1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/atomic.h> 30 #include <sys/bitmap.h> 31 #include <sys/machparam.h> 32 #include <sys/machsystm.h> 33 #include <sys/mman.h> 34 #include <sys/systm.h> 35 #include <sys/cpuvar.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/cpu.h> 39 #include <sys/kmem.h> 40 #include <sys/disp.h> 41 #include <sys/vmem.h> 42 #include <sys/vmsystm.h> 43 #include <sys/promif.h> 44 #include <sys/var.h> 45 #include <sys/x86_archext.h> 46 #include <sys/archsystm.h> 47 #include <sys/bootconf.h> 48 #include <sys/dumphdr.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kpm.h> 51 #include <vm/hat.h> 52 #include <vm/hat_i86.h> 53 #include <sys/cmn_err.h> 54 #include <sys/panic.h> 55 56 #ifdef __xpv 57 #include <sys/hypervisor.h> 58 #include <sys/xpv_panic.h> 59 #endif 60 61 #include <sys/bootinfo.h> 62 #include <vm/kboot_mmu.h> 63 64 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 65 66 kmem_cache_t *htable_cache; 67 68 /* 69 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 70 * is used in order to facilitate testing of the htable_steal() code. 71 * By resetting htable_reserve_amount to a lower value, we can force 72 * stealing to occur. The reserve amount is a guess to get us through boot. 73 */ 74 #define HTABLE_RESERVE_AMOUNT (200) 75 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 76 kmutex_t htable_reserve_mutex; 77 uint_t htable_reserve_cnt; 78 htable_t *htable_reserve_pool; 79 80 /* 81 * Used to hand test htable_steal(). 82 */ 83 #ifdef DEBUG 84 ulong_t force_steal = 0; 85 ulong_t ptable_cnt = 0; 86 #endif 87 88 /* 89 * This variable is so that we can tune this via /etc/system 90 * Any value works, but a power of two <= mmu.ptes_per_table is best. 91 */ 92 uint_t htable_steal_passes = 8; 93 94 /* 95 * mutex stuff for access to htable hash 96 */ 97 #define NUM_HTABLE_MUTEX 128 98 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 99 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 100 101 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 102 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 103 104 /* 105 * forward declarations 106 */ 107 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 108 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 109 static void htable_free(htable_t *ht); 110 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 111 static void x86pte_release_pagetable(htable_t *ht); 112 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 113 x86pte_t new); 114 115 /* 116 * A counter to track if we are stealing or reaping htables. When non-zero 117 * htable_free() will directly free htables (either to the reserve or kmem) 118 * instead of putting them in a hat's htable cache. 119 */ 120 uint32_t htable_dont_cache = 0; 121 122 /* 123 * Track the number of active pagetables, so we can know how many to reap 124 */ 125 static uint32_t active_ptables = 0; 126 127 #ifdef __xpv 128 /* 129 * Deal with hypervisor complications. 130 */ 131 void 132 xen_flush_va(caddr_t va) 133 { 134 struct mmuext_op t; 135 uint_t count; 136 137 if (IN_XPV_PANIC()) { 138 mmu_tlbflush_entry((caddr_t)va); 139 } else { 140 t.cmd = MMUEXT_INVLPG_LOCAL; 141 t.arg1.linear_addr = (uintptr_t)va; 142 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 143 panic("HYPERVISOR_mmuext_op() failed"); 144 ASSERT(count == 1); 145 } 146 } 147 148 void 149 xen_gflush_va(caddr_t va, cpuset_t cpus) 150 { 151 struct mmuext_op t; 152 uint_t count; 153 154 if (IN_XPV_PANIC()) { 155 mmu_tlbflush_entry((caddr_t)va); 156 return; 157 } 158 159 t.cmd = MMUEXT_INVLPG_MULTI; 160 t.arg1.linear_addr = (uintptr_t)va; 161 /*LINTED: constant in conditional context*/ 162 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 163 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 164 panic("HYPERVISOR_mmuext_op() failed"); 165 ASSERT(count == 1); 166 } 167 168 void 169 xen_flush_tlb() 170 { 171 struct mmuext_op t; 172 uint_t count; 173 174 if (IN_XPV_PANIC()) { 175 xpv_panic_reload_cr3(); 176 } else { 177 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 178 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 179 panic("HYPERVISOR_mmuext_op() failed"); 180 ASSERT(count == 1); 181 } 182 } 183 184 void 185 xen_gflush_tlb(cpuset_t cpus) 186 { 187 struct mmuext_op t; 188 uint_t count; 189 190 ASSERT(!IN_XPV_PANIC()); 191 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 192 /*LINTED: constant in conditional context*/ 193 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 194 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 195 panic("HYPERVISOR_mmuext_op() failed"); 196 ASSERT(count == 1); 197 } 198 199 /* 200 * Install/Adjust a kpm mapping under the hypervisor. 201 * Value of "how" should be: 202 * PT_WRITABLE | PT_VALID - regular kpm mapping 203 * PT_VALID - make mapping read-only 204 * 0 - remove mapping 205 * 206 * returns 0 on success. non-zero for failure. 207 */ 208 int 209 xen_kpm_page(pfn_t pfn, uint_t how) 210 { 211 paddr_t pa = mmu_ptob((paddr_t)pfn); 212 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 213 214 if (kpm_vbase == NULL) 215 return (0); 216 217 if (how) 218 pte |= pa_to_ma(pa) | how; 219 else 220 pte = 0; 221 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 222 pte, UVMF_INVLPG | UVMF_ALL)); 223 } 224 225 void 226 xen_pin(pfn_t pfn, level_t lvl) 227 { 228 struct mmuext_op t; 229 uint_t count; 230 231 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 232 t.arg1.mfn = pfn_to_mfn(pfn); 233 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 234 panic("HYPERVISOR_mmuext_op() failed"); 235 ASSERT(count == 1); 236 } 237 238 void 239 xen_unpin(pfn_t pfn) 240 { 241 struct mmuext_op t; 242 uint_t count; 243 244 t.cmd = MMUEXT_UNPIN_TABLE; 245 t.arg1.mfn = pfn_to_mfn(pfn); 246 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 247 panic("HYPERVISOR_mmuext_op() failed"); 248 ASSERT(count == 1); 249 } 250 251 static void 252 xen_map(uint64_t pte, caddr_t va) 253 { 254 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 255 UVMF_INVLPG | UVMF_LOCAL)) 256 panic("HYPERVISOR_update_va_mapping() failed"); 257 } 258 #endif /* __xpv */ 259 260 /* 261 * Allocate a memory page for a hardware page table. 262 * 263 * A wrapper around page_get_physical(), with some extra checks. 264 */ 265 static pfn_t 266 ptable_alloc(uintptr_t seed) 267 { 268 pfn_t pfn; 269 page_t *pp; 270 271 pfn = PFN_INVALID; 272 273 /* 274 * The first check is to see if there is memory in the system. If we 275 * drop to throttlefree, then fail the ptable_alloc() and let the 276 * stealing code kick in. Note that we have to do this test here, 277 * since the test in page_create_throttle() would let the NOSLEEP 278 * allocation go through and deplete the page reserves. 279 * 280 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 281 */ 282 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 283 return (PFN_INVALID); 284 285 #ifdef DEBUG 286 /* 287 * This code makes htable_steal() easier to test. By setting 288 * force_steal we force pagetable allocations to fall 289 * into the stealing code. Roughly 1 in ever "force_steal" 290 * page table allocations will fail. 291 */ 292 if (proc_pageout != NULL && force_steal > 1 && 293 ++ptable_cnt > force_steal) { 294 ptable_cnt = 0; 295 return (PFN_INVALID); 296 } 297 #endif /* DEBUG */ 298 299 pp = page_get_physical(seed); 300 if (pp == NULL) 301 return (PFN_INVALID); 302 ASSERT(PAGE_SHARED(pp)); 303 pfn = pp->p_pagenum; 304 if (pfn == PFN_INVALID) 305 panic("ptable_alloc(): Invalid PFN!!"); 306 atomic_inc_32(&active_ptables); 307 HATSTAT_INC(hs_ptable_allocs); 308 return (pfn); 309 } 310 311 /* 312 * Free an htable's associated page table page. See the comments 313 * for ptable_alloc(). 314 */ 315 static void 316 ptable_free(pfn_t pfn) 317 { 318 page_t *pp = page_numtopp_nolock(pfn); 319 320 /* 321 * need to destroy the page used for the pagetable 322 */ 323 ASSERT(pfn != PFN_INVALID); 324 HATSTAT_INC(hs_ptable_frees); 325 atomic_dec_32(&active_ptables); 326 if (pp == NULL) 327 panic("ptable_free(): no page for pfn!"); 328 ASSERT(PAGE_SHARED(pp)); 329 ASSERT(pfn == pp->p_pagenum); 330 ASSERT(!IN_XPV_PANIC()); 331 332 /* 333 * Get an exclusive lock, might have to wait for a kmem reader. 334 */ 335 if (!page_tryupgrade(pp)) { 336 u_offset_t off = pp->p_offset; 337 page_unlock(pp); 338 pp = page_lookup(&kvp, off, SE_EXCL); 339 if (pp == NULL) 340 panic("page not found"); 341 } 342 #ifdef __xpv 343 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 344 panic("failure making kpm r/w pfn=0x%lx", pfn); 345 #endif 346 page_hashout(pp, NULL); 347 page_free(pp, 1); 348 page_unresv(1); 349 } 350 351 /* 352 * Put one htable on the reserve list. 353 */ 354 static void 355 htable_put_reserve(htable_t *ht) 356 { 357 ht->ht_hat = NULL; /* no longer tied to a hat */ 358 ASSERT(ht->ht_pfn == PFN_INVALID); 359 HATSTAT_INC(hs_htable_rputs); 360 mutex_enter(&htable_reserve_mutex); 361 ht->ht_next = htable_reserve_pool; 362 htable_reserve_pool = ht; 363 ++htable_reserve_cnt; 364 mutex_exit(&htable_reserve_mutex); 365 } 366 367 /* 368 * Take one htable from the reserve. 369 */ 370 static htable_t * 371 htable_get_reserve(void) 372 { 373 htable_t *ht = NULL; 374 375 mutex_enter(&htable_reserve_mutex); 376 if (htable_reserve_cnt != 0) { 377 ht = htable_reserve_pool; 378 ASSERT(ht != NULL); 379 ASSERT(ht->ht_pfn == PFN_INVALID); 380 htable_reserve_pool = ht->ht_next; 381 --htable_reserve_cnt; 382 HATSTAT_INC(hs_htable_rgets); 383 } 384 mutex_exit(&htable_reserve_mutex); 385 return (ht); 386 } 387 388 /* 389 * Allocate initial htables and put them on the reserve list 390 */ 391 void 392 htable_initial_reserve(uint_t count) 393 { 394 htable_t *ht; 395 396 count += HTABLE_RESERVE_AMOUNT; 397 while (count > 0) { 398 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 399 ASSERT(ht != NULL); 400 401 ASSERT(use_boot_reserve); 402 ht->ht_pfn = PFN_INVALID; 403 htable_put_reserve(ht); 404 --count; 405 } 406 } 407 408 /* 409 * Readjust the reserves after a thread finishes using them. 410 */ 411 void 412 htable_adjust_reserve() 413 { 414 htable_t *ht; 415 416 /* 417 * Free any excess htables in the reserve list 418 */ 419 while (htable_reserve_cnt > htable_reserve_amount && 420 !USE_HAT_RESERVES()) { 421 ht = htable_get_reserve(); 422 if (ht == NULL) 423 return; 424 ASSERT(ht->ht_pfn == PFN_INVALID); 425 kmem_cache_free(htable_cache, ht); 426 } 427 } 428 429 430 /* 431 * This routine steals htables from user processes for htable_alloc() or 432 * for htable_reap(). 433 */ 434 static htable_t * 435 htable_steal(uint_t cnt) 436 { 437 hat_t *hat = kas.a_hat; /* list starts with khat */ 438 htable_t *list = NULL; 439 htable_t *ht; 440 htable_t *higher; 441 uint_t h; 442 uint_t h_start; 443 static uint_t h_seed = 0; 444 uint_t e; 445 uintptr_t va; 446 x86pte_t pte; 447 uint_t stolen = 0; 448 uint_t pass; 449 uint_t threshold; 450 451 /* 452 * Limit htable_steal_passes to something reasonable 453 */ 454 if (htable_steal_passes == 0) 455 htable_steal_passes = 1; 456 if (htable_steal_passes > mmu.ptes_per_table) 457 htable_steal_passes = mmu.ptes_per_table; 458 459 /* 460 * Loop through all user hats. The 1st pass takes cached htables that 461 * aren't in use. The later passes steal by removing mappings, too. 462 */ 463 atomic_inc_32(&htable_dont_cache); 464 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 465 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 466 hat = kas.a_hat; 467 for (;;) { 468 469 /* 470 * Clear the victim flag and move to next hat 471 */ 472 mutex_enter(&hat_list_lock); 473 if (hat != kas.a_hat) { 474 hat->hat_flags &= ~HAT_VICTIM; 475 cv_broadcast(&hat_list_cv); 476 } 477 hat = hat->hat_next; 478 479 /* 480 * Skip any hat that is already being stolen from. 481 * 482 * We skip SHARED hats, as these are dummy 483 * hats that host ISM shared page tables. 484 * 485 * We also skip if HAT_FREEING because hat_pte_unmap() 486 * won't zero out the PTE's. That would lead to hitting 487 * stale PTEs either here or under hat_unload() when we 488 * steal and unload the same page table in competing 489 * threads. 490 */ 491 while (hat != NULL && 492 (hat->hat_flags & 493 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 494 hat = hat->hat_next; 495 496 if (hat == NULL) { 497 mutex_exit(&hat_list_lock); 498 break; 499 } 500 501 /* 502 * Are we finished? 503 */ 504 if (stolen == cnt) { 505 /* 506 * Try to spread the pain of stealing, 507 * move victim HAT to the end of the HAT list. 508 */ 509 if (pass >= 1 && cnt == 1 && 510 kas.a_hat->hat_prev != hat) { 511 512 /* unlink victim hat */ 513 if (hat->hat_prev) 514 hat->hat_prev->hat_next = 515 hat->hat_next; 516 else 517 kas.a_hat->hat_next = 518 hat->hat_next; 519 if (hat->hat_next) 520 hat->hat_next->hat_prev = 521 hat->hat_prev; 522 else 523 kas.a_hat->hat_prev = 524 hat->hat_prev; 525 526 527 /* relink at end of hat list */ 528 hat->hat_next = NULL; 529 hat->hat_prev = kas.a_hat->hat_prev; 530 if (hat->hat_prev) 531 hat->hat_prev->hat_next = hat; 532 else 533 kas.a_hat->hat_next = hat; 534 kas.a_hat->hat_prev = hat; 535 536 } 537 538 mutex_exit(&hat_list_lock); 539 break; 540 } 541 542 /* 543 * Mark the HAT as a stealing victim. 544 */ 545 hat->hat_flags |= HAT_VICTIM; 546 mutex_exit(&hat_list_lock); 547 548 /* 549 * Take any htables from the hat's cached "free" list. 550 */ 551 hat_enter(hat); 552 while ((ht = hat->hat_ht_cached) != NULL && 553 stolen < cnt) { 554 hat->hat_ht_cached = ht->ht_next; 555 ht->ht_next = list; 556 list = ht; 557 ++stolen; 558 } 559 hat_exit(hat); 560 561 /* 562 * Don't steal on first pass. 563 */ 564 if (pass == 0 || stolen == cnt) 565 continue; 566 567 /* 568 * Search the active htables for one to steal. 569 * Start at a different hash bucket every time to 570 * help spread the pain of stealing. 571 */ 572 h = h_start = h_seed++ % hat->hat_num_hash; 573 do { 574 higher = NULL; 575 HTABLE_ENTER(h); 576 for (ht = hat->hat_ht_hash[h]; ht; 577 ht = ht->ht_next) { 578 579 /* 580 * Can we rule out reaping? 581 */ 582 if (ht->ht_busy != 0 || 583 (ht->ht_flags & HTABLE_SHARED_PFN)|| 584 ht->ht_level > 0 || 585 ht->ht_valid_cnt > threshold || 586 ht->ht_lock_cnt != 0) 587 continue; 588 589 /* 590 * Increment busy so the htable can't 591 * disappear. We drop the htable mutex 592 * to avoid deadlocks with 593 * hat_pageunload() and the hment mutex 594 * while we call hat_pte_unmap() 595 */ 596 ++ht->ht_busy; 597 HTABLE_EXIT(h); 598 599 /* 600 * Try stealing. 601 * - unload and invalidate all PTEs 602 */ 603 for (e = 0, va = ht->ht_vaddr; 604 e < HTABLE_NUM_PTES(ht) && 605 ht->ht_valid_cnt > 0 && 606 ht->ht_busy == 1 && 607 ht->ht_lock_cnt == 0; 608 ++e, va += MMU_PAGESIZE) { 609 pte = x86pte_get(ht, e); 610 if (!PTE_ISVALID(pte)) 611 continue; 612 hat_pte_unmap(ht, e, 613 HAT_UNLOAD, pte, NULL); 614 } 615 616 /* 617 * Reacquire htable lock. If we didn't 618 * remove all mappings in the table, 619 * or another thread added a new mapping 620 * behind us, give up on this table. 621 */ 622 HTABLE_ENTER(h); 623 if (ht->ht_busy != 1 || 624 ht->ht_valid_cnt != 0 || 625 ht->ht_lock_cnt != 0) { 626 --ht->ht_busy; 627 continue; 628 } 629 630 /* 631 * Steal it and unlink the page table. 632 */ 633 higher = ht->ht_parent; 634 unlink_ptp(higher, ht, ht->ht_vaddr); 635 636 /* 637 * remove from the hash list 638 */ 639 if (ht->ht_next) 640 ht->ht_next->ht_prev = 641 ht->ht_prev; 642 643 if (ht->ht_prev) { 644 ht->ht_prev->ht_next = 645 ht->ht_next; 646 } else { 647 ASSERT(hat->hat_ht_hash[h] == 648 ht); 649 hat->hat_ht_hash[h] = 650 ht->ht_next; 651 } 652 653 /* 654 * Break to outer loop to release the 655 * higher (ht_parent) pagetable. This 656 * spreads out the pain caused by 657 * pagefaults. 658 */ 659 ht->ht_next = list; 660 list = ht; 661 ++stolen; 662 break; 663 } 664 HTABLE_EXIT(h); 665 if (higher != NULL) 666 htable_release(higher); 667 if (++h == hat->hat_num_hash) 668 h = 0; 669 } while (stolen < cnt && h != h_start); 670 } 671 } 672 atomic_dec_32(&htable_dont_cache); 673 return (list); 674 } 675 676 /* 677 * This is invoked from kmem when the system is low on memory. We try 678 * to free hments, htables, and ptables to improve the memory situation. 679 */ 680 /*ARGSUSED*/ 681 static void 682 htable_reap(void *handle) 683 { 684 uint_t reap_cnt; 685 htable_t *list; 686 htable_t *ht; 687 688 HATSTAT_INC(hs_reap_attempts); 689 if (!can_steal_post_boot) 690 return; 691 692 /* 693 * Try to reap 5% of the page tables bounded by a maximum of 694 * 5% of physmem and a minimum of 10. 695 */ 696 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 697 698 /* 699 * Let htable_steal() do the work, we just call htable_free() 700 */ 701 XPV_DISALLOW_MIGRATE(); 702 list = htable_steal(reap_cnt); 703 XPV_ALLOW_MIGRATE(); 704 while ((ht = list) != NULL) { 705 list = ht->ht_next; 706 HATSTAT_INC(hs_reaped); 707 htable_free(ht); 708 } 709 710 /* 711 * Free up excess reserves 712 */ 713 htable_adjust_reserve(); 714 hment_adjust_reserve(); 715 } 716 717 /* 718 * Allocate an htable, stealing one or using the reserve if necessary 719 */ 720 static htable_t * 721 htable_alloc( 722 hat_t *hat, 723 uintptr_t vaddr, 724 level_t level, 725 htable_t *shared) 726 { 727 htable_t *ht = NULL; 728 uint_t is_vlp; 729 uint_t is_bare = 0; 730 uint_t need_to_zero = 1; 731 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 732 733 if (level < 0 || level > TOP_LEVEL(hat)) 734 panic("htable_alloc(): level %d out of range\n", level); 735 736 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 737 if (is_vlp || shared != NULL) 738 is_bare = 1; 739 740 /* 741 * First reuse a cached htable from the hat_ht_cached field, this 742 * avoids unnecessary trips through kmem/page allocators. 743 */ 744 if (hat->hat_ht_cached != NULL && !is_bare) { 745 hat_enter(hat); 746 ht = hat->hat_ht_cached; 747 if (ht != NULL) { 748 hat->hat_ht_cached = ht->ht_next; 749 need_to_zero = 0; 750 /* XX64 ASSERT() they're all zero somehow */ 751 ASSERT(ht->ht_pfn != PFN_INVALID); 752 } 753 hat_exit(hat); 754 } 755 756 if (ht == NULL) { 757 /* 758 * Allocate an htable, possibly refilling the reserves. 759 */ 760 if (USE_HAT_RESERVES()) { 761 ht = htable_get_reserve(); 762 } else { 763 /* 764 * Donate successful htable allocations to the reserve. 765 */ 766 for (;;) { 767 ht = kmem_cache_alloc(htable_cache, kmflags); 768 if (ht == NULL) 769 break; 770 ht->ht_pfn = PFN_INVALID; 771 if (USE_HAT_RESERVES() || 772 htable_reserve_cnt >= htable_reserve_amount) 773 break; 774 htable_put_reserve(ht); 775 } 776 } 777 778 /* 779 * allocate a page for the hardware page table if needed 780 */ 781 if (ht != NULL && !is_bare) { 782 ht->ht_hat = hat; 783 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 784 if (ht->ht_pfn == PFN_INVALID) { 785 if (USE_HAT_RESERVES()) 786 htable_put_reserve(ht); 787 else 788 kmem_cache_free(htable_cache, ht); 789 ht = NULL; 790 } 791 } 792 } 793 794 /* 795 * If allocations failed, kick off a kmem_reap() and resort to 796 * htable steal(). We may spin here if the system is very low on 797 * memory. If the kernel itself has consumed all memory and kmem_reap() 798 * can't free up anything, then we'll really get stuck here. 799 * That should only happen in a system where the administrator has 800 * misconfigured VM parameters via /etc/system. 801 */ 802 while (ht == NULL && can_steal_post_boot) { 803 kmem_reap(); 804 ht = htable_steal(1); 805 HATSTAT_INC(hs_steals); 806 807 /* 808 * If we stole for a bare htable, release the pagetable page. 809 */ 810 if (ht != NULL) { 811 if (is_bare) { 812 ptable_free(ht->ht_pfn); 813 ht->ht_pfn = PFN_INVALID; 814 #if defined(__xpv) && defined(__amd64) 815 /* 816 * make stolen page table writable again in kpm 817 */ 818 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 819 PT_VALID | PT_WRITABLE) < 0) { 820 panic("failure making kpm r/w pfn=0x%lx", 821 ht->ht_pfn); 822 #endif 823 } 824 } 825 } 826 827 /* 828 * All attempts to allocate or steal failed. This should only happen 829 * if we run out of memory during boot, due perhaps to a huge 830 * boot_archive. At this point there's no way to continue. 831 */ 832 if (ht == NULL) 833 panic("htable_alloc(): couldn't steal\n"); 834 835 #if defined(__amd64) && defined(__xpv) 836 /* 837 * Under the 64-bit hypervisor, we have 2 top level page tables. 838 * If this allocation fails, we'll resort to stealing. 839 * We use the stolen page indirectly, by freeing the 840 * stolen htable first. 841 */ 842 if (level == mmu.max_level) { 843 for (;;) { 844 htable_t *stolen; 845 846 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 847 if (hat->hat_user_ptable != PFN_INVALID) 848 break; 849 stolen = htable_steal(1); 850 if (stolen == NULL) 851 panic("2nd steal ptable failed\n"); 852 htable_free(stolen); 853 } 854 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 855 MMU_PAGESIZE); 856 } 857 #endif 858 859 /* 860 * Shared page tables have all entries locked and entries may not 861 * be added or deleted. 862 */ 863 ht->ht_flags = 0; 864 if (shared != NULL) { 865 ASSERT(shared->ht_valid_cnt > 0); 866 ht->ht_flags |= HTABLE_SHARED_PFN; 867 ht->ht_pfn = shared->ht_pfn; 868 ht->ht_lock_cnt = 0; 869 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 870 ht->ht_shares = shared; 871 need_to_zero = 0; 872 } else { 873 ht->ht_shares = NULL; 874 ht->ht_lock_cnt = 0; 875 ht->ht_valid_cnt = 0; 876 } 877 878 /* 879 * setup flags, etc. for VLP htables 880 */ 881 if (is_vlp) { 882 ht->ht_flags |= HTABLE_VLP; 883 ASSERT(ht->ht_pfn == PFN_INVALID); 884 need_to_zero = 0; 885 } 886 887 /* 888 * fill in the htable 889 */ 890 ht->ht_hat = hat; 891 ht->ht_parent = NULL; 892 ht->ht_vaddr = vaddr; 893 ht->ht_level = level; 894 ht->ht_busy = 1; 895 ht->ht_next = NULL; 896 ht->ht_prev = NULL; 897 898 /* 899 * Zero out any freshly allocated page table 900 */ 901 if (need_to_zero) 902 x86pte_zero(ht, 0, mmu.ptes_per_table); 903 904 #if defined(__amd64) && defined(__xpv) 905 if (!is_bare && kpm_vbase) { 906 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 907 if (level == mmu.max_level) 908 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 909 } 910 #endif 911 912 return (ht); 913 } 914 915 /* 916 * Free up an htable, either to a hat's cached list, the reserves or 917 * back to kmem. 918 */ 919 static void 920 htable_free(htable_t *ht) 921 { 922 hat_t *hat = ht->ht_hat; 923 924 /* 925 * If the process isn't exiting, cache the free htable in the hat 926 * structure. We always do this for the boot time reserve. We don't 927 * do this if the hat is exiting or we are stealing/reaping htables. 928 */ 929 if (hat != NULL && 930 !(ht->ht_flags & HTABLE_SHARED_PFN) && 931 (use_boot_reserve || 932 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 933 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 934 ASSERT(ht->ht_pfn != PFN_INVALID); 935 hat_enter(hat); 936 ht->ht_next = hat->hat_ht_cached; 937 hat->hat_ht_cached = ht; 938 hat_exit(hat); 939 return; 940 } 941 942 /* 943 * If we have a hardware page table, free it. 944 * We don't free page tables that are accessed by sharing. 945 */ 946 if (ht->ht_flags & HTABLE_SHARED_PFN) { 947 ASSERT(ht->ht_pfn != PFN_INVALID); 948 } else if (!(ht->ht_flags & HTABLE_VLP)) { 949 ptable_free(ht->ht_pfn); 950 #if defined(__amd64) && defined(__xpv) 951 if (ht->ht_level == mmu.max_level) { 952 ptable_free(hat->hat_user_ptable); 953 hat->hat_user_ptable = PFN_INVALID; 954 } 955 #endif 956 } 957 ht->ht_pfn = PFN_INVALID; 958 959 /* 960 * Free it or put into reserves. 961 */ 962 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 963 htable_put_reserve(ht); 964 } else { 965 kmem_cache_free(htable_cache, ht); 966 htable_adjust_reserve(); 967 } 968 } 969 970 971 /* 972 * This is called when a hat is being destroyed or swapped out. We reap all 973 * the remaining htables in the hat cache. If destroying all left over 974 * htables are also destroyed. 975 * 976 * We also don't need to invalidate any of the PTPs nor do any demapping. 977 */ 978 void 979 htable_purge_hat(hat_t *hat) 980 { 981 htable_t *ht; 982 int h; 983 984 /* 985 * Purge the htable cache if just reaping. 986 */ 987 if (!(hat->hat_flags & HAT_FREEING)) { 988 atomic_inc_32(&htable_dont_cache); 989 for (;;) { 990 hat_enter(hat); 991 ht = hat->hat_ht_cached; 992 if (ht == NULL) { 993 hat_exit(hat); 994 break; 995 } 996 hat->hat_ht_cached = ht->ht_next; 997 hat_exit(hat); 998 htable_free(ht); 999 } 1000 atomic_dec_32(&htable_dont_cache); 1001 return; 1002 } 1003 1004 /* 1005 * if freeing, no locking is needed 1006 */ 1007 while ((ht = hat->hat_ht_cached) != NULL) { 1008 hat->hat_ht_cached = ht->ht_next; 1009 htable_free(ht); 1010 } 1011 1012 /* 1013 * walk thru the htable hash table and free all the htables in it. 1014 */ 1015 for (h = 0; h < hat->hat_num_hash; ++h) { 1016 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1017 if (ht->ht_next) 1018 ht->ht_next->ht_prev = ht->ht_prev; 1019 1020 if (ht->ht_prev) { 1021 ht->ht_prev->ht_next = ht->ht_next; 1022 } else { 1023 ASSERT(hat->hat_ht_hash[h] == ht); 1024 hat->hat_ht_hash[h] = ht->ht_next; 1025 } 1026 htable_free(ht); 1027 } 1028 } 1029 } 1030 1031 /* 1032 * Unlink an entry for a table at vaddr and level out of the existing table 1033 * one level higher. We are always holding the HASH_ENTER() when doing this. 1034 */ 1035 static void 1036 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1037 { 1038 uint_t entry = htable_va2entry(vaddr, higher); 1039 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1040 x86pte_t found; 1041 hat_t *hat = old->ht_hat; 1042 1043 ASSERT(higher->ht_busy > 0); 1044 ASSERT(higher->ht_valid_cnt > 0); 1045 ASSERT(old->ht_valid_cnt == 0); 1046 found = x86pte_cas(higher, entry, expect, 0); 1047 #ifdef __xpv 1048 /* 1049 * This is weird, but Xen apparently automatically unlinks empty 1050 * pagetables from the upper page table. So allow PTP to be 0 already. 1051 */ 1052 if (found != expect && found != 0) 1053 #else 1054 if (found != expect) 1055 #endif 1056 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1057 found, expect); 1058 1059 /* 1060 * When a top level VLP page table entry changes, we must issue 1061 * a reload of cr3 on all processors. 1062 * 1063 * If we don't need do do that, then we still have to INVLPG against 1064 * an address covered by the inner page table, as the latest processors 1065 * have TLB-like caches for non-leaf page table entries. 1066 */ 1067 if (!(hat->hat_flags & HAT_FREEING)) { 1068 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ? 1069 DEMAP_ALL_ADDR : old->ht_vaddr); 1070 } 1071 1072 HTABLE_DEC(higher->ht_valid_cnt); 1073 } 1074 1075 /* 1076 * Link an entry for a new table at vaddr and level into the existing table 1077 * one level higher. We are always holding the HASH_ENTER() when doing this. 1078 */ 1079 static void 1080 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1081 { 1082 uint_t entry = htable_va2entry(vaddr, higher); 1083 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1084 x86pte_t found; 1085 1086 ASSERT(higher->ht_busy > 0); 1087 1088 ASSERT(new->ht_level != mmu.max_level); 1089 1090 HTABLE_INC(higher->ht_valid_cnt); 1091 1092 found = x86pte_cas(higher, entry, 0, newptp); 1093 if ((found & ~PT_REF) != 0) 1094 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1095 1096 /* 1097 * When any top level VLP page table entry changes, we must issue 1098 * a reload of cr3 on all processors using it. 1099 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1100 */ 1101 if ( 1102 #ifdef __i386 1103 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 1104 #endif 1105 (higher->ht_flags & HTABLE_VLP)) 1106 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1107 } 1108 1109 /* 1110 * Release of hold on an htable. If this is the last use and the pagetable 1111 * is empty we may want to free it, then recursively look at the pagetable 1112 * above it. The recursion is handled by the outer while() loop. 1113 * 1114 * On the metal, during process exit, we don't bother unlinking the tables from 1115 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1116 * We can't do this on the hypervisor as we need the page table to be 1117 * implicitly unpinnned before it goes to the free page lists. This can't 1118 * happen unless we fully unlink it from the page table hierarchy. 1119 */ 1120 void 1121 htable_release(htable_t *ht) 1122 { 1123 uint_t hashval; 1124 htable_t *shared; 1125 htable_t *higher; 1126 hat_t *hat; 1127 uintptr_t va; 1128 level_t level; 1129 1130 while (ht != NULL) { 1131 shared = NULL; 1132 for (;;) { 1133 hat = ht->ht_hat; 1134 va = ht->ht_vaddr; 1135 level = ht->ht_level; 1136 hashval = HTABLE_HASH(hat, va, level); 1137 1138 /* 1139 * The common case is that this isn't the last use of 1140 * an htable so we don't want to free the htable. 1141 */ 1142 HTABLE_ENTER(hashval); 1143 ASSERT(ht->ht_valid_cnt >= 0); 1144 ASSERT(ht->ht_busy > 0); 1145 if (ht->ht_valid_cnt > 0) 1146 break; 1147 if (ht->ht_busy > 1) 1148 break; 1149 ASSERT(ht->ht_lock_cnt == 0); 1150 1151 #if !defined(__xpv) 1152 /* 1153 * we always release empty shared htables 1154 */ 1155 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1156 1157 /* 1158 * don't release if in address space tear down 1159 */ 1160 if (hat->hat_flags & HAT_FREEING) 1161 break; 1162 1163 /* 1164 * At and above max_page_level, free if it's for 1165 * a boot-time kernel mapping below kernelbase. 1166 */ 1167 if (level >= mmu.max_page_level && 1168 (hat != kas.a_hat || va >= kernelbase)) 1169 break; 1170 } 1171 #endif /* __xpv */ 1172 1173 /* 1174 * Remember if we destroy an htable that shares its PFN 1175 * from elsewhere. 1176 */ 1177 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1178 ASSERT(shared == NULL); 1179 shared = ht->ht_shares; 1180 HATSTAT_INC(hs_htable_unshared); 1181 } 1182 1183 /* 1184 * Handle release of a table and freeing the htable_t. 1185 * Unlink it from the table higher (ie. ht_parent). 1186 */ 1187 higher = ht->ht_parent; 1188 ASSERT(higher != NULL); 1189 1190 /* 1191 * Unlink the pagetable. 1192 */ 1193 unlink_ptp(higher, ht, va); 1194 1195 /* 1196 * remove this htable from its hash list 1197 */ 1198 if (ht->ht_next) 1199 ht->ht_next->ht_prev = ht->ht_prev; 1200 1201 if (ht->ht_prev) { 1202 ht->ht_prev->ht_next = ht->ht_next; 1203 } else { 1204 ASSERT(hat->hat_ht_hash[hashval] == ht); 1205 hat->hat_ht_hash[hashval] = ht->ht_next; 1206 } 1207 HTABLE_EXIT(hashval); 1208 htable_free(ht); 1209 ht = higher; 1210 } 1211 1212 ASSERT(ht->ht_busy >= 1); 1213 --ht->ht_busy; 1214 HTABLE_EXIT(hashval); 1215 1216 /* 1217 * If we released a shared htable, do a release on the htable 1218 * from which it shared 1219 */ 1220 ht = shared; 1221 } 1222 } 1223 1224 /* 1225 * Find the htable for the pagetable at the given level for the given address. 1226 * If found acquires a hold that eventually needs to be htable_release()d 1227 */ 1228 htable_t * 1229 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1230 { 1231 uintptr_t base; 1232 uint_t hashval; 1233 htable_t *ht = NULL; 1234 1235 ASSERT(level >= 0); 1236 ASSERT(level <= TOP_LEVEL(hat)); 1237 1238 if (level == TOP_LEVEL(hat)) { 1239 #if defined(__amd64) 1240 /* 1241 * 32 bit address spaces on 64 bit kernels need to check 1242 * for overflow of the 32 bit address space 1243 */ 1244 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32)) 1245 return (NULL); 1246 #endif 1247 base = 0; 1248 } else { 1249 base = vaddr & LEVEL_MASK(level + 1); 1250 } 1251 1252 hashval = HTABLE_HASH(hat, base, level); 1253 HTABLE_ENTER(hashval); 1254 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1255 if (ht->ht_hat == hat && 1256 ht->ht_vaddr == base && 1257 ht->ht_level == level) 1258 break; 1259 } 1260 if (ht) 1261 ++ht->ht_busy; 1262 1263 HTABLE_EXIT(hashval); 1264 return (ht); 1265 } 1266 1267 /* 1268 * Acquires a hold on a known htable (from a locked hment entry). 1269 */ 1270 void 1271 htable_acquire(htable_t *ht) 1272 { 1273 hat_t *hat = ht->ht_hat; 1274 level_t level = ht->ht_level; 1275 uintptr_t base = ht->ht_vaddr; 1276 uint_t hashval = HTABLE_HASH(hat, base, level); 1277 1278 HTABLE_ENTER(hashval); 1279 #ifdef DEBUG 1280 /* 1281 * make sure the htable is there 1282 */ 1283 { 1284 htable_t *h; 1285 1286 for (h = hat->hat_ht_hash[hashval]; 1287 h && h != ht; 1288 h = h->ht_next) 1289 ; 1290 ASSERT(h == ht); 1291 } 1292 #endif /* DEBUG */ 1293 ++ht->ht_busy; 1294 HTABLE_EXIT(hashval); 1295 } 1296 1297 /* 1298 * Find the htable for the pagetable at the given level for the given address. 1299 * If found acquires a hold that eventually needs to be htable_release()d 1300 * If not found the table is created. 1301 * 1302 * Since we can't hold a hash table mutex during allocation, we have to 1303 * drop it and redo the search on a create. Then we may have to free the newly 1304 * allocated htable if another thread raced in and created it ahead of us. 1305 */ 1306 htable_t * 1307 htable_create( 1308 hat_t *hat, 1309 uintptr_t vaddr, 1310 level_t level, 1311 htable_t *shared) 1312 { 1313 uint_t h; 1314 level_t l; 1315 uintptr_t base; 1316 htable_t *ht; 1317 htable_t *higher = NULL; 1318 htable_t *new = NULL; 1319 1320 if (level < 0 || level > TOP_LEVEL(hat)) 1321 panic("htable_create(): level %d out of range\n", level); 1322 1323 /* 1324 * Create the page tables in top down order. 1325 */ 1326 for (l = TOP_LEVEL(hat); l >= level; --l) { 1327 new = NULL; 1328 if (l == TOP_LEVEL(hat)) 1329 base = 0; 1330 else 1331 base = vaddr & LEVEL_MASK(l + 1); 1332 1333 h = HTABLE_HASH(hat, base, l); 1334 try_again: 1335 /* 1336 * look up the htable at this level 1337 */ 1338 HTABLE_ENTER(h); 1339 if (l == TOP_LEVEL(hat)) { 1340 ht = hat->hat_htable; 1341 } else { 1342 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1343 ASSERT(ht->ht_hat == hat); 1344 if (ht->ht_vaddr == base && 1345 ht->ht_level == l) 1346 break; 1347 } 1348 } 1349 1350 /* 1351 * if we found the htable, increment its busy cnt 1352 * and if we had allocated a new htable, free it. 1353 */ 1354 if (ht != NULL) { 1355 /* 1356 * If we find a pre-existing shared table, it must 1357 * share from the same place. 1358 */ 1359 if (l == level && shared && ht->ht_shares && 1360 ht->ht_shares != shared) { 1361 panic("htable shared from wrong place " 1362 "found htable=%p shared=%p", 1363 (void *)ht, (void *)shared); 1364 } 1365 ++ht->ht_busy; 1366 HTABLE_EXIT(h); 1367 if (new) 1368 htable_free(new); 1369 if (higher != NULL) 1370 htable_release(higher); 1371 higher = ht; 1372 1373 /* 1374 * if we didn't find it on the first search 1375 * allocate a new one and search again 1376 */ 1377 } else if (new == NULL) { 1378 HTABLE_EXIT(h); 1379 new = htable_alloc(hat, base, l, 1380 l == level ? shared : NULL); 1381 goto try_again; 1382 1383 /* 1384 * 2nd search and still not there, use "new" table 1385 * Link new table into higher, when not at top level. 1386 */ 1387 } else { 1388 ht = new; 1389 if (higher != NULL) { 1390 link_ptp(higher, ht, base); 1391 ht->ht_parent = higher; 1392 } 1393 ht->ht_next = hat->hat_ht_hash[h]; 1394 ASSERT(ht->ht_prev == NULL); 1395 if (hat->hat_ht_hash[h]) 1396 hat->hat_ht_hash[h]->ht_prev = ht; 1397 hat->hat_ht_hash[h] = ht; 1398 HTABLE_EXIT(h); 1399 1400 /* 1401 * Note we don't do htable_release(higher). 1402 * That happens recursively when "new" is removed by 1403 * htable_release() or htable_steal(). 1404 */ 1405 higher = ht; 1406 1407 /* 1408 * If we just created a new shared page table we 1409 * increment the shared htable's busy count, so that 1410 * it can't be the victim of a steal even if it's empty. 1411 */ 1412 if (l == level && shared) { 1413 (void) htable_lookup(shared->ht_hat, 1414 shared->ht_vaddr, shared->ht_level); 1415 HATSTAT_INC(hs_htable_shared); 1416 } 1417 } 1418 } 1419 1420 return (ht); 1421 } 1422 1423 /* 1424 * Inherit initial pagetables from the boot program. On the 64-bit 1425 * hypervisor we also temporarily mark the p_index field of page table 1426 * pages, so we know not to try making them writable in seg_kpm. 1427 */ 1428 void 1429 htable_attach( 1430 hat_t *hat, 1431 uintptr_t base, 1432 level_t level, 1433 htable_t *parent, 1434 pfn_t pfn) 1435 { 1436 htable_t *ht; 1437 uint_t h; 1438 uint_t i; 1439 x86pte_t pte; 1440 x86pte_t *ptep; 1441 page_t *pp; 1442 extern page_t *boot_claim_page(pfn_t); 1443 1444 ht = htable_get_reserve(); 1445 if (level == mmu.max_level) 1446 kas.a_hat->hat_htable = ht; 1447 ht->ht_hat = hat; 1448 ht->ht_parent = parent; 1449 ht->ht_vaddr = base; 1450 ht->ht_level = level; 1451 ht->ht_busy = 1; 1452 ht->ht_next = NULL; 1453 ht->ht_prev = NULL; 1454 ht->ht_flags = 0; 1455 ht->ht_pfn = pfn; 1456 ht->ht_lock_cnt = 0; 1457 ht->ht_valid_cnt = 0; 1458 if (parent != NULL) 1459 ++parent->ht_busy; 1460 1461 h = HTABLE_HASH(hat, base, level); 1462 HTABLE_ENTER(h); 1463 ht->ht_next = hat->hat_ht_hash[h]; 1464 ASSERT(ht->ht_prev == NULL); 1465 if (hat->hat_ht_hash[h]) 1466 hat->hat_ht_hash[h]->ht_prev = ht; 1467 hat->hat_ht_hash[h] = ht; 1468 HTABLE_EXIT(h); 1469 1470 /* 1471 * make sure the page table physical page is not FREE 1472 */ 1473 if (page_resv(1, KM_NOSLEEP) == 0) 1474 panic("page_resv() failed in ptable alloc"); 1475 1476 pp = boot_claim_page(pfn); 1477 ASSERT(pp != NULL); 1478 1479 /* 1480 * Page table pages that were allocated by dboot or 1481 * in very early startup didn't go through boot_mapin() 1482 * and so won't have vnode/offsets. Fix that here. 1483 */ 1484 if (pp->p_vnode == NULL) { 1485 /* match offset calculation in page_get_physical() */ 1486 u_offset_t offset = (uintptr_t)ht; 1487 if (offset > kernelbase) 1488 offset -= kernelbase; 1489 offset <<= MMU_PAGESHIFT; 1490 #if defined(__amd64) 1491 offset += mmu.hole_start; /* something in VA hole */ 1492 #else 1493 offset += 1ULL << 40; /* something > 4 Gig */ 1494 #endif 1495 ASSERT(page_exists(&kvp, offset) == NULL); 1496 (void) page_hashin(pp, &kvp, offset, NULL); 1497 } 1498 page_downgrade(pp); 1499 #if defined(__xpv) && defined(__amd64) 1500 /* 1501 * Record in the page_t that is a pagetable for segkpm setup. 1502 */ 1503 if (kpm_vbase) 1504 pp->p_index = 1; 1505 #endif 1506 1507 /* 1508 * Count valid mappings and recursively attach lower level pagetables. 1509 */ 1510 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1511 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1512 if (mmu.pae_hat) 1513 pte = ptep[i]; 1514 else 1515 pte = ((x86pte32_t *)ptep)[i]; 1516 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1517 ++ht->ht_valid_cnt; 1518 if (!PTE_ISPAGE(pte, level)) { 1519 htable_attach(hat, base, level - 1, 1520 ht, PTE2PFN(pte, level)); 1521 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1522 } 1523 } 1524 base += LEVEL_SIZE(level); 1525 if (base == mmu.hole_start) 1526 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1527 } 1528 1529 /* 1530 * As long as all the mappings we had were below kernel base 1531 * we can release the htable. 1532 */ 1533 if (base < kernelbase) 1534 htable_release(ht); 1535 } 1536 1537 /* 1538 * Walk through a given htable looking for the first valid entry. This 1539 * routine takes both a starting and ending address. The starting address 1540 * is required to be within the htable provided by the caller, but there is 1541 * no such restriction on the ending address. 1542 * 1543 * If the routine finds a valid entry in the htable (at or beyond the 1544 * starting address), the PTE (and its address) will be returned. 1545 * This PTE may correspond to either a page or a pagetable - it is the 1546 * caller's responsibility to determine which. If no valid entry is 1547 * found, 0 (and invalid PTE) and the next unexamined address will be 1548 * returned. 1549 * 1550 * The loop has been carefully coded for optimization. 1551 */ 1552 static x86pte_t 1553 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1554 { 1555 uint_t e; 1556 x86pte_t found_pte = (x86pte_t)0; 1557 caddr_t pte_ptr; 1558 caddr_t end_pte_ptr; 1559 int l = ht->ht_level; 1560 uintptr_t va = *vap & LEVEL_MASK(l); 1561 size_t pgsize = LEVEL_SIZE(l); 1562 1563 ASSERT(va >= ht->ht_vaddr); 1564 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1565 1566 /* 1567 * Compute the starting index and ending virtual address 1568 */ 1569 e = htable_va2entry(va, ht); 1570 1571 /* 1572 * The following page table scan code knows that the valid 1573 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1574 */ 1575 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1576 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1577 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1578 while (!PTE_ISVALID(*pte_ptr)) { 1579 va += pgsize; 1580 if (va >= eaddr) 1581 break; 1582 pte_ptr += mmu.pte_size; 1583 ASSERT(pte_ptr <= end_pte_ptr); 1584 if (pte_ptr == end_pte_ptr) 1585 break; 1586 } 1587 1588 /* 1589 * if we found a valid PTE, load the entire PTE 1590 */ 1591 if (va < eaddr && pte_ptr != end_pte_ptr) 1592 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1593 x86pte_release_pagetable(ht); 1594 1595 #if defined(__amd64) 1596 /* 1597 * deal with VA hole on amd64 1598 */ 1599 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1600 va = mmu.hole_end + va - mmu.hole_start; 1601 #endif /* __amd64 */ 1602 1603 *vap = va; 1604 return (found_pte); 1605 } 1606 1607 /* 1608 * Find the address and htable for the first populated translation at or 1609 * above the given virtual address. The caller may also specify an upper 1610 * limit to the address range to search. Uses level information to quickly 1611 * skip unpopulated sections of virtual address spaces. 1612 * 1613 * If not found returns NULL. When found, returns the htable and virt addr 1614 * and has a hold on the htable. 1615 */ 1616 x86pte_t 1617 htable_walk( 1618 struct hat *hat, 1619 htable_t **htp, 1620 uintptr_t *vaddr, 1621 uintptr_t eaddr) 1622 { 1623 uintptr_t va = *vaddr; 1624 htable_t *ht; 1625 htable_t *prev = *htp; 1626 level_t l; 1627 level_t max_mapped_level; 1628 x86pte_t pte; 1629 1630 ASSERT(eaddr > va); 1631 1632 /* 1633 * If this is a user address, then we know we need not look beyond 1634 * kernelbase. 1635 */ 1636 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1637 eaddr == HTABLE_WALK_TO_END); 1638 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1639 eaddr = kernelbase; 1640 1641 /* 1642 * If we're coming in with a previous page table, search it first 1643 * without doing an htable_lookup(), this should be frequent. 1644 */ 1645 if (prev) { 1646 ASSERT(prev->ht_busy > 0); 1647 ASSERT(prev->ht_vaddr <= va); 1648 l = prev->ht_level; 1649 if (va <= HTABLE_LAST_PAGE(prev)) { 1650 pte = htable_scan(prev, &va, eaddr); 1651 1652 if (PTE_ISPAGE(pte, l)) { 1653 *vaddr = va; 1654 *htp = prev; 1655 return (pte); 1656 } 1657 } 1658 1659 /* 1660 * We found nothing in the htable provided by the caller, 1661 * so fall through and do the full search 1662 */ 1663 htable_release(prev); 1664 } 1665 1666 /* 1667 * Find the level of the largest pagesize used by this HAT. 1668 */ 1669 if (hat->hat_ism_pgcnt > 0) { 1670 max_mapped_level = mmu.umax_page_level; 1671 } else { 1672 max_mapped_level = 0; 1673 for (l = 1; l <= mmu.max_page_level; ++l) 1674 if (hat->hat_pages_mapped[l] != 0) 1675 max_mapped_level = l; 1676 } 1677 1678 while (va < eaddr && va >= *vaddr) { 1679 ASSERT(!IN_VA_HOLE(va)); 1680 1681 /* 1682 * Find lowest table with any entry for given address. 1683 */ 1684 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1685 ht = htable_lookup(hat, va, l); 1686 if (ht != NULL) { 1687 pte = htable_scan(ht, &va, eaddr); 1688 if (PTE_ISPAGE(pte, l)) { 1689 *vaddr = va; 1690 *htp = ht; 1691 return (pte); 1692 } 1693 htable_release(ht); 1694 break; 1695 } 1696 1697 /* 1698 * No htable at this level for the address. If there 1699 * is no larger page size that could cover it, we can 1700 * skip right to the start of the next page table. 1701 */ 1702 ASSERT(l < TOP_LEVEL(hat)); 1703 if (l >= max_mapped_level) { 1704 va = NEXT_ENTRY_VA(va, l + 1); 1705 if (va >= eaddr) 1706 break; 1707 } 1708 } 1709 } 1710 1711 *vaddr = 0; 1712 *htp = NULL; 1713 return (0); 1714 } 1715 1716 /* 1717 * Find the htable and page table entry index of the given virtual address 1718 * with pagesize at or below given level. 1719 * If not found returns NULL. When found, returns the htable, sets 1720 * entry, and has a hold on the htable. 1721 */ 1722 htable_t * 1723 htable_getpte( 1724 struct hat *hat, 1725 uintptr_t vaddr, 1726 uint_t *entry, 1727 x86pte_t *pte, 1728 level_t level) 1729 { 1730 htable_t *ht; 1731 level_t l; 1732 uint_t e; 1733 1734 ASSERT(level <= mmu.max_page_level); 1735 1736 for (l = 0; l <= level; ++l) { 1737 ht = htable_lookup(hat, vaddr, l); 1738 if (ht == NULL) 1739 continue; 1740 e = htable_va2entry(vaddr, ht); 1741 if (entry != NULL) 1742 *entry = e; 1743 if (pte != NULL) 1744 *pte = x86pte_get(ht, e); 1745 return (ht); 1746 } 1747 return (NULL); 1748 } 1749 1750 /* 1751 * Find the htable and page table entry index of the given virtual address. 1752 * There must be a valid page mapped at the given address. 1753 * If not found returns NULL. When found, returns the htable, sets 1754 * entry, and has a hold on the htable. 1755 */ 1756 htable_t * 1757 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1758 { 1759 htable_t *ht; 1760 uint_t e; 1761 x86pte_t pte; 1762 1763 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1764 if (ht == NULL) 1765 return (NULL); 1766 1767 if (entry) 1768 *entry = e; 1769 1770 if (PTE_ISPAGE(pte, ht->ht_level)) 1771 return (ht); 1772 htable_release(ht); 1773 return (NULL); 1774 } 1775 1776 1777 void 1778 htable_init() 1779 { 1780 /* 1781 * To save on kernel VA usage, we avoid debug information in 32 bit 1782 * kernels. 1783 */ 1784 #if defined(__amd64) 1785 int kmem_flags = KMC_NOHASH; 1786 #elif defined(__i386) 1787 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1788 #endif 1789 1790 /* 1791 * initialize kmem caches 1792 */ 1793 htable_cache = kmem_cache_create("htable_t", 1794 sizeof (htable_t), 0, NULL, NULL, 1795 htable_reap, NULL, hat_memload_arena, kmem_flags); 1796 } 1797 1798 /* 1799 * get the pte index for the virtual address in the given htable's pagetable 1800 */ 1801 uint_t 1802 htable_va2entry(uintptr_t va, htable_t *ht) 1803 { 1804 level_t l = ht->ht_level; 1805 1806 ASSERT(va >= ht->ht_vaddr); 1807 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1808 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1809 } 1810 1811 /* 1812 * Given an htable and the index of a pte in it, return the virtual address 1813 * of the page. 1814 */ 1815 uintptr_t 1816 htable_e2va(htable_t *ht, uint_t entry) 1817 { 1818 level_t l = ht->ht_level; 1819 uintptr_t va; 1820 1821 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1822 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1823 1824 /* 1825 * Need to skip over any VA hole in top level table 1826 */ 1827 #if defined(__amd64) 1828 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1829 va += ((mmu.hole_end - mmu.hole_start) + 1); 1830 #endif 1831 1832 return (va); 1833 } 1834 1835 /* 1836 * The code uses compare and swap instructions to read/write PTE's to 1837 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1838 * will naturally be atomic. 1839 * 1840 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1841 * are used to ensure that an interrupt won't overwrite a temporary mapping 1842 * while it's in use. If an interrupt thread tries to access a PTE, it will 1843 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1844 */ 1845 void 1846 x86pte_cpu_init(cpu_t *cpu) 1847 { 1848 struct hat_cpu_info *hci; 1849 1850 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1851 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1852 cpu->cpu_hat_info = hci; 1853 } 1854 1855 void 1856 x86pte_cpu_fini(cpu_t *cpu) 1857 { 1858 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1859 1860 kmem_free(hci, sizeof (*hci)); 1861 cpu->cpu_hat_info = NULL; 1862 } 1863 1864 #ifdef __i386 1865 /* 1866 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1867 */ 1868 x86pte_t 1869 get_pte64(x86pte_t *ptr) 1870 { 1871 volatile uint32_t *p = (uint32_t *)ptr; 1872 x86pte_t t; 1873 1874 ASSERT(mmu.pae_hat != 0); 1875 for (;;) { 1876 t = p[0]; 1877 t |= (uint64_t)p[1] << 32; 1878 if ((t & 0xffffffff) == p[0]) 1879 return (t); 1880 } 1881 } 1882 #endif /* __i386 */ 1883 1884 /* 1885 * Disable preemption and establish a mapping to the pagetable with the 1886 * given pfn. This is optimized for there case where it's the same 1887 * pfn as we last used referenced from this CPU. 1888 */ 1889 static x86pte_t * 1890 x86pte_access_pagetable(htable_t *ht, uint_t index) 1891 { 1892 /* 1893 * VLP pagetables are contained in the hat_t 1894 */ 1895 if (ht->ht_flags & HTABLE_VLP) 1896 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1897 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1898 } 1899 1900 /* 1901 * map the given pfn into the page table window. 1902 */ 1903 /*ARGSUSED*/ 1904 x86pte_t * 1905 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1906 { 1907 x86pte_t *pteptr; 1908 x86pte_t pte = 0; 1909 x86pte_t newpte; 1910 int x; 1911 1912 ASSERT(pfn != PFN_INVALID); 1913 1914 if (!khat_running) { 1915 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1916 return (PT_INDEX_PTR(va, index)); 1917 } 1918 1919 /* 1920 * If kpm is available, use it. 1921 */ 1922 if (kpm_vbase) 1923 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1924 1925 /* 1926 * Disable preemption and grab the CPU's hci_mutex 1927 */ 1928 kpreempt_disable(); 1929 ASSERT(CPU->cpu_hat_info != NULL); 1930 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1931 x = PWIN_TABLE(CPU->cpu_id); 1932 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1933 #ifndef __xpv 1934 if (mmu.pae_hat) 1935 pte = *pteptr; 1936 else 1937 pte = *(x86pte32_t *)pteptr; 1938 #endif 1939 1940 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1941 1942 /* 1943 * For hardware we can use a writable mapping. 1944 */ 1945 #ifdef __xpv 1946 if (IN_XPV_PANIC()) 1947 #endif 1948 newpte |= PT_WRITABLE; 1949 1950 if (!PTE_EQUIV(newpte, pte)) { 1951 1952 #ifdef __xpv 1953 if (!IN_XPV_PANIC()) { 1954 xen_map(newpte, PWIN_VA(x)); 1955 } else 1956 #endif 1957 { 1958 XPV_ALLOW_PAGETABLE_UPDATES(); 1959 if (mmu.pae_hat) 1960 *pteptr = newpte; 1961 else 1962 *(x86pte32_t *)pteptr = newpte; 1963 XPV_DISALLOW_PAGETABLE_UPDATES(); 1964 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1965 } 1966 } 1967 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1968 } 1969 1970 /* 1971 * Release access to a page table. 1972 */ 1973 static void 1974 x86pte_release_pagetable(htable_t *ht) 1975 { 1976 /* 1977 * nothing to do for VLP htables 1978 */ 1979 if (ht->ht_flags & HTABLE_VLP) 1980 return; 1981 1982 x86pte_mapout(); 1983 } 1984 1985 void 1986 x86pte_mapout(void) 1987 { 1988 if (kpm_vbase != NULL || !khat_running) 1989 return; 1990 1991 /* 1992 * Drop the CPU's hci_mutex and restore preemption. 1993 */ 1994 #ifdef __xpv 1995 if (!IN_XPV_PANIC()) { 1996 uintptr_t va; 1997 1998 /* 1999 * We need to always clear the mapping in case a page 2000 * that was once a page table page is ballooned out. 2001 */ 2002 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 2003 (void) HYPERVISOR_update_va_mapping(va, 0, 2004 UVMF_INVLPG | UVMF_LOCAL); 2005 } 2006 #endif 2007 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2008 kpreempt_enable(); 2009 } 2010 2011 /* 2012 * Atomic retrieval of a pagetable entry 2013 */ 2014 x86pte_t 2015 x86pte_get(htable_t *ht, uint_t entry) 2016 { 2017 x86pte_t pte; 2018 x86pte_t *ptep; 2019 2020 /* 2021 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2022 */ 2023 ASSERT(entry < mmu.ptes_per_table); 2024 ptep = x86pte_access_pagetable(ht, entry); 2025 pte = GET_PTE(ptep); 2026 x86pte_release_pagetable(ht); 2027 return (pte); 2028 } 2029 2030 /* 2031 * Atomic unconditional set of a page table entry, it returns the previous 2032 * value. For pre-existing mappings if the PFN changes, then we don't care 2033 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2034 * the MOD/REF bits unchanged. 2035 * 2036 * If asked to overwrite a link to a lower page table with a large page 2037 * mapping, this routine returns the special value of LPAGE_ERROR. This 2038 * allows the upper HAT layers to retry with a smaller mapping size. 2039 */ 2040 x86pte_t 2041 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2042 { 2043 x86pte_t old; 2044 x86pte_t prev; 2045 x86pte_t *ptep; 2046 level_t l = ht->ht_level; 2047 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2048 x86pte_t n; 2049 uintptr_t addr = htable_e2va(ht, entry); 2050 hat_t *hat = ht->ht_hat; 2051 2052 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2053 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2054 if (ptr == NULL) 2055 ptep = x86pte_access_pagetable(ht, entry); 2056 else 2057 ptep = ptr; 2058 2059 /* 2060 * Install the new PTE. If remapping the same PFN, then 2061 * copy existing REF/MOD bits to new mapping. 2062 */ 2063 do { 2064 prev = GET_PTE(ptep); 2065 n = new; 2066 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2067 n |= prev & (PT_REF | PT_MOD); 2068 2069 /* 2070 * Another thread may have installed this mapping already, 2071 * flush the local TLB and be done. 2072 */ 2073 if (prev == n) { 2074 old = new; 2075 #ifdef __xpv 2076 if (!IN_XPV_PANIC()) 2077 xen_flush_va((caddr_t)addr); 2078 else 2079 #endif 2080 mmu_tlbflush_entry((caddr_t)addr); 2081 goto done; 2082 } 2083 2084 /* 2085 * Detect if we have a collision of installing a large 2086 * page mapping where there already is a lower page table. 2087 */ 2088 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2089 old = LPAGE_ERROR; 2090 goto done; 2091 } 2092 2093 XPV_ALLOW_PAGETABLE_UPDATES(); 2094 old = CAS_PTE(ptep, prev, n); 2095 XPV_DISALLOW_PAGETABLE_UPDATES(); 2096 } while (old != prev); 2097 2098 /* 2099 * Do a TLB demap if needed, ie. the old pte was valid. 2100 * 2101 * Note that a stale TLB writeback to the PTE here either can't happen 2102 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2103 * mappings, but they were created with REF and MOD already set, so 2104 * no stale writeback will happen. 2105 * 2106 * Segmap is the only place where remaps happen on the same pfn and for 2107 * that we want to preserve the stale REF/MOD bits. 2108 */ 2109 if (old & PT_REF) 2110 hat_tlb_inval(hat, addr); 2111 2112 done: 2113 if (ptr == NULL) 2114 x86pte_release_pagetable(ht); 2115 return (old); 2116 } 2117 2118 /* 2119 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2120 * This is used for links between pagetables of different levels. 2121 * Note we always create these links with dirty/access set, so they should 2122 * never change. 2123 */ 2124 x86pte_t 2125 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2126 { 2127 x86pte_t pte; 2128 x86pte_t *ptep; 2129 #ifdef __xpv 2130 /* 2131 * We can't use writable pagetables for upper level tables, so fake it. 2132 */ 2133 mmu_update_t t[2]; 2134 int cnt = 1; 2135 int count; 2136 maddr_t ma; 2137 2138 if (!IN_XPV_PANIC()) { 2139 ASSERT(!(ht->ht_flags & HTABLE_VLP)); /* no VLP yet */ 2140 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2141 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2142 t[0].val = new; 2143 2144 #if defined(__amd64) 2145 /* 2146 * On the 64-bit hypervisor we need to maintain the user mode 2147 * top page table too. 2148 */ 2149 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2150 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2151 ht->ht_hat->hat_user_ptable), entry)); 2152 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2153 t[1].val = new; 2154 ++cnt; 2155 } 2156 #endif /* __amd64 */ 2157 2158 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2159 panic("HYPERVISOR_mmu_update() failed"); 2160 ASSERT(count == cnt); 2161 return (old); 2162 } 2163 #endif 2164 ptep = x86pte_access_pagetable(ht, entry); 2165 XPV_ALLOW_PAGETABLE_UPDATES(); 2166 pte = CAS_PTE(ptep, old, new); 2167 XPV_DISALLOW_PAGETABLE_UPDATES(); 2168 x86pte_release_pagetable(ht); 2169 return (pte); 2170 } 2171 2172 /* 2173 * Invalidate a page table entry as long as it currently maps something that 2174 * matches the value determined by expect. 2175 * 2176 * Also invalidates any TLB entries and returns the previous value of the PTE. 2177 */ 2178 x86pte_t 2179 x86pte_inval( 2180 htable_t *ht, 2181 uint_t entry, 2182 x86pte_t expect, 2183 x86pte_t *pte_ptr) 2184 { 2185 x86pte_t *ptep; 2186 x86pte_t oldpte; 2187 x86pte_t found; 2188 2189 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2190 ASSERT(ht->ht_level <= mmu.max_page_level); 2191 2192 if (pte_ptr != NULL) 2193 ptep = pte_ptr; 2194 else 2195 ptep = x86pte_access_pagetable(ht, entry); 2196 2197 #if defined(__xpv) 2198 /* 2199 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2200 * with anything else. 2201 */ 2202 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2203 int count; 2204 mmu_update_t t[1]; 2205 maddr_t ma; 2206 2207 oldpte = GET_PTE(ptep); 2208 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2209 goto done; 2210 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2211 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2212 t[0].val = 0; 2213 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2214 panic("HYPERVISOR_mmu_update() failed"); 2215 ASSERT(count == 1); 2216 goto done; 2217 } 2218 #endif /* __xpv */ 2219 2220 /* 2221 * Note that the loop is needed to handle changes due to h/w updating 2222 * of PT_MOD/PT_REF. 2223 */ 2224 do { 2225 oldpte = GET_PTE(ptep); 2226 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2227 goto done; 2228 XPV_ALLOW_PAGETABLE_UPDATES(); 2229 found = CAS_PTE(ptep, oldpte, 0); 2230 XPV_DISALLOW_PAGETABLE_UPDATES(); 2231 } while (found != oldpte); 2232 if (oldpte & (PT_REF | PT_MOD)) 2233 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2234 2235 done: 2236 if (pte_ptr == NULL) 2237 x86pte_release_pagetable(ht); 2238 return (oldpte); 2239 } 2240 2241 /* 2242 * Change a page table entry af it currently matches the value in expect. 2243 */ 2244 x86pte_t 2245 x86pte_update( 2246 htable_t *ht, 2247 uint_t entry, 2248 x86pte_t expect, 2249 x86pte_t new) 2250 { 2251 x86pte_t *ptep; 2252 x86pte_t found; 2253 2254 ASSERT(new != 0); 2255 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2256 ASSERT(ht->ht_level <= mmu.max_page_level); 2257 2258 ptep = x86pte_access_pagetable(ht, entry); 2259 XPV_ALLOW_PAGETABLE_UPDATES(); 2260 found = CAS_PTE(ptep, expect, new); 2261 XPV_DISALLOW_PAGETABLE_UPDATES(); 2262 if (found == expect) { 2263 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2264 2265 /* 2266 * When removing write permission *and* clearing the 2267 * MOD bit, check if a write happened via a stale 2268 * TLB entry before the TLB shootdown finished. 2269 * 2270 * If it did happen, simply re-enable write permission and 2271 * act like the original CAS failed. 2272 */ 2273 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2274 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2275 (GET_PTE(ptep) & PT_MOD) != 0) { 2276 do { 2277 found = GET_PTE(ptep); 2278 XPV_ALLOW_PAGETABLE_UPDATES(); 2279 found = 2280 CAS_PTE(ptep, found, found | PT_WRITABLE); 2281 XPV_DISALLOW_PAGETABLE_UPDATES(); 2282 } while ((found & PT_WRITABLE) == 0); 2283 } 2284 } 2285 x86pte_release_pagetable(ht); 2286 return (found); 2287 } 2288 2289 #ifndef __xpv 2290 /* 2291 * Copy page tables - this is just a little more complicated than the 2292 * previous routines. Note that it's also not atomic! It also is never 2293 * used for VLP pagetables. 2294 */ 2295 void 2296 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2297 { 2298 caddr_t src_va; 2299 caddr_t dst_va; 2300 size_t size; 2301 x86pte_t *pteptr; 2302 x86pte_t pte; 2303 2304 ASSERT(khat_running); 2305 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2306 ASSERT(!(src->ht_flags & HTABLE_VLP)); 2307 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2308 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2309 2310 /* 2311 * Acquire access to the CPU pagetable windows for the dest and source. 2312 */ 2313 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2314 if (kpm_vbase) { 2315 src_va = (caddr_t) 2316 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2317 } else { 2318 uint_t x = PWIN_SRC(CPU->cpu_id); 2319 2320 /* 2321 * Finish defining the src pagetable mapping 2322 */ 2323 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2324 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2325 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2326 if (mmu.pae_hat) 2327 *pteptr = pte; 2328 else 2329 *(x86pte32_t *)pteptr = pte; 2330 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2331 } 2332 2333 /* 2334 * now do the copy 2335 */ 2336 size = count << mmu.pte_size_shift; 2337 bcopy(src_va, dst_va, size); 2338 2339 x86pte_release_pagetable(dest); 2340 } 2341 2342 #else /* __xpv */ 2343 2344 /* 2345 * The hypervisor only supports writable pagetables at level 0, so we have 2346 * to install these 1 by 1 the slow way. 2347 */ 2348 void 2349 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2350 { 2351 caddr_t src_va; 2352 x86pte_t pte; 2353 2354 ASSERT(!IN_XPV_PANIC()); 2355 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2356 while (count) { 2357 if (mmu.pae_hat) 2358 pte = *(x86pte_t *)src_va; 2359 else 2360 pte = *(x86pte32_t *)src_va; 2361 if (pte != 0) { 2362 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2363 dest->ht_level, pte); 2364 #ifdef __amd64 2365 if (dest->ht_level == mmu.max_level && 2366 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2367 set_pteval( 2368 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2369 entry, dest->ht_level, pte); 2370 #endif 2371 } 2372 --count; 2373 ++entry; 2374 src_va += mmu.pte_size; 2375 } 2376 x86pte_release_pagetable(src); 2377 } 2378 #endif /* __xpv */ 2379 2380 /* 2381 * Zero page table entries - Note this doesn't use atomic stores! 2382 */ 2383 static void 2384 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2385 { 2386 caddr_t dst_va; 2387 size_t size; 2388 #ifdef __xpv 2389 int x; 2390 x86pte_t newpte; 2391 #endif 2392 2393 /* 2394 * Map in the page table to be zeroed. 2395 */ 2396 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2397 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2398 2399 /* 2400 * On the hypervisor we don't use x86pte_access_pagetable() since 2401 * in this case the page is not pinned yet. 2402 */ 2403 #ifdef __xpv 2404 if (kpm_vbase == NULL) { 2405 kpreempt_disable(); 2406 ASSERT(CPU->cpu_hat_info != NULL); 2407 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2408 x = PWIN_TABLE(CPU->cpu_id); 2409 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2410 xen_map(newpte, PWIN_VA(x)); 2411 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2412 } else 2413 #endif 2414 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2415 2416 size = count << mmu.pte_size_shift; 2417 ASSERT(size > BLOCKZEROALIGN); 2418 #ifdef __i386 2419 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 2420 bzero(dst_va, size); 2421 else 2422 #endif 2423 block_zero_no_xmm(dst_va, size); 2424 2425 #ifdef __xpv 2426 if (kpm_vbase == NULL) { 2427 xen_map(0, PWIN_VA(x)); 2428 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2429 kpreempt_enable(); 2430 } else 2431 #endif 2432 x86pte_release_pagetable(dest); 2433 } 2434 2435 /* 2436 * Called to ensure that all pagetables are in the system dump 2437 */ 2438 void 2439 hat_dump(void) 2440 { 2441 hat_t *hat; 2442 uint_t h; 2443 htable_t *ht; 2444 2445 /* 2446 * Dump all page tables 2447 */ 2448 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2449 for (h = 0; h < hat->hat_num_hash; ++h) { 2450 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2451 if ((ht->ht_flags & HTABLE_VLP) == 0) 2452 dump_page(ht->ht_pfn); 2453 } 2454 } 2455 } 2456 } 2457