xref: /titanic_51/usr/src/uts/intel/io/devfm_machdep.c (revision b5a2d8455dfa3190fc977c4bec53e91c99012767)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/stat.h>
27 #include <sys/types.h>
28 #include <sys/time.h>
29 
30 #include <sys/fm/protocol.h>
31 #include <sys/devfm.h>
32 
33 #include <sys/cpu_module.h>
34 
35 #define	ANY_ID		(uint_t)-1
36 
37 /*
38  * INIT_HDLS is the initial size of cmi_hdl_t array.  We fill the array
39  * during cmi_hdl_walk, if the array overflows, we will reallocate
40  * a new array twice the size of the old one.
41  */
42 #define	INIT_HDLS	16
43 
44 typedef struct fm_cmi_walk_t
45 {
46 	uint_t	chipid;		/* chipid to match during walk */
47 	uint_t	coreid;		/* coreid to match */
48 	uint_t	strandid;	/* strandid to match */
49 	int	(*cbfunc)(cmi_hdl_t, void *, void *);  	/* callback function */
50 	cmi_hdl_t *hdls;	/* allocated array to save the handles */
51 	int	nhdl_max;	/* allocated array size */
52 	int	nhdl;		/* handles saved */
53 } fm_cmi_walk_t;
54 
55 int
56 fm_get_paddr(nvlist_t *nvl, uint64_t *paddr)
57 {
58 	uint8_t version;
59 	uint64_t pa;
60 	char *scheme;
61 	int err;
62 
63 	/* Verify FMRI scheme name and version number */
64 	if ((nvlist_lookup_string(nvl, FM_FMRI_SCHEME, &scheme) != 0) ||
65 	    (strcmp(scheme, FM_FMRI_SCHEME_HC) != 0) ||
66 	    (nvlist_lookup_uint8(nvl, FM_VERSION, &version) != 0) ||
67 	    version > FM_HC_SCHEME_VERSION) {
68 		return (EINVAL);
69 	}
70 
71 	if ((err = cmi_mc_unumtopa(NULL, nvl, &pa)) != CMI_SUCCESS &&
72 	    err != CMIERR_MC_PARTIALUNUMTOPA)
73 		return (EINVAL);
74 
75 	*paddr = pa;
76 	return (0);
77 }
78 
79 /*
80  * Routines for cmi handles walk.
81  */
82 
83 static void
84 walk_init(fm_cmi_walk_t *wp, uint_t chipid, uint_t coreid, uint_t strandid,
85     int (*cbfunc)(cmi_hdl_t, void *, void *))
86 {
87 	wp->chipid = chipid;
88 	wp->coreid = coreid;
89 	wp->strandid = strandid;
90 	/*
91 	 * If callback is not set, we allocate an array to save the
92 	 * cmi handles.
93 	 */
94 	if ((wp->cbfunc = cbfunc) == NULL) {
95 		wp->hdls = kmem_alloc(sizeof (cmi_hdl_t) * INIT_HDLS, KM_SLEEP);
96 		wp->nhdl_max = INIT_HDLS;
97 		wp->nhdl = 0;
98 	}
99 }
100 
101 static void
102 walk_fini(fm_cmi_walk_t *wp)
103 {
104 	if (wp->cbfunc == NULL)
105 		kmem_free(wp->hdls, sizeof (cmi_hdl_t) * wp->nhdl_max);
106 }
107 
108 static int
109 select_cmi_hdl(cmi_hdl_t hdl, void *arg1, void *arg2, void *arg3)
110 {
111 	fm_cmi_walk_t *wp = (fm_cmi_walk_t *)arg1;
112 
113 	if (wp->chipid != ANY_ID && wp->chipid != cmi_hdl_chipid(hdl))
114 		return (CMI_HDL_WALK_NEXT);
115 	if (wp->coreid != ANY_ID && wp->coreid != cmi_hdl_coreid(hdl))
116 		return (CMI_HDL_WALK_NEXT);
117 	if (wp->strandid != ANY_ID && wp->strandid != cmi_hdl_strandid(hdl))
118 		return (CMI_HDL_WALK_NEXT);
119 
120 	/*
121 	 * Call the callback function if any exists, otherwise we hold a
122 	 * reference of the handle and push it to preallocated array.
123 	 * If the allocated array is going to overflow, reallocate a
124 	 * bigger one to replace it.
125 	 */
126 	if (wp->cbfunc != NULL)
127 		return (wp->cbfunc(hdl, arg2, arg3));
128 
129 	if (wp->nhdl == wp->nhdl_max) {
130 		size_t sz = sizeof (cmi_hdl_t) * wp->nhdl_max;
131 		cmi_hdl_t *newarray = kmem_alloc(sz << 1, KM_SLEEP);
132 
133 		bcopy(wp->hdls, newarray, sz);
134 		kmem_free(wp->hdls, sz);
135 		wp->hdls = newarray;
136 		wp->nhdl_max <<= 1;
137 	}
138 
139 	cmi_hdl_hold(hdl);
140 	wp->hdls[wp->nhdl++] = hdl;
141 
142 	return (CMI_HDL_WALK_NEXT);
143 }
144 
145 static void
146 populate_cpu(nvlist_t **nvlp, cmi_hdl_t hdl)
147 {
148 	(void) nvlist_alloc(nvlp, NV_UNIQUE_NAME, KM_SLEEP);
149 	fm_payload_set(*nvlp,
150 	    FM_PHYSCPU_INFO_VENDOR_ID, DATA_TYPE_STRING,
151 	    cmi_hdl_vendorstr(hdl),
152 	    FM_PHYSCPU_INFO_FAMILY, DATA_TYPE_INT32,
153 	    (int32_t)cmi_hdl_family(hdl),
154 	    FM_PHYSCPU_INFO_MODEL, DATA_TYPE_INT32,
155 	    (int32_t)cmi_hdl_model(hdl),
156 	    FM_PHYSCPU_INFO_STEPPING, DATA_TYPE_INT32,
157 	    (int32_t)cmi_hdl_stepping(hdl),
158 	    FM_PHYSCPU_INFO_CHIP_ID, DATA_TYPE_INT32,
159 	    (int32_t)cmi_hdl_chipid(hdl),
160 	    FM_PHYSCPU_INFO_CORE_ID, DATA_TYPE_INT32,
161 	    (int32_t)cmi_hdl_coreid(hdl),
162 	    FM_PHYSCPU_INFO_STRAND_ID, DATA_TYPE_INT32,
163 	    (int32_t)cmi_hdl_strandid(hdl),
164 	    FM_PHYSCPU_INFO_CHIP_REV, DATA_TYPE_STRING,
165 	    cmi_hdl_chiprevstr(hdl),
166 	    FM_PHYSCPU_INFO_SOCKET_TYPE, DATA_TYPE_UINT32,
167 	    (uint32_t)cmi_hdl_getsockettype(hdl),
168 	    FM_PHYSCPU_INFO_CPU_ID, DATA_TYPE_INT32,
169 	    (int32_t)cmi_hdl_logical_id(hdl),
170 	    NULL);
171 }
172 
173 /*ARGSUSED*/
174 int
175 fm_ioctl_physcpu_info(int cmd, nvlist_t *invl, nvlist_t **onvlp)
176 {
177 	nvlist_t **cpus, *nvl;
178 	int i, err;
179 	fm_cmi_walk_t wk;
180 
181 	/*
182 	 * Do a walk to save all the cmi handles in the array.
183 	 */
184 	walk_init(&wk, ANY_ID, ANY_ID, ANY_ID, NULL);
185 	cmi_hdl_walk(select_cmi_hdl, &wk, NULL, NULL);
186 
187 	if (wk.nhdl == 0) {
188 		walk_fini(&wk);
189 		return (ENOENT);
190 	}
191 
192 	cpus = kmem_alloc(sizeof (nvlist_t *) * wk.nhdl, KM_SLEEP);
193 	for (i = 0; i < wk.nhdl; i++) {
194 		populate_cpu(cpus + i, wk.hdls[i]);
195 		cmi_hdl_rele(wk.hdls[i]);
196 	}
197 
198 	walk_fini(&wk);
199 
200 	(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
201 	err = nvlist_add_nvlist_array(nvl, FM_PHYSCPU_INFO_CPUS,
202 	    cpus, wk.nhdl);
203 
204 	for (i = 0; i < wk.nhdl; i++)
205 		nvlist_free(cpus[i]);
206 	kmem_free(cpus, sizeof (nvlist_t *) * wk.nhdl);
207 
208 	if (err != 0) {
209 		nvlist_free(nvl);
210 		return (err);
211 	}
212 
213 	*onvlp = nvl;
214 	return (0);
215 }
216 
217 int
218 fm_ioctl_cpu_retire(int cmd, nvlist_t *invl, nvlist_t **onvlp)
219 {
220 	int32_t chipid, coreid, strandid;
221 	int rc, new_status, old_status;
222 	cmi_hdl_t hdl;
223 	nvlist_t *nvl;
224 
225 	switch (cmd) {
226 	case FM_IOC_CPU_RETIRE:
227 		new_status = P_FAULTED;
228 		break;
229 	case FM_IOC_CPU_STATUS:
230 		new_status = P_STATUS;
231 		break;
232 	case FM_IOC_CPU_UNRETIRE:
233 		new_status = P_ONLINE;
234 		break;
235 	default:
236 		return (ENOTTY);
237 	}
238 
239 	if (nvlist_lookup_int32(invl, FM_CPU_RETIRE_CHIP_ID, &chipid) != 0 ||
240 	    nvlist_lookup_int32(invl, FM_CPU_RETIRE_CORE_ID, &coreid) != 0 ||
241 	    nvlist_lookup_int32(invl, FM_CPU_RETIRE_STRAND_ID, &strandid) != 0)
242 		return (EINVAL);
243 
244 	hdl = cmi_hdl_lookup(CMI_HDL_NEUTRAL, chipid, coreid, strandid);
245 	if (hdl == NULL)
246 		return (EINVAL);
247 
248 	rc = cmi_hdl_online(hdl, new_status, &old_status);
249 	cmi_hdl_rele(hdl);
250 
251 	if (rc == 0) {
252 		(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
253 		(void) nvlist_add_int32(nvl, FM_CPU_RETIRE_OLDSTATUS,
254 		    old_status);
255 		*onvlp = nvl;
256 	}
257 
258 	return (rc);
259 }
260