xref: /titanic_51/usr/src/uts/intel/ia32/ml/i86_subr.s (revision 1901763758d1e410cf3b2040acae1a01781765ce)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 *  Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.
29 *  Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T
30 *    All Rights Reserved
31 */
32
33#pragma ident	"%Z%%M%	%I%	%E% SMI"
34
35/*
36 * General assembly language routines.
37 * It is the intent of this file to contain routines that are
38 * independent of the specific kernel architecture, and those that are
39 * common across kernel architectures.
40 * As architectures diverge, and implementations of specific
41 * architecture-dependent routines change, the routines should be moved
42 * from this file into the respective ../`arch -k`/subr.s file.
43 */
44
45#include <sys/asm_linkage.h>
46#include <sys/asm_misc.h>
47#include <sys/panic.h>
48#include <sys/ontrap.h>
49#include <sys/regset.h>
50#include <sys/privregs.h>
51#include <sys/reboot.h>
52#include <sys/psw.h>
53#include <sys/x86_archext.h>
54
55#if defined(__lint)
56#include <sys/types.h>
57#include <sys/systm.h>
58#include <sys/thread.h>
59#include <sys/archsystm.h>
60#include <sys/byteorder.h>
61#include <sys/dtrace.h>
62#else	/* __lint */
63#include "assym.h"
64#endif	/* __lint */
65#include <sys/dditypes.h>
66
67/*
68 * on_fault()
69 * Catch lofault faults. Like setjmp except it returns one
70 * if code following causes uncorrectable fault. Turned off
71 * by calling no_fault().
72 */
73
74#if defined(__lint)
75
76/* ARGSUSED */
77int
78on_fault(label_t *ljb)
79{ return (0); }
80
81void
82no_fault(void)
83{}
84
85#else	/* __lint */
86
87#if defined(__amd64)
88
89	ENTRY(on_fault)
90	movq	%gs:CPU_THREAD, %rsi
91	leaq	catch_fault(%rip), %rdx
92	movq	%rdi, T_ONFAULT(%rsi)		/* jumpbuf in t_onfault */
93	movq	%rdx, T_LOFAULT(%rsi)		/* catch_fault in t_lofault */
94	jmp	setjmp				/* let setjmp do the rest */
95
96catch_fault:
97	movq	%gs:CPU_THREAD, %rsi
98	movq	T_ONFAULT(%rsi), %rdi		/* address of save area */
99	xorl	%eax, %eax
100	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
101	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
102	jmp	longjmp				/* let longjmp do the rest */
103	SET_SIZE(on_fault)
104
105	ENTRY(no_fault)
106	movq	%gs:CPU_THREAD, %rsi
107	xorl	%eax, %eax
108	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
109	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
110	ret
111	SET_SIZE(no_fault)
112
113#elif defined(__i386)
114
115	ENTRY(on_fault)
116	movl	%gs:CPU_THREAD, %edx
117	movl	4(%esp), %eax			/* jumpbuf address */
118	leal	catch_fault, %ecx
119	movl	%eax, T_ONFAULT(%edx)		/* jumpbuf in t_onfault */
120	movl	%ecx, T_LOFAULT(%edx)		/* catch_fault in t_lofault */
121	jmp	setjmp				/* let setjmp do the rest */
122
123catch_fault:
124	movl	%gs:CPU_THREAD, %edx
125	xorl	%eax, %eax
126	movl	T_ONFAULT(%edx), %ecx		/* address of save area */
127	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
128	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
129	pushl	%ecx
130	call	longjmp				/* let longjmp do the rest */
131	SET_SIZE(on_fault)
132
133	ENTRY(no_fault)
134	movl	%gs:CPU_THREAD, %edx
135	xorl	%eax, %eax
136	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
137	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
138	ret
139	SET_SIZE(no_fault)
140
141#endif	/* __i386 */
142#endif	/* __lint */
143
144/*
145 * Default trampoline code for on_trap() (see <sys/ontrap.h>).  We just
146 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called.
147 */
148
149#if defined(lint)
150
151void
152on_trap_trampoline(void)
153{}
154
155#else	/* __lint */
156
157#if defined(__amd64)
158
159	ENTRY(on_trap_trampoline)
160	movq	%gs:CPU_THREAD, %rsi
161	movq	T_ONTRAP(%rsi), %rdi
162	addq	$OT_JMPBUF, %rdi
163	jmp	longjmp
164	SET_SIZE(on_trap_trampoline)
165
166#elif defined(__i386)
167
168	ENTRY(on_trap_trampoline)
169	movl	%gs:CPU_THREAD, %eax
170	movl	T_ONTRAP(%eax), %eax
171	addl	$OT_JMPBUF, %eax
172	pushl	%eax
173	call	longjmp
174	SET_SIZE(on_trap_trampoline)
175
176#endif	/* __i386 */
177#endif	/* __lint */
178
179/*
180 * Push a new element on to the t_ontrap stack.  Refer to <sys/ontrap.h> for
181 * more information about the on_trap() mechanism.  If the on_trap_data is the
182 * same as the topmost stack element, we just modify that element.
183 */
184#if defined(lint)
185
186/*ARGSUSED*/
187int
188on_trap(on_trap_data_t *otp, uint_t prot)
189{ return (0); }
190
191#else	/* __lint */
192
193#if defined(__amd64)
194
195	ENTRY(on_trap)
196	movw	%si, OT_PROT(%rdi)		/* ot_prot = prot */
197	movw	$0, OT_TRAP(%rdi)		/* ot_trap = 0 */
198	leaq	on_trap_trampoline(%rip), %rdx	/* rdx = &on_trap_trampoline */
199	movq	%rdx, OT_TRAMPOLINE(%rdi)	/* ot_trampoline = rdx */
200	xorl	%ecx, %ecx
201	movq	%rcx, OT_HANDLE(%rdi)		/* ot_handle = NULL */
202	movq	%rcx, OT_PAD1(%rdi)		/* ot_pad1 = NULL */
203	movq	%gs:CPU_THREAD, %rdx		/* rdx = curthread */
204	movq	T_ONTRAP(%rdx), %rcx		/* rcx = curthread->t_ontrap */
205	cmpq	%rdi, %rcx			/* if (otp == %rcx)	*/
206	je	0f				/*	don't modify t_ontrap */
207
208	movq	%rcx, OT_PREV(%rdi)		/* ot_prev = t_ontrap */
209	movq	%rdi, T_ONTRAP(%rdx)		/* curthread->t_ontrap = otp */
210
2110:	addq	$OT_JMPBUF, %rdi		/* &ot_jmpbuf */
212	jmp	setjmp
213	SET_SIZE(on_trap)
214
215#elif defined(__i386)
216
217	ENTRY(on_trap)
218	movl	4(%esp), %eax			/* %eax = otp */
219	movl	8(%esp), %edx			/* %edx = prot */
220
221	movw	%dx, OT_PROT(%eax)		/* ot_prot = prot */
222	movw	$0, OT_TRAP(%eax)		/* ot_trap = 0 */
223	leal	on_trap_trampoline, %edx	/* %edx = &on_trap_trampoline */
224	movl	%edx, OT_TRAMPOLINE(%eax)	/* ot_trampoline = %edx */
225	movl	$0, OT_HANDLE(%eax)		/* ot_handle = NULL */
226	movl	$0, OT_PAD1(%eax)		/* ot_pad1 = NULL */
227	movl	%gs:CPU_THREAD, %edx		/* %edx = curthread */
228	movl	T_ONTRAP(%edx), %ecx		/* %ecx = curthread->t_ontrap */
229	cmpl	%eax, %ecx			/* if (otp == %ecx) */
230	je	0f				/*    don't modify t_ontrap */
231
232	movl	%ecx, OT_PREV(%eax)		/* ot_prev = t_ontrap */
233	movl	%eax, T_ONTRAP(%edx)		/* curthread->t_ontrap = otp */
234
2350:	addl	$OT_JMPBUF, %eax		/* %eax = &ot_jmpbuf */
236	movl	%eax, 4(%esp)			/* put %eax back on the stack */
237	jmp	setjmp				/* let setjmp do the rest */
238	SET_SIZE(on_trap)
239
240#endif	/* __i386 */
241#endif	/* __lint */
242
243/*
244 * Setjmp and longjmp implement non-local gotos using state vectors
245 * type label_t.
246 */
247
248#if defined(__lint)
249
250/* ARGSUSED */
251int
252setjmp(label_t *lp)
253{ return (0); }
254
255/* ARGSUSED */
256void
257longjmp(label_t *lp)
258{}
259
260#else	/* __lint */
261
262#if LABEL_PC != 0
263#error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded
264#endif	/* LABEL_PC != 0 */
265
266#if defined(__amd64)
267
268	ENTRY(setjmp)
269	movq	%rsp, LABEL_SP(%rdi)
270	movq	%rbp, LABEL_RBP(%rdi)
271	movq	%rbx, LABEL_RBX(%rdi)
272	movq	%r12, LABEL_R12(%rdi)
273	movq	%r13, LABEL_R13(%rdi)
274	movq	%r14, LABEL_R14(%rdi)
275	movq	%r15, LABEL_R15(%rdi)
276	movq	(%rsp), %rdx		/* return address */
277	movq	%rdx, (%rdi)		/* LABEL_PC is 0 */
278	xorl	%eax, %eax		/* return 0 */
279	ret
280	SET_SIZE(setjmp)
281
282	ENTRY(longjmp)
283	movq	LABEL_SP(%rdi), %rsp
284	movq	LABEL_RBP(%rdi), %rbp
285	movq	LABEL_RBX(%rdi), %rbx
286	movq	LABEL_R12(%rdi), %r12
287	movq	LABEL_R13(%rdi), %r13
288	movq	LABEL_R14(%rdi), %r14
289	movq	LABEL_R15(%rdi), %r15
290	movq	(%rdi), %rdx		/* return address; LABEL_PC is 0 */
291	movq	%rdx, (%rsp)
292	xorl	%eax, %eax
293	incl	%eax			/* return 1 */
294	ret
295	SET_SIZE(longjmp)
296
297#elif defined(__i386)
298
299	ENTRY(setjmp)
300	movl	4(%esp), %edx		/* address of save area */
301	movl	%ebp, LABEL_EBP(%edx)
302	movl	%ebx, LABEL_EBX(%edx)
303	movl	%esi, LABEL_ESI(%edx)
304	movl	%edi, LABEL_EDI(%edx)
305	movl	%esp, 4(%edx)
306	movl	(%esp), %ecx		/* %eip (return address) */
307	movl	%ecx, (%edx)		/* LABEL_PC is 0 */
308	subl	%eax, %eax		/* return 0 */
309	ret
310	SET_SIZE(setjmp)
311
312	ENTRY(longjmp)
313	movl	4(%esp), %edx		/* address of save area */
314	movl	LABEL_EBP(%edx), %ebp
315	movl	LABEL_EBX(%edx), %ebx
316	movl	LABEL_ESI(%edx), %esi
317	movl	LABEL_EDI(%edx), %edi
318	movl	4(%edx), %esp
319	movl	(%edx), %ecx		/* %eip (return addr); LABEL_PC is 0 */
320	movl	$1, %eax
321	addl	$4, %esp		/* pop ret adr */
322	jmp	*%ecx			/* indirect */
323	SET_SIZE(longjmp)
324
325#endif	/* __i386 */
326#endif	/* __lint */
327
328/*
329 * if a() calls b() calls caller(),
330 * caller() returns return address in a().
331 * (Note: We assume a() and b() are C routines which do the normal entry/exit
332 *  sequence.)
333 */
334
335#if defined(__lint)
336
337caddr_t
338caller(void)
339{ return (0); }
340
341#else	/* __lint */
342
343#if defined(__amd64)
344
345	ENTRY(caller)
346	movq	8(%rbp), %rax		/* b()'s return pc, in a() */
347	ret
348	SET_SIZE(caller)
349
350#elif defined(__i386)
351
352	ENTRY(caller)
353	movl	4(%ebp), %eax		/* b()'s return pc, in a() */
354	ret
355	SET_SIZE(caller)
356
357#endif	/* __i386 */
358#endif	/* __lint */
359
360/*
361 * if a() calls callee(), callee() returns the
362 * return address in a();
363 */
364
365#if defined(__lint)
366
367caddr_t
368callee(void)
369{ return (0); }
370
371#else	/* __lint */
372
373#if defined(__amd64)
374
375	ENTRY(callee)
376	movq	(%rsp), %rax		/* callee()'s return pc, in a() */
377	ret
378	SET_SIZE(callee)
379
380#elif defined(__i386)
381
382	ENTRY(callee)
383	movl	(%esp), %eax		/* callee()'s return pc, in a() */
384	ret
385	SET_SIZE(callee)
386
387#endif	/* __i386 */
388#endif	/* __lint */
389
390/*
391 * return the current frame pointer
392 */
393
394#if defined(__lint)
395
396greg_t
397getfp(void)
398{ return (0); }
399
400#else	/* __lint */
401
402#if defined(__amd64)
403
404	ENTRY(getfp)
405	movq	%rbp, %rax
406	ret
407	SET_SIZE(getfp)
408
409#elif defined(__i386)
410
411	ENTRY(getfp)
412	movl	%ebp, %eax
413	ret
414	SET_SIZE(getfp)
415
416#endif	/* __i386 */
417#endif	/* __lint */
418
419/*
420 * Invalidate a single page table entry in the TLB
421 */
422
423#if defined(__lint)
424
425/* ARGSUSED */
426void
427mmu_tlbflush_entry(caddr_t m)
428{}
429
430#else	/* __lint */
431
432#if defined(__amd64)
433
434	ENTRY(mmu_tlbflush_entry)
435	invlpg	(%rdi)
436	ret
437	SET_SIZE(mmu_tlbflush_entry)
438
439#elif defined(__i386)
440
441	ENTRY(mmu_tlbflush_entry)
442	movl	4(%esp), %eax
443	invlpg	(%eax)
444	ret
445	SET_SIZE(mmu_tlbflush_entry)
446
447#endif	/* __i386 */
448#endif	/* __lint */
449
450
451/*
452 * Get/Set the value of various control registers
453 */
454
455#if defined(__lint)
456
457ulong_t
458getcr0(void)
459{ return (0); }
460
461/* ARGSUSED */
462void
463setcr0(ulong_t value)
464{}
465
466ulong_t
467getcr2(void)
468{ return (0); }
469
470ulong_t
471getcr3(void)
472{ return (0); }
473
474/* ARGSUSED */
475void
476setcr3(ulong_t val)
477{}
478
479void
480reload_cr3(void)
481{}
482
483ulong_t
484getcr4(void)
485{ return (0); }
486
487/* ARGSUSED */
488void
489setcr4(ulong_t val)
490{}
491
492#if defined(__amd64)
493
494ulong_t
495getcr8(void)
496{ return (0); }
497
498/* ARGSUSED */
499void
500setcr8(ulong_t val)
501{}
502
503#endif	/* __amd64 */
504
505#else	/* __lint */
506
507#if defined(__amd64)
508
509	ENTRY(getcr0)
510	movq	%cr0, %rax
511	ret
512	SET_SIZE(getcr0)
513
514	ENTRY(setcr0)
515	movq	%rdi, %cr0
516	ret
517	SET_SIZE(setcr0)
518
519	ENTRY(getcr2)
520	movq	%cr2, %rax
521	ret
522	SET_SIZE(getcr2)
523
524	ENTRY(getcr3)
525	movq	%cr3, %rax
526	ret
527	SET_SIZE(getcr3)
528
529	ENTRY(setcr3)
530	movq	%rdi, %cr3
531	ret
532	SET_SIZE(setcr3)
533
534	ENTRY(reload_cr3)
535	movq	%cr3, %rdi
536	movq	%rdi, %cr3
537	ret
538	SET_SIZE(reload_cr3)
539
540	ENTRY(getcr4)
541	movq	%cr4, %rax
542	ret
543	SET_SIZE(getcr4)
544
545	ENTRY(setcr4)
546	movq	%rdi, %cr4
547	ret
548	SET_SIZE(setcr4)
549
550	ENTRY(getcr8)
551	movq	%cr8, %rax
552	ret
553	SET_SIZE(getcr8)
554
555	ENTRY(setcr8)
556	movq	%rdi, %cr8
557	ret
558	SET_SIZE(setcr8)
559
560#elif defined(__i386)
561
562        ENTRY(getcr0)
563        movl    %cr0, %eax
564        ret
565	SET_SIZE(getcr0)
566
567        ENTRY(setcr0)
568        movl    4(%esp), %eax
569        movl    %eax, %cr0
570        ret
571	SET_SIZE(setcr0)
572
573        ENTRY(getcr2)
574        movl    %cr2, %eax
575        ret
576	SET_SIZE(getcr2)
577
578	ENTRY(getcr3)
579	movl    %cr3, %eax
580	ret
581	SET_SIZE(getcr3)
582
583        ENTRY(setcr3)
584        movl    4(%esp), %eax
585        movl    %eax, %cr3
586        ret
587	SET_SIZE(setcr3)
588
589	ENTRY(reload_cr3)
590	movl    %cr3, %eax
591	movl    %eax, %cr3
592	ret
593	SET_SIZE(reload_cr3)
594
595	ENTRY(getcr4)
596	movl    %cr4, %eax
597	ret
598	SET_SIZE(getcr4)
599
600        ENTRY(setcr4)
601        movl    4(%esp), %eax
602        movl    %eax, %cr4
603        ret
604	SET_SIZE(setcr4)
605
606#endif	/* __i386 */
607#endif	/* __lint */
608
609#if defined(__lint)
610
611/*ARGSUSED*/
612uint32_t
613__cpuid_insn(uint32_t eax, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp)
614{ return (0); }
615
616#else	/* __lint */
617
618#if defined(__amd64)
619
620	ENTRY(__cpuid_insn)
621	movq	%rbx, %r11
622	movq	%rdx, %r8	/* r8 = ecxp */
623	movq	%rcx, %r9	/* r9 = edxp */
624	movl	%edi, %eax
625	cpuid
626	movl	%ebx, (%rsi)
627	movl	%ecx, (%r8)
628	movl	%edx, (%r9)
629	movq	%r11, %rbx
630	ret
631	SET_SIZE(__cpuid_insn)
632
633#elif defined(__i386)
634
635        ENTRY(__cpuid_insn)
636	pushl	%ebp
637	movl	%esp, %ebp
638	pushl	%ebx
639	movl	8(%ebp), %eax
640	cpuid
641	pushl	%eax
642	movl	0x0c(%ebp), %eax
643	movl	%ebx, (%eax)
644	movl	0x10(%ebp), %eax
645	movl	%ecx, (%eax)
646	movl	0x14(%ebp), %eax
647	movl	%edx, (%eax)
648	popl	%eax
649	popl	%ebx
650	popl	%ebp
651	ret
652	SET_SIZE(__cpuid_insn)
653
654#endif	/* __i386 */
655#endif	/* __lint */
656
657/*
658 * Insert entryp after predp in a doubly linked list.
659 */
660
661#if defined(__lint)
662
663/*ARGSUSED*/
664void
665_insque(caddr_t entryp, caddr_t predp)
666{}
667
668#else	/* __lint */
669
670#if defined(__amd64)
671
672	ENTRY(_insque)
673	movq	(%rsi), %rax		/* predp->forw 			*/
674	movq	%rsi, CPTRSIZE(%rdi)	/* entryp->back = predp		*/
675	movq	%rax, (%rdi)		/* entryp->forw = predp->forw	*/
676	movq	%rdi, (%rsi)		/* predp->forw = entryp		*/
677	movq	%rdi, CPTRSIZE(%rax)	/* predp->forw->back = entryp	*/
678	ret
679	SET_SIZE(_insque)
680
681#elif defined(__i386)
682
683	ENTRY(_insque)
684	movl	8(%esp), %edx
685	movl	4(%esp), %ecx
686	movl	(%edx), %eax		/* predp->forw			*/
687	movl	%edx, CPTRSIZE(%ecx)	/* entryp->back = predp		*/
688	movl	%eax, (%ecx)		/* entryp->forw = predp->forw	*/
689	movl	%ecx, (%edx)		/* predp->forw = entryp		*/
690	movl	%ecx, CPTRSIZE(%eax)	/* predp->forw->back = entryp	*/
691	ret
692	SET_SIZE(_insque)
693
694#endif	/* __i386 */
695#endif	/* __lint */
696
697/*
698 * Remove entryp from a doubly linked list
699 */
700
701#if defined(__lint)
702
703/*ARGSUSED*/
704void
705_remque(caddr_t entryp)
706{}
707
708#else	/* __lint */
709
710#if defined(__amd64)
711
712	ENTRY(_remque)
713	movq	(%rdi), %rax		/* entry->forw */
714	movq	CPTRSIZE(%rdi), %rdx	/* entry->back */
715	movq	%rax, (%rdx)		/* entry->back->forw = entry->forw */
716	movq	%rdx, CPTRSIZE(%rax)	/* entry->forw->back = entry->back */
717	ret
718	SET_SIZE(_remque)
719
720#elif defined(__i386)
721
722	ENTRY(_remque)
723	movl	4(%esp), %ecx
724	movl	(%ecx), %eax		/* entry->forw */
725	movl	CPTRSIZE(%ecx), %edx	/* entry->back */
726	movl	%eax, (%edx)		/* entry->back->forw = entry->forw */
727	movl	%edx, CPTRSIZE(%eax)	/* entry->forw->back = entry->back */
728	ret
729	SET_SIZE(_remque)
730
731#endif	/* __i386 */
732#endif	/* __lint */
733
734/*
735 * Returns the number of
736 * non-NULL bytes in string argument.
737 */
738
739#if defined(__lint)
740
741/* ARGSUSED */
742size_t
743strlen(const char *str)
744{ return (0); }
745
746#else	/* __lint */
747
748#if defined(__amd64)
749
750/*
751 * This is close to a simple transliteration of a C version of this
752 * routine.  We should either just -make- this be a C version, or
753 * justify having it in assembler by making it significantly faster.
754 *
755 * size_t
756 * strlen(const char *s)
757 * {
758 *	const char *s0;
759 * #if defined(DEBUG)
760 *	if ((uintptr_t)s < KERNELBASE)
761 *		panic(.str_panic_msg);
762 * #endif
763 *	for (s0 = s; *s; s++)
764 *		;
765 *	return (s - s0);
766 * }
767 */
768
769	ENTRY(strlen)
770#ifdef DEBUG
771	movq	kernelbase(%rip), %rax
772	cmpq	%rax, %rdi
773	jae	str_valid
774	pushq	%rbp
775	movq	%rsp, %rbp
776	leaq	.str_panic_msg(%rip), %rdi
777	xorl	%eax, %eax
778	call	panic
779#endif	/* DEBUG */
780str_valid:
781	cmpb	$0, (%rdi)
782	movq	%rdi, %rax
783	je	.null_found
784	.align	4
785.strlen_loop:
786	incq	%rdi
787	cmpb	$0, (%rdi)
788	jne	.strlen_loop
789.null_found:
790	subq	%rax, %rdi
791	movq	%rdi, %rax
792	ret
793	SET_SIZE(strlen)
794
795#elif defined(__i386)
796
797	ENTRY(strlen)
798#ifdef DEBUG
799	movl	kernelbase, %eax
800	cmpl	%eax, 4(%esp)
801	jae	str_valid
802	pushl	%ebp
803	movl	%esp, %ebp
804	pushl	$.str_panic_msg
805	call	panic
806#endif /* DEBUG */
807
808str_valid:
809	movl	4(%esp), %eax		/* %eax = string address */
810	testl	$3, %eax		/* if %eax not word aligned */
811	jnz	.not_word_aligned	/* goto .not_word_aligned */
812	.align	4
813.word_aligned:
814	movl	(%eax), %edx		/* move 1 word from (%eax) to %edx */
815	movl	$0x7f7f7f7f, %ecx
816	andl	%edx, %ecx		/* %ecx = %edx & 0x7f7f7f7f */
817	addl	$4, %eax		/* next word */
818	addl	$0x7f7f7f7f, %ecx	/* %ecx += 0x7f7f7f7f */
819	orl	%edx, %ecx		/* %ecx |= %edx */
820	andl	$0x80808080, %ecx	/* %ecx &= 0x80808080 */
821	cmpl	$0x80808080, %ecx	/* if no null byte in this word */
822	je	.word_aligned		/* goto .word_aligned */
823	subl	$4, %eax		/* post-incremented */
824.not_word_aligned:
825	cmpb	$0, (%eax)		/* if a byte in (%eax) is null */
826	je	.null_found		/* goto .null_found */
827	incl	%eax			/* next byte */
828	testl	$3, %eax		/* if %eax not word aligned */
829	jnz	.not_word_aligned	/* goto .not_word_aligned */
830	jmp	.word_aligned		/* goto .word_aligned */
831	.align	4
832.null_found:
833	subl	4(%esp), %eax		/* %eax -= string address */
834	ret
835	SET_SIZE(strlen)
836
837#endif	/* __i386 */
838
839#ifdef DEBUG
840	.text
841.str_panic_msg:
842	.string "strlen: argument below kernelbase"
843#endif /* DEBUG */
844
845#endif	/* __lint */
846
847	/*
848	 * Berkley 4.3 introduced symbolically named interrupt levels
849	 * as a way deal with priority in a machine independent fashion.
850	 * Numbered priorities are machine specific, and should be
851	 * discouraged where possible.
852	 *
853	 * Note, for the machine specific priorities there are
854	 * examples listed for devices that use a particular priority.
855	 * It should not be construed that all devices of that
856	 * type should be at that priority.  It is currently were
857	 * the current devices fit into the priority scheme based
858	 * upon time criticalness.
859	 *
860	 * The underlying assumption of these assignments is that
861	 * IPL 10 is the highest level from which a device
862	 * routine can call wakeup.  Devices that interrupt from higher
863	 * levels are restricted in what they can do.  If they need
864	 * kernels services they should schedule a routine at a lower
865	 * level (via software interrupt) to do the required
866	 * processing.
867	 *
868	 * Examples of this higher usage:
869	 *	Level	Usage
870	 *	14	Profiling clock (and PROM uart polling clock)
871	 *	12	Serial ports
872	 *
873	 * The serial ports request lower level processing on level 6.
874	 *
875	 * Also, almost all splN routines (where N is a number or a
876	 * mnemonic) will do a RAISE(), on the assumption that they are
877	 * never used to lower our priority.
878	 * The exceptions are:
879	 *	spl8()		Because you can't be above 15 to begin with!
880	 *	splzs()		Because this is used at boot time to lower our
881	 *			priority, to allow the PROM to poll the uart.
882	 *	spl0()		Used to lower priority to 0.
883	 */
884
885#if defined(__lint)
886
887int spl0(void)		{ return (0); }
888int spl6(void)		{ return (0); }
889int spl7(void)		{ return (0); }
890int spl8(void)		{ return (0); }
891int splhigh(void)	{ return (0); }
892int splhi(void)		{ return (0); }
893int splzs(void)		{ return (0); }
894
895#else	/* __lint */
896
897/* reg = cpu->cpu_m.cpu_pri; */
898#define	GETIPL_NOGS(reg, cpup)	\
899	movl	CPU_PRI(cpup), reg;
900
901/* cpu->cpu_m.cpu_pri; */
902#define	SETIPL_NOGS(val, cpup)	\
903	movl	val, CPU_PRI(cpup);
904
905/* reg = cpu->cpu_m.cpu_pri; */
906#define	GETIPL(reg)	\
907	movl	%gs:CPU_PRI, reg;
908
909/* cpu->cpu_m.cpu_pri; */
910#define	SETIPL(val)	\
911	movl	val, %gs:CPU_PRI;
912
913/*
914 * Macro to raise processor priority level.
915 * Avoid dropping processor priority if already at high level.
916 * Also avoid going below CPU->cpu_base_spl, which could've just been set by
917 * a higher-level interrupt thread that just blocked.
918 */
919#if defined(__amd64)
920
921#define	RAISE(level) \
922	cli;			\
923	LOADCPU(%rcx);		\
924	movl	$/**/level, %edi;\
925	GETIPL_NOGS(%eax, %rcx);\
926	cmpl 	%eax, %edi;	\
927	jg	spl;		\
928	jmp	setsplhisti
929
930#elif defined(__i386)
931
932#define	RAISE(level) \
933	cli;			\
934	LOADCPU(%ecx);		\
935	movl	$/**/level, %edx;\
936	GETIPL_NOGS(%eax, %ecx);\
937	cmpl 	%eax, %edx;	\
938	jg	spl;		\
939	jmp	setsplhisti
940
941#endif	/* __i386 */
942
943/*
944 * Macro to set the priority to a specified level.
945 * Avoid dropping the priority below CPU->cpu_base_spl.
946 */
947#if defined(__amd64)
948
949#define	SETPRI(level) \
950	cli;				\
951	LOADCPU(%rcx);			\
952	movl	$/**/level, %edi;	\
953	jmp	spl
954
955#elif defined(__i386)
956
957#define SETPRI(level) \
958	cli;				\
959	LOADCPU(%ecx);			\
960	movl	$/**/level, %edx;	\
961	jmp	spl
962
963#endif	/* __i386 */
964
965	/* locks out all interrupts, including memory errors */
966	ENTRY(spl8)
967	SETPRI(15)
968	SET_SIZE(spl8)
969
970	/* just below the level that profiling runs */
971	ENTRY(spl7)
972	RAISE(13)
973	SET_SIZE(spl7)
974
975	/* sun specific - highest priority onboard serial i/o asy ports */
976	ENTRY(splzs)
977	SETPRI(12)	/* Can't be a RAISE, as it's used to lower us */
978	SET_SIZE(splzs)
979
980	/*
981	 * should lock out clocks and all interrupts,
982	 * as you can see, there are exceptions
983	 */
984
985#if defined(__amd64)
986
987	.align	16
988	ENTRY(splhi)
989	ALTENTRY(splhigh)
990	ALTENTRY(spl6)
991	ALTENTRY(i_ddi_splhigh)
992	cli
993	LOADCPU(%rcx)
994	movl	$DISP_LEVEL, %edi
995	movl	CPU_PRI(%rcx), %eax
996	cmpl	%eax, %edi
997	jle	setsplhisti
998	SETIPL_NOGS(%edi, %rcx)
999	/*
1000	 * If we aren't using cr8 to control ipl then we patch this
1001	 * with a jump to slow_setsplhi
1002	 */
1003	ALTENTRY(setsplhi_patch)
1004	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1005	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1006	movq	%rdx, %cr8		/* set new apic priority */
1007	/*
1008	 * enable interrupts
1009	 */
1010setsplhisti:
1011	nop	/* patch this to a sti when a proper setspl routine appears */
1012	ret
1013
1014	ALTENTRY(slow_setsplhi)
1015	pushq	%rbp
1016	movq	%rsp, %rbp
1017	subq	$16, %rsp
1018	movl	%eax, -4(%rbp)		/* save old ipl */
1019	call	*setspl(%rip)
1020	movl	-4(%rbp), %eax		/* return old ipl */
1021	leave
1022	jmp	setsplhisti
1023
1024	SET_SIZE(i_ddi_splhigh)
1025	SET_SIZE(spl6)
1026	SET_SIZE(splhigh)
1027	SET_SIZE(splhi)
1028
1029#elif defined(__i386)
1030
1031	.align	16
1032	ENTRY(splhi)
1033	ALTENTRY(splhigh)
1034	ALTENTRY(spl6)
1035	ALTENTRY(i_ddi_splhigh)
1036	cli
1037	LOADCPU(%ecx)
1038	movl	$DISP_LEVEL, %edx
1039	movl	CPU_PRI(%ecx), %eax
1040	cmpl	%eax, %edx
1041	jle	setsplhisti
1042	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1043
1044	pushl   %eax                    /* save old ipl */
1045	pushl	%edx			/* pass new ipl */
1046	call	*setspl
1047	popl	%ecx			/* dummy pop */
1048	popl    %eax                    /* return old ipl */
1049	/*
1050	 * enable interrupts
1051	 *
1052	 * (we patch this to an sti once a proper setspl routine
1053	 * is installed)
1054	 */
1055setsplhisti:
1056	nop	/* patch this to a sti when a proper setspl routine appears */
1057	ret
1058	SET_SIZE(i_ddi_splhigh)
1059	SET_SIZE(spl6)
1060	SET_SIZE(splhigh)
1061	SET_SIZE(splhi)
1062
1063#endif	/* __i386 */
1064
1065	/* allow all interrupts */
1066	ENTRY(spl0)
1067	SETPRI(0)
1068	SET_SIZE(spl0)
1069
1070#endif	/* __lint */
1071
1072/*
1073 * splr is like splx but will only raise the priority and never drop it
1074 */
1075#if defined(__lint)
1076
1077/* ARGSUSED */
1078int
1079splr(int level)
1080{ return (0); }
1081
1082#else	/* __lint */
1083
1084#if defined(__amd64)
1085
1086	ENTRY(splr)
1087	cli
1088	LOADCPU(%rcx)
1089	GETIPL_NOGS(%eax, %rcx)
1090	cmpl	%eax, %edi		/* if new level > current level */
1091	jg	spl			/* then set ipl to new level */
1092splr_setsti:
1093	nop	/* patch this to a sti when a proper setspl routine appears */
1094	ret				/* else return the current level */
1095	SET_SIZE(splr)
1096
1097#elif defined(__i386)
1098
1099	ENTRY(splr)
1100	cli
1101	LOADCPU(%ecx)
1102	movl	4(%esp), %edx		/* get new spl level */
1103	GETIPL_NOGS(%eax, %ecx)
1104	cmpl 	%eax, %edx		/* if new level > current level */
1105	jg	spl			/* then set ipl to new level */
1106splr_setsti:
1107	nop	/* patch this to a sti when a proper setspl routine appears */
1108	ret				/* else return the current level */
1109	SET_SIZE(splr)
1110
1111#endif	/* __i386 */
1112#endif	/* __lint */
1113
1114
1115
1116/*
1117 * splx - set PIL back to that indicated by the level passed as an argument,
1118 * or to the CPU's base priority, whichever is higher.
1119 * Needs to be fall through to spl to save cycles.
1120 * Algorithm for spl:
1121 *
1122 *      turn off interrupts
1123 *
1124 *	if (CPU->cpu_base_spl > newipl)
1125 *		newipl = CPU->cpu_base_spl;
1126 *      oldipl = CPU->cpu_pridata->c_ipl;
1127 *      CPU->cpu_pridata->c_ipl = newipl;
1128 *
1129 *	/indirectly call function to set spl values (usually setpicmasks)
1130 *      setspl();  // load new masks into pics
1131 *
1132 * Be careful not to set priority lower than CPU->cpu_base_pri,
1133 * even though it seems we're raising the priority, it could be set
1134 * higher at any time by an interrupt routine, so we must block interrupts
1135 * and look at CPU->cpu_base_pri
1136 */
1137#if defined(__lint)
1138
1139/* ARGSUSED */
1140void
1141splx(int level)
1142{}
1143
1144#else	/* __lint */
1145
1146#if defined(__amd64)
1147
1148	ENTRY(splx)
1149	ALTENTRY(i_ddi_splx)
1150	cli				/* disable interrupts */
1151	LOADCPU(%rcx)
1152	/*FALLTHRU*/
1153	.align	4
1154spl:
1155	/*
1156	 * New priority level is in %edi, cpu struct pointer is in %rcx
1157	 */
1158	GETIPL_NOGS(%eax, %rcx)		/* get current ipl */
1159	cmpl   %edi, CPU_BASE_SPL(%rcx) /* if (base spl > new ipl) */
1160	ja     set_to_base_spl		/* then use base_spl */
1161
1162setprilev:
1163	SETIPL_NOGS(%edi, %rcx)		/* set new ipl */
1164	/*
1165	 * If we aren't using cr8 to control ipl then we patch this
1166	 * with a jump to slow_spl
1167	 */
1168	ALTENTRY(spl_patch)
1169	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1170	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1171	movq	%rdx, %cr8		/* set new apic priority */
1172	xorl	%edx, %edx
1173	bsrl	CPU_SOFTINFO(%rcx), %edx /* fls(cpu->cpu_softinfo.st_pending) */
1174	cmpl	%edi, %edx		/* new ipl vs. st_pending */
1175	jle	setsplsti
1176
1177	pushq	%rbp
1178	movq	%rsp, %rbp
1179	/* stack now 16-byte aligned */
1180	pushq	%rax			/* save old spl */
1181	pushq	%rdi			/* save new ipl too */
1182	jmp	fakesoftint
1183
1184setsplsti:
1185	nop	/* patch this to a sti when a proper setspl routine appears */
1186	ret
1187
1188	ALTENTRY(slow_spl)
1189	pushq	%rbp
1190	movq	%rsp, %rbp
1191	/* stack now 16-byte aligned */
1192
1193	pushq	%rax			/* save old spl */
1194	pushq	%rdi			/* save new ipl too */
1195
1196	call	*setspl(%rip)
1197
1198	LOADCPU(%rcx)
1199	movl	CPU_SOFTINFO(%rcx), %eax
1200	orl	%eax, %eax
1201	jz	slow_setsplsti
1202
1203	bsrl	%eax, %edx		/* fls(cpu->cpu_softinfo.st_pending) */
1204	cmpl	0(%rsp), %edx		/* new ipl vs. st_pending */
1205	jg	fakesoftint
1206
1207	ALTENTRY(fakesoftint_return)
1208	/*
1209	 * enable interrupts
1210	 */
1211slow_setsplsti:
1212	nop	/* patch this to a sti when a proper setspl routine appears */
1213	popq	%rdi
1214	popq	%rax			/* return old ipl */
1215	leave
1216	ret
1217	SET_SIZE(fakesoftint_return)
1218
1219set_to_base_spl:
1220	movl	CPU_BASE_SPL(%rcx), %edi
1221	jmp	setprilev
1222	SET_SIZE(spl)
1223	SET_SIZE(i_ddi_splx)
1224	SET_SIZE(splx)
1225
1226#elif defined(__i386)
1227
1228	ENTRY(splx)
1229	ALTENTRY(i_ddi_splx)
1230	cli                             /* disable interrupts */
1231	LOADCPU(%ecx)
1232	movl	4(%esp), %edx		/* get new spl level */
1233	/*FALLTHRU*/
1234
1235	.align	4
1236	ALTENTRY(spl)
1237	/*
1238	 * New priority level is in %edx
1239	 * (doing this early to avoid an AGI in the next instruction)
1240	 */
1241	GETIPL_NOGS(%eax, %ecx)		/* get current ipl */
1242	cmpl	%edx, CPU_BASE_SPL(%ecx) /* if ( base spl > new ipl) */
1243	ja	set_to_base_spl		/* then use base_spl */
1244
1245setprilev:
1246	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1247
1248	pushl   %eax                    /* save old ipl */
1249	pushl	%edx			/* pass new ipl */
1250	call	*setspl
1251
1252	LOADCPU(%ecx)
1253	movl	CPU_SOFTINFO(%ecx), %eax
1254	orl	%eax, %eax
1255	jz	setsplsti
1256
1257	/*
1258	 * Before dashing off, check that setsplsti has been patched.
1259	 */
1260	cmpl	$NOP_INSTR, setsplsti
1261	je	setsplsti
1262
1263	bsrl	%eax, %edx
1264	cmpl	0(%esp), %edx
1265	jg	fakesoftint
1266
1267	ALTENTRY(fakesoftint_return)
1268	/*
1269	 * enable interrupts
1270	 */
1271setsplsti:
1272	nop	/* patch this to a sti when a proper setspl routine appears */
1273	popl	%eax
1274	popl    %eax			/ return old ipl
1275	ret
1276	SET_SIZE(fakesoftint_return)
1277
1278set_to_base_spl:
1279	movl	CPU_BASE_SPL(%ecx), %edx
1280	jmp	setprilev
1281	SET_SIZE(spl)
1282	SET_SIZE(i_ddi_splx)
1283	SET_SIZE(splx)
1284
1285#endif	/* __i386 */
1286#endif	/* __lint */
1287
1288#if defined(__lint)
1289
1290void
1291install_spl(void)
1292{}
1293
1294#else	/* __lint */
1295
1296#if defined(__amd64)
1297
1298	ENTRY_NP(install_spl)
1299	movq	%cr0, %rax
1300	movq	%rax, %rdx
1301	movl	$_BITNOT(CR0_WP), %ecx
1302	movslq	%ecx, %rcx
1303	andq	%rcx, %rax		/* we don't want to take a fault */
1304	movq	%rax, %cr0
1305	jmp	1f
13061:	movb	$STI_INSTR, setsplsti(%rip)
1307	movb	$STI_INSTR, slow_setsplsti(%rip)
1308	movb	$STI_INSTR, setsplhisti(%rip)
1309	movb	$STI_INSTR, splr_setsti(%rip)
1310	testl	$1, intpri_use_cr8(%rip)	/* are using %cr8 ? */
1311	jz	2f				/* no, go patch more */
1312	movq	%rdx, %cr0
1313	ret
13142:
1315	/*
1316	 * Patch spl functions to use slow spl method
1317	 */
1318	leaq	setsplhi_patch(%rip), %rdi	/* get patch point addr */
1319	leaq	slow_setsplhi(%rip), %rax	/* jmp target */
1320	subq	%rdi, %rax			/* calculate jmp distance */
1321	subq	$2, %rax			/* minus size of jmp instr */
1322	shlq	$8, %rax			/* construct jmp instr */
1323	addq	$JMP_INSTR, %rax
1324	movw	%ax, setsplhi_patch(%rip)	/* patch in the jmp */
1325	leaq	spl_patch(%rip), %rdi		/* get patch point addr */
1326	leaq	slow_spl(%rip), %rax		/* jmp target */
1327	subq	%rdi, %rax			/* calculate jmp distance */
1328	subq	$2, %rax			/* minus size of jmp instr */
1329	shlq	$8, %rax			/* construct jmp instr */
1330	addq	$JMP_INSTR, %rax
1331	movw	%ax, spl_patch(%rip)		/* patch in the jmp */
1332	/*
1333	 * Ensure %cr8 is zero since we aren't using it
1334	 */
1335	xorl	%eax, %eax
1336	movq	%rax, %cr8
1337	movq	%rdx, %cr0
1338	ret
1339	SET_SIZE(install_spl)
1340
1341#elif defined(__i386)
1342
1343	ENTRY_NP(install_spl)
1344	movl	%cr0, %eax
1345	movl	%eax, %edx
1346	andl	$_BITNOT(CR0_WP), %eax	/* we don't want to take a fault */
1347	movl	%eax, %cr0
1348	jmp	1f
13491:	movb	$STI_INSTR, setsplsti
1350	movb	$STI_INSTR, setsplhisti
1351	movb	$STI_INSTR, splr_setsti
1352	movl	%edx, %cr0
1353	ret
1354	SET_SIZE(install_spl)
1355
1356#endif	/* __i386 */
1357#endif	/* __lint */
1358
1359
1360/*
1361 * Get current processor interrupt level
1362 */
1363
1364#if defined(__lint)
1365
1366int
1367getpil(void)
1368{ return (0); }
1369
1370#else	/* __lint */
1371
1372#if defined(__amd64)
1373
1374	ENTRY(getpil)
1375	GETIPL(%eax)			/* priority level into %eax */
1376	ret
1377	SET_SIZE(getpil)
1378
1379#elif defined(__i386)
1380
1381	ENTRY(getpil)
1382	GETIPL(%eax)			/* priority level into %eax */
1383	ret
1384	SET_SIZE(getpil)
1385
1386#endif	/* __i386 */
1387#endif	/* __lint */
1388
1389#if defined(__i386)
1390
1391/*
1392 * Read and write the %gs register
1393 */
1394
1395#if defined(__lint)
1396
1397/*ARGSUSED*/
1398uint16_t
1399getgs(void)
1400{ return (0); }
1401
1402/*ARGSUSED*/
1403void
1404setgs(uint16_t sel)
1405{}
1406
1407#else	/* __lint */
1408
1409	ENTRY(getgs)
1410	clr	%eax
1411	movw	%gs, %ax
1412	ret
1413	SET_SIZE(getgs)
1414
1415	ENTRY(setgs)
1416	movw	4(%esp), %gs
1417	ret
1418	SET_SIZE(setgs)
1419
1420#endif	/* __lint */
1421#endif	/* __i386 */
1422
1423#if defined(__lint)
1424
1425void
1426pc_reset(void)
1427{}
1428
1429#else	/* __lint */
1430
1431	ENTRY(pc_reset)
1432	movw	$0x64, %dx
1433	movb	$0xfe, %al
1434	outb	(%dx)
1435	hlt
1436	/*NOTREACHED*/
1437	SET_SIZE(pc_reset)
1438
1439#endif	/* __lint */
1440
1441/*
1442 * C callable in and out routines
1443 */
1444
1445#if defined(__lint)
1446
1447/* ARGSUSED */
1448void
1449outl(int port_address, uint32_t val)
1450{}
1451
1452#else	/* __lint */
1453
1454#if defined(__amd64)
1455
1456	ENTRY(outl)
1457	movw	%di, %dx
1458	movl	%esi, %eax
1459	outl	(%dx)
1460	ret
1461	SET_SIZE(outl)
1462
1463#elif defined(__i386)
1464
1465	.set	PORT, 4
1466	.set	VAL, 8
1467
1468	ENTRY(outl)
1469	movw	PORT(%esp), %dx
1470	movl	VAL(%esp), %eax
1471	outl	(%dx)
1472	ret
1473	SET_SIZE(outl)
1474
1475#endif	/* __i386 */
1476#endif	/* __lint */
1477
1478#if defined(__lint)
1479
1480/* ARGSUSED */
1481void
1482outw(int port_address, uint16_t val)
1483{}
1484
1485#else	/* __lint */
1486
1487#if defined(__amd64)
1488
1489	ENTRY(outw)
1490	movw	%di, %dx
1491	movw	%si, %ax
1492	D16 outl (%dx)		/* XX64 why not outw? */
1493	ret
1494	SET_SIZE(outw)
1495
1496#elif defined(__i386)
1497
1498	ENTRY(outw)
1499	movw	PORT(%esp), %dx
1500	movw	VAL(%esp), %ax
1501	D16 outl (%dx)
1502	ret
1503	SET_SIZE(outw)
1504
1505#endif	/* __i386 */
1506#endif	/* __lint */
1507
1508#if defined(__lint)
1509
1510/* ARGSUSED */
1511void
1512outb(int port_address, uint8_t val)
1513{}
1514
1515#else	/* __lint */
1516
1517#if defined(__amd64)
1518
1519	ENTRY(outb)
1520	movw	%di, %dx
1521	movb	%sil, %al
1522	outb	(%dx)
1523	ret
1524	SET_SIZE(outb)
1525
1526#elif defined(__i386)
1527
1528	ENTRY(outb)
1529	movw	PORT(%esp), %dx
1530	movb	VAL(%esp), %al
1531	outb	(%dx)
1532	ret
1533	SET_SIZE(outb)
1534
1535#endif	/* __i386 */
1536#endif	/* __lint */
1537
1538#if defined(__lint)
1539
1540/* ARGSUSED */
1541uint32_t
1542inl(int port_address)
1543{ return (0); }
1544
1545#else	/* __lint */
1546
1547#if defined(__amd64)
1548
1549	ENTRY(inl)
1550	xorl	%eax, %eax
1551	movw	%di, %dx
1552	inl	(%dx)
1553	ret
1554	SET_SIZE(inl)
1555
1556#elif defined(__i386)
1557
1558	ENTRY(inl)
1559	movw	PORT(%esp), %dx
1560	inl	(%dx)
1561	ret
1562	SET_SIZE(inl)
1563
1564#endif	/* __i386 */
1565#endif	/* __lint */
1566
1567#if defined(__lint)
1568
1569/* ARGSUSED */
1570uint16_t
1571inw(int port_address)
1572{ return (0); }
1573
1574#else	/* __lint */
1575
1576#if defined(__amd64)
1577
1578	ENTRY(inw)
1579	xorl	%eax, %eax
1580	movw	%di, %dx
1581	D16 inl	(%dx)
1582	ret
1583	SET_SIZE(inw)
1584
1585#elif defined(__i386)
1586
1587	ENTRY(inw)
1588	subl	%eax, %eax
1589	movw	PORT(%esp), %dx
1590	D16 inl	(%dx)
1591	ret
1592	SET_SIZE(inw)
1593
1594#endif	/* __i386 */
1595#endif	/* __lint */
1596
1597
1598#if defined(__lint)
1599
1600/* ARGSUSED */
1601uint8_t
1602inb(int port_address)
1603{ return (0); }
1604
1605#else	/* __lint */
1606
1607#if defined(__amd64)
1608
1609	ENTRY(inb)
1610	xorl	%eax, %eax
1611	movw	%di, %dx
1612	inb	(%dx)
1613	ret
1614	SET_SIZE(inb)
1615
1616#elif defined(__i386)
1617
1618	ENTRY(inb)
1619	subl    %eax, %eax
1620	movw	PORT(%esp), %dx
1621	inb	(%dx)
1622	ret
1623	SET_SIZE(inb)
1624
1625#endif	/* __i386 */
1626#endif	/* __lint */
1627
1628
1629#if defined(__lint)
1630
1631/* ARGSUSED */
1632void
1633repoutsw(int port, uint16_t *addr, int cnt)
1634{}
1635
1636#else	/* __lint */
1637
1638#if defined(__amd64)
1639
1640	ENTRY(repoutsw)
1641	movl	%edx, %ecx
1642	movw	%di, %dx
1643	rep
1644	  D16 outsl
1645	ret
1646	SET_SIZE(repoutsw)
1647
1648#elif defined(__i386)
1649
1650	/*
1651	 * The arguments and saved registers are on the stack in the
1652	 *  following order:
1653	 *      |  cnt  |  +16
1654	 *      | *addr |  +12
1655	 *      | port  |  +8
1656	 *      |  eip  |  +4
1657	 *      |  esi  |  <-- %esp
1658	 * If additional values are pushed onto the stack, make sure
1659	 * to adjust the following constants accordingly.
1660	 */
1661	.set	PORT, 8
1662	.set	ADDR, 12
1663	.set	COUNT, 16
1664
1665	ENTRY(repoutsw)
1666	pushl	%esi
1667	movl	PORT(%esp), %edx
1668	movl	ADDR(%esp), %esi
1669	movl	COUNT(%esp), %ecx
1670	rep
1671	  D16 outsl
1672	popl	%esi
1673	ret
1674	SET_SIZE(repoutsw)
1675
1676#endif	/* __i386 */
1677#endif	/* __lint */
1678
1679
1680#if defined(__lint)
1681
1682/* ARGSUSED */
1683void
1684repinsw(int port_addr, uint16_t *addr, int cnt)
1685{}
1686
1687#else	/* __lint */
1688
1689#if defined(__amd64)
1690
1691	ENTRY(repinsw)
1692	movl	%edx, %ecx
1693	movw	%di, %dx
1694	rep
1695	  D16 insl
1696	ret
1697	SET_SIZE(repinsw)
1698
1699#elif defined(__i386)
1700
1701	ENTRY(repinsw)
1702	pushl	%edi
1703	movl	PORT(%esp), %edx
1704	movl	ADDR(%esp), %edi
1705	movl	COUNT(%esp), %ecx
1706	rep
1707	  D16 insl
1708	popl	%edi
1709	ret
1710	SET_SIZE(repinsw)
1711
1712#endif	/* __i386 */
1713#endif	/* __lint */
1714
1715
1716#if defined(__lint)
1717
1718/* ARGSUSED */
1719void
1720repinsb(int port, uint8_t *addr, int count)
1721{}
1722
1723#else	/* __lint */
1724
1725#if defined(__amd64)
1726
1727	ENTRY(repinsb)
1728	movl	%edx, %ecx
1729	movw	%di, %dx
1730	movq	%rsi, %rdi
1731	rep
1732	  insb
1733	ret
1734	SET_SIZE(repinsb)
1735
1736#elif defined(__i386)
1737
1738	/*
1739	 * The arguments and saved registers are on the stack in the
1740	 *  following order:
1741	 *      |  cnt  |  +16
1742	 *      | *addr |  +12
1743	 *      | port  |  +8
1744	 *      |  eip  |  +4
1745	 *      |  esi  |  <-- %esp
1746	 * If additional values are pushed onto the stack, make sure
1747	 * to adjust the following constants accordingly.
1748	 */
1749	.set	IO_PORT, 8
1750	.set	IO_ADDR, 12
1751	.set	IO_COUNT, 16
1752
1753	ENTRY(repinsb)
1754	pushl	%edi
1755	movl	IO_ADDR(%esp), %edi
1756	movl	IO_COUNT(%esp), %ecx
1757	movl	IO_PORT(%esp), %edx
1758	rep
1759	  insb
1760	popl	%edi
1761	ret
1762	SET_SIZE(repinsb)
1763
1764#endif	/* __i386 */
1765#endif	/* __lint */
1766
1767
1768/*
1769 * Input a stream of 32-bit words.
1770 * NOTE: count is a DWORD count.
1771 */
1772#if defined(__lint)
1773
1774/* ARGSUSED */
1775void
1776repinsd(int port, uint32_t *addr, int count)
1777{}
1778
1779#else	/* __lint */
1780
1781#if defined(__amd64)
1782
1783	ENTRY(repinsd)
1784	movl	%edx, %ecx
1785	movw	%di, %dx
1786	movq	%rsi, %rdi
1787	rep
1788	  insl
1789	ret
1790	SET_SIZE(repinsd)
1791
1792#elif defined(__i386)
1793
1794	ENTRY(repinsd)
1795	pushl	%edi
1796	movl	IO_ADDR(%esp), %edi
1797	movl	IO_COUNT(%esp), %ecx
1798	movl	IO_PORT(%esp), %edx
1799	rep
1800	  insl
1801	popl	%edi
1802	ret
1803	SET_SIZE(repinsd)
1804
1805#endif	/* __i386 */
1806#endif	/* __lint */
1807
1808/*
1809 * Output a stream of bytes
1810 * NOTE: count is a byte count
1811 */
1812#if defined(__lint)
1813
1814/* ARGSUSED */
1815void
1816repoutsb(int port, uint8_t *addr, int count)
1817{}
1818
1819#else	/* __lint */
1820
1821#if defined(__amd64)
1822
1823	ENTRY(repoutsb)
1824	movl	%edx, %ecx
1825	movw	%di, %dx
1826	rep
1827	  outsb
1828	ret
1829	SET_SIZE(repoutsb)
1830
1831#elif defined(__i386)
1832
1833	ENTRY(repoutsb)
1834	pushl	%esi
1835	movl	IO_ADDR(%esp), %esi
1836	movl	IO_COUNT(%esp), %ecx
1837	movl	IO_PORT(%esp), %edx
1838	rep
1839	  outsb
1840	popl	%esi
1841	ret
1842	SET_SIZE(repoutsb)
1843
1844#endif	/* __i386 */
1845#endif	/* __lint */
1846
1847/*
1848 * Output a stream of 32-bit words
1849 * NOTE: count is a DWORD count
1850 */
1851#if defined(__lint)
1852
1853/* ARGSUSED */
1854void
1855repoutsd(int port, uint32_t *addr, int count)
1856{}
1857
1858#else	/* __lint */
1859
1860#if defined(__amd64)
1861
1862	ENTRY(repoutsd)
1863	movl	%edx, %ecx
1864	movw	%di, %dx
1865	rep
1866	  outsl
1867	ret
1868	SET_SIZE(repoutsd)
1869
1870#elif defined(__i386)
1871
1872	ENTRY(repoutsd)
1873	pushl	%esi
1874	movl	IO_ADDR(%esp), %esi
1875	movl	IO_COUNT(%esp), %ecx
1876	movl	IO_PORT(%esp), %edx
1877	rep
1878	  outsl
1879	popl	%esi
1880	ret
1881	SET_SIZE(repoutsd)
1882
1883#endif	/* __i386 */
1884#endif	/* __lint */
1885
1886/*
1887 * void int20(void)
1888 */
1889
1890#if defined(__lint)
1891
1892void
1893int20(void)
1894{}
1895
1896#else	/* __lint */
1897
1898	ENTRY(int20)
1899	movl	boothowto, %eax
1900	andl	$RB_DEBUG, %eax
1901	jz	1f
1902
1903	int	$20
19041:
1905	rep;	ret	/* use 2 byte return instruction when branch target */
1906			/* AMD Software Optimization Guide - Section 6.2 */
1907	SET_SIZE(int20)
1908
1909#endif	/* __lint */
1910
1911#if defined(__lint)
1912
1913/* ARGSUSED */
1914int
1915scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask)
1916{ return (0); }
1917
1918#else	/* __lint */
1919
1920#if defined(__amd64)
1921
1922	ENTRY(scanc)
1923					/* rdi == size */
1924					/* rsi == cp */
1925					/* rdx == table */
1926					/* rcx == mask */
1927	addq	%rsi, %rdi		/* end = &cp[size] */
1928.scanloop:
1929	cmpq	%rdi, %rsi		/* while (cp < end */
1930	jnb	.scandone
1931	movzbq	(%rsi), %r8		/* %r8 = *cp */
1932	incq	%rsi			/* cp++ */
1933	testb	%cl, (%r8, %rdx)
1934	jz	.scanloop		/*  && (table[*cp] & mask) == 0) */
1935	decq	%rsi			/* (fix post-increment) */
1936.scandone:
1937	movl	%edi, %eax
1938	subl	%esi, %eax		/* return (end - cp) */
1939	ret
1940	SET_SIZE(scanc)
1941
1942#elif defined(__i386)
1943
1944	ENTRY(scanc)
1945	pushl	%edi
1946	pushl	%esi
1947	movb	24(%esp), %cl		/* mask = %cl */
1948	movl	16(%esp), %esi		/* cp = %esi */
1949	movl	20(%esp), %edx		/* table = %edx */
1950	movl	%esi, %edi
1951	addl	12(%esp), %edi		/* end = &cp[size]; */
1952.scanloop:
1953	cmpl	%edi, %esi		/* while (cp < end */
1954	jnb	.scandone
1955	movzbl	(%esi),  %eax		/* %al = *cp */
1956	incl	%esi			/* cp++ */
1957	movb	(%edx,  %eax), %al	/* %al = table[*cp] */
1958	testb	%al, %cl
1959	jz	.scanloop		/*   && (table[*cp] & mask) == 0) */
1960	dec	%esi			/* post-incremented */
1961.scandone:
1962	movl	%edi, %eax
1963	subl	%esi, %eax		/* return (end - cp) */
1964	popl	%esi
1965	popl	%edi
1966	ret
1967	SET_SIZE(scanc)
1968
1969#endif	/* __i386 */
1970#endif	/* __lint */
1971
1972/*
1973 * Replacement functions for ones that are normally inlined.
1974 * In addition to the copy in i86.il, they are defined here just in case.
1975 */
1976
1977#if defined(__lint)
1978
1979int
1980intr_clear(void)
1981{ return 0; }
1982
1983int
1984clear_int_flag(void)
1985{ return 0; }
1986
1987#else	/* __lint */
1988
1989#if defined(__amd64)
1990
1991	ENTRY(intr_clear)
1992	ENTRY(clear_int_flag)
1993	pushfq
1994	cli
1995	popq	%rax
1996	ret
1997	SET_SIZE(clear_int_flag)
1998	SET_SIZE(intr_clear)
1999
2000#elif defined(__i386)
2001
2002	ENTRY(intr_clear)
2003	ENTRY(clear_int_flag)
2004	pushfl
2005	cli
2006	popl	%eax
2007	ret
2008	SET_SIZE(clear_int_flag)
2009	SET_SIZE(intr_clear)
2010
2011#endif	/* __i386 */
2012#endif	/* __lint */
2013
2014#if defined(__lint)
2015
2016struct cpu *
2017curcpup(void)
2018{ return 0; }
2019
2020#else	/* __lint */
2021
2022#if defined(__amd64)
2023
2024	ENTRY(curcpup)
2025	movq	%gs:CPU_SELF, %rax
2026	ret
2027	SET_SIZE(curcpup)
2028
2029#elif defined(__i386)
2030
2031	ENTRY(curcpup)
2032	movl	%gs:CPU_SELF, %eax
2033	ret
2034	SET_SIZE(curcpup)
2035
2036#endif	/* __i386 */
2037#endif	/* __lint */
2038
2039#if defined(__lint)
2040
2041/* ARGSUSED */
2042uint32_t
2043htonl(uint32_t i)
2044{ return (0); }
2045
2046/* ARGSUSED */
2047uint32_t
2048ntohl(uint32_t i)
2049{ return (0); }
2050
2051#else	/* __lint */
2052
2053#if defined(__amd64)
2054
2055	/* XX64 there must be shorter sequences for this */
2056	ENTRY(htonl)
2057	ALTENTRY(ntohl)
2058	movl	%edi, %eax
2059	bswap	%eax
2060	ret
2061	SET_SIZE(ntohl)
2062	SET_SIZE(htonl)
2063
2064#elif defined(__i386)
2065
2066	ENTRY(htonl)
2067	ALTENTRY(ntohl)
2068	movl	4(%esp), %eax
2069	bswap	%eax
2070	ret
2071	SET_SIZE(ntohl)
2072	SET_SIZE(htonl)
2073
2074#endif	/* __i386 */
2075#endif	/* __lint */
2076
2077#if defined(__lint)
2078
2079/* ARGSUSED */
2080uint16_t
2081htons(uint16_t i)
2082{ return (0); }
2083
2084/* ARGSUSED */
2085uint16_t
2086ntohs(uint16_t i)
2087{ return (0); }
2088
2089
2090#else	/* __lint */
2091
2092#if defined(__amd64)
2093
2094	/* XX64 there must be better sequences for this */
2095	ENTRY(htons)
2096	ALTENTRY(ntohs)
2097	movl	%edi, %eax
2098	bswap	%eax
2099	shrl	$16, %eax
2100	ret
2101	SET_SIZE(ntohs)
2102	SET_SIZE(htons)
2103
2104#elif defined(__i386)
2105
2106	ENTRY(htons)
2107	ALTENTRY(ntohs)
2108	movl	4(%esp), %eax
2109	bswap	%eax
2110	shrl	$16, %eax
2111	ret
2112	SET_SIZE(ntohs)
2113	SET_SIZE(htons)
2114
2115#endif	/* __i386 */
2116#endif	/* __lint */
2117
2118
2119#if defined(__lint)
2120
2121/* ARGSUSED */
2122void
2123intr_restore(uint_t i)
2124{ return; }
2125
2126/* ARGSUSED */
2127void
2128restore_int_flag(int i)
2129{ return; }
2130
2131#else	/* __lint */
2132
2133#if defined(__amd64)
2134
2135	ENTRY(intr_restore)
2136	ENTRY(restore_int_flag)
2137	pushq	%rdi
2138	popfq
2139	ret
2140	SET_SIZE(restore_int_flag)
2141	SET_SIZE(intr_restore)
2142
2143#elif defined(__i386)
2144
2145	ENTRY(intr_restore)
2146	ENTRY(restore_int_flag)
2147	pushl	4(%esp)
2148	popfl
2149	ret
2150	SET_SIZE(restore_int_flag)
2151	SET_SIZE(intr_restore)
2152
2153#endif	/* __i386 */
2154#endif	/* __lint */
2155
2156#if defined(__lint)
2157
2158void
2159sti(void)
2160{}
2161
2162#else	/* __lint */
2163
2164	ENTRY(sti)
2165	sti
2166	ret
2167	SET_SIZE(sti)
2168
2169#endif	/* __lint */
2170
2171#if defined(__lint)
2172
2173dtrace_icookie_t
2174dtrace_interrupt_disable(void)
2175{ return (0); }
2176
2177#else   /* __lint */
2178
2179#if defined(__amd64)
2180
2181	ENTRY(dtrace_interrupt_disable)
2182	pushfq
2183	popq	%rax
2184	cli
2185	ret
2186	SET_SIZE(dtrace_interrupt_disable)
2187
2188#elif defined(__i386)
2189
2190	ENTRY(dtrace_interrupt_disable)
2191	pushfl
2192	popl	%eax
2193	cli
2194	ret
2195	SET_SIZE(dtrace_interrupt_disable)
2196
2197#endif	/* __i386 */
2198#endif	/* __lint */
2199
2200#if defined(__lint)
2201
2202/*ARGSUSED*/
2203void
2204dtrace_interrupt_enable(dtrace_icookie_t cookie)
2205{}
2206
2207#else	/* __lint */
2208
2209#if defined(__amd64)
2210
2211	ENTRY(dtrace_interrupt_enable)
2212	pushq	%rdi
2213	popfq
2214	ret
2215	SET_SIZE(dtrace_interrupt_enable)
2216
2217#elif defined(__i386)
2218
2219	ENTRY(dtrace_interrupt_enable)
2220	movl	4(%esp), %eax
2221	pushl	%eax
2222	popfl
2223	ret
2224	SET_SIZE(dtrace_interrupt_enable)
2225
2226#endif	/* __i386 */
2227#endif	/* __lint */
2228
2229
2230#if defined(lint)
2231
2232void
2233dtrace_membar_producer(void)
2234{}
2235
2236void
2237dtrace_membar_consumer(void)
2238{}
2239
2240#else	/* __lint */
2241
2242	ENTRY(dtrace_membar_producer)
2243	rep;	ret	/* use 2 byte return instruction when branch target */
2244			/* AMD Software Optimization Guide - Section 6.2 */
2245	SET_SIZE(dtrace_membar_producer)
2246
2247	ENTRY(dtrace_membar_consumer)
2248	rep;	ret	/* use 2 byte return instruction when branch target */
2249			/* AMD Software Optimization Guide - Section 6.2 */
2250	SET_SIZE(dtrace_membar_consumer)
2251
2252#endif	/* __lint */
2253
2254#if defined(__lint)
2255
2256kthread_id_t
2257threadp(void)
2258{ return ((kthread_id_t)0); }
2259
2260#else	/* __lint */
2261
2262#if defined(__amd64)
2263
2264	ENTRY(threadp)
2265	movq	%gs:CPU_THREAD, %rax
2266	ret
2267	SET_SIZE(threadp)
2268
2269#elif defined(__i386)
2270
2271	ENTRY(threadp)
2272	movl	%gs:CPU_THREAD, %eax
2273	ret
2274	SET_SIZE(threadp)
2275
2276#endif	/* __i386 */
2277#endif	/* __lint */
2278
2279/*
2280 *   Checksum routine for Internet Protocol Headers
2281 */
2282
2283#if defined(__lint)
2284
2285/* ARGSUSED */
2286unsigned int
2287ip_ocsum(
2288	ushort_t *address,	/* ptr to 1st message buffer */
2289	int halfword_count,	/* length of data */
2290	unsigned int sum)	/* partial checksum */
2291{
2292	int		i;
2293	unsigned int	psum = 0;	/* partial sum */
2294
2295	for (i = 0; i < halfword_count; i++, address++) {
2296		psum += *address;
2297	}
2298
2299	while ((psum >> 16) != 0) {
2300		psum = (psum & 0xffff) + (psum >> 16);
2301	}
2302
2303	psum += sum;
2304
2305	while ((psum >> 16) != 0) {
2306		psum = (psum & 0xffff) + (psum >> 16);
2307	}
2308
2309	return (psum);
2310}
2311
2312#else	/* __lint */
2313
2314#if defined(__amd64)
2315
2316	ENTRY(ip_ocsum)
2317	pushq	%rbp
2318	movq	%rsp, %rbp
2319#ifdef DEBUG
2320	movq	kernelbase(%rip), %rax
2321	cmpq	%rax, %rdi
2322	jnb	1f
2323	xorl	%eax, %eax
2324	movq	%rdi, %rsi
2325	leaq	.ip_ocsum_panic_msg(%rip), %rdi
2326	call	panic
2327	/*NOTREACHED*/
2328.ip_ocsum_panic_msg:
2329	.string	"ip_ocsum: address 0x%p below kernelbase\n"
23301:
2331#endif
2332	movl	%esi, %ecx	/* halfword_count */
2333	movq	%rdi, %rsi	/* address */
2334				/* partial sum in %edx */
2335	xorl	%eax, %eax
2336	testl	%ecx, %ecx
2337	jz	.ip_ocsum_done
2338	testq	$3, %rsi
2339	jnz	.ip_csum_notaligned
2340.ip_csum_aligned:	/* XX64 opportunities for 8-byte operations? */
2341.next_iter:
2342	/* XX64 opportunities for prefetch? */
2343	/* XX64 compute csum with 64 bit quantities? */
2344	subl	$32, %ecx
2345	jl	.less_than_32
2346
2347	addl	0(%rsi), %edx
2348.only60:
2349	adcl	4(%rsi), %eax
2350.only56:
2351	adcl	8(%rsi), %edx
2352.only52:
2353	adcl	12(%rsi), %eax
2354.only48:
2355	adcl	16(%rsi), %edx
2356.only44:
2357	adcl	20(%rsi), %eax
2358.only40:
2359	adcl	24(%rsi), %edx
2360.only36:
2361	adcl	28(%rsi), %eax
2362.only32:
2363	adcl	32(%rsi), %edx
2364.only28:
2365	adcl	36(%rsi), %eax
2366.only24:
2367	adcl	40(%rsi), %edx
2368.only20:
2369	adcl	44(%rsi), %eax
2370.only16:
2371	adcl	48(%rsi), %edx
2372.only12:
2373	adcl	52(%rsi), %eax
2374.only8:
2375	adcl	56(%rsi), %edx
2376.only4:
2377	adcl	60(%rsi), %eax	/* could be adding -1 and -1 with a carry */
2378.only0:
2379	adcl	$0, %eax	/* could be adding -1 in eax with a carry */
2380	adcl	$0, %eax
2381
2382	addq	$64, %rsi
2383	testl	%ecx, %ecx
2384	jnz	.next_iter
2385
2386.ip_ocsum_done:
2387	addl	%eax, %edx
2388	adcl	$0, %edx
2389	movl	%edx, %eax	/* form a 16 bit checksum by */
2390	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2391	addw	%dx, %ax
2392	adcw	$0, %ax
2393	andl	$0xffff, %eax
2394	leave
2395	ret
2396
2397.ip_csum_notaligned:
2398	xorl	%edi, %edi
2399	movw	(%rsi), %di
2400	addl	%edi, %edx
2401	adcl	$0, %edx
2402	addq	$2, %rsi
2403	decl	%ecx
2404	jmp	.ip_csum_aligned
2405
2406.less_than_32:
2407	addl	$32, %ecx
2408	testl	$1, %ecx
2409	jz	.size_aligned
2410	andl	$0xfe, %ecx
2411	movzwl	(%rsi, %rcx, 2), %edi
2412	addl	%edi, %edx
2413	adcl	$0, %edx
2414.size_aligned:
2415	movl	%ecx, %edi
2416	shrl	$1, %ecx
2417	shl	$1, %edi
2418	subq	$64, %rdi
2419	addq	%rdi, %rsi
2420	leaq    .ip_ocsum_jmptbl(%rip), %rdi
2421	leaq	(%rdi, %rcx, 8), %rdi
2422	xorl	%ecx, %ecx
2423	clc
2424	jmp 	*(%rdi)
2425
2426	.align	8
2427.ip_ocsum_jmptbl:
2428	.quad	.only0, .only4, .only8, .only12, .only16, .only20
2429	.quad	.only24, .only28, .only32, .only36, .only40, .only44
2430	.quad	.only48, .only52, .only56, .only60
2431	SET_SIZE(ip_ocsum)
2432
2433#elif defined(__i386)
2434
2435	ENTRY(ip_ocsum)
2436	pushl	%ebp
2437	movl	%esp, %ebp
2438	pushl	%ebx
2439	pushl	%esi
2440	pushl	%edi
2441	movl	12(%ebp), %ecx	/* count of half words */
2442	movl	16(%ebp), %edx	/* partial checksum */
2443	movl	8(%ebp), %esi
2444	xorl	%eax, %eax
2445	testl	%ecx, %ecx
2446	jz	.ip_ocsum_done
2447
2448	testl	$3, %esi
2449	jnz	.ip_csum_notaligned
2450.ip_csum_aligned:
2451.next_iter:
2452	subl	$32, %ecx
2453	jl	.less_than_32
2454
2455	addl	0(%esi), %edx
2456.only60:
2457	adcl	4(%esi), %eax
2458.only56:
2459	adcl	8(%esi), %edx
2460.only52:
2461	adcl	12(%esi), %eax
2462.only48:
2463	adcl	16(%esi), %edx
2464.only44:
2465	adcl	20(%esi), %eax
2466.only40:
2467	adcl	24(%esi), %edx
2468.only36:
2469	adcl	28(%esi), %eax
2470.only32:
2471	adcl	32(%esi), %edx
2472.only28:
2473	adcl	36(%esi), %eax
2474.only24:
2475	adcl	40(%esi), %edx
2476.only20:
2477	adcl	44(%esi), %eax
2478.only16:
2479	adcl	48(%esi), %edx
2480.only12:
2481	adcl	52(%esi), %eax
2482.only8:
2483	adcl	56(%esi), %edx
2484.only4:
2485	adcl	60(%esi), %eax	/* We could be adding -1 and -1 with a carry */
2486.only0:
2487	adcl	$0, %eax	/* we could be adding -1 in eax with a carry */
2488	adcl	$0, %eax
2489
2490	addl	$64, %esi
2491	andl	%ecx, %ecx
2492	jnz	.next_iter
2493
2494.ip_ocsum_done:
2495	addl	%eax, %edx
2496	adcl	$0, %edx
2497	movl	%edx, %eax	/* form a 16 bit checksum by */
2498	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2499	addw	%dx, %ax
2500	adcw	$0, %ax
2501	andl	$0xffff, %eax
2502	popl	%edi		/* restore registers */
2503	popl	%esi
2504	popl	%ebx
2505	leave
2506	ret
2507
2508.ip_csum_notaligned:
2509	xorl	%edi, %edi
2510	movw	(%esi), %di
2511	addl	%edi, %edx
2512	adcl	$0, %edx
2513	addl	$2, %esi
2514	decl	%ecx
2515	jmp	.ip_csum_aligned
2516
2517.less_than_32:
2518	addl	$32, %ecx
2519	testl	$1, %ecx
2520	jz	.size_aligned
2521	andl	$0xfe, %ecx
2522	movzwl	(%esi, %ecx, 2), %edi
2523	addl	%edi, %edx
2524	adcl	$0, %edx
2525.size_aligned:
2526	movl	%ecx, %edi
2527	shrl	$1, %ecx
2528	shl	$1, %edi
2529	subl	$64, %edi
2530	addl	%edi, %esi
2531	movl	$.ip_ocsum_jmptbl, %edi
2532	lea	(%edi, %ecx, 4), %edi
2533	xorl	%ecx, %ecx
2534	clc
2535	jmp 	*(%edi)
2536	SET_SIZE(ip_ocsum)
2537
2538	.data
2539	.align	4
2540
2541.ip_ocsum_jmptbl:
2542	.long	.only0, .only4, .only8, .only12, .only16, .only20
2543	.long	.only24, .only28, .only32, .only36, .only40, .only44
2544	.long	.only48, .only52, .only56, .only60
2545
2546
2547#endif	/* __i386 */
2548#endif	/* __lint */
2549
2550/*
2551 * multiply two long numbers and yield a u_longlong_t result, callable from C.
2552 * Provided to manipulate hrtime_t values.
2553 */
2554#if defined(__lint)
2555
2556/* result = a * b; */
2557
2558/* ARGSUSED */
2559unsigned long long
2560mul32(uint_t a, uint_t b)
2561{ return (0); }
2562
2563#else	/* __lint */
2564
2565#if defined(__amd64)
2566
2567	ENTRY(mul32)
2568	xorl	%edx, %edx	/* XX64 joe, paranoia? */
2569	movl	%edi, %eax
2570	mull	%esi
2571	shlq	$32, %rdx
2572	orq	%rdx, %rax
2573	ret
2574	SET_SIZE(mul32)
2575
2576#elif defined(__i386)
2577
2578	ENTRY(mul32)
2579	movl	8(%esp), %eax
2580	movl	4(%esp), %ecx
2581	mull	%ecx
2582	ret
2583	SET_SIZE(mul32)
2584
2585#endif	/* __i386 */
2586#endif	/* __lint */
2587
2588#if defined(notused)
2589#if defined(__lint)
2590/* ARGSUSED */
2591void
2592load_pte64(uint64_t *pte, uint64_t pte_value)
2593{}
2594#else	/* __lint */
2595	.globl load_pte64
2596load_pte64:
2597	movl	4(%esp), %eax
2598	movl	8(%esp), %ecx
2599	movl	12(%esp), %edx
2600	movl	%edx, 4(%eax)
2601	movl	%ecx, (%eax)
2602	ret
2603#endif	/* __lint */
2604#endif	/* notused */
2605
2606#if defined(__lint)
2607
2608/*ARGSUSED*/
2609void
2610scan_memory(caddr_t addr, size_t size)
2611{}
2612
2613#else	/* __lint */
2614
2615#if defined(__amd64)
2616
2617	ENTRY(scan_memory)
2618	shrq	$3, %rsi	/* convert %rsi from byte to quadword count */
2619	jz	.scanm_done
2620	movq	%rsi, %rcx	/* move count into rep control register */
2621	movq	%rdi, %rsi	/* move addr into lodsq control reg. */
2622	rep lodsq		/* scan the memory range */
2623.scanm_done:
2624	rep;	ret	/* use 2 byte return instruction when branch target */
2625			/* AMD Software Optimization Guide - Section 6.2 */
2626	SET_SIZE(scan_memory)
2627
2628#elif defined(__i386)
2629
2630	ENTRY(scan_memory)
2631	pushl	%ecx
2632	pushl	%esi
2633	movl	16(%esp), %ecx	/* move 2nd arg into rep control register */
2634	shrl	$2, %ecx	/* convert from byte count to word count */
2635	jz	.scanm_done
2636	movl	12(%esp), %esi	/* move 1st arg into lodsw control register */
2637	.byte	0xf3		/* rep prefix.  lame assembler.  sigh. */
2638	lodsl
2639.scanm_done:
2640	popl	%esi
2641	popl	%ecx
2642	ret
2643	SET_SIZE(scan_memory)
2644
2645#endif	/* __i386 */
2646#endif	/* __lint */
2647
2648
2649#if defined(__lint)
2650
2651/*ARGSUSED */
2652int
2653lowbit(ulong_t i)
2654{ return (0); }
2655
2656#else	/* __lint */
2657
2658#if defined(__amd64)
2659
2660	ENTRY(lowbit)
2661	movl	$-1, %eax
2662	bsfq	%rdi, %rax
2663	incl	%eax
2664	ret
2665	SET_SIZE(lowbit)
2666
2667#elif defined(__i386)
2668
2669	ENTRY(lowbit)
2670	movl	$-1, %eax
2671	bsfl	4(%esp), %eax
2672	incl	%eax
2673	ret
2674	SET_SIZE(lowbit)
2675
2676#endif	/* __i386 */
2677#endif	/* __lint */
2678
2679#if defined(__lint)
2680
2681/*ARGSUSED*/
2682int
2683highbit(ulong_t i)
2684{ return (0); }
2685
2686#else	/* __lint */
2687
2688#if defined(__amd64)
2689
2690	ENTRY(highbit)
2691	movl	$-1, %eax
2692	bsrq	%rdi, %rax
2693	incl	%eax
2694	ret
2695	SET_SIZE(highbit)
2696
2697#elif defined(__i386)
2698
2699	ENTRY(highbit)
2700	movl	$-1, %eax
2701	bsrl	4(%esp), %eax
2702	incl	%eax
2703	ret
2704	SET_SIZE(highbit)
2705
2706#endif	/* __i386 */
2707#endif	/* __lint */
2708
2709#if defined(__lint)
2710
2711/*ARGSUSED*/
2712uint64_t
2713rdmsr(uint_t r, uint64_t *mtr)
2714{ return (0); }
2715
2716/*ARGSUSED*/
2717void
2718wrmsr(uint_t r, const uint64_t *mtr)
2719{}
2720
2721void
2722invalidate_cache(void)
2723{}
2724
2725#else  /* __lint */
2726
2727#if defined(__amd64)
2728
2729	ENTRY(rdmsr)
2730	movl	%edi, %ecx
2731	rdmsr
2732	movl	%eax, (%rsi)
2733	movl	%edx, 4(%rsi)
2734	shlq	$32, %rdx
2735	orq	%rdx, %rax
2736	ret
2737	SET_SIZE(rdmsr)
2738
2739	ENTRY(wrmsr)
2740	movl	(%rsi), %eax
2741	movl	4(%rsi), %edx
2742	movl	%edi, %ecx
2743	wrmsr
2744	ret
2745	SET_SIZE(wrmsr)
2746
2747#elif defined(__i386)
2748
2749	ENTRY(rdmsr)
2750	movl	4(%esp), %ecx
2751	rdmsr
2752	movl	8(%esp), %ecx
2753	movl	%eax, (%ecx)
2754	movl	%edx, 4(%ecx)
2755	ret
2756	SET_SIZE(rdmsr)
2757
2758	ENTRY(wrmsr)
2759	movl	8(%esp), %ecx
2760	movl	(%ecx), %eax
2761	movl	4(%ecx), %edx
2762	movl	4(%esp), %ecx
2763	wrmsr
2764	ret
2765	SET_SIZE(wrmsr)
2766
2767#endif	/* __i386 */
2768
2769	ENTRY(invalidate_cache)
2770	wbinvd
2771	ret
2772	SET_SIZE(invalidate_cache)
2773
2774#endif	/* __lint */
2775
2776#if defined(__lint)
2777
2778/*ARGSUSED*/
2779void getcregs(struct cregs *crp)
2780{}
2781
2782#else	/* __lint */
2783
2784#if defined(__amd64)
2785
2786#define	GETMSR(r, off, d)	\
2787	movl	$r, %ecx;	\
2788	rdmsr;			\
2789	movl	%eax, off(d);	\
2790	movl	%edx, off+4(d)
2791
2792	ENTRY_NP(getcregs)
2793	xorl	%eax, %eax
2794	movq	%rax, CREG_GDT+8(%rdi)
2795	sgdt	CREG_GDT(%rdi)		/* 10 bytes */
2796	movq	%rax, CREG_IDT+8(%rdi)
2797	sidt	CREG_IDT(%rdi)		/* 10 bytes */
2798	movq	%rax, CREG_LDT(%rdi)
2799	sldt	CREG_LDT(%rdi)		/* 2 bytes */
2800	movq	%rax, CREG_TASKR(%rdi)
2801	str	CREG_TASKR(%rdi)	/* 2 bytes */
2802	movq	%cr0, %rax
2803	movq	%rax, CREG_CR0(%rdi)	/* cr0 */
2804	movq	%cr2, %rax
2805	movq	%rax, CREG_CR2(%rdi)	/* cr2 */
2806	movq	%cr3, %rax
2807	movq	%rax, CREG_CR3(%rdi)	/* cr3 */
2808	movq	%cr4, %rax
2809	movq	%rax, CREG_CR8(%rdi)	/* cr4 */
2810	movq	%cr8, %rax
2811	movq	%rax, CREG_CR8(%rdi)	/* cr8 */
2812	GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi)
2813	GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi)
2814	SET_SIZE(getcregs)
2815
2816#undef GETMSR
2817
2818#elif defined(__i386)
2819
2820	ENTRY_NP(getcregs)
2821	movl	4(%esp), %edx
2822	movw	$0, CREG_GDT+6(%edx)
2823	movw	$0, CREG_IDT+6(%edx)
2824	sgdt	CREG_GDT(%edx)		/* gdt */
2825	sidt	CREG_IDT(%edx)		/* idt */
2826	sldt	CREG_LDT(%edx)		/* ldt */
2827	str	CREG_TASKR(%edx)	/* task */
2828	movl	%cr0, %eax
2829	movl	%eax, CREG_CR0(%edx)	/* cr0 */
2830	movl	%cr2, %eax
2831	movl	%eax, CREG_CR2(%edx)	/* cr2 */
2832	movl	%cr3, %eax
2833	movl	%eax, CREG_CR3(%edx)	/* cr3 */
2834	testl	$X86_LARGEPAGE, x86_feature
2835	jz	.nocr4
2836	movl	%cr4, %eax
2837	movl	%eax, CREG_CR4(%edx)	/* cr4 */
2838	jmp	.skip
2839.nocr4:
2840	movl	$0, CREG_CR4(%edx)
2841.skip:
2842	rep;	ret	/* use 2 byte return instruction when branch target */
2843			/* AMD Software Optimization Guide - Section 6.2 */
2844	SET_SIZE(getcregs)
2845
2846#endif	/* __i386 */
2847#endif	/* __lint */
2848
2849
2850/*
2851 * A panic trigger is a word which is updated atomically and can only be set
2852 * once.  We atomically store 0xDEFACEDD and load the old value.  If the
2853 * previous value was 0, we succeed and return 1; otherwise return 0.
2854 * This allows a partially corrupt trigger to still trigger correctly.  DTrace
2855 * has its own version of this function to allow it to panic correctly from
2856 * probe context.
2857 */
2858#if defined(__lint)
2859
2860/*ARGSUSED*/
2861int
2862panic_trigger(int *tp)
2863{ return (0); }
2864
2865/*ARGSUSED*/
2866int
2867dtrace_panic_trigger(int *tp)
2868{ return (0); }
2869
2870#else	/* __lint */
2871
2872#if defined(__amd64)
2873
2874	ENTRY_NP(panic_trigger)
2875	xorl	%eax, %eax
2876	movl	$0xdefacedd, %edx
2877	lock
2878	  xchgl	%edx, (%rdi)
2879	cmpl	$0, %edx
2880	je	0f
2881	movl	$0, %eax
2882	ret
28830:	movl	$1, %eax
2884	ret
2885	SET_SIZE(panic_trigger)
2886
2887	ENTRY_NP(dtrace_panic_trigger)
2888	xorl	%eax, %eax
2889	movl	$0xdefacedd, %edx
2890	lock
2891	  xchgl	%edx, (%rdi)
2892	cmpl	$0, %edx
2893	je	0f
2894	movl	$0, %eax
2895	ret
28960:	movl	$1, %eax
2897	ret
2898	SET_SIZE(dtrace_panic_trigger)
2899
2900#elif defined(__i386)
2901
2902	ENTRY_NP(panic_trigger)
2903	movl	4(%esp), %edx		/ %edx = address of trigger
2904	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2905	lock				/ assert lock
2906	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2907	cmpl	$0, %eax		/ if (%eax == 0x0)
2908	je	0f			/   return (1);
2909	movl	$0, %eax		/ else
2910	ret				/   return (0);
29110:	movl	$1, %eax
2912	ret
2913	SET_SIZE(panic_trigger)
2914
2915	ENTRY_NP(dtrace_panic_trigger)
2916	movl	4(%esp), %edx		/ %edx = address of trigger
2917	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2918	lock				/ assert lock
2919	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2920	cmpl	$0, %eax		/ if (%eax == 0x0)
2921	je	0f			/   return (1);
2922	movl	$0, %eax		/ else
2923	ret				/   return (0);
29240:	movl	$1, %eax
2925	ret
2926	SET_SIZE(dtrace_panic_trigger)
2927
2928#endif	/* __i386 */
2929#endif	/* __lint */
2930
2931/*
2932 * The panic() and cmn_err() functions invoke vpanic() as a common entry point
2933 * into the panic code implemented in panicsys().  vpanic() is responsible
2934 * for passing through the format string and arguments, and constructing a
2935 * regs structure on the stack into which it saves the current register
2936 * values.  If we are not dying due to a fatal trap, these registers will
2937 * then be preserved in panicbuf as the current processor state.  Before
2938 * invoking panicsys(), vpanic() activates the first panic trigger (see
2939 * common/os/panic.c) and switches to the panic_stack if successful.  Note that
2940 * DTrace takes a slightly different panic path if it must panic from probe
2941 * context.  Instead of calling panic, it calls into dtrace_vpanic(), which
2942 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and
2943 * branches back into vpanic().
2944 */
2945#if defined(__lint)
2946
2947/*ARGSUSED*/
2948void
2949vpanic(const char *format, va_list alist)
2950{}
2951
2952/*ARGSUSED*/
2953void
2954dtrace_vpanic(const char *format, va_list alist)
2955{}
2956
2957#else	/* __lint */
2958
2959#if defined(__amd64)
2960
2961	ENTRY_NP(vpanic)			/* Initial stack layout: */
2962
2963	pushq	%rbp				/* | %rip | 	0x60	*/
2964	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
2965	pushfq					/* | rfl  |	0x50	*/
2966	pushq	%r11				/* | %r11 |	0x48	*/
2967	pushq	%r10				/* | %r10 |	0x40	*/
2968	pushq	%rbx				/* | %rbx |	0x38	*/
2969	pushq	%rax				/* | %rax |	0x30	*/
2970	pushq	%r9				/* | %r9  |	0x28	*/
2971	pushq	%r8				/* | %r8  |	0x20	*/
2972	pushq	%rcx				/* | %rcx |	0x18	*/
2973	pushq	%rdx				/* | %rdx |	0x10	*/
2974	pushq	%rsi				/* | %rsi |	0x8 alist */
2975	pushq	%rdi				/* | %rdi |	0x0 format */
2976
2977	movq	%rsp, %rbx			/* %rbx = current %rsp */
2978
2979	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
2980	call	panic_trigger			/* %eax = panic_trigger() */
2981
2982vpanic_common:
2983	cmpl	$0, %eax
2984	je	0f
2985
2986	/*
2987	 * If panic_trigger() was successful, we are the first to initiate a
2988	 * panic: we now switch to the reserved panic_stack before continuing.
2989	 */
2990	leaq	panic_stack(%rip), %rsp
2991	addq	$PANICSTKSIZE, %rsp
29920:	subq	$REGSIZE, %rsp
2993	/*
2994	 * Now that we've got everything set up, store the register values as
2995	 * they were when we entered vpanic() to the designated location in
2996	 * the regs structure we allocated on the stack.
2997	 */
2998	movq	0x0(%rbx), %rcx
2999	movq	%rcx, REGOFF_RDI(%rsp)
3000	movq	0x8(%rbx), %rcx
3001	movq	%rcx, REGOFF_RSI(%rsp)
3002	movq	0x10(%rbx), %rcx
3003	movq	%rcx, REGOFF_RDX(%rsp)
3004	movq	0x18(%rbx), %rcx
3005	movq	%rcx, REGOFF_RCX(%rsp)
3006	movq	0x20(%rbx), %rcx
3007
3008	movq	%rcx, REGOFF_R8(%rsp)
3009	movq	0x28(%rbx), %rcx
3010	movq	%rcx, REGOFF_R9(%rsp)
3011	movq	0x30(%rbx), %rcx
3012	movq	%rcx, REGOFF_RAX(%rsp)
3013	movq	0x38(%rbx), %rcx
3014	movq	%rbx, REGOFF_RBX(%rsp)
3015	movq	0x58(%rbx), %rcx
3016
3017	movq	%rcx, REGOFF_RBP(%rsp)
3018	movq	0x40(%rbx), %rcx
3019	movq	%rcx, REGOFF_R10(%rsp)
3020	movq	0x48(%rbx), %rcx
3021	movq	%rcx, REGOFF_R11(%rsp)
3022	movq	%r12, REGOFF_R12(%rsp)
3023
3024	movq	%r13, REGOFF_R13(%rsp)
3025	movq	%r14, REGOFF_R14(%rsp)
3026	movq	%r15, REGOFF_R15(%rsp)
3027
3028	movl	$MSR_AMD_FSBASE, %ecx
3029	rdmsr
3030	movl	%eax, REGOFF_FSBASE(%rsp)
3031	movl	%edx, REGOFF_FSBASE+4(%rsp)
3032
3033	movl	$MSR_AMD_GSBASE, %ecx
3034	rdmsr
3035	movl	%eax, REGOFF_GSBASE(%rsp)
3036	movl	%edx, REGOFF_GSBASE+4(%rsp)
3037
3038	xorl	%ecx, %ecx
3039	movw	%ds, %cx
3040	movq	%rcx, REGOFF_DS(%rsp)
3041	movw	%es, %cx
3042	movq	%rcx, REGOFF_ES(%rsp)
3043	movw	%fs, %cx
3044	movq	%rcx, REGOFF_FS(%rsp)
3045	movw	%gs, %cx
3046	movq	%rcx, REGOFF_GS(%rsp)
3047
3048	movq	$0, REGOFF_TRAPNO(%rsp)
3049
3050	movq	$0, REGOFF_ERR(%rsp)
3051	leaq	vpanic(%rip), %rcx
3052	movq	%rcx, REGOFF_RIP(%rsp)
3053	movw	%cs, %cx
3054	movzwq	%cx, %rcx
3055	movq	%rcx, REGOFF_CS(%rsp)
3056	movq	0x50(%rbx), %rcx
3057	movq	%rcx, REGOFF_RFL(%rsp)
3058	movq	%rbx, %rcx
3059	addq	$0x60, %rcx
3060	movq	%rcx, REGOFF_RSP(%rsp)
3061	movw	%ss, %cx
3062	movzwq	%cx, %rcx
3063	movq	%rcx, REGOFF_SS(%rsp)
3064
3065	/*
3066	 * panicsys(format, alist, rp, on_panic_stack)
3067	 */
3068	movq	REGOFF_RDI(%rsp), %rdi		/* format */
3069	movq	REGOFF_RSI(%rsp), %rsi		/* alist */
3070	movq	%rsp, %rdx			/* struct regs */
3071	movl	%eax, %ecx			/* on_panic_stack */
3072	call	panicsys
3073	addq	$REGSIZE, %rsp
3074	popq	%rdi
3075	popq	%rsi
3076	popq	%rdx
3077	popq	%rcx
3078	popq	%r8
3079	popq	%r9
3080	popq	%rax
3081	popq	%rbx
3082	popq	%r10
3083	popq	%r11
3084	popfq
3085	leave
3086	ret
3087	SET_SIZE(vpanic)
3088
3089	ENTRY_NP(dtrace_vpanic)			/* Initial stack layout: */
3090
3091	pushq	%rbp				/* | %rip | 	0x60	*/
3092	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3093	pushfq					/* | rfl  |	0x50	*/
3094	pushq	%r11				/* | %r11 |	0x48	*/
3095	pushq	%r10				/* | %r10 |	0x40	*/
3096	pushq	%rbx				/* | %rbx |	0x38	*/
3097	pushq	%rax				/* | %rax |	0x30	*/
3098	pushq	%r9				/* | %r9  |	0x28	*/
3099	pushq	%r8				/* | %r8  |	0x20	*/
3100	pushq	%rcx				/* | %rcx |	0x18	*/
3101	pushq	%rdx				/* | %rdx |	0x10	*/
3102	pushq	%rsi				/* | %rsi |	0x8 alist */
3103	pushq	%rdi				/* | %rdi |	0x0 format */
3104
3105	movq	%rsp, %rbx			/* %rbx = current %rsp */
3106
3107	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3108	call	dtrace_panic_trigger	/* %eax = dtrace_panic_trigger() */
3109	jmp	vpanic_common
3110
3111	SET_SIZE(dtrace_vpanic)
3112
3113#elif defined(__i386)
3114
3115	ENTRY_NP(vpanic)			/ Initial stack layout:
3116
3117	pushl	%ebp				/ | %eip | 20
3118	movl	%esp, %ebp			/ | %ebp | 16
3119	pushl	%eax				/ | %eax | 12
3120	pushl	%ebx				/ | %ebx |  8
3121	pushl	%ecx				/ | %ecx |  4
3122	pushl	%edx				/ | %edx |  0
3123
3124	movl	%esp, %ebx			/ %ebx = current stack pointer
3125
3126	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3127	pushl	%eax				/ push &panic_quiesce
3128	call	panic_trigger			/ %eax = panic_trigger()
3129	addl	$4, %esp			/ reset stack pointer
3130
3131vpanic_common:
3132	cmpl	$0, %eax			/ if (%eax == 0)
3133	je	0f				/   goto 0f;
3134
3135	/*
3136	 * If panic_trigger() was successful, we are the first to initiate a
3137	 * panic: we now switch to the reserved panic_stack before continuing.
3138	 */
3139	lea	panic_stack, %esp		/ %esp  = panic_stack
3140	addl	$PANICSTKSIZE, %esp		/ %esp += PANICSTKSIZE
3141
31420:	subl	$REGSIZE, %esp			/ allocate struct regs
3143
3144	/*
3145	 * Now that we've got everything set up, store the register values as
3146	 * they were when we entered vpanic() to the designated location in
3147	 * the regs structure we allocated on the stack.
3148	 */
3149#if !defined(__GNUC_AS__)
3150	movw	%gs, %edx
3151	movl	%edx, REGOFF_GS(%esp)
3152	movw	%fs, %edx
3153	movl	%edx, REGOFF_FS(%esp)
3154	movw	%es, %edx
3155	movl	%edx, REGOFF_ES(%esp)
3156	movw	%ds, %edx
3157	movl	%edx, REGOFF_DS(%esp)
3158#else	/* __GNUC_AS__ */
3159	mov	%gs, %edx
3160	mov	%edx, REGOFF_GS(%esp)
3161	mov	%fs, %edx
3162	mov	%edx, REGOFF_FS(%esp)
3163	mov	%es, %edx
3164	mov	%edx, REGOFF_ES(%esp)
3165	mov	%ds, %edx
3166	mov	%edx, REGOFF_DS(%esp)
3167#endif	/* __GNUC_AS__ */
3168	movl	%edi, REGOFF_EDI(%esp)
3169	movl	%esi, REGOFF_ESI(%esp)
3170	movl	16(%ebx), %ecx
3171	movl	%ecx, REGOFF_EBP(%esp)
3172	movl	%ebx, %ecx
3173	addl	$20, %ecx
3174	movl	%ecx, REGOFF_ESP(%esp)
3175	movl	8(%ebx), %ecx
3176	movl	%ecx, REGOFF_EBX(%esp)
3177	movl	0(%ebx), %ecx
3178	movl	%ecx, REGOFF_EDX(%esp)
3179	movl	4(%ebx), %ecx
3180	movl	%ecx, REGOFF_ECX(%esp)
3181	movl	12(%ebx), %ecx
3182	movl	%ecx, REGOFF_EAX(%esp)
3183	movl	$0, REGOFF_TRAPNO(%esp)
3184	movl	$0, REGOFF_ERR(%esp)
3185	lea	vpanic, %ecx
3186	movl	%ecx, REGOFF_EIP(%esp)
3187#if !defined(__GNUC_AS__)
3188	movw	%cs, %edx
3189#else	/* __GNUC_AS__ */
3190	mov	%cs, %edx
3191#endif	/* __GNUC_AS__ */
3192	movl	%edx, REGOFF_CS(%esp)
3193	pushfl
3194	popl	%ecx
3195	movl	%ecx, REGOFF_EFL(%esp)
3196	movl	$0, REGOFF_UESP(%esp)
3197#if !defined(__GNUC_AS__)
3198	movw	%ss, %edx
3199#else	/* __GNUC_AS__ */
3200	mov	%ss, %edx
3201#endif	/* __GNUC_AS__ */
3202	movl	%edx, REGOFF_SS(%esp)
3203
3204	movl	%esp, %ecx			/ %ecx = &regs
3205	pushl	%eax				/ push on_panic_stack
3206	pushl	%ecx				/ push &regs
3207	movl	12(%ebp), %ecx			/ %ecx = alist
3208	pushl	%ecx				/ push alist
3209	movl	8(%ebp), %ecx			/ %ecx = format
3210	pushl	%ecx				/ push format
3211	call	panicsys			/ panicsys();
3212	addl	$16, %esp			/ pop arguments
3213
3214	addl	$REGSIZE, %esp
3215	popl	%edx
3216	popl	%ecx
3217	popl	%ebx
3218	popl	%eax
3219	leave
3220	ret
3221	SET_SIZE(vpanic)
3222
3223	ENTRY_NP(dtrace_vpanic)			/ Initial stack layout:
3224
3225	pushl	%ebp				/ | %eip | 20
3226	movl	%esp, %ebp			/ | %ebp | 16
3227	pushl	%eax				/ | %eax | 12
3228	pushl	%ebx				/ | %ebx |  8
3229	pushl	%ecx				/ | %ecx |  4
3230	pushl	%edx				/ | %edx |  0
3231
3232	movl	%esp, %ebx			/ %ebx = current stack pointer
3233
3234	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3235	pushl	%eax				/ push &panic_quiesce
3236	call	dtrace_panic_trigger		/ %eax = dtrace_panic_trigger()
3237	addl	$4, %esp			/ reset stack pointer
3238	jmp	vpanic_common			/ jump back to common code
3239
3240	SET_SIZE(dtrace_vpanic)
3241
3242#endif	/* __i386 */
3243#endif	/* __lint */
3244
3245#if defined(__lint)
3246
3247void
3248hres_tick(void)
3249{}
3250
3251int64_t timedelta;
3252hrtime_t hres_last_tick;
3253timestruc_t hrestime;
3254int64_t hrestime_adj;
3255volatile int hres_lock;
3256uint_t nsec_scale;
3257hrtime_t hrtime_base;
3258
3259#else	/* __lint */
3260
3261	DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8)
3262	.NWORD	0, 0
3263
3264	DGDEF3(hrestime_adj, 8, 8)
3265	.long	0, 0
3266
3267	DGDEF3(hres_last_tick, 8, 8)
3268	.long	0, 0
3269
3270	DGDEF3(timedelta, 8, 8)
3271	.long	0, 0
3272
3273	DGDEF3(hres_lock, 4, 8)
3274	.long	0
3275
3276	/*
3277	 * initialized to a non zero value to make pc_gethrtime()
3278	 * work correctly even before clock is initialized
3279	 */
3280	DGDEF3(hrtime_base, 8, 8)
3281	.long	_MUL(NSEC_PER_CLOCK_TICK, 6), 0
3282
3283	DGDEF3(adj_shift, 4, 4)
3284	.long	ADJ_SHIFT
3285
3286#if defined(__amd64)
3287
3288	ENTRY_NP(hres_tick)
3289	pushq	%rbp
3290	movq	%rsp, %rbp
3291
3292	/*
3293	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3294	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3295	 * At worst, performing this now instead of under CLOCK_LOCK may
3296	 * introduce some jitter in pc_gethrestime().
3297	 */
3298	call	*gethrtimef(%rip)
3299	movq	%rax, %r8
3300
3301	leaq	hres_lock(%rip), %rax
3302	movb	$-1, %dl
3303.CL1:
3304	xchgb	%dl, (%rax)
3305	testb	%dl, %dl
3306	jz	.CL3			/* got it */
3307.CL2:
3308	cmpb	$0, (%rax)		/* possible to get lock? */
3309	pause
3310	jne	.CL2
3311	jmp	.CL1			/* yes, try again */
3312.CL3:
3313	/*
3314	 * compute the interval since last time hres_tick was called
3315	 * and adjust hrtime_base and hrestime accordingly
3316	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3317	 * a timestruc_t (sec, nsec)
3318	 */
3319	leaq	hres_last_tick(%rip), %rax
3320	movq	%r8, %r11
3321	subq	(%rax), %r8
3322	addq	%r8, hrtime_base(%rip)	/* add interval to hrtime_base */
3323	addq	%r8, hrestime+8(%rip)	/* add interval to hrestime.tv_nsec */
3324	/*
3325	 * Now that we have CLOCK_LOCK, we can update hres_last_tick
3326	 */
3327	movq	%r11, (%rax)
3328
3329	call	__adj_hrestime
3330
3331	/*
3332	 * release the hres_lock
3333	 */
3334	incl	hres_lock(%rip)
3335	leave
3336	ret
3337	SET_SIZE(hres_tick)
3338
3339#elif defined(__i386)
3340
3341	ENTRY_NP(hres_tick)
3342	pushl	%ebp
3343	movl	%esp, %ebp
3344	pushl	%esi
3345	pushl	%ebx
3346
3347	/*
3348	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3349	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3350	 * At worst, performing this now instead of under CLOCK_LOCK may
3351	 * introduce some jitter in pc_gethrestime().
3352	 */
3353	call	*gethrtimef
3354	movl	%eax, %ebx
3355	movl	%edx, %esi
3356
3357	movl	$hres_lock, %eax
3358	movl	$-1, %edx
3359.CL1:
3360	xchgb	%dl, (%eax)
3361	testb	%dl, %dl
3362	jz	.CL3			/ got it
3363.CL2:
3364	cmpb	$0, (%eax)		/ possible to get lock?
3365	pause
3366	jne	.CL2
3367	jmp	.CL1			/ yes, try again
3368.CL3:
3369	/*
3370	 * compute the interval since last time hres_tick was called
3371	 * and adjust hrtime_base and hrestime accordingly
3372	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3373	 * timestruc_t (sec, nsec)
3374	 */
3375
3376	lea	hres_last_tick, %eax
3377
3378	movl	%ebx, %edx
3379	movl	%esi, %ecx
3380
3381	subl 	(%eax), %edx
3382	sbbl 	4(%eax), %ecx
3383
3384	addl	%edx, hrtime_base	/ add interval to hrtime_base
3385	adcl	%ecx, hrtime_base+4
3386
3387	addl 	%edx, hrestime+4	/ add interval to hrestime.tv_nsec
3388
3389	/
3390	/ Now that we have CLOCK_LOCK, we can update hres_last_tick.
3391	/
3392	movl	%ebx, (%eax)
3393	movl	%esi,  4(%eax)
3394
3395	/ get hrestime at this moment. used as base for pc_gethrestime
3396	/
3397	/ Apply adjustment, if any
3398	/
3399	/ #define HRES_ADJ	(NSEC_PER_CLOCK_TICK >> ADJ_SHIFT)
3400	/ (max_hres_adj)
3401	/
3402	/ void
3403	/ adj_hrestime()
3404	/ {
3405	/	long long adj;
3406	/
3407	/	if (hrestime_adj == 0)
3408	/		adj = 0;
3409	/	else if (hrestime_adj > 0) {
3410	/		if (hrestime_adj < HRES_ADJ)
3411	/			adj = hrestime_adj;
3412	/		else
3413	/			adj = HRES_ADJ;
3414	/	}
3415	/	else {
3416	/		if (hrestime_adj < -(HRES_ADJ))
3417	/			adj = -(HRES_ADJ);
3418	/		else
3419	/			adj = hrestime_adj;
3420	/	}
3421	/
3422	/	timedelta -= adj;
3423	/	hrestime_adj = timedelta;
3424	/	hrestime.tv_nsec += adj;
3425	/
3426	/	while (hrestime.tv_nsec >= NANOSEC) {
3427	/		one_sec++;
3428	/		hrestime.tv_sec++;
3429	/		hrestime.tv_nsec -= NANOSEC;
3430	/	}
3431	/ }
3432__adj_hrestime:
3433	movl	hrestime_adj, %esi	/ if (hrestime_adj == 0)
3434	movl	hrestime_adj+4, %edx
3435	andl	%esi, %esi
3436	jne	.CL4			/ no
3437	andl	%edx, %edx
3438	jne	.CL4			/ no
3439	subl	%ecx, %ecx		/ yes, adj = 0;
3440	subl	%edx, %edx
3441	jmp	.CL5
3442.CL4:
3443	subl	%ecx, %ecx
3444	subl	%eax, %eax
3445	subl	%esi, %ecx
3446	sbbl	%edx, %eax
3447	andl	%eax, %eax		/ if (hrestime_adj > 0)
3448	jge	.CL6
3449
3450	/ In the following comments, HRES_ADJ is used, while in the code
3451	/ max_hres_adj is used.
3452	/
3453	/ The test for "hrestime_adj < HRES_ADJ" is complicated because
3454	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3455	/ on the logical equivalence of:
3456	/
3457	/	!(hrestime_adj < HRES_ADJ)
3458	/
3459	/ and the two step sequence:
3460	/
3461	/	(HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry
3462	/
3463	/ which computes whether or not the least significant 32-bits
3464	/ of hrestime_adj is greater than HRES_ADJ, followed by:
3465	/
3466	/	Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry
3467	/
3468	/ which generates a carry whenever step 1 is true or the most
3469	/ significant long of the longlong hrestime_adj is non-zero.
3470
3471	movl	max_hres_adj, %ecx	/ hrestime_adj is positive
3472	subl	%esi, %ecx
3473	movl	%edx, %eax
3474	adcl	$-1, %eax
3475	jnc	.CL7
3476	movl	max_hres_adj, %ecx	/ adj = HRES_ADJ;
3477	subl	%edx, %edx
3478	jmp	.CL5
3479
3480	/ The following computation is similar to the one above.
3481	/
3482	/ The test for "hrestime_adj < -(HRES_ADJ)" is complicated because
3483	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3484	/ on the logical equivalence of:
3485	/
3486	/	(hrestime_adj > -HRES_ADJ)
3487	/
3488	/ and the two step sequence:
3489	/
3490	/	(HRES_ADJ + lsw(hrestime_adj)) generates a Carry
3491	/
3492	/ which means the least significant 32-bits of hrestime_adj is
3493	/ greater than -HRES_ADJ, followed by:
3494	/
3495	/	Previous Carry + 0 + msw(hrestime_adj) generates a Carry
3496	/
3497	/ which generates a carry only when step 1 is true and the most
3498	/ significant long of the longlong hrestime_adj is -1.
3499
3500.CL6:					/ hrestime_adj is negative
3501	movl	%esi, %ecx
3502	addl	max_hres_adj, %ecx
3503	movl	%edx, %eax
3504	adcl	$0, %eax
3505	jc	.CL7
3506	xor	%ecx, %ecx
3507	subl	max_hres_adj, %ecx	/ adj = -(HRES_ADJ);
3508	movl	$-1, %edx
3509	jmp	.CL5
3510.CL7:
3511	movl	%esi, %ecx		/ adj = hrestime_adj;
3512.CL5:
3513	movl	timedelta, %esi
3514	subl	%ecx, %esi
3515	movl	timedelta+4, %eax
3516	sbbl	%edx, %eax
3517	movl	%esi, timedelta
3518	movl	%eax, timedelta+4	/ timedelta -= adj;
3519	movl	%esi, hrestime_adj
3520	movl	%eax, hrestime_adj+4	/ hrestime_adj = timedelta;
3521	addl	hrestime+4, %ecx
3522
3523	movl	%ecx, %eax		/ eax = tv_nsec
35241:
3525	cmpl	$NANOSEC, %eax		/ if ((unsigned long)tv_nsec >= NANOSEC)
3526	jb	.CL8			/ no
3527	incl	one_sec			/ yes,  one_sec++;
3528	incl	hrestime		/ hrestime.tv_sec++;
3529	addl	$-NANOSEC, %eax		/ tv_nsec -= NANOSEC
3530	jmp	1b			/ check for more seconds
3531
3532.CL8:
3533	movl	%eax, hrestime+4	/ store final into hrestime.tv_nsec
3534	incl	hres_lock		/ release the hres_lock
3535
3536	popl	%ebx
3537	popl	%esi
3538	leave
3539	ret
3540	SET_SIZE(hres_tick)
3541
3542#endif	/* __i386 */
3543#endif	/* __lint */
3544
3545/*
3546 * void prefetch_smap_w(void *)
3547 *
3548 * Prefetch ahead within a linear list of smap structures.
3549 * Not implemented for ia32.  Stub for compatibility.
3550 */
3551
3552#if defined(__lint)
3553
3554/*ARGSUSED*/
3555void prefetch_smap_w(void *smp)
3556{}
3557
3558#else	/* __lint */
3559
3560	ENTRY(prefetch_smap_w)
3561	rep;	ret	/* use 2 byte return instruction when branch target */
3562			/* AMD Software Optimization Guide - Section 6.2 */
3563	SET_SIZE(prefetch_smap_w)
3564
3565#endif	/* __lint */
3566
3567/*
3568 * prefetch_page_r(page_t *)
3569 * issue prefetch instructions for a page_t
3570 */
3571#if defined(__lint)
3572
3573/*ARGSUSED*/
3574void
3575prefetch_page_r(void *pp)
3576{}
3577
3578#else	/* __lint */
3579
3580	ENTRY(prefetch_page_r)
3581	rep;	ret	/* use 2 byte return instruction when branch target */
3582			/* AMD Software Optimization Guide - Section 6.2 */
3583	SET_SIZE(prefetch_page_r)
3584
3585#endif	/* __lint */
3586
3587#if defined(__lint)
3588
3589/*ARGSUSED*/
3590int
3591bcmp(const void *s1, const void *s2, size_t count)
3592{ return (0); }
3593
3594#else   /* __lint */
3595
3596#if defined(__amd64)
3597
3598	ENTRY(bcmp)
3599	pushq	%rbp
3600	movq	%rsp, %rbp
3601#ifdef DEBUG
3602	movq	kernelbase(%rip), %r11
3603	cmpq	%r11, %rdi
3604	jb	0f
3605	cmpq	%r11, %rsi
3606	jnb	1f
36070:	leaq	.bcmp_panic_msg(%rip), %rdi
3608	xorl	%eax, %eax
3609	call	panic
36101:
3611#endif	/* DEBUG */
3612	call	memcmp
3613	testl	%eax, %eax
3614	setne	%dl
3615	leave
3616	movzbl	%dl, %eax
3617	ret
3618	SET_SIZE(bcmp)
3619
3620#elif defined(__i386)
3621
3622#define	ARG_S1		8
3623#define	ARG_S2		12
3624#define	ARG_LENGTH	16
3625
3626	ENTRY(bcmp)
3627#ifdef DEBUG
3628	pushl   %ebp
3629	movl    %esp, %ebp
3630	movl    kernelbase, %eax
3631	cmpl    %eax, ARG_S1(%ebp)
3632	jb	0f
3633	cmpl    %eax, ARG_S2(%ebp)
3634	jnb	1f
36350:	pushl   $.bcmp_panic_msg
3636	call    panic
36371:	popl    %ebp
3638#endif	/* DEBUG */
3639
3640	pushl	%edi		/ save register variable
3641	movl	ARG_S1(%esp), %eax	/ %eax = address of string 1
3642	movl	ARG_S2(%esp), %ecx	/ %ecx = address of string 2
3643	cmpl	%eax, %ecx	/ if the same string
3644	je	.equal		/ goto .equal
3645	movl	ARG_LENGTH(%esp), %edi	/ %edi = length in bytes
3646	cmpl	$4, %edi	/ if %edi < 4
3647	jb	.byte_check	/ goto .byte_check
3648	.align	4
3649.word_loop:
3650	movl	(%ecx), %edx	/ move 1 word from (%ecx) to %edx
3651	leal	-4(%edi), %edi	/ %edi -= 4
3652	cmpl	(%eax), %edx	/ compare 1 word from (%eax) with %edx
3653	jne	.word_not_equal	/ if not equal, goto .word_not_equal
3654	leal	4(%ecx), %ecx	/ %ecx += 4 (next word)
3655	leal	4(%eax), %eax	/ %eax += 4 (next word)
3656	cmpl	$4, %edi	/ if %edi >= 4
3657	jae	.word_loop	/ goto .word_loop
3658.byte_check:
3659	cmpl	$0, %edi	/ if %edi == 0
3660	je	.equal		/ goto .equal
3661	jmp	.byte_loop	/ goto .byte_loop (checks in bytes)
3662.word_not_equal:
3663	leal	4(%edi), %edi	/ %edi += 4 (post-decremented)
3664	.align	4
3665.byte_loop:
3666	movb	(%ecx),	%dl	/ move 1 byte from (%ecx) to %dl
3667	cmpb	%dl, (%eax)	/ compare %dl with 1 byte from (%eax)
3668	jne	.not_equal	/ if not equal, goto .not_equal
3669	incl	%ecx		/ %ecx++ (next byte)
3670	incl	%eax		/ %eax++ (next byte)
3671	decl	%edi		/ %edi--
3672	jnz	.byte_loop	/ if not zero, goto .byte_loop
3673.equal:
3674	xorl	%eax, %eax	/ %eax = 0
3675	popl	%edi		/ restore register variable
3676	ret			/ return (NULL)
3677	.align	4
3678.not_equal:
3679	movl	$1, %eax	/ return 1
3680	popl	%edi		/ restore register variable
3681	ret			/ return (NULL)
3682	SET_SIZE(bcmp)
3683
3684#endif	/* __i386 */
3685
3686#ifdef DEBUG
3687	.text
3688.bcmp_panic_msg:
3689	.string "bcmp: arguments below kernelbase"
3690#endif	/* DEBUG */
3691
3692#endif	/* __lint */
3693