xref: /titanic_51/usr/src/uts/intel/dtrace/fasttrap_isa.c (revision d2ec6b54cfaa9a3bf7fc816dc44fabab46f9ecc4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/segments.h>
37 #include <sys/sysmacros.h>
38 #include <sys/trap.h>
39 
40 /*
41  * Lossless User-Land Tracing on x86
42  * ---------------------------------
43  *
44  * The execution of most instructions is not dependent on the address; for
45  * these instructions it is sufficient to copy them into the user process's
46  * address space and execute them. To effectively single-step an instruction
47  * in user-land, we copy out the following sequence of instructions to scratch
48  * space in the user thread's ulwp_t structure.
49  *
50  * We then set the program counter (%eip or %rip) to point to this scratch
51  * space. Once execution resumes, the original instruction is executed and
52  * then control flow is redirected to what was originally the subsequent
53  * instruction. If the kernel attemps to deliver a signal while single-
54  * stepping, the signal is deferred and the program counter is moved into the
55  * second sequence of instructions. The second sequence ends in a trap into
56  * the kernel where the deferred signal is then properly handled and delivered.
57  *
58  * For instructions whose execute is position dependent, we perform simple
59  * emulation. These instructions are limited to control transfer
60  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
61  * of %rip-relative addressing that means that almost any instruction can be
62  * position dependent. For all the details on how we emulate generic
63  * instructions included %rip-relative instructions, see the code in
64  * fasttrap_pid_probe() below where we handle instructions of type
65  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
66  */
67 
68 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
69 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
70 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
71 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
72 
73 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
74 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
75 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
76 
77 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
78 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
79 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
80 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
81 #define	FASTTRAP_REX(w, r, x, b)	\
82 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
83 
84 /*
85  * Single-byte op-codes.
86  */
87 #define	FASTTRAP_PUSHL_EBP	0x55
88 
89 #define	FASTTRAP_JO		0x70
90 #define	FASTTRAP_JNO		0x71
91 #define	FASTTRAP_JB		0x72
92 #define	FASTTRAP_JAE		0x73
93 #define	FASTTRAP_JE		0x74
94 #define	FASTTRAP_JNE		0x75
95 #define	FASTTRAP_JBE		0x76
96 #define	FASTTRAP_JA		0x77
97 #define	FASTTRAP_JS		0x78
98 #define	FASTTRAP_JNS		0x79
99 #define	FASTTRAP_JP		0x7a
100 #define	FASTTRAP_JNP		0x7b
101 #define	FASTTRAP_JL		0x7c
102 #define	FASTTRAP_JGE		0x7d
103 #define	FASTTRAP_JLE		0x7e
104 #define	FASTTRAP_JG		0x7f
105 
106 #define	FASTTRAP_MOV_EAX	0xb8
107 #define	FASTTRAP_MOV_ECX	0xb9
108 
109 #define	FASTTRAP_RET16		0xc2
110 #define	FASTTRAP_RET		0xc3
111 
112 #define	FASTTRAP_LOOPNZ		0xe0
113 #define	FASTTRAP_LOOPZ		0xe1
114 #define	FASTTRAP_LOOP		0xe2
115 #define	FASTTRAP_JCXZ		0xe3
116 
117 #define	FASTTRAP_CALL		0xe8
118 #define	FASTTRAP_JMP32		0xe9
119 #define	FASTTRAP_JMP8		0xeb
120 
121 #define	FASTTRAP_INT3		0xcc
122 #define	FASTTRAP_INT		0xcd
123 
124 #define	FASTTRAP_2_BYTE_OP	0x0f
125 #define	FASTTRAP_GROUP5_OP	0xff
126 
127 /*
128  * Two-byte op-codes (second byte only).
129  */
130 #define	FASTTRAP_0F_JO		0x80
131 #define	FASTTRAP_0F_JNO		0x81
132 #define	FASTTRAP_0F_JB		0x82
133 #define	FASTTRAP_0F_JAE		0x83
134 #define	FASTTRAP_0F_JE		0x84
135 #define	FASTTRAP_0F_JNE		0x85
136 #define	FASTTRAP_0F_JBE		0x86
137 #define	FASTTRAP_0F_JA		0x87
138 #define	FASTTRAP_0F_JS		0x88
139 #define	FASTTRAP_0F_JNS		0x89
140 #define	FASTTRAP_0F_JP		0x8a
141 #define	FASTTRAP_0F_JNP		0x8b
142 #define	FASTTRAP_0F_JL		0x8c
143 #define	FASTTRAP_0F_JGE		0x8d
144 #define	FASTTRAP_0F_JLE		0x8e
145 #define	FASTTRAP_0F_JG		0x8f
146 
147 #define	FASTTRAP_EFLAGS_OF	0x800
148 #define	FASTTRAP_EFLAGS_DF	0x400
149 #define	FASTTRAP_EFLAGS_SF	0x080
150 #define	FASTTRAP_EFLAGS_ZF	0x040
151 #define	FASTTRAP_EFLAGS_AF	0x010
152 #define	FASTTRAP_EFLAGS_PF	0x004
153 #define	FASTTRAP_EFLAGS_CF	0x001
154 
155 /*
156  * Instruction prefixes.
157  */
158 #define	FASTTRAP_PREFIX_OPERAND	0x66
159 #define	FASTTRAP_PREFIX_ADDRESS	0x67
160 #define	FASTTRAP_PREFIX_CS	0x2E
161 #define	FASTTRAP_PREFIX_DS	0x3E
162 #define	FASTTRAP_PREFIX_ES	0x26
163 #define	FASTTRAP_PREFIX_FS	0x64
164 #define	FASTTRAP_PREFIX_GS	0x65
165 #define	FASTTRAP_PREFIX_SS	0x36
166 #define	FASTTRAP_PREFIX_LOCK	0xF0
167 #define	FASTTRAP_PREFIX_REP	0xF3
168 #define	FASTTRAP_PREFIX_REPNE	0xF2
169 
170 #define	FASTTRAP_NOREG	0xff
171 
172 /*
173  * Map between instruction register encodings and the kernel constants which
174  * correspond to indicies into struct regs.
175  */
176 #ifdef __amd64
177 static const uint8_t regmap[16] = {
178 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
179 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
180 };
181 #else
182 static const uint8_t regmap[8] = {
183 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
184 };
185 #endif
186 
187 static ulong_t fasttrap_getreg(struct regs *, uint_t);
188 
189 static uint64_t
190 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
191 {
192 	uint64_t value;
193 	int shift = function_entry ? 1 : 0;
194 
195 #ifdef __amd64
196 	if (curproc->p_model == DATAMODEL_LP64) {
197 		uintptr_t *stack;
198 
199 		/*
200 		 * In 64-bit mode, the first six arguments are stored in
201 		 * registers.
202 		 */
203 		if (argno < 6)
204 			return ((&rp->r_rdi)[argno]);
205 
206 		stack = (uintptr_t *)rp->r_sp;
207 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
208 		value = dtrace_fulword(&stack[argno - 6 + shift]);
209 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
210 	} else {
211 #endif
212 		uint32_t *stack = (uint32_t *)rp->r_sp;
213 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
214 		value = dtrace_fuword32(&stack[argno + shift]);
215 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
216 #ifdef __amd64
217 	}
218 #endif
219 
220 	return (value);
221 }
222 
223 /*ARGSUSED*/
224 int
225 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
226     fasttrap_probe_type_t type)
227 {
228 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
229 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
230 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
231 	uint_t start = 0;
232 	int rmindex;
233 	uint8_t rex = 0;
234 
235 	/*
236 	 * Read the instruction at the given address out of the process's
237 	 * address space. We don't have to worry about a debugger
238 	 * changing this instruction before we overwrite it with our trap
239 	 * instruction since P_PR_LOCK is set. Since instructions can span
240 	 * pages, we potentially read the instruction in two parts. If the
241 	 * second part fails, we just zero out that part of the instruction.
242 	 */
243 	if (uread(p, &instr[0], first, pc) != 0)
244 		return (-1);
245 	if (len > first &&
246 	    uread(p, &instr[first], len - first, pc + first) != 0) {
247 		bzero(&instr[first], len - first);
248 		len = first;
249 	}
250 
251 	/*
252 	 * If the disassembly fails, then we have a malformed instruction.
253 	 */
254 	if ((tp->ftt_size = dtrace_instr_size_isa(instr, p->p_model,
255 	    &rmindex)) <= 0)
256 		return (-1);
257 
258 	/*
259 	 * Make sure the disassembler isn't completely broken.
260 	 */
261 	ASSERT(-1 <= rmindex && rmindex < tp->ftt_size);
262 
263 	/*
264 	 * If the computed size is greater than the number of bytes read,
265 	 * then it was a malformed instruction possibly because it fell on a
266 	 * page boundary and the subsequent page was missing or because of
267 	 * some malicious user.
268 	 */
269 	if (tp->ftt_size > len)
270 		return (-1);
271 
272 	/*
273 	 * Find the start of the instruction's opcode by processing any
274 	 * legacy prefixes.
275 	 */
276 	for (;;) {
277 		switch (instr[start]) {
278 		case FASTTRAP_PREFIX_OPERAND:
279 		case FASTTRAP_PREFIX_ADDRESS:
280 		case FASTTRAP_PREFIX_CS:
281 		case FASTTRAP_PREFIX_DS:
282 		case FASTTRAP_PREFIX_ES:
283 		case FASTTRAP_PREFIX_FS:
284 		case FASTTRAP_PREFIX_GS:
285 		case FASTTRAP_PREFIX_SS:
286 		case FASTTRAP_PREFIX_LOCK:
287 		case FASTTRAP_PREFIX_REP:
288 		case FASTTRAP_PREFIX_REPNE:
289 			start++;
290 			continue;
291 		}
292 		break;
293 	}
294 
295 #ifdef __amd64
296 	/*
297 	 * Identify the REX prefix on 64-bit processes.
298 	 */
299 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
300 		rex = instr[start++];
301 #endif
302 
303 	/*
304 	 * Now that we're pretty sure that the instruction is okay, copy the
305 	 * valid part to the tracepoint.
306 	 */
307 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
308 
309 	tp->ftt_type = FASTTRAP_T_COMMON;
310 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
311 		switch (instr[start + 1]) {
312 		case FASTTRAP_0F_JO:
313 		case FASTTRAP_0F_JNO:
314 		case FASTTRAP_0F_JB:
315 		case FASTTRAP_0F_JAE:
316 		case FASTTRAP_0F_JE:
317 		case FASTTRAP_0F_JNE:
318 		case FASTTRAP_0F_JBE:
319 		case FASTTRAP_0F_JA:
320 		case FASTTRAP_0F_JS:
321 		case FASTTRAP_0F_JNS:
322 		case FASTTRAP_0F_JP:
323 		case FASTTRAP_0F_JNP:
324 		case FASTTRAP_0F_JL:
325 		case FASTTRAP_0F_JGE:
326 		case FASTTRAP_0F_JLE:
327 		case FASTTRAP_0F_JG:
328 			tp->ftt_type = FASTTRAP_T_JCC;
329 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
330 			tp->ftt_dest = pc + tp->ftt_size +
331 			    *(int32_t *)&instr[start + 2];
332 			break;
333 		}
334 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
335 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
336 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
337 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
338 
339 		if (reg == 2 || reg == 4) {
340 			uint_t i, sz;
341 
342 			if (reg == 2)
343 				tp->ftt_type = FASTTRAP_T_CALL;
344 			else
345 				tp->ftt_type = FASTTRAP_T_JMP;
346 
347 			if (mod == 3)
348 				tp->ftt_code = 2;
349 			else
350 				tp->ftt_code = 1;
351 
352 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
353 
354 			/*
355 			 * See AMD x86-64 Architecture Programmer's Manual
356 			 * Volume 3, Section 1.2.7, Table 1-12, and
357 			 * Appendix A.3.1, Table A-15.
358 			 */
359 			if (mod != 3 && rm == 4) {
360 				uint8_t sib = instr[start + 2];
361 				uint_t index = FASTTRAP_SIB_INDEX(sib);
362 				uint_t base = FASTTRAP_SIB_BASE(sib);
363 
364 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
365 
366 				tp->ftt_index = (index == 4) ?
367 				    FASTTRAP_NOREG :
368 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
369 				tp->ftt_base = (mod == 0 && base == 5) ?
370 				    FASTTRAP_NOREG :
371 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
372 
373 				i = 3;
374 				sz = mod == 1 ? 1 : 4;
375 			} else {
376 				/*
377 				 * In 64-bit mode, mod == 0 and r/m == 5
378 				 * denotes %rip-relative addressing; in 32-bit
379 				 * mode, the base register isn't used. In both
380 				 * modes, there is a 32-bit operand.
381 				 */
382 				if (mod == 0 && rm == 5) {
383 #ifdef __amd64
384 					if (p->p_model == DATAMODEL_LP64)
385 						tp->ftt_base = REG_RIP;
386 					else
387 #endif
388 						tp->ftt_base = FASTTRAP_NOREG;
389 					sz = 4;
390 				} else  {
391 					uint8_t base = rm |
392 					    (FASTTRAP_REX_B(rex) << 3);
393 
394 					tp->ftt_base = regmap[base];
395 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
396 				}
397 				tp->ftt_index = FASTTRAP_NOREG;
398 				i = 2;
399 			}
400 
401 			if (sz == 1)
402 				tp->ftt_dest = *(int8_t *)&instr[start + i];
403 			else if (sz == 4)
404 				tp->ftt_dest = *(int32_t *)&instr[start + i];
405 			else
406 				tp->ftt_dest = 0;
407 		}
408 	} else {
409 		switch (instr[start]) {
410 		case FASTTRAP_RET:
411 			tp->ftt_type = FASTTRAP_T_RET;
412 			break;
413 
414 		case FASTTRAP_RET16:
415 			tp->ftt_type = FASTTRAP_T_RET16;
416 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
417 			break;
418 
419 		case FASTTRAP_JO:
420 		case FASTTRAP_JNO:
421 		case FASTTRAP_JB:
422 		case FASTTRAP_JAE:
423 		case FASTTRAP_JE:
424 		case FASTTRAP_JNE:
425 		case FASTTRAP_JBE:
426 		case FASTTRAP_JA:
427 		case FASTTRAP_JS:
428 		case FASTTRAP_JNS:
429 		case FASTTRAP_JP:
430 		case FASTTRAP_JNP:
431 		case FASTTRAP_JL:
432 		case FASTTRAP_JGE:
433 		case FASTTRAP_JLE:
434 		case FASTTRAP_JG:
435 			tp->ftt_type = FASTTRAP_T_JCC;
436 			tp->ftt_code = instr[start];
437 			tp->ftt_dest = pc + tp->ftt_size +
438 			    (int8_t)instr[start + 1];
439 			break;
440 
441 		case FASTTRAP_LOOPNZ:
442 		case FASTTRAP_LOOPZ:
443 		case FASTTRAP_LOOP:
444 			tp->ftt_type = FASTTRAP_T_LOOP;
445 			tp->ftt_code = instr[start];
446 			tp->ftt_dest = pc + tp->ftt_size +
447 			    (int8_t)instr[start + 1];
448 			break;
449 
450 		case FASTTRAP_JCXZ:
451 			tp->ftt_type = FASTTRAP_T_JCXZ;
452 			tp->ftt_dest = pc + tp->ftt_size +
453 			    (int8_t)instr[start + 1];
454 			break;
455 
456 		case FASTTRAP_CALL:
457 			tp->ftt_type = FASTTRAP_T_CALL;
458 			tp->ftt_dest = pc + tp->ftt_size +
459 			    *(int32_t *)&instr[start + 1];
460 			tp->ftt_code = 0;
461 			break;
462 
463 		case FASTTRAP_JMP32:
464 			tp->ftt_type = FASTTRAP_T_JMP;
465 			tp->ftt_dest = pc + tp->ftt_size +
466 			    *(int32_t *)&instr[start + 1];
467 			break;
468 		case FASTTRAP_JMP8:
469 			tp->ftt_type = FASTTRAP_T_JMP;
470 			tp->ftt_dest = pc + tp->ftt_size +
471 			    (int8_t)instr[start + 1];
472 			break;
473 
474 		case FASTTRAP_PUSHL_EBP:
475 			if (start == 0)
476 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
477 			break;
478 
479 		case FASTTRAP_INT3:
480 			/*
481 			 * The pid provider shares the int3 trap with debugger
482 			 * breakpoints so we can't instrument them.
483 			 */
484 			ASSERT(instr[start] == FASTTRAP_INSTR);
485 			return (-1);
486 		}
487 	}
488 
489 #ifdef __amd64
490 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
491 		/*
492 		 * If the process is 64-bit and the instruction type is still
493 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
494 		 * execute it -- we need to watch for %rip-relative
495 		 * addressing mode. See the portion of fasttrap_pid_probe()
496 		 * below where we handle tracepoints with type
497 		 * FASTTRAP_T_COMMON for how we emulate instructions that
498 		 * employ %rip-relative addressing.
499 		 */
500 		if (rmindex != -1) {
501 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
502 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
503 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
504 
505 			ASSERT(rmindex > start);
506 
507 			if (mod == 0 && rm == 5) {
508 				/*
509 				 * We need to be sure to avoid other
510 				 * registers used by this instruction. While
511 				 * the reg field may determine the op code
512 				 * rather than denoting a register, assuming
513 				 * that it denotes a register is always safe.
514 				 * We leave the REX field intact and use
515 				 * whatever value's there for simplicity.
516 				 */
517 				if (reg != 0) {
518 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
519 					    (FASTTRAP_RIP_X *
520 					    FASTTRAP_REX_B(rex));
521 					rm = 0;
522 				} else {
523 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
524 					    (FASTTRAP_RIP_X *
525 					    FASTTRAP_REX_B(rex));
526 					rm = 1;
527 				}
528 
529 				tp->ftt_modrm = tp->ftt_instr[rmindex];
530 				tp->ftt_instr[rmindex] =
531 				    FASTTRAP_MODRM(2, reg, rm);
532 			}
533 		}
534 	}
535 #endif
536 
537 	return (0);
538 }
539 
540 int
541 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
542 {
543 	fasttrap_instr_t instr = FASTTRAP_INSTR;
544 
545 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
546 		return (-1);
547 
548 	return (0);
549 }
550 
551 int
552 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
553 {
554 	uint8_t instr;
555 
556 	/*
557 	 * Distinguish between read or write failures and a changed
558 	 * instruction.
559 	 */
560 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
561 		return (0);
562 	if (instr != FASTTRAP_INSTR)
563 		return (0);
564 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
565 		return (-1);
566 
567 	return (0);
568 }
569 
570 static uintptr_t
571 fasttrap_fulword_noerr(const void *uaddr)
572 {
573 	uintptr_t ret;
574 
575 	if (fasttrap_fulword(uaddr, &ret) == 0)
576 		return (ret);
577 
578 	return (0);
579 }
580 
581 static uint32_t
582 fasttrap_fuword32_noerr(const void *uaddr)
583 {
584 	uint32_t ret;
585 
586 	if (fasttrap_fuword32(uaddr, &ret) == 0)
587 		return (ret);
588 
589 	return (0);
590 }
591 
592 /*ARGSUSED*/
593 int
594 fasttrap_probe(struct regs *rp)
595 {
596 #ifdef __amd64
597 	proc_t *p = curproc;
598 #endif
599 
600 #ifdef __amd64
601 	if (p->p_model == DATAMODEL_LP64) {
602 		dtrace_probe(fasttrap_probe_id, rp->r_rdi, rp->r_rsi,
603 		    rp->r_rdx, rp->r_rcx, rp->r_r8);
604 	} else {
605 #endif
606 		uint32_t *stack = (uint32_t *)rp->r_sp;
607 		uintptr_t s0, s1, s2, s3, s4;
608 
609 		s0 = fasttrap_fuword32_noerr(&stack[1]);
610 		s1 = fasttrap_fuword32_noerr(&stack[2]);
611 		s2 = fasttrap_fuword32_noerr(&stack[3]);
612 		s3 = fasttrap_fuword32_noerr(&stack[4]);
613 		s4 = fasttrap_fuword32_noerr(&stack[5]);
614 
615 		dtrace_probe(fasttrap_probe_id, s0, s1, s2, s3, s4);
616 #ifdef __amd64
617 	}
618 #endif
619 
620 	return (0);
621 }
622 
623 static void
624 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
625     uintptr_t new_pc)
626 {
627 	fasttrap_tracepoint_t *tp;
628 	fasttrap_bucket_t *bucket;
629 	fasttrap_id_t *id;
630 	kmutex_t *pid_mtx;
631 
632 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
633 	mutex_enter(pid_mtx);
634 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
635 
636 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
637 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
638 		    !tp->ftt_proc->ftpc_defunct)
639 			break;
640 	}
641 
642 	/*
643 	 * Don't sweat it if we can't find the tracepoint again; unlike
644 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
645 	 * is not essential to the correct execution of the process.
646 	 */
647 	if (tp == NULL) {
648 		mutex_exit(pid_mtx);
649 		return;
650 	}
651 
652 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
653 		/*
654 		 * If there's a branch that could act as a return site, we
655 		 * need to trace it, and check here if the program counter is
656 		 * external to the function.
657 		 */
658 		if (tp->ftt_type != FASTTRAP_T_RET &&
659 		    tp->ftt_type != FASTTRAP_T_RET16 &&
660 		    new_pc - id->fti_probe->ftp_faddr <
661 		    id->fti_probe->ftp_fsize)
662 			continue;
663 
664 		dtrace_probe(id->fti_probe->ftp_id,
665 		    pc - id->fti_probe->ftp_faddr,
666 		    rp->r_r0, rp->r_r1, 0, 0);
667 	}
668 
669 	mutex_exit(pid_mtx);
670 }
671 
672 static void
673 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
674 {
675 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
676 
677 	sqp->sq_info.si_signo = SIGSEGV;
678 	sqp->sq_info.si_code = SEGV_MAPERR;
679 	sqp->sq_info.si_addr = (caddr_t)addr;
680 
681 	mutex_enter(&p->p_lock);
682 	sigaddqa(p, t, sqp);
683 	mutex_exit(&p->p_lock);
684 
685 	if (t != NULL)
686 		aston(t);
687 }
688 
689 #ifdef __amd64
690 static void
691 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
692     uintptr_t *argv)
693 {
694 	int i, x, cap = MIN(argc, probe->ftp_nargs);
695 	uintptr_t *stack = (uintptr_t *)rp->r_sp;
696 
697 	for (i = 0; i < cap; i++) {
698 		x = probe->ftp_argmap[i];
699 
700 		if (x < 6)
701 			argv[i] = (&rp->r_rdi)[x];
702 		else
703 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
704 	}
705 
706 	for (; i < argc; i++) {
707 		argv[i] = 0;
708 	}
709 }
710 #endif
711 
712 static void
713 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
714     uint32_t *argv)
715 {
716 	int i, x, cap = MIN(argc, probe->ftp_nargs);
717 	uint32_t *stack = (uint32_t *)rp->r_sp;
718 
719 	for (i = 0; i < cap; i++) {
720 		x = probe->ftp_argmap[i];
721 
722 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
723 	}
724 
725 	for (; i < argc; i++) {
726 		argv[i] = 0;
727 	}
728 }
729 
730 int
731 fasttrap_pid_probe(struct regs *rp)
732 {
733 	proc_t *p = curproc;
734 	uintptr_t pc = rp->r_pc - 1, new_pc = 0;
735 	fasttrap_bucket_t *bucket;
736 	kmutex_t *pid_mtx;
737 	fasttrap_tracepoint_t *tp, tp_local;
738 	pid_t pid;
739 	dtrace_icookie_t cookie;
740 	uint_t is_enabled = 0;
741 
742 	/*
743 	 * It's possible that a user (in a veritable orgy of bad planning)
744 	 * could redirect this thread's flow of control before it reached the
745 	 * return probe fasttrap. In this case we need to kill the process
746 	 * since it's in a unrecoverable state.
747 	 */
748 	if (curthread->t_dtrace_step) {
749 		ASSERT(curthread->t_dtrace_on);
750 		fasttrap_sigtrap(p, curthread, pc);
751 		return (0);
752 	}
753 
754 	/*
755 	 * Clear all user tracing flags.
756 	 */
757 	curthread->t_dtrace_ft = 0;
758 	curthread->t_dtrace_pc = 0;
759 	curthread->t_dtrace_npc = 0;
760 	curthread->t_dtrace_scrpc = 0;
761 	curthread->t_dtrace_astpc = 0;
762 #ifdef __amd64
763 	curthread->t_dtrace_regv = 0;
764 #endif
765 
766 	/*
767 	 * Treat a child created by a call to vfork(2) as if it were its
768 	 * parent. We know that there's only one thread of control in such a
769 	 * process: this one.
770 	 */
771 	while (p->p_flag & SVFORK) {
772 		p = p->p_parent;
773 	}
774 
775 	pid = p->p_pid;
776 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
777 	mutex_enter(pid_mtx);
778 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
779 
780 	/*
781 	 * Lookup the tracepoint that the process just hit.
782 	 */
783 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
784 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
785 		    !tp->ftt_proc->ftpc_defunct)
786 			break;
787 	}
788 
789 	/*
790 	 * If we couldn't find a matching tracepoint, either a tracepoint has
791 	 * been inserted without using the pid<pid> ioctl interface (see
792 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
793 	 */
794 	if (tp == NULL) {
795 		mutex_exit(pid_mtx);
796 		return (-1);
797 	}
798 
799 	/*
800 	 * Set the program counter to the address of the traced instruction
801 	 * so that it looks right in ustack() output.
802 	 */
803 	rp->r_pc = pc;
804 
805 	if (tp->ftt_ids != NULL) {
806 		fasttrap_id_t *id;
807 
808 #ifdef __amd64
809 		if (p->p_model == DATAMODEL_LP64) {
810 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
811 				fasttrap_probe_t *probe = id->fti_probe;
812 
813 				if (id->fti_ptype == DTFTP_ENTRY) {
814 					/*
815 					 * We note that this was an entry
816 					 * probe to help ustack() find the
817 					 * first caller.
818 					 */
819 					cookie = dtrace_interrupt_disable();
820 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
821 					dtrace_probe(probe->ftp_id, rp->r_rdi,
822 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
823 					    rp->r_r8);
824 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
825 					dtrace_interrupt_enable(cookie);
826 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
827 					/*
828 					 * Note that in this case, we don't
829 					 * call dtrace_probe() since it's only
830 					 * an artificial probe meant to change
831 					 * the flow of control so that it
832 					 * encounters the true probe.
833 					 */
834 					is_enabled = 1;
835 				} else if (probe->ftp_argmap == NULL) {
836 					dtrace_probe(probe->ftp_id, rp->r_rdi,
837 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
838 					    rp->r_r8);
839 				} else {
840 					uintptr_t t[5];
841 
842 					fasttrap_usdt_args64(probe, rp,
843 					    sizeof (t) / sizeof (t[0]), t);
844 
845 					dtrace_probe(probe->ftp_id, t[0], t[1],
846 					    t[2], t[3], t[4]);
847 				}
848 			}
849 		} else {
850 #endif
851 			uintptr_t s0, s1, s2, s3, s4, s5;
852 			uint32_t *stack = (uint32_t *)rp->r_sp;
853 
854 			/*
855 			 * In 32-bit mode, all arguments are passed on the
856 			 * stack. If this is a function entry probe, we need
857 			 * to skip the first entry on the stack as it
858 			 * represents the return address rather than a
859 			 * parameter to the function.
860 			 */
861 			s0 = fasttrap_fuword32_noerr(&stack[0]);
862 			s1 = fasttrap_fuword32_noerr(&stack[1]);
863 			s2 = fasttrap_fuword32_noerr(&stack[2]);
864 			s3 = fasttrap_fuword32_noerr(&stack[3]);
865 			s4 = fasttrap_fuword32_noerr(&stack[4]);
866 			s5 = fasttrap_fuword32_noerr(&stack[5]);
867 
868 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
869 				fasttrap_probe_t *probe = id->fti_probe;
870 
871 				if (id->fti_ptype == DTFTP_ENTRY) {
872 					/*
873 					 * We note that this was an entry
874 					 * probe to help ustack() find the
875 					 * first caller.
876 					 */
877 					cookie = dtrace_interrupt_disable();
878 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
879 					dtrace_probe(probe->ftp_id, s1, s2,
880 					    s3, s4, s5);
881 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
882 					dtrace_interrupt_enable(cookie);
883 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
884 					/*
885 					 * Note that in this case, we don't
886 					 * call dtrace_probe() since it's only
887 					 * an artificial probe meant to change
888 					 * the flow of control so that it
889 					 * encounters the true probe.
890 					 */
891 					is_enabled = 1;
892 				} else if (probe->ftp_argmap == NULL) {
893 					dtrace_probe(probe->ftp_id, s0, s1,
894 					    s2, s3, s4);
895 				} else {
896 					uint32_t t[5];
897 
898 					fasttrap_usdt_args32(probe, rp,
899 					    sizeof (t) / sizeof (t[0]), t);
900 
901 					dtrace_probe(probe->ftp_id, t[0], t[1],
902 					    t[2], t[3], t[4]);
903 				}
904 			}
905 #ifdef __amd64
906 		}
907 #endif
908 	}
909 
910 	/*
911 	 * We're about to do a bunch of work so we cache a local copy of
912 	 * the tracepoint to emulate the instruction, and then find the
913 	 * tracepoint again later if we need to light up any return probes.
914 	 */
915 	tp_local = *tp;
916 	mutex_exit(pid_mtx);
917 	tp = &tp_local;
918 
919 	/*
920 	 * Set the program counter to appear as though the traced instruction
921 	 * had completely executed. This ensures that fasttrap_getreg() will
922 	 * report the expected value for REG_RIP.
923 	 */
924 	rp->r_pc = pc + tp->ftt_size;
925 
926 	/*
927 	 * If there's an is-enabled probe connected to this tracepoint it
928 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
929 	 * instruction that was placed there by DTrace when the binary was
930 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
931 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
932 	 * emulation logic since we know the inevitable result. It's possible
933 	 * that a user could construct a scenario where the 'is-enabled'
934 	 * probe was on some other instruction, but that would be a rather
935 	 * exotic way to shoot oneself in the foot.
936 	 */
937 	if (is_enabled) {
938 		rp->r_r0 = 1;
939 		new_pc = rp->r_pc;
940 		goto done;
941 	}
942 
943 	/*
944 	 * We emulate certain types of instructions to ensure correctness
945 	 * (in the case of position dependent instructions) or optimize
946 	 * common cases. The rest we have the thread execute back in user-
947 	 * land.
948 	 */
949 	switch (tp->ftt_type) {
950 	case FASTTRAP_T_RET:
951 	case FASTTRAP_T_RET16:
952 	{
953 		uintptr_t dst;
954 		uintptr_t addr;
955 		int ret;
956 
957 		/*
958 		 * We have to emulate _every_ facet of the behavior of a ret
959 		 * instruction including what happens if the load from %esp
960 		 * fails; in that case, we send a SIGSEGV.
961 		 */
962 #ifdef __amd64
963 		if (p->p_model == DATAMODEL_NATIVE) {
964 #endif
965 			ret = fasttrap_fulword((void *)rp->r_sp, &dst);
966 			addr = rp->r_sp + sizeof (uintptr_t);
967 #ifdef __amd64
968 		} else {
969 			uint32_t dst32;
970 			ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
971 			dst = dst32;
972 			addr = rp->r_sp + sizeof (uint32_t);
973 		}
974 #endif
975 
976 		if (ret == -1) {
977 			fasttrap_sigsegv(p, curthread, rp->r_sp);
978 			new_pc = pc;
979 			break;
980 		}
981 
982 		if (tp->ftt_type == FASTTRAP_T_RET16)
983 			addr += tp->ftt_dest;
984 
985 		rp->r_sp = addr;
986 		new_pc = dst;
987 		break;
988 	}
989 
990 	case FASTTRAP_T_JCC:
991 	{
992 		uint_t taken;
993 
994 		switch (tp->ftt_code) {
995 		case FASTTRAP_JO:
996 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
997 			break;
998 		case FASTTRAP_JNO:
999 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
1000 			break;
1001 		case FASTTRAP_JB:
1002 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
1003 			break;
1004 		case FASTTRAP_JAE:
1005 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
1006 			break;
1007 		case FASTTRAP_JE:
1008 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1009 			break;
1010 		case FASTTRAP_JNE:
1011 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1012 			break;
1013 		case FASTTRAP_JBE:
1014 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
1015 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1016 			break;
1017 		case FASTTRAP_JA:
1018 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
1019 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1020 			break;
1021 		case FASTTRAP_JS:
1022 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
1023 			break;
1024 		case FASTTRAP_JNS:
1025 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
1026 			break;
1027 		case FASTTRAP_JP:
1028 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
1029 			break;
1030 		case FASTTRAP_JNP:
1031 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
1032 			break;
1033 		case FASTTRAP_JL:
1034 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1035 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1036 			break;
1037 		case FASTTRAP_JGE:
1038 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1039 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1040 			break;
1041 		case FASTTRAP_JLE:
1042 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1043 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1044 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1045 			break;
1046 		case FASTTRAP_JG:
1047 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1048 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1049 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1050 			break;
1051 
1052 		}
1053 
1054 		if (taken)
1055 			new_pc = tp->ftt_dest;
1056 		else
1057 			new_pc = pc + tp->ftt_size;
1058 		break;
1059 	}
1060 
1061 	case FASTTRAP_T_LOOP:
1062 	{
1063 		uint_t taken;
1064 #ifdef __amd64
1065 		greg_t cx = rp->r_rcx--;
1066 #else
1067 		greg_t cx = rp->r_ecx--;
1068 #endif
1069 
1070 		switch (tp->ftt_code) {
1071 		case FASTTRAP_LOOPNZ:
1072 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1073 			    cx != 0;
1074 			break;
1075 		case FASTTRAP_LOOPZ:
1076 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1077 			    cx != 0;
1078 			break;
1079 		case FASTTRAP_LOOP:
1080 			taken = (cx != 0);
1081 			break;
1082 		}
1083 
1084 		if (taken)
1085 			new_pc = tp->ftt_dest;
1086 		else
1087 			new_pc = pc + tp->ftt_size;
1088 		break;
1089 	}
1090 
1091 	case FASTTRAP_T_JCXZ:
1092 	{
1093 #ifdef __amd64
1094 		greg_t cx = rp->r_rcx;
1095 #else
1096 		greg_t cx = rp->r_ecx;
1097 #endif
1098 
1099 		if (cx == 0)
1100 			new_pc = tp->ftt_dest;
1101 		else
1102 			new_pc = pc + tp->ftt_size;
1103 		break;
1104 	}
1105 
1106 	case FASTTRAP_T_PUSHL_EBP:
1107 	{
1108 		int ret;
1109 		uintptr_t addr;
1110 #ifdef __amd64
1111 		if (p->p_model == DATAMODEL_NATIVE) {
1112 #endif
1113 			addr = rp->r_sp - sizeof (uintptr_t);
1114 			ret = fasttrap_sulword((void *)addr, rp->r_fp);
1115 #ifdef __amd64
1116 		} else {
1117 			addr = rp->r_sp - sizeof (uint32_t);
1118 			ret = fasttrap_suword32((void *)addr,
1119 			    (uint32_t)rp->r_fp);
1120 		}
1121 #endif
1122 
1123 		if (ret == -1) {
1124 			fasttrap_sigsegv(p, curthread, addr);
1125 			new_pc = pc;
1126 			break;
1127 		}
1128 
1129 		rp->r_sp = addr;
1130 		new_pc = pc + tp->ftt_size;
1131 		break;
1132 	}
1133 
1134 	case FASTTRAP_T_JMP:
1135 	case FASTTRAP_T_CALL:
1136 		if (tp->ftt_code == 0) {
1137 			new_pc = tp->ftt_dest;
1138 		} else {
1139 			uintptr_t addr = tp->ftt_dest;
1140 
1141 			if (tp->ftt_base != FASTTRAP_NOREG)
1142 				addr += fasttrap_getreg(rp, tp->ftt_base);
1143 			if (tp->ftt_index != FASTTRAP_NOREG)
1144 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1145 				    tp->ftt_scale;
1146 
1147 			if (tp->ftt_code == 1) {
1148 #ifdef __amd64
1149 				if (p->p_model == DATAMODEL_NATIVE) {
1150 #endif
1151 					uintptr_t value;
1152 					if (fasttrap_fulword((void *)addr,
1153 					    &value) == -1) {
1154 						fasttrap_sigsegv(p, curthread,
1155 						    addr);
1156 						new_pc = pc;
1157 						break;
1158 					}
1159 					new_pc = value;
1160 #ifdef __amd64
1161 				} else {
1162 					uint32_t value;
1163 					if (fasttrap_fuword32((void *)addr,
1164 					    &value) == -1) {
1165 						fasttrap_sigsegv(p, curthread,
1166 						    addr);
1167 						new_pc = pc;
1168 						break;
1169 					}
1170 					new_pc = value;
1171 				}
1172 #endif
1173 			} else {
1174 				new_pc = addr;
1175 			}
1176 		}
1177 
1178 		/*
1179 		 * If this is a call instruction, we need to push the return
1180 		 * address onto the stack. If this fails, we send the process
1181 		 * a SIGSEGV and reset the pc to emulate what would happen if
1182 		 * this instruction weren't traced.
1183 		 */
1184 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1185 			int ret;
1186 			uintptr_t addr;
1187 #ifdef __amd64
1188 			if (p->p_model == DATAMODEL_NATIVE) {
1189 				addr = rp->r_sp - sizeof (uintptr_t);
1190 				ret = fasttrap_sulword((void *)addr,
1191 				    pc + tp->ftt_size);
1192 			} else {
1193 #endif
1194 				addr = rp->r_sp - sizeof (uint32_t);
1195 				ret = fasttrap_suword32((void *)addr,
1196 				    (uint32_t)(pc + tp->ftt_size));
1197 #ifdef __amd64
1198 			}
1199 #endif
1200 
1201 			if (ret == -1) {
1202 				fasttrap_sigsegv(p, curthread, addr);
1203 				new_pc = pc;
1204 				break;
1205 			}
1206 
1207 			rp->r_sp = addr;
1208 		}
1209 
1210 		break;
1211 
1212 	case FASTTRAP_T_COMMON:
1213 	{
1214 		uintptr_t addr;
1215 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 5 + 2];
1216 		uint_t i = 0;
1217 		klwp_t *lwp = ttolwp(curthread);
1218 
1219 		/*
1220 		 * Compute the address of the ulwp_t and step over the
1221 		 * ul_self pointer. The method used to store the user-land
1222 		 * thread pointer is very different on 32- and 64-bit
1223 		 * kernels.
1224 		 */
1225 #if defined(__amd64)
1226 		if (p->p_model == DATAMODEL_LP64) {
1227 			addr = lwp->lwp_pcb.pcb_fsbase;
1228 			addr += sizeof (void *);
1229 		} else {
1230 			addr = lwp->lwp_pcb.pcb_gsbase;
1231 			addr += sizeof (caddr32_t);
1232 		}
1233 #elif defined(__i386)
1234 		addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1235 		addr += sizeof (void *);
1236 #endif
1237 
1238 		/*
1239 		 * Generic Instruction Tracing
1240 		 * ---------------------------
1241 		 *
1242 		 * This is the layout of the scratch space in the user-land
1243 		 * thread structure for our generated instructions.
1244 		 *
1245 		 *	32-bit mode			bytes
1246 		 *	------------------------	-----
1247 		 * a:	<original instruction>		<= 15
1248 		 *	jmp	<pc + tp->ftt_size>	    5
1249 		 * b:	<original instrction>		<= 15
1250 		 *	int	T_DTRACE_RET		    2
1251 		 *					-----
1252 		 *					<= 37
1253 		 *
1254 		 *	64-bit mode			bytes
1255 		 *	------------------------	-----
1256 		 * a:	<original instruction>		<= 15
1257 		 *	jmp	0(%rip)			    6
1258 		 *	<pc + tp->ftt_size>		    8
1259 		 * b:	<original instruction>		<= 15
1260 		 * 	int	T_DTRACE_RET		    2
1261 		 * 					-----
1262 		 * 					<= 46
1263 		 *
1264 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1265 		 * to b. If we encounter a signal on the way out of the
1266 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1267 		 * so that we execute the original instruction and re-enter
1268 		 * the kernel rather than redirecting to the next instruction.
1269 		 *
1270 		 * If there are return probes (so we know that we're going to
1271 		 * need to reenter the kernel after executing the original
1272 		 * instruction), the scratch space will just contain the
1273 		 * original instruction followed by an interrupt -- the same
1274 		 * data as at b.
1275 		 *
1276 		 * %rip-relative Addressing
1277 		 * ------------------------
1278 		 *
1279 		 * There's a further complication in 64-bit mode due to %rip-
1280 		 * relative addressing. While this is clearly a beneficial
1281 		 * architectural decision for position independent code, it's
1282 		 * hard not to see it as a personal attack against the pid
1283 		 * provider since before there was a relatively small set of
1284 		 * instructions to emulate; with %rip-relative addressing,
1285 		 * almost every instruction can potentially depend on the
1286 		 * address at which it's executed. Rather than emulating
1287 		 * the broad spectrum of instructions that can now be
1288 		 * position dependent, we emulate jumps and others as in
1289 		 * 32-bit mode, and take a different tack for instructions
1290 		 * using %rip-relative addressing.
1291 		 *
1292 		 * For every instruction that uses the ModRM byte, the
1293 		 * in-kernel disassembler reports its location. We use the
1294 		 * ModRM byte to identify that an instruction uses
1295 		 * %rip-relative addressing and to see what other registers
1296 		 * the instruction uses. To emulate those instructions,
1297 		 * we modify the instruction to be %rax-relative rather than
1298 		 * %rip-relative (or %rcx-relative if the instruction uses
1299 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1300 		 * we don't have to rewrite the REX prefix). We then load
1301 		 * the value that %rip would have been into the scratch
1302 		 * register and generate an instruction to reset the scratch
1303 		 * register back to its original value. The instruction
1304 		 * sequence looks like this:
1305 		 *
1306 		 *	64-mode %rip-relative		bytes
1307 		 *	------------------------	-----
1308 		 * a:	<modified instruction>		<= 15
1309 		 *	movq	$<value>, %<scratch>	    6
1310 		 *	jmp	0(%rip)			    6
1311 		 *	<pc + tp->ftt_size>		    8
1312 		 * b:	<modified instruction>  	<= 15
1313 		 * 	int	T_DTRACE_RET		    2
1314 		 * 					-----
1315 		 *					   52
1316 		 *
1317 		 * We set curthread->t_dtrace_regv so that upon receiving
1318 		 * a signal we can reset the value of the scratch register.
1319 		 */
1320 
1321 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1322 
1323 		curthread->t_dtrace_scrpc = addr;
1324 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1325 		i += tp->ftt_size;
1326 
1327 #ifdef __amd64
1328 		if (tp->ftt_ripmode != 0) {
1329 			greg_t *reg;
1330 
1331 			ASSERT(p->p_model == DATAMODEL_LP64);
1332 			ASSERT(tp->ftt_ripmode &
1333 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1334 
1335 			/*
1336 			 * If this was a %rip-relative instruction, we change
1337 			 * it to be either a %rax- or %rcx-relative
1338 			 * instruction (depending on whether those registers
1339 			 * are used as another operand; or %r8- or %r9-
1340 			 * relative depending on the value of REX.B). We then
1341 			 * set that register and generate a movq instruction
1342 			 * to reset the value.
1343 			 */
1344 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1345 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1346 			else
1347 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1348 
1349 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1350 				scratch[i++] = FASTTRAP_MOV_EAX;
1351 			else
1352 				scratch[i++] = FASTTRAP_MOV_ECX;
1353 
1354 			switch (tp->ftt_ripmode) {
1355 			case FASTTRAP_RIP_1:
1356 				reg = &rp->r_rax;
1357 				curthread->t_dtrace_reg = REG_RAX;
1358 				break;
1359 			case FASTTRAP_RIP_2:
1360 				reg = &rp->r_rcx;
1361 				curthread->t_dtrace_reg = REG_RCX;
1362 				break;
1363 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1364 				reg = &rp->r_r8;
1365 				curthread->t_dtrace_reg = REG_R8;
1366 				break;
1367 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1368 				reg = &rp->r_r9;
1369 				curthread->t_dtrace_reg = REG_R9;
1370 				break;
1371 			}
1372 
1373 			*(uint64_t *)&scratch[i] = *reg;
1374 			curthread->t_dtrace_regv = *reg;
1375 			*reg = pc + tp->ftt_size;
1376 			i += sizeof (uint64_t);
1377 		}
1378 #endif
1379 
1380 		/*
1381 		 * Generate the branch instruction to what would have
1382 		 * normally been the subsequent instruction. In 32-bit mode,
1383 		 * this is just a relative branch; in 64-bit mode this is a
1384 		 * %rip-relative branch that loads the 64-bit pc value
1385 		 * immediately after the jmp instruction.
1386 		 */
1387 #ifdef __amd64
1388 		if (p->p_model == DATAMODEL_LP64) {
1389 			scratch[i++] = FASTTRAP_GROUP5_OP;
1390 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1391 			*(uint32_t *)&scratch[i] = 0;
1392 			i += sizeof (uint32_t);
1393 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1394 			i += sizeof (uint64_t);
1395 		} else {
1396 #endif
1397 			/*
1398 			 * Set up the jmp to the next instruction; note that
1399 			 * the size of the traced instruction cancels out.
1400 			 */
1401 			scratch[i++] = FASTTRAP_JMP32;
1402 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1403 			i += sizeof (uint32_t);
1404 #ifdef __amd64
1405 		}
1406 #endif
1407 
1408 		curthread->t_dtrace_astpc = addr + i;
1409 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1410 		i += tp->ftt_size;
1411 		scratch[i++] = FASTTRAP_INT;
1412 		scratch[i++] = T_DTRACE_RET;
1413 
1414 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1415 			fasttrap_sigtrap(p, curthread, pc);
1416 			new_pc = pc;
1417 			break;
1418 		}
1419 
1420 		if (tp->ftt_retids != NULL) {
1421 			curthread->t_dtrace_step = 1;
1422 			curthread->t_dtrace_ret = 1;
1423 			new_pc = curthread->t_dtrace_astpc;
1424 		} else {
1425 			new_pc = curthread->t_dtrace_scrpc;
1426 		}
1427 
1428 		curthread->t_dtrace_pc = pc;
1429 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1430 		curthread->t_dtrace_on = 1;
1431 		break;
1432 	}
1433 
1434 	default:
1435 		panic("fasttrap: mishandled an instruction");
1436 	}
1437 
1438 done:
1439 	/*
1440 	 * If there were no return probes when we first found the tracepoint,
1441 	 * we should feel no obligation to honor any return probes that were
1442 	 * subsequently enabled -- they'll just have to wait until the next
1443 	 * time around.
1444 	 */
1445 	if (tp->ftt_retids != NULL) {
1446 		/*
1447 		 * We need to wait until the results of the instruction are
1448 		 * apparent before invoking any return probes. If this
1449 		 * instruction was emulated we can just call
1450 		 * fasttrap_return_common(); if it needs to be executed, we
1451 		 * need to wait until the user thread returns to the kernel.
1452 		 */
1453 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1454 			/*
1455 			 * Set the program counter to the address of the traced
1456 			 * instruction so that it looks right in ustack()
1457 			 * output. We had previously set it to the end of the
1458 			 * instruction to simplify %rip-relative addressing.
1459 			 */
1460 			rp->r_pc = pc;
1461 
1462 			fasttrap_return_common(rp, pc, pid, new_pc);
1463 		} else {
1464 			ASSERT(curthread->t_dtrace_ret != 0);
1465 			ASSERT(curthread->t_dtrace_pc == pc);
1466 			ASSERT(curthread->t_dtrace_scrpc != 0);
1467 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1468 		}
1469 	}
1470 
1471 	ASSERT(new_pc != 0);
1472 	rp->r_pc = new_pc;
1473 
1474 	return (0);
1475 }
1476 
1477 int
1478 fasttrap_return_probe(struct regs *rp)
1479 {
1480 	proc_t *p = curproc;
1481 	uintptr_t pc = curthread->t_dtrace_pc;
1482 	uintptr_t npc = curthread->t_dtrace_npc;
1483 
1484 	curthread->t_dtrace_pc = 0;
1485 	curthread->t_dtrace_npc = 0;
1486 	curthread->t_dtrace_scrpc = 0;
1487 	curthread->t_dtrace_astpc = 0;
1488 
1489 	/*
1490 	 * Treat a child created by a call to vfork(2) as if it were its
1491 	 * parent. We know that there's only one thread of control in such a
1492 	 * process: this one.
1493 	 */
1494 	while (p->p_flag & SVFORK) {
1495 		p = p->p_parent;
1496 	}
1497 
1498 	/*
1499 	 * We set rp->r_pc to the address of the traced instruction so
1500 	 * that it appears to dtrace_probe() that we're on the original
1501 	 * instruction, and so that the user can't easily detect our
1502 	 * complex web of lies. dtrace_return_probe() (our caller)
1503 	 * will correctly set %pc after we return.
1504 	 */
1505 	rp->r_pc = pc;
1506 
1507 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1508 
1509 	return (0);
1510 }
1511 
1512 /*ARGSUSED*/
1513 uint64_t
1514 fasttrap_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
1515 {
1516 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1517 }
1518 
1519 /*ARGSUSED*/
1520 uint64_t
1521 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1522     int aframes)
1523 {
1524 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1525 }
1526 
1527 static ulong_t
1528 fasttrap_getreg(struct regs *rp, uint_t reg)
1529 {
1530 #ifdef __amd64
1531 	switch (reg) {
1532 	case REG_R15:		return (rp->r_r15);
1533 	case REG_R14:		return (rp->r_r14);
1534 	case REG_R13:		return (rp->r_r13);
1535 	case REG_R12:		return (rp->r_r12);
1536 	case REG_R11:		return (rp->r_r11);
1537 	case REG_R10:		return (rp->r_r10);
1538 	case REG_R9:		return (rp->r_r9);
1539 	case REG_R8:		return (rp->r_r8);
1540 	case REG_RDI:		return (rp->r_rdi);
1541 	case REG_RSI:		return (rp->r_rsi);
1542 	case REG_RBP:		return (rp->r_rbp);
1543 	case REG_RBX:		return (rp->r_rbx);
1544 	case REG_RDX:		return (rp->r_rdx);
1545 	case REG_RCX:		return (rp->r_rcx);
1546 	case REG_RAX:		return (rp->r_rax);
1547 	case REG_TRAPNO:	return (rp->r_trapno);
1548 	case REG_ERR:		return (rp->r_err);
1549 	case REG_RIP:		return (rp->r_rip);
1550 	case REG_CS:		return (rp->r_cs);
1551 	case REG_RFL:		return (rp->r_rfl);
1552 	case REG_RSP:		return (rp->r_rsp);
1553 	case REG_SS:		return (rp->r_ss);
1554 	case REG_FS:		return (rp->r_fs);
1555 	case REG_GS:		return (rp->r_gs);
1556 	case REG_DS:		return (rp->r_ds);
1557 	case REG_ES:		return (rp->r_es);
1558 	case REG_FSBASE:	return (rp->r_fsbase);
1559 	case REG_GSBASE:	return (rp->r_gsbase);
1560 	}
1561 
1562 	panic("dtrace: illegal register constant");
1563 	/*NOTREACHED*/
1564 #else
1565 	if (reg >= _NGREG)
1566 		panic("dtrace: illegal register constant");
1567 
1568 	return (((greg_t *)&rp->r_gs)[reg]);
1569 #endif
1570 }
1571