xref: /titanic_51/usr/src/uts/i86xpv/os/xpv_panic.c (revision b819cea2f73f98c5662230cc9affc8cc84f77fcf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012 Gary Mills
23  *
24  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/clock.h>
29 #include <sys/psm.h>
30 #include <sys/archsystm.h>
31 #include <sys/machsystm.h>
32 #include <sys/compress.h>
33 #include <sys/modctl.h>
34 #include <sys/trap.h>
35 #include <sys/panic.h>
36 #include <sys/regset.h>
37 #include <sys/frame.h>
38 #include <sys/kobj.h>
39 #include <sys/apic.h>
40 #include <sys/apic_timer.h>
41 #include <sys/dumphdr.h>
42 #include <sys/mem.h>
43 #include <sys/x86_archext.h>
44 #include <sys/xpv_panic.h>
45 #include <sys/boot_console.h>
46 #include <sys/bootsvcs.h>
47 #include <sys/consdev.h>
48 #include <vm/hat_pte.h>
49 #include <vm/hat_i86.h>
50 
51 /* XXX: need to add a PAE version too, if we ever support both PAE and non */
52 #if defined(__i386)
53 #define	XPV_FILENAME	"/boot/xen-syms"
54 #else
55 #define	XPV_FILENAME	"/boot/amd64/xen-syms"
56 #endif
57 #define	XPV_MODNAME	"xpv"
58 
59 int xpv_panicking = 0;
60 
61 struct module *xpv_module;
62 struct modctl *xpv_modctl;
63 
64 #define	ALIGN(x, a)	((a) == 0 ? (uintptr_t)(x) : \
65 	(((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l)))
66 
67 /* Pointer to the xpv_panic_info structure handed to us by Xen.  */
68 static struct panic_info *xpv_panic_info = NULL;
69 
70 /* Timer support */
71 #define	NSEC_SHIFT 5
72 #define	T_XPV_TIMER	0xd1
73 #define	XPV_TIMER_INTERVAL	1000	/* 1000 microseconds */
74 static uint32_t *xpv_apicadr = NULL;
75 static uint_t	nsec_scale;
76 
77 /* IDT support */
78 #pragma	align	16(xpv_panic_idt)
79 static gate_desc_t	xpv_panic_idt[NIDT];	/* interrupt descriptor table */
80 
81 /* Xen pagetables mapped into our HAT's ptable windows */
82 static pfn_t ptable_pfn[MAX_NUM_LEVEL];
83 
84 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */
85 static int xpv_dump_pages;
86 
87 /*
88  * There are up to two large swathes of RAM that we don't want to include
89  * in the dump: those that comprise the Xen version of segkpm.  On 32-bit
90  * systems there is no such region of memory.  On 64-bit systems, there
91  * should be just a single contiguous region that corresponds to all of
92  * physical memory.  The tricky bit is that Xen's heap sometimes lives in
93  * the middle of their segkpm, and is mapped using only kpm-like addresses.
94  * In that case, we need to skip the swathes before and after Xen's heap.
95  */
96 uintptr_t kpm1_low = 0;
97 uintptr_t kpm1_high = 0;
98 uintptr_t kpm2_low = 0;
99 uintptr_t kpm2_high = 0;
100 
101 /*
102  * Some commonly used values that we don't want to recompute over and over.
103  */
104 static int xpv_panic_nptes[MAX_NUM_LEVEL];
105 static ulong_t xpv_panic_cr3;
106 static uintptr_t xpv_end;
107 
108 static void xpv_panic_console_print(const char *fmt, ...);
109 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print;
110 
111 #define	CONSOLE_BUF_SIZE	256
112 static char console_buffer[CONSOLE_BUF_SIZE];
113 static boolean_t use_polledio;
114 
115 /*
116  * Pointers to machine check panic info (if any).
117  */
118 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL;
119 
120 static void
121 xpv_panic_putc(int m)
122 {
123 	struct cons_polledio *c = cons_polledio;
124 
125 	/* This really shouldn't happen */
126 	if (boot_console_type(NULL) == CONS_HYPERVISOR)
127 		return;
128 
129 	if (use_polledio == B_TRUE)
130 		c->cons_polledio_putchar(c->cons_polledio_argument, m);
131 	else
132 		bcons_putchar(m);
133 }
134 
135 static void
136 xpv_panic_puts(char *msg)
137 {
138 	char *m;
139 
140 	dump_timeleft = dump_timeout;
141 	for (m = msg; *m; m++)
142 		xpv_panic_putc((int)*m);
143 }
144 
145 static void
146 xpv_panic_console_print(const char *fmt, ...)
147 {
148 	va_list ap;
149 
150 	va_start(ap, fmt);
151 	(void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap);
152 	va_end(ap);
153 
154 	xpv_panic_puts(console_buffer);
155 }
156 
157 static void
158 xpv_panic_map(int level, pfn_t pfn)
159 {
160 	x86pte_t pte, *pteptr;
161 
162 	/*
163 	 * The provided pfn represents a level 'level' page table.  Map it
164 	 * into the 'level' slot in the list of page table windows.
165 	 */
166 	pteptr = (x86pte_t *)PWIN_PTE_VA(level);
167 	pte = pfn_to_pa(pfn) | PT_VALID;
168 
169 	XPV_ALLOW_PAGETABLE_UPDATES();
170 	if (mmu.pae_hat)
171 		*pteptr = pte;
172 	else
173 		*(x86pte32_t *)pteptr = pte;
174 	XPV_DISALLOW_PAGETABLE_UPDATES();
175 
176 	mmu_tlbflush_entry(PWIN_VA(level));
177 }
178 
179 /*
180  * Walk the page tables to find the pfn mapped by the given va.
181  */
182 static pfn_t
183 xpv_va_walk(uintptr_t *vaddr)
184 {
185 	int l, idx;
186 	pfn_t pfn;
187 	x86pte_t pte;
188 	x86pte_t *ptep;
189 	uintptr_t va = *vaddr;
190 	uintptr_t scan_va;
191 	caddr_t ptable_window;
192 	static pfn_t toplevel_pfn;
193 	static uintptr_t lastva;
194 
195 	/*
196 	 * If we do anything other than a simple scan through memory, don't
197 	 * trust the mapped page tables.
198 	 */
199 	if (va != lastva + MMU_PAGESIZE)
200 		for (l = mmu.max_level; l >= 0; l--)
201 			ptable_pfn[l] = PFN_INVALID;
202 
203 	toplevel_pfn = mmu_btop(xpv_panic_cr3);
204 
205 	while (va < xpv_end && va >= *vaddr) {
206 		/* Find the lowest table with any entry for va */
207 		pfn = toplevel_pfn;
208 		for (l = mmu.max_level; l >= 0; l--) {
209 			if (ptable_pfn[l] != pfn) {
210 				xpv_panic_map(l, pfn);
211 				ptable_pfn[l] = pfn;
212 			}
213 
214 			/*
215 			 * Search this pagetable for any mapping to an
216 			 * address >= va.
217 			 */
218 			ptable_window = PWIN_VA(l);
219 			if (l == mmu.max_level && mmu.pae_hat)
220 				ptable_window +=
221 				    (xpv_panic_cr3 & MMU_PAGEOFFSET);
222 
223 			idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1);
224 			scan_va = va;
225 			while (idx < xpv_panic_nptes[l] && scan_va < xpv_end &&
226 			    scan_va >= *vaddr) {
227 				ptep = (x86pte_t *)(ptable_window +
228 				    (idx << mmu.pte_size_shift));
229 				pte = GET_PTE(ptep);
230 				if (pte & PTE_VALID)
231 					break;
232 				idx++;
233 				scan_va += mmu.level_size[l];
234 			}
235 
236 			/*
237 			 * If there are no valid mappings in this table, we
238 			 * can skip to the end of the VA range it covers.
239 			 */
240 			if (idx == xpv_panic_nptes[l]) {
241 				va = NEXT_ENTRY_VA(va, l + 1);
242 				break;
243 			}
244 
245 			va = scan_va;
246 			/*
247 			 * See if we've hit the end of the range.
248 			 */
249 			if (va >= xpv_end || va < *vaddr)
250 				break;
251 
252 			/*
253 			 * If this mapping is for a pagetable, we drop down
254 			 * to the next level in the hierarchy and look for
255 			 * a mapping in it.
256 			 */
257 			pfn = PTE2MFN(pte, l);
258 			if (!PTE_ISPAGE(pte, l))
259 				continue;
260 
261 			/*
262 			 * The APIC page is magic.  Nothing to see here;
263 			 * move along.
264 			 */
265 			if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) ==
266 			    (va & MMU_PAGEMASK)) {
267 				va += MMU_PAGESIZE;
268 				break;
269 			}
270 
271 			/*
272 			 * See if the address is within one of the two
273 			 * kpm-like regions we want to skip.
274 			 */
275 			if (va >= kpm1_low && va < kpm1_high) {
276 				va = kpm1_high;
277 				break;
278 			}
279 			if (va >= kpm2_low && va < kpm2_high) {
280 				va = kpm2_high;
281 				break;
282 			}
283 
284 			/*
285 			 * The Xen panic code only handles small pages.  If
286 			 * this mapping is for a large page, we need to
287 			 * identify the consituent page that covers the
288 			 * specific VA we were looking for.
289 			 */
290 			if (l > 0) {
291 				if (l > 1)
292 					panic("Xen panic can't cope with "
293 					    "giant pages.");
294 				idx = (va >> LEVEL_SHIFT(0)) &
295 				    (xpv_panic_nptes[0] - 1);
296 				pfn += idx;
297 			}
298 
299 			*vaddr = va;
300 			lastva = va;
301 			return (pfn | PFN_IS_FOREIGN_MFN);
302 		}
303 	}
304 	return (PFN_INVALID);
305 }
306 
307 /*
308  * Walk through the Xen VA space, finding pages that are mapped in.
309  *
310  * These pages all have MFNs rather than PFNs, meaning they may be outside
311  * the physical address space the kernel knows about, or they may collide
312  * with PFNs the kernel is using.
313  *
314  * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs
315  * to avoid collisions doesn't work.  The pages need to be written to disk
316  * in PFN-order or savecore gets confused.  We can't allocate memory to
317  * contruct a sorted pfn->VA reverse mapping, so we have to write the pages
318  * to disk in VA order.
319  *
320  * To square this circle, we simply make up PFNs for each of Xen's pages.
321  * We assign each mapped page a fake PFN in ascending order.  These fake
322  * PFNs each have the FOREIGN bit set, ensuring that they fall outside the
323  * range of Solaris PFNs written by the kernel.
324  */
325 int
326 dump_xpv_addr()
327 {
328 	uintptr_t va;
329 	mem_vtop_t mem_vtop;
330 
331 	xpv_dump_pages = 0;
332 	va = xen_virt_start;
333 
334 	while (xpv_va_walk(&va) != PFN_INVALID) {
335 		mem_vtop.m_as = &kas;
336 		mem_vtop.m_va = (void *)va;
337 		mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
338 
339 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
340 		xpv_dump_pages++;
341 
342 		va += MMU_PAGESIZE;
343 	}
344 
345 	/*
346 	 * Add the shared_info page.  This page actually ends up in the
347 	 * dump twice: once for the Xen va and once for the Solaris va.
348 	 * This isn't ideal, but we don't know the address Xen is using for
349 	 * the page, so we can't share it.
350 	 */
351 	mem_vtop.m_as = &kas;
352 	mem_vtop.m_va = HYPERVISOR_shared_info;
353 	mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
354 	dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
355 	xpv_dump_pages++;
356 
357 	return (xpv_dump_pages);
358 }
359 
360 void
361 dump_xpv_pfn()
362 {
363 	pfn_t pfn;
364 	int cnt;
365 
366 	for (cnt = 0; cnt < xpv_dump_pages; cnt++) {
367 		pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN;
368 		dumpvp_write(&pfn, sizeof (pfn));
369 	}
370 }
371 
372 int
373 dump_xpv_data(void *dump_cbuf)
374 {
375 	uintptr_t va;
376 	uint32_t csize;
377 	int cnt = 0;
378 
379 	/*
380 	 * XXX: we should probably run this data through a UE check.  The
381 	 * catch is that the UE code relies on on_trap() and getpfnum()
382 	 * working.
383 	 */
384 	va = xen_virt_start;
385 
386 	while (xpv_va_walk(&va) != PFN_INVALID) {
387 		csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE);
388 		dumpvp_write(&csize, sizeof (uint32_t));
389 		dumpvp_write(dump_cbuf, csize);
390 		if (dump_ioerr) {
391 			dumphdr->dump_flags &= ~DF_COMPLETE;
392 			return (cnt);
393 		}
394 		cnt++;
395 		va += MMU_PAGESIZE;
396 	}
397 
398 	/*
399 	 * Finally, dump the shared_info page
400 	 */
401 	csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf,
402 	    PAGESIZE);
403 	dumpvp_write(&csize, sizeof (uint32_t));
404 	dumpvp_write(dump_cbuf, csize);
405 	if (dump_ioerr)
406 		dumphdr->dump_flags &= ~DF_COMPLETE;
407 	cnt++;
408 
409 	return (cnt);
410 }
411 
412 static void *
413 showstack(void *fpreg, int xpv_only)
414 {
415 	struct frame *fpp;
416 	ulong_t off;
417 	char *sym;
418 	uintptr_t pc, fp, lastfp;
419 	uintptr_t minaddr = min(KERNELBASE, xen_virt_start);
420 
421 	fp = (uintptr_t)fpreg;
422 	if (fp < minaddr) {
423 		xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg);
424 		return (fpreg);
425 	}
426 
427 	do {
428 		fpp = (struct frame *)fp;
429 		pc = fpp->fr_savpc;
430 
431 		if ((xpv_only != 0) &&
432 		    (fp > xpv_end || fp < xen_virt_start))
433 			break;
434 		if ((sym = kobj_getsymname(pc, &off)) != NULL)
435 			xpv_panic_printf("%08lx %s:%s+%lx\n", fp,
436 			    mod_containing_pc((caddr_t)pc), sym, off);
437 		else if ((pc >= xen_virt_start) && (pc <= xpv_end))
438 			xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc);
439 		else
440 			xpv_panic_printf("%08lx %lx\n", fp, pc);
441 
442 		lastfp = fp;
443 		fp = fpp->fr_savfp;
444 
445 		/*
446 		 * Xen marks an exception frame by inverting the frame
447 		 * pointer.
448 		 */
449 		if (fp < lastfp) {
450 			if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff)
451 				fp = ~fp;
452 		}
453 	} while (fp > lastfp);
454 	return ((void *)fp);
455 }
456 
457 void *
458 xpv_traceback(void *fpreg)
459 {
460 	return (showstack(fpreg, 1));
461 }
462 
463 #if defined(__amd64)
464 static void
465 xpv_panic_hypercall(ulong_t call)
466 {
467 	panic("Illegally issued hypercall %d during panic!\n", (int)call);
468 }
469 #endif
470 
471 void
472 xpv_die(struct regs *rp)
473 {
474 	struct panic_trap_info ti;
475 	struct cregs creg;
476 
477 	ti.trap_regs = rp;
478 	ti.trap_type = rp->r_trapno;
479 
480 	curthread->t_panic_trap = &ti;
481 	if (ti.trap_type == T_PGFLT) {
482 		getcregs(&creg);
483 		ti.trap_addr = (caddr_t)creg.cr_cr2;
484 		panic("Fatal pagefault at 0x%lx.  fault addr=0x%p  rp=0x%p",
485 		    rp->r_pc, (void *)ti.trap_addr, (void *)rp);
486 	} else {
487 		ti.trap_addr = (caddr_t)rp->r_pc;
488 		panic("Fatal trap %ld at 0x%lx.  rp=0x%p", rp->r_trapno,
489 		    rp->r_pc, (void *)rp);
490 	}
491 }
492 
493 /*
494  * Build IDT to handle a Xen panic
495  */
496 static void
497 switch_to_xpv_panic_idt()
498 {
499 	int i;
500 	desctbr_t idtr;
501 	gate_desc_t *idt = xpv_panic_idt;
502 	selector_t cs = get_cs_register();
503 
504 	for (i = 0; i < 32; i++)
505 		set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL,
506 		    0);
507 
508 	set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL,
509 	    0);
510 	set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
511 	set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0);
512 	set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT,
513 	    TRP_XPL, 0);
514 	set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL,
515 	    0);
516 	set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL,
517 	    0);
518 	set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL,
519 	    0);
520 	set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL,
521 	    0);
522 	set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0);
523 	set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0);
524 	set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0);
525 	set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL,
526 	    0);
527 	set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL,
528 	    0);
529 	set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0);
530 	set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
531 
532 	/*
533 	 * We have no double fault handler.  Any single fault represents a
534 	 * catastrophic failure for us, so there is no attempt to handle
535 	 * them cleanly: we just print a message and reboot.  If we
536 	 * encounter a second fault while doing that, there is nothing
537 	 * else we can do.
538 	 */
539 
540 	/*
541 	 * Be prepared to absorb any stray device interrupts received
542 	 * while writing the core to disk.
543 	 */
544 	for (i = 33; i < NIDT; i++)
545 		set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT,
546 		    TRP_XPL, 0);
547 
548 	/* The one interrupt we expect to get is from the APIC timer.  */
549 	set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT,
550 	    TRP_XPL, 0);
551 
552 	idtr.dtr_base = (uintptr_t)xpv_panic_idt;
553 	idtr.dtr_limit = sizeof (xpv_panic_idt) - 1;
554 	wr_idtr(&idtr);
555 
556 #if defined(__amd64)
557 	/* Catch any hypercalls. */
558 	wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall);
559 	wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall);
560 #endif
561 }
562 
563 static void
564 xpv_apic_clkinit()
565 {
566 	uint_t		apic_ticks = 0;
567 
568 	/*
569 	 * Measure how many APIC ticks there are within a fixed time
570 	 * period.  We're going to be fairly coarse here.  This timer is
571 	 * just being used to detect a stalled panic, so as long as we have
572 	 * the right order of magnitude, everything should be fine.
573 	 */
574 	xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
575 	xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK;
576 	xpv_apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
577 
578 	xpv_apicadr[APIC_DIVIDE_REG] = 0;
579 	xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
580 	drv_usecwait(XPV_TIMER_INTERVAL);
581 	apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT];
582 
583 	/*
584 	 * apic_ticks now represents roughly how many apic ticks comprise
585 	 * one timeout interval.  Program the timer to send us an interrupt
586 	 * every time that interval expires.
587 	 */
588 	xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC;
589 	xpv_apicadr[APIC_INIT_COUNT] = apic_ticks;
590 	xpv_apicadr[APIC_EOI_REG] = 0;
591 }
592 
593 void
594 xpv_timer_tick(void)
595 {
596 	static int ticks = 0;
597 
598 	if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) {
599 		ticks = 0;
600 		if (dump_timeleft && (--dump_timeleft == 0))
601 			panic("Xen panic timeout\n");
602 	}
603 	xpv_apicadr[APIC_EOI_REG] = 0;
604 }
605 
606 void
607 xpv_interrupt(void)
608 {
609 #ifdef	DEBUG
610 	static int cnt = 0;
611 
612 	if (cnt++ < 10)
613 		xpv_panic_printf("Unexpected interrupt received.\n");
614 	if ((cnt < 1000) && ((cnt % 100) == 0))
615 		xpv_panic_printf("%d unexpected interrupts received.\n", cnt);
616 #endif
617 
618 	xpv_apicadr[APIC_EOI_REG] = 0;
619 }
620 
621 /*
622  * Managing time in panic context is trivial.  We only have a single CPU,
623  * we never get rescheduled, we never get suspended.  We just need to
624  * convert clock ticks into nanoseconds.
625  */
626 static hrtime_t
627 xpv_panic_gethrtime(void)
628 {
629 	hrtime_t tsc, hrt;
630 	unsigned int *l = (unsigned int *)&(tsc);
631 
632 	tsc = __rdtsc_insn();
633 	hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) +
634 	    (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT));
635 
636 	return (hrt);
637 }
638 
639 static void
640 xpv_panic_time_init()
641 {
642 	nsec_scale =
643 	    CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT;
644 
645 	gethrtimef = xpv_panic_gethrtime;
646 }
647 
648 static void
649 xpv_panicsys(struct regs *rp, char *fmt, ...)
650 {
651 	extern void panicsys(const char *, va_list, struct regs *, int);
652 	va_list alist;
653 
654 	va_start(alist, fmt);
655 	panicsys(fmt, alist, rp, 1);
656 	va_end(alist);
657 }
658 
659 void
660 xpv_do_panic(void *arg)
661 {
662 	struct panic_info *pip = (struct panic_info *)arg;
663 	int l;
664 	struct cregs creg;
665 #if defined(__amd64)
666 	extern uintptr_t postbootkernelbase;
667 #endif
668 
669 	if (xpv_panicking++ > 0)
670 		panic("multiple calls to xpv_do_panic()");
671 
672 	/*
673 	 * Indicate to the underlying panic framework that a panic has been
674 	 * initiated.  This is ordinarily done as part of vpanic().  Since
675 	 * we already have all the register state saved by the hypervisor,
676 	 * we skip that and jump straight into the panic processing code.
677 	 *
678 	 * XXX If another thread grabs and wins the panic_quiesce trigger
679 	 * then we'll have two threads in panicsys believing they are in
680 	 * charge of the panic attempt!
681 	 */
682 	(void) panic_trigger(&panic_quiesce);
683 
684 #if defined(__amd64)
685 	/*
686 	 * bzero() and bcopy() get unhappy when asked to operate on
687 	 * addresses outside of the kernel.  At this point Xen is really a
688 	 * part of the kernel, so we update the routines' notion of where
689 	 * the kernel starts.
690 	 */
691 	postbootkernelbase = xen_virt_start;
692 #endif
693 
694 #if defined(HYPERVISOR_VIRT_END)
695 	xpv_end = HYPERVISOR_VIRT_END;
696 #else
697 	xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t);
698 #endif
699 
700 	/*
701 	 * If we were redirecting console output to the hypervisor, we have
702 	 * to stop.
703 	 */
704 	use_polledio = B_FALSE;
705 	if (boot_console_type(NULL) == CONS_HYPERVISOR) {
706 		bcons_device_change(CONS_HYPERVISOR);
707 	} else if (cons_polledio != NULL &&
708 	    cons_polledio->cons_polledio_putchar != NULL)  {
709 		if (cons_polledio->cons_polledio_enter != NULL)
710 			cons_polledio->cons_polledio_enter(
711 			    cons_polledio->cons_polledio_argument);
712 		use_polledio = 1;
713 	}
714 
715 	/* Make sure we handle all console output from here on. */
716 	sysp->bsvc_putchar = xpv_panic_putc;
717 
718 	/*
719 	 * If we find an unsupported panic_info structure, there's not much
720 	 * we can do other than complain, plow on, and hope for the best.
721 	 */
722 	if (pip->pi_version != PANIC_INFO_VERSION)
723 		xpv_panic_printf("Warning: Xen is using an unsupported "
724 		    "version of the panic_info structure.\n");
725 
726 	xpv_panic_info = pip;
727 
728 #if defined(__amd64)
729 	kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start;
730 	if (xpv_panic_info->pi_xen_start == NULL) {
731 		kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end;
732 	} else {
733 		kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start;
734 		kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end;
735 		kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end;
736 	}
737 #endif
738 
739 	/*
740 	 * Make sure we are running on the Solaris %gs.  The Xen panic code
741 	 * should already have set up the GDT properly.
742 	 */
743 	xpv_panic_resetgs();
744 #if defined(__amd64)
745 	wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]);
746 #endif
747 
748 	xpv_panic_time_init();
749 
750 	/*
751 	 * Switch to our own IDT, avoiding any accidental returns to Xen
752 	 * world.
753 	 */
754 	switch_to_xpv_panic_idt();
755 
756 	/*
757 	 * Initialize the APIC timer, which is used to detect a hung dump
758 	 * attempt.
759 	 */
760 	xpv_apicadr = pip->pi_apic;
761 	xpv_apic_clkinit();
762 
763 	/*
764 	 * Set up a few values that we'll need repeatedly.
765 	 */
766 	getcregs(&creg);
767 	xpv_panic_cr3 = creg.cr_cr3;
768 	for (l = mmu.max_level; l >= 0; l--)
769 		xpv_panic_nptes[l] = mmu.ptes_per_table;
770 #ifdef __i386
771 	if (mmu.pae_hat)
772 		xpv_panic_nptes[mmu.max_level] = 4;
773 #endif
774 
775 	/* Add the fake Xen module to the module list */
776 	if (xpv_module != NULL) {
777 		extern int last_module_id;
778 
779 		xpv_modctl->mod_id = last_module_id++;
780 		xpv_modctl->mod_next = &modules;
781 		xpv_modctl->mod_prev = modules.mod_prev;
782 		modules.mod_prev->mod_next = xpv_modctl;
783 		modules.mod_prev = xpv_modctl;
784 	}
785 
786 	if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC)
787 		xpv_mca_panic_data = &pip->pi_mca;
788 
789 	xpv_panic_printf = printf;
790 	xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr);
791 	xpv_panic_printf("Failed to reboot following panic.\n");
792 	for (;;)
793 		;
794 }
795 
796 /*
797  * Set up the necessary data structures to pretend that the Xen hypervisor
798  * is a loadable module, allowing mdb to find the Xen symbols in a crash
799  * dump.  Since these symbols all map to VA space Solaris doesn't normally
800  * have access to, we don't link these structures into the kernel's lists
801  * until/unless we hit a Xen panic.
802  *
803  * The observant reader will note a striking amount of overlap between this
804  * code and that found in krtld.  While it would be handy if we could just
805  * ask krtld to do this work for us, it's not that simple.  Among the
806  * complications: we're not actually loading the text here (grub did it at
807  * boot), the .text section is writable, there are no relocations to do,
808  * none of the module text/data is in readable memory, etc.  Training krtld
809  * to deal with this weird module is as complicated, and more risky, than
810  * reimplementing the necessary subset of it here.
811  */
812 static void
813 init_xen_module()
814 {
815 	struct _buf *file = NULL;
816 	struct module *mp;
817 	struct modctl *mcp;
818 	int i, shn;
819 	Shdr *shp, *ctf_shp;
820 	char *names = NULL;
821 	size_t n, namesize, text_align, data_align;
822 #if defined(__amd64)
823 	const char machine = EM_AMD64;
824 #else
825 	const char machine = EM_386;
826 #endif
827 
828 	/* Allocate and init the module structure */
829 	mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
830 	mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
831 	(void) strcpy(mp->filename, XPV_FILENAME);
832 
833 	/* Allocate and init the modctl structure */
834 	mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP);
835 	mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP);
836 	(void) strcpy(mcp->mod_modname, XPV_MODNAME);
837 	mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
838 	(void) strcpy(mcp->mod_filename, XPV_FILENAME);
839 	mcp->mod_inprogress_thread = (kthread_id_t)-1;
840 	mcp->mod_ref = 1;
841 	mcp->mod_loaded = 1;
842 	mcp->mod_loadcnt = 1;
843 	mcp->mod_mp = mp;
844 
845 	/*
846 	 * Try to open a Xen image that hasn't had its symbol and CTF
847 	 * information stripped off.
848 	 */
849 	file = kobj_open_file(XPV_FILENAME);
850 	if (file == (struct _buf *)-1) {
851 		file = NULL;
852 		goto err;
853 	}
854 
855 	/*
856 	 * Read the header and ensure that this is an ELF file for the
857 	 * proper ISA.  If it's not, somebody has done something very
858 	 * stupid.  Why bother?  See Mencken.
859 	 */
860 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0)
861 		goto err;
862 	for (i = 0; i < SELFMAG; i++)
863 		if (mp->hdr.e_ident[i] != ELFMAG[i])
864 			goto err;
865 	if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) ||
866 	    (mp->hdr.e_machine != machine))
867 		goto err;
868 
869 	/* Read in the section headers */
870 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
871 	mp->shdrs = kmem_zalloc(n, KM_SLEEP);
872 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0)
873 		goto err;
874 
875 	/* Read the section names */
876 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
877 	namesize = shp->sh_size;
878 	names = kmem_zalloc(shp->sh_size, KM_SLEEP);
879 	if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0)
880 		goto err;
881 
882 	/*
883 	 * Fill in the text and data size fields.
884 	 */
885 	ctf_shp = NULL;
886 	text_align = data_align = 0;
887 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
888 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
889 
890 		/* Sanity check the offset of the section name */
891 		if (shp->sh_name >= namesize)
892 			continue;
893 
894 		/* If we find the symtab section, remember it for later. */
895 		if (shp->sh_type == SHT_SYMTAB) {
896 			mp->symtbl_section = shn;
897 			mp->symhdr = shp;
898 			continue;
899 		}
900 
901 		/* If we find the CTF section, remember it for later. */
902 		if ((shp->sh_size != 0) &&
903 		    (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) {
904 			ctf_shp = shp;
905 			continue;
906 		}
907 
908 		if (!(shp->sh_flags & SHF_ALLOC))
909 			continue;
910 
911 		/*
912 		 * Xen marks its text section as writable, so we need to
913 		 * look for the name - not just the flag.
914 		 */
915 		if ((strcmp(&names[shp->sh_name], ".text") != NULL) &&
916 		    (shp->sh_flags & SHF_WRITE) != 0) {
917 			if (shp->sh_addralign > data_align)
918 				data_align = shp->sh_addralign;
919 			mp->data_size = ALIGN(mp->data_size, data_align);
920 			mp->data_size += ALIGN(shp->sh_size, 8);
921 			if (mp->data == NULL || mp->data > (char *)shp->sh_addr)
922 				mp->data = (char *)shp->sh_addr;
923 		} else {
924 			if (shp->sh_addralign > text_align)
925 				text_align = shp->sh_addralign;
926 			mp->text_size = ALIGN(mp->text_size, text_align);
927 			mp->text_size += ALIGN(shp->sh_size, 8);
928 			if (mp->text == NULL || mp->text > (char *)shp->sh_addr)
929 				mp->text = (char *)shp->sh_addr;
930 		}
931 	}
932 	kmem_free(names, namesize);
933 	names = NULL;
934 	shp = NULL;
935 	mcp->mod_text = mp->text;
936 	mcp->mod_text_size = mp->text_size;
937 
938 	/*
939 	 * If we have symbol table and string table sections, read them in
940 	 * now.  If we don't, we just plow on.  We'll still get a valid
941 	 * core dump, but finding anything useful will be just a bit
942 	 * harder.
943 	 *
944 	 * Note: we don't bother with a hash table.  We'll never do a
945 	 * symbol lookup unless we crash, and then mdb creates its own.  We
946 	 * also don't try to perform any relocations.  Xen should be loaded
947 	 * exactly where the ELF file indicates, and the symbol information
948 	 * in the file should be complete and correct already.  Static
949 	 * linking ain't all bad.
950 	 */
951 	if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) {
952 		mp->strhdr = (Shdr *)
953 		    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
954 		mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
955 
956 		/* Allocate space for the symbol table and strings.  */
957 		mp->symsize = mp->symhdr->sh_size +
958 		    mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size;
959 		mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP);
960 		mp->symtbl = mp->symspace;
961 		mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size);
962 
963 		if ((kobj_read_file(file, mp->symtbl,
964 		    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) ||
965 		    (kobj_read_file(file, mp->strings,
966 		    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0))
967 			goto err;
968 	}
969 
970 	/*
971 	 * Read in the CTF section
972 	 */
973 	if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) {
974 		mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP);
975 		mp->ctfsize = ctf_shp->sh_size;
976 		if (kobj_read_file(file, mp->ctfdata, mp->ctfsize,
977 		    ctf_shp->sh_offset) < 0)
978 			goto err;
979 	}
980 
981 	kobj_close_file(file);
982 
983 	xpv_module = mp;
984 	xpv_modctl = mcp;
985 	return;
986 
987 err:
988 	cmn_err(CE_WARN, "Failed to initialize xpv module.");
989 	if (file != NULL)
990 		kobj_close_file(file);
991 
992 	kmem_free(mp->filename, strlen(XPV_FILENAME) + 1);
993 	if (mp->shdrs != NULL)
994 		kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
995 	if (mp->symspace != NULL)
996 		kmem_free(mp->symspace, mp->symsize);
997 	if (mp->ctfdata != NULL)
998 		kmem_free(mp->ctfdata, mp->ctfsize);
999 	kmem_free(mp, sizeof (*mp));
1000 	kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1);
1001 	kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1);
1002 	kmem_free(mcp, sizeof (*mcp));
1003 	if (names != NULL)
1004 		kmem_free(names, namesize);
1005 }
1006 
1007 void
1008 xpv_panic_init()
1009 {
1010 	xen_platform_op_t op;
1011 	int i;
1012 
1013 	ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
1014 
1015 	for (i = 0; i < mmu.num_level; i++)
1016 		ptable_pfn[i] = PFN_INVALID;
1017 
1018 	/* Let Xen know where to jump if/when it panics. */
1019 	op.cmd = XENPF_panic_init;
1020 	op.interface_version = XENPF_INTERFACE_VERSION;
1021 	op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr;
1022 
1023 	(void) HYPERVISOR_platform_op(&op);
1024 
1025 	init_xen_module();
1026 }
1027