STATS(ctxnum);
8976 
8977 			xt_some(cpuset, sfmmu_raise_tsb_exception,
8978 			    ctxnum, INVALID_CONTEXT);
8979 			xt_sync(cpuset);
8980 
8981 			SFMMU_STAT(sf_tsb_raise_exception);
8982 		}
8983 		kpreempt_enable();
8984 	} else {
8985 		/*
8986 		 * It is illegal to swap in TSBs from a process other
8987 		 * than a process being swapped in.  This in turn
8988 		 * implies we do not have a valid MMU context here
8989 		 * since a process needs one to resolve translation
8990 		 * misses.
8991 		 */
8992 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
8993 		ASSERT(sfmmutoctxnum(sfmmup) == INVALID_CONTEXT);
8994 	}
8995 
8996 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
8997 	membar_stst();	/* strict ordering required */
8998 	if (prevtsb)
8999 		prevtsb->tsb_next = new_tsbinfo;
9000 	else
9001 		sfmmup->sfmmu_tsb = new_tsbinfo;
9002 	membar_enter();	/* make sure new TSB globally visible */
9003 	sfmmu_setup_tsbinfo(sfmmup);
9004 
9005 	/*
9006 	 * We need to migrate TSB entries from the old TSB to the new TSB
9007 	 * if tsb_remap_ttes is set and the TSB is growing.
9008 	 */
9009 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9010 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9011 
9012 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9013 		kpreempt_disable();
9014 		membar_exit();
9015 		sfmmup->sfmmu_cnum = ctxnum;
9016 		if (ctxnum != INVALID_CONTEXT &&
9017 		    sfmmu_getctx_sec() == ctxnum) {
9018 			sfmmu_load_mmustate(sfmmup);
9019 		}
9020 		kpreempt_enable();
9021 		rw_exit(&ctx->ctx_rwlock);
9022 	}
9023 
9024 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9025 
9026 	/*
9027 	 * Drop the HAT lock to free our old tsb_info.
9028 	 */
9029 	sfmmu_hat_exit(hatlockp);
9030 
9031 	if ((flags & TSB_GROW) == TSB_GROW) {
9032 		SFMMU_STAT(sf_tsb_grow);
9033 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9034 		SFMMU_STAT(sf_tsb_shrink);
9035 	}
9036 
9037 	sfmmu_tsbinfo_free(old_tsbinfo);
9038 
9039 	(void) sfmmu_hat_enter(sfmmup);
9040 	return (TSB_SUCCESS);
9041 }
9042 
9043 /*
9044  * Steal context from process, forcing the process to switch to another
9045  * context on the next TLB miss, and therefore start using the TLB that
9046  * is reprogrammed for the new page sizes.
9047  */
9048 void
9049 sfmmu_steal_context(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9050 {
9051 	struct ctx *ctx;
9052 	int i, cnum;
9053 	hatlock_t *hatlockp = NULL;
9054 
9055 	hatlockp = sfmmu_hat_enter(sfmmup);
9056 	/* USIII+-IV+ optimization, requires hat lock */
9057 	if (tmp_pgsz) {
9058 		for (i = 0; i < mmu_page_sizes; i++)
9059 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9060 	}
9061 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9062 	ctx = sfmmutoctx(sfmmup);
9063 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9064 	cnum = sfmmutoctxnum(sfmmup);
9065 
9066 	if (cnum != INVALID_CONTEXT) {
9067 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
9068 	}
9069 	rw_exit(&ctx->ctx_rwlock);
9070 	sfmmu_hat_exit(hatlockp);
9071 }
9072 
9073 /*
9074  * This function assumes that there are either four or six supported page
9075  * sizes and at most two programmable TLBs, so we need to decide which
9076  * page sizes are most important and then tell the MMU layer so it
9077  * can adjust the TLB page sizes accordingly (if supported).
9078  *
9079  * If these assumptions change, this function will need to be
9080  * updated to support whatever the new limits are.
9081  *
9082  * The growing flag is nonzero if we are growing the address space,
9083  * and zero if it is shrinking.  This allows us to decide whether
9084  * to grow or shrink our TSB, depending upon available memory
9085  * conditions.
9086  */
9087 static void
9088 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9089 {
9090 	uint64_t ttecnt[MMU_PAGE_SIZES];
9091 	uint64_t tte8k_cnt, tte4m_cnt;
9092 	uint8_t i;
9093 	int sectsb_thresh;
9094 
9095 	/*
9096 	 * Kernel threads, processes with small address spaces not using
9097 	 * large pages, and dummy ISM HATs need not apply.
9098 	 */
9099 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9100 		return;
9101 
9102 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9103 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9104 		return;
9105 
9106 	for (i = 0; i < mmu_page_sizes; i++) {
9107 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9108 	}
9109 
9110 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9111 	if (&mmu_check_page_sizes)
9112 		mmu_check_page_sizes(sfmmup, ttecnt);
9113 
9114 	/*
9115 	 * Calculate the number of 8k ttes to represent the span of these
9116 	 * pages.
9117 	 */
9118 	tte8k_cnt = ttecnt[TTE8K] +
9119 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9120 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9121 	if (mmu_page_sizes == max_mmu_page_sizes) {
9122 		tte4m_cnt = ttecnt[TTE4M] +
9123 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9124 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9125 	} else {
9126 		tte4m_cnt = ttecnt[TTE4M];
9127 	}
9128 
9129 	/*
9130 	 * Inflate TSB sizes by a factor of 2 if this process
9131 	 * uses 4M text pages to minimize extra conflict misses
9132 	 * in the first TSB since without counting text pages
9133 	 * 8K TSB may become too small.
9134 	 *
9135 	 * Also double the size of the second TSB to minimize
9136 	 * extra conflict misses due to competition between 4M text pages
9137 	 * and data pages.
9138 	 *
9139 	 * We need to adjust the second TSB allocation threshold by the
9140 	 * inflation factor, since there is no point in creating a second
9141 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9142 	 */
9143 	sectsb_thresh = tsb_sectsb_threshold;
9144 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9145 		tte8k_cnt <<= 1;
9146 		tte4m_cnt <<= 1;
9147 		sectsb_thresh <<= 1;
9148 	}
9149 
9150 	/*
9151 	 * Check to see if our TSB is the right size; we may need to
9152 	 * grow or shrink it.  If the process is small, our work is
9153 	 * finished at this point.
9154 	 */
9155 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9156 		return;
9157 	}
9158 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9159 }
9160 
9161 static void
9162 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9163 	uint64_t tte4m_cnt, int sectsb_thresh)
9164 {
9165 	int tsb_bits;
9166 	uint_t tsb_szc;
9167 	struct tsb_info *tsbinfop;
9168 	hatlock_t *hatlockp = NULL;
9169 
9170 	hatlockp = sfmmu_hat_enter(sfmmup);
9171 	ASSERT(hatlockp != NULL);
9172 	tsbinfop = sfmmup->sfmmu_tsb;
9173 	ASSERT(tsbinfop != NULL);
9174 
9175 	/*
9176 	 * If we're growing, select the size based on RSS.  If we're
9177 	 * shrinking, leave some room so we don't have to turn around and
9178 	 * grow again immediately.
9179 	 */
9180 	if (growing)
9181 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9182 	else
9183 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9184 
9185 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9186 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9187 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9188 		    hatlockp, TSB_SHRINK);
9189 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9190 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9191 		    hatlockp, TSB_GROW);
9192 	}
9193 	tsbinfop = sfmmup->sfmmu_tsb;
9194 
9195 	/*
9196 	 * With the TLB and first TSB out of the way, we need to see if
9197 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9198 	 * the TLB page sizes above, the process will start using this new
9199 	 * TSB right away; otherwise, it will start using it on the next
9200 	 * context switch.  Either way, it's no big deal so there's no
9201 	 * synchronization with the trap handlers here unless we grow the
9202 	 * TSB (in which case it's required to prevent using the old one
9203 	 * after it's freed). Note: second tsb is required for 32M/256M
9204 	 * page sizes.
9205 	 */
9206 	if (tte4m_cnt > sectsb_thresh) {
9207 		/*
9208 		 * If we're growing, select the size based on RSS.  If we're
9209 		 * shrinking, leave some room so we don't have to turn
9210 		 * around and grow again immediately.
9211 		 */
9212 		if (growing)
9213 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9214 		else
9215 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9216 		if (tsbinfop->tsb_next == NULL) {
9217 			struct tsb_info *newtsb;
9218 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9219 			    0 : TSB_ALLOC;
9220 
9221 			sfmmu_hat_exit(hatlockp);
9222 
9223 			/*
9224 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9225 			 * can't get the size we want, retry w/a minimum sized
9226 			 * TSB.  If that still didn't work, give up; we can
9227 			 * still run without one.
9228 			 */
9229 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9230 			    TSB4M|TSB32M|TSB256M:TSB4M;
9231 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9232 			    allocflags, sfmmup) != 0) &&
9233 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9234 			    tsb_bits, allocflags, sfmmup) != 0)) {
9235 				return;
9236 			}
9237 
9238 			hatlockp = sfmmu_hat_enter(sfmmup);
9239 
9240 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9241 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9242 				SFMMU_STAT(sf_tsb_sectsb_create);
9243 				sfmmu_setup_tsbinfo(sfmmup);
9244 				sfmmu_hat_exit(hatlockp);
9245 				return;
9246 			} else {
9247 				/*
9248 				 * It's annoying, but possible for us
9249 				 * to get here.. we dropped the HAT lock
9250 				 * because of locking order in the kmem
9251 				 * allocator, and while we were off getting
9252 				 * our memory, some other thread decided to
9253 				 * do us a favor and won the race to get a
9254 				 * second TSB for this process.  Sigh.
9255 				 */
9256 				sfmmu_hat_exit(hatlockp);
9257 				sfmmu_tsbinfo_free(newtsb);
9258 				return;
9259 			}
9260 		}
9261 
9262 		/*
9263 		 * We have a second TSB, see if it's big enough.
9264 		 */
9265 		tsbinfop = tsbinfop->tsb_next;
9266 
9267 		/*
9268 		 * Check to see if our second TSB is the right size;
9269 		 * we may need to grow or shrink it.
9270 		 * To prevent thrashing (e.g. growing the TSB on a
9271 		 * subsequent map operation), only try to shrink if
9272 		 * the TSB reach exceeds twice the virtual address
9273 		 * space size.
9274 		 */
9275 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9276 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9277 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9278 			    tsb_szc, hatlockp, TSB_SHRINK);
9279 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9280 		    TSB_OK_GROW()) {
9281 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9282 			    tsb_szc, hatlockp, TSB_GROW);
9283 		}
9284 	}
9285 
9286 	sfmmu_hat_exit(hatlockp);
9287 }
9288 
9289 /*
9290  * Get the preferred page size code for a hat.
9291  * This is only advice, so locking is not done;
9292  * this transitory information could change
9293  * following the call anyway.  This interface is
9294  * sun4 private.
9295  */
9296 /*ARGSUSED*/
9297 uint_t
9298 hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
9299 {
9300 	sfmmu_t *sfmmup = (sfmmu_t *)hat;
9301 	uint_t szc, maxszc = mmu_page_sizes - 1;
9302 	size_t pgsz;
9303 
9304 	if (maptype == MAPPGSZ_ISM) {
9305 		for (szc = maxszc; szc >= TTE4M; szc--) {
9306 			if (disable_ism_large_pages & (1 << szc))
9307 				continue;
9308 
9309 			pgsz = hw_page_array[szc].hp_size;
9310 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9311 				return (szc);
9312 		}
9313 		return (TTE4M);
9314 	} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
9315 		return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
9316 	} else {	/* USIII, USII, Niagara */
9317 		for (szc = maxszc; szc > TTE8K; szc--) {
9318 			if (disable_large_pages & (1 << szc))
9319 				continue;
9320 
9321 			pgsz = hw_page_array[szc].hp_size;
9322 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9323 				return (szc);
9324 		}
9325 		return (TTE8K);
9326 	}
9327 }
9328 
9329 /*
9330  * Free up a ctx
9331  */
9332 static void
9333 sfmmu_free_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
9334 {
9335 	int ctxnum;
9336 
9337 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9338 
9339 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, sfmmup->sfmmu_cnum,
9340 	    sfmmup, 0, CTX_TRC_FREE);
9341 
9342 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
9343 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9344 		rw_exit(&ctx->ctx_rwlock);
9345 		return;
9346 	}
9347 
9348 	ASSERT(sfmmup == ctx->ctx_sfmmu);
9349 
9350 	ctx->ctx_sfmmu = NULL;
9351 	ctx->ctx_flags = 0;
9352 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
9353 	membar_enter();
9354 	CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9355 	ctxnum = sfmmu_getctx_sec();
9356 	if (ctxnum == ctxtoctxnum(ctx)) {
9357 		sfmmu_setctx_sec(INVALID_CONTEXT);
9358 		sfmmu_clear_utsbinfo();
9359 	}
9360 
9361 	/*
9362 	 * Put the freed ctx on the dirty list
9363 	 */
9364 	mutex_enter(&ctx_list_lock);
9365 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
9366 	ctx->ctx_free = ctxdirty;
9367 	ctxdirty = ctx;
9368 	mutex_exit(&ctx_list_lock);
9369 
9370 	rw_exit(&ctx->ctx_rwlock);
9371 }
9372 
9373 /*
9374  * Free up a sfmmu
9375  * Since the sfmmu is currently embedded in the hat struct we simply zero
9376  * out our fields and free up the ism map blk list if any.
9377  */
9378 static void
9379 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9380 {
9381 	ism_blk_t	*blkp, *nx_blkp;
9382 #ifdef	DEBUG
9383 	ism_map_t	*map;
9384 	int 		i;
9385 #endif
9386 
9387 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9388 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9389 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9390 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9391 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9392 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9393 	ASSERT(sfmmup->sfmmu_cnum == INVALID_CONTEXT);
9394 	sfmmup->sfmmu_free = 0;
9395 	sfmmup->sfmmu_ismhat = 0;
9396 
9397 	blkp = sfmmup->sfmmu_iblk;
9398 	sfmmup->sfmmu_iblk = NULL;
9399 
9400 	while (blkp) {
9401 #ifdef	DEBUG
9402 		map = blkp->iblk_maps;
9403 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9404 			ASSERT(map[i].imap_seg == 0);
9405 			ASSERT(map[i].imap_ismhat == NULL);
9406 			ASSERT(map[i].imap_ment == NULL);
9407 		}
9408 #endif
9409 		nx_blkp = blkp->iblk_next;
9410 		blkp->iblk_next = NULL;
9411 		blkp->iblk_nextpa = (uint64_t)-1;
9412 		kmem_cache_free(ism_blk_cache, blkp);
9413 		blkp = nx_blkp;
9414 	}
9415 }
9416 
9417 /*
9418  * Locking primitves accessed by HATLOCK macros
9419  */
9420 
9421 #define	SFMMU_SPL_MTX	(0x0)
9422 #define	SFMMU_ML_MTX	(0x1)
9423 
9424 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9425 					    SPL_HASH(pg) : MLIST_HASH(pg))
9426 
9427 kmutex_t *
9428 sfmmu_page_enter(struct page *pp)
9429 {
9430 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9431 }
9432 
9433 static void
9434 sfmmu_page_exit(kmutex_t *spl)
9435 {
9436 	mutex_exit(spl);
9437 }
9438 
9439 static int
9440 sfmmu_page_spl_held(struct page *pp)
9441 {
9442 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9443 }
9444 
9445 kmutex_t *
9446 sfmmu_mlist_enter(struct page *pp)
9447 {
9448 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9449 }
9450 
9451 void
9452 sfmmu_mlist_exit(kmutex_t *mml)
9453 {
9454 	mutex_exit(mml);
9455 }
9456 
9457 int
9458 sfmmu_mlist_held(struct page *pp)
9459 {
9460 
9461 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9462 }
9463 
9464 /*
9465  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9466  * sfmmu_mlist_enter() case mml_table lock array is used and for
9467  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9468  *
9469  * The lock is taken on a root page so that it protects an operation on all
9470  * constituent pages of a large page pp belongs to.
9471  *
9472  * The routine takes a lock from the appropriate array. The lock is determined
9473  * by hashing the root page. After taking the lock this routine checks if the
9474  * root page has the same size code that was used to determine the root (i.e
9475  * that root hasn't changed).  If root page has the expected p_szc field we
9476  * have the right lock and it's returned to the caller. If root's p_szc
9477  * decreased we release the lock and retry from the beginning.  This case can
9478  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9479  * value and taking the lock. The number of retries due to p_szc decrease is
9480  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9481  * determined by hashing pp itself.
9482  *
9483  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9484  * possible that p_szc can increase. To increase p_szc a thread has to lock
9485  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9486  * callers that don't hold a page locked recheck if hmeblk through which pp
9487  * was found still maps this pp.  If it doesn't map it anymore returned lock
9488  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9489  * p_szc increase after taking the lock it returns this lock without further
9490  * retries because in this case the caller doesn't care about which lock was
9491  * taken. The caller will drop it right away.
9492  *
9493  * After the routine returns it's guaranteed that hat_page_demote() can't
9494  * change p_szc field of any of constituent pages of a large page pp belongs
9495  * to as long as pp was either locked at least SHARED prior to this call or
9496  * the caller finds that hment that pointed to this pp still references this
9497  * pp (this also assumes that the caller holds hme hash bucket lock so that
9498  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9499  * hat_pageunload()).
9500  */
9501 static kmutex_t *
9502 sfmmu_mlspl_enter(struct page *pp, int type)
9503 {
9504 	kmutex_t	*mtx;
9505 	uint_t		prev_rszc = UINT_MAX;
9506 	page_t		*rootpp;
9507 	uint_t		szc;
9508 	uint_t		rszc;
9509 	uint_t		pszc = pp->p_szc;
9510 
9511 	ASSERT(pp != NULL);
9512 
9513 again:
9514 	if (pszc == 0) {
9515 		mtx = SFMMU_MLSPL_MTX(type, pp);
9516 		mutex_enter(mtx);
9517 		return (mtx);
9518 	}
9519 
9520 	/* The lock lives in the root page */
9521 	rootpp = PP_GROUPLEADER(pp, pszc);
9522 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9523 	mutex_enter(mtx);
9524 
9525 	/*
9526 	 * Return mml in the following 3 cases:
9527 	 *
9528 	 * 1) If pp itself is root since if its p_szc decreased before we took
9529 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9530 	 * increased it doesn't matter what lock we return (see comment in
9531 	 * front of this routine).
9532 	 *
9533 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9534 	 * large page we have the right lock since any previous potential
9535 	 * hat_page_demote() is done demoting from greater than current root's
9536 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9537 	 * further hat_page_demote() can start or be in progress since it
9538 	 * would need the same lock we currently hold.
9539 	 *
9540 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9541 	 * matter what lock we return (see comment in front of this routine).
9542 	 */
9543 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9544 	    rszc >= prev_rszc) {
9545 		return (mtx);
9546 	}
9547 
9548 	/*
9549 	 * hat_page_demote() could have decreased root's p_szc.
9550 	 * In this case pp's p_szc must also be smaller than pszc.
9551 	 * Retry.
9552 	 */
9553 	if (rszc < pszc) {
9554 		szc = pp->p_szc;
9555 		if (szc < pszc) {
9556 			mutex_exit(mtx);
9557 			pszc = szc;
9558 			goto again;
9559 		}
9560 		/*
9561 		 * pp's p_szc increased after it was decreased.
9562 		 * page cannot be mapped. Return current lock. The caller
9563 		 * will drop it right away.
9564 		 */
9565 		return (mtx);
9566 	}
9567 
9568 	/*
9569 	 * root's p_szc is greater than pp's p_szc.
9570 	 * hat_page_demote() is not done with all pages
9571 	 * yet. Wait for it to complete.
9572 	 */
9573 	mutex_exit(mtx);
9574 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9575 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9576 	mutex_enter(mtx);
9577 	mutex_exit(mtx);
9578 	prev_rszc = rszc;
9579 	goto again;
9580 }
9581 
9582 static int
9583 sfmmu_mlspl_held(struct page *pp, int type)
9584 {
9585 	kmutex_t	*mtx;
9586 
9587 	ASSERT(pp != NULL);
9588 	/* The lock lives in the root page */
9589 	pp = PP_PAGEROOT(pp);
9590 	ASSERT(pp != NULL);
9591 
9592 	mtx = SFMMU_MLSPL_MTX(type, pp);
9593 	return (MUTEX_HELD(mtx));
9594 }
9595 
9596 static uint_t
9597 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9598 {
9599 	struct  hme_blk *hblkp;
9600 
9601 	if (freehblkp != NULL) {
9602 		mutex_enter(&freehblkp_lock);
9603 		if (freehblkp != NULL) {
9604 			/*
9605 			 * If the current thread is owning hblk_reserve,
9606 			 * let it succede even if freehblkcnt is really low.
9607 			 */
9608 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9609 				SFMMU_STAT(sf_get_free_throttle);
9610 				mutex_exit(&freehblkp_lock);
9611 				return (0);
9612 			}
9613 			freehblkcnt--;
9614 			*hmeblkpp = freehblkp;
9615 			hblkp = *hmeblkpp;
9616 			freehblkp = hblkp->hblk_next;
9617 			mutex_exit(&freehblkp_lock);
9618 			hblkp->hblk_next = NULL;
9619 			SFMMU_STAT(sf_get_free_success);
9620 			return (1);
9621 		}
9622 		mutex_exit(&freehblkp_lock);
9623 	}
9624 	SFMMU_STAT(sf_get_free_fail);
9625 	return (0);
9626 }
9627 
9628 static uint_t
9629 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9630 {
9631 	struct  hme_blk *hblkp;
9632 
9633 	/*
9634 	 * If the current thread is mapping into kernel space,
9635 	 * let it succede even if freehblkcnt is max
9636 	 * so that it will avoid freeing it to kmem.
9637 	 * This will prevent stack overflow due to
9638 	 * possible recursion since kmem_cache_free()
9639 	 * might require creation of a slab which
9640 	 * in turn needs an hmeblk to map that slab;
9641 	 * let's break this vicious chain at the first
9642 	 * opportunity.
9643 	 */
9644 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9645 		mutex_enter(&freehblkp_lock);
9646 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9647 			SFMMU_STAT(sf_put_free_success);
9648 			freehblkcnt++;
9649 			hmeblkp->hblk_next = freehblkp;
9650 			freehblkp = hmeblkp;
9651 			mutex_exit(&freehblkp_lock);
9652 			return (1);
9653 		}
9654 		mutex_exit(&freehblkp_lock);
9655 	}
9656 
9657 	/*
9658 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9659 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9660 	 * we are not in the process of mapping into kernel space.
9661 	 */
9662 	ASSERT(!critical);
9663 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9664 		mutex_enter(&freehblkp_lock);
9665 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9666 			freehblkcnt--;
9667 			hblkp = freehblkp;
9668 			freehblkp = hblkp->hblk_next;
9669 			mutex_exit(&freehblkp_lock);
9670 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9671 			kmem_cache_free(sfmmu8_cache, hblkp);
9672 			continue;
9673 		}
9674 		mutex_exit(&freehblkp_lock);
9675 	}
9676 	SFMMU_STAT(sf_put_free_fail);
9677 	return (0);
9678 }
9679 
9680 static void
9681 sfmmu_hblk_swap(struct hme_blk *new)
9682 {
9683 	struct hme_blk *old, *hblkp, *prev;
9684 	uint64_t hblkpa, prevpa, newpa;
9685 	caddr_t	base, vaddr, endaddr;
9686 	struct hmehash_bucket *hmebp;
9687 	struct sf_hment *osfhme, *nsfhme;
9688 	page_t *pp;
9689 	kmutex_t *pml;
9690 	tte_t tte;
9691 
9692 #ifdef	DEBUG
9693 	hmeblk_tag		hblktag;
9694 	struct hme_blk		*found;
9695 #endif
9696 	old = HBLK_RESERVE;
9697 
9698 	/*
9699 	 * save pa before bcopy clobbers it
9700 	 */
9701 	newpa = new->hblk_nextpa;
9702 
9703 	base = (caddr_t)get_hblk_base(old);
9704 	endaddr = base + get_hblk_span(old);
9705 
9706 	/*
9707 	 * acquire hash bucket lock.
9708 	 */
9709 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9710 
9711 	/*
9712 	 * copy contents from old to new
9713 	 */
9714 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9715 
9716 	/*
9717 	 * add new to hash chain
9718 	 */
9719 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9720 
9721 	/*
9722 	 * search hash chain for hblk_reserve; this needs to be performed
9723 	 * after adding new, otherwise prevpa and prev won't correspond
9724 	 * to the hblk which is prior to old in hash chain when we call
9725 	 * sfmmu_hblk_hash_rm to remove old later.
9726 	 */
9727 	for (prevpa = 0, prev = NULL,
9728 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9729 	    hblkp != NULL && hblkp != old;
9730 	    prevpa = hblkpa, prev = hblkp,
9731 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9732 
9733 	if (hblkp != old)
9734 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9735 
9736 	/*
9737 	 * p_mapping list is still pointing to hments in hblk_reserve;
9738 	 * fix up p_mapping list so that they point to hments in new.
9739 	 *
9740 	 * Since all these mappings are created by hblk_reserve_thread
9741 	 * on the way and it's using at least one of the buffers from each of
9742 	 * the newly minted slabs, there is no danger of any of these
9743 	 * mappings getting unloaded by another thread.
9744 	 *
9745 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9746 	 * Since all of these hments hold mappings established by segkmem
9747 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9748 	 * have no meaning for the mappings in hblk_reserve.  hments in
9749 	 * old and new are identical except for ref/mod bits.
9750 	 */
9751 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9752 
9753 		HBLKTOHME(osfhme, old, vaddr);
9754 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9755 
9756 		if (TTE_IS_VALID(&tte)) {
9757 			if ((pp = osfhme->hme_page) == NULL)
9758 				panic("sfmmu_hblk_swap: page not mapped");
9759 
9760 			pml = sfmmu_mlist_enter(pp);
9761 
9762 			if (pp != osfhme->hme_page)
9763 				panic("sfmmu_hblk_swap: mapping changed");
9764 
9765 			HBLKTOHME(nsfhme, new, vaddr);
9766 
9767 			HME_ADD(nsfhme, pp);
9768 			HME_SUB(osfhme, pp);
9769 
9770 			sfmmu_mlist_exit(pml);
9771 		}
9772 	}
9773 
9774 	/*
9775 	 * remove old from hash chain
9776 	 */
9777 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9778 
9779 #ifdef	DEBUG
9780 
9781 	hblktag.htag_id = ksfmmup;
9782 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9783 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9784 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9785 
9786 	if (found != new)
9787 		panic("sfmmu_hblk_swap: new hblk not found");
9788 #endif
9789 
9790 	SFMMU_HASH_UNLOCK(hmebp);
9791 
9792 	/*
9793 	 * Reset hblk_reserve
9794 	 */
9795 	bzero((void *)old, HME8BLK_SZ);
9796 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9797 }
9798 
9799 /*
9800  * Grab the mlist mutex for both pages passed in.
9801  *
9802  * low and high will be returned as pointers to the mutexes for these pages.
9803  * low refers to the mutex residing in the lower bin of the mlist hash, while
9804  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9805  * is due to the locking order restrictions on the same thread grabbing
9806  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9807  *
9808  * If both pages hash to the same mutex, only grab that single mutex, and
9809  * high will be returned as NULL
9810  * If the pages hash to different bins in the hash, grab the lower addressed
9811  * lock first and then the higher addressed lock in order to follow the locking
9812  * rules involved with the same thread grabbing multiple mlist mutexes.
9813  * low and high will both have non-NULL values.
9814  */
9815 static void
9816 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9817     kmutex_t **low, kmutex_t **high)
9818 {
9819 	kmutex_t	*mml_targ, *mml_repl;
9820 
9821 	/*
9822 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9823 	 * because this routine is only called by hat_page_relocate() and all
9824 	 * targ and repl pages are already locked EXCL so szc can't change.
9825 	 */
9826 
9827 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9828 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9829 
9830 	if (mml_targ == mml_repl) {
9831 		*low = mml_targ;
9832 		*high = NULL;
9833 	} else {
9834 		if (mml_targ < mml_repl) {
9835 			*low = mml_targ;
9836 			*high = mml_repl;
9837 		} else {
9838 			*low = mml_repl;
9839 			*high = mml_targ;
9840 		}
9841 	}
9842 
9843 	mutex_enter(*low);
9844 	if (*high)
9845 		mutex_enter(*high);
9846 }
9847 
9848 static void
9849 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9850 {
9851 	if (high)
9852 		mutex_exit(high);
9853 	mutex_exit(low);
9854 }
9855 
9856 static hatlock_t *
9857 sfmmu_hat_enter(sfmmu_t *sfmmup)
9858 {
9859 	hatlock_t	*hatlockp;
9860 
9861 	if (sfmmup != ksfmmup) {
9862 		hatlockp = TSB_HASH(sfmmup);
9863 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9864 		return (hatlockp);
9865 	}
9866 	return (NULL);
9867 }
9868 
9869 static hatlock_t *
9870 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9871 {
9872 	hatlock_t	*hatlockp;
9873 
9874 	if (sfmmup != ksfmmup) {
9875 		hatlockp = TSB_HASH(sfmmup);
9876 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9877 			return (NULL);
9878 		return (hatlockp);
9879 	}
9880 	return (NULL);
9881 }
9882 
9883 static void
9884 sfmmu_hat_exit(hatlock_t *hatlockp)
9885 {
9886 	if (hatlockp != NULL)
9887 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9888 }
9889 
9890 static void
9891 sfmmu_hat_lock_all(void)
9892 {
9893 	int i;
9894 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9895 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9896 }
9897 
9898 static void
9899 sfmmu_hat_unlock_all(void)
9900 {
9901 	int i;
9902 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9903 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9904 }
9905 
9906 int
9907 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9908 {
9909 	ASSERT(sfmmup != ksfmmup);
9910 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9911 }
9912 
9913 /*
9914  * Locking primitives to provide consistency between ISM unmap
9915  * and other operations.  Since ISM unmap can take a long time, we
9916  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9917  * contention on the hatlock buckets while ISM segments are being
9918  * unmapped.  The tradeoff is that the flags don't prevent priority
9919  * inversion from occurring, so we must request kernel priority in
9920  * case we have to sleep to keep from getting buried while holding
9921  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9922  * threads from running (for example, in sfmmu_uvatopfn()).
9923  */
9924 static void
9925 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9926 {
9927 	hatlock_t *hatlockp;
9928 
9929 	THREAD_KPRI_REQUEST();
9930 	if (!hatlock_held)
9931 		hatlockp = sfmmu_hat_enter(sfmmup);
9932 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9933 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9934 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9935 	if (!hatlock_held)
9936 		sfmmu_hat_exit(hatlockp);
9937 }
9938 
9939 static void
9940 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9941 {
9942 	hatlock_t *hatlockp;
9943 
9944 	if (!hatlock_held)
9945 		hatlockp = sfmmu_hat_enter(sfmmup);
9946 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9947 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9948 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9949 	if (!hatlock_held)
9950 		sfmmu_hat_exit(hatlockp);
9951 	THREAD_KPRI_RELEASE();
9952 }
9953 
9954 /*
9955  *
9956  * Algorithm:
9957  *
9958  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9959  *	hblks.
9960  *
9961  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9962  *
9963  * 		(a) try to return an hblk from reserve pool of free hblks;
9964  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9965  *		    and return hblk_reserve.
9966  *
9967  * (3) call kmem_cache_alloc() to allocate hblk;
9968  *
9969  *		(a) if hblk_reserve_lock is held by the current thread,
9970  *		    atomically replace hblk_reserve by the hblk that is
9971  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9972  *		    and call kmem_cache_alloc() again.
9973  *		(b) if reserve pool is not full, add the hblk that is
9974  *		    returned by kmem_cache_alloc to reserve pool and
9975  *		    call kmem_cache_alloc again.
9976  *
9977  */
9978 static struct hme_blk *
9979 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9980 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9981 	uint_t flags)
9982 {
9983 	struct hme_blk *hmeblkp = NULL;
9984 	struct hme_blk *newhblkp;
9985 	struct hme_blk *shw_hblkp = NULL;
9986 	struct kmem_cache *sfmmu_cache = NULL;
9987 	uint64_t hblkpa;
9988 	ulong_t index;
9989 	uint_t owner;		/* set to 1 if using hblk_reserve */
9990 	uint_t forcefree;
9991 	int sleep;
9992 
9993 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9994 
9995 	/*
9996 	 * If segkmem is not created yet, allocate from static hmeblks
9997 	 * created at the end of startup_modules().  See the block comment
9998 	 * in startup_modules() describing how we estimate the number of
9999 	 * static hmeblks that will be needed during re-map.
10000 	 */
10001 	if (!hblk_alloc_dynamic) {
10002 
10003 		if (size == TTE8K) {
10004 			index = nucleus_hblk8.index;
10005 			if (index >= nucleus_hblk8.len) {
10006 				/*
10007 				 * If we panic here, see startup_modules() to
10008 				 * make sure that we are calculating the
10009 				 * number of hblk8's that we need correctly.
10010 				 */
10011 				panic("no nucleus hblk8 to allocate");
10012 			}
10013 			hmeblkp =
10014 			    (struct hme_blk *)&nucleus_hblk8.list[index];
10015 			nucleus_hblk8.index++;
10016 			SFMMU_STAT(sf_hblk8_nalloc);
10017 		} else {
10018 			index = nucleus_hblk1.index;
10019 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10020 				/*
10021 				 * If we panic here, see startup_modules()
10022 				 * and H8TOH1; most likely you need to
10023 				 * update the calculation of the number
10024 				 * of hblk1's the kernel needs to boot.
10025 				 */
10026 				panic("no nucleus hblk1 to allocate");
10027 			}
10028 			hmeblkp =
10029 			    (struct hme_blk *)&nucleus_hblk1.list[index];
10030 			nucleus_hblk1.index++;
10031 			SFMMU_STAT(sf_hblk1_nalloc);
10032 		}
10033 
10034 		goto hblk_init;
10035 	}
10036 
10037 	SFMMU_HASH_UNLOCK(hmebp);
10038 
10039 	if (sfmmup != KHATID) {
10040 		if (mmu_page_sizes == max_mmu_page_sizes) {
10041 			if (size < TTE256M)
10042 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10043 				    size, flags);
10044 		} else {
10045 			if (size < TTE4M)
10046 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10047 				    size, flags);
10048 		}
10049 	}
10050 
10051 fill_hblk:
10052 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10053 
10054 	if (owner && size == TTE8K) {
10055 
10056 		/*
10057 		 * We are really in a tight spot. We already own
10058 		 * hblk_reserve and we need another hblk.  In anticipation
10059 		 * of this kind of scenario, we specifically set aside
10060 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10061 		 * by owner of hblk_reserve.
10062 		 */
10063 		SFMMU_STAT(sf_hblk_recurse_cnt);
10064 
10065 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10066 			panic("sfmmu_hblk_alloc: reserve list is empty");
10067 
10068 		goto hblk_verify;
10069 	}
10070 
10071 	ASSERT(!owner);
10072 
10073 	if ((flags & HAT_NO_KALLOC) == 0) {
10074 
10075 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10076 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10077 
10078 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10079 			hmeblkp = sfmmu_hblk_steal(size);
10080 		} else {
10081 			/*
10082 			 * if we are the owner of hblk_reserve,
10083 			 * swap hblk_reserve with hmeblkp and
10084 			 * start a fresh life.  Hope things go
10085 			 * better this time.
10086 			 */
10087 			if (hblk_reserve_thread == curthread) {
10088 				ASSERT(sfmmu_cache == sfmmu8_cache);
10089 				sfmmu_hblk_swap(hmeblkp);
10090 				hblk_reserve_thread = NULL;
10091 				mutex_exit(&hblk_reserve_lock);
10092 				goto fill_hblk;
10093 			}
10094 			/*
10095 			 * let's donate this hblk to our reserve list if
10096 			 * we are not mapping kernel range
10097 			 */
10098 			if (size == TTE8K && sfmmup != KHATID)
10099 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10100 					goto fill_hblk;
10101 		}
10102 	} else {
10103 		/*
10104 		 * We are here to map the slab in sfmmu8_cache; let's
10105 		 * check if we could tap our reserve list; if successful,
10106 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10107 		 */
10108 		SFMMU_STAT(sf_hblk_slab_cnt);
10109 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10110 			/*
10111 			 * let's start hblk_reserve dance
10112 			 */
10113 			SFMMU_STAT(sf_hblk_reserve_cnt);
10114 			owner = 1;
10115 			mutex_enter(&hblk_reserve_lock);
10116 			hmeblkp = HBLK_RESERVE;
10117 			hblk_reserve_thread = curthread;
10118 		}
10119 	}
10120 
10121 hblk_verify:
10122 	ASSERT(hmeblkp != NULL);
10123 	set_hblk_sz(hmeblkp, size);
10124 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10125 	SFMMU_HASH_LOCK(hmebp);
10126 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10127 	if (newhblkp != NULL) {
10128 		SFMMU_HASH_UNLOCK(hmebp);
10129 		if (hmeblkp != HBLK_RESERVE) {
10130 			/*
10131 			 * This is really tricky!
10132 			 *
10133 			 * vmem_alloc(vmem_seg_arena)
10134 			 *  vmem_alloc(vmem_internal_arena)
10135 			 *   segkmem_alloc(heap_arena)
10136 			 *    vmem_alloc(heap_arena)
10137 			 *    page_create()
10138 			 *    hat_memload()
10139 			 *	kmem_cache_free()
10140 			 *	 kmem_cache_alloc()
10141 			 *	  kmem_slab_create()
10142 			 *	   vmem_alloc(kmem_internal_arena)
10143 			 *	    segkmem_alloc(heap_arena)
10144 			 *		vmem_alloc(heap_arena)
10145 			 *		page_create()
10146 			 *		hat_memload()
10147 			 *		  kmem_cache_free()
10148 			 *		...
10149 			 *
10150 			 * Thus, hat_memload() could call kmem_cache_free
10151 			 * for enough number of times that we could easily
10152 			 * hit the bottom of the stack or run out of reserve
10153 			 * list of vmem_seg structs.  So, we must donate
10154 			 * this hblk to reserve list if it's allocated
10155 			 * from sfmmu8_cache *and* mapping kernel range.
10156 			 * We don't need to worry about freeing hmeblk1's
10157 			 * to kmem since they don't map any kmem slabs.
10158 			 *
10159 			 * Note: When segkmem supports largepages, we must
10160 			 * free hmeblk1's to reserve list as well.
10161 			 */
10162 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10163 			if (size == TTE8K &&
10164 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10165 				goto re_verify;
10166 			}
10167 			ASSERT(sfmmup != KHATID);
10168 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10169 		} else {
10170 			/*
10171 			 * Hey! we don't need hblk_reserve any more.
10172 			 */
10173 			ASSERT(owner);
10174 			hblk_reserve_thread = NULL;
10175 			mutex_exit(&hblk_reserve_lock);
10176 			owner = 0;
10177 		}
10178 re_verify:
10179 		/*
10180 		 * let's check if the goodies are still present
10181 		 */
10182 		SFMMU_HASH_LOCK(hmebp);
10183 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10184 		if (newhblkp != NULL) {
10185 			/*
10186 			 * return newhblkp if it's not hblk_reserve;
10187 			 * if newhblkp is hblk_reserve, return it
10188 			 * _only if_ we are the owner of hblk_reserve.
10189 			 */
10190 			if (newhblkp != HBLK_RESERVE || owner) {
10191 				return (newhblkp);
10192 			} else {
10193 				/*
10194 				 * we just hit hblk_reserve in the hash and
10195 				 * we are not the owner of that;
10196 				 *
10197 				 * block until hblk_reserve_thread completes
10198 				 * swapping hblk_reserve and try the dance
10199 				 * once again.
10200 				 */
10201 				SFMMU_HASH_UNLOCK(hmebp);
10202 				mutex_enter(&hblk_reserve_lock);
10203 				mutex_exit(&hblk_reserve_lock);
10204 				SFMMU_STAT(sf_hblk_reserve_hit);
10205 				goto fill_hblk;
10206 			}
10207 		} else {
10208 			/*
10209 			 * it's no more! try the dance once again.
10210 			 */
10211 			SFMMU_HASH_UNLOCK(hmebp);
10212 			goto fill_hblk;
10213 		}
10214 	}
10215 
10216 hblk_init:
10217 	set_hblk_sz(hmeblkp, size);
10218 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10219 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10220 	hmeblkp->hblk_tag = hblktag;
10221 	hmeblkp->hblk_shadow = shw_hblkp;
10222 	hblkpa = hmeblkp->hblk_nextpa;
10223 	hmeblkp->hblk_nextpa = 0;
10224 
10225 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10226 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10227 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10228 	ASSERT(hmeblkp->hblk_vcnt == 0);
10229 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10230 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10231 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10232 	return (hmeblkp);
10233 }
10234 
10235 /*
10236  * This function performs any cleanup required on the hme_blk
10237  * and returns it to the free list.
10238  */
10239 /* ARGSUSED */
10240 static void
10241 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10242 	uint64_t hblkpa, struct hme_blk **listp)
10243 {
10244 	int shw_size, vshift;
10245 	struct hme_blk *shw_hblkp;
10246 	uint_t		shw_mask, newshw_mask;
10247 	uintptr_t	vaddr;
10248 	int		size;
10249 	uint_t		critical;
10250 
10251 	ASSERT(hmeblkp);
10252 	ASSERT(!hmeblkp->hblk_hmecnt);
10253 	ASSERT(!hmeblkp->hblk_vcnt);
10254 	ASSERT(!hmeblkp->hblk_lckcnt);
10255 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10256 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10257 
10258 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10259 
10260 	size = get_hblk_ttesz(hmeblkp);
10261 	shw_hblkp = hmeblkp->hblk_shadow;
10262 	if (shw_hblkp) {
10263 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10264 		if (mmu_page_sizes == max_mmu_page_sizes) {
10265 			ASSERT(size < TTE256M);
10266 		} else {
10267 			ASSERT(size < TTE4M);
10268 		}
10269 
10270 		shw_size = get_hblk_ttesz(shw_hblkp);
10271 		vaddr = get_hblk_base(hmeblkp);
10272 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10273 		ASSERT(vshift < 8);
10274 		/*
10275 		 * Atomically clear shadow mask bit
10276 		 */
10277 		do {
10278 			shw_mask = shw_hblkp->hblk_shw_mask;
10279 			ASSERT(shw_mask & (1 << vshift));
10280 			newshw_mask = shw_mask & ~(1 << vshift);
10281 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10282 				shw_mask, newshw_mask);
10283 		} while (newshw_mask != shw_mask);
10284 		hmeblkp->hblk_shadow = NULL;
10285 	}
10286 	hmeblkp->hblk_next = NULL;
10287 	hmeblkp->hblk_nextpa = hblkpa;
10288 	hmeblkp->hblk_shw_bit = 0;
10289 
10290 	if (hmeblkp->hblk_nuc_bit == 0) {
10291 
10292 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10293 			return;
10294 
10295 		hmeblkp->hblk_next = *listp;
10296 		*listp = hmeblkp;
10297 	}
10298 }
10299 
10300 static void
10301 sfmmu_hblks_list_purge(struct hme_blk **listp)
10302 {
10303 	struct hme_blk	*hmeblkp;
10304 
10305 	while ((hmeblkp = *listp) != NULL) {
10306 		*listp = hmeblkp->hblk_next;
10307 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10308 	}
10309 }
10310 
10311 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10312 
10313 static uint_t sfmmu_hblk_steal_twice;
10314 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10315 
10316 /*
10317  * Steal a hmeblk
10318  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10319  * hmeblks were added dynamically. We should never ever not be able to
10320  * find one. Look for an unused/unlocked hmeblk in user hash table.
10321  */
10322 static struct hme_blk *
10323 sfmmu_hblk_steal(int size)
10324 {
10325 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10326 	struct hmehash_bucket *hmebp;
10327 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10328 	uint64_t hblkpa, prevpa;
10329 	int i;
10330 
10331 	for (;;) {
10332 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10333 			uhmehash_steal_hand;
10334 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10335 
10336 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10337 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10338 			SFMMU_HASH_LOCK(hmebp);
10339 			hmeblkp = hmebp->hmeblkp;
10340 			hblkpa = hmebp->hmeh_nextpa;
10341 			prevpa = 0;
10342 			pr_hblk = NULL;
10343 			while (hmeblkp) {
10344 				/*
10345 				 * check if it is a hmeblk that is not locked
10346 				 * and not shared. skip shadow hmeblks with
10347 				 * shadow_mask set i.e valid count non zero.
10348 				 */
10349 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10350 				    (hmeblkp->hblk_shw_bit == 0 ||
10351 					hmeblkp->hblk_vcnt == 0) &&
10352 				    (hmeblkp->hblk_lckcnt == 0)) {
10353 					/*
10354 					 * there is a high probability that we
10355 					 * will find a free one. search some
10356 					 * buckets for a free hmeblk initially
10357 					 * before unloading a valid hmeblk.
10358 					 */
10359 					if ((hmeblkp->hblk_vcnt == 0 &&
10360 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10361 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10362 						if (sfmmu_steal_this_hblk(hmebp,
10363 						    hmeblkp, hblkpa, prevpa,
10364 						    pr_hblk)) {
10365 							/*
10366 							 * Hblk is unloaded
10367 							 * successfully
10368 							 */
10369 							break;
10370 						}
10371 					}
10372 				}
10373 				pr_hblk = hmeblkp;
10374 				prevpa = hblkpa;
10375 				hblkpa = hmeblkp->hblk_nextpa;
10376 				hmeblkp = hmeblkp->hblk_next;
10377 			}
10378 
10379 			SFMMU_HASH_UNLOCK(hmebp);
10380 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10381 				hmebp = uhme_hash;
10382 		}
10383 		uhmehash_steal_hand = hmebp;
10384 
10385 		if (hmeblkp != NULL)
10386 			break;
10387 
10388 		/*
10389 		 * in the worst case, look for a free one in the kernel
10390 		 * hash table.
10391 		 */
10392 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10393 			SFMMU_HASH_LOCK(hmebp);
10394 			hmeblkp = hmebp->hmeblkp;
10395 			hblkpa = hmebp->hmeh_nextpa;
10396 			prevpa = 0;
10397 			pr_hblk = NULL;
10398 			while (hmeblkp) {
10399 				/*
10400 				 * check if it is free hmeblk
10401 				 */
10402 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10403 				    (hmeblkp->hblk_lckcnt == 0) &&
10404 				    (hmeblkp->hblk_vcnt == 0) &&
10405 				    (hmeblkp->hblk_hmecnt == 0)) {
10406 					if (sfmmu_steal_this_hblk(hmebp,
10407 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10408 						break;
10409 					} else {
10410 						/*
10411 						 * Cannot fail since we have
10412 						 * hash lock.
10413 						 */
10414 						panic("fail to steal?");
10415 					}
10416 				}
10417 
10418 				pr_hblk = hmeblkp;
10419 				prevpa = hblkpa;
10420 				hblkpa = hmeblkp->hblk_nextpa;
10421 				hmeblkp = hmeblkp->hblk_next;
10422 			}
10423 
10424 			SFMMU_HASH_UNLOCK(hmebp);
10425 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10426 				hmebp = khme_hash;
10427 		}
10428 
10429 		if (hmeblkp != NULL)
10430 			break;
10431 		sfmmu_hblk_steal_twice++;
10432 	}
10433 	return (hmeblkp);
10434 }
10435 
10436 /*
10437  * This routine does real work to prepare a hblk to be "stolen" by
10438  * unloading the mappings, updating shadow counts ....
10439  * It returns 1 if the block is ready to be reused (stolen), or 0
10440  * means the block cannot be stolen yet- pageunload is still working
10441  * on this hblk.
10442  */
10443 static int
10444 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10445 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10446 {
10447 	int shw_size, vshift;
10448 	struct hme_blk *shw_hblkp;
10449 	uintptr_t vaddr;
10450 	uint_t shw_mask, newshw_mask;
10451 
10452 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10453 
10454 	/*
10455 	 * check if the hmeblk is free, unload if necessary
10456 	 */
10457 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10458 		sfmmu_t *sfmmup;
10459 		demap_range_t dmr;
10460 
10461 		sfmmup = hblktosfmmu(hmeblkp);
10462 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10463 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10464 		    (caddr_t)get_hblk_base(hmeblkp),
10465 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10466 		DEMAP_RANGE_FLUSH(&dmr);
10467 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10468 			/*
10469 			 * Pageunload is working on the same hblk.
10470 			 */
10471 			return (0);
10472 		}
10473 
10474 		sfmmu_hblk_steal_unload_count++;
10475 	}
10476 
10477 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10478 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10479 
10480 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10481 	hmeblkp->hblk_nextpa = hblkpa;
10482 
10483 	shw_hblkp = hmeblkp->hblk_shadow;
10484 	if (shw_hblkp) {
10485 		shw_size = get_hblk_ttesz(shw_hblkp);
10486 		vaddr = get_hblk_base(hmeblkp);
10487 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10488 		ASSERT(vshift < 8);
10489 		/*
10490 		 * Atomically clear shadow mask bit
10491 		 */
10492 		do {
10493 			shw_mask = shw_hblkp->hblk_shw_mask;
10494 			ASSERT(shw_mask & (1 << vshift));
10495 			newshw_mask = shw_mask & ~(1 << vshift);
10496 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10497 				shw_mask, newshw_mask);
10498 		} while (newshw_mask != shw_mask);
10499 		hmeblkp->hblk_shadow = NULL;
10500 	}
10501 
10502 	/*
10503 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10504 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10505 	 * we are indeed allocating a shadow hmeblk.
10506 	 */
10507 	hmeblkp->hblk_shw_bit = 0;
10508 
10509 	sfmmu_hblk_steal_count++;
10510 	SFMMU_STAT(sf_steal_count);
10511 
10512 	return (1);
10513 }
10514 
10515 struct hme_blk *
10516 sfmmu_hmetohblk(struct sf_hment *sfhme)
10517 {
10518 	struct hme_blk *hmeblkp;
10519 	struct sf_hment *sfhme0;
10520 	struct hme_blk *hblk_dummy = 0;
10521 
10522 	/*
10523 	 * No dummy sf_hments, please.
10524 	 */
10525 	ASSERT(sfhme->hme_tte.ll != 0);
10526 
10527 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10528 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10529 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10530 
10531 	return (hmeblkp);
10532 }
10533 
10534 /*
10535  * Make sure that there is a valid ctx, if not get a ctx.
10536  * Also, get a readers lock on the ctx, so that the ctx cannot
10537  * be stolen underneath us.
10538  */
10539 static void
10540 sfmmu_disallow_ctx_steal(sfmmu_t *sfmmup)
10541 {
10542 	struct	ctx *ctx;
10543 
10544 	ASSERT(sfmmup != ksfmmup);
10545 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10546 
10547 	/*
10548 	 * If ctx has been stolen, get a ctx.
10549 	 */
10550 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
10551 		/*
10552 		 * Our ctx was stolen. Get a ctx with rlock.
10553 		 */
10554 		ctx = sfmmu_get_ctx(sfmmup);
10555 		return;
10556 	} else {
10557 		ctx = sfmmutoctx(sfmmup);
10558 	}
10559 
10560 	/*
10561 	 * Get the reader lock.
10562 	 */
10563 	rw_enter(&ctx->ctx_rwlock, RW_READER);
10564 	if (ctx->ctx_sfmmu != sfmmup) {
10565 		/*
10566 		 * The ctx got stolen, so spin again.
10567 		 */
10568 		rw_exit(&ctx->ctx_rwlock);
10569 		ctx = sfmmu_get_ctx(sfmmup);
10570 	}
10571 
10572 	ASSERT(sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS);
10573 }
10574 
10575 /*
10576  * Decrement reference count for our ctx. If the reference count
10577  * becomes 0, our ctx can be stolen by someone.
10578  */
10579 static void
10580 sfmmu_allow_ctx_steal(sfmmu_t *sfmmup)
10581 {
10582 	struct	ctx *ctx;
10583 
10584 	ASSERT(sfmmup != ksfmmup);
10585 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10586 	ctx = sfmmutoctx(sfmmup);
10587 
10588 	ASSERT(sfmmup == ctx->ctx_sfmmu);
10589 	ASSERT(sfmmup->sfmmu_cnum != INVALID_CONTEXT);
10590 	rw_exit(&ctx->ctx_rwlock);
10591 }
10592 
10593 /*
10594  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10595  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10596  * KM_SLEEP allocation.
10597  *
10598  * Return 0 on success, -1 otherwise.
10599  */
10600 static void
10601 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10602 {
10603 	struct tsb_info *tsbinfop, *next;
10604 	tsb_replace_rc_t rc;
10605 	boolean_t gotfirst = B_FALSE;
10606 
10607 	ASSERT(sfmmup != ksfmmup);
10608 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10609 
10610 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10611 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10612 	}
10613 
10614 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10615 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10616 	} else {
10617 		return;
10618 	}
10619 
10620 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10621 
10622 	/*
10623 	 * Loop over all tsbinfo's replacing them with ones that actually have
10624 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10625 	 */
10626 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10627 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10628 		next = tsbinfop->tsb_next;
10629 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10630 		    hatlockp, TSB_SWAPIN);
10631 		if (rc != TSB_SUCCESS) {
10632 			break;
10633 		}
10634 		gotfirst = B_TRUE;
10635 	}
10636 
10637 	switch (rc) {
10638 	case TSB_SUCCESS:
10639 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10640 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10641 		return;
10642 	case TSB_ALLOCFAIL:
10643 		break;
10644 	default:
10645 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10646 		    "%d", rc);
10647 	}
10648 
10649 	/*
10650 	 * In this case, we failed to get one of our TSBs.  If we failed to
10651 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10652 	 * and throw away the tsbinfos, starting where the allocation failed;
10653 	 * we can get by with just one TSB as long as we don't leave the
10654 	 * SWAPPED tsbinfo structures lying around.
10655 	 */
10656 	tsbinfop = sfmmup->sfmmu_tsb;
10657 	next = tsbinfop->tsb_next;
10658 	tsbinfop->tsb_next = NULL;
10659 
10660 	sfmmu_hat_exit(hatlockp);
10661 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10662 		next = tsbinfop->tsb_next;
10663 		sfmmu_tsbinfo_free(tsbinfop);
10664 	}
10665 	hatlockp = sfmmu_hat_enter(sfmmup);
10666 
10667 	/*
10668 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10669 	 * pages.
10670 	 */
10671 	if (!gotfirst) {
10672 		tsbinfop = sfmmup->sfmmu_tsb;
10673 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10674 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10675 		ASSERT(rc == TSB_SUCCESS);
10676 	}
10677 
10678 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10679 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10680 }
10681 
10682 /*
10683  * Handle exceptions for low level tsb_handler.
10684  *
10685  * There are many scenarios that could land us here:
10686  *
10687  *	1) Process has no context.  In this case, ctx is
10688  *         INVALID_CONTEXT and sfmmup->sfmmu_cnum == 1 so
10689  *         we will acquire a context before returning.
10690  *      2) Need to re-load our MMU state.  In this case,
10691  *         ctx is INVALID_CONTEXT and sfmmup->sfmmu_cnum != 1.
10692  *      3) ISM mappings are being updated.  This is handled
10693  *         just like case #2.
10694  *      4) We wish to program a new page size into the TLB.
10695  *         This is handled just like case #1, since changing
10696  *         TLB page size requires us to flush the TLB.
10697  *	5) Window fault and no valid translation found.
10698  *
10699  * Cases 1-4, ctx is INVALID_CONTEXT so we handle it and then
10700  * exit which will retry the trapped instruction.  Case #5 we
10701  * punt to trap() which will raise us a trap level and handle
10702  * the fault before unwinding.
10703  *
10704  * Note that the process will run in INVALID_CONTEXT before
10705  * faulting into here and subsequently loading the MMU registers
10706  * (including the TSB base register) associated with this process.
10707  * For this reason, the trap handlers must all test for
10708  * INVALID_CONTEXT before attempting to access any registers other
10709  * than the context registers.
10710  */
10711 void
10712 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10713 {
10714 	sfmmu_t *sfmmup;
10715 	uint_t ctxnum;
10716 	klwp_id_t lwp;
10717 	char lwp_save_state;
10718 	hatlock_t *hatlockp;
10719 	struct tsb_info *tsbinfop;
10720 
10721 	SFMMU_STAT(sf_tsb_exceptions);
10722 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10723 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10724 
10725 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10726 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10727 	/*
10728 	 * First, make sure we come out of here with a valid ctx,
10729 	 * since if we don't get one we'll simply loop on the
10730 	 * faulting instruction.
10731 	 *
10732 	 * If the ISM mappings are changing, the TSB is being relocated, or
10733 	 * the process is swapped out we serialize behind the controlling
10734 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10735 	 * Otherwise we synchronize with the context stealer or the thread
10736 	 * that required us to change out our MMU registers (such
10737 	 * as a thread changing out our TSB while we were running) by
10738 	 * locking the HAT and grabbing the rwlock on the context as a
10739 	 * reader temporarily.
10740 	 */
10741 	if (ctxnum == INVALID_CONTEXT ||
10742 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10743 		/*
10744 		 * Must set lwp state to LWP_SYS before
10745 		 * trying to acquire any adaptive lock
10746 		 */
10747 		lwp = ttolwp(curthread);
10748 		ASSERT(lwp);
10749 		lwp_save_state = lwp->lwp_state;
10750 		lwp->lwp_state = LWP_SYS;
10751 
10752 		hatlockp = sfmmu_hat_enter(sfmmup);
10753 retry:
10754 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10755 		    tsbinfop = tsbinfop->tsb_next) {
10756 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10757 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10758 				    HATLOCK_MUTEXP(hatlockp));
10759 				goto retry;
10760 			}
10761 		}
10762 
10763 		/*
10764 		 * Wait for ISM maps to be updated.
10765 		 */
10766 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10767 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10768 				    HATLOCK_MUTEXP(hatlockp));
10769 			goto retry;
10770 		}
10771 
10772 		/*
10773 		 * If we're swapping in, get TSB(s).  Note that we must do
10774 		 * this before we get a ctx or load the MMU state.  Once
10775 		 * we swap in we have to recheck to make sure the TSB(s) and
10776 		 * ISM mappings didn't change while we slept.
10777 		 */
10778 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10779 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10780 			goto retry;
10781 		}
10782 
10783 		sfmmu_disallow_ctx_steal(sfmmup);
10784 		ctxnum = sfmmup->sfmmu_cnum;
10785 		kpreempt_disable();
10786 		sfmmu_setctx_sec(ctxnum);
10787 		sfmmu_load_mmustate(sfmmup);
10788 		kpreempt_enable();
10789 		sfmmu_allow_ctx_steal(sfmmup);
10790 		sfmmu_hat_exit(hatlockp);
10791 		/*
10792 		 * Must restore lwp_state if not calling
10793 		 * trap() for further processing. Restore
10794 		 * it anyway.
10795 		 */
10796 		lwp->lwp_state = lwp_save_state;
10797 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10798 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10799 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10800 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10801 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10802 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10803 			return;
10804 		}
10805 		if (traptype == T_DATA_PROT) {
10806 			traptype = T_DATA_MMU_MISS;
10807 		}
10808 	}
10809 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10810 }
10811 
10812 /*
10813  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10814  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10815  * rather than spinning to avoid send mondo timeouts with
10816  * interrupts enabled. When the lock is acquired it is immediately
10817  * released and we return back to sfmmu_vatopfn just after
10818  * the GET_TTE call.
10819  */
10820 void
10821 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10822 {
10823 	struct page	**pp;
10824 
10825 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10826 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10827 }
10828 
10829 /*
10830  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10831  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10832  * cross traps which cannot be handled while spinning in the
10833  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10834  * mutex, which is held by the holder of the suspend bit, and then
10835  * retry the trapped instruction after unwinding.
10836  */
10837 /*ARGSUSED*/
10838 void
10839 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10840 {
10841 	ASSERT(curthread != kreloc_thread);
10842 	mutex_enter(&kpr_suspendlock);
10843 	mutex_exit(&kpr_suspendlock);
10844 }
10845 
10846 /*
10847  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10848  * This routine may be called with all cpu's captured. Therefore, the
10849  * caller is responsible for holding all locks and disabling kernel
10850  * preemption.
10851  */
10852 /* ARGSUSED */
10853 static void
10854 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10855 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10856 {
10857 	cpuset_t 	cpuset;
10858 	caddr_t 	va;
10859 	ism_ment_t	*ment;
10860 	sfmmu_t		*sfmmup;
10861 	int 		ctxnum;
10862 	int 		vcolor;
10863 	int		ttesz;
10864 
10865 	/*
10866 	 * Walk the ism_hat's mapping list and flush the page
10867 	 * from every hat sharing this ism_hat. This routine
10868 	 * may be called while all cpu's have been captured.
10869 	 * Therefore we can't attempt to grab any locks. For now
10870 	 * this means we will protect the ism mapping list under
10871 	 * a single lock which will be grabbed by the caller.
10872 	 * If hat_share/unshare scalibility becomes a performance
10873 	 * problem then we may need to re-think ism mapping list locking.
10874 	 */
10875 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10876 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10877 	addr = addr - ISMID_STARTADDR;
10878 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10879 
10880 		sfmmup = ment->iment_hat;
10881 		ctxnum = sfmmup->sfmmu_cnum;
10882 		va = ment->iment_base_va;
10883 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10884 
10885 		/*
10886 		 * Flush TSB of ISM mappings.
10887 		 */
10888 		ttesz = get_hblk_ttesz(hmeblkp);
10889 		if (ttesz == TTE8K || ttesz == TTE4M) {
10890 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10891 		} else {
10892 			caddr_t sva = va;
10893 			caddr_t eva;
10894 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10895 			eva = sva + get_hblk_span(hmeblkp);
10896 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10897 		}
10898 
10899 		if (ctxnum != INVALID_CONTEXT) {
10900 			/*
10901 			 * Flush TLBs.  We don't need to do this for
10902 			 * invalid context since the flushing is already
10903 			 * done as part of context stealing.
10904 			 */
10905 			cpuset = sfmmup->sfmmu_cpusran;
10906 			CPUSET_AND(cpuset, cpu_ready_set);
10907 			CPUSET_DEL(cpuset, CPU->cpu_id);
10908 			SFMMU_XCALL_STATS(ctxnum);
10909 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10910 			    ctxnum);
10911 			vtag_flushpage(va, ctxnum);
10912 		}
10913 
10914 		/*
10915 		 * Flush D$
10916 		 * When flushing D$ we must flush all
10917 		 * cpu's. See sfmmu_cache_flush().
10918 		 */
10919 		if (cache_flush_flag == CACHE_FLUSH) {
10920 			cpuset = cpu_ready_set;
10921 			CPUSET_DEL(cpuset, CPU->cpu_id);
10922 			SFMMU_XCALL_STATS(ctxnum);
10923 			vcolor = addr_to_vcolor(va);
10924 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10925 			vac_flushpage(pfnum, vcolor);
10926 		}
10927 	}
10928 }
10929 
10930 /*
10931  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10932  * a particular virtual address and ctx.  If noflush is set we do not
10933  * flush the TLB/TSB.  This function may or may not be called with the
10934  * HAT lock held.
10935  */
10936 static void
10937 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10938 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10939 	int hat_lock_held)
10940 {
10941 	int ctxnum, vcolor;
10942 	cpuset_t cpuset;
10943 	hatlock_t *hatlockp;
10944 
10945 	/*
10946 	 * There is no longer a need to protect against ctx being
10947 	 * stolen here since we don't store the ctx in the TSB anymore.
10948 	 */
10949 	vcolor = addr_to_vcolor(addr);
10950 
10951 	kpreempt_disable();
10952 	if (!tlb_noflush) {
10953 		/*
10954 		 * Flush the TSB.
10955 		 */
10956 		if (!hat_lock_held)
10957 			hatlockp = sfmmu_hat_enter(sfmmup);
10958 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10959 		ctxnum = (int)sfmmutoctxnum(sfmmup);
10960 		if (!hat_lock_held)
10961 			sfmmu_hat_exit(hatlockp);
10962 
10963 		if (ctxnum != INVALID_CONTEXT) {
10964 			/*
10965 			 * Flush TLBs.  We don't need to do this if our
10966 			 * context is invalid context.  Since we hold the
10967 			 * HAT lock the context must have been stolen and
10968 			 * hence will be flushed before re-use.
10969 			 */
10970 			cpuset = sfmmup->sfmmu_cpusran;
10971 			CPUSET_AND(cpuset, cpu_ready_set);
10972 			CPUSET_DEL(cpuset, CPU->cpu_id);
10973 			SFMMU_XCALL_STATS(ctxnum);
10974 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10975 				ctxnum);
10976 			vtag_flushpage(addr, ctxnum);
10977 		}
10978 	}
10979 
10980 	/*
10981 	 * Flush the D$
10982 	 *
10983 	 * Even if the ctx is stolen, we need to flush the
10984 	 * cache. Our ctx stealer only flushes the TLBs.
10985 	 */
10986 	if (cache_flush_flag == CACHE_FLUSH) {
10987 		if (cpu_flag & FLUSH_ALL_CPUS) {
10988 			cpuset = cpu_ready_set;
10989 		} else {
10990 			cpuset = sfmmup->sfmmu_cpusran;
10991 			CPUSET_AND(cpuset, cpu_ready_set);
10992 		}
10993 		CPUSET_DEL(cpuset, CPU->cpu_id);
10994 		SFMMU_XCALL_STATS(sfmmutoctxnum(sfmmup));
10995 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10996 		vac_flushpage(pfnum, vcolor);
10997 	}
10998 	kpreempt_enable();
10999 }
11000 
11001 /*
11002  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
11003  * address and ctx.  If noflush is set we do not currently do anything.
11004  * This function may or may not be called with the HAT lock held.
11005  */
11006 static void
11007 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
11008 	int tlb_noflush, int hat_lock_held)
11009 {
11010 	int ctxnum;
11011 	cpuset_t cpuset;
11012 	hatlock_t *hatlockp;
11013 
11014 	/*
11015 	 * If the process is exiting we have nothing to do.
11016 	 */
11017 	if (tlb_noflush)
11018 		return;
11019 
11020 	/*
11021 	 * Flush TSB.
11022 	 */
11023 	if (!hat_lock_held)
11024 		hatlockp = sfmmu_hat_enter(sfmmup);
11025 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
11026 	ctxnum = sfmmutoctxnum(sfmmup);
11027 	if (!hat_lock_held)
11028 		sfmmu_hat_exit(hatlockp);
11029 
11030 	/*
11031 	 * Flush TLBs.  We don't need to do this if our context is invalid
11032 	 * context.  Since we hold the HAT lock the context must have been
11033 	 * stolen and hence will be flushed before re-use.
11034 	 */
11035 	if (ctxnum != INVALID_CONTEXT) {
11036 		/*
11037 		 * There is no need to protect against ctx being stolen.
11038 		 * If the ctx is stolen we will simply get an extra flush.
11039 		 */
11040 		kpreempt_disable();
11041 		cpuset = sfmmup->sfmmu_cpusran;
11042 		CPUSET_AND(cpuset, cpu_ready_set);
11043 		CPUSET_DEL(cpuset, CPU->cpu_id);
11044 		SFMMU_XCALL_STATS(ctxnum);
11045 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, ctxnum);
11046 		vtag_flushpage(addr, ctxnum);
11047 		kpreempt_enable();
11048 	}
11049 }
11050 
11051 /*
11052  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
11053  * call handler that can flush a range of pages to save on xcalls.
11054  */
11055 static int sfmmu_xcall_save;
11056 
11057 static void
11058 sfmmu_tlb_range_demap(demap_range_t *dmrp)
11059 {
11060 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
11061 	int ctxnum;
11062 	hatlock_t *hatlockp;
11063 	cpuset_t cpuset;
11064 	uint64_t ctx_pgcnt;
11065 	pgcnt_t pgcnt = 0;
11066 	int pgunload = 0;
11067 	int dirtypg = 0;
11068 	caddr_t addr = dmrp->dmr_addr;
11069 	caddr_t eaddr;
11070 	uint64_t bitvec = dmrp->dmr_bitvec;
11071 
11072 	ASSERT(bitvec & 1);
11073 
11074 	/*
11075 	 * Flush TSB and calculate number of pages to flush.
11076 	 */
11077 	while (bitvec != 0) {
11078 		dirtypg = 0;
11079 		/*
11080 		 * Find the first page to flush and then count how many
11081 		 * pages there are after it that also need to be flushed.
11082 		 * This way the number of TSB flushes is minimized.
11083 		 */
11084 		while ((bitvec & 1) == 0) {
11085 			pgcnt++;
11086 			addr += MMU_PAGESIZE;
11087 			bitvec >>= 1;
11088 		}
11089 		while (bitvec & 1) {
11090 			dirtypg++;
11091 			bitvec >>= 1;
11092 		}
11093 		eaddr = addr + ptob(dirtypg);
11094 		hatlockp = sfmmu_hat_enter(sfmmup);
11095 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11096 		sfmmu_hat_exit(hatlockp);
11097 		pgunload += dirtypg;
11098 		addr = eaddr;
11099 		pgcnt += dirtypg;
11100 	}
11101 
11102 	/*
11103 	 * In the case where context is invalid context, bail.
11104 	 * We hold the hat lock while checking the ctx to prevent
11105 	 * a race with sfmmu_replace_tsb() which temporarily sets
11106 	 * the ctx to INVALID_CONTEXT to force processes to enter
11107 	 * sfmmu_tsbmiss_exception().
11108 	 */
11109 	hatlockp = sfmmu_hat_enter(sfmmup);
11110 	ctxnum = sfmmutoctxnum(sfmmup);
11111 	sfmmu_hat_exit(hatlockp);
11112 	if (ctxnum == INVALID_CONTEXT) {
11113 		dmrp->dmr_bitvec = 0;
11114 		return;
11115 	}
11116 
11117 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11118 	if (sfmmup->sfmmu_free == 0) {
11119 		addr = dmrp->dmr_addr;
11120 		bitvec = dmrp->dmr_bitvec;
11121 		ctx_pgcnt = (uint64_t)((ctxnum << 16) | pgcnt);
11122 		kpreempt_disable();
11123 		cpuset = sfmmup->sfmmu_cpusran;
11124 		CPUSET_AND(cpuset, cpu_ready_set);
11125 		CPUSET_DEL(cpuset, CPU->cpu_id);
11126 		SFMMU_XCALL_STATS(ctxnum);
11127 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11128 			ctx_pgcnt);
11129 		for (; bitvec != 0; bitvec >>= 1) {
11130 			if (bitvec & 1)
11131 				vtag_flushpage(addr, ctxnum);
11132 			addr += MMU_PAGESIZE;
11133 		}
11134 		kpreempt_enable();
11135 		sfmmu_xcall_save += (pgunload-1);
11136 	}
11137 	dmrp->dmr_bitvec = 0;
11138 }
11139 
11140 /*
11141  * Flushes only TLB.
11142  */
11143 static void
11144 sfmmu_tlb_ctx_demap(sfmmu_t *sfmmup)
11145 {
11146 	int ctxnum;
11147 	cpuset_t cpuset;
11148 
11149 	ctxnum = (int)sfmmutoctxnum(sfmmup);
11150 	if (ctxnum == INVALID_CONTEXT) {
11151 		/*
11152 		 * if ctx was stolen then simply return
11153 		 * whoever stole ctx is responsible for flush.
11154 		 */
11155 		return;
11156 	}
11157 	ASSERT(ctxnum != KCONTEXT);
11158 	/*
11159 	 * There is no need to protect against ctx being stolen.  If the
11160 	 * ctx is stolen we will simply get an extra flush.
11161 	 */
11162 	kpreempt_disable();
11163 
11164 	cpuset = sfmmup->sfmmu_cpusran;
11165 	CPUSET_DEL(cpuset, CPU->cpu_id);
11166 	CPUSET_AND(cpuset, cpu_ready_set);
11167 	SFMMU_XCALL_STATS(ctxnum);
11168 
11169 	/*
11170 	 * Flush TLB.
11171 	 * RFE: it might be worth delaying the TLB flush as well. In that
11172 	 * case each cpu would have to traverse the dirty list and flush
11173 	 * each one of those ctx from the TLB.
11174 	 */
11175 	vtag_flushctx(ctxnum);
11176 	xt_some(cpuset, vtag_flushctx_tl1, ctxnum, 0);
11177 
11178 	kpreempt_enable();
11179 	SFMMU_STAT(sf_tlbflush_ctx);
11180 }
11181 
11182 /*
11183  * Flushes all TLBs.
11184  */
11185 static void
11186 sfmmu_tlb_all_demap(void)
11187 {
11188 	cpuset_t cpuset;
11189 
11190 	/*
11191 	 * There is no need to protect against ctx being stolen.  If the
11192 	 * ctx is stolen we will simply get an extra flush.
11193 	 */
11194 	kpreempt_disable();
11195 
11196 	cpuset = cpu_ready_set;
11197 	CPUSET_DEL(cpuset, CPU->cpu_id);
11198 	/* LINTED: constant in conditional context */
11199 	SFMMU_XCALL_STATS(INVALID_CONTEXT);
11200 
11201 	vtag_flushall();
11202 	xt_some(cpuset, vtag_flushall_tl1, 0, 0);
11203 	xt_sync(cpuset);
11204 
11205 	kpreempt_enable();
11206 	SFMMU_STAT(sf_tlbflush_all);
11207 }
11208 
11209 /*
11210  * In cases where we need to synchronize with TLB/TSB miss trap
11211  * handlers, _and_ need to flush the TLB, it's a lot easier to
11212  * steal the context from the process and free it than to do a
11213  * special song and dance to keep things consistent for the
11214  * handlers.
11215  *
11216  * Since the process suddenly ends up without a context and our caller
11217  * holds the hat lock, threads that fault after this function is called
11218  * will pile up on the lock.  We can then do whatever we need to
11219  * atomically from the context of the caller.  The first blocked thread
11220  * to resume executing will get the process a new context, and the
11221  * process will resume executing.
11222  *
11223  * One added advantage of this approach is that on MMUs that
11224  * support a "flush all" operation, we will delay the flush until
11225  * we run out of contexts, and then flush the TLB one time.  This
11226  * is rather rare, so it's a lot less expensive than making 8000
11227  * x-calls to flush the TLB 8000 times.  Another is that we can do
11228  * all of this without pausing CPUs, due to some knowledge of how
11229  * resume() loads processes onto the processor; it sets the thread
11230  * into cpusran, and _then_ looks at cnum.  Because we do things in
11231  * the reverse order here, we guarantee exactly one of the following
11232  * statements is always true:
11233  *
11234  *   1) Nobody is in resume() so we have nothing to worry about anyway.
11235  *   2) The thread in resume() isn't in cpusran when we do the xcall,
11236  *      so we know when it does set itself it'll see cnum is
11237  *      INVALID_CONTEXT.
11238  *   3) The thread in resume() is in cpusran, and already might have
11239  *      looked at the old cnum.  That's OK, because we'll xcall it
11240  *      and, if necessary, flush the TLB along with the rest of the
11241  *      crowd.
11242  */
11243 static void
11244 sfmmu_tlb_swap_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
11245 {
11246 	cpuset_t cpuset;
11247 	int cnum;
11248 
11249 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT)
11250 		return;
11251 
11252 	SFMMU_STAT(sf_ctx_swap);
11253 
11254 	kpreempt_disable();
11255 
11256 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);
11257 	ASSERT(ctx->ctx_sfmmu == sfmmup);
11258 
11259 	cnum = ctxtoctxnum(ctx);
11260 	ASSERT(sfmmup->sfmmu_cnum == cnum);
11261 	ASSERT(cnum >= NUM_LOCKED_CTXS);
11262 
11263 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
11264 	membar_enter();	/* make sure visible on all CPUs */
11265 	ctx->ctx_sfmmu = NULL;
11266 
11267 	cpuset = sfmmup->sfmmu_cpusran;
11268 	CPUSET_DEL(cpuset, CPU->cpu_id);
11269 	CPUSET_AND(cpuset, cpu_ready_set);
11270 	SFMMU_XCALL_STATS(cnum);
11271 
11272 	/*
11273 	 * Force anybody running this process on CPU
11274 	 * to enter sfmmu_tsbmiss_exception() on the
11275 	 * next TLB miss, synchronize behind us on
11276 	 * the HAT lock, and grab a new context.  At
11277 	 * that point the new page size will become
11278 	 * active in the TLB for the new context.
11279 	 * See sfmmu_get_ctx() for details.
11280 	 */
11281 	if (delay_tlb_flush) {
11282 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11283 		    cnum, INVALID_CONTEXT);
11284 		SFMMU_STAT(sf_tlbflush_deferred);
11285 	} else {
11286 		xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
11287 		vtag_flushctx(cnum);
11288 		SFMMU_STAT(sf_tlbflush_ctx);
11289 	}
11290 	xt_sync(cpuset);
11291 
11292 	/*
11293 	 * If we just stole the ctx from the current
11294 	 * process on local CPU we need to invalidate
11295 	 * this CPU context as well.
11296 	 */
11297 	if (sfmmu_getctx_sec() == cnum) {
11298 		sfmmu_setctx_sec(INVALID_CONTEXT);
11299 		sfmmu_clear_utsbinfo();
11300 	}
11301 
11302 	kpreempt_enable();
11303 
11304 	/*
11305 	 * Now put old ctx on the dirty list since we may not
11306 	 * have flushed the context out of the TLB.  We'll let
11307 	 * the next guy who uses this ctx flush it instead.
11308 	 */
11309 	mutex_enter(&ctx_list_lock);
11310 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
11311 	ctx->ctx_free = ctxdirty;
11312 	ctxdirty = ctx;
11313 	mutex_exit(&ctx_list_lock);
11314 }
11315 
11316 /*
11317  * We need to flush the cache in all cpus.  It is possible that
11318  * a process referenced a page as cacheable but has sinced exited
11319  * and cleared the mapping list.  We still to flush it but have no
11320  * state so all cpus is the only alternative.
11321  */
11322 void
11323 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11324 {
11325 	cpuset_t cpuset;
11326 	int	ctxnum = INVALID_CONTEXT;
11327 
11328 	kpreempt_disable();
11329 	cpuset = cpu_ready_set;
11330 	CPUSET_DEL(cpuset, CPU->cpu_id);
11331 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11332 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11333 	xt_sync(cpuset);
11334 	vac_flushpage(pfnum, vcolor);
11335 	kpreempt_enable();
11336 }
11337 
11338 void
11339 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11340 {
11341 	cpuset_t cpuset;
11342 	int	ctxnum = INVALID_CONTEXT;
11343 
11344 	ASSERT(vcolor >= 0);
11345 
11346 	kpreempt_disable();
11347 	cpuset = cpu_ready_set;
11348 	CPUSET_DEL(cpuset, CPU->cpu_id);
11349 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11350 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11351 	xt_sync(cpuset);
11352 	vac_flushcolor(vcolor, pfnum);
11353 	kpreempt_enable();
11354 }
11355 
11356 /*
11357  * We need to prevent processes from accessing the TSB using a cached physical
11358  * address.  It's alright if they try to access the TSB via virtual address
11359  * since they will just fault on that virtual address once the mapping has
11360  * been suspended.
11361  */
11362 #pragma weak sendmondo_in_recover
11363 
11364 /* ARGSUSED */
11365 static int
11366 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11367 {
11368 	hatlock_t *hatlockp;
11369 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11370 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11371 	struct ctx *ctx;
11372 	int cnum;
11373 	extern uint32_t sendmondo_in_recover;
11374 
11375 	if (flags != HAT_PRESUSPEND)
11376 		return (0);
11377 
11378 	hatlockp = sfmmu_hat_enter(sfmmup);
11379 
11380 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11381 
11382 	/*
11383 	 * For Cheetah+ Erratum 25:
11384 	 * Wait for any active recovery to finish.  We can't risk
11385 	 * relocating the TSB of the thread running mondo_recover_proc()
11386 	 * since, if we did that, we would deadlock.  The scenario we are
11387 	 * trying to avoid is as follows:
11388 	 *
11389 	 * THIS CPU			RECOVER CPU
11390 	 * --------			-----------
11391 	 *				Begins recovery, walking through TSB
11392 	 * hat_pagesuspend() TSB TTE
11393 	 *				TLB miss on TSB TTE, spins at TL1
11394 	 * xt_sync()
11395 	 *	send_mondo_timeout()
11396 	 *	mondo_recover_proc()
11397 	 *	((deadlocked))
11398 	 *
11399 	 * The second half of the workaround is that mondo_recover_proc()
11400 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11401 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11402 	 * and hence avoiding the TLB miss that could result in a deadlock.
11403 	 */
11404 	if (&sendmondo_in_recover) {
11405 		membar_enter();	/* make sure RELOC flag visible */
11406 		while (sendmondo_in_recover) {
11407 			drv_usecwait(1);
11408 			membar_consumer();
11409 		}
11410 	}
11411 
11412 	ctx = sfmmutoctx(sfmmup);
11413 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
11414 	cnum = sfmmutoctxnum(sfmmup);
11415 
11416 	if (cnum != INVALID_CONTEXT) {
11417 		/*
11418 		 * Force all threads for this sfmmu to sfmmu_tsbmiss_exception
11419 		 * on their next TLB miss.
11420 		 */
11421 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
11422 	}
11423 
11424 	rw_exit(&ctx->ctx_rwlock);
11425 
11426 	sfmmu_hat_exit(hatlockp);
11427 
11428 	return (0);
11429 }
11430 
11431 /* ARGSUSED */
11432 static int
11433 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11434 	void *tsbinfo, pfn_t newpfn)
11435 {
11436 	hatlock_t *hatlockp;
11437 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11438 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11439 
11440 	if (flags != HAT_POSTUNSUSPEND)
11441 		return (0);
11442 
11443 	hatlockp = sfmmu_hat_enter(sfmmup);
11444 
11445 	SFMMU_STAT(sf_tsb_reloc);
11446 
11447 	/*
11448 	 * The process may have swapped out while we were relocating one
11449 	 * of its TSBs.  If so, don't bother doing the setup since the
11450 	 * process can't be using the memory anymore.
11451 	 */
11452 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11453 		ASSERT(va == tsbinfop->tsb_va);
11454 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11455 		sfmmu_setup_tsbinfo(sfmmup);
11456 
11457 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11458 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11459 			    TSB_BYTES(tsbinfop->tsb_szc));
11460 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11461 		}
11462 	}
11463 
11464 	membar_exit();
11465 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11466 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11467 
11468 	sfmmu_hat_exit(hatlockp);
11469 
11470 	return (0);
11471 }
11472 
11473 /*
11474  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11475  * allocate a TSB here, depending on the flags passed in.
11476  */
11477 static int
11478 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11479 	uint_t flags, sfmmu_t *sfmmup)
11480 {
11481 	int err;
11482 
11483 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11484 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11485 
11486 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11487 	    tsb_szc, flags, sfmmup)) != 0) {
11488 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11489 		SFMMU_STAT(sf_tsb_allocfail);
11490 		*tsbinfopp = NULL;
11491 		return (err);
11492 	}
11493 	SFMMU_STAT(sf_tsb_alloc);
11494 
11495 	/*
11496 	 * Bump the TSB size counters for this TSB size.
11497 	 */
11498 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11499 	return (0);
11500 }
11501 
11502 static void
11503 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11504 {
11505 	caddr_t tsbva = tsbinfo->tsb_va;
11506 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11507 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11508 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11509 
11510 	/*
11511 	 * If we allocated this TSB from relocatable kernel memory, then we
11512 	 * need to uninstall the callback handler.
11513 	 */
11514 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11515 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11516 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11517 		page_t **ppl;
11518 		int ret;
11519 
11520 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11521 		ASSERT(ret == 0);
11522 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11523 		    0);
11524 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11525 	}
11526 
11527 	if (kmem_cachep != NULL) {
11528 		kmem_cache_free(kmem_cachep, tsbva);
11529 	} else {
11530 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11531 	}
11532 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11533 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11534 }
11535 
11536 static void
11537 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11538 {
11539 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11540 		sfmmu_tsb_free(tsbinfo);
11541 	}
11542 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11543 
11544 }
11545 
11546 /*
11547  * Setup all the references to physical memory for this tsbinfo.
11548  * The underlying page(s) must be locked.
11549  */
11550 static void
11551 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11552 {
11553 	ASSERT(pfn != PFN_INVALID);
11554 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11555 
11556 #ifndef sun4v
11557 	if (tsbinfo->tsb_szc == 0) {
11558 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11559 		    PROT_WRITE|PROT_READ, TTE8K);
11560 	} else {
11561 		/*
11562 		 * Round down PA and use a large mapping; the handlers will
11563 		 * compute the TSB pointer at the correct offset into the
11564 		 * big virtual page.  NOTE: this assumes all TSBs larger
11565 		 * than 8K must come from physically contiguous slabs of
11566 		 * size tsb_slab_size.
11567 		 */
11568 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11569 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11570 	}
11571 	tsbinfo->tsb_pa = ptob(pfn);
11572 
11573 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11574 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11575 
11576 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11577 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11578 #else /* sun4v */
11579 	tsbinfo->tsb_pa = ptob(pfn);
11580 #endif /* sun4v */
11581 }
11582 
11583 
11584 /*
11585  * Returns zero on success, ENOMEM if over the high water mark,
11586  * or EAGAIN if the caller needs to retry with a smaller TSB
11587  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11588  *
11589  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11590  * is specified and the TSB requested is PAGESIZE, though it
11591  * may sleep waiting for memory if sufficient memory is not
11592  * available.
11593  */
11594 static int
11595 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11596     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11597 {
11598 	caddr_t vaddr = NULL;
11599 	caddr_t slab_vaddr;
11600 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11601 	int tsbbytes = TSB_BYTES(tsbcode);
11602 	int lowmem = 0;
11603 	struct kmem_cache *kmem_cachep = NULL;
11604 	vmem_t *vmp = NULL;
11605 	lgrp_id_t lgrpid = LGRP_NONE;
11606 	pfn_t pfn;
11607 	uint_t cbflags = HAC_SLEEP;
11608 	page_t **pplist;
11609 	int ret;
11610 
11611 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11612 		flags |= TSB_ALLOC;
11613 
11614 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11615 
11616 	tsbinfo->tsb_sfmmu = sfmmup;
11617 
11618 	/*
11619 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11620 	 * return.
11621 	 */
11622 	if ((flags & TSB_ALLOC) == 0) {
11623 		tsbinfo->tsb_szc = tsbcode;
11624 		tsbinfo->tsb_ttesz_mask = tteszmask;
11625 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11626 		tsbinfo->tsb_pa = -1;
11627 		tsbinfo->tsb_tte.ll = 0;
11628 		tsbinfo->tsb_next = NULL;
11629 		tsbinfo->tsb_flags = TSB_SWAPPED;
11630 		tsbinfo->tsb_cache = NULL;
11631 		tsbinfo->tsb_vmp = NULL;
11632 		return (0);
11633 	}
11634 
11635 #ifdef DEBUG
11636 	/*
11637 	 * For debugging:
11638 	 * Randomly force allocation failures every tsb_alloc_mtbf
11639 	 * tries if TSB_FORCEALLOC is not specified.  This will
11640 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11641 	 * it is even, to allow testing of both failure paths...
11642 	 */
11643 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11644 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11645 		tsb_alloc_count = 0;
11646 		tsb_alloc_fail_mtbf++;
11647 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11648 	}
11649 #endif	/* DEBUG */
11650 
11651 	/*
11652 	 * Enforce high water mark if we are not doing a forced allocation
11653 	 * and are not shrinking a process' TSB.
11654 	 */
11655 	if ((flags & TSB_SHRINK) == 0 &&
11656 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11657 		if ((flags & TSB_FORCEALLOC) == 0)
11658 			return (ENOMEM);
11659 		lowmem = 1;
11660 	}
11661 
11662 	/*
11663 	 * Allocate from the correct location based upon the size of the TSB
11664 	 * compared to the base page size, and what memory conditions dictate.
11665 	 * Note we always do nonblocking allocations from the TSB arena since
11666 	 * we don't want memory fragmentation to cause processes to block
11667 	 * indefinitely waiting for memory; until the kernel algorithms that
11668 	 * coalesce large pages are improved this is our best option.
11669 	 *
11670 	 * Algorithm:
11671 	 *	If allocating a "large" TSB (>8K), allocate from the
11672 	 *		appropriate kmem_tsb_default_arena vmem arena
11673 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11674 	 *	tsb_forceheap is set
11675 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11676 	 *		KM_SLEEP (never fails)
11677 	 *	else
11678 	 *		Allocate from appropriate sfmmu_tsb_cache with
11679 	 *		KM_NOSLEEP
11680 	 *	endif
11681 	 */
11682 	if (tsb_lgrp_affinity)
11683 		lgrpid = lgrp_home_id(curthread);
11684 	if (lgrpid == LGRP_NONE)
11685 		lgrpid = 0;	/* use lgrp of boot CPU */
11686 
11687 	if (tsbbytes > MMU_PAGESIZE) {
11688 		vmp = kmem_tsb_default_arena[lgrpid];
11689 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11690 		    NULL, NULL, VM_NOSLEEP);
11691 #ifdef	DEBUG
11692 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11693 #else	/* !DEBUG */
11694 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11695 #endif	/* DEBUG */
11696 		kmem_cachep = sfmmu_tsb8k_cache;
11697 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11698 		ASSERT(vaddr != NULL);
11699 	} else {
11700 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11701 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11702 	}
11703 
11704 	tsbinfo->tsb_cache = kmem_cachep;
11705 	tsbinfo->tsb_vmp = vmp;
11706 
11707 	if (vaddr == NULL) {
11708 		return (EAGAIN);
11709 	}
11710 
11711 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11712 	kmem_cachep = tsbinfo->tsb_cache;
11713 
11714 	/*
11715 	 * If we are allocating from outside the cage, then we need to
11716 	 * register a relocation callback handler.  Note that for now
11717 	 * since pseudo mappings always hang off of the slab's root page,
11718 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11719 	 * hacky but it is good for performance.
11720 	 */
11721 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11722 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11723 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11724 		ASSERT(ret == 0);
11725 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11726 		    cbflags, (void *)tsbinfo, &pfn);
11727 
11728 		/*
11729 		 * Need to free up resources if we could not successfully
11730 		 * add the callback function and return an error condition.
11731 		 */
11732 		if (ret != 0) {
11733 			if (kmem_cachep) {
11734 				kmem_cache_free(kmem_cachep, vaddr);
11735 			} else {
11736 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11737 			}
11738 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11739 			    S_WRITE);
11740 			return (EAGAIN);
11741 		}
11742 	} else {
11743 		/*
11744 		 * Since allocation of 8K TSBs from heap is rare and occurs
11745 		 * during memory pressure we allocate them from permanent
11746 		 * memory rather than using callbacks to get the PFN.
11747 		 */
11748 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11749 	}
11750 
11751 	tsbinfo->tsb_va = vaddr;
11752 	tsbinfo->tsb_szc = tsbcode;
11753 	tsbinfo->tsb_ttesz_mask = tteszmask;
11754 	tsbinfo->tsb_next = NULL;
11755 	tsbinfo->tsb_flags = 0;
11756 
11757 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11758 
11759 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11760 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11761 	}
11762 
11763 	sfmmu_inv_tsb(vaddr, tsbbytes);
11764 	return (0);
11765 }
11766 
11767 /*
11768  * Initialize per cpu tsb and per cpu tsbmiss_area
11769  */
11770 void
11771 sfmmu_init_tsbs(void)
11772 {
11773 	int i;
11774 	struct tsbmiss	*tsbmissp;
11775 	struct kpmtsbm	*kpmtsbmp;
11776 #ifndef sun4v
11777 	extern int	dcache_line_mask;
11778 #endif /* sun4v */
11779 	extern uint_t	vac_colors;
11780 
11781 	/*
11782 	 * Init. tsb miss area.
11783 	 */
11784 	tsbmissp = tsbmiss_area;
11785 
11786 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11787 		/*
11788 		 * initialize the tsbmiss area.
11789 		 * Do this for all possible CPUs as some may be added
11790 		 * while the system is running. There is no cost to this.
11791 		 */
11792 		tsbmissp->ksfmmup = ksfmmup;
11793 #ifndef sun4v
11794 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11795 #endif /* sun4v */
11796 		tsbmissp->khashstart =
11797 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11798 		tsbmissp->uhashstart =
11799 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11800 		tsbmissp->khashsz = khmehash_num;
11801 		tsbmissp->uhashsz = uhmehash_num;
11802 	}
11803 
11804 	if (kpm_enable == 0)
11805 		return;
11806 
11807 	if (kpm_smallpages) {
11808 		/*
11809 		 * If we're using base pagesize pages for seg_kpm
11810 		 * mappings, we use the kernel TSB since we can't afford
11811 		 * to allocate a second huge TSB for these mappings.
11812 		 */
11813 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11814 		kpm_tsbsz = ktsb_szcode;
11815 		kpmsm_tsbbase = kpm_tsbbase;
11816 		kpmsm_tsbsz = kpm_tsbsz;
11817 	} else {
11818 		/*
11819 		 * In VAC conflict case, just put the entries in the
11820 		 * kernel 8K indexed TSB for now so we can find them.
11821 		 * This could really be changed in the future if we feel
11822 		 * the need...
11823 		 */
11824 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11825 		kpmsm_tsbsz = ktsb_szcode;
11826 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11827 		kpm_tsbsz = ktsb4m_szcode;
11828 	}
11829 
11830 	kpmtsbmp = kpmtsbm_area;
11831 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11832 		/*
11833 		 * Initialize the kpmtsbm area.
11834 		 * Do this for all possible CPUs as some may be added
11835 		 * while the system is running. There is no cost to this.
11836 		 */
11837 		kpmtsbmp->vbase = kpm_vbase;
11838 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11839 		kpmtsbmp->sz_shift = kpm_size_shift;
11840 		kpmtsbmp->kpmp_shift = kpmp_shift;
11841 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11842 		if (kpm_smallpages == 0) {
11843 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11844 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11845 		} else {
11846 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11847 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11848 		}
11849 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11850 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11851 #ifdef	DEBUG
11852 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11853 #endif	/* DEBUG */
11854 		if (ktsb_phys)
11855 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11856 	}
11857 
11858 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11859 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11860 }
11861 
11862 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11863 struct tsb_info ktsb_info[2];
11864 
11865 /*
11866  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11867  */
11868 void
11869 sfmmu_init_ktsbinfo()
11870 {
11871 	ASSERT(ksfmmup != NULL);
11872 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11873 	/*
11874 	 * Allocate tsbinfos for kernel and copy in data
11875 	 * to make debug easier and sun4v setup easier.
11876 	 */
11877 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11878 	ktsb_info[0].tsb_szc = ktsb_szcode;
11879 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11880 	ktsb_info[0].tsb_va = ktsb_base;
11881 	ktsb_info[0].tsb_pa = ktsb_pbase;
11882 	ktsb_info[0].tsb_flags = 0;
11883 	ktsb_info[0].tsb_tte.ll = 0;
11884 	ktsb_info[0].tsb_cache = NULL;
11885 
11886 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11887 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11888 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11889 	ktsb_info[1].tsb_va = ktsb4m_base;
11890 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11891 	ktsb_info[1].tsb_flags = 0;
11892 	ktsb_info[1].tsb_tte.ll = 0;
11893 	ktsb_info[1].tsb_cache = NULL;
11894 
11895 	/* Link them into ksfmmup. */
11896 	ktsb_info[0].tsb_next = &ktsb_info[1];
11897 	ktsb_info[1].tsb_next = NULL;
11898 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11899 
11900 	sfmmu_setup_tsbinfo(ksfmmup);
11901 }
11902 
11903 /*
11904  * Cache the last value returned from va_to_pa().  If the VA specified
11905  * in the current call to cached_va_to_pa() maps to the same Page (as the
11906  * previous call to cached_va_to_pa()), then compute the PA using
11907  * cached info, else call va_to_pa().
11908  *
11909  * Note: this function is neither MT-safe nor consistent in the presence
11910  * of multiple, interleaved threads.  This function was created to enable
11911  * an optimization used during boot (at a point when there's only one thread
11912  * executing on the "boot CPU", and before startup_vm() has been called).
11913  */
11914 static uint64_t
11915 cached_va_to_pa(void *vaddr)
11916 {
11917 	static uint64_t prev_vaddr_base = 0;
11918 	static uint64_t prev_pfn = 0;
11919 
11920 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11921 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11922 	} else {
11923 		uint64_t pa = va_to_pa(vaddr);
11924 
11925 		if (pa != ((uint64_t)-1)) {
11926 			/*
11927 			 * Computed physical address is valid.  Cache its
11928 			 * related info for the next cached_va_to_pa() call.
11929 			 */
11930 			prev_pfn = pa & MMU_PAGEMASK;
11931 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11932 		}
11933 
11934 		return (pa);
11935 	}
11936 }
11937 
11938 /*
11939  * Carve up our nucleus hblk region.  We may allocate more hblks than
11940  * asked due to rounding errors but we are guaranteed to have at least
11941  * enough space to allocate the requested number of hblk8's and hblk1's.
11942  */
11943 void
11944 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11945 {
11946 	struct hme_blk *hmeblkp;
11947 	size_t hme8blk_sz, hme1blk_sz;
11948 	size_t i;
11949 	size_t hblk8_bound;
11950 	ulong_t j = 0, k = 0;
11951 
11952 	ASSERT(addr != NULL && size != 0);
11953 
11954 	/* Need to use proper structure alignment */
11955 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11956 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11957 
11958 	nucleus_hblk8.list = (void *)addr;
11959 	nucleus_hblk8.index = 0;
11960 
11961 	/*
11962 	 * Use as much memory as possible for hblk8's since we
11963 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11964 	 * We need to hold back enough space for the hblk1's which
11965 	 * we'll allocate next.
11966 	 */
11967 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11968 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11969 		hmeblkp = (struct hme_blk *)addr;
11970 		addr += hme8blk_sz;
11971 		hmeblkp->hblk_nuc_bit = 1;
11972 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11973 	}
11974 	nucleus_hblk8.len = j;
11975 	ASSERT(j >= nhblk8);
11976 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11977 
11978 	nucleus_hblk1.list = (void *)addr;
11979 	nucleus_hblk1.index = 0;
11980 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11981 		hmeblkp = (struct hme_blk *)addr;
11982 		addr += hme1blk_sz;
11983 		hmeblkp->hblk_nuc_bit = 1;
11984 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11985 	}
11986 	ASSERT(k >= nhblk1);
11987 	nucleus_hblk1.len = k;
11988 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11989 }
11990 
11991 /*
11992  * This function is currently not supported on this platform. For what
11993  * it's supposed to do, see hat.c and hat_srmmu.c
11994  */
11995 /* ARGSUSED */
11996 faultcode_t
11997 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11998     uint_t flags)
11999 {
12000 	ASSERT(hat->sfmmu_xhat_provider == NULL);
12001 	return (FC_NOSUPPORT);
12002 }
12003 
12004 /*
12005  * Searchs the mapping list of the page for a mapping of the same size. If not
12006  * found the corresponding bit is cleared in the p_index field. When large
12007  * pages are more prevalent in the system, we can maintain the mapping list
12008  * in order and we don't have to traverse the list each time. Just check the
12009  * next and prev entries, and if both are of different size, we clear the bit.
12010  */
12011 static void
12012 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
12013 {
12014 	struct sf_hment *sfhmep;
12015 	struct hme_blk *hmeblkp;
12016 	int	index;
12017 	pgcnt_t	npgs;
12018 
12019 	ASSERT(ttesz > TTE8K);
12020 
12021 	ASSERT(sfmmu_mlist_held(pp));
12022 
12023 	ASSERT(PP_ISMAPPED_LARGE(pp));
12024 
12025 	/*
12026 	 * Traverse mapping list looking for another mapping of same size.
12027 	 * since we only want to clear index field if all mappings of
12028 	 * that size are gone.
12029 	 */
12030 
12031 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
12032 		hmeblkp = sfmmu_hmetohblk(sfhmep);
12033 		if (hmeblkp->hblk_xhat_bit)
12034 			continue;
12035 		if (hme_size(sfhmep) == ttesz) {
12036 			/*
12037 			 * another mapping of the same size. don't clear index.
12038 			 */
12039 			return;
12040 		}
12041 	}
12042 
12043 	/*
12044 	 * Clear the p_index bit for large page.
12045 	 */
12046 	index = PAGESZ_TO_INDEX(ttesz);
12047 	npgs = TTEPAGES(ttesz);
12048 	while (npgs-- > 0) {
12049 		ASSERT(pp->p_index & index);
12050 		pp->p_index &= ~index;
12051 		pp = PP_PAGENEXT(pp);
12052 	}
12053 }
12054 
12055 /*
12056  * return supported features
12057  */
12058 /* ARGSUSED */
12059 int
12060 hat_supported(enum hat_features feature, void *arg)
12061 {
12062 	switch (feature) {
12063 	case    HAT_SHARED_PT:
12064 	case	HAT_DYNAMIC_ISM_UNMAP:
12065 	case	HAT_VMODSORT:
12066 		return (1);
12067 	default:
12068 		return (0);
12069 	}
12070 }
12071 
12072 void
12073 hat_enter(struct hat *hat)
12074 {
12075 	hatlock_t	*hatlockp;
12076 
12077 	if (hat != ksfmmup) {
12078 		hatlockp = TSB_HASH(hat);
12079 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
12080 	}
12081 }
12082 
12083 void
12084 hat_exit(struct hat *hat)
12085 {
12086 	hatlock_t	*hatlockp;
12087 
12088 	if (hat != ksfmmup) {
12089 		hatlockp = TSB_HASH(hat);
12090 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
12091 	}
12092 }
12093 
12094 /*ARGSUSED*/
12095 void
12096 hat_reserve(struct as *as, caddr_t addr, size_t len)
12097 {
12098 }
12099 
12100 static void
12101 hat_kstat_init(void)
12102 {
12103 	kstat_t *ksp;
12104 
12105 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
12106 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
12107 		KSTAT_FLAG_VIRTUAL);
12108 	if (ksp) {
12109 		ksp->ks_data = (void *) &sfmmu_global_stat;
12110 		kstat_install(ksp);
12111 	}
12112 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
12113 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
12114 		KSTAT_FLAG_VIRTUAL);
12115 	if (ksp) {
12116 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
12117 		kstat_install(ksp);
12118 	}
12119 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
12120 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
12121 		KSTAT_FLAG_WRITABLE);
12122 	if (ksp) {
12123 		ksp->ks_update = sfmmu_kstat_percpu_update;
12124 		kstat_install(ksp);
12125 	}
12126 }
12127 
12128 /* ARGSUSED */
12129 static int
12130 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
12131 {
12132 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
12133 	struct tsbmiss *tsbm = tsbmiss_area;
12134 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
12135 	int i;
12136 
12137 	ASSERT(cpu_kstat);
12138 	if (rw == KSTAT_READ) {
12139 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
12140 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
12141 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
12142 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
12143 				tsbm->uprot_traps;
12144 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
12145 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
12146 
12147 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
12148 				cpu_kstat->sf_tsb_hits =
12149 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
12150 				(tsbm->utsb_misses + tsbm->ktsb_misses +
12151 				kpmtsbm->kpm_tsb_misses);
12152 			} else {
12153 				cpu_kstat->sf_tsb_hits = 0;
12154 			}
12155 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
12156 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
12157 		}
12158 	} else {
12159 		/* KSTAT_WRITE is used to clear stats */
12160 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
12161 			tsbm->itlb_misses = 0;
12162 			tsbm->dtlb_misses = 0;
12163 			tsbm->utsb_misses = 0;
12164 			tsbm->ktsb_misses = 0;
12165 			tsbm->uprot_traps = 0;
12166 			tsbm->kprot_traps = 0;
12167 			kpmtsbm->kpm_dtlb_misses = 0;
12168 			kpmtsbm->kpm_tsb_misses = 0;
12169 		}
12170 	}
12171 	return (0);
12172 }
12173 
12174 #ifdef	DEBUG
12175 
12176 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12177 
12178 /*
12179  * A tte checker. *orig_old is the value we read before cas.
12180  *	*cur is the value returned by cas.
12181  *	*new is the desired value when we do the cas.
12182  *
12183  *	*hmeblkp is currently unused.
12184  */
12185 
12186 /* ARGSUSED */
12187 void
12188 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12189 {
12190 	uint_t i, j, k;
12191 	int cpuid = CPU->cpu_id;
12192 
12193 	gorig[cpuid] = orig_old;
12194 	gcur[cpuid] = cur;
12195 	gnew[cpuid] = new;
12196 
12197 #ifdef lint
12198 	hmeblkp = hmeblkp;
12199 #endif
12200 
12201 	if (TTE_IS_VALID(orig_old)) {
12202 		if (TTE_IS_VALID(cur)) {
12203 			i = TTE_TO_TTEPFN(orig_old);
12204 			j = TTE_TO_TTEPFN(cur);
12205 			k = TTE_TO_TTEPFN(new);
12206 			if (i != j) {
12207 				/* remap error? */
12208 				panic("chk_tte: bad pfn, 0x%x, 0x%x",
12209 					i, j);
12210 			}
12211 
12212 			if (i != k) {
12213 				/* remap error? */
12214 				panic("chk_tte: bad pfn2, 0x%x, 0x%x",
12215 					i, k);
12216 			}
12217 		} else {
12218 			if (TTE_IS_VALID(new)) {
12219 				panic("chk_tte: invalid cur? ");
12220 			}
12221 
12222 			i = TTE_TO_TTEPFN(orig_old);
12223 			k = TTE_TO_TTEPFN(new);
12224 			if (i != k) {
12225 				panic("chk_tte: bad pfn3, 0x%x, 0x%x",
12226 					i, k);
12227 			}
12228 		}
12229 	} else {
12230 		if (TTE_IS_VALID(cur)) {
12231 			j = TTE_TO_TTEPFN(cur);
12232 			if (TTE_IS_VALID(new)) {
12233 				k = TTE_TO_TTEPFN(new);
12234 				if (j != k) {
12235 					panic("chk_tte: bad pfn4, 0x%x, 0x%x",
12236 						j, k);
12237 				}
12238 			} else {
12239 				panic("chk_tte: why here?");
12240 			}
12241 		} else {
12242 			if (!TTE_IS_VALID(new)) {
12243 				panic("chk_tte: why here2 ?");
12244 			}
12245 		}
12246 	}
12247 }
12248 
12249 #endif /* DEBUG */
12250 
12251 extern void prefetch_tsbe_read(struct tsbe *);
12252 extern void prefetch_tsbe_write(struct tsbe *);
12253 
12254 
12255 /*
12256  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12257  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12258  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12259  * prefetch to make the most utilization of the prefetch capability.
12260  */
12261 #define	TSBE_PREFETCH_STRIDE (7)
12262 
12263 void
12264 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12265 {
12266 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12267 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12268 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12269 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12270 	struct tsbe *old;
12271 	struct tsbe *new;
12272 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12273 	uint64_t va;
12274 	int new_offset;
12275 	int i;
12276 	int vpshift;
12277 	int last_prefetch;
12278 
12279 	if (old_bytes == new_bytes) {
12280 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12281 	} else {
12282 
12283 		/*
12284 		 * A TSBE is 16 bytes which means there are four TSBE's per
12285 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12286 		 */
12287 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12288 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12289 		for (i = 0; i < old_entries; i++, old++) {
12290 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12291 				prefetch_tsbe_read(old);
12292 			if (!old->tte_tag.tag_invalid) {
12293 				/*
12294 				 * We have a valid TTE to remap.  Check the
12295 				 * size.  We won't remap 64K or 512K TTEs
12296 				 * because they span more than one TSB entry
12297 				 * and are indexed using an 8K virt. page.
12298 				 * Ditto for 32M and 256M TTEs.
12299 				 */
12300 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12301 				    TTE_CSZ(&old->tte_data) == TTE512K)
12302 					continue;
12303 				if (mmu_page_sizes == max_mmu_page_sizes) {
12304 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12305 					TTE_CSZ(&old->tte_data) == TTE256M)
12306 					    continue;
12307 				}
12308 
12309 				/* clear the lower 22 bits of the va */
12310 				va = *(uint64_t *)old << 22;
12311 				/* turn va into a virtual pfn */
12312 				va >>= 22 - TSB_START_SIZE;
12313 				/*
12314 				 * or in bits from the offset in the tsb
12315 				 * to get the real virtual pfn. These
12316 				 * correspond to bits [21:13] in the va
12317 				 */
12318 				vpshift =
12319 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12320 				    0x1ff;
12321 				va |= (i << vpshift);
12322 				va >>= vpshift;
12323 				new_offset = va & (new_entries - 1);
12324 				new = new_base + new_offset;
12325 				prefetch_tsbe_write(new);
12326 				*new = *old;
12327 			}
12328 		}
12329 	}
12330 }
12331 
12332 /*
12333  * Kernel Physical Mapping (kpm) facility
12334  */
12335 
12336 /* -- hat_kpm interface section -- */
12337 
12338 /*
12339  * Mapin a locked page and return the vaddr.
12340  * When a kpme is provided by the caller it is added to
12341  * the page p_kpmelist. The page to be mapped in must
12342  * be at least read locked (p_selock).
12343  */
12344 caddr_t
12345 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
12346 {
12347 	kmutex_t	*pml;
12348 	caddr_t		vaddr;
12349 
12350 	if (kpm_enable == 0) {
12351 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set");
12352 		return ((caddr_t)NULL);
12353 	}
12354 
12355 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12356 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked");
12357 		return ((caddr_t)NULL);
12358 	}
12359 
12360 	pml = sfmmu_mlist_enter(pp);
12361 	ASSERT(pp->p_kpmref >= 0);
12362 
12363 	vaddr = (pp->p_kpmref == 0) ?
12364 		sfmmu_kpm_mapin(pp) : hat_kpm_page2va(pp, 1);
12365 
12366 	if (kpme != NULL) {
12367 		/*
12368 		 * Tolerate multiple mapins for the same kpme to avoid
12369 		 * the need for an extra serialization.
12370 		 */
12371 		if ((sfmmu_kpme_lookup(kpme, pp)) == 0)
12372 			sfmmu_kpme_add(kpme, pp);
12373 
12374 		ASSERT(pp->p_kpmref > 0);
12375 
12376 	} else {
12377 		pp->p_kpmref++;
12378 	}
12379 
12380 	sfmmu_mlist_exit(pml);
12381 	return (vaddr);
12382 }
12383 
12384 /*
12385  * Mapout a locked page.
12386  * When a kpme is provided by the caller it is removed from
12387  * the page p_kpmelist. The page to be mapped out must be at
12388  * least read locked (p_selock).
12389  * Note: The seg_kpm layer provides a mapout interface for the
12390  * case that a kpme is used and the underlying page is unlocked.
12391  * This can be used instead of calling this function directly.
12392  */
12393 void
12394 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
12395 {
12396 	kmutex_t	*pml;
12397 
12398 	if (kpm_enable == 0) {
12399 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set");
12400 		return;
12401 	}
12402 
12403 	if (IS_KPM_ADDR(vaddr) == 0) {
12404 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address");
12405 		return;
12406 	}
12407 
12408 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12409 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked");
12410 		return;
12411 	}
12412 
12413 	if (kpme != NULL) {
12414 		ASSERT(pp == kpme->kpe_page);
12415 		pp = kpme->kpe_page;
12416 		pml = sfmmu_mlist_enter(pp);
12417 
12418 		if (sfmmu_kpme_lookup(kpme, pp) == 0)
12419 			panic("hat_kpm_mapout: kpme not found pp=%p",
12420 				(void *)pp);
12421 
12422 		ASSERT(pp->p_kpmref > 0);
12423 		sfmmu_kpme_sub(kpme, pp);
12424 
12425 	} else {
12426 		pml = sfmmu_mlist_enter(pp);
12427 		pp->p_kpmref--;
12428 	}
12429 
12430 	ASSERT(pp->p_kpmref >= 0);
12431 	if (pp->p_kpmref == 0)
12432 		sfmmu_kpm_mapout(pp, vaddr);
12433 
12434 	sfmmu_mlist_exit(pml);
12435 }
12436 
12437 /*
12438  * Return the kpm virtual address for the page at pp.
12439  * If checkswap is non zero and the page is backed by a
12440  * swap vnode the physical address is used rather than
12441  * p_offset to determine the kpm region.
12442  * Note: The function has to be used w/ extreme care. The
12443  * stability of the page identity is in the responsibility
12444  * of the caller.
12445  */
12446 caddr_t
12447 hat_kpm_page2va(struct page *pp, int checkswap)
12448 {
12449 	int		vcolor, vcolor_pa;
12450 	uintptr_t	paddr, vaddr;
12451 
12452 	ASSERT(kpm_enable);
12453 
12454 	paddr = ptob(pp->p_pagenum);
12455 	vcolor_pa = addr_to_vcolor(paddr);
12456 
12457 	if (checkswap && pp->p_vnode && IS_SWAPFSVP(pp->p_vnode))
12458 		vcolor = (PP_ISNC(pp)) ? vcolor_pa : PP_GET_VCOLOR(pp);
12459 	else
12460 		vcolor = addr_to_vcolor(pp->p_offset);
12461 
12462 	vaddr = (uintptr_t)kpm_vbase + paddr;
12463 
12464 	if (vcolor_pa != vcolor) {
12465 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
12466 		vaddr += (vcolor_pa > vcolor) ?
12467 			((uintptr_t)vcolor_pa << kpm_size_shift) :
12468 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
12469 	}
12470 
12471 	return ((caddr_t)vaddr);
12472 }
12473 
12474 /*
12475  * Return the page for the kpm virtual address vaddr.
12476  * Caller is responsible for the kpm mapping and lock
12477  * state of the page.
12478  */
12479 page_t *
12480 hat_kpm_vaddr2page(caddr_t vaddr)
12481 {
12482 	uintptr_t	paddr;
12483 	pfn_t		pfn;
12484 
12485 	ASSERT(IS_KPM_ADDR(vaddr));
12486 
12487 	SFMMU_KPM_VTOP(vaddr, paddr);
12488 	pfn = (pfn_t)btop(paddr);
12489 
12490 	return (page_numtopp_nolock(pfn));
12491 }
12492 
12493 /* page to kpm_page */
12494 #define	PP2KPMPG(pp, kp) {						\
12495 	struct memseg	*mseg;						\
12496 	pgcnt_t		inx;						\
12497 	pfn_t		pfn;						\
12498 									\
12499 	pfn = pp->p_pagenum;						\
12500 	mseg = page_numtomemseg_nolock(pfn);				\
12501 	ASSERT(mseg);							\
12502 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);		\
12503 	ASSERT(inx < mseg->kpm_nkpmpgs);				\
12504 	kp = &mseg->kpm_pages[inx];					\
12505 }
12506 
12507 /* page to kpm_spage */
12508 #define	PP2KPMSPG(pp, ksp) {						\
12509 	struct memseg	*mseg;						\
12510 	pgcnt_t		inx;						\
12511 	pfn_t		pfn;						\
12512 									\
12513 	pfn = pp->p_pagenum;						\
12514 	mseg = page_numtomemseg_nolock(pfn);				\
12515 	ASSERT(mseg);							\
12516 	inx = pfn - mseg->kpm_pbase;					\
12517 	ksp = &mseg->kpm_spages[inx];					\
12518 }
12519 
12520 /*
12521  * hat_kpm_fault is called from segkpm_fault when a kpm tsbmiss occurred
12522  * which could not be resolved by the trap level tsbmiss handler for the
12523  * following reasons:
12524  * . The vaddr is in VAC alias range (always PAGESIZE mapping size).
12525  * . The kpm (s)page range of vaddr is in a VAC alias prevention state.
12526  * . tsbmiss handling at trap level is not desired (DEBUG kernel only,
12527  *   kpm_tsbmtl == 0).
12528  */
12529 int
12530 hat_kpm_fault(struct hat *hat, caddr_t vaddr)
12531 {
12532 	int		error;
12533 	uintptr_t	paddr;
12534 	pfn_t		pfn;
12535 	struct memseg	*mseg;
12536 	page_t	*pp;
12537 
12538 	if (kpm_enable == 0) {
12539 		cmn_err(CE_WARN, "hat_kpm_fault: kpm_enable not set");
12540 		return (ENOTSUP);
12541 	}
12542 
12543 	ASSERT(hat == ksfmmup);
12544 	ASSERT(IS_KPM_ADDR(vaddr));
12545 
12546 	SFMMU_KPM_VTOP(vaddr, paddr);
12547 	pfn = (pfn_t)btop(paddr);
12548 	mseg = page_numtomemseg_nolock(pfn);
12549 	if (mseg == NULL)
12550 		return (EFAULT);
12551 
12552 	pp = &mseg->pages[(pgcnt_t)(pfn - mseg->pages_base)];
12553 	ASSERT((pfn_t)pp->p_pagenum == pfn);
12554 
12555 	if (!PAGE_LOCKED(pp))
12556 		return (EFAULT);
12557 
12558 	if (kpm_smallpages == 0)
12559 		error = sfmmu_kpm_fault(vaddr, mseg, pp);
12560 	else
12561 		error = sfmmu_kpm_fault_small(vaddr, mseg, pp);
12562 
12563 	return (error);
12564 }
12565 
12566 extern  krwlock_t memsegslock;
12567 
12568 /*
12569  * memseg_hash[] was cleared, need to clear memseg_phash[] too.
12570  */
12571 void
12572 hat_kpm_mseghash_clear(int nentries)
12573 {
12574 	pgcnt_t i;
12575 
12576 	if (kpm_enable == 0)
12577 		return;
12578 
12579 	for (i = 0; i < nentries; i++)
12580 		memseg_phash[i] = MSEG_NULLPTR_PA;
12581 }
12582 
12583 /*
12584  * Update memseg_phash[inx] when memseg_hash[inx] was changed.
12585  */
12586 void
12587 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
12588 {
12589 	if (kpm_enable == 0)
12590 		return;
12591 
12592 	memseg_phash[inx] = (msp) ? va_to_pa(msp) : MSEG_NULLPTR_PA;
12593 }
12594 
12595 /*
12596  * Update kpm memseg members from basic memseg info.
12597  */
12598 void
12599 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
12600 	offset_t kpm_pages_off)
12601 {
12602 	if (kpm_enable == 0)
12603 		return;
12604 
12605 	msp->kpm_pages = (kpm_page_t *)((caddr_t)msp->pages + kpm_pages_off);
12606 	msp->kpm_nkpmpgs = nkpmpgs;
12607 	msp->kpm_pbase = kpmptop(ptokpmp(msp->pages_base));
12608 	msp->pagespa = va_to_pa(msp->pages);
12609 	msp->epagespa = va_to_pa(msp->epages);
12610 	msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
12611 }
12612 
12613 /*
12614  * Setup nextpa when a memseg is inserted.
12615  * Assumes that the memsegslock is already held.
12616  */
12617 void
12618 hat_kpm_addmem_mseg_insert(struct memseg *msp)
12619 {
12620 	if (kpm_enable == 0)
12621 		return;
12622 
12623 	ASSERT(RW_LOCK_HELD(&memsegslock));
12624 	msp->nextpa = (memsegs) ? va_to_pa(memsegs) : MSEG_NULLPTR_PA;
12625 }
12626 
12627 /*
12628  * Setup memsegspa when a memseg is (head) inserted.
12629  * Called before memsegs is updated to complete a
12630  * memseg insert operation.
12631  * Assumes that the memsegslock is already held.
12632  */
12633 void
12634 hat_kpm_addmem_memsegs_update(struct memseg *msp)
12635 {
12636 	if (kpm_enable == 0)
12637 		return;
12638 
12639 	ASSERT(RW_LOCK_HELD(&memsegslock));
12640 	ASSERT(memsegs);
12641 	memsegspa = va_to_pa(msp);
12642 }
12643 
12644 /*
12645  * Return end of metadata for an already setup memseg.
12646  *
12647  * Note: kpm_pages and kpm_spages are aliases and the underlying
12648  * member of struct memseg is a union, therefore they always have
12649  * the same address within a memseg. They must be differentiated
12650  * when pointer arithmetic is used with them.
12651  */
12652 caddr_t
12653 hat_kpm_mseg_reuse(struct memseg *msp)
12654 {
12655 	caddr_t end;
12656 
12657 	if (kpm_smallpages == 0)
12658 		end = (caddr_t)(msp->kpm_pages + msp->kpm_nkpmpgs);
12659 	else
12660 		end = (caddr_t)(msp->kpm_spages + msp->kpm_nkpmpgs);
12661 
12662 	return (end);
12663 }
12664 
12665 /*
12666  * Update memsegspa (when first memseg in list
12667  * is deleted) or nextpa  when a memseg deleted.
12668  * Assumes that the memsegslock is already held.
12669  */
12670 void
12671 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
12672 {
12673 	struct memseg *lmsp;
12674 
12675 	if (kpm_enable == 0)
12676 		return;
12677 
12678 	ASSERT(RW_LOCK_HELD(&memsegslock));
12679 
12680 	if (mspp == &memsegs) {
12681 		memsegspa = (msp->next) ?
12682 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12683 	} else {
12684 		lmsp = (struct memseg *)
12685 			((uint64_t)mspp - offsetof(struct memseg, next));
12686 		lmsp->nextpa = (msp->next) ?
12687 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12688 	}
12689 }
12690 
12691 /*
12692  * Update kpm members for all memseg's involved in a split operation
12693  * and do the atomic update of the physical memseg chain.
12694  *
12695  * Note: kpm_pages and kpm_spages are aliases and the underlying member
12696  * of struct memseg is a union, therefore they always have the same
12697  * address within a memseg. With that the direct assignments and
12698  * va_to_pa conversions below don't have to be distinguished wrt. to
12699  * kpm_smallpages. They must be differentiated when pointer arithmetic
12700  * is used with them.
12701  *
12702  * Assumes that the memsegslock is already held.
12703  */
12704 void
12705 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
12706 	struct memseg *lo, struct memseg *mid, struct memseg *hi)
12707 {
12708 	pgcnt_t start, end, kbase, kstart, num;
12709 	struct memseg *lmsp;
12710 
12711 	if (kpm_enable == 0)
12712 		return;
12713 
12714 	ASSERT(RW_LOCK_HELD(&memsegslock));
12715 	ASSERT(msp && mid && msp->kpm_pages);
12716 
12717 	kbase = ptokpmp(msp->kpm_pbase);
12718 
12719 	if (lo) {
12720 		num = lo->pages_end - lo->pages_base;
12721 		start = kpmptop(ptokpmp(lo->pages_base));
12722 		/* align end to kpm page size granularity */
12723 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12724 		lo->kpm_pbase = start;
12725 		lo->kpm_nkpmpgs = ptokpmp(end - start);
12726 		lo->kpm_pages = msp->kpm_pages;
12727 		lo->kpm_pagespa = va_to_pa(lo->kpm_pages);
12728 		lo->pagespa = va_to_pa(lo->pages);
12729 		lo->epagespa = va_to_pa(lo->epages);
12730 		lo->nextpa = va_to_pa(lo->next);
12731 	}
12732 
12733 	/* mid */
12734 	num = mid->pages_end - mid->pages_base;
12735 	kstart = ptokpmp(mid->pages_base);
12736 	start = kpmptop(kstart);
12737 	/* align end to kpm page size granularity */
12738 	end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12739 	mid->kpm_pbase = start;
12740 	mid->kpm_nkpmpgs = ptokpmp(end - start);
12741 	if (kpm_smallpages == 0) {
12742 		mid->kpm_pages = msp->kpm_pages + (kstart - kbase);
12743 	} else {
12744 		mid->kpm_spages = msp->kpm_spages + (kstart - kbase);
12745 	}
12746 	mid->kpm_pagespa = va_to_pa(mid->kpm_pages);
12747 	mid->pagespa = va_to_pa(mid->pages);
12748 	mid->epagespa = va_to_pa(mid->epages);
12749 	mid->nextpa = (mid->next) ?  va_to_pa(mid->next) : MSEG_NULLPTR_PA;
12750 
12751 	if (hi) {
12752 		num = hi->pages_end - hi->pages_base;
12753 		kstart = ptokpmp(hi->pages_base);
12754 		start = kpmptop(kstart);
12755 		/* align end to kpm page size granularity */
12756 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12757 		hi->kpm_pbase = start;
12758 		hi->kpm_nkpmpgs = ptokpmp(end - start);
12759 		if (kpm_smallpages == 0) {
12760 			hi->kpm_pages = msp->kpm_pages + (kstart - kbase);
12761 		} else {
12762 			hi->kpm_spages = msp->kpm_spages + (kstart - kbase);
12763 		}
12764 		hi->kpm_pagespa = va_to_pa(hi->kpm_pages);
12765 		hi->pagespa = va_to_pa(hi->pages);
12766 		hi->epagespa = va_to_pa(hi->epages);
12767 		hi->nextpa = (hi->next) ? va_to_pa(hi->next) : MSEG_NULLPTR_PA;
12768 	}
12769 
12770 	/*
12771 	 * Atomic update of the physical memseg chain
12772 	 */
12773 	if (mspp == &memsegs) {
12774 		memsegspa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12775 	} else {
12776 		lmsp = (struct memseg *)
12777 			((uint64_t)mspp - offsetof(struct memseg, next));
12778 		lmsp->nextpa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12779 	}
12780 }
12781 
12782 /*
12783  * Walk the memsegs chain, applying func to each memseg span and vcolor.
12784  */
12785 void
12786 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
12787 {
12788 	pfn_t	pbase, pend;
12789 	int	vcolor;
12790 	void	*base;
12791 	size_t	size;
12792 	struct memseg *msp;
12793 	extern uint_t vac_colors;
12794 
12795 	for (msp = memsegs; msp; msp = msp->next) {
12796 		pbase = msp->pages_base;
12797 		pend = msp->pages_end;
12798 		for (vcolor = 0; vcolor < vac_colors; vcolor++) {
12799 			base = ptob(pbase) + kpm_vbase + kpm_size * vcolor;
12800 			size = ptob(pend - pbase);
12801 			func(arg, base, size);
12802 		}
12803 	}
12804 }
12805 
12806 
12807 /* -- sfmmu_kpm internal section -- */
12808 
12809 /*
12810  * Return the page frame number if a valid segkpm mapping exists
12811  * for vaddr, otherwise return PFN_INVALID. No locks are grabbed.
12812  * Should only be used by other sfmmu routines.
12813  */
12814 pfn_t
12815 sfmmu_kpm_vatopfn(caddr_t vaddr)
12816 {
12817 	uintptr_t	paddr;
12818 	pfn_t		pfn;
12819 	page_t	*pp;
12820 
12821 	ASSERT(kpm_enable && IS_KPM_ADDR(vaddr));
12822 
12823 	SFMMU_KPM_VTOP(vaddr, paddr);
12824 	pfn = (pfn_t)btop(paddr);
12825 	pp = page_numtopp_nolock(pfn);
12826 	if (pp && pp->p_kpmref)
12827 		return (pfn);
12828 	else
12829 		return ((pfn_t)PFN_INVALID);
12830 }
12831 
12832 /*
12833  * Lookup a kpme in the p_kpmelist.
12834  */
12835 static int
12836 sfmmu_kpme_lookup(struct kpme *kpme, page_t *pp)
12837 {
12838 	struct kpme	*p;
12839 
12840 	for (p = pp->p_kpmelist; p; p = p->kpe_next) {
12841 		if (p == kpme)
12842 			return (1);
12843 	}
12844 	return (0);
12845 }
12846 
12847 /*
12848  * Insert a kpme into the p_kpmelist and increment
12849  * the per page kpm reference count.
12850  */
12851 static void
12852 sfmmu_kpme_add(struct kpme *kpme, page_t *pp)
12853 {
12854 	ASSERT(pp->p_kpmref >= 0);
12855 
12856 	/* head insert */
12857 	kpme->kpe_prev = NULL;
12858 	kpme->kpe_next = pp->p_kpmelist;
12859 
12860 	if (pp->p_kpmelist)
12861 		pp->p_kpmelist->kpe_prev = kpme;
12862 
12863 	pp->p_kpmelist = kpme;
12864 	kpme->kpe_page = pp;
12865 	pp->p_kpmref++;
12866 }
12867 
12868 /*
12869  * Remove a kpme from the p_kpmelist and decrement
12870  * the per page kpm reference count.
12871  */
12872 static void
12873 sfmmu_kpme_sub(struct kpme *kpme, page_t *pp)
12874 {
12875 	ASSERT(pp->p_kpmref > 0);
12876 
12877 	if (kpme->kpe_prev) {
12878 		ASSERT(pp->p_kpmelist != kpme);
12879 		ASSERT(kpme->kpe_prev->kpe_page == pp);
12880 		kpme->kpe_prev->kpe_next = kpme->kpe_next;
12881 	} else {
12882 		ASSERT(pp->p_kpmelist == kpme);
12883 		pp->p_kpmelist = kpme->kpe_next;
12884 	}
12885 
12886 	if (kpme->kpe_next) {
12887 		ASSERT(kpme->kpe_next->kpe_page == pp);
12888 		kpme->kpe_next->kpe_prev = kpme->kpe_prev;
12889 	}
12890 
12891 	kpme->kpe_next = kpme->kpe_prev = NULL;
12892 	kpme->kpe_page = NULL;
12893 	pp->p_kpmref--;
12894 }
12895 
12896 /*
12897  * Mapin a single page, it is called every time a page changes it's state
12898  * from kpm-unmapped to kpm-mapped. It may not be called, when only a new
12899  * kpm instance does a mapin and wants to share the mapping.
12900  * Assumes that the mlist mutex is already grabbed.
12901  */
12902 static caddr_t
12903 sfmmu_kpm_mapin(page_t *pp)
12904 {
12905 	kpm_page_t	*kp;
12906 	kpm_hlk_t	*kpmp;
12907 	caddr_t		vaddr;
12908 	int		kpm_vac_range;
12909 	pfn_t		pfn;
12910 	tte_t		tte;
12911 	kmutex_t	*pmtx;
12912 	int		uncached;
12913 	kpm_spage_t	*ksp;
12914 	kpm_shlk_t	*kpmsp;
12915 	int		oldval;
12916 
12917 	ASSERT(sfmmu_mlist_held(pp));
12918 	ASSERT(pp->p_kpmref == 0);
12919 
12920 	vaddr = sfmmu_kpm_getvaddr(pp, &kpm_vac_range);
12921 
12922 	ASSERT(IS_KPM_ADDR(vaddr));
12923 	uncached = PP_ISNC(pp);
12924 	pfn = pp->p_pagenum;
12925 
12926 	if (kpm_smallpages)
12927 		goto smallpages_mapin;
12928 
12929 	PP2KPMPG(pp, kp);
12930 
12931 	kpmp = KPMP_HASH(kp);
12932 	mutex_enter(&kpmp->khl_mutex);
12933 
12934 	ASSERT(PP_ISKPMC(pp) == 0);
12935 	ASSERT(PP_ISKPMS(pp) == 0);
12936 
12937 	if (uncached) {
12938 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
12939 		if (kpm_vac_range == 0) {
12940 			if (kp->kp_refcnts == 0) {
12941 				/*
12942 				 * Must remove large page mapping if it exists.
12943 				 * Pages in uncached state can only be mapped
12944 				 * small (PAGESIZE) within the regular kpm
12945 				 * range.
12946 				 */
12947 				if (kp->kp_refcntc == -1) {
12948 					/* remove go indication */
12949 					sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
12950 						&kpmp->khl_lock, KPMTSBM_STOP);
12951 				}
12952 				if (kp->kp_refcnt > 0 && kp->kp_refcntc == 0)
12953 					sfmmu_kpm_demap_large(vaddr);
12954 			}
12955 			ASSERT(kp->kp_refcntc >= 0);
12956 			kp->kp_refcntc++;
12957 		}
12958 		pmtx = sfmmu_page_enter(pp);
12959 		PP_SETKPMC(pp);
12960 		sfmmu_page_exit(pmtx);
12961 	}
12962 
12963 	if ((kp->kp_refcntc > 0 || kp->kp_refcnts > 0) && kpm_vac_range == 0) {
12964 		/*
12965 		 * Have to do a small (PAGESIZE) mapin within this kpm_page
12966 		 * range since it is marked to be in VAC conflict mode or
12967 		 * when there are still other small mappings around.
12968 		 */
12969 
12970 		/* tte assembly */
12971 		if (uncached == 0)
12972 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
12973 		else
12974 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
12975 
12976 		/* tsb dropin */
12977 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
12978 
12979 		pmtx = sfmmu_page_enter(pp);
12980 		PP_SETKPMS(pp);
12981 		sfmmu_page_exit(pmtx);
12982 
12983 		kp->kp_refcnts++;
12984 		ASSERT(kp->kp_refcnts > 0);
12985 		goto exit;
12986 	}
12987 
12988 	if (kpm_vac_range == 0) {
12989 		/*
12990 		 * Fast path / regular case, no VAC conflict handling
12991 		 * in progress within this kpm_page range.
12992 		 */
12993 		if (kp->kp_refcnt == 0) {
12994 
12995 			/* tte assembly */
12996 			KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
12997 
12998 			/* tsb dropin */
12999 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
13000 
13001 			/* Set go flag for TL tsbmiss handler */
13002 			if (kp->kp_refcntc == 0)
13003 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
13004 						&kpmp->khl_lock, KPMTSBM_START);
13005 
13006 			ASSERT(kp->kp_refcntc == -1);
13007 		}
13008 		kp->kp_refcnt++;
13009 		ASSERT(kp->kp_refcnt);
13010 
13011 	} else {
13012 		/*
13013 		 * The page is not setup according to the common VAC
13014 		 * prevention rules for the regular and kpm mapping layer
13015 		 * E.g. the page layer was not able to deliver a right
13016 		 * vcolor'ed page for a given vaddr corresponding to
13017 		 * the wanted p_offset. It has to be mapped in small in
13018 		 * within the corresponding kpm vac range in order to
13019 		 * prevent VAC alias conflicts.
13020 		 */
13021 
13022 		/* tte assembly */
13023 		if (uncached == 0) {
13024 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13025 		} else {
13026 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13027 		}
13028 
13029 		/* tsb dropin */
13030 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13031 
13032 		kp->kp_refcnta++;
13033 		if (kp->kp_refcntc == -1) {
13034 			ASSERT(kp->kp_refcnt > 0);
13035 
13036 			/* remove go indication */
13037 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13038 					KPMTSBM_STOP);
13039 		}
13040 		ASSERT(kp->kp_refcntc >= 0);
13041 	}
13042 exit:
13043 	mutex_exit(&kpmp->khl_mutex);
13044 	return (vaddr);
13045 
13046 smallpages_mapin:
13047 	if (uncached == 0) {
13048 		/* tte assembly */
13049 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13050 	} else {
13051 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13052 		pmtx = sfmmu_page_enter(pp);
13053 		PP_SETKPMC(pp);
13054 		sfmmu_page_exit(pmtx);
13055 		/* tte assembly */
13056 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13057 	}
13058 
13059 	/* tsb dropin */
13060 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13061 
13062 	PP2KPMSPG(pp, ksp);
13063 	kpmsp = KPMP_SHASH(ksp);
13064 
13065 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, &kpmsp->kshl_lock,
13066 				(uncached) ? KPM_MAPPEDSC : KPM_MAPPEDS);
13067 
13068 	if (oldval != 0)
13069 		panic("sfmmu_kpm_mapin: stale smallpages mapping");
13070 
13071 	return (vaddr);
13072 }
13073 
13074 /*
13075  * Mapout a single page, it is called every time a page changes it's state
13076  * from kpm-mapped to kpm-unmapped. It may not be called, when only a kpm
13077  * instance calls mapout and there are still other instances mapping the
13078  * page. Assumes that the mlist mutex is already grabbed.
13079  *
13080  * Note: In normal mode (no VAC conflict prevention pending) TLB's are
13081  * not flushed. This is the core segkpm behavior to avoid xcalls. It is
13082  * no problem because a translation from a segkpm virtual address to a
13083  * physical address is always the same. The only downside is a slighty
13084  * increased window of vulnerability for misbehaving _kernel_ modules.
13085  */
13086 static void
13087 sfmmu_kpm_mapout(page_t *pp, caddr_t vaddr)
13088 {
13089 	kpm_page_t	*kp;
13090 	kpm_hlk_t	*kpmp;
13091 	int		alias_range;
13092 	kmutex_t	*pmtx;
13093 	kpm_spage_t	*ksp;
13094 	kpm_shlk_t	*kpmsp;
13095 	int		oldval;
13096 
13097 	ASSERT(sfmmu_mlist_held(pp));
13098 	ASSERT(pp->p_kpmref == 0);
13099 
13100 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13101 
13102 	if (kpm_smallpages)
13103 		goto smallpages_mapout;
13104 
13105 	PP2KPMPG(pp, kp);
13106 	kpmp = KPMP_HASH(kp);
13107 	mutex_enter(&kpmp->khl_mutex);
13108 
13109 	if (alias_range) {
13110 		ASSERT(PP_ISKPMS(pp) == 0);
13111 		if (kp->kp_refcnta <= 0) {
13112 			panic("sfmmu_kpm_mapout: bad refcnta kp=%p",
13113 				(void *)kp);
13114 		}
13115 
13116 		if (PP_ISTNC(pp))  {
13117 			if (PP_ISKPMC(pp) == 0) {
13118 				/*
13119 				 * Uncached kpm mappings must always have
13120 				 * forced "small page" mode.
13121 				 */
13122 				panic("sfmmu_kpm_mapout: uncached page not "
13123 					"kpm marked");
13124 			}
13125 			sfmmu_kpm_demap_small(vaddr);
13126 
13127 			pmtx = sfmmu_page_enter(pp);
13128 			PP_CLRKPMC(pp);
13129 			sfmmu_page_exit(pmtx);
13130 
13131 			/*
13132 			 * Check if we can resume cached mode. This might
13133 			 * be the case if the kpm mapping was the only
13134 			 * mapping in conflict with other non rule
13135 			 * compliant mappings. The page is no more marked
13136 			 * as kpm mapped, so the conv_tnc path will not
13137 			 * change kpm state.
13138 			 */
13139 			conv_tnc(pp, TTE8K);
13140 
13141 		} else if (PP_ISKPMC(pp) == 0) {
13142 			/* remove TSB entry only */
13143 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13144 
13145 		} else {
13146 			/* already demapped */
13147 			pmtx = sfmmu_page_enter(pp);
13148 			PP_CLRKPMC(pp);
13149 			sfmmu_page_exit(pmtx);
13150 		}
13151 		kp->kp_refcnta--;
13152 		goto exit;
13153 	}
13154 
13155 	if (kp->kp_refcntc <= 0 && kp->kp_refcnts == 0) {
13156 		/*
13157 		 * Fast path / regular case.
13158 		 */
13159 		ASSERT(kp->kp_refcntc >= -1);
13160 		ASSERT(!(pp->p_nrm & (P_KPMC | P_KPMS | P_TNC | P_PNC)));
13161 
13162 		if (kp->kp_refcnt <= 0)
13163 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13164 
13165 		if (--kp->kp_refcnt == 0) {
13166 			/* remove go indication */
13167 			if (kp->kp_refcntc == -1) {
13168 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
13169 					&kpmp->khl_lock, KPMTSBM_STOP);
13170 			}
13171 			ASSERT(kp->kp_refcntc == 0);
13172 
13173 			/* remove TSB entry */
13174 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13175 #ifdef	DEBUG
13176 			if (kpm_tlb_flush)
13177 				sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13178 #endif
13179 		}
13180 
13181 	} else {
13182 		/*
13183 		 * The VAC alias path.
13184 		 * We come here if the kpm vaddr is not in any alias_range
13185 		 * and we are unmapping a page within the regular kpm_page
13186 		 * range. The kpm_page either holds conflict pages and/or
13187 		 * is in "small page" mode. If the page is not marked
13188 		 * P_KPMS it couldn't have a valid PAGESIZE sized TSB
13189 		 * entry. Dcache flushing is done lazy and follows the
13190 		 * rules of the regular virtual page coloring scheme.
13191 		 *
13192 		 * Per page states and required actions:
13193 		 *   P_KPMC: remove a kpm mapping that is conflicting.
13194 		 *   P_KPMS: remove a small kpm mapping within a kpm_page.
13195 		 *   P_TNC:  check if we can re-cache the page.
13196 		 *   P_PNC:  we cannot re-cache, sorry.
13197 		 * Per kpm_page:
13198 		 *   kp_refcntc > 0: page is part of a kpm_page with conflicts.
13199 		 *   kp_refcnts > 0: rm a small mapped page within a kpm_page.
13200 		 */
13201 
13202 		if (PP_ISKPMS(pp)) {
13203 			if (kp->kp_refcnts < 1) {
13204 				panic("sfmmu_kpm_mapout: bad refcnts kp=%p",
13205 					(void *)kp);
13206 			}
13207 			sfmmu_kpm_demap_small(vaddr);
13208 
13209 			/*
13210 			 * Check if we can resume cached mode. This might
13211 			 * be the case if the kpm mapping was the only
13212 			 * mapping in conflict with other non rule
13213 			 * compliant mappings. The page is no more marked
13214 			 * as kpm mapped, so the conv_tnc path will not
13215 			 * change kpm state.
13216 			 */
13217 			if (PP_ISTNC(pp))  {
13218 				if (!PP_ISKPMC(pp)) {
13219 					/*
13220 					 * Uncached kpm mappings must always
13221 					 * have forced "small page" mode.
13222 					 */
13223 					panic("sfmmu_kpm_mapout: uncached "
13224 						"page not kpm marked");
13225 				}
13226 				conv_tnc(pp, TTE8K);
13227 			}
13228 			kp->kp_refcnts--;
13229 			kp->kp_refcnt++;
13230 			pmtx = sfmmu_page_enter(pp);
13231 			PP_CLRKPMS(pp);
13232 			sfmmu_page_exit(pmtx);
13233 		}
13234 
13235 		if (PP_ISKPMC(pp)) {
13236 			if (kp->kp_refcntc < 1) {
13237 				panic("sfmmu_kpm_mapout: bad refcntc kp=%p",
13238 					(void *)kp);
13239 			}
13240 			pmtx = sfmmu_page_enter(pp);
13241 			PP_CLRKPMC(pp);
13242 			sfmmu_page_exit(pmtx);
13243 			kp->kp_refcntc--;
13244 		}
13245 
13246 		if (kp->kp_refcnt-- < 1)
13247 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13248 	}
13249 exit:
13250 	mutex_exit(&kpmp->khl_mutex);
13251 	return;
13252 
13253 smallpages_mapout:
13254 	PP2KPMSPG(pp, ksp);
13255 	kpmsp = KPMP_SHASH(ksp);
13256 
13257 	if (PP_ISKPMC(pp) == 0) {
13258 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13259 					&kpmsp->kshl_lock, 0);
13260 
13261 		if (oldval != KPM_MAPPEDS) {
13262 			/*
13263 			 * When we're called after sfmmu_kpm_hme_unload,
13264 			 * KPM_MAPPEDSC is valid too.
13265 			 */
13266 			if (oldval != KPM_MAPPEDSC)
13267 				panic("sfmmu_kpm_mapout: incorrect mapping");
13268 		}
13269 
13270 		/* remove TSB entry */
13271 		sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13272 #ifdef	DEBUG
13273 		if (kpm_tlb_flush)
13274 			sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13275 #endif
13276 
13277 	} else if (PP_ISTNC(pp)) {
13278 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13279 					&kpmsp->kshl_lock, 0);
13280 
13281 		if (oldval != KPM_MAPPEDSC || PP_ISKPMC(pp) == 0)
13282 			panic("sfmmu_kpm_mapout: inconsistent TNC mapping");
13283 
13284 		sfmmu_kpm_demap_small(vaddr);
13285 
13286 		pmtx = sfmmu_page_enter(pp);
13287 		PP_CLRKPMC(pp);
13288 		sfmmu_page_exit(pmtx);
13289 
13290 		/*
13291 		 * Check if we can resume cached mode. This might be
13292 		 * the case if the kpm mapping was the only mapping
13293 		 * in conflict with other non rule compliant mappings.
13294 		 * The page is no more marked as kpm mapped, so the
13295 		 * conv_tnc path will not change the kpm state.
13296 		 */
13297 		conv_tnc(pp, TTE8K);
13298 
13299 	} else {
13300 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13301 					&kpmsp->kshl_lock, 0);
13302 
13303 		if (oldval != KPM_MAPPEDSC)
13304 			panic("sfmmu_kpm_mapout: inconsistent mapping");
13305 
13306 		pmtx = sfmmu_page_enter(pp);
13307 		PP_CLRKPMC(pp);
13308 		sfmmu_page_exit(pmtx);
13309 	}
13310 }
13311 
13312 #define	abs(x)  ((x) < 0 ? -(x) : (x))
13313 
13314 /*
13315  * Determine appropriate kpm mapping address and handle any kpm/hme
13316  * conflicts. Page mapping list and its vcolor parts must be protected.
13317  */
13318 static caddr_t
13319 sfmmu_kpm_getvaddr(page_t *pp, int *kpm_vac_rangep)
13320 {
13321 	int		vcolor, vcolor_pa;
13322 	caddr_t		vaddr;
13323 	uintptr_t	paddr;
13324 
13325 
13326 	ASSERT(sfmmu_mlist_held(pp));
13327 
13328 	paddr = ptob(pp->p_pagenum);
13329 	vcolor_pa = addr_to_vcolor(paddr);
13330 
13331 	if (IS_SWAPFSVP(pp->p_vnode)) {
13332 		vcolor = (PP_NEWPAGE(pp) || PP_ISNC(pp)) ?
13333 		    vcolor_pa : PP_GET_VCOLOR(pp);
13334 	} else {
13335 		vcolor = addr_to_vcolor(pp->p_offset);
13336 	}
13337 
13338 	vaddr = kpm_vbase + paddr;
13339 	*kpm_vac_rangep = 0;
13340 
13341 	if (vcolor_pa != vcolor) {
13342 		*kpm_vac_rangep = abs(vcolor - vcolor_pa);
13343 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
13344 		vaddr += (vcolor_pa > vcolor) ?
13345 			((uintptr_t)vcolor_pa << kpm_size_shift) :
13346 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
13347 
13348 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13349 	}
13350 
13351 	if (PP_ISNC(pp))
13352 		return (vaddr);
13353 
13354 	if (PP_NEWPAGE(pp)) {
13355 		PP_SET_VCOLOR(pp, vcolor);
13356 		return (vaddr);
13357 	}
13358 
13359 	if (PP_GET_VCOLOR(pp) == vcolor)
13360 		return (vaddr);
13361 
13362 	ASSERT(!PP_ISMAPPED_KPM(pp));
13363 	sfmmu_kpm_vac_conflict(pp, vaddr);
13364 
13365 	return (vaddr);
13366 }
13367 
13368 /*
13369  * VAC conflict state bit values.
13370  * The following defines are used to make the handling of the
13371  * various input states more concise. For that the kpm states
13372  * per kpm_page and per page are combined in a summary state.
13373  * Each single state has a corresponding bit value in the
13374  * summary state. These defines only apply for kpm large page
13375  * mappings. Within comments the abbreviations "kc, c, ks, s"
13376  * are used as short form of the actual state, e.g. "kc" for
13377  * "kp_refcntc > 0", etc.
13378  */
13379 #define	KPM_KC	0x00000008	/* kpm_page: kp_refcntc > 0 */
13380 #define	KPM_C	0x00000004	/* page: P_KPMC set */
13381 #define	KPM_KS	0x00000002	/* kpm_page: kp_refcnts > 0 */
13382 #define	KPM_S	0x00000001	/* page: P_KPMS set */
13383 
13384 /*
13385  * Summary states used in sfmmu_kpm_fault (KPM_TSBM_*).
13386  * See also more detailed comments within in the sfmmu_kpm_fault switch.
13387  * Abbreviations used:
13388  * CONFL: VAC conflict(s) within a kpm_page.
13389  * MAPS:  Mapped small: Page mapped in using a regular page size kpm mapping.
13390  * RASM:  Re-assembling of a large page mapping possible.
13391  * RPLS:  Replace: TSB miss due to TSB replacement only.
13392  * BRKO:  Breakup Other: A large kpm mapping has to be broken because another
13393  *        page within the kpm_page is already involved in a VAC conflict.
13394  * BRKT:  Breakup This: A large kpm mapping has to be broken, this page is
13395  *        is involved in a VAC conflict.
13396  */
13397 #define	KPM_TSBM_CONFL_GONE	(0)
13398 #define	KPM_TSBM_MAPS_RASM	(KPM_KS)
13399 #define	KPM_TSBM_RPLS_RASM	(KPM_KS | KPM_S)
13400 #define	KPM_TSBM_MAPS_BRKO	(KPM_KC)
13401 #define	KPM_TSBM_MAPS		(KPM_KC | KPM_KS)
13402 #define	KPM_TSBM_RPLS		(KPM_KC | KPM_KS | KPM_S)
13403 #define	KPM_TSBM_MAPS_BRKT	(KPM_KC | KPM_C)
13404 #define	KPM_TSBM_MAPS_CONFL	(KPM_KC | KPM_C | KPM_KS)
13405 #define	KPM_TSBM_RPLS_CONFL	(KPM_KC | KPM_C | KPM_KS | KPM_S)
13406 
13407 /*
13408  * kpm fault handler for mappings with large page size.
13409  */
13410 int
13411 sfmmu_kpm_fault(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13412 {
13413 	int		error;
13414 	pgcnt_t		inx;
13415 	kpm_page_t	*kp;
13416 	tte_t		tte;
13417 	pfn_t		pfn = pp->p_pagenum;
13418 	kpm_hlk_t	*kpmp;
13419 	kmutex_t	*pml;
13420 	int		alias_range;
13421 	int		uncached = 0;
13422 	kmutex_t	*pmtx;
13423 	int		badstate;
13424 	uint_t		tsbmcase;
13425 
13426 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13427 
13428 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);
13429 	if (inx >= mseg->kpm_nkpmpgs) {
13430 		cmn_err(CE_PANIC, "sfmmu_kpm_fault: kpm overflow in memseg "
13431 			"0x%p  pp 0x%p", (void *)mseg, (void *)pp);
13432 	}
13433 
13434 	kp = &mseg->kpm_pages[inx];
13435 	kpmp = KPMP_HASH(kp);
13436 
13437 	pml = sfmmu_mlist_enter(pp);
13438 
13439 	if (!PP_ISMAPPED_KPM(pp)) {
13440 		sfmmu_mlist_exit(pml);
13441 		return (EFAULT);
13442 	}
13443 
13444 	mutex_enter(&kpmp->khl_mutex);
13445 
13446 	if (alias_range) {
13447 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13448 		if (kp->kp_refcnta > 0) {
13449 			if (PP_ISKPMC(pp)) {
13450 				pmtx = sfmmu_page_enter(pp);
13451 				PP_CLRKPMC(pp);
13452 				sfmmu_page_exit(pmtx);
13453 			}
13454 			/*
13455 			 * Check for vcolor conflicts. Return here
13456 			 * w/ either no conflict (fast path), removed hme
13457 			 * mapping chains (unload conflict) or uncached
13458 			 * (uncache conflict). VACaches are cleaned and
13459 			 * p_vcolor and PP_TNC are set accordingly for the
13460 			 * conflict cases.  Drop kpmp for uncache conflict
13461 			 * cases since it will be grabbed within
13462 			 * sfmmu_kpm_page_cache in case of an uncache
13463 			 * conflict.
13464 			 */
13465 			mutex_exit(&kpmp->khl_mutex);
13466 			sfmmu_kpm_vac_conflict(pp, vaddr);
13467 			mutex_enter(&kpmp->khl_mutex);
13468 
13469 			if (PP_ISNC(pp)) {
13470 				uncached = 1;
13471 				pmtx = sfmmu_page_enter(pp);
13472 				PP_SETKPMC(pp);
13473 				sfmmu_page_exit(pmtx);
13474 			}
13475 			goto smallexit;
13476 
13477 		} else {
13478 			/*
13479 			 * We got a tsbmiss on a not active kpm_page range.
13480 			 * Let segkpm_fault decide how to panic.
13481 			 */
13482 			error = EFAULT;
13483 		}
13484 		goto exit;
13485 	}
13486 
13487 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
13488 	if (kp->kp_refcntc == -1) {
13489 		/*
13490 		 * We should come here only if trap level tsb miss
13491 		 * handler is disabled.
13492 		 */
13493 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
13494 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
13495 
13496 		if (badstate == 0)
13497 			goto largeexit;
13498 	}
13499 
13500 	if (badstate || kp->kp_refcntc < 0)
13501 		goto badstate_exit;
13502 
13503 	/*
13504 	 * Combine the per kpm_page and per page kpm VAC states to
13505 	 * a summary state in order to make the kpm fault handling
13506 	 * more concise.
13507 	 */
13508 	tsbmcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
13509 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
13510 			(PP_ISKPMC(pp) ? KPM_C : 0) |
13511 			(PP_ISKPMS(pp) ? KPM_S : 0));
13512 
13513 	switch (tsbmcase) {
13514 	case KPM_TSBM_CONFL_GONE:		/* - - - - */
13515 		/*
13516 		 * That's fine, we either have no more vac conflict in
13517 		 * this kpm page or someone raced in and has solved the
13518 		 * vac conflict for us -- call sfmmu_kpm_vac_conflict
13519 		 * to take care for correcting the vcolor and flushing
13520 		 * the dcache if required.
13521 		 */
13522 		mutex_exit(&kpmp->khl_mutex);
13523 		sfmmu_kpm_vac_conflict(pp, vaddr);
13524 		mutex_enter(&kpmp->khl_mutex);
13525 
13526 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13527 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13528 			panic("sfmmu_kpm_fault: inconsistent CONFL_GONE "
13529 				"state, pp=%p", (void *)pp);
13530 		}
13531 		goto largeexit;
13532 
13533 	case KPM_TSBM_MAPS_RASM:		/* - - ks - */
13534 		/*
13535 		 * All conflicts in this kpm page are gone but there are
13536 		 * already small mappings around, so we also map this
13537 		 * page small. This could be the trigger case for a
13538 		 * small mapping reaper, if this is really needed.
13539 		 * For now fall thru to the KPM_TSBM_MAPS handling.
13540 		 */
13541 
13542 	case KPM_TSBM_MAPS:			/* kc - ks - */
13543 		/*
13544 		 * Large page mapping is already broken, this page is not
13545 		 * conflicting, so map it small. Call sfmmu_kpm_vac_conflict
13546 		 * to take care for correcting the vcolor and flushing
13547 		 * the dcache if required.
13548 		 */
13549 		mutex_exit(&kpmp->khl_mutex);
13550 		sfmmu_kpm_vac_conflict(pp, vaddr);
13551 		mutex_enter(&kpmp->khl_mutex);
13552 
13553 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13554 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13555 			panic("sfmmu_kpm_fault:  inconsistent MAPS state, "
13556 				"pp=%p", (void *)pp);
13557 		}
13558 		kp->kp_refcnt--;
13559 		kp->kp_refcnts++;
13560 		pmtx = sfmmu_page_enter(pp);
13561 		PP_SETKPMS(pp);
13562 		sfmmu_page_exit(pmtx);
13563 		goto smallexit;
13564 
13565 	case KPM_TSBM_RPLS_RASM:		/* - - ks s */
13566 		/*
13567 		 * All conflicts in this kpm page are gone but this page
13568 		 * is mapped small. This could be the trigger case for a
13569 		 * small mapping reaper, if this is really needed.
13570 		 * For now we drop it in small again. Fall thru to the
13571 		 * KPM_TSBM_RPLS handling.
13572 		 */
13573 
13574 	case KPM_TSBM_RPLS:			/* kc - ks s */
13575 		/*
13576 		 * Large page mapping is already broken, this page is not
13577 		 * conflicting but already mapped small, so drop it in
13578 		 * small again.
13579 		 */
13580 		if (PP_ISNC(pp) ||
13581 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13582 			panic("sfmmu_kpm_fault:  inconsistent RPLS state, "
13583 				"pp=%p", (void *)pp);
13584 		}
13585 		goto smallexit;
13586 
13587 	case KPM_TSBM_MAPS_BRKO:		/* kc - - - */
13588 		/*
13589 		 * The kpm page where we live in is marked conflicting
13590 		 * but this page is not conflicting. So we have to map it
13591 		 * in small. Call sfmmu_kpm_vac_conflict to take care for
13592 		 * correcting the vcolor and flushing the dcache if required.
13593 		 */
13594 		mutex_exit(&kpmp->khl_mutex);
13595 		sfmmu_kpm_vac_conflict(pp, vaddr);
13596 		mutex_enter(&kpmp->khl_mutex);
13597 
13598 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13599 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13600 			panic("sfmmu_kpm_fault:  inconsistent MAPS_BRKO state, "
13601 				"pp=%p", (void *)pp);
13602 		}
13603 		kp->kp_refcnt--;
13604 		kp->kp_refcnts++;
13605 		pmtx = sfmmu_page_enter(pp);
13606 		PP_SETKPMS(pp);
13607 		sfmmu_page_exit(pmtx);
13608 		goto smallexit;
13609 
13610 	case KPM_TSBM_MAPS_BRKT:		/* kc c - - */
13611 	case KPM_TSBM_MAPS_CONFL:		/* kc c ks - */
13612 		if (!PP_ISMAPPED(pp)) {
13613 			/*
13614 			 * We got a tsbmiss on kpm large page range that is
13615 			 * marked to contain vac conflicting pages introduced
13616 			 * by hme mappings. The hme mappings are all gone and
13617 			 * must have bypassed the kpm alias prevention logic.
13618 			 */
13619 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13620 				(void *)pp);
13621 		}
13622 
13623 		/*
13624 		 * Check for vcolor conflicts. Return here w/ either no
13625 		 * conflict (fast path), removed hme mapping chains
13626 		 * (unload conflict) or uncached (uncache conflict).
13627 		 * Dcache is cleaned and p_vcolor and P_TNC are set
13628 		 * accordingly. Drop kpmp for uncache conflict cases
13629 		 * since it will be grabbed within sfmmu_kpm_page_cache
13630 		 * in case of an uncache conflict.
13631 		 */
13632 		mutex_exit(&kpmp->khl_mutex);
13633 		sfmmu_kpm_vac_conflict(pp, vaddr);
13634 		mutex_enter(&kpmp->khl_mutex);
13635 
13636 		if (kp->kp_refcnt <= 0)
13637 			panic("sfmmu_kpm_fault: bad refcnt kp=%p", (void *)kp);
13638 
13639 		if (PP_ISNC(pp)) {
13640 			uncached = 1;
13641 		} else {
13642 			/*
13643 			 * When an unload conflict is solved and there are
13644 			 * no other small mappings around, we can resume
13645 			 * largepage mode. Otherwise we have to map or drop
13646 			 * in small. This could be a trigger for a small
13647 			 * mapping reaper when this was the last conflict
13648 			 * within the kpm page and when there are only
13649 			 * other small mappings around.
13650 			 */
13651 			ASSERT(addr_to_vcolor(vaddr) == PP_GET_VCOLOR(pp));
13652 			ASSERT(kp->kp_refcntc > 0);
13653 			kp->kp_refcntc--;
13654 			pmtx = sfmmu_page_enter(pp);
13655 			PP_CLRKPMC(pp);
13656 			sfmmu_page_exit(pmtx);
13657 			ASSERT(PP_ISKPMS(pp) == 0);
13658 			if (kp->kp_refcntc == 0 && kp->kp_refcnts == 0)
13659 				goto largeexit;
13660 		}
13661 
13662 		kp->kp_refcnt--;
13663 		kp->kp_refcnts++;
13664 		pmtx = sfmmu_page_enter(pp);
13665 		PP_SETKPMS(pp);
13666 		sfmmu_page_exit(pmtx);
13667 		goto smallexit;
13668 
13669 	case KPM_TSBM_RPLS_CONFL:		/* kc c ks s */
13670 		if (!PP_ISMAPPED(pp)) {
13671 			/*
13672 			 * We got a tsbmiss on kpm large page range that is
13673 			 * marked to contain vac conflicting pages introduced
13674 			 * by hme mappings. They are all gone and must have
13675 			 * somehow bypassed the kpm alias prevention logic.
13676 			 */
13677 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13678 				(void *)pp);
13679 		}
13680 
13681 		/*
13682 		 * This state is only possible for an uncached mapping.
13683 		 */
13684 		if (!PP_ISNC(pp)) {
13685 			panic("sfmmu_kpm_fault: page not uncached, pp=%p",
13686 				(void *)pp);
13687 		}
13688 		uncached = 1;
13689 		goto smallexit;
13690 
13691 	default:
13692 badstate_exit:
13693 		panic("sfmmu_kpm_fault: inconsistent VAC state, vaddr=%p kp=%p "
13694 			"pp=%p", (void *)vaddr, (void *)kp, (void *)pp);
13695 	}
13696 
13697 smallexit:
13698 	/* tte assembly */
13699 	if (uncached == 0)
13700 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13701 	else
13702 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13703 
13704 	/* tsb dropin */
13705 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13706 
13707 	error = 0;
13708 	goto exit;
13709 
13710 largeexit:
13711 	if (kp->kp_refcnt > 0) {
13712 
13713 		/* tte assembly */
13714 		KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
13715 
13716 		/* tsb dropin */
13717 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
13718 
13719 		if (kp->kp_refcntc == 0) {
13720 			/* Set "go" flag for TL tsbmiss handler */
13721 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13722 					KPMTSBM_START);
13723 		}
13724 		ASSERT(kp->kp_refcntc == -1);
13725 		error = 0;
13726 
13727 	} else
13728 		error = EFAULT;
13729 exit:
13730 	mutex_exit(&kpmp->khl_mutex);
13731 	sfmmu_mlist_exit(pml);
13732 	return (error);
13733 }
13734 
13735 /*
13736  * kpm fault handler for mappings with small page size.
13737  */
13738 int
13739 sfmmu_kpm_fault_small(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13740 {
13741 	int		error = 0;
13742 	pgcnt_t		inx;
13743 	kpm_spage_t	*ksp;
13744 	kpm_shlk_t	*kpmsp;
13745 	kmutex_t	*pml;
13746 	pfn_t		pfn = pp->p_pagenum;
13747 	tte_t		tte;
13748 	kmutex_t	*pmtx;
13749 	int		oldval;
13750 
13751 	inx = pfn - mseg->kpm_pbase;
13752 	ksp = &mseg->kpm_spages[inx];
13753 	kpmsp = KPMP_SHASH(ksp);
13754 
13755 	pml = sfmmu_mlist_enter(pp);
13756 
13757 	if (!PP_ISMAPPED_KPM(pp)) {
13758 		sfmmu_mlist_exit(pml);
13759 		return (EFAULT);
13760 	}
13761 
13762 	/*
13763 	 * kp_mapped lookup protected by mlist mutex
13764 	 */
13765 	if (ksp->kp_mapped == KPM_MAPPEDS) {
13766 		/*
13767 		 * Fast path tsbmiss
13768 		 */
13769 		ASSERT(!PP_ISKPMC(pp));
13770 		ASSERT(!PP_ISNC(pp));
13771 
13772 		/* tte assembly */
13773 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13774 
13775 		/* tsb dropin */
13776 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13777 
13778 	} else if (ksp->kp_mapped == KPM_MAPPEDSC) {
13779 		/*
13780 		 * Got here due to existing or gone kpm/hme VAC conflict.
13781 		 * Recheck for vcolor conflicts. Return here w/ either
13782 		 * no conflict, removed hme mapping chain (unload
13783 		 * conflict) or uncached (uncache conflict). VACaches
13784 		 * are cleaned and p_vcolor and PP_TNC are set accordingly
13785 		 * for the conflict cases.
13786 		 */
13787 		sfmmu_kpm_vac_conflict(pp, vaddr);
13788 
13789 		if (PP_ISNC(pp)) {
13790 			/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13791 
13792 			/* tte assembly */
13793 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13794 
13795 			/* tsb dropin */
13796 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13797 
13798 		} else {
13799 			if (PP_ISKPMC(pp)) {
13800 				pmtx = sfmmu_page_enter(pp);
13801 				PP_CLRKPMC(pp);
13802 				sfmmu_page_exit(pmtx);
13803 			}
13804 
13805 			/* tte assembly */
13806 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13807 
13808 			/* tsb dropin */
13809 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13810 
13811 			oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13812 					&kpmsp->kshl_lock, KPM_MAPPEDS);
13813 
13814 			if (oldval != KPM_MAPPEDSC)
13815 				panic("sfmmu_kpm_fault_small: "
13816 					"stale smallpages mapping");
13817 		}
13818 
13819 	} else {
13820 		/*
13821 		 * We got a tsbmiss on a not active kpm_page range.
13822 		 * Let decide segkpm_fault how to panic.
13823 		 */
13824 		error = EFAULT;
13825 	}
13826 
13827 	sfmmu_mlist_exit(pml);
13828 	return (error);
13829 }
13830 
13831 /*
13832  * Check/handle potential hme/kpm mapping conflicts
13833  */
13834 static void
13835 sfmmu_kpm_vac_conflict(page_t *pp, caddr_t vaddr)
13836 {
13837 	int		vcolor;
13838 	struct sf_hment	*sfhmep;
13839 	struct hat	*tmphat;
13840 	struct sf_hment	*tmphme = NULL;
13841 	struct hme_blk	*hmeblkp;
13842 	tte_t		tte;
13843 
13844 	ASSERT(sfmmu_mlist_held(pp));
13845 
13846 	if (PP_ISNC(pp))
13847 		return;
13848 
13849 	vcolor = addr_to_vcolor(vaddr);
13850 	if (PP_GET_VCOLOR(pp) == vcolor)
13851 		return;
13852 
13853 	/*
13854 	 * There could be no vcolor conflict between a large cached
13855 	 * hme page and a non alias range kpm page (neither large nor
13856 	 * small mapped). So if a hme conflict already exists between
13857 	 * a constituent page of a large hme mapping and a shared small
13858 	 * conflicting hme mapping, both mappings must be already
13859 	 * uncached at this point.
13860 	 */
13861 	ASSERT(!PP_ISMAPPED_LARGE(pp));
13862 
13863 	if (!PP_ISMAPPED(pp)) {
13864 		/*
13865 		 * Previous hme user of page had a different color
13866 		 * but since there are no current users
13867 		 * we just flush the cache and change the color.
13868 		 */
13869 		SFMMU_STAT(sf_pgcolor_conflict);
13870 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13871 		PP_SET_VCOLOR(pp, vcolor);
13872 		return;
13873 	}
13874 
13875 	/*
13876 	 * If we get here we have a vac conflict with a current hme
13877 	 * mapping. This must have been established by forcing a wrong
13878 	 * colored mapping, e.g. by using mmap(2) with MAP_FIXED.
13879 	 */
13880 
13881 	/*
13882 	 * Check if any mapping is in same as or if it is locked
13883 	 * since in that case we need to uncache.
13884 	 */
13885 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13886 		tmphme = sfhmep->hme_next;
13887 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13888 		if (hmeblkp->hblk_xhat_bit)
13889 			continue;
13890 		tmphat = hblktosfmmu(hmeblkp);
13891 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
13892 		ASSERT(TTE_IS_VALID(&tte));
13893 		if ((tmphat == ksfmmup) || hmeblkp->hblk_lckcnt) {
13894 			/*
13895 			 * We have an uncache conflict
13896 			 */
13897 			SFMMU_STAT(sf_uncache_conflict);
13898 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
13899 			return;
13900 		}
13901 	}
13902 
13903 	/*
13904 	 * We have an unload conflict
13905 	 */
13906 	SFMMU_STAT(sf_unload_conflict);
13907 
13908 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13909 		tmphme = sfhmep->hme_next;
13910 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13911 		if (hmeblkp->hblk_xhat_bit)
13912 			continue;
13913 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
13914 	}
13915 
13916 	/*
13917 	 * Unloads only does tlb flushes so we need to flush the
13918 	 * dcache vcolor here.
13919 	 */
13920 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13921 	PP_SET_VCOLOR(pp, vcolor);
13922 }
13923 
13924 /*
13925  * Remove all kpm mappings using kpme's for pp and check that
13926  * all kpm mappings (w/ and w/o kpme's) are gone.
13927  */
13928 static void
13929 sfmmu_kpm_pageunload(page_t *pp)
13930 {
13931 	caddr_t		vaddr;
13932 	struct kpme	*kpme, *nkpme;
13933 
13934 	ASSERT(pp != NULL);
13935 	ASSERT(pp->p_kpmref);
13936 	ASSERT(sfmmu_mlist_held(pp));
13937 
13938 	vaddr = hat_kpm_page2va(pp, 1);
13939 
13940 	for (kpme = pp->p_kpmelist; kpme; kpme = nkpme) {
13941 		ASSERT(kpme->kpe_page == pp);
13942 
13943 		if (pp->p_kpmref == 0)
13944 			panic("sfmmu_kpm_pageunload: stale p_kpmref pp=%p "
13945 				"kpme=%p", (void *)pp, (void *)kpme);
13946 
13947 		nkpme = kpme->kpe_next;
13948 
13949 		/* Add instance callback here here if needed later */
13950 		sfmmu_kpme_sub(kpme, pp);
13951 	}
13952 
13953 	/*
13954 	 * Also correct after mixed kpme/nonkpme mappings. If nonkpme
13955 	 * segkpm clients have unlocked the page and forgot to mapout
13956 	 * we panic here.
13957 	 */
13958 	if (pp->p_kpmref != 0)
13959 		panic("sfmmu_kpm_pageunload: bad refcnt pp=%p", (void *)pp);
13960 
13961 	sfmmu_kpm_mapout(pp, vaddr);
13962 }
13963 
13964 /*
13965  * Remove a large kpm mapping from kernel TSB and all TLB's.
13966  */
13967 static void
13968 sfmmu_kpm_demap_large(caddr_t vaddr)
13969 {
13970 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13971 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13972 }
13973 
13974 /*
13975  * Remove a small kpm mapping from kernel TSB and all TLB's.
13976  */
13977 static void
13978 sfmmu_kpm_demap_small(caddr_t vaddr)
13979 {
13980 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13981 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13982 }
13983 
13984 /*
13985  * Demap a kpm mapping in all TLB's.
13986  */
13987 static void
13988 sfmmu_kpm_demap_tlbs(caddr_t vaddr, int ctxnum)
13989 {
13990 	cpuset_t cpuset;
13991 
13992 	kpreempt_disable();
13993 	cpuset = ksfmmup->sfmmu_cpusran;
13994 	CPUSET_AND(cpuset, cpu_ready_set);
13995 	CPUSET_DEL(cpuset, CPU->cpu_id);
13996 	SFMMU_XCALL_STATS(ctxnum);
13997 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)vaddr, ctxnum);
13998 	vtag_flushpage(vaddr, ctxnum);
13999 	kpreempt_enable();
14000 }
14001 
14002 /*
14003  * Summary states used in sfmmu_kpm_vac_unload (KPM_VUL__*).
14004  * See also more detailed comments within in the sfmmu_kpm_vac_unload switch.
14005  * Abbreviations used:
14006  * BIG:   Large page kpm mapping in use.
14007  * CONFL: VAC conflict(s) within a kpm_page.
14008  * INCR:  Count of conflicts within a kpm_page is going to be incremented.
14009  * DECR:  Count of conflicts within a kpm_page is going to be decremented.
14010  * UNMAP_SMALL: A small (regular page size) mapping is going to be unmapped.
14011  * TNC:   Temporary non cached: a kpm mapped page is mapped in TNC state.
14012  */
14013 #define	KPM_VUL_BIG		(0)
14014 #define	KPM_VUL_CONFL_INCR1	(KPM_KS)
14015 #define	KPM_VUL_UNMAP_SMALL1	(KPM_KS | KPM_S)
14016 #define	KPM_VUL_CONFL_INCR2	(KPM_KC)
14017 #define	KPM_VUL_CONFL_INCR3	(KPM_KC | KPM_KS)
14018 #define	KPM_VUL_UNMAP_SMALL2	(KPM_KC | KPM_KS | KPM_S)
14019 #define	KPM_VUL_CONFL_DECR1	(KPM_KC | KPM_C)
14020 #define	KPM_VUL_CONFL_DECR2	(KPM_KC | KPM_C | KPM_KS)
14021 #define	KPM_VUL_TNC		(KPM_KC | KPM_C | KPM_KS | KPM_S)
14022 
14023 /*
14024  * Handle VAC unload conflicts introduced by hme mappings or vice
14025  * versa when a hme conflict mapping is replaced by a non conflict
14026  * one. Perform actions and state transitions according to the
14027  * various page and kpm_page entry states. VACache flushes are in
14028  * the responsibiliy of the caller. We still hold the mlist lock.
14029  */
14030 static void
14031 sfmmu_kpm_vac_unload(page_t *pp, caddr_t vaddr)
14032 {
14033 	kpm_page_t	*kp;
14034 	kpm_hlk_t	*kpmp;
14035 	caddr_t		kpmvaddr = hat_kpm_page2va(pp, 1);
14036 	int		newcolor;
14037 	kmutex_t	*pmtx;
14038 	uint_t		vacunlcase;
14039 	int		badstate = 0;
14040 	kpm_spage_t	*ksp;
14041 	kpm_shlk_t	*kpmsp;
14042 
14043 	ASSERT(PAGE_LOCKED(pp));
14044 	ASSERT(sfmmu_mlist_held(pp));
14045 	ASSERT(!PP_ISNC(pp));
14046 
14047 	newcolor = addr_to_vcolor(kpmvaddr) != addr_to_vcolor(vaddr);
14048 	if (kpm_smallpages)
14049 		goto smallpages_vac_unload;
14050 
14051 	PP2KPMPG(pp, kp);
14052 	kpmp = KPMP_HASH(kp);
14053 	mutex_enter(&kpmp->khl_mutex);
14054 
14055 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14056 		if (kp->kp_refcnta < 1) {
14057 			panic("sfmmu_kpm_vac_unload: bad refcnta kpm_page=%p\n",
14058 				(void *)kp);
14059 		}
14060 
14061 		if (PP_ISKPMC(pp) == 0) {
14062 			if (newcolor == 0)
14063 				goto exit;
14064 			sfmmu_kpm_demap_small(kpmvaddr);
14065 			pmtx = sfmmu_page_enter(pp);
14066 			PP_SETKPMC(pp);
14067 			sfmmu_page_exit(pmtx);
14068 
14069 		} else if (newcolor == 0) {
14070 			pmtx = sfmmu_page_enter(pp);
14071 			PP_CLRKPMC(pp);
14072 			sfmmu_page_exit(pmtx);
14073 
14074 		} else {
14075 			badstate++;
14076 		}
14077 
14078 		goto exit;
14079 	}
14080 
14081 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14082 	if (kp->kp_refcntc == -1) {
14083 		/*
14084 		 * We should come here only if trap level tsb miss
14085 		 * handler is disabled.
14086 		 */
14087 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14088 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14089 	} else {
14090 		badstate |= (kp->kp_refcntc < 0);
14091 	}
14092 
14093 	if (badstate)
14094 		goto exit;
14095 
14096 	if (PP_ISKPMC(pp) == 0 && newcolor == 0) {
14097 		ASSERT(PP_ISKPMS(pp) == 0);
14098 		goto exit;
14099 	}
14100 
14101 	/*
14102 	 * Combine the per kpm_page and per page kpm VAC states
14103 	 * to a summary state in order to make the vac unload
14104 	 * handling more concise.
14105 	 */
14106 	vacunlcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14107 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14108 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14109 			(PP_ISKPMS(pp) ? KPM_S : 0));
14110 
14111 	switch (vacunlcase) {
14112 	case KPM_VUL_BIG:				/* - - - - */
14113 		/*
14114 		 * Have to breakup the large page mapping to be
14115 		 * able to handle the conflicting hme vaddr.
14116 		 */
14117 		if (kp->kp_refcntc == -1) {
14118 			/* remove go indication */
14119 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14120 					&kpmp->khl_lock, KPMTSBM_STOP);
14121 		}
14122 		sfmmu_kpm_demap_large(kpmvaddr);
14123 
14124 		ASSERT(kp->kp_refcntc == 0);
14125 		kp->kp_refcntc++;
14126 		pmtx = sfmmu_page_enter(pp);
14127 		PP_SETKPMC(pp);
14128 		sfmmu_page_exit(pmtx);
14129 		break;
14130 
14131 	case KPM_VUL_UNMAP_SMALL1:			/* -  - ks s */
14132 	case KPM_VUL_UNMAP_SMALL2:			/* kc - ks s */
14133 		/*
14134 		 * New conflict w/ an active kpm page, actually mapped
14135 		 * in by small TSB/TLB entries. Remove the mapping and
14136 		 * update states.
14137 		 */
14138 		ASSERT(newcolor);
14139 		sfmmu_kpm_demap_small(kpmvaddr);
14140 		kp->kp_refcnts--;
14141 		kp->kp_refcnt++;
14142 		kp->kp_refcntc++;
14143 		pmtx = sfmmu_page_enter(pp);
14144 		PP_CLRKPMS(pp);
14145 		PP_SETKPMC(pp);
14146 		sfmmu_page_exit(pmtx);
14147 		break;
14148 
14149 	case KPM_VUL_CONFL_INCR1:			/* -  - ks - */
14150 	case KPM_VUL_CONFL_INCR2:			/* kc - -  - */
14151 	case KPM_VUL_CONFL_INCR3:			/* kc - ks - */
14152 		/*
14153 		 * New conflict on a active kpm mapped page not yet in
14154 		 * TSB/TLB. Mark page and increment the kpm_page conflict
14155 		 * count.
14156 		 */
14157 		ASSERT(newcolor);
14158 		kp->kp_refcntc++;
14159 		pmtx = sfmmu_page_enter(pp);
14160 		PP_SETKPMC(pp);
14161 		sfmmu_page_exit(pmtx);
14162 		break;
14163 
14164 	case KPM_VUL_CONFL_DECR1:			/* kc c -  - */
14165 	case KPM_VUL_CONFL_DECR2:			/* kc c ks - */
14166 		/*
14167 		 * A conflicting hme mapping is removed for an active
14168 		 * kpm page not yet in TSB/TLB. Unmark page and decrement
14169 		 * the kpm_page conflict count.
14170 		 */
14171 		ASSERT(newcolor == 0);
14172 		kp->kp_refcntc--;
14173 		pmtx = sfmmu_page_enter(pp);
14174 		PP_CLRKPMC(pp);
14175 		sfmmu_page_exit(pmtx);
14176 		break;
14177 
14178 	case KPM_VUL_TNC:				/* kc c ks s */
14179 		cmn_err(CE_NOTE, "sfmmu_kpm_vac_unload: "
14180 			"page not in NC state");
14181 		/* FALLTHRU */
14182 
14183 	default:
14184 		badstate++;
14185 	}
14186 exit:
14187 	if (badstate) {
14188 		panic("sfmmu_kpm_vac_unload: inconsistent VAC state, "
14189 			"kpmvaddr=%p kp=%p pp=%p",
14190 			(void *)kpmvaddr, (void *)kp, (void *)pp);
14191 	}
14192 	mutex_exit(&kpmp->khl_mutex);
14193 
14194 	return;
14195 
14196 smallpages_vac_unload:
14197 	if (newcolor == 0)
14198 		return;
14199 
14200 	PP2KPMSPG(pp, ksp);
14201 	kpmsp = KPMP_SHASH(ksp);
14202 
14203 	if (PP_ISKPMC(pp) == 0) {
14204 		if (ksp->kp_mapped == KPM_MAPPEDS) {
14205 			/*
14206 			 * Stop TL tsbmiss handling
14207 			 */
14208 			(void) sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14209 					&kpmsp->kshl_lock, KPM_MAPPEDSC);
14210 
14211 			sfmmu_kpm_demap_small(kpmvaddr);
14212 
14213 		} else if (ksp->kp_mapped != KPM_MAPPEDSC) {
14214 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14215 		}
14216 
14217 		pmtx = sfmmu_page_enter(pp);
14218 		PP_SETKPMC(pp);
14219 		sfmmu_page_exit(pmtx);
14220 
14221 	} else {
14222 		if (ksp->kp_mapped != KPM_MAPPEDSC)
14223 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14224 	}
14225 }
14226 
14227 /*
14228  * Page is marked to be in VAC conflict to an existing kpm mapping
14229  * or is kpm mapped using only the regular pagesize. Called from
14230  * sfmmu_hblk_unload when a mlist is completely removed.
14231  */
14232 static void
14233 sfmmu_kpm_hme_unload(page_t *pp)
14234 {
14235 	/* tte assembly */
14236 	kpm_page_t	*kp;
14237 	kpm_hlk_t	*kpmp;
14238 	caddr_t		vaddr;
14239 	kmutex_t	*pmtx;
14240 	uint_t		flags;
14241 	kpm_spage_t	*ksp;
14242 
14243 	ASSERT(sfmmu_mlist_held(pp));
14244 	ASSERT(PP_ISMAPPED_KPM(pp));
14245 
14246 	flags = pp->p_nrm & (P_KPMC | P_KPMS);
14247 	if (kpm_smallpages)
14248 		goto smallpages_hme_unload;
14249 
14250 	if (flags == (P_KPMC | P_KPMS)) {
14251 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14252 
14253 	} else if (flags == P_KPMS) {
14254 		/*
14255 		 * Page mapped small but not involved in VAC conflict
14256 		 */
14257 		return;
14258 	}
14259 
14260 	vaddr = hat_kpm_page2va(pp, 1);
14261 
14262 	PP2KPMPG(pp, kp);
14263 	kpmp = KPMP_HASH(kp);
14264 	mutex_enter(&kpmp->khl_mutex);
14265 
14266 	if (IS_KPM_ALIAS_RANGE(vaddr)) {
14267 		if (kp->kp_refcnta < 1) {
14268 			panic("sfmmu_kpm_hme_unload: bad refcnta kpm_page=%p\n",
14269 				(void *)kp);
14270 		}
14271 
14272 	} else {
14273 		if (kp->kp_refcntc < 1) {
14274 			panic("sfmmu_kpm_hme_unload: bad refcntc kpm_page=%p\n",
14275 				(void *)kp);
14276 		}
14277 		kp->kp_refcntc--;
14278 	}
14279 
14280 	pmtx = sfmmu_page_enter(pp);
14281 	PP_CLRKPMC(pp);
14282 	sfmmu_page_exit(pmtx);
14283 
14284 	mutex_exit(&kpmp->khl_mutex);
14285 	return;
14286 
14287 smallpages_hme_unload:
14288 	if (flags != P_KPMC)
14289 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14290 
14291 	vaddr = hat_kpm_page2va(pp, 1);
14292 	PP2KPMSPG(pp, ksp);
14293 
14294 	if (ksp->kp_mapped != KPM_MAPPEDSC)
14295 		panic("sfmmu_kpm_hme_unload: inconsistent mapping");
14296 
14297 	/*
14298 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14299 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14300 	 * There we can start over again.
14301 	 */
14302 
14303 	pmtx = sfmmu_page_enter(pp);
14304 	PP_CLRKPMC(pp);
14305 	sfmmu_page_exit(pmtx);
14306 }
14307 
14308 /*
14309  * Special hooks for sfmmu_page_cache_array() when changing the
14310  * cacheability of a page. It is used to obey the hat_kpm lock
14311  * ordering (mlist -> kpmp -> spl, and back).
14312  */
14313 static kpm_hlk_t *
14314 sfmmu_kpm_kpmp_enter(page_t *pp, pgcnt_t npages)
14315 {
14316 	kpm_page_t	*kp;
14317 	kpm_hlk_t	*kpmp;
14318 
14319 	ASSERT(sfmmu_mlist_held(pp));
14320 
14321 	if (kpm_smallpages || PP_ISMAPPED_KPM(pp) == 0)
14322 		return (NULL);
14323 
14324 	ASSERT(npages <= kpmpnpgs);
14325 
14326 	PP2KPMPG(pp, kp);
14327 	kpmp = KPMP_HASH(kp);
14328 	mutex_enter(&kpmp->khl_mutex);
14329 
14330 	return (kpmp);
14331 }
14332 
14333 static void
14334 sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp)
14335 {
14336 	if (kpm_smallpages || kpmp == NULL)
14337 		return;
14338 
14339 	mutex_exit(&kpmp->khl_mutex);
14340 }
14341 
14342 /*
14343  * Summary states used in sfmmu_kpm_page_cache (KPM_*).
14344  * See also more detailed comments within in the sfmmu_kpm_page_cache switch.
14345  * Abbreviations used:
14346  * UNC:     Input state for an uncache request.
14347  *   BIG:     Large page kpm mapping in use.
14348  *   SMALL:   Page has a small kpm mapping within a kpm_page range.
14349  *   NODEMAP: No demap needed.
14350  *   NOP:     No operation needed on this input state.
14351  * CACHE:   Input state for a re-cache request.
14352  *   MAPS:    Page is in TNC and kpm VAC conflict state and kpm mapped small.
14353  *   NOMAP:   Page is in TNC and kpm VAC conflict state, but not small kpm
14354  *            mapped.
14355  *   NOMAPO:  Page is in TNC and kpm VAC conflict state, but not small kpm
14356  *            mapped. There are also other small kpm mappings within this
14357  *            kpm_page.
14358  */
14359 #define	KPM_UNC_BIG		(0)
14360 #define	KPM_UNC_NODEMAP1	(KPM_KS)
14361 #define	KPM_UNC_SMALL1		(KPM_KS | KPM_S)
14362 #define	KPM_UNC_NODEMAP2	(KPM_KC)
14363 #define	KPM_UNC_NODEMAP3	(KPM_KC | KPM_KS)
14364 #define	KPM_UNC_SMALL2		(KPM_KC | KPM_KS | KPM_S)
14365 #define	KPM_UNC_NOP1		(KPM_KC | KPM_C)
14366 #define	KPM_UNC_NOP2		(KPM_KC | KPM_C | KPM_KS)
14367 #define	KPM_CACHE_NOMAP		(KPM_KC | KPM_C)
14368 #define	KPM_CACHE_NOMAPO	(KPM_KC | KPM_C | KPM_KS)
14369 #define	KPM_CACHE_MAPS		(KPM_KC | KPM_C | KPM_KS | KPM_S)
14370 
14371 /*
14372  * This function is called when the virtual cacheability of a page
14373  * is changed and the page has an actice kpm mapping. The mlist mutex,
14374  * the spl hash lock and the kpmp mutex (if needed) are already grabbed.
14375  */
14376 static void
14377 sfmmu_kpm_page_cache(page_t *pp, int flags, int cache_flush_tag)
14378 {
14379 	kpm_page_t	*kp;
14380 	kpm_hlk_t	*kpmp;
14381 	caddr_t		kpmvaddr;
14382 	int		badstate = 0;
14383 	uint_t		pgcacase;
14384 	kpm_spage_t	*ksp;
14385 	kpm_shlk_t	*kpmsp;
14386 	int		oldval;
14387 
14388 	ASSERT(PP_ISMAPPED_KPM(pp));
14389 	ASSERT(sfmmu_mlist_held(pp));
14390 	ASSERT(sfmmu_page_spl_held(pp));
14391 
14392 	if (flags != HAT_TMPNC && flags != HAT_CACHE)
14393 		panic("sfmmu_kpm_page_cache: bad flags");
14394 
14395 	kpmvaddr = hat_kpm_page2va(pp, 1);
14396 
14397 	if (flags == HAT_TMPNC && cache_flush_tag == CACHE_FLUSH) {
14398 		pfn_t pfn = pp->p_pagenum;
14399 		int vcolor = addr_to_vcolor(kpmvaddr);
14400 		cpuset_t cpuset = cpu_ready_set;
14401 
14402 		/* Flush vcolor in DCache */
14403 		CPUSET_DEL(cpuset, CPU->cpu_id);
14404 		SFMMU_XCALL_STATS(ksfmmup->sfmmu_cnum);
14405 		xt_some(cpuset, vac_flushpage_tl1, pfn, vcolor);
14406 		vac_flushpage(pfn, vcolor);
14407 	}
14408 
14409 	if (kpm_smallpages)
14410 		goto smallpages_page_cache;
14411 
14412 	PP2KPMPG(pp, kp);
14413 	kpmp = KPMP_HASH(kp);
14414 	ASSERT(MUTEX_HELD(&kpmp->khl_mutex));
14415 
14416 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14417 		if (kp->kp_refcnta < 1) {
14418 			panic("sfmmu_kpm_page_cache: bad refcnta "
14419 				"kpm_page=%p\n", (void *)kp);
14420 		}
14421 		sfmmu_kpm_demap_small(kpmvaddr);
14422 		if (flags == HAT_TMPNC) {
14423 			PP_SETKPMC(pp);
14424 			ASSERT(!PP_ISKPMS(pp));
14425 		} else {
14426 			ASSERT(PP_ISKPMC(pp));
14427 			PP_CLRKPMC(pp);
14428 		}
14429 		goto exit;
14430 	}
14431 
14432 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14433 	if (kp->kp_refcntc == -1) {
14434 		/*
14435 		 * We should come here only if trap level tsb miss
14436 		 * handler is disabled.
14437 		 */
14438 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14439 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14440 	} else {
14441 		badstate |= (kp->kp_refcntc < 0);
14442 	}
14443 
14444 	if (badstate)
14445 		goto exit;
14446 
14447 	/*
14448 	 * Combine the per kpm_page and per page kpm VAC states to
14449 	 * a summary state in order to make the VAC cache/uncache
14450 	 * handling more concise.
14451 	 */
14452 	pgcacase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14453 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14454 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14455 			(PP_ISKPMS(pp) ? KPM_S : 0));
14456 
14457 	if (flags == HAT_CACHE) {
14458 		switch (pgcacase) {
14459 		case KPM_CACHE_MAPS:			/* kc c ks s */
14460 			sfmmu_kpm_demap_small(kpmvaddr);
14461 			if (kp->kp_refcnts < 1) {
14462 				panic("sfmmu_kpm_page_cache: bad refcnts "
14463 				"kpm_page=%p\n", (void *)kp);
14464 			}
14465 			kp->kp_refcnts--;
14466 			kp->kp_refcnt++;
14467 			PP_CLRKPMS(pp);
14468 			/* FALLTHRU */
14469 
14470 		case KPM_CACHE_NOMAP:			/* kc c -  - */
14471 		case KPM_CACHE_NOMAPO:			/* kc c ks - */
14472 			kp->kp_refcntc--;
14473 			PP_CLRKPMC(pp);
14474 			break;
14475 
14476 		default:
14477 			badstate++;
14478 		}
14479 		goto exit;
14480 	}
14481 
14482 	switch (pgcacase) {
14483 	case KPM_UNC_BIG:				/* - - - - */
14484 		if (kp->kp_refcnt < 1) {
14485 			panic("sfmmu_kpm_page_cache: bad refcnt "
14486 				"kpm_page=%p\n", (void *)kp);
14487 		}
14488 
14489 		/*
14490 		 * Have to breakup the large page mapping in preparation
14491 		 * to the upcoming TNC mode handled by small mappings.
14492 		 * The demap can already be done due to another conflict
14493 		 * within the kpm_page.
14494 		 */
14495 		if (kp->kp_refcntc == -1) {
14496 			/* remove go indication */
14497 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14498 				&kpmp->khl_lock, KPMTSBM_STOP);
14499 		}
14500 		ASSERT(kp->kp_refcntc == 0);
14501 		sfmmu_kpm_demap_large(kpmvaddr);
14502 		kp->kp_refcntc++;
14503 		PP_SETKPMC(pp);
14504 		break;
14505 
14506 	case KPM_UNC_SMALL1:				/* -  - ks s */
14507 	case KPM_UNC_SMALL2:				/* kc - ks s */
14508 		/*
14509 		 * Have to demap an already small kpm mapping in preparation
14510 		 * to the upcoming TNC mode. The demap can already be done
14511 		 * due to another conflict within the kpm_page.
14512 		 */
14513 		sfmmu_kpm_demap_small(kpmvaddr);
14514 		kp->kp_refcntc++;
14515 		kp->kp_refcnts--;
14516 		kp->kp_refcnt++;
14517 		PP_CLRKPMS(pp);
14518 		PP_SETKPMC(pp);
14519 		break;
14520 
14521 	case KPM_UNC_NODEMAP1:				/* -  - ks - */
14522 		/* fallthru */
14523 
14524 	case KPM_UNC_NODEMAP2:				/* kc - -  - */
14525 	case KPM_UNC_NODEMAP3:				/* kc - ks - */
14526 		kp->kp_refcntc++;
14527 		PP_SETKPMC(pp);
14528 		break;
14529 
14530 	case KPM_UNC_NOP1:				/* kc c -  - */
14531 	case KPM_UNC_NOP2:				/* kc c ks - */
14532 		break;
14533 
14534 	default:
14535 		badstate++;
14536 	}
14537 exit:
14538 	if (badstate) {
14539 		panic("sfmmu_kpm_page_cache: inconsistent VAC state "
14540 			"kpmvaddr=%p kp=%p pp=%p", (void *)kpmvaddr,
14541 			(void *)kp, (void *)pp);
14542 	}
14543 	return;
14544 
14545 smallpages_page_cache:
14546 	PP2KPMSPG(pp, ksp);
14547 	kpmsp = KPMP_SHASH(ksp);
14548 
14549 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14550 				&kpmsp->kshl_lock, KPM_MAPPEDSC);
14551 
14552 	if (!(oldval == KPM_MAPPEDS || oldval == KPM_MAPPEDSC))
14553 		panic("smallpages_page_cache: inconsistent mapping");
14554 
14555 	sfmmu_kpm_demap_small(kpmvaddr);
14556 
14557 	if (flags == HAT_TMPNC) {
14558 		PP_SETKPMC(pp);
14559 		ASSERT(!PP_ISKPMS(pp));
14560 
14561 	} else {
14562 		ASSERT(PP_ISKPMC(pp));
14563 		PP_CLRKPMC(pp);
14564 	}
14565 
14566 	/*
14567 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14568 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14569 	 * There we can start over again.
14570 	 */
14571 }
14572 
14573 /*
14574  * unused in sfmmu
14575  */
14576 void
14577 hat_dump(void)
14578 {
14579 }
14580 
14581 /*
14582  * Called when a thread is exiting and we have switched to the kernel address
14583  * space.  Perform the same VM initialization resume() uses when switching
14584  * processes.
14585  *
14586  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
14587  * we call it anyway in case the semantics change in the future.
14588  */
14589 /*ARGSUSED*/
14590 void
14591 hat_thread_exit(kthread_t *thd)
14592 {
14593 	ASSERT(thd->t_procp->p_as == &kas);
14594 
14595 	sfmmu_setctx_sec(KCONTEXT);
14596 	sfmmu_load_mmustate(ksfmmup);
14597 }
14598