1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/atomic.h> 33 #include <sys/bitmap.h> 34 #include <sys/machparam.h> 35 #include <sys/machsystm.h> 36 #include <sys/mman.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/thread.h> 40 #include <sys/proc.h> 41 #include <sys/cpu.h> 42 #include <sys/kmem.h> 43 #include <sys/disp.h> 44 #include <sys/vmem.h> 45 #include <sys/vmsystm.h> 46 #include <sys/promif.h> 47 #include <sys/var.h> 48 #include <sys/x86_archext.h> 49 #include <sys/archsystm.h> 50 #include <sys/bootconf.h> 51 #include <sys/dumphdr.h> 52 #include <vm/seg_kmem.h> 53 #include <vm/seg_kpm.h> 54 #include <vm/hat.h> 55 #include <vm/hat_i86.h> 56 #include <sys/cmn_err.h> 57 58 #include <sys/bootinfo.h> 59 #include <vm/kboot_mmu.h> 60 61 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 62 63 kmem_cache_t *htable_cache; 64 65 /* 66 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 67 * is used in order to facilitate testing of the htable_steal() code. 68 * By resetting htable_reserve_amount to a lower value, we can force 69 * stealing to occur. The reserve amount is a guess to get us through boot. 70 */ 71 #define HTABLE_RESERVE_AMOUNT (200) 72 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 73 kmutex_t htable_reserve_mutex; 74 uint_t htable_reserve_cnt; 75 htable_t *htable_reserve_pool; 76 77 /* 78 * Used to hand test htable_steal(). 79 */ 80 #ifdef DEBUG 81 ulong_t force_steal = 0; 82 ulong_t ptable_cnt = 0; 83 #endif 84 85 /* 86 * This variable is so that we can tune this via /etc/system 87 * Any value works, but a power of two <= mmu.ptes_per_table is best. 88 */ 89 uint_t htable_steal_passes = 8; 90 91 /* 92 * mutex stuff for access to htable hash 93 */ 94 #define NUM_HTABLE_MUTEX 128 95 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 96 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 97 98 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 99 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 100 101 /* 102 * forward declarations 103 */ 104 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 105 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 106 static void htable_free(htable_t *ht); 107 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 108 static void x86pte_release_pagetable(htable_t *ht); 109 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 110 x86pte_t new); 111 112 /* 113 * A counter to track if we are stealing or reaping htables. When non-zero 114 * htable_free() will directly free htables (either to the reserve or kmem) 115 * instead of putting them in a hat's htable cache. 116 */ 117 uint32_t htable_dont_cache = 0; 118 119 /* 120 * Track the number of active pagetables, so we can know how many to reap 121 */ 122 static uint32_t active_ptables = 0; 123 124 /* 125 * Allocate a memory page for a hardware page table. 126 * 127 * A wrapper around page_get_physical(), with some extra checks. 128 */ 129 static pfn_t 130 ptable_alloc(uintptr_t seed) 131 { 132 pfn_t pfn; 133 page_t *pp; 134 135 pfn = PFN_INVALID; 136 atomic_add_32(&active_ptables, 1); 137 138 /* 139 * The first check is to see if there is memory in the system. If we 140 * drop to throttlefree, then fail the ptable_alloc() and let the 141 * stealing code kick in. Note that we have to do this test here, 142 * since the test in page_create_throttle() would let the NOSLEEP 143 * allocation go through and deplete the page reserves. 144 * 145 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 146 */ 147 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 148 return (PFN_INVALID); 149 150 #ifdef DEBUG 151 /* 152 * This code makes htable_steal() easier to test. By setting 153 * force_steal we force pagetable allocations to fall 154 * into the stealing code. Roughly 1 in ever "force_steal" 155 * page table allocations will fail. 156 */ 157 if (proc_pageout != NULL && force_steal > 1 && 158 ++ptable_cnt > force_steal) { 159 ptable_cnt = 0; 160 return (PFN_INVALID); 161 } 162 #endif /* DEBUG */ 163 164 pp = page_get_physical(seed); 165 if (pp == NULL) 166 return (PFN_INVALID); 167 pfn = pp->p_pagenum; 168 page_downgrade(pp); 169 ASSERT(PAGE_SHARED(pp)); 170 171 if (pfn == PFN_INVALID) 172 panic("ptable_alloc(): Invalid PFN!!"); 173 HATSTAT_INC(hs_ptable_allocs); 174 return (pfn); 175 } 176 177 /* 178 * Free an htable's associated page table page. See the comments 179 * for ptable_alloc(). 180 */ 181 static void 182 ptable_free(pfn_t pfn) 183 { 184 page_t *pp = page_numtopp_nolock(pfn); 185 186 /* 187 * need to destroy the page used for the pagetable 188 */ 189 ASSERT(pfn != PFN_INVALID); 190 HATSTAT_INC(hs_ptable_frees); 191 atomic_add_32(&active_ptables, -1); 192 if (pp == NULL) 193 panic("ptable_free(): no page for pfn!"); 194 ASSERT(PAGE_SHARED(pp)); 195 ASSERT(pfn == pp->p_pagenum); 196 197 /* 198 * Get an exclusive lock, might have to wait for a kmem reader. 199 */ 200 if (!page_tryupgrade(pp)) { 201 page_unlock(pp); 202 /* 203 * RFE: we could change this to not loop forever 204 * George Cameron had some idea on how to do that. 205 * For now looping works - it's just like sfmmu. 206 */ 207 while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM)) 208 continue; 209 } 210 page_free(pp, 1); 211 page_unresv(1); 212 } 213 214 /* 215 * Put one htable on the reserve list. 216 */ 217 static void 218 htable_put_reserve(htable_t *ht) 219 { 220 ht->ht_hat = NULL; /* no longer tied to a hat */ 221 ASSERT(ht->ht_pfn == PFN_INVALID); 222 HATSTAT_INC(hs_htable_rputs); 223 mutex_enter(&htable_reserve_mutex); 224 ht->ht_next = htable_reserve_pool; 225 htable_reserve_pool = ht; 226 ++htable_reserve_cnt; 227 mutex_exit(&htable_reserve_mutex); 228 } 229 230 /* 231 * Take one htable from the reserve. 232 */ 233 static htable_t * 234 htable_get_reserve(void) 235 { 236 htable_t *ht = NULL; 237 238 mutex_enter(&htable_reserve_mutex); 239 if (htable_reserve_cnt != 0) { 240 ht = htable_reserve_pool; 241 ASSERT(ht != NULL); 242 ASSERT(ht->ht_pfn == PFN_INVALID); 243 htable_reserve_pool = ht->ht_next; 244 --htable_reserve_cnt; 245 HATSTAT_INC(hs_htable_rgets); 246 } 247 mutex_exit(&htable_reserve_mutex); 248 return (ht); 249 } 250 251 /* 252 * Allocate initial htables and put them on the reserve list 253 */ 254 void 255 htable_initial_reserve(uint_t count) 256 { 257 htable_t *ht; 258 259 count += HTABLE_RESERVE_AMOUNT; 260 while (count > 0) { 261 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 262 ASSERT(ht != NULL); 263 264 ASSERT(use_boot_reserve); 265 ht->ht_pfn = PFN_INVALID; 266 htable_put_reserve(ht); 267 --count; 268 } 269 } 270 271 /* 272 * Readjust the reserves after a thread finishes using them. 273 */ 274 void 275 htable_adjust_reserve() 276 { 277 htable_t *ht; 278 279 /* 280 * Free any excess htables in the reserve list 281 */ 282 while (htable_reserve_cnt > htable_reserve_amount && 283 !USE_HAT_RESERVES()) { 284 ht = htable_get_reserve(); 285 if (ht == NULL) 286 return; 287 ASSERT(ht->ht_pfn == PFN_INVALID); 288 kmem_cache_free(htable_cache, ht); 289 } 290 } 291 292 293 /* 294 * This routine steals htables from user processes for htable_alloc() or 295 * for htable_reap(). 296 */ 297 static htable_t * 298 htable_steal(uint_t cnt) 299 { 300 hat_t *hat = kas.a_hat; /* list starts with khat */ 301 htable_t *list = NULL; 302 htable_t *ht; 303 htable_t *higher; 304 uint_t h; 305 uint_t h_start; 306 static uint_t h_seed = 0; 307 uint_t e; 308 uintptr_t va; 309 x86pte_t pte; 310 uint_t stolen = 0; 311 uint_t pass; 312 uint_t threshold; 313 314 /* 315 * Limit htable_steal_passes to something reasonable 316 */ 317 if (htable_steal_passes == 0) 318 htable_steal_passes = 1; 319 if (htable_steal_passes > mmu.ptes_per_table) 320 htable_steal_passes = mmu.ptes_per_table; 321 322 /* 323 * Loop through all user hats. The 1st pass takes cached htables that 324 * aren't in use. The later passes steal by removing mappings, too. 325 */ 326 atomic_add_32(&htable_dont_cache, 1); 327 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 328 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 329 hat = kas.a_hat; 330 for (;;) { 331 332 /* 333 * Clear the victim flag and move to next hat 334 */ 335 mutex_enter(&hat_list_lock); 336 if (hat != kas.a_hat) { 337 hat->hat_flags &= ~HAT_VICTIM; 338 cv_broadcast(&hat_list_cv); 339 } 340 hat = hat->hat_next; 341 342 /* 343 * Skip any hat that is already being stolen from. 344 * 345 * We skip SHARED hats, as these are dummy 346 * hats that host ISM shared page tables. 347 * 348 * We also skip if HAT_FREEING because hat_pte_unmap() 349 * won't zero out the PTE's. That would lead to hitting 350 * stale PTEs either here or under hat_unload() when we 351 * steal and unload the same page table in competing 352 * threads. 353 */ 354 while (hat != NULL && 355 (hat->hat_flags & 356 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 357 hat = hat->hat_next; 358 359 if (hat == NULL) { 360 mutex_exit(&hat_list_lock); 361 break; 362 } 363 364 /* 365 * Are we finished? 366 */ 367 if (stolen == cnt) { 368 /* 369 * Try to spread the pain of stealing, 370 * move victim HAT to the end of the HAT list. 371 */ 372 if (pass >= 1 && cnt == 1 && 373 kas.a_hat->hat_prev != hat) { 374 375 /* unlink victim hat */ 376 if (hat->hat_prev) 377 hat->hat_prev->hat_next = 378 hat->hat_next; 379 else 380 kas.a_hat->hat_next = 381 hat->hat_next; 382 if (hat->hat_next) 383 hat->hat_next->hat_prev = 384 hat->hat_prev; 385 else 386 kas.a_hat->hat_prev = 387 hat->hat_prev; 388 389 390 /* relink at end of hat list */ 391 hat->hat_next = NULL; 392 hat->hat_prev = kas.a_hat->hat_prev; 393 if (hat->hat_prev) 394 hat->hat_prev->hat_next = hat; 395 else 396 kas.a_hat->hat_next = hat; 397 kas.a_hat->hat_prev = hat; 398 399 } 400 401 mutex_exit(&hat_list_lock); 402 break; 403 } 404 405 /* 406 * Mark the HAT as a stealing victim. 407 */ 408 hat->hat_flags |= HAT_VICTIM; 409 mutex_exit(&hat_list_lock); 410 411 /* 412 * Take any htables from the hat's cached "free" list. 413 */ 414 hat_enter(hat); 415 while ((ht = hat->hat_ht_cached) != NULL && 416 stolen < cnt) { 417 hat->hat_ht_cached = ht->ht_next; 418 ht->ht_next = list; 419 list = ht; 420 ++stolen; 421 } 422 hat_exit(hat); 423 424 /* 425 * Don't steal on first pass. 426 */ 427 if (pass == 0 || stolen == cnt) 428 continue; 429 430 /* 431 * Search the active htables for one to steal. 432 * Start at a different hash bucket every time to 433 * help spread the pain of stealing. 434 */ 435 h = h_start = h_seed++ % hat->hat_num_hash; 436 do { 437 higher = NULL; 438 HTABLE_ENTER(h); 439 for (ht = hat->hat_ht_hash[h]; ht; 440 ht = ht->ht_next) { 441 442 /* 443 * Can we rule out reaping? 444 */ 445 if (ht->ht_busy != 0 || 446 (ht->ht_flags & HTABLE_SHARED_PFN)|| 447 ht->ht_level > 0 || 448 ht->ht_valid_cnt > threshold || 449 ht->ht_lock_cnt != 0) 450 continue; 451 452 /* 453 * Increment busy so the htable can't 454 * disappear. We drop the htable mutex 455 * to avoid deadlocks with 456 * hat_pageunload() and the hment mutex 457 * while we call hat_pte_unmap() 458 */ 459 ++ht->ht_busy; 460 HTABLE_EXIT(h); 461 462 /* 463 * Try stealing. 464 * - unload and invalidate all PTEs 465 */ 466 for (e = 0, va = ht->ht_vaddr; 467 e < HTABLE_NUM_PTES(ht) && 468 ht->ht_valid_cnt > 0 && 469 ht->ht_busy == 1 && 470 ht->ht_lock_cnt == 0; 471 ++e, va += MMU_PAGESIZE) { 472 pte = x86pte_get(ht, e); 473 if (!PTE_ISVALID(pte)) 474 continue; 475 hat_pte_unmap(ht, e, 476 HAT_UNLOAD, pte, NULL); 477 } 478 479 /* 480 * Reacquire htable lock. If we didn't 481 * remove all mappings in the table, 482 * or another thread added a new mapping 483 * behind us, give up on this table. 484 */ 485 HTABLE_ENTER(h); 486 if (ht->ht_busy != 1 || 487 ht->ht_valid_cnt != 0 || 488 ht->ht_lock_cnt != 0) { 489 --ht->ht_busy; 490 continue; 491 } 492 493 /* 494 * Steal it and unlink the page table. 495 */ 496 higher = ht->ht_parent; 497 unlink_ptp(higher, ht, ht->ht_vaddr); 498 499 /* 500 * remove from the hash list 501 */ 502 if (ht->ht_next) 503 ht->ht_next->ht_prev = 504 ht->ht_prev; 505 506 if (ht->ht_prev) { 507 ht->ht_prev->ht_next = 508 ht->ht_next; 509 } else { 510 ASSERT(hat->hat_ht_hash[h] == 511 ht); 512 hat->hat_ht_hash[h] = 513 ht->ht_next; 514 } 515 516 /* 517 * Break to outer loop to release the 518 * higher (ht_parent) pagetable. This 519 * spreads out the pain caused by 520 * pagefaults. 521 */ 522 ht->ht_next = list; 523 list = ht; 524 ++stolen; 525 break; 526 } 527 HTABLE_EXIT(h); 528 if (higher != NULL) 529 htable_release(higher); 530 if (++h == hat->hat_num_hash) 531 h = 0; 532 } while (stolen < cnt && h != h_start); 533 } 534 } 535 atomic_add_32(&htable_dont_cache, -1); 536 return (list); 537 } 538 539 540 /* 541 * This is invoked from kmem when the system is low on memory. We try 542 * to free hments, htables, and ptables to improve the memory situation. 543 */ 544 /*ARGSUSED*/ 545 static void 546 htable_reap(void *handle) 547 { 548 uint_t reap_cnt; 549 htable_t *list; 550 htable_t *ht; 551 552 HATSTAT_INC(hs_reap_attempts); 553 if (!can_steal_post_boot) 554 return; 555 556 /* 557 * Try to reap 5% of the page tables bounded by a maximum of 558 * 5% of physmem and a minimum of 10. 559 */ 560 reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10); 561 562 /* 563 * Let htable_steal() do the work, we just call htable_free() 564 */ 565 list = htable_steal(reap_cnt); 566 while ((ht = list) != NULL) { 567 list = ht->ht_next; 568 HATSTAT_INC(hs_reaped); 569 htable_free(ht); 570 } 571 572 /* 573 * Free up excess reserves 574 */ 575 htable_adjust_reserve(); 576 hment_adjust_reserve(); 577 } 578 579 /* 580 * Allocate an htable, stealing one or using the reserve if necessary 581 */ 582 static htable_t * 583 htable_alloc( 584 hat_t *hat, 585 uintptr_t vaddr, 586 level_t level, 587 htable_t *shared) 588 { 589 htable_t *ht = NULL; 590 uint_t is_vlp; 591 uint_t is_bare = 0; 592 uint_t need_to_zero = 1; 593 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 594 595 if (level < 0 || level > TOP_LEVEL(hat)) 596 panic("htable_alloc(): level %d out of range\n", level); 597 598 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 599 if (is_vlp || shared != NULL) 600 is_bare = 1; 601 602 /* 603 * First reuse a cached htable from the hat_ht_cached field, this 604 * avoids unnecessary trips through kmem/page allocators. 605 */ 606 if (hat->hat_ht_cached != NULL && !is_bare) { 607 hat_enter(hat); 608 ht = hat->hat_ht_cached; 609 if (ht != NULL) { 610 hat->hat_ht_cached = ht->ht_next; 611 need_to_zero = 0; 612 /* XX64 ASSERT() they're all zero somehow */ 613 ASSERT(ht->ht_pfn != PFN_INVALID); 614 } 615 hat_exit(hat); 616 } 617 618 if (ht == NULL) { 619 /* 620 * Allocate an htable, possibly refilling the reserves. 621 */ 622 if (USE_HAT_RESERVES()) { 623 ht = htable_get_reserve(); 624 } else { 625 /* 626 * Donate successful htable allocations to the reserve. 627 */ 628 for (;;) { 629 ht = kmem_cache_alloc(htable_cache, kmflags); 630 if (ht == NULL) 631 break; 632 ht->ht_pfn = PFN_INVALID; 633 if (USE_HAT_RESERVES() || 634 htable_reserve_cnt >= htable_reserve_amount) 635 break; 636 htable_put_reserve(ht); 637 } 638 } 639 640 /* 641 * allocate a page for the hardware page table if needed 642 */ 643 if (ht != NULL && !is_bare) { 644 ht->ht_hat = hat; 645 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 646 if (ht->ht_pfn == PFN_INVALID) { 647 if (USE_HAT_RESERVES()) 648 htable_put_reserve(ht); 649 else 650 kmem_cache_free(htable_cache, ht); 651 ht = NULL; 652 } 653 } 654 } 655 656 /* 657 * If allocations failed, kick off a kmem_reap() and resort to 658 * htable steal(). We may spin here if the system is very low on 659 * memory. If the kernel itself has consumed all memory and kmem_reap() 660 * can't free up anything, then we'll really get stuck here. 661 * That should only happen in a system where the administrator has 662 * misconfigured VM parameters via /etc/system. 663 */ 664 while (ht == NULL && can_steal_post_boot) { 665 kmem_reap(); 666 ht = htable_steal(1); 667 HATSTAT_INC(hs_steals); 668 669 /* 670 * If we stole for a bare htable, release the pagetable page. 671 */ 672 if (ht != NULL) { 673 if (is_bare) { 674 ptable_free(ht->ht_pfn); 675 ht->ht_pfn = PFN_INVALID; 676 } 677 } 678 } 679 680 /* 681 * All attempts to allocate or steal failed. This should only happen 682 * if we run out of memory during boot, due perhaps to a huge 683 * boot_archive. At this point there's no way to continue. 684 */ 685 if (ht == NULL) 686 panic("htable_alloc(): couldn't steal\n"); 687 688 /* 689 * Shared page tables have all entries locked and entries may not 690 * be added or deleted. 691 */ 692 ht->ht_flags = 0; 693 if (shared != NULL) { 694 ASSERT(shared->ht_valid_cnt > 0); 695 ht->ht_flags |= HTABLE_SHARED_PFN; 696 ht->ht_pfn = shared->ht_pfn; 697 ht->ht_lock_cnt = 0; 698 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 699 ht->ht_shares = shared; 700 need_to_zero = 0; 701 } else { 702 ht->ht_shares = NULL; 703 ht->ht_lock_cnt = 0; 704 ht->ht_valid_cnt = 0; 705 } 706 707 /* 708 * setup flags, etc. for VLP htables 709 */ 710 if (is_vlp) { 711 ht->ht_flags |= HTABLE_VLP; 712 ASSERT(ht->ht_pfn == PFN_INVALID); 713 need_to_zero = 0; 714 } 715 716 /* 717 * fill in the htable 718 */ 719 ht->ht_hat = hat; 720 ht->ht_parent = NULL; 721 ht->ht_vaddr = vaddr; 722 ht->ht_level = level; 723 ht->ht_busy = 1; 724 ht->ht_next = NULL; 725 ht->ht_prev = NULL; 726 727 /* 728 * Zero out any freshly allocated page table 729 */ 730 if (need_to_zero) 731 x86pte_zero(ht, 0, mmu.ptes_per_table); 732 733 return (ht); 734 } 735 736 /* 737 * Free up an htable, either to a hat's cached list, the reserves or 738 * back to kmem. 739 */ 740 static void 741 htable_free(htable_t *ht) 742 { 743 hat_t *hat = ht->ht_hat; 744 745 /* 746 * If the process isn't exiting, cache the free htable in the hat 747 * structure. We always do this for the boot reserve. We don't 748 * do this if the hat is exiting or we are stealing/reaping htables. 749 */ 750 if (hat != NULL && 751 !(ht->ht_flags & HTABLE_SHARED_PFN) && 752 (use_boot_reserve || 753 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 754 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 755 ASSERT(ht->ht_pfn != PFN_INVALID); 756 hat_enter(hat); 757 ht->ht_next = hat->hat_ht_cached; 758 hat->hat_ht_cached = ht; 759 hat_exit(hat); 760 return; 761 } 762 763 /* 764 * If we have a hardware page table, free it. 765 * We don't free page tables that are accessed by sharing. 766 */ 767 if (ht->ht_flags & HTABLE_SHARED_PFN) { 768 ASSERT(ht->ht_pfn != PFN_INVALID); 769 } else if (!(ht->ht_flags & HTABLE_VLP)) { 770 ptable_free(ht->ht_pfn); 771 } 772 ht->ht_pfn = PFN_INVALID; 773 774 /* 775 * Free htables or put into reserves. 776 */ 777 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 778 htable_put_reserve(ht); 779 } else { 780 kmem_cache_free(htable_cache, ht); 781 htable_adjust_reserve(); 782 } 783 } 784 785 786 /* 787 * This is called when a hat is being destroyed or swapped out. We reap all 788 * the remaining htables in the hat cache. If destroying all left over 789 * htables are also destroyed. 790 * 791 * We also don't need to invalidate any of the PTPs nor do any demapping. 792 */ 793 void 794 htable_purge_hat(hat_t *hat) 795 { 796 htable_t *ht; 797 int h; 798 799 /* 800 * Purge the htable cache if just reaping. 801 */ 802 if (!(hat->hat_flags & HAT_FREEING)) { 803 atomic_add_32(&htable_dont_cache, 1); 804 for (;;) { 805 hat_enter(hat); 806 ht = hat->hat_ht_cached; 807 if (ht == NULL) { 808 hat_exit(hat); 809 break; 810 } 811 hat->hat_ht_cached = ht->ht_next; 812 hat_exit(hat); 813 htable_free(ht); 814 } 815 atomic_add_32(&htable_dont_cache, -1); 816 return; 817 } 818 819 /* 820 * if freeing, no locking is needed 821 */ 822 while ((ht = hat->hat_ht_cached) != NULL) { 823 hat->hat_ht_cached = ht->ht_next; 824 htable_free(ht); 825 } 826 827 /* 828 * walk thru the htable hash table and free all the htables in it. 829 */ 830 for (h = 0; h < hat->hat_num_hash; ++h) { 831 while ((ht = hat->hat_ht_hash[h]) != NULL) { 832 if (ht->ht_next) 833 ht->ht_next->ht_prev = ht->ht_prev; 834 835 if (ht->ht_prev) { 836 ht->ht_prev->ht_next = ht->ht_next; 837 } else { 838 ASSERT(hat->hat_ht_hash[h] == ht); 839 hat->hat_ht_hash[h] = ht->ht_next; 840 } 841 htable_free(ht); 842 } 843 } 844 } 845 846 /* 847 * Unlink an entry for a table at vaddr and level out of the existing table 848 * one level higher. We are always holding the HASH_ENTER() when doing this. 849 */ 850 static void 851 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 852 { 853 uint_t entry = htable_va2entry(vaddr, higher); 854 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 855 x86pte_t found; 856 hat_t *hat = old->ht_hat; 857 858 ASSERT(higher->ht_busy > 0); 859 ASSERT(higher->ht_valid_cnt > 0); 860 ASSERT(old->ht_valid_cnt == 0); 861 found = x86pte_cas(higher, entry, expect, 0); 862 if (found != expect) 863 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 864 found, expect); 865 866 /* 867 * When any top level VLP page table entry changes, we must issue 868 * a reload of cr3 on all processors. Also some CPU types require 869 * invalidating when inner table entries are invalidated. 870 */ 871 if (!(hat->hat_flags & HAT_FREEING)) { 872 if (higher->ht_flags & HTABLE_VLP) 873 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 874 else if (mmu.inval_nonleaf) 875 hat_tlb_inval(hat, old->ht_vaddr); 876 } 877 878 HTABLE_DEC(higher->ht_valid_cnt); 879 } 880 881 /* 882 * Link an entry for a new table at vaddr and level into the existing table 883 * one level higher. We are always holding the HASH_ENTER() when doing this. 884 */ 885 static void 886 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 887 { 888 uint_t entry = htable_va2entry(vaddr, higher); 889 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 890 x86pte_t found; 891 892 ASSERT(higher->ht_busy > 0); 893 894 ASSERT(new->ht_level != mmu.max_level); 895 896 HTABLE_INC(higher->ht_valid_cnt); 897 898 found = x86pte_cas(higher, entry, 0, newptp); 899 if ((found & ~PT_REF) != 0) 900 panic("HAT: ptp not 0, found=" FMT_PTE, found); 901 902 /* 903 * When any top level VLP page table entry changes, we must issue 904 * a reload of cr3 on all processors using it. 905 * We also need to do this for the kernel hat on PAE 32 bit kernel. 906 */ 907 if ( 908 #ifdef __i386 909 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 910 #endif 911 (higher->ht_flags & HTABLE_VLP)) 912 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 913 } 914 915 /* 916 * Release of hold on an htable. If this is the last use and the pagetable 917 * is empty we may want to free it, then recursively look at the pagetable 918 * above it. The recursion is handled by the outer while() loop. 919 */ 920 void 921 htable_release(htable_t *ht) 922 { 923 uint_t hashval; 924 htable_t *shared; 925 htable_t *higher; 926 hat_t *hat; 927 uintptr_t va; 928 level_t level; 929 930 while (ht != NULL) { 931 shared = NULL; 932 for (;;) { 933 hat = ht->ht_hat; 934 va = ht->ht_vaddr; 935 level = ht->ht_level; 936 hashval = HTABLE_HASH(hat, va, level); 937 938 /* 939 * The common case is that this isn't the last use of 940 * an htable so we don't want to free the htable. 941 */ 942 HTABLE_ENTER(hashval); 943 ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0); 944 ASSERT(ht->ht_valid_cnt >= 0); 945 ASSERT(ht->ht_busy > 0); 946 if (ht->ht_valid_cnt > 0) 947 break; 948 if (ht->ht_busy > 1) 949 break; 950 951 /* 952 * we always release empty shared htables 953 */ 954 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 955 956 /* 957 * don't release if in address space tear down 958 */ 959 if (hat->hat_flags & HAT_FREEING) 960 break; 961 962 /* 963 * At and above max_page_level, free if it's for 964 * a boot-time kernel mapping below kernelbase. 965 */ 966 if (level >= mmu.max_page_level && 967 (hat != kas.a_hat || va >= kernelbase)) 968 break; 969 } 970 971 /* 972 * Remember if we destroy an htable that shares its PFN 973 * from elsewhere. 974 */ 975 if (ht->ht_flags & HTABLE_SHARED_PFN) { 976 ASSERT(shared == NULL); 977 shared = ht->ht_shares; 978 HATSTAT_INC(hs_htable_unshared); 979 } 980 981 /* 982 * Handle release of a table and freeing the htable_t. 983 * Unlink it from the table higher (ie. ht_parent). 984 */ 985 ASSERT(ht->ht_lock_cnt == 0); 986 higher = ht->ht_parent; 987 ASSERT(higher != NULL); 988 989 /* 990 * Unlink the pagetable. 991 */ 992 unlink_ptp(higher, ht, va); 993 994 /* 995 * remove this htable from its hash list 996 */ 997 if (ht->ht_next) 998 ht->ht_next->ht_prev = ht->ht_prev; 999 1000 if (ht->ht_prev) { 1001 ht->ht_prev->ht_next = ht->ht_next; 1002 } else { 1003 ASSERT(hat->hat_ht_hash[hashval] == ht); 1004 hat->hat_ht_hash[hashval] = ht->ht_next; 1005 } 1006 HTABLE_EXIT(hashval); 1007 htable_free(ht); 1008 ht = higher; 1009 } 1010 1011 ASSERT(ht->ht_busy >= 1); 1012 --ht->ht_busy; 1013 HTABLE_EXIT(hashval); 1014 1015 /* 1016 * If we released a shared htable, do a release on the htable 1017 * from which it shared 1018 */ 1019 ht = shared; 1020 } 1021 } 1022 1023 /* 1024 * Find the htable for the pagetable at the given level for the given address. 1025 * If found acquires a hold that eventually needs to be htable_release()d 1026 */ 1027 htable_t * 1028 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1029 { 1030 uintptr_t base; 1031 uint_t hashval; 1032 htable_t *ht = NULL; 1033 1034 ASSERT(level >= 0); 1035 ASSERT(level <= TOP_LEVEL(hat)); 1036 1037 if (level == TOP_LEVEL(hat)) 1038 base = 0; 1039 else 1040 base = vaddr & LEVEL_MASK(level + 1); 1041 1042 hashval = HTABLE_HASH(hat, base, level); 1043 HTABLE_ENTER(hashval); 1044 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1045 if (ht->ht_hat == hat && 1046 ht->ht_vaddr == base && 1047 ht->ht_level == level) 1048 break; 1049 } 1050 if (ht) 1051 ++ht->ht_busy; 1052 1053 HTABLE_EXIT(hashval); 1054 return (ht); 1055 } 1056 1057 /* 1058 * Acquires a hold on a known htable (from a locked hment entry). 1059 */ 1060 void 1061 htable_acquire(htable_t *ht) 1062 { 1063 hat_t *hat = ht->ht_hat; 1064 level_t level = ht->ht_level; 1065 uintptr_t base = ht->ht_vaddr; 1066 uint_t hashval = HTABLE_HASH(hat, base, level); 1067 1068 HTABLE_ENTER(hashval); 1069 #ifdef DEBUG 1070 /* 1071 * make sure the htable is there 1072 */ 1073 { 1074 htable_t *h; 1075 1076 for (h = hat->hat_ht_hash[hashval]; 1077 h && h != ht; 1078 h = h->ht_next) 1079 ; 1080 ASSERT(h == ht); 1081 } 1082 #endif /* DEBUG */ 1083 ++ht->ht_busy; 1084 HTABLE_EXIT(hashval); 1085 } 1086 1087 /* 1088 * Find the htable for the pagetable at the given level for the given address. 1089 * If found acquires a hold that eventually needs to be htable_release()d 1090 * If not found the table is created. 1091 * 1092 * Since we can't hold a hash table mutex during allocation, we have to 1093 * drop it and redo the search on a create. Then we may have to free the newly 1094 * allocated htable if another thread raced in and created it ahead of us. 1095 */ 1096 htable_t * 1097 htable_create( 1098 hat_t *hat, 1099 uintptr_t vaddr, 1100 level_t level, 1101 htable_t *shared) 1102 { 1103 uint_t h; 1104 level_t l; 1105 uintptr_t base; 1106 htable_t *ht; 1107 htable_t *higher = NULL; 1108 htable_t *new = NULL; 1109 1110 if (level < 0 || level > TOP_LEVEL(hat)) 1111 panic("htable_create(): level %d out of range\n", level); 1112 1113 /* 1114 * Create the page tables in top down order. 1115 */ 1116 for (l = TOP_LEVEL(hat); l >= level; --l) { 1117 new = NULL; 1118 if (l == TOP_LEVEL(hat)) 1119 base = 0; 1120 else 1121 base = vaddr & LEVEL_MASK(l + 1); 1122 1123 h = HTABLE_HASH(hat, base, l); 1124 try_again: 1125 /* 1126 * look up the htable at this level 1127 */ 1128 HTABLE_ENTER(h); 1129 if (l == TOP_LEVEL(hat)) { 1130 ht = hat->hat_htable; 1131 } else { 1132 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1133 ASSERT(ht->ht_hat == hat); 1134 if (ht->ht_vaddr == base && 1135 ht->ht_level == l) 1136 break; 1137 } 1138 } 1139 1140 /* 1141 * if we found the htable, increment its busy cnt 1142 * and if we had allocated a new htable, free it. 1143 */ 1144 if (ht != NULL) { 1145 /* 1146 * If we find a pre-existing shared table, it must 1147 * share from the same place. 1148 */ 1149 if (l == level && shared && ht->ht_shares && 1150 ht->ht_shares != shared) { 1151 panic("htable shared from wrong place " 1152 "found htable=%p shared=%p", ht, shared); 1153 } 1154 ++ht->ht_busy; 1155 HTABLE_EXIT(h); 1156 if (new) 1157 htable_free(new); 1158 if (higher != NULL) 1159 htable_release(higher); 1160 higher = ht; 1161 1162 /* 1163 * if we didn't find it on the first search 1164 * allocate a new one and search again 1165 */ 1166 } else if (new == NULL) { 1167 HTABLE_EXIT(h); 1168 new = htable_alloc(hat, base, l, 1169 l == level ? shared : NULL); 1170 goto try_again; 1171 1172 /* 1173 * 2nd search and still not there, use "new" table 1174 * Link new table into higher, when not at top level. 1175 */ 1176 } else { 1177 ht = new; 1178 if (higher != NULL) { 1179 link_ptp(higher, ht, base); 1180 ht->ht_parent = higher; 1181 } 1182 ht->ht_next = hat->hat_ht_hash[h]; 1183 ASSERT(ht->ht_prev == NULL); 1184 if (hat->hat_ht_hash[h]) 1185 hat->hat_ht_hash[h]->ht_prev = ht; 1186 hat->hat_ht_hash[h] = ht; 1187 HTABLE_EXIT(h); 1188 1189 /* 1190 * Note we don't do htable_release(higher). 1191 * That happens recursively when "new" is removed by 1192 * htable_release() or htable_steal(). 1193 */ 1194 higher = ht; 1195 1196 /* 1197 * If we just created a new shared page table we 1198 * increment the shared htable's busy count, so that 1199 * it can't be the victim of a steal even if it's empty. 1200 */ 1201 if (l == level && shared) { 1202 (void) htable_lookup(shared->ht_hat, 1203 shared->ht_vaddr, shared->ht_level); 1204 HATSTAT_INC(hs_htable_shared); 1205 } 1206 } 1207 } 1208 1209 return (ht); 1210 } 1211 1212 /* 1213 * Inherit initial pagetables from the boot program. 1214 */ 1215 void 1216 htable_attach( 1217 hat_t *hat, 1218 uintptr_t base, 1219 level_t level, 1220 htable_t *parent, 1221 pfn_t pfn) 1222 { 1223 htable_t *ht; 1224 uint_t h; 1225 uint_t i; 1226 x86pte_t pte; 1227 x86pte_t *ptep; 1228 page_t *pp; 1229 extern page_t *boot_claim_page(pfn_t); 1230 1231 ht = htable_get_reserve(); 1232 if (level == mmu.max_level) 1233 kas.a_hat->hat_htable = ht; 1234 ht->ht_hat = hat; 1235 ht->ht_parent = parent; 1236 ht->ht_vaddr = base; 1237 ht->ht_level = level; 1238 ht->ht_busy = 1; 1239 ht->ht_next = NULL; 1240 ht->ht_prev = NULL; 1241 ht->ht_flags = 0; 1242 ht->ht_pfn = pfn; 1243 ht->ht_lock_cnt = 0; 1244 ht->ht_valid_cnt = 0; 1245 if (parent != NULL) 1246 ++parent->ht_busy; 1247 1248 h = HTABLE_HASH(hat, base, level); 1249 HTABLE_ENTER(h); 1250 ht->ht_next = hat->hat_ht_hash[h]; 1251 ASSERT(ht->ht_prev == NULL); 1252 if (hat->hat_ht_hash[h]) 1253 hat->hat_ht_hash[h]->ht_prev = ht; 1254 hat->hat_ht_hash[h] = ht; 1255 HTABLE_EXIT(h); 1256 1257 /* 1258 * make sure the page table physical page is not FREE 1259 */ 1260 if (page_resv(1, KM_NOSLEEP) == 0) 1261 panic("page_resv() failed in ptable alloc"); 1262 1263 pp = boot_claim_page(pfn); 1264 ASSERT(pp != NULL); 1265 page_downgrade(pp); 1266 /* 1267 * Record in the page_t that is a pagetable for segkpm setup. 1268 */ 1269 if (kpm_vbase) 1270 pp->p_index = 1; 1271 1272 /* 1273 * Count valid mappings and recursively attach lower level pagetables. 1274 */ 1275 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1276 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1277 if (mmu.pae_hat) 1278 pte = ptep[i]; 1279 else 1280 pte = ((x86pte32_t *)ptep)[i]; 1281 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1282 ++ht->ht_valid_cnt; 1283 if (!PTE_ISPAGE(pte, level)) { 1284 htable_attach(hat, base, level - 1, 1285 ht, PTE2PFN(pte, level)); 1286 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1287 } 1288 } 1289 base += LEVEL_SIZE(level); 1290 if (base == mmu.hole_start) 1291 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1292 } 1293 1294 /* 1295 * As long as all the mappings we had were below kernel base 1296 * we can release the htable. 1297 */ 1298 if (base < kernelbase) 1299 htable_release(ht); 1300 } 1301 1302 /* 1303 * Walk through a given htable looking for the first valid entry. This 1304 * routine takes both a starting and ending address. The starting address 1305 * is required to be within the htable provided by the caller, but there is 1306 * no such restriction on the ending address. 1307 * 1308 * If the routine finds a valid entry in the htable (at or beyond the 1309 * starting address), the PTE (and its address) will be returned. 1310 * This PTE may correspond to either a page or a pagetable - it is the 1311 * caller's responsibility to determine which. If no valid entry is 1312 * found, 0 (and invalid PTE) and the next unexamined address will be 1313 * returned. 1314 * 1315 * The loop has been carefully coded for optimization. 1316 */ 1317 static x86pte_t 1318 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1319 { 1320 uint_t e; 1321 x86pte_t found_pte = (x86pte_t)0; 1322 caddr_t pte_ptr; 1323 caddr_t end_pte_ptr; 1324 int l = ht->ht_level; 1325 uintptr_t va = *vap & LEVEL_MASK(l); 1326 size_t pgsize = LEVEL_SIZE(l); 1327 1328 ASSERT(va >= ht->ht_vaddr); 1329 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1330 1331 /* 1332 * Compute the starting index and ending virtual address 1333 */ 1334 e = htable_va2entry(va, ht); 1335 1336 /* 1337 * The following page table scan code knows that the valid 1338 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1339 */ 1340 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1341 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1342 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1343 while (!PTE_ISVALID(*pte_ptr)) { 1344 va += pgsize; 1345 if (va >= eaddr) 1346 break; 1347 pte_ptr += mmu.pte_size; 1348 ASSERT(pte_ptr <= end_pte_ptr); 1349 if (pte_ptr == end_pte_ptr) 1350 break; 1351 } 1352 1353 /* 1354 * if we found a valid PTE, load the entire PTE 1355 */ 1356 if (va < eaddr && pte_ptr != end_pte_ptr) 1357 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1358 x86pte_release_pagetable(ht); 1359 1360 #if defined(__amd64) 1361 /* 1362 * deal with VA hole on amd64 1363 */ 1364 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1365 va = mmu.hole_end + va - mmu.hole_start; 1366 #endif /* __amd64 */ 1367 1368 *vap = va; 1369 return (found_pte); 1370 } 1371 1372 /* 1373 * Find the address and htable for the first populated translation at or 1374 * above the given virtual address. The caller may also specify an upper 1375 * limit to the address range to search. Uses level information to quickly 1376 * skip unpopulated sections of virtual address spaces. 1377 * 1378 * If not found returns NULL. When found, returns the htable and virt addr 1379 * and has a hold on the htable. 1380 */ 1381 x86pte_t 1382 htable_walk( 1383 struct hat *hat, 1384 htable_t **htp, 1385 uintptr_t *vaddr, 1386 uintptr_t eaddr) 1387 { 1388 uintptr_t va = *vaddr; 1389 htable_t *ht; 1390 htable_t *prev = *htp; 1391 level_t l; 1392 level_t max_mapped_level; 1393 x86pte_t pte; 1394 1395 ASSERT(eaddr > va); 1396 1397 /* 1398 * If this is a user address, then we know we need not look beyond 1399 * kernelbase. 1400 */ 1401 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1402 eaddr == HTABLE_WALK_TO_END); 1403 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1404 eaddr = kernelbase; 1405 1406 /* 1407 * If we're coming in with a previous page table, search it first 1408 * without doing an htable_lookup(), this should be frequent. 1409 */ 1410 if (prev) { 1411 ASSERT(prev->ht_busy > 0); 1412 ASSERT(prev->ht_vaddr <= va); 1413 l = prev->ht_level; 1414 if (va <= HTABLE_LAST_PAGE(prev)) { 1415 pte = htable_scan(prev, &va, eaddr); 1416 1417 if (PTE_ISPAGE(pte, l)) { 1418 *vaddr = va; 1419 *htp = prev; 1420 return (pte); 1421 } 1422 } 1423 1424 /* 1425 * We found nothing in the htable provided by the caller, 1426 * so fall through and do the full search 1427 */ 1428 htable_release(prev); 1429 } 1430 1431 /* 1432 * Find the level of the largest pagesize used by this HAT. 1433 */ 1434 max_mapped_level = 0; 1435 for (l = 1; l <= mmu.max_page_level; ++l) 1436 if (hat->hat_pages_mapped[l] != 0) 1437 max_mapped_level = l; 1438 1439 while (va < eaddr && va >= *vaddr) { 1440 ASSERT(!IN_VA_HOLE(va)); 1441 1442 /* 1443 * Find lowest table with any entry for given address. 1444 */ 1445 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1446 ht = htable_lookup(hat, va, l); 1447 if (ht != NULL) { 1448 pte = htable_scan(ht, &va, eaddr); 1449 if (PTE_ISPAGE(pte, l)) { 1450 *vaddr = va; 1451 *htp = ht; 1452 return (pte); 1453 } 1454 htable_release(ht); 1455 break; 1456 } 1457 1458 /* 1459 * The ht is never NULL at the top level since 1460 * the top level htable is created in hat_alloc(). 1461 */ 1462 ASSERT(l < TOP_LEVEL(hat)); 1463 1464 /* 1465 * No htable covers the address. If there is no 1466 * larger page size that could cover it, we 1467 * skip to the start of the next page table. 1468 */ 1469 if (l >= max_mapped_level) { 1470 va = NEXT_ENTRY_VA(va, l + 1); 1471 break; 1472 } 1473 } 1474 } 1475 1476 *vaddr = 0; 1477 *htp = NULL; 1478 return (0); 1479 } 1480 1481 /* 1482 * Find the htable and page table entry index of the given virtual address 1483 * with pagesize at or below given level. 1484 * If not found returns NULL. When found, returns the htable, sets 1485 * entry, and has a hold on the htable. 1486 */ 1487 htable_t * 1488 htable_getpte( 1489 struct hat *hat, 1490 uintptr_t vaddr, 1491 uint_t *entry, 1492 x86pte_t *pte, 1493 level_t level) 1494 { 1495 htable_t *ht; 1496 level_t l; 1497 uint_t e; 1498 1499 ASSERT(level <= mmu.max_page_level); 1500 1501 for (l = 0; l <= level; ++l) { 1502 ht = htable_lookup(hat, vaddr, l); 1503 if (ht == NULL) 1504 continue; 1505 e = htable_va2entry(vaddr, ht); 1506 if (entry != NULL) 1507 *entry = e; 1508 if (pte != NULL) 1509 *pte = x86pte_get(ht, e); 1510 return (ht); 1511 } 1512 return (NULL); 1513 } 1514 1515 /* 1516 * Find the htable and page table entry index of the given virtual address. 1517 * There must be a valid page mapped at the given address. 1518 * If not found returns NULL. When found, returns the htable, sets 1519 * entry, and has a hold on the htable. 1520 */ 1521 htable_t * 1522 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1523 { 1524 htable_t *ht; 1525 uint_t e; 1526 x86pte_t pte; 1527 1528 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1529 if (ht == NULL) 1530 return (NULL); 1531 1532 if (entry) 1533 *entry = e; 1534 1535 if (PTE_ISPAGE(pte, ht->ht_level)) 1536 return (ht); 1537 htable_release(ht); 1538 return (NULL); 1539 } 1540 1541 1542 void 1543 htable_init() 1544 { 1545 /* 1546 * To save on kernel VA usage, we avoid debug information in 32 bit 1547 * kernels. 1548 */ 1549 #if defined(__amd64) 1550 int kmem_flags = KMC_NOHASH; 1551 #elif defined(__i386) 1552 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1553 #endif 1554 1555 /* 1556 * initialize kmem caches 1557 */ 1558 htable_cache = kmem_cache_create("htable_t", 1559 sizeof (htable_t), 0, NULL, NULL, 1560 htable_reap, NULL, hat_memload_arena, kmem_flags); 1561 } 1562 1563 /* 1564 * get the pte index for the virtual address in the given htable's pagetable 1565 */ 1566 uint_t 1567 htable_va2entry(uintptr_t va, htable_t *ht) 1568 { 1569 level_t l = ht->ht_level; 1570 1571 ASSERT(va >= ht->ht_vaddr); 1572 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1573 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1574 } 1575 1576 /* 1577 * Given an htable and the index of a pte in it, return the virtual address 1578 * of the page. 1579 */ 1580 uintptr_t 1581 htable_e2va(htable_t *ht, uint_t entry) 1582 { 1583 level_t l = ht->ht_level; 1584 uintptr_t va; 1585 1586 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1587 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1588 1589 /* 1590 * Need to skip over any VA hole in top level table 1591 */ 1592 #if defined(__amd64) 1593 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1594 va += ((mmu.hole_end - mmu.hole_start) + 1); 1595 #endif 1596 1597 return (va); 1598 } 1599 1600 /* 1601 * The code uses compare and swap instructions to read/write PTE's to 1602 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1603 * will naturally be atomic. 1604 * 1605 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1606 * are used to ensure that an interrupt won't overwrite a temporary mapping 1607 * while it's in use. If an interrupt thread tries to access a PTE, it will 1608 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1609 */ 1610 void 1611 x86pte_cpu_init(cpu_t *cpu) 1612 { 1613 struct hat_cpu_info *hci; 1614 1615 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1616 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1617 cpu->cpu_hat_info = hci; 1618 } 1619 1620 void 1621 x86pte_cpu_fini(cpu_t *cpu) 1622 { 1623 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1624 1625 kmem_free(hci, sizeof (*hci)); 1626 cpu->cpu_hat_info = NULL; 1627 } 1628 1629 #ifdef __i386 1630 /* 1631 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1632 */ 1633 x86pte_t 1634 get_pte64(x86pte_t *ptr) 1635 { 1636 volatile uint32_t *p = (uint32_t *)ptr; 1637 x86pte_t t; 1638 1639 ASSERT(mmu.pae_hat != 0); 1640 for (;;) { 1641 t = p[0]; 1642 t |= (uint64_t)p[1] << 32; 1643 if ((t & 0xffffffff) == p[0]) 1644 return (t); 1645 } 1646 } 1647 #endif /* __i386 */ 1648 1649 /* 1650 * Disable preemption and establish a mapping to the pagetable with the 1651 * given pfn. This is optimized for there case where it's the same 1652 * pfn as we last used referenced from this CPU. 1653 */ 1654 static x86pte_t * 1655 x86pte_access_pagetable(htable_t *ht, uint_t index) 1656 { 1657 /* 1658 * VLP pagetables are contained in the hat_t 1659 */ 1660 if (ht->ht_flags & HTABLE_VLP) 1661 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1662 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1663 } 1664 1665 /* 1666 * map the given pfn into the page table window. 1667 */ 1668 /*ARGSUSED*/ 1669 x86pte_t * 1670 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1671 { 1672 x86pte_t *pteptr; 1673 x86pte_t pte; 1674 x86pte_t newpte; 1675 int x; 1676 1677 ASSERT(pfn != PFN_INVALID); 1678 1679 if (!khat_running) { 1680 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1681 return (PT_INDEX_PTR(va, index)); 1682 } 1683 1684 /* 1685 * If kpm is available, use it. 1686 */ 1687 if (kpm_vbase) 1688 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1689 1690 /* 1691 * Disable preemption and grab the CPU's hci_mutex 1692 */ 1693 kpreempt_disable(); 1694 ASSERT(CPU->cpu_hat_info != NULL); 1695 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1696 x = PWIN_TABLE(CPU->cpu_id); 1697 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1698 if (mmu.pae_hat) 1699 pte = *pteptr; 1700 else 1701 pte = *(x86pte32_t *)pteptr; 1702 1703 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1704 newpte |= PT_WRITABLE; 1705 1706 if (!PTE_EQUIV(newpte, pte)) { 1707 if (mmu.pae_hat) 1708 *pteptr = newpte; 1709 else 1710 *(x86pte32_t *)pteptr = newpte; 1711 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1712 } 1713 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1714 } 1715 1716 /* 1717 * Release access to a page table. 1718 */ 1719 static void 1720 x86pte_release_pagetable(htable_t *ht) 1721 { 1722 /* 1723 * nothing to do for VLP htables 1724 */ 1725 if (ht->ht_flags & HTABLE_VLP) 1726 return; 1727 1728 x86pte_mapout(); 1729 } 1730 1731 void 1732 x86pte_mapout(void) 1733 { 1734 if (mmu.pwin_base == NULL || !khat_running) 1735 return; 1736 1737 /* 1738 * Drop the CPU's hci_mutex and restore preemption. 1739 */ 1740 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 1741 kpreempt_enable(); 1742 } 1743 1744 /* 1745 * Atomic retrieval of a pagetable entry 1746 */ 1747 x86pte_t 1748 x86pte_get(htable_t *ht, uint_t entry) 1749 { 1750 x86pte_t pte; 1751 x86pte_t *ptep; 1752 1753 /* 1754 * Be careful that loading PAE entries in 32 bit kernel is atomic. 1755 */ 1756 ASSERT(entry < mmu.ptes_per_table); 1757 ptep = x86pte_access_pagetable(ht, entry); 1758 pte = GET_PTE(ptep); 1759 x86pte_release_pagetable(ht); 1760 return (pte); 1761 } 1762 1763 /* 1764 * Atomic unconditional set of a page table entry, it returns the previous 1765 * value. For pre-existing mappings if the PFN changes, then we don't care 1766 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 1767 * the MOD/REF bits unchanged. 1768 * 1769 * If asked to overwrite a link to a lower page table with a large page 1770 * mapping, this routine returns the special value of LPAGE_ERROR. This 1771 * allows the upper HAT layers to retry with a smaller mapping size. 1772 */ 1773 x86pte_t 1774 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 1775 { 1776 x86pte_t old; 1777 x86pte_t prev; 1778 x86pte_t *ptep; 1779 level_t l = ht->ht_level; 1780 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 1781 x86pte_t n; 1782 uintptr_t addr = htable_e2va(ht, entry); 1783 hat_t *hat = ht->ht_hat; 1784 1785 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 1786 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1787 if (ptr == NULL) 1788 ptep = x86pte_access_pagetable(ht, entry); 1789 else 1790 ptep = ptr; 1791 1792 /* 1793 * Install the new PTE. If remapping the same PFN, then 1794 * copy existing REF/MOD bits to new mapping. 1795 */ 1796 do { 1797 prev = GET_PTE(ptep); 1798 n = new; 1799 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 1800 n |= prev & (PT_REF | PT_MOD); 1801 1802 /* 1803 * Another thread may have installed this mapping already, 1804 * flush the local TLB and be done. 1805 */ 1806 if (prev == n) { 1807 old = new; 1808 mmu_tlbflush_entry((caddr_t)addr); 1809 goto done; 1810 } 1811 1812 /* 1813 * Detect if we have a collision of installing a large 1814 * page mapping where there already is a lower page table. 1815 */ 1816 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 1817 old = LPAGE_ERROR; 1818 goto done; 1819 } 1820 1821 old = CAS_PTE(ptep, prev, n); 1822 } while (old != prev); 1823 1824 /* 1825 * Do a TLB demap if needed, ie. the old pte was valid. 1826 * 1827 * Note that a stale TLB writeback to the PTE here either can't happen 1828 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 1829 * mappings, but they were created with REF and MOD already set, so 1830 * no stale writeback will happen. 1831 * 1832 * Segmap is the only place where remaps happen on the same pfn and for 1833 * that we want to preserve the stale REF/MOD bits. 1834 */ 1835 if (old & PT_REF) 1836 hat_tlb_inval(hat, addr); 1837 1838 done: 1839 if (ptr == NULL) 1840 x86pte_release_pagetable(ht); 1841 return (old); 1842 } 1843 1844 /* 1845 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 1846 * This is used for links between pagetables of different levels. 1847 * Note we always create these links with dirty/access set, so they should 1848 * never change. 1849 */ 1850 x86pte_t 1851 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 1852 { 1853 x86pte_t pte; 1854 x86pte_t *ptep; 1855 1856 ptep = x86pte_access_pagetable(ht, entry); 1857 pte = CAS_PTE(ptep, old, new); 1858 x86pte_release_pagetable(ht); 1859 return (pte); 1860 } 1861 1862 /* 1863 * Invalidate a page table entry as long as it currently maps something that 1864 * matches the value determined by expect. 1865 * 1866 * Also invalidates any TLB entries and returns the previous value of the PTE. 1867 */ 1868 x86pte_t 1869 x86pte_inval( 1870 htable_t *ht, 1871 uint_t entry, 1872 x86pte_t expect, 1873 x86pte_t *pte_ptr) 1874 { 1875 x86pte_t *ptep; 1876 x86pte_t oldpte; 1877 x86pte_t found; 1878 1879 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1880 ASSERT(ht->ht_level != VLP_LEVEL); 1881 1882 if (pte_ptr != NULL) 1883 ptep = pte_ptr; 1884 else 1885 ptep = x86pte_access_pagetable(ht, entry); 1886 1887 /* 1888 * Note that the loop is needed to handle changes due to h/w updating 1889 * of PT_MOD/PT_REF. 1890 */ 1891 do { 1892 oldpte = GET_PTE(ptep); 1893 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 1894 goto done; 1895 found = CAS_PTE(ptep, oldpte, 0); 1896 } while (found != oldpte); 1897 if (oldpte & (PT_REF | PT_MOD)) 1898 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 1899 1900 done: 1901 if (pte_ptr == NULL) 1902 x86pte_release_pagetable(ht); 1903 return (oldpte); 1904 } 1905 1906 /* 1907 * Change a page table entry af it currently matches the value in expect. 1908 */ 1909 x86pte_t 1910 x86pte_update( 1911 htable_t *ht, 1912 uint_t entry, 1913 x86pte_t expect, 1914 x86pte_t new) 1915 { 1916 x86pte_t *ptep; 1917 x86pte_t found; 1918 1919 ASSERT(new != 0); 1920 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1921 ASSERT(ht->ht_level != VLP_LEVEL); 1922 1923 ptep = x86pte_access_pagetable(ht, entry); 1924 found = CAS_PTE(ptep, expect, new); 1925 if (found == expect) { 1926 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 1927 1928 /* 1929 * When removing write permission *and* clearing the 1930 * MOD bit, check if a write happened via a stale 1931 * TLB entry before the TLB shootdown finished. 1932 * 1933 * If it did happen, simply re-enable write permission and 1934 * act like the original CAS failed. 1935 */ 1936 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 1937 (new & (PT_WRITABLE | PT_MOD)) == 0 && 1938 (GET_PTE(ptep) & PT_MOD) != 0) { 1939 do { 1940 found = GET_PTE(ptep); 1941 found = 1942 CAS_PTE(ptep, found, found | PT_WRITABLE); 1943 } while ((found & PT_WRITABLE) == 0); 1944 } 1945 } 1946 x86pte_release_pagetable(ht); 1947 return (found); 1948 } 1949 1950 /* 1951 * Copy page tables - this is just a little more complicated than the 1952 * previous routines. Note that it's also not atomic! It also is never 1953 * used for VLP pagetables. 1954 */ 1955 void 1956 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 1957 { 1958 caddr_t src_va; 1959 caddr_t dst_va; 1960 size_t size; 1961 x86pte_t *pteptr; 1962 x86pte_t pte; 1963 1964 ASSERT(khat_running); 1965 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 1966 ASSERT(!(src->ht_flags & HTABLE_VLP)); 1967 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 1968 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 1969 1970 /* 1971 * Acquire access to the CPU pagetable windows for the dest and source. 1972 */ 1973 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 1974 if (kpm_vbase) { 1975 src_va = (caddr_t) 1976 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 1977 } else { 1978 uint_t x = PWIN_SRC(CPU->cpu_id); 1979 1980 /* 1981 * Finish defining the src pagetable mapping 1982 */ 1983 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 1984 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 1985 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1986 if (mmu.pae_hat) 1987 *pteptr = pte; 1988 else 1989 *(x86pte32_t *)pteptr = pte; 1990 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1991 } 1992 1993 /* 1994 * now do the copy 1995 */ 1996 size = count << mmu.pte_size_shift; 1997 bcopy(src_va, dst_va, size); 1998 1999 x86pte_release_pagetable(dest); 2000 } 2001 2002 /* 2003 * Zero page table entries - Note this doesn't use atomic stores! 2004 */ 2005 static void 2006 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2007 { 2008 caddr_t dst_va; 2009 size_t size; 2010 2011 /* 2012 * Map in the page table to be zeroed. 2013 */ 2014 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2015 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2016 2017 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2018 2019 size = count << mmu.pte_size_shift; 2020 ASSERT(size > BLOCKZEROALIGN); 2021 #ifdef __i386 2022 if ((x86_feature & X86_SSE2) == 0) 2023 bzero(dst_va, size); 2024 else 2025 #endif 2026 block_zero_no_xmm(dst_va, size); 2027 2028 x86pte_release_pagetable(dest); 2029 } 2030 2031 /* 2032 * Called to ensure that all pagetables are in the system dump 2033 */ 2034 void 2035 hat_dump(void) 2036 { 2037 hat_t *hat; 2038 uint_t h; 2039 htable_t *ht; 2040 2041 /* 2042 * Dump all page tables 2043 */ 2044 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2045 for (h = 0; h < hat->hat_num_hash; ++h) { 2046 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2047 if ((ht->ht_flags & HTABLE_VLP) == 0) 2048 dump_page(ht->ht_pfn); 2049 } 2050 } 2051 } 2052 } 2053