xref: /titanic_51/usr/src/uts/intel/kdi/kdi_idt.c (revision dd850934386c395d7dd28457dab735df80de144c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Management of KMDB's IDT, which is installed upon KMDB activation.
28  *
29  * Debugger activation has two flavors, which cover the cases where KMDB is
30  * loaded at boot, and when it is loaded after boot.  In brief, in both cases,
31  * the KDI needs to interpose upon several handlers in the IDT.  When
32  * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the
33  * handlers to what they were before we started.
34  *
35  * We also take over the entirety of IDT (except the double-fault handler) on
36  * the active CPU when we're in kmdb so we can handle things like page faults
37  * sensibly.
38  *
39  * Boot-loaded KMDB
40  *
41  * When we're first activated, we're running on boot's IDT.  We need to be able
42  * to function in this world, so we'll install our handlers into boot's IDT.
43  * This is a little complicated: we're using the fake cpu_t set up by
44  * boot_kdi_tmpinit(), so we can't access cpu_idt directly.  Instead,
45  * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem.
46  *
47  * Later, when we're about to switch to the kernel's IDT, it'll call us via
48  * kdi_idt_sync(), allowing us to add our handlers to the new IDT.  While
49  * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we
50  * replace so we can pass traps back to the kernel as necessary.
51  *
52  * The last phase of boot-loaded KMDB activation occurs at non-boot CPU
53  * startup.  We will be called on each non-boot CPU, thus allowing us to set up
54  * any watchpoints that may have been configured on the boot CPU and interpose
55  * on the given CPU's IDT.  We don't save the interposed descriptors in this
56  * case -- see kdi_cpu_init() for details.
57  *
58  * Mod-loaded KMDB
59  *
60  * This style of activation is much simpler, as the CPUs are already running,
61  * and are using their own copy of the kernel's IDT.  We simply interpose upon
62  * each CPU's IDT.  We save the handlers we replace, both for deactivation and
63  * for passing traps back to the kernel.  Note that for the hypervisors'
64  * benefit, we need to xcall to the other CPUs to do this, since we need to
65  * actively set the trap entries in its virtual IDT from that vcpu's context
66  * rather than just modifying the IDT table from the CPU running kdi_activate().
67  */
68 
69 #include <sys/types.h>
70 #include <sys/segments.h>
71 #include <sys/trap.h>
72 #include <sys/cpuvar.h>
73 #include <sys/reboot.h>
74 #include <sys/sunddi.h>
75 #include <sys/archsystm.h>
76 #include <sys/kdi_impl.h>
77 #include <sys/x_call.h>
78 #include <ia32/sys/psw.h>
79 
80 #define	KDI_GATE_NVECS	3
81 
82 #define	KDI_IDT_NOSAVE	0
83 #define	KDI_IDT_SAVE	1
84 
85 #define	KDI_IDT_DTYPE_KERNEL	0
86 #define	KDI_IDT_DTYPE_BOOT	1
87 
88 kdi_cpusave_t *kdi_cpusave;
89 int kdi_ncpusave;
90 
91 static kdi_main_t kdi_kmdb_main;
92 
93 kdi_drreg_t kdi_drreg;
94 
95 #ifndef __amd64
96 /* Used to track the current set of valid kernel selectors. */
97 uint32_t	kdi_cs;
98 uint32_t	kdi_ds;
99 uint32_t	kdi_fs;
100 uint32_t	kdi_gs;
101 #endif
102 
103 uint_t		kdi_msr_wrexit_msr;
104 uint64_t	*kdi_msr_wrexit_valp;
105 
106 uintptr_t	kdi_kernel_handler;
107 
108 int		kdi_trap_switch;
109 
110 #define	KDI_MEMRANGES_MAX	2
111 
112 kdi_memrange_t	kdi_memranges[KDI_MEMRANGES_MAX];
113 int		kdi_nmemranges;
114 
115 typedef void idt_hdlr_f(void);
116 
117 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4;
118 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9;
119 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12;
120 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_trap17;
121 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32;
122 extern idt_hdlr_f kdi_invaltrap;
123 extern size_t kdi_ivct_size;
124 extern char kdi_slave_entry_patch;
125 
126 typedef struct kdi_gate_spec {
127 	uint_t kgs_vec;
128 	uint_t kgs_dpl;
129 } kdi_gate_spec_t;
130 
131 /*
132  * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list.
133  */
134 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = {
135 	{ T_SGLSTP, TRP_KPL },
136 	{ T_BPTFLT, TRP_UPL },
137 	{ T_DBGENTR, TRP_KPL }
138 };
139 
140 static gate_desc_t kdi_kgates[KDI_GATE_NVECS];
141 
142 gate_desc_t kdi_idt[NIDT];
143 
144 struct idt_description {
145 	uint_t id_low;
146 	uint_t id_high;
147 	idt_hdlr_f *id_basehdlr;
148 	size_t *id_incrp;
149 } idt_description[] = {
150 	{ T_ZERODIV, 0,		kdi_trap0, NULL },
151 	{ T_SGLSTP, 0,		kdi_trap1, NULL },
152 	{ T_NMIFLT, 0,		kdi_int2, NULL },
153 	{ T_BPTFLT, 0,		kdi_trap3, NULL },
154 	{ T_OVFLW, 0,		kdi_trap4, NULL },
155 	{ T_BOUNDFLT, 0,	kdi_trap5, NULL },
156 	{ T_ILLINST, 0,		kdi_trap6, NULL },
157 	{ T_NOEXTFLT, 0,	kdi_trap7, NULL },
158 #if !defined(__xpv)
159 	{ T_DBLFLT, 0,		syserrtrap, NULL },
160 #endif
161 	{ T_EXTOVRFLT, 0,	kdi_trap9, NULL },
162 	{ T_TSSFLT, 0,		kdi_traperr10, NULL },
163 	{ T_SEGFLT, 0,		kdi_traperr11, NULL },
164 	{ T_STKFLT, 0,		kdi_traperr12, NULL },
165 	{ T_GPFLT, 0,		kdi_traperr13, NULL },
166 	{ T_PGFLT, 0,		kdi_traperr14, NULL },
167 	{ 15, 0,		kdi_invaltrap, NULL },
168 	{ T_EXTERRFLT, 0, 	kdi_trap16, NULL },
169 	{ T_ALIGNMENT, 0, 	kdi_trap17, NULL },
170 	{ T_MCE, 0,		kdi_trap18, NULL },
171 	{ T_SIMDFPE, 0,		kdi_trap19, NULL },
172 	{ T_DBGENTR, 0,		kdi_trap20, NULL },
173 	{ 21, 31,		kdi_invaltrap, NULL },
174 	{ 32, 255,		kdi_ivct32, &kdi_ivct_size },
175 	{ 0, 0, NULL },
176 };
177 
178 void
179 kdi_idt_init(selector_t sel)
180 {
181 	struct idt_description *id;
182 	int i;
183 
184 	for (id = idt_description; id->id_basehdlr != NULL; id++) {
185 		uint_t high = id->id_high != 0 ? id->id_high : id->id_low;
186 		size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0;
187 
188 		for (i = id->id_low; i <= high; i++) {
189 			caddr_t hdlr = (caddr_t)id->id_basehdlr +
190 			    incr * (i - id->id_low);
191 			set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel,
192 			    SDT_SYSIGT, TRP_KPL, i);
193 		}
194 	}
195 }
196 
197 /*
198  * Patch caller-provided code into the debugger's IDT handlers.  This code is
199  * used to save MSRs that must be saved before the first branch.  All handlers
200  * are essentially the same, and end with a branch to kdi_cmnint.  To save the
201  * MSR, we need to patch in before the branch.  The handlers have the following
202  * structure: KDI_MSR_PATCHOFF bytes of code, KDI_MSR_PATCHSZ bytes of
203  * patchable space, followed by more code.
204  */
205 void
206 kdi_idt_patch(caddr_t code, size_t sz)
207 {
208 	int i;
209 
210 	ASSERT(sz <= KDI_MSR_PATCHSZ);
211 
212 	for (i = 0; i < sizeof (kdi_idt) / sizeof (struct gate_desc); i++) {
213 		gate_desc_t *gd;
214 		uchar_t *patch;
215 
216 		if (i == T_DBLFLT)
217 			continue;	/* uses kernel's handler */
218 
219 		gd = &kdi_idt[i];
220 		patch = (uchar_t *)GATESEG_GETOFFSET(gd) + KDI_MSR_PATCHOFF;
221 
222 		/*
223 		 * We can't ASSERT that there's a nop here, because this may be
224 		 * a debugger restart.  In that case, we're copying the new
225 		 * patch point over the old one.
226 		 */
227 		/* FIXME: dtrace fbt ... */
228 		bcopy(code, patch, sz);
229 
230 		/* Fill the rest with nops to be sure */
231 		while (sz < KDI_MSR_PATCHSZ)
232 			patch[sz++] = 0x90; /* nop */
233 	}
234 }
235 
236 static void
237 kdi_idt_gates_install(selector_t sel, int saveold)
238 {
239 	gate_desc_t gates[KDI_GATE_NVECS];
240 	int i;
241 
242 	bzero(gates, sizeof (*gates));
243 
244 	for (i = 0; i < KDI_GATE_NVECS; i++) {
245 		const kdi_gate_spec_t *gs = &kdi_gate_specs[i];
246 		uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]);
247 		set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT,
248 		    gs->kgs_dpl, gs->kgs_vec);
249 	}
250 
251 	for (i = 0; i < KDI_GATE_NVECS; i++) {
252 		uint_t vec = kdi_gate_specs[i].kgs_vec;
253 
254 		if (saveold)
255 			kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec];
256 
257 		kdi_idt_write(&gates[i], vec);
258 	}
259 }
260 
261 static void
262 kdi_idt_gates_restore(void)
263 {
264 	int i;
265 
266 	for (i = 0; i < KDI_GATE_NVECS; i++)
267 		kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec);
268 }
269 
270 /*
271  * Called when we switch to the kernel's IDT.  We need to interpose on the
272  * kernel's IDT entries and stop using KMDBCODE_SEL.
273  */
274 void
275 kdi_idt_sync(void)
276 {
277 	kdi_idt_init(KCS_SEL);
278 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
279 }
280 
281 /*
282  * On some processors, we'll need to clear a certain MSR before proceeding into
283  * the debugger.  Complicating matters, this MSR must be cleared before we take
284  * any branches.  We have patch points in every trap handler, which will cover
285  * all entry paths for master CPUs.  We also have a patch point in the slave
286  * entry code.
287  */
288 static void
289 kdi_msr_add_clrentry(uint_t msr)
290 {
291 #ifdef __amd64
292 	uchar_t code[] = {
293 		0x51, 0x50, 0x52,		/* pushq %rcx, %rax, %rdx */
294 		0xb9, 0x00, 0x00, 0x00, 0x00,	/* movl $MSRNUM, %ecx */
295 		0x31, 0xc0,			/* clr %eax */
296 		0x31, 0xd2,			/* clr %edx */
297 		0x0f, 0x30,			/* wrmsr */
298 		0x5a, 0x58, 0x59		/* popq %rdx, %rax, %rcx */
299 	};
300 	uchar_t *patch = &code[4];
301 #else
302 	uchar_t code[] = {
303 		0x60,				/* pushal */
304 		0xb9, 0x00, 0x00, 0x00, 0x00,	/* movl $MSRNUM, %ecx */
305 		0x31, 0xc0,			/* clr %eax */
306 		0x31, 0xd2,			/* clr %edx */
307 		0x0f, 0x30,			/* wrmsr */
308 		0x61				/* popal */
309 	};
310 	uchar_t *patch = &code[2];
311 #endif
312 
313 	bcopy(&msr, patch, sizeof (uint32_t));
314 
315 	kdi_idt_patch((caddr_t)code, sizeof (code));
316 
317 	bcopy(code, &kdi_slave_entry_patch, sizeof (code));
318 }
319 
320 static void
321 kdi_msr_add_wrexit(uint_t msr, uint64_t *valp)
322 {
323 	kdi_msr_wrexit_msr = msr;
324 	kdi_msr_wrexit_valp = valp;
325 }
326 
327 void
328 kdi_set_debug_msrs(kdi_msr_t *msrs)
329 {
330 	int nmsrs, i;
331 
332 	ASSERT(kdi_cpusave[0].krs_msr == NULL);
333 
334 	/* Look in CPU0's MSRs for any special MSRs. */
335 	for (nmsrs = 0; msrs[nmsrs].msr_num != 0; nmsrs++) {
336 		switch (msrs[nmsrs].msr_type) {
337 		case KDI_MSR_CLEARENTRY:
338 			kdi_msr_add_clrentry(msrs[nmsrs].msr_num);
339 			break;
340 
341 		case KDI_MSR_WRITEDELAY:
342 			kdi_msr_add_wrexit(msrs[nmsrs].msr_num,
343 			    msrs[nmsrs].kdi_msr_valp);
344 			break;
345 		}
346 	}
347 
348 	nmsrs++;
349 
350 	for (i = 0; i < kdi_ncpusave; i++)
351 		kdi_cpusave[i].krs_msr = &msrs[nmsrs * i];
352 }
353 
354 void
355 kdi_update_drreg(kdi_drreg_t *drreg)
356 {
357 	kdi_drreg = *drreg;
358 }
359 
360 void
361 kdi_memrange_add(caddr_t base, size_t len)
362 {
363 	kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges];
364 
365 	ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX);
366 
367 	mr->mr_base = base;
368 	mr->mr_lim = base + len - 1;
369 	kdi_nmemranges++;
370 }
371 
372 void
373 kdi_idt_switch(kdi_cpusave_t *cpusave)
374 {
375 	if (cpusave == NULL)
376 		kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1);
377 	else
378 		kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1);
379 }
380 
381 /*
382  * Activation for CPUs other than the boot CPU, called from that CPU's
383  * mp_startup().  We saved the kernel's descriptors when we initialized the
384  * boot CPU, so we don't want to do it again.  Saving the handlers from this
385  * CPU's IDT would actually be dangerous with the CPU initialization method in
386  * use at the time of this writing.  With that method, the startup code creates
387  * the IDTs for slave CPUs by copying the one used by the boot CPU, which has
388  * already been interposed upon by KMDB.  Were we to interpose again, we'd
389  * replace the kernel's descriptors with our own in the save area.  By not
390  * saving, but still overwriting, we'll work in the current world, and in any
391  * future world where the IDT is generated from scratch.
392  */
393 void
394 kdi_cpu_init(void)
395 {
396 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE);
397 	/* Load the debug registers and MSRs */
398 	kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]);
399 }
400 
401 /*
402  * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't
403  * loaded at boot.
404  */
405 static int
406 kdi_cpu_activate(void)
407 {
408 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
409 	return (0);
410 }
411 
412 void
413 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave)
414 {
415 	int i;
416 	cpuset_t cpuset;
417 
418 	CPUSET_ALL(cpuset);
419 
420 	kdi_cpusave = cpusave;
421 	kdi_ncpusave = ncpusave;
422 
423 	kdi_kmdb_main = main;
424 
425 	for (i = 0; i < kdi_ncpusave; i++) {
426 		kdi_cpusave[i].krs_cpu_id = i;
427 
428 		kdi_cpusave[i].krs_curcrumb =
429 		    &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1];
430 		kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1;
431 	}
432 
433 	if (boothowto & RB_KMDB)
434 		kdi_idt_init(KMDBCODE_SEL);
435 	else
436 		kdi_idt_init(KCS_SEL);
437 
438 	/* The initial selector set.  Updated by the debugger-entry code */
439 #ifndef __amd64
440 	kdi_cs = B32CODE_SEL;
441 	kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL;
442 #endif
443 
444 	kdi_memranges[0].mr_base = kdi_segdebugbase;
445 	kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1;
446 	kdi_nmemranges = 1;
447 
448 	kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED;
449 	kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED;
450 
451 	kdi_msr_wrexit_msr = 0;
452 	kdi_msr_wrexit_valp = NULL;
453 
454 	if (boothowto & RB_KMDB) {
455 		kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE);
456 	} else {
457 		xc_call(0, 0, 0, CPUSET2BV(cpuset),
458 		    (xc_func_t)kdi_cpu_activate);
459 	}
460 }
461 
462 static int
463 kdi_cpu_deactivate(void)
464 {
465 	kdi_idt_gates_restore();
466 	return (0);
467 }
468 
469 void
470 kdi_deactivate(void)
471 {
472 	cpuset_t cpuset;
473 	CPUSET_ALL(cpuset);
474 
475 	xc_call(0, 0, 0, CPUSET2BV(cpuset), (xc_func_t)kdi_cpu_deactivate);
476 	kdi_nmemranges = 0;
477 }
478 
479 /*
480  * We receive all breakpoints and single step traps.  Some of them,
481  * including those from userland and those induced by DTrace providers,
482  * are intended for the kernel, and must be processed there.  We adopt
483  * this ours-until-proven-otherwise position due to the painful
484  * consequences of sending the kernel an unexpected breakpoint or
485  * single step.  Unless someone can prove to us that the kernel is
486  * prepared to handle the trap, we'll assume there's a problem and will
487  * give the user a chance to debug it.
488  */
489 int
490 kdi_trap_pass(kdi_cpusave_t *cpusave)
491 {
492 	greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO];
493 	greg_t pc = cpusave->krs_gregs[KDIREG_PC];
494 	greg_t cs = cpusave->krs_gregs[KDIREG_CS];
495 
496 	if (USERMODE(cs))
497 		return (1);
498 
499 	if (tt != T_BPTFLT && tt != T_SGLSTP)
500 		return (0);
501 
502 	if (tt == T_BPTFLT && kdi_dtrace_get_state() ==
503 	    KDI_DTSTATE_DTRACE_ACTIVE)
504 		return (1);
505 
506 	/*
507 	 * See the comments in the kernel's T_SGLSTP handler for why we need to
508 	 * do this.
509 	 */
510 	if (tt == T_SGLSTP &&
511 	    (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter))
512 		return (1);
513 
514 	return (0);
515 }
516 
517 /*
518  * State has been saved, and all CPUs are on the CPU-specific stacks.  All
519  * CPUs enter here, and head off into the debugger proper.
520  */
521 void
522 kdi_debugger_entry(kdi_cpusave_t *cpusave)
523 {
524 	/*
525 	 * BPTFLT gives us control with %eip set to the instruction *after*
526 	 * the int 3.  Back it off, so we're looking at the instruction that
527 	 * triggered the fault.
528 	 */
529 	if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT)
530 		cpusave->krs_gregs[KDIREG_PC]--;
531 
532 	kdi_kmdb_main(cpusave);
533 }
534