xref: /titanic_51/usr/src/uts/intel/ia32/os/archdep.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/vmparam.h>
36 #include <sys/systm.h>
37 #include <sys/signal.h>
38 #include <sys/stack.h>
39 #include <sys/regset.h>
40 #include <sys/privregs.h>
41 #include <sys/frame.h>
42 #include <sys/proc.h>
43 #include <sys/psw.h>
44 #include <sys/siginfo.h>
45 #include <sys/cpuvar.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/bootconf.h>
50 #include <sys/archsystm.h>
51 #include <sys/debug.h>
52 #include <sys/elf.h>
53 #include <sys/spl.h>
54 #include <sys/time.h>
55 #include <sys/atomic.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cmn_err.h>
58 #include <sys/modctl.h>
59 #include <sys/kobj.h>
60 #include <sys/panic.h>
61 #include <sys/reboot.h>
62 #include <sys/time.h>
63 #include <sys/fp.h>
64 #include <sys/x86_archext.h>
65 #include <sys/auxv.h>
66 #include <sys/auxv_386.h>
67 #include <sys/dtrace.h>
68 
69 extern const struct fnsave_state x87_initial;
70 extern const struct fxsave_state sse_initial;
71 
72 /*
73  * Map an fnsave-formatted save area into an fxsave-formatted save area.
74  *
75  * Most fields are the same width, content and semantics.  However
76  * the tag word is compressed.
77  */
78 static void
79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
80 {
81 	uint_t i, tagbits;
82 
83 	fx->fx_fcw = fn->f_fcw;
84 	fx->fx_fsw = fn->f_fsw;
85 
86 	/*
87 	 * copy element by element (because of holes)
88 	 */
89 	for (i = 0; i < 8; i++)
90 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
91 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
92 
93 	/*
94 	 * synthesize compressed tag bits
95 	 */
96 	fx->fx_fctw = 0;
97 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
98 		if ((tagbits & 3) != 3)
99 			fx->fx_fctw |= (1 << i);
100 
101 	fx->fx_fop = fn->f_fop;
102 
103 #if defined(__amd64)
104 	fx->fx_rip = (uint64_t)fn->f_eip;
105 	fx->fx_rdp = (uint64_t)fn->f_dp;
106 #else
107 	fx->fx_eip = fn->f_eip;
108 	fx->fx_cs = fn->f_cs;
109 	fx->__fx_ign0 = 0;
110 	fx->fx_dp = fn->f_dp;
111 	fx->fx_ds = fn->f_ds;
112 	fx->__fx_ign1 = 0;
113 #endif
114 }
115 
116 /*
117  * Map from an fxsave-format save area to an fnsave-format save area.
118  */
119 static void
120 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
121 {
122 	uint_t i, top, tagbits;
123 
124 	fn->f_fcw = fx->fx_fcw;
125 	fn->__f_ign0 = 0;
126 	fn->f_fsw = fx->fx_fsw;
127 	fn->__f_ign1 = 0;
128 
129 	top = (fx->fx_fsw & FPS_TOP) >> 11;
130 
131 	/*
132 	 * copy element by element (because of holes)
133 	 */
134 	for (i = 0; i < 8; i++)
135 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
136 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
137 
138 	/*
139 	 * synthesize uncompressed tag bits
140 	 */
141 	fn->f_ftw = 0;
142 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
143 		uint_t ibit, expo;
144 		const uint16_t *fpp;
145 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
146 
147 		if ((tagbits & 1) == 0) {
148 			fn->f_ftw |= 3 << (i << 1);	/* empty */
149 			continue;
150 		}
151 
152 		/*
153 		 * (tags refer to *physical* registers)
154 		 */
155 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
156 		ibit = fpp[3] >> 15;
157 		expo = fpp[4] & 0x7fff;
158 
159 		if (ibit && expo != 0 && expo != 0x7fff)
160 			continue;			/* valid fp number */
161 
162 		if (bcmp(fpp, &zero, sizeof (zero)))
163 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
164 		else
165 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
166 	}
167 
168 	fn->f_fop = fx->fx_fop;
169 
170 	fn->__f_ign2 = 0;
171 #if defined(__amd64)
172 	fn->f_eip = (uint32_t)fx->fx_rip;
173 	fn->f_cs = U32CS_SEL;
174 	fn->f_dp = (uint32_t)fx->fx_rdp;
175 	fn->f_ds = UDS_SEL;
176 #else
177 	fn->f_eip = fx->fx_eip;
178 	fn->f_cs = fx->fx_cs;
179 	fn->f_dp = fx->fx_dp;
180 	fn->f_ds = fx->fx_ds;
181 #endif
182 	fn->__f_ign3 = 0;
183 }
184 
185 /*
186  * Map from an fpregset_t into an fxsave-format save area
187  */
188 static void
189 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
190 {
191 #if defined(__amd64)
192 	bcopy(fp, fx, sizeof (*fx));
193 #else
194 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
195 
196 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
197 	fx->fx_mxcsr = fc->mxcsr;
198 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
199 #endif
200 	/*
201 	 * avoid useless #gp exceptions - mask reserved bits
202 	 */
203 	fx->fx_mxcsr &= sse_mxcsr_mask;
204 }
205 
206 /*
207  * Map from an fxsave-format save area into a fpregset_t
208  */
209 static void
210 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
211 {
212 #if defined(__amd64)
213 	bcopy(fx, fp, sizeof (*fx));
214 #else
215 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
216 
217 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
218 	fc->mxcsr = fx->fx_mxcsr;
219 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
220 #endif
221 }
222 
223 #if defined(_SYSCALL32_IMPL)
224 static void
225 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
226 {
227 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
228 
229 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
230 	/*
231 	 * avoid useless #gp exceptions - mask reserved bits
232 	 */
233 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
234 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
235 }
236 
237 static void
238 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
239 {
240 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
241 
242 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
243 	fc->mxcsr = fx->fx_mxcsr;
244 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
245 }
246 
247 static void
248 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
249 {
250 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
251 	dst->fp_reg_set.fpchip_state.status =
252 	    src->fp_reg_set.fpchip_state.status;
253 	dst->fp_reg_set.fpchip_state.xstatus =
254 	    src->fp_reg_set.fpchip_state.xstatus;
255 }
256 
257 static void
258 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
259 {
260 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
261 	dst->fp_reg_set.fpchip_state.status =
262 	    src->fp_reg_set.fpchip_state.status;
263 	dst->fp_reg_set.fpchip_state.xstatus =
264 	    src->fp_reg_set.fpchip_state.xstatus;
265 }
266 #endif
267 
268 /*
269  * Set floating-point registers from a native fpregset_t.
270  */
271 void
272 setfpregs(klwp_t *lwp, fpregset_t *fp)
273 {
274 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
275 
276 	if (fpu->fpu_flags & FPU_EN) {
277 		if (!(fpu->fpu_flags & FPU_VALID)) {
278 			/*
279 			 * FPU context is still active, release the
280 			 * ownership.
281 			 */
282 			fp_free(fpu, 0);
283 		}
284 #if !defined(__amd64)
285 		if (fp_kind == __FP_SSE) {
286 #endif
287 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
288 			fpu->fpu_regs.kfpu_xstatus =
289 			    fp->fp_reg_set.fpchip_state.xstatus;
290 #if !defined(__amd64)
291 		} else
292 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
293 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
294 #endif
295 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
296 		fpu->fpu_flags |= FPU_VALID;
297 
298 		/*
299 		 * If we are changing the fpu_flags in the current context,
300 		 * disable floating point (turn on CR0_TS bit) to track
301 		 * FPU_VALID after clearing any errors (frstor chokes
302 		 * otherwise)
303 		 */
304 		if (lwp == ttolwp(curthread)) {
305 			(void) fperr_reset();
306 			fpdisable();
307 		}
308 	} else {
309 		/*
310 		 * If we are trying to change the FPU state of a thread which
311 		 * hasn't yet initialized floating point, store the state in
312 		 * the pcb and indicate that the state is valid.  When the
313 		 * thread enables floating point, it will use this state instead
314 		 * of the default state.
315 		 */
316 #if !defined(__amd64)
317 		if (fp_kind == __FP_SSE) {
318 #endif
319 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
320 			fpu->fpu_regs.kfpu_xstatus =
321 			    fp->fp_reg_set.fpchip_state.xstatus;
322 #if !defined(__amd64)
323 		} else
324 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
325 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
326 #endif
327 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
328 		fpu->fpu_flags |= FPU_VALID;
329 	}
330 }
331 
332 /*
333  * Get floating-point registers into a native fpregset_t.
334  */
335 void
336 getfpregs(klwp_t *lwp, fpregset_t *fp)
337 {
338 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
339 
340 	kpreempt_disable();
341 	if (fpu->fpu_flags & FPU_EN) {
342 		/*
343 		 * If we have FPU hw and the thread's pcb doesn't have
344 		 * a valid FPU state then get the state from the hw.
345 		 */
346 		if (fpu_exists && ttolwp(curthread) == lwp &&
347 		    !(fpu->fpu_flags & FPU_VALID))
348 			fp_save(fpu); /* get the current FPU state */
349 	}
350 
351 	/*
352 	 * There are 3 possible cases we have to be aware of here:
353 	 *
354 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
355 	 *
356 	 * 2. FPU is not enabled, and there have been no intervening /proc
357 	 *    modifications.  Return initial FPU state.
358 	 *
359 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
360 	 *    FPU state is stored in the current LWP.
361 	 */
362 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
363 		/*
364 		 * Cases 1 and 3.
365 		 */
366 #if !defined(__amd64)
367 		if (fp_kind == __FP_SSE) {
368 #endif
369 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
370 			fp->fp_reg_set.fpchip_state.xstatus =
371 			    fpu->fpu_regs.kfpu_xstatus;
372 #if !defined(__amd64)
373 		} else
374 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
375 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
376 #endif
377 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
378 	} else {
379 		/*
380 		 * Case 2.
381 		 */
382 #if !defined(__amd64)
383 		if (fp_kind == __FP_SSE) {
384 #endif
385 			fxsave_to_fpregset(&sse_initial, fp);
386 			fp->fp_reg_set.fpchip_state.xstatus =
387 			    fpu->fpu_regs.kfpu_xstatus;
388 #if !defined(__amd64)
389 		} else
390 			bcopy(&x87_initial, fp, sizeof (x87_initial));
391 #endif
392 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
393 	}
394 	kpreempt_enable();
395 }
396 
397 #if defined(_SYSCALL32_IMPL)
398 
399 /*
400  * Set floating-point registers from an fpregset32_t.
401  */
402 void
403 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
404 {
405 	fpregset_t fpregs;
406 
407 	fpregset_32ton(fp, &fpregs);
408 	setfpregs(lwp, &fpregs);
409 }
410 
411 /*
412  * Get floating-point registers into an fpregset32_t.
413  */
414 void
415 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
416 {
417 	fpregset_t fpregs;
418 
419 	getfpregs(lwp, &fpregs);
420 	fpregset_nto32(&fpregs, fp);
421 }
422 
423 #endif	/* _SYSCALL32_IMPL */
424 
425 /*
426  * Return the general registers
427  */
428 void
429 getgregs(klwp_t *lwp, gregset_t grp)
430 {
431 	struct regs *rp = lwptoregs(lwp);
432 #if defined(__amd64)
433 	struct pcb *pcb = &lwp->lwp_pcb;
434 	int thisthread = lwptot(lwp) == curthread;
435 
436 	grp[REG_RDI] = rp->r_rdi;
437 	grp[REG_RSI] = rp->r_rsi;
438 	grp[REG_RDX] = rp->r_rdx;
439 	grp[REG_RCX] = rp->r_rcx;
440 	grp[REG_R8] = rp->r_r8;
441 	grp[REG_R9] = rp->r_r9;
442 	grp[REG_RAX] = rp->r_rax;
443 	grp[REG_RBX] = rp->r_rbx;
444 	grp[REG_RBP] = rp->r_rbp;
445 	grp[REG_R10] = rp->r_r10;
446 	grp[REG_R11] = rp->r_r11;
447 	grp[REG_R12] = rp->r_r12;
448 	grp[REG_R13] = rp->r_r13;
449 	grp[REG_R14] = rp->r_r14;
450 	grp[REG_R15] = rp->r_r15;
451 	grp[REG_FSBASE] = pcb->pcb_fsbase;
452 	grp[REG_GSBASE] = pcb->pcb_gsbase;
453 	if (thisthread)
454 		kpreempt_disable();
455 	if (pcb->pcb_flags & RUPDATE_PENDING) {
456 		grp[REG_DS] = pcb->pcb_ds;
457 		grp[REG_ES] = pcb->pcb_es;
458 		grp[REG_FS] = pcb->pcb_fs;
459 		grp[REG_GS] = pcb->pcb_gs;
460 	} else {
461 		grp[REG_DS] = rp->r_ds;
462 		grp[REG_ES] = rp->r_es;
463 		grp[REG_FS] = rp->r_fs;
464 		grp[REG_GS] = rp->r_gs;
465 	}
466 	if (thisthread)
467 		kpreempt_enable();
468 	grp[REG_TRAPNO] = rp->r_trapno;
469 	grp[REG_ERR] = rp->r_err;
470 	grp[REG_RIP] = rp->r_rip;
471 	grp[REG_CS] = rp->r_cs;
472 	grp[REG_SS] = rp->r_ss;
473 	grp[REG_RFL] = rp->r_rfl;
474 	grp[REG_RSP] = rp->r_rsp;
475 #else
476 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
477 #endif
478 }
479 
480 #if defined(_SYSCALL32_IMPL)
481 
482 void
483 getgregs32(klwp_t *lwp, gregset32_t grp)
484 {
485 	struct regs *rp = lwptoregs(lwp);
486 	struct pcb *pcb = &lwp->lwp_pcb;
487 	int thisthread = lwptot(lwp) == curthread;
488 
489 	if (thisthread)
490 		kpreempt_disable();
491 	if (pcb->pcb_flags & RUPDATE_PENDING) {
492 		grp[GS] = (uint16_t)pcb->pcb_gs;
493 		grp[FS] = (uint16_t)pcb->pcb_fs;
494 		grp[DS] = (uint16_t)pcb->pcb_ds;
495 		grp[ES] = (uint16_t)pcb->pcb_es;
496 	} else {
497 		grp[GS] = (uint16_t)rp->r_gs;
498 		grp[FS] = (uint16_t)rp->r_fs;
499 		grp[DS] = (uint16_t)rp->r_ds;
500 		grp[ES] = (uint16_t)rp->r_es;
501 	}
502 	if (thisthread)
503 		kpreempt_enable();
504 	grp[EDI] = (greg32_t)rp->r_rdi;
505 	grp[ESI] = (greg32_t)rp->r_rsi;
506 	grp[EBP] = (greg32_t)rp->r_rbp;
507 	grp[ESP] = 0;
508 	grp[EBX] = (greg32_t)rp->r_rbx;
509 	grp[EDX] = (greg32_t)rp->r_rdx;
510 	grp[ECX] = (greg32_t)rp->r_rcx;
511 	grp[EAX] = (greg32_t)rp->r_rax;
512 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
513 	grp[ERR] = (greg32_t)rp->r_err;
514 	grp[EIP] = (greg32_t)rp->r_rip;
515 	grp[CS] = (uint16_t)rp->r_cs;
516 	grp[EFL] = (greg32_t)rp->r_rfl;
517 	grp[UESP] = (greg32_t)rp->r_rsp;
518 	grp[SS] = (uint16_t)rp->r_ss;
519 }
520 
521 void
522 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
523 {
524 	mcontext_t *dmc = &dst->uc_mcontext;
525 	const mcontext32_t *smc = &src->uc_mcontext;
526 
527 	bzero(dst, sizeof (*dst));
528 	dst->uc_flags = src->uc_flags;
529 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
530 
531 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
532 
533 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
534 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
535 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
536 
537 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
538 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
539 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
540 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
541 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
542 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
543 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
544 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
545 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
546 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
547 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
548 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
549 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
550 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
551 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
552 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
553 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
554 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
555 
556 	/*
557 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
558 	 * otherwise there is no guarantee that anything in fpregs is valid.
559 	 */
560 	if (src->uc_flags & UC_FPU)
561 		fpregset_32ton(&src->uc_mcontext.fpregs,
562 		    &dst->uc_mcontext.fpregs);
563 }
564 
565 #endif	/* _SYSCALL32_IMPL */
566 
567 /*
568  * Return the user-level PC.
569  * If in a system call, return the address of the syscall trap.
570  */
571 greg_t
572 getuserpc()
573 {
574 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
575 	uint32_t insn;
576 
577 	if (curthread->t_sysnum == 0)
578 		return (upc);
579 
580 	/*
581 	 * We might've gotten here from sysenter (0xf 0x34),
582 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
583 	 *
584 	 * Go peek at the binary to figure it out..
585 	 */
586 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
587 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
588 		return (upc - 2);
589 	return (upc - 7);
590 }
591 
592 /*
593  * Protect segment registers from non-user privilege levels and GDT selectors
594  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
595  * selector is non-null and not USER_CS/USER_DS, we make sure that the
596  * TI bit is set to point into the LDT and that the RPL is set to 3.
597  *
598  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
599  * also explicitly zero the top 16 bits since they may be coming from the
600  * user's address space via setcontext(2) or /proc.
601  */
602 
603 /*ARGSUSED*/
604 static greg_t
605 fix_segreg(greg_t sr, model_t datamodel)
606 {
607 	switch (sr &= 0xffff) {
608 #if defined(__amd64)
609 	/*
610 	 * If lwp attempts to switch data model then force their
611 	 * code selector to be null selector.
612 	 */
613 	case U32CS_SEL:
614 		if (datamodel == DATAMODEL_NATIVE)
615 			return (0);
616 		else
617 			return (sr);
618 
619 	case UCS_SEL:
620 		if (datamodel == DATAMODEL_ILP32)
621 			return (0);
622 #elif defined(__i386)
623 	case UCS_SEL:
624 #endif
625 	/*FALLTHROUGH*/
626 	case UDS_SEL:
627 	case LWPFS_SEL:
628 	case LWPGS_SEL:
629 	case 0:
630 		return (sr);
631 	default:
632 		break;
633 	}
634 
635 	/*
636 	 * Force it into the LDT in ring 3 for 32-bit processes.
637 	 * 64-bit processes get the null gdt selector since they
638 	 * are not allowed to have a private LDT.
639 	 */
640 #if defined(__amd64)
641 	return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0);
642 #elif defined(__i386)
643 	return (sr | SEL_TI_LDT | SEL_UPL);
644 #endif
645 }
646 
647 /*
648  * Set general registers.
649  */
650 void
651 setgregs(klwp_t *lwp, gregset_t grp)
652 {
653 	struct regs *rp = lwptoregs(lwp);
654 	model_t	datamodel = lwp_getdatamodel(lwp);
655 
656 #if defined(__amd64)
657 	struct pcb *pcb = &lwp->lwp_pcb;
658 	int thisthread = lwptot(lwp) == curthread;
659 
660 	if (datamodel == DATAMODEL_NATIVE) {
661 
662 		if (thisthread)
663 			(void) save_syscall_args();	/* copy the args */
664 
665 		rp->r_rdi = grp[REG_RDI];
666 		rp->r_rsi = grp[REG_RSI];
667 		rp->r_rdx = grp[REG_RDX];
668 		rp->r_rcx = grp[REG_RCX];
669 		rp->r_r8 = grp[REG_R8];
670 		rp->r_r9 = grp[REG_R9];
671 		rp->r_rax = grp[REG_RAX];
672 		rp->r_rbx = grp[REG_RBX];
673 		rp->r_rbp = grp[REG_RBP];
674 		rp->r_r10 = grp[REG_R10];
675 		rp->r_r11 = grp[REG_R11];
676 		rp->r_r12 = grp[REG_R12];
677 		rp->r_r13 = grp[REG_R13];
678 		rp->r_r14 = grp[REG_R14];
679 		rp->r_r15 = grp[REG_R15];
680 		rp->r_trapno = grp[REG_TRAPNO];
681 		rp->r_err = grp[REG_ERR];
682 		rp->r_rip = grp[REG_RIP];
683 		/*
684 		 * Setting %cs or %ss to anything else is quietly but
685 		 * quite definitely forbidden!
686 		 */
687 		rp->r_cs = UCS_SEL;
688 		rp->r_ss = UDS_SEL;
689 		rp->r_rsp = grp[REG_RSP];
690 
691 		if (thisthread)
692 			kpreempt_disable();
693 
694 		pcb->pcb_ds = UDS_SEL;
695 		pcb->pcb_es = UDS_SEL;
696 
697 		/*
698 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
699 		 * values directly, but only if they're using the segment
700 		 * selectors that allow that semantic.
701 		 *
702 		 * (32-bit processes must use lwp_set_private().)
703 		 */
704 		pcb->pcb_fsbase = grp[REG_FSBASE];
705 		pcb->pcb_gsbase = grp[REG_GSBASE];
706 		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
707 		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
708 
709 		/*
710 		 * Ensure that we go out via update_sregs
711 		 */
712 		pcb->pcb_flags |= RUPDATE_PENDING;
713 		lwptot(lwp)->t_post_sys = 1;
714 		if (thisthread)
715 			kpreempt_enable();
716 #if defined(_SYSCALL32_IMPL)
717 	} else {
718 		rp->r_rdi = (uint32_t)grp[REG_RDI];
719 		rp->r_rsi = (uint32_t)grp[REG_RSI];
720 		rp->r_rdx = (uint32_t)grp[REG_RDX];
721 		rp->r_rcx = (uint32_t)grp[REG_RCX];
722 		rp->r_rax = (uint32_t)grp[REG_RAX];
723 		rp->r_rbx = (uint32_t)grp[REG_RBX];
724 		rp->r_rbp = (uint32_t)grp[REG_RBP];
725 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
726 		rp->r_err = (uint32_t)grp[REG_ERR];
727 		rp->r_rip = (uint32_t)grp[REG_RIP];
728 
729 		/*
730 		 * The kernel uses %cs to determine if it is dealing with
731 		 * another part of the kernel or with a userland application.
732 		 * Specifically, it tests the privilege bits. For this reason,
733 		 * we must prevent user apps from ending up with a NULL selector
734 		 * in %cs. Instead, we'll use index 0 into the GDT but with the
735 		 * privilege bits set to usermode.
736 		 */
737 		rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL;
738 		rp->r_ss = fix_segreg(grp[REG_DS], datamodel);
739 
740 		rp->r_rsp = (uint32_t)grp[REG_RSP];
741 
742 		if (thisthread)
743 			kpreempt_disable();
744 
745 		pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel);
746 		pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel);
747 
748 		/*
749 		 * (See fsbase/gsbase commentary above)
750 		 */
751 		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
752 		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
753 
754 		/*
755 		 * Ensure that we go out via update_sregs
756 		 */
757 		pcb->pcb_flags |= RUPDATE_PENDING;
758 		lwptot(lwp)->t_post_sys = 1;
759 		if (thisthread)
760 			kpreempt_enable();
761 #endif
762 	}
763 
764 	/*
765 	 * Only certain bits of the flags register can be modified.
766 	 */
767 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
768 	    (grp[REG_RFL] & PSL_USERMASK);
769 
770 #elif defined(__i386)
771 
772 	/*
773 	 * Only certain bits of the flags register can be modified.
774 	 */
775 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
776 
777 	/*
778 	 * Copy saved registers from user stack.
779 	 */
780 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
781 
782 	rp->r_cs = fix_segreg(rp->r_cs, datamodel);
783 	rp->r_ss = fix_segreg(rp->r_ss, datamodel);
784 	rp->r_ds = fix_segreg(rp->r_ds, datamodel);
785 	rp->r_es = fix_segreg(rp->r_es, datamodel);
786 	rp->r_fs = fix_segreg(rp->r_fs, datamodel);
787 	rp->r_gs = fix_segreg(rp->r_gs, datamodel);
788 
789 #endif	/* __i386 */
790 }
791 
792 /*
793  * Determine whether eip is likely to have an interrupt frame
794  * on the stack.  We do this by comparing the address to the
795  * range of addresses spanned by several well-known routines.
796  */
797 extern void _interrupt();
798 extern void _allsyscalls();
799 extern void _cmntrap();
800 extern void fakesoftint();
801 
802 extern size_t _interrupt_size;
803 extern size_t _allsyscalls_size;
804 extern size_t _cmntrap_size;
805 extern size_t _fakesoftint_size;
806 
807 /*
808  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
809  * Returns MIN(current stack depth, pcstack_limit).
810  */
811 int
812 getpcstack(pc_t *pcstack, int pcstack_limit)
813 {
814 	struct frame *fp = (struct frame *)getfp();
815 	struct frame *nextfp, *minfp, *stacktop;
816 	int depth = 0;
817 	int on_intr;
818 	uintptr_t pc;
819 
820 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
821 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
822 	else
823 		stacktop = (struct frame *)curthread->t_stk;
824 	minfp = fp;
825 
826 	pc = ((struct regs *)fp)->r_pc;
827 
828 	while (depth < pcstack_limit) {
829 		nextfp = (struct frame *)fp->fr_savfp;
830 		pc = fp->fr_savpc;
831 		if (nextfp <= minfp || nextfp >= stacktop) {
832 			if (on_intr) {
833 				/*
834 				 * Hop from interrupt stack to thread stack.
835 				 */
836 				stacktop = (struct frame *)curthread->t_stk;
837 				minfp = (struct frame *)curthread->t_stkbase;
838 				on_intr = 0;
839 				continue;
840 			}
841 			break;
842 		}
843 		pcstack[depth++] = (pc_t)pc;
844 		fp = nextfp;
845 		minfp = fp;
846 	}
847 	return (depth);
848 }
849 
850 /*
851  * The following ELF header fields are defined as processor-specific
852  * in the V8 ABI:
853  *
854  *	e_ident[EI_DATA]	encoding of the processor-specific
855  *				data in the object file
856  *	e_machine		processor identification
857  *	e_flags			processor-specific flags associated
858  *				with the file
859  */
860 
861 /*
862  * The value of at_flags reflects a platform's cpu module support.
863  * at_flags is used to check for allowing a binary to execute and
864  * is passed as the value of the AT_FLAGS auxiliary vector.
865  */
866 int at_flags = 0;
867 
868 /*
869  * Check the processor-specific fields of an ELF header.
870  *
871  * returns 1 if the fields are valid, 0 otherwise
872  */
873 /*ARGSUSED2*/
874 int
875 elfheadcheck(
876 	unsigned char e_data,
877 	Elf32_Half e_machine,
878 	Elf32_Word e_flags)
879 {
880 	if (e_data != ELFDATA2LSB)
881 		return (0);
882 #if defined(__amd64)
883 	if (e_machine == EM_AMD64)
884 		return (1);
885 #endif
886 	return (e_machine == EM_386);
887 }
888 
889 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
890 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
891 #if defined(_SYSCALL32_IMPL)
892 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
893 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
894 #endif
895 
896 /*
897  * Gather information about the processor and place it into auxv_hwcap
898  * so that it can be exported to the linker via the aux vector.
899  *
900  * We use this seemingly complicated mechanism so that we can ensure
901  * that /etc/system can be used to override what the system can or
902  * cannot discover for itself.
903  */
904 void
905 bind_hwcap(void)
906 {
907 	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
908 
909 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
910 	    ~auxv_hwcap_exclude;
911 
912 #if defined(__amd64)
913 	/*
914 	 * On AMD processors, sysenter just doesn't work at all
915 	 * when the kernel is in long mode.  On IA-32e processors
916 	 * it does, but there's no real point in all the alternate
917 	 * mechanism when syscall works on both.
918 	 *
919 	 * Besides, the kernel's sysenter handler is expecting a
920 	 * 32-bit lwp ...
921 	 */
922 	auxv_hwcap &= ~AV_386_SEP;
923 #endif
924 
925 	if (auxv_hwcap_include || auxv_hwcap_exclude)
926 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
927 		    auxv_hwcap, FMT_AV_386);
928 
929 #if defined(_SYSCALL32_IMPL)
930 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
931 		~auxv_hwcap32_exclude;
932 
933 #if defined(__amd64)
934 	/*
935 	 * If this is an amd64 architecture machine from Intel, then
936 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
937 	 *
938 	 * Sigh.
939 	 */
940 	if (!cpuid_syscall32_insn(NULL))
941 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
942 #endif
943 
944 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
945 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
946 		    auxv_hwcap32, FMT_AV_386);
947 #endif
948 }
949 
950 /*
951  *	sync_icache() - this is called
952  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
953  *	this is a nop.
954  */
955 /* ARGSUSED */
956 void
957 sync_icache(caddr_t addr, uint_t len)
958 {
959 	/* Do nothing for now */
960 }
961 
962 /*ARGSUSED*/
963 void
964 sync_data_memory(caddr_t va, size_t len)
965 {
966 	/* Not implemented for this platform */
967 }
968 
969 int
970 __ipltospl(int ipl)
971 {
972 	return (ipltospl(ipl));
973 }
974 
975 /*
976  * The panic code invokes panic_saveregs() to record the contents of a
977  * regs structure into the specified panic_data structure for debuggers.
978  */
979 void
980 panic_saveregs(panic_data_t *pdp, struct regs *rp)
981 {
982 	panic_nv_t *pnv = PANICNVGET(pdp);
983 
984 	struct cregs	creg;
985 
986 	getcregs(&creg);
987 
988 #if defined(__amd64)
989 	PANICNVADD(pnv, "rdi", rp->r_rdi);
990 	PANICNVADD(pnv, "rsi", rp->r_rsi);
991 	PANICNVADD(pnv, "rdx", rp->r_rdx);
992 	PANICNVADD(pnv, "rcx", rp->r_rcx);
993 	PANICNVADD(pnv, "r8", rp->r_r8);
994 	PANICNVADD(pnv, "r9", rp->r_r9);
995 	PANICNVADD(pnv, "rax", rp->r_rax);
996 	PANICNVADD(pnv, "rbx", rp->r_rbx);
997 	PANICNVADD(pnv, "rbp", rp->r_rbp);
998 	PANICNVADD(pnv, "r10", rp->r_r10);
999 	PANICNVADD(pnv, "r10", rp->r_r10);
1000 	PANICNVADD(pnv, "r11", rp->r_r11);
1001 	PANICNVADD(pnv, "r12", rp->r_r12);
1002 	PANICNVADD(pnv, "r13", rp->r_r13);
1003 	PANICNVADD(pnv, "r14", rp->r_r14);
1004 	PANICNVADD(pnv, "r15", rp->r_r15);
1005 	PANICNVADD(pnv, "fsbase", rp->r_fsbase);
1006 	PANICNVADD(pnv, "gsbase", rp->r_gsbase);
1007 	PANICNVADD(pnv, "ds", rp->r_ds);
1008 	PANICNVADD(pnv, "es", rp->r_es);
1009 	PANICNVADD(pnv, "fs", rp->r_fs);
1010 	PANICNVADD(pnv, "gs", rp->r_gs);
1011 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1012 	PANICNVADD(pnv, "err", rp->r_err);
1013 	PANICNVADD(pnv, "rip", rp->r_rip);
1014 	PANICNVADD(pnv, "cs", rp->r_cs);
1015 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1016 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1017 	PANICNVADD(pnv, "ss", rp->r_ss);
1018 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1019 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1020 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1021 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1022 #elif defined(__i386)
1023 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1024 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1025 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1026 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1027 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1028 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1029 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1030 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1031 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1032 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1033 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1034 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1035 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1036 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1037 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1038 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1039 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1040 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1041 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1042 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1043 	PANICNVADD(pnv, "idt", creg.cr_idt);
1044 #endif	/* __i386 */
1045 
1046 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1047 	PANICNVADD(pnv, "task", creg.cr_task);
1048 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1049 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1050 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1051 	if (creg.cr_cr4)
1052 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1053 
1054 	PANICNVSET(pdp, pnv);
1055 }
1056 
1057 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1058 
1059 #if !defined(__amd64)
1060 
1061 /*
1062  * Given a return address (%eip), determine the likely number of arguments
1063  * that were pushed on the stack prior to its execution.  We do this by
1064  * expecting that a typical call sequence consists of pushing arguments on
1065  * the stack, executing a call instruction, and then performing an add
1066  * on %esp to restore it to the value prior to pushing the arguments for
1067  * the call.  We attempt to detect such an add, and divide the addend
1068  * by the size of a word to determine the number of pushed arguments.
1069  *
1070  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1071  * possible to reliably determine if a function took no arguments (i.e. was
1072  * void) because assembler routines do not reliably perform an add on %esp
1073  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1074  * safer than returning 0.
1075  */
1076 static ulong_t
1077 argcount(uintptr_t eip)
1078 {
1079 	const uint8_t *ins = (const uint8_t *)eip;
1080 	ulong_t n;
1081 
1082 	enum {
1083 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1084 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1085 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1086 	};
1087 
1088 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1089 		return (TR_ARG_MAX);
1090 
1091 	switch (ins[0]) {
1092 	case M_ADD_IMM32:
1093 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1094 		break;
1095 
1096 	case M_ADD_IMM8:
1097 		n = ins[2];
1098 		break;
1099 
1100 	default:
1101 		return (TR_ARG_MAX);
1102 	}
1103 
1104 	n /= sizeof (long);
1105 	return (MIN(n, TR_ARG_MAX));
1106 }
1107 
1108 #endif	/* !__amd64 */
1109 
1110 /*
1111  * Print a stack backtrace using the specified frame pointer.  We delay two
1112  * seconds before continuing, unless this is the panic traceback.  Note
1113  * that the frame for the starting stack pointer value is omitted because
1114  * the corresponding %eip is not known.
1115  */
1116 #if defined(__amd64)
1117 
1118 void
1119 traceback(caddr_t fpreg)
1120 {
1121 	struct frame	*fp = (struct frame *)fpreg;
1122 	struct frame	*nextfp;
1123 	uintptr_t	pc, nextpc;
1124 	ulong_t		off;
1125 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1126 
1127 	if (!panicstr)
1128 		printf("traceback: %%fp = %p\n", (void *)fp);
1129 
1130 	if ((uintptr_t)fp < KERNELBASE)
1131 		goto out;
1132 
1133 	pc = fp->fr_savpc;
1134 	fp = (struct frame *)fp->fr_savfp;
1135 
1136 	while ((uintptr_t)fp >= KERNELBASE) {
1137 		/*
1138 		 * XX64 Until port is complete tolerate 8-byte aligned
1139 		 * frame pointers but flag with a warning so they can
1140 		 * be fixed.
1141 		 */
1142 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1143 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1144 				printf("  >> warning! 8-byte"
1145 				    " aligned %%fp = %p\n", (void *)fp);
1146 			} else {
1147 				printf(
1148 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1149 				break;
1150 			}
1151 		}
1152 
1153 		args[0] = '\0';
1154 		nextpc = (uintptr_t)fp->fr_savpc;
1155 		nextfp = (struct frame *)fp->fr_savfp;
1156 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1157 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1158 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1159 		} else {
1160 			printf("%016lx %lx (%s)\n",
1161 			    (uintptr_t)fp, pc, args);
1162 		}
1163 
1164 		pc = nextpc;
1165 		fp = nextfp;
1166 	}
1167 out:
1168 	if (!panicstr) {
1169 		printf("end of traceback\n");
1170 		DELAY(2 * MICROSEC);
1171 	}
1172 }
1173 
1174 #elif defined(__i386)
1175 
1176 void
1177 traceback(caddr_t fpreg)
1178 {
1179 	struct frame *fp = (struct frame *)fpreg;
1180 	struct frame *nextfp, *minfp, *stacktop;
1181 	uintptr_t pc, nextpc;
1182 
1183 	cpu_t *cpu;
1184 
1185 	/*
1186 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1187 	 */
1188 	char args[TR_ARG_MAX * 2 + 8], *p;
1189 
1190 	int on_intr;
1191 	ulong_t off;
1192 	char *sym;
1193 
1194 	if (!panicstr)
1195 		printf("traceback: %%fp = %p\n", (void *)fp);
1196 
1197 	/*
1198 	 * If we are panicking, all high-level interrupt information in
1199 	 * CPU was overwritten.  panic_cpu has the correct values.
1200 	 */
1201 	kpreempt_disable();			/* prevent migration */
1202 
1203 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1204 
1205 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1206 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1207 	else
1208 		stacktop = (struct frame *)curthread->t_stk;
1209 
1210 	kpreempt_enable();
1211 
1212 	if ((uintptr_t)fp < KERNELBASE)
1213 		goto out;
1214 
1215 	minfp = fp;	/* Baseline minimum frame pointer */
1216 	pc = fp->fr_savpc;
1217 	fp = (struct frame *)fp->fr_savfp;
1218 
1219 	while ((uintptr_t)fp >= KERNELBASE) {
1220 		ulong_t argc;
1221 		long *argv;
1222 
1223 		if (fp <= minfp || fp >= stacktop) {
1224 			if (on_intr) {
1225 				/*
1226 				 * Hop from interrupt stack to thread stack.
1227 				 */
1228 				stacktop = (struct frame *)curthread->t_stk;
1229 				minfp = (struct frame *)curthread->t_stkbase;
1230 				on_intr = 0;
1231 				continue;
1232 			}
1233 			break; /* we're outside of the expected range */
1234 		}
1235 
1236 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1237 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1238 			break;
1239 		}
1240 
1241 		nextpc = fp->fr_savpc;
1242 		nextfp = (struct frame *)fp->fr_savfp;
1243 		argc = argcount(nextpc);
1244 		argv = (long *)((char *)fp + sizeof (struct frame));
1245 
1246 		args[0] = '\0';
1247 		p = args;
1248 		while (argc-- > 0 && argv < (long *)stacktop) {
1249 			p += snprintf(p, args + sizeof (args) - p,
1250 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1251 		}
1252 
1253 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1254 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1255 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1256 		} else {
1257 			printf("%08lx %lx (%s)\n",
1258 			    (uintptr_t)fp, pc, args);
1259 		}
1260 
1261 		minfp = fp;
1262 		pc = nextpc;
1263 		fp = nextfp;
1264 	}
1265 out:
1266 	if (!panicstr) {
1267 		printf("end of traceback\n");
1268 		DELAY(2 * MICROSEC);
1269 	}
1270 }
1271 
1272 #endif	/* __i386 */
1273 
1274 /*
1275  * Generate a stack backtrace from a saved register set.
1276  */
1277 void
1278 traceregs(struct regs *rp)
1279 {
1280 	traceback((caddr_t)rp->r_fp);
1281 }
1282 
1283 void
1284 exec_set_sp(size_t stksize)
1285 {
1286 	klwp_t *lwp = ttolwp(curthread);
1287 
1288 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1289 }
1290 
1291 hrtime_t
1292 gethrtime_waitfree(void)
1293 {
1294 	return (dtrace_gethrtime());
1295 }
1296 
1297 hrtime_t
1298 gethrtime(void)
1299 {
1300 	return (gethrtimef());
1301 }
1302 
1303 hrtime_t
1304 gethrtime_unscaled(void)
1305 {
1306 	return (gethrtimeunscaledf());
1307 }
1308 
1309 void
1310 scalehrtime(hrtime_t *hrt)
1311 {
1312 	scalehrtimef(hrt);
1313 }
1314 
1315 void
1316 gethrestime(timespec_t *tp)
1317 {
1318 	gethrestimef(tp);
1319 }
1320 
1321 #if defined(__amd64)
1322 /*
1323  * Part of the implementation of hres_tick(); this routine is
1324  * easier in C than assembler .. called with the hres_lock held.
1325  *
1326  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1327  */
1328 
1329 #include <sys/time.h>
1330 #include <sys/machlock.h>
1331 
1332 extern int one_sec;
1333 extern timestruc_t hrestime;
1334 extern int max_hres_adj;
1335 
1336 void
1337 __adj_hrestime(void)
1338 {
1339 	long long adj;
1340 
1341 	if (hrestime_adj == 0)
1342 		adj = 0;
1343 	else if (hrestime_adj > 0) {
1344 		if (hrestime_adj < max_hres_adj)
1345 			adj = hrestime_adj;
1346 		else
1347 			adj = max_hres_adj;
1348 	} else {
1349 		if (hrestime_adj < -max_hres_adj)
1350 			adj = -max_hres_adj;
1351 		else
1352 			adj = hrestime_adj;
1353 	}
1354 
1355 	timedelta -= adj;
1356 	hrestime_adj = timedelta;
1357 	hrestime.tv_nsec += adj;
1358 
1359 	while (hrestime.tv_nsec >= NANOSEC) {
1360 		one_sec++;
1361 		hrestime.tv_sec++;
1362 		hrestime.tv_nsec -= NANOSEC;
1363 	}
1364 }
1365 #endif
1366 
1367 /*
1368  * Wrapper functions to maintain backwards compability
1369  */
1370 int
1371 xcopyin(const void *uaddr, void *kaddr, size_t count)
1372 {
1373 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1374 }
1375 
1376 int
1377 xcopyout(const void *kaddr, void *uaddr, size_t count)
1378 {
1379 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1380 }
1381