xref: /titanic_51/usr/src/uts/i86pc/vm/htable.c (revision 193974072f41a843678abf5f61979c748687e66b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/atomic.h>
31 #include <sys/bitmap.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/mman.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/thread.h>
38 #include <sys/proc.h>
39 #include <sys/cpu.h>
40 #include <sys/kmem.h>
41 #include <sys/disp.h>
42 #include <sys/vmem.h>
43 #include <sys/vmsystm.h>
44 #include <sys/promif.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>
47 #include <sys/archsystm.h>
48 #include <sys/bootconf.h>
49 #include <sys/dumphdr.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/hat.h>
53 #include <vm/hat_i86.h>
54 #include <sys/cmn_err.h>
55 #include <sys/panic.h>
56 
57 #ifdef __xpv
58 #include <sys/hypervisor.h>
59 #include <sys/xpv_panic.h>
60 #endif
61 
62 #include <sys/bootinfo.h>
63 #include <vm/kboot_mmu.h>
64 
65 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
66 
67 kmem_cache_t *htable_cache;
68 
69 /*
70  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
71  * is used in order to facilitate testing of the htable_steal() code.
72  * By resetting htable_reserve_amount to a lower value, we can force
73  * stealing to occur.  The reserve amount is a guess to get us through boot.
74  */
75 #define	HTABLE_RESERVE_AMOUNT	(200)
76 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
77 kmutex_t htable_reserve_mutex;
78 uint_t htable_reserve_cnt;
79 htable_t *htable_reserve_pool;
80 
81 /*
82  * Used to hand test htable_steal().
83  */
84 #ifdef DEBUG
85 ulong_t force_steal = 0;
86 ulong_t ptable_cnt = 0;
87 #endif
88 
89 /*
90  * This variable is so that we can tune this via /etc/system
91  * Any value works, but a power of two <= mmu.ptes_per_table is best.
92  */
93 uint_t htable_steal_passes = 8;
94 
95 /*
96  * mutex stuff for access to htable hash
97  */
98 #define	NUM_HTABLE_MUTEX 128
99 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
100 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
101 
102 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
104 
105 /*
106  * forward declarations
107  */
108 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
109 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
110 static void htable_free(htable_t *ht);
111 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
112 static void x86pte_release_pagetable(htable_t *ht);
113 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
114 	x86pte_t new);
115 
116 /*
117  * A counter to track if we are stealing or reaping htables. When non-zero
118  * htable_free() will directly free htables (either to the reserve or kmem)
119  * instead of putting them in a hat's htable cache.
120  */
121 uint32_t htable_dont_cache = 0;
122 
123 /*
124  * Track the number of active pagetables, so we can know how many to reap
125  */
126 static uint32_t active_ptables = 0;
127 
128 #ifdef __xpv
129 /*
130  * Deal with hypervisor complications.
131  */
132 void
133 xen_flush_va(caddr_t va)
134 {
135 	struct mmuext_op t;
136 	uint_t count;
137 
138 	if (IN_XPV_PANIC()) {
139 		mmu_tlbflush_entry((caddr_t)va);
140 	} else {
141 		t.cmd = MMUEXT_INVLPG_LOCAL;
142 		t.arg1.linear_addr = (uintptr_t)va;
143 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
144 			panic("HYPERVISOR_mmuext_op() failed");
145 		ASSERT(count == 1);
146 	}
147 }
148 
149 void
150 xen_gflush_va(caddr_t va, cpuset_t cpus)
151 {
152 	struct mmuext_op t;
153 	uint_t count;
154 
155 	if (IN_XPV_PANIC()) {
156 		mmu_tlbflush_entry((caddr_t)va);
157 		return;
158 	}
159 
160 	t.cmd = MMUEXT_INVLPG_MULTI;
161 	t.arg1.linear_addr = (uintptr_t)va;
162 	/*LINTED: constant in conditional context*/
163 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
164 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
165 		panic("HYPERVISOR_mmuext_op() failed");
166 	ASSERT(count == 1);
167 }
168 
169 void
170 xen_flush_tlb()
171 {
172 	struct mmuext_op t;
173 	uint_t count;
174 
175 	if (IN_XPV_PANIC()) {
176 		xpv_panic_reload_cr3();
177 	} else {
178 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
179 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
180 			panic("HYPERVISOR_mmuext_op() failed");
181 		ASSERT(count == 1);
182 	}
183 }
184 
185 void
186 xen_gflush_tlb(cpuset_t cpus)
187 {
188 	struct mmuext_op t;
189 	uint_t count;
190 
191 	ASSERT(!IN_XPV_PANIC());
192 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
193 	/*LINTED: constant in conditional context*/
194 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
195 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
196 		panic("HYPERVISOR_mmuext_op() failed");
197 	ASSERT(count == 1);
198 }
199 
200 /*
201  * Install/Adjust a kpm mapping under the hypervisor.
202  * Value of "how" should be:
203  *	PT_WRITABLE | PT_VALID - regular kpm mapping
204  *	PT_VALID - make mapping read-only
205  *	0	- remove mapping
206  *
207  * returns 0 on success. non-zero for failure.
208  */
209 int
210 xen_kpm_page(pfn_t pfn, uint_t how)
211 {
212 	paddr_t pa = mmu_ptob((paddr_t)pfn);
213 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
214 
215 	if (kpm_vbase == NULL)
216 		return (0);
217 
218 	if (how)
219 		pte |= pa_to_ma(pa) | how;
220 	else
221 		pte = 0;
222 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
223 	    pte, UVMF_INVLPG | UVMF_ALL));
224 }
225 
226 void
227 xen_pin(pfn_t pfn, level_t lvl)
228 {
229 	struct mmuext_op t;
230 	uint_t count;
231 
232 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
233 	t.arg1.mfn = pfn_to_mfn(pfn);
234 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
235 		panic("HYPERVISOR_mmuext_op() failed");
236 	ASSERT(count == 1);
237 }
238 
239 void
240 xen_unpin(pfn_t pfn)
241 {
242 	struct mmuext_op t;
243 	uint_t count;
244 
245 	t.cmd = MMUEXT_UNPIN_TABLE;
246 	t.arg1.mfn = pfn_to_mfn(pfn);
247 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
248 		panic("HYPERVISOR_mmuext_op() failed");
249 	ASSERT(count == 1);
250 }
251 
252 static void
253 xen_map(uint64_t pte, caddr_t va)
254 {
255 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
256 	    UVMF_INVLPG | UVMF_LOCAL))
257 		panic("HYPERVISOR_update_va_mapping() failed");
258 }
259 #endif /* __xpv */
260 
261 /*
262  * Allocate a memory page for a hardware page table.
263  *
264  * A wrapper around page_get_physical(), with some extra checks.
265  */
266 static pfn_t
267 ptable_alloc(void)
268 {
269 	pfn_t pfn;
270 	page_t *pp;
271 
272 	pfn = PFN_INVALID;
273 	atomic_add_32(&active_ptables, 1);
274 
275 	/*
276 	 * The first check is to see if there is memory in the system. If we
277 	 * drop to throttlefree, then fail the ptable_alloc() and let the
278 	 * stealing code kick in. Note that we have to do this test here,
279 	 * since the test in page_create_throttle() would let the NOSLEEP
280 	 * allocation go through and deplete the page reserves.
281 	 *
282 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
283 	 */
284 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
285 		return (PFN_INVALID);
286 
287 #ifdef DEBUG
288 	/*
289 	 * This code makes htable_steal() easier to test. By setting
290 	 * force_steal we force pagetable allocations to fall
291 	 * into the stealing code. Roughly 1 in ever "force_steal"
292 	 * page table allocations will fail.
293 	 */
294 	if (proc_pageout != NULL && force_steal > 1 &&
295 	    ++ptable_cnt > force_steal) {
296 		ptable_cnt = 0;
297 		return (PFN_INVALID);
298 	}
299 #endif /* DEBUG */
300 
301 	pp = page_get_physical(KM_NOSLEEP);
302 	if (pp == NULL)
303 		return (PFN_INVALID);
304 	ASSERT(PAGE_SHARED(pp));
305 	pfn = pp->p_pagenum;
306 	if (pfn == PFN_INVALID)
307 		panic("ptable_alloc(): Invalid PFN!!");
308 	HATSTAT_INC(hs_ptable_allocs);
309 	return (pfn);
310 }
311 
312 /*
313  * Free an htable's associated page table page.  See the comments
314  * for ptable_alloc().
315  */
316 static void
317 ptable_free(pfn_t pfn)
318 {
319 	page_t *pp = page_numtopp_nolock(pfn);
320 
321 	/*
322 	 * need to destroy the page used for the pagetable
323 	 */
324 	ASSERT(pfn != PFN_INVALID);
325 	HATSTAT_INC(hs_ptable_frees);
326 	atomic_add_32(&active_ptables, -1);
327 	if (pp == NULL)
328 		panic("ptable_free(): no page for pfn!");
329 	ASSERT(pfn == pp->p_pagenum);
330 	ASSERT(!IN_XPV_PANIC());
331 #ifdef __xpv
332 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
333 		panic("failure making kpm r/w pfn=0x%lx", pfn);
334 #endif
335 	page_free_physical(pp);
336 }
337 
338 /*
339  * Put one htable on the reserve list.
340  */
341 static void
342 htable_put_reserve(htable_t *ht)
343 {
344 	ht->ht_hat = NULL;		/* no longer tied to a hat */
345 	ASSERT(ht->ht_pfn == PFN_INVALID);
346 	HATSTAT_INC(hs_htable_rputs);
347 	mutex_enter(&htable_reserve_mutex);
348 	ht->ht_next = htable_reserve_pool;
349 	htable_reserve_pool = ht;
350 	++htable_reserve_cnt;
351 	mutex_exit(&htable_reserve_mutex);
352 }
353 
354 /*
355  * Take one htable from the reserve.
356  */
357 static htable_t *
358 htable_get_reserve(void)
359 {
360 	htable_t *ht = NULL;
361 
362 	mutex_enter(&htable_reserve_mutex);
363 	if (htable_reserve_cnt != 0) {
364 		ht = htable_reserve_pool;
365 		ASSERT(ht != NULL);
366 		ASSERT(ht->ht_pfn == PFN_INVALID);
367 		htable_reserve_pool = ht->ht_next;
368 		--htable_reserve_cnt;
369 		HATSTAT_INC(hs_htable_rgets);
370 	}
371 	mutex_exit(&htable_reserve_mutex);
372 	return (ht);
373 }
374 
375 /*
376  * Allocate initial htables and put them on the reserve list
377  */
378 void
379 htable_initial_reserve(uint_t count)
380 {
381 	htable_t *ht;
382 
383 	count += HTABLE_RESERVE_AMOUNT;
384 	while (count > 0) {
385 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
386 		ASSERT(ht != NULL);
387 
388 		ASSERT(use_boot_reserve);
389 		ht->ht_pfn = PFN_INVALID;
390 		htable_put_reserve(ht);
391 		--count;
392 	}
393 }
394 
395 /*
396  * Readjust the reserves after a thread finishes using them.
397  */
398 void
399 htable_adjust_reserve()
400 {
401 	htable_t *ht;
402 
403 	/*
404 	 * Free any excess htables in the reserve list
405 	 */
406 	while (htable_reserve_cnt > htable_reserve_amount &&
407 	    !USE_HAT_RESERVES()) {
408 		ht = htable_get_reserve();
409 		if (ht == NULL)
410 			return;
411 		ASSERT(ht->ht_pfn == PFN_INVALID);
412 		kmem_cache_free(htable_cache, ht);
413 	}
414 }
415 
416 
417 /*
418  * This routine steals htables from user processes for htable_alloc() or
419  * for htable_reap().
420  */
421 static htable_t *
422 htable_steal(uint_t cnt)
423 {
424 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
425 	htable_t	*list = NULL;
426 	htable_t	*ht;
427 	htable_t	*higher;
428 	uint_t		h;
429 	uint_t		h_start;
430 	static uint_t	h_seed = 0;
431 	uint_t		e;
432 	uintptr_t	va;
433 	x86pte_t	pte;
434 	uint_t		stolen = 0;
435 	uint_t		pass;
436 	uint_t		threshold;
437 
438 	/*
439 	 * Limit htable_steal_passes to something reasonable
440 	 */
441 	if (htable_steal_passes == 0)
442 		htable_steal_passes = 1;
443 	if (htable_steal_passes > mmu.ptes_per_table)
444 		htable_steal_passes = mmu.ptes_per_table;
445 
446 	/*
447 	 * Loop through all user hats. The 1st pass takes cached htables that
448 	 * aren't in use. The later passes steal by removing mappings, too.
449 	 */
450 	atomic_add_32(&htable_dont_cache, 1);
451 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
452 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
453 		hat = kas.a_hat;
454 		for (;;) {
455 
456 			/*
457 			 * Clear the victim flag and move to next hat
458 			 */
459 			mutex_enter(&hat_list_lock);
460 			if (hat != kas.a_hat) {
461 				hat->hat_flags &= ~HAT_VICTIM;
462 				cv_broadcast(&hat_list_cv);
463 			}
464 			hat = hat->hat_next;
465 
466 			/*
467 			 * Skip any hat that is already being stolen from.
468 			 *
469 			 * We skip SHARED hats, as these are dummy
470 			 * hats that host ISM shared page tables.
471 			 *
472 			 * We also skip if HAT_FREEING because hat_pte_unmap()
473 			 * won't zero out the PTE's. That would lead to hitting
474 			 * stale PTEs either here or under hat_unload() when we
475 			 * steal and unload the same page table in competing
476 			 * threads.
477 			 */
478 			while (hat != NULL &&
479 			    (hat->hat_flags &
480 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
481 				hat = hat->hat_next;
482 
483 			if (hat == NULL) {
484 				mutex_exit(&hat_list_lock);
485 				break;
486 			}
487 
488 			/*
489 			 * Are we finished?
490 			 */
491 			if (stolen == cnt) {
492 				/*
493 				 * Try to spread the pain of stealing,
494 				 * move victim HAT to the end of the HAT list.
495 				 */
496 				if (pass >= 1 && cnt == 1 &&
497 				    kas.a_hat->hat_prev != hat) {
498 
499 					/* unlink victim hat */
500 					if (hat->hat_prev)
501 						hat->hat_prev->hat_next =
502 						    hat->hat_next;
503 					else
504 						kas.a_hat->hat_next =
505 						    hat->hat_next;
506 					if (hat->hat_next)
507 						hat->hat_next->hat_prev =
508 						    hat->hat_prev;
509 					else
510 						kas.a_hat->hat_prev =
511 						    hat->hat_prev;
512 
513 
514 					/* relink at end of hat list */
515 					hat->hat_next = NULL;
516 					hat->hat_prev = kas.a_hat->hat_prev;
517 					if (hat->hat_prev)
518 						hat->hat_prev->hat_next = hat;
519 					else
520 						kas.a_hat->hat_next = hat;
521 					kas.a_hat->hat_prev = hat;
522 
523 				}
524 
525 				mutex_exit(&hat_list_lock);
526 				break;
527 			}
528 
529 			/*
530 			 * Mark the HAT as a stealing victim.
531 			 */
532 			hat->hat_flags |= HAT_VICTIM;
533 			mutex_exit(&hat_list_lock);
534 
535 			/*
536 			 * Take any htables from the hat's cached "free" list.
537 			 */
538 			hat_enter(hat);
539 			while ((ht = hat->hat_ht_cached) != NULL &&
540 			    stolen < cnt) {
541 				hat->hat_ht_cached = ht->ht_next;
542 				ht->ht_next = list;
543 				list = ht;
544 				++stolen;
545 			}
546 			hat_exit(hat);
547 
548 			/*
549 			 * Don't steal on first pass.
550 			 */
551 			if (pass == 0 || stolen == cnt)
552 				continue;
553 
554 			/*
555 			 * Search the active htables for one to steal.
556 			 * Start at a different hash bucket every time to
557 			 * help spread the pain of stealing.
558 			 */
559 			h = h_start = h_seed++ % hat->hat_num_hash;
560 			do {
561 				higher = NULL;
562 				HTABLE_ENTER(h);
563 				for (ht = hat->hat_ht_hash[h]; ht;
564 				    ht = ht->ht_next) {
565 
566 					/*
567 					 * Can we rule out reaping?
568 					 */
569 					if (ht->ht_busy != 0 ||
570 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
571 					    ht->ht_level > 0 ||
572 					    ht->ht_valid_cnt > threshold ||
573 					    ht->ht_lock_cnt != 0)
574 						continue;
575 
576 					/*
577 					 * Increment busy so the htable can't
578 					 * disappear. We drop the htable mutex
579 					 * to avoid deadlocks with
580 					 * hat_pageunload() and the hment mutex
581 					 * while we call hat_pte_unmap()
582 					 */
583 					++ht->ht_busy;
584 					HTABLE_EXIT(h);
585 
586 					/*
587 					 * Try stealing.
588 					 * - unload and invalidate all PTEs
589 					 */
590 					for (e = 0, va = ht->ht_vaddr;
591 					    e < HTABLE_NUM_PTES(ht) &&
592 					    ht->ht_valid_cnt > 0 &&
593 					    ht->ht_busy == 1 &&
594 					    ht->ht_lock_cnt == 0;
595 					    ++e, va += MMU_PAGESIZE) {
596 						pte = x86pte_get(ht, e);
597 						if (!PTE_ISVALID(pte))
598 							continue;
599 						hat_pte_unmap(ht, e,
600 						    HAT_UNLOAD, pte, NULL);
601 					}
602 
603 					/*
604 					 * Reacquire htable lock. If we didn't
605 					 * remove all mappings in the table,
606 					 * or another thread added a new mapping
607 					 * behind us, give up on this table.
608 					 */
609 					HTABLE_ENTER(h);
610 					if (ht->ht_busy != 1 ||
611 					    ht->ht_valid_cnt != 0 ||
612 					    ht->ht_lock_cnt != 0) {
613 						--ht->ht_busy;
614 						continue;
615 					}
616 
617 					/*
618 					 * Steal it and unlink the page table.
619 					 */
620 					higher = ht->ht_parent;
621 					unlink_ptp(higher, ht, ht->ht_vaddr);
622 
623 					/*
624 					 * remove from the hash list
625 					 */
626 					if (ht->ht_next)
627 						ht->ht_next->ht_prev =
628 						    ht->ht_prev;
629 
630 					if (ht->ht_prev) {
631 						ht->ht_prev->ht_next =
632 						    ht->ht_next;
633 					} else {
634 						ASSERT(hat->hat_ht_hash[h] ==
635 						    ht);
636 						hat->hat_ht_hash[h] =
637 						    ht->ht_next;
638 					}
639 
640 					/*
641 					 * Break to outer loop to release the
642 					 * higher (ht_parent) pagetable. This
643 					 * spreads out the pain caused by
644 					 * pagefaults.
645 					 */
646 					ht->ht_next = list;
647 					list = ht;
648 					++stolen;
649 					break;
650 				}
651 				HTABLE_EXIT(h);
652 				if (higher != NULL)
653 					htable_release(higher);
654 				if (++h == hat->hat_num_hash)
655 					h = 0;
656 			} while (stolen < cnt && h != h_start);
657 		}
658 	}
659 	atomic_add_32(&htable_dont_cache, -1);
660 	return (list);
661 }
662 
663 /*
664  * This is invoked from kmem when the system is low on memory.  We try
665  * to free hments, htables, and ptables to improve the memory situation.
666  */
667 /*ARGSUSED*/
668 static void
669 htable_reap(void *handle)
670 {
671 	uint_t		reap_cnt;
672 	htable_t	*list;
673 	htable_t	*ht;
674 
675 	HATSTAT_INC(hs_reap_attempts);
676 	if (!can_steal_post_boot)
677 		return;
678 
679 	/*
680 	 * Try to reap 5% of the page tables bounded by a maximum of
681 	 * 5% of physmem and a minimum of 10.
682 	 */
683 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
684 
685 	/*
686 	 * Let htable_steal() do the work, we just call htable_free()
687 	 */
688 	XPV_DISALLOW_MIGRATE();
689 	list = htable_steal(reap_cnt);
690 	XPV_ALLOW_MIGRATE();
691 	while ((ht = list) != NULL) {
692 		list = ht->ht_next;
693 		HATSTAT_INC(hs_reaped);
694 		htable_free(ht);
695 	}
696 
697 	/*
698 	 * Free up excess reserves
699 	 */
700 	htable_adjust_reserve();
701 	hment_adjust_reserve();
702 }
703 
704 /*
705  * Allocate an htable, stealing one or using the reserve if necessary
706  */
707 static htable_t *
708 htable_alloc(
709 	hat_t		*hat,
710 	uintptr_t	vaddr,
711 	level_t		level,
712 	htable_t	*shared)
713 {
714 	htable_t	*ht = NULL;
715 	uint_t		is_vlp;
716 	uint_t		is_bare = 0;
717 	uint_t		need_to_zero = 1;
718 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
719 
720 	if (level < 0 || level > TOP_LEVEL(hat))
721 		panic("htable_alloc(): level %d out of range\n", level);
722 
723 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
724 	if (is_vlp || shared != NULL)
725 		is_bare = 1;
726 
727 	/*
728 	 * First reuse a cached htable from the hat_ht_cached field, this
729 	 * avoids unnecessary trips through kmem/page allocators.
730 	 */
731 	if (hat->hat_ht_cached != NULL && !is_bare) {
732 		hat_enter(hat);
733 		ht = hat->hat_ht_cached;
734 		if (ht != NULL) {
735 			hat->hat_ht_cached = ht->ht_next;
736 			need_to_zero = 0;
737 			/* XX64 ASSERT() they're all zero somehow */
738 			ASSERT(ht->ht_pfn != PFN_INVALID);
739 		}
740 		hat_exit(hat);
741 	}
742 
743 	if (ht == NULL) {
744 		/*
745 		 * Allocate an htable, possibly refilling the reserves.
746 		 */
747 		if (USE_HAT_RESERVES()) {
748 			ht = htable_get_reserve();
749 		} else {
750 			/*
751 			 * Donate successful htable allocations to the reserve.
752 			 */
753 			for (;;) {
754 				ht = kmem_cache_alloc(htable_cache, kmflags);
755 				if (ht == NULL)
756 					break;
757 				ht->ht_pfn = PFN_INVALID;
758 				if (USE_HAT_RESERVES() ||
759 				    htable_reserve_cnt >= htable_reserve_amount)
760 					break;
761 				htable_put_reserve(ht);
762 			}
763 		}
764 
765 		/*
766 		 * allocate a page for the hardware page table if needed
767 		 */
768 		if (ht != NULL && !is_bare) {
769 			ht->ht_hat = hat;
770 			ht->ht_pfn = ptable_alloc();
771 			if (ht->ht_pfn == PFN_INVALID) {
772 				if (USE_HAT_RESERVES())
773 					htable_put_reserve(ht);
774 				else
775 					kmem_cache_free(htable_cache, ht);
776 				ht = NULL;
777 			}
778 		}
779 	}
780 
781 	/*
782 	 * If allocations failed, kick off a kmem_reap() and resort to
783 	 * htable steal(). We may spin here if the system is very low on
784 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
785 	 * can't free up anything, then we'll really get stuck here.
786 	 * That should only happen in a system where the administrator has
787 	 * misconfigured VM parameters via /etc/system.
788 	 */
789 	while (ht == NULL && can_steal_post_boot) {
790 		kmem_reap();
791 		ht = htable_steal(1);
792 		HATSTAT_INC(hs_steals);
793 
794 		/*
795 		 * If we stole for a bare htable, release the pagetable page.
796 		 */
797 		if (ht != NULL) {
798 			if (is_bare) {
799 				ptable_free(ht->ht_pfn);
800 				ht->ht_pfn = PFN_INVALID;
801 #if defined(__xpv) && defined(__amd64)
802 			/*
803 			 * make stolen page table writable again in kpm
804 			 */
805 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
806 			    PT_VALID | PT_WRITABLE) < 0) {
807 				panic("failure making kpm r/w pfn=0x%lx",
808 				    ht->ht_pfn);
809 #endif
810 			}
811 		}
812 	}
813 
814 	/*
815 	 * All attempts to allocate or steal failed. This should only happen
816 	 * if we run out of memory during boot, due perhaps to a huge
817 	 * boot_archive. At this point there's no way to continue.
818 	 */
819 	if (ht == NULL)
820 		panic("htable_alloc(): couldn't steal\n");
821 
822 #if defined(__amd64) && defined(__xpv)
823 	/*
824 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
825 	 * If this allocation fails, we'll resort to stealing.
826 	 * We use the stolen page indirectly, by freeing the
827 	 * stolen htable first.
828 	 */
829 	if (level == mmu.max_level) {
830 		for (;;) {
831 			htable_t *stolen;
832 
833 			hat->hat_user_ptable = ptable_alloc();
834 			if (hat->hat_user_ptable != PFN_INVALID)
835 				break;
836 			stolen = htable_steal(1);
837 			if (stolen == NULL)
838 				panic("2nd steal ptable failed\n");
839 			htable_free(stolen);
840 		}
841 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
842 		    MMU_PAGESIZE);
843 	}
844 #endif
845 
846 	/*
847 	 * Shared page tables have all entries locked and entries may not
848 	 * be added or deleted.
849 	 */
850 	ht->ht_flags = 0;
851 	if (shared != NULL) {
852 		ASSERT(shared->ht_valid_cnt > 0);
853 		ht->ht_flags |= HTABLE_SHARED_PFN;
854 		ht->ht_pfn = shared->ht_pfn;
855 		ht->ht_lock_cnt = 0;
856 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
857 		ht->ht_shares = shared;
858 		need_to_zero = 0;
859 	} else {
860 		ht->ht_shares = NULL;
861 		ht->ht_lock_cnt = 0;
862 		ht->ht_valid_cnt = 0;
863 	}
864 
865 	/*
866 	 * setup flags, etc. for VLP htables
867 	 */
868 	if (is_vlp) {
869 		ht->ht_flags |= HTABLE_VLP;
870 		ASSERT(ht->ht_pfn == PFN_INVALID);
871 		need_to_zero = 0;
872 	}
873 
874 	/*
875 	 * fill in the htable
876 	 */
877 	ht->ht_hat = hat;
878 	ht->ht_parent = NULL;
879 	ht->ht_vaddr = vaddr;
880 	ht->ht_level = level;
881 	ht->ht_busy = 1;
882 	ht->ht_next = NULL;
883 	ht->ht_prev = NULL;
884 
885 	/*
886 	 * Zero out any freshly allocated page table
887 	 */
888 	if (need_to_zero)
889 		x86pte_zero(ht, 0, mmu.ptes_per_table);
890 
891 #if defined(__amd64) && defined(__xpv)
892 	if (!is_bare && kpm_vbase) {
893 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
894 		if (level == mmu.max_level)
895 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
896 	}
897 #endif
898 
899 	return (ht);
900 }
901 
902 /*
903  * Free up an htable, either to a hat's cached list, the reserves or
904  * back to kmem.
905  */
906 static void
907 htable_free(htable_t *ht)
908 {
909 	hat_t *hat = ht->ht_hat;
910 
911 	/*
912 	 * If the process isn't exiting, cache the free htable in the hat
913 	 * structure. We always do this for the boot time reserve. We don't
914 	 * do this if the hat is exiting or we are stealing/reaping htables.
915 	 */
916 	if (hat != NULL &&
917 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
918 	    (use_boot_reserve ||
919 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
920 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
921 		ASSERT(ht->ht_pfn != PFN_INVALID);
922 		hat_enter(hat);
923 		ht->ht_next = hat->hat_ht_cached;
924 		hat->hat_ht_cached = ht;
925 		hat_exit(hat);
926 		return;
927 	}
928 
929 	/*
930 	 * If we have a hardware page table, free it.
931 	 * We don't free page tables that are accessed by sharing.
932 	 */
933 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
934 		ASSERT(ht->ht_pfn != PFN_INVALID);
935 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
936 		ptable_free(ht->ht_pfn);
937 #if defined(__amd64) && defined(__xpv)
938 		if (ht->ht_level == mmu.max_level) {
939 			ptable_free(hat->hat_user_ptable);
940 			hat->hat_user_ptable = PFN_INVALID;
941 		}
942 #endif
943 	}
944 	ht->ht_pfn = PFN_INVALID;
945 
946 	/*
947 	 * Free it or put into reserves.
948 	 */
949 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
950 		htable_put_reserve(ht);
951 	} else {
952 		kmem_cache_free(htable_cache, ht);
953 		htable_adjust_reserve();
954 	}
955 }
956 
957 
958 /*
959  * This is called when a hat is being destroyed or swapped out. We reap all
960  * the remaining htables in the hat cache. If destroying all left over
961  * htables are also destroyed.
962  *
963  * We also don't need to invalidate any of the PTPs nor do any demapping.
964  */
965 void
966 htable_purge_hat(hat_t *hat)
967 {
968 	htable_t *ht;
969 	int h;
970 
971 	/*
972 	 * Purge the htable cache if just reaping.
973 	 */
974 	if (!(hat->hat_flags & HAT_FREEING)) {
975 		atomic_add_32(&htable_dont_cache, 1);
976 		for (;;) {
977 			hat_enter(hat);
978 			ht = hat->hat_ht_cached;
979 			if (ht == NULL) {
980 				hat_exit(hat);
981 				break;
982 			}
983 			hat->hat_ht_cached = ht->ht_next;
984 			hat_exit(hat);
985 			htable_free(ht);
986 		}
987 		atomic_add_32(&htable_dont_cache, -1);
988 		return;
989 	}
990 
991 	/*
992 	 * if freeing, no locking is needed
993 	 */
994 	while ((ht = hat->hat_ht_cached) != NULL) {
995 		hat->hat_ht_cached = ht->ht_next;
996 		htable_free(ht);
997 	}
998 
999 	/*
1000 	 * walk thru the htable hash table and free all the htables in it.
1001 	 */
1002 	for (h = 0; h < hat->hat_num_hash; ++h) {
1003 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1004 			if (ht->ht_next)
1005 				ht->ht_next->ht_prev = ht->ht_prev;
1006 
1007 			if (ht->ht_prev) {
1008 				ht->ht_prev->ht_next = ht->ht_next;
1009 			} else {
1010 				ASSERT(hat->hat_ht_hash[h] == ht);
1011 				hat->hat_ht_hash[h] = ht->ht_next;
1012 			}
1013 			htable_free(ht);
1014 		}
1015 	}
1016 }
1017 
1018 /*
1019  * Unlink an entry for a table at vaddr and level out of the existing table
1020  * one level higher. We are always holding the HASH_ENTER() when doing this.
1021  */
1022 static void
1023 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1024 {
1025 	uint_t		entry = htable_va2entry(vaddr, higher);
1026 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1027 	x86pte_t	found;
1028 	hat_t		*hat = old->ht_hat;
1029 
1030 	ASSERT(higher->ht_busy > 0);
1031 	ASSERT(higher->ht_valid_cnt > 0);
1032 	ASSERT(old->ht_valid_cnt == 0);
1033 	found = x86pte_cas(higher, entry, expect, 0);
1034 #ifdef __xpv
1035 	/*
1036 	 * This is weird, but Xen apparently automatically unlinks empty
1037 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1038 	 */
1039 	if (found != expect && found != 0)
1040 #else
1041 	if (found != expect)
1042 #endif
1043 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1044 		    found, expect);
1045 
1046 	/*
1047 	 * When a top level VLP page table entry changes, we must issue
1048 	 * a reload of cr3 on all processors.
1049 	 *
1050 	 * If we don't need do do that, then we still have to INVLPG against
1051 	 * an address covered by the inner page table, as the latest processors
1052 	 * have TLB-like caches for non-leaf page table entries.
1053 	 */
1054 	if (!(hat->hat_flags & HAT_FREEING)) {
1055 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1056 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1057 	}
1058 
1059 	HTABLE_DEC(higher->ht_valid_cnt);
1060 }
1061 
1062 /*
1063  * Link an entry for a new table at vaddr and level into the existing table
1064  * one level higher. We are always holding the HASH_ENTER() when doing this.
1065  */
1066 static void
1067 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1068 {
1069 	uint_t		entry = htable_va2entry(vaddr, higher);
1070 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1071 	x86pte_t	found;
1072 
1073 	ASSERT(higher->ht_busy > 0);
1074 
1075 	ASSERT(new->ht_level != mmu.max_level);
1076 
1077 	HTABLE_INC(higher->ht_valid_cnt);
1078 
1079 	found = x86pte_cas(higher, entry, 0, newptp);
1080 	if ((found & ~PT_REF) != 0)
1081 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1082 
1083 	/*
1084 	 * When any top level VLP page table entry changes, we must issue
1085 	 * a reload of cr3 on all processors using it.
1086 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1087 	 */
1088 	if (
1089 #ifdef __i386
1090 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1091 #endif
1092 	    (higher->ht_flags & HTABLE_VLP))
1093 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1094 }
1095 
1096 /*
1097  * Release of hold on an htable. If this is the last use and the pagetable
1098  * is empty we may want to free it, then recursively look at the pagetable
1099  * above it. The recursion is handled by the outer while() loop.
1100  *
1101  * On the metal, during process exit, we don't bother unlinking the tables from
1102  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1103  * We can't do this on the hypervisor as we need the page table to be
1104  * implicitly unpinnned before it goes to the free page lists. This can't
1105  * happen unless we fully unlink it from the page table hierarchy.
1106  */
1107 void
1108 htable_release(htable_t *ht)
1109 {
1110 	uint_t		hashval;
1111 	htable_t	*shared;
1112 	htable_t	*higher;
1113 	hat_t		*hat;
1114 	uintptr_t	va;
1115 	level_t		level;
1116 
1117 	while (ht != NULL) {
1118 		shared = NULL;
1119 		for (;;) {
1120 			hat = ht->ht_hat;
1121 			va = ht->ht_vaddr;
1122 			level = ht->ht_level;
1123 			hashval = HTABLE_HASH(hat, va, level);
1124 
1125 			/*
1126 			 * The common case is that this isn't the last use of
1127 			 * an htable so we don't want to free the htable.
1128 			 */
1129 			HTABLE_ENTER(hashval);
1130 			ASSERT(ht->ht_valid_cnt >= 0);
1131 			ASSERT(ht->ht_busy > 0);
1132 			if (ht->ht_valid_cnt > 0)
1133 				break;
1134 			if (ht->ht_busy > 1)
1135 				break;
1136 			ASSERT(ht->ht_lock_cnt == 0);
1137 
1138 #if !defined(__xpv)
1139 			/*
1140 			 * we always release empty shared htables
1141 			 */
1142 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1143 
1144 				/*
1145 				 * don't release if in address space tear down
1146 				 */
1147 				if (hat->hat_flags & HAT_FREEING)
1148 					break;
1149 
1150 				/*
1151 				 * At and above max_page_level, free if it's for
1152 				 * a boot-time kernel mapping below kernelbase.
1153 				 */
1154 				if (level >= mmu.max_page_level &&
1155 				    (hat != kas.a_hat || va >= kernelbase))
1156 					break;
1157 			}
1158 #endif /* __xpv */
1159 
1160 			/*
1161 			 * Remember if we destroy an htable that shares its PFN
1162 			 * from elsewhere.
1163 			 */
1164 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1165 				ASSERT(shared == NULL);
1166 				shared = ht->ht_shares;
1167 				HATSTAT_INC(hs_htable_unshared);
1168 			}
1169 
1170 			/*
1171 			 * Handle release of a table and freeing the htable_t.
1172 			 * Unlink it from the table higher (ie. ht_parent).
1173 			 */
1174 			ASSERT(ht->ht_lock_cnt == 0);
1175 			higher = ht->ht_parent;
1176 			ASSERT(higher != NULL);
1177 
1178 			/*
1179 			 * Unlink the pagetable.
1180 			 */
1181 			unlink_ptp(higher, ht, va);
1182 
1183 			/*
1184 			 * remove this htable from its hash list
1185 			 */
1186 			if (ht->ht_next)
1187 				ht->ht_next->ht_prev = ht->ht_prev;
1188 
1189 			if (ht->ht_prev) {
1190 				ht->ht_prev->ht_next = ht->ht_next;
1191 			} else {
1192 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1193 				hat->hat_ht_hash[hashval] = ht->ht_next;
1194 			}
1195 			HTABLE_EXIT(hashval);
1196 			htable_free(ht);
1197 			ht = higher;
1198 		}
1199 
1200 		ASSERT(ht->ht_busy >= 1);
1201 		--ht->ht_busy;
1202 		HTABLE_EXIT(hashval);
1203 
1204 		/*
1205 		 * If we released a shared htable, do a release on the htable
1206 		 * from which it shared
1207 		 */
1208 		ht = shared;
1209 	}
1210 }
1211 
1212 /*
1213  * Find the htable for the pagetable at the given level for the given address.
1214  * If found acquires a hold that eventually needs to be htable_release()d
1215  */
1216 htable_t *
1217 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1218 {
1219 	uintptr_t	base;
1220 	uint_t		hashval;
1221 	htable_t	*ht = NULL;
1222 
1223 	ASSERT(level >= 0);
1224 	ASSERT(level <= TOP_LEVEL(hat));
1225 
1226 	if (level == TOP_LEVEL(hat)) {
1227 #if defined(__amd64)
1228 		/*
1229 		 * 32 bit address spaces on 64 bit kernels need to check
1230 		 * for overflow of the 32 bit address space
1231 		 */
1232 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1233 			return (NULL);
1234 #endif
1235 		base = 0;
1236 	} else {
1237 		base = vaddr & LEVEL_MASK(level + 1);
1238 	}
1239 
1240 	hashval = HTABLE_HASH(hat, base, level);
1241 	HTABLE_ENTER(hashval);
1242 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1243 		if (ht->ht_hat == hat &&
1244 		    ht->ht_vaddr == base &&
1245 		    ht->ht_level == level)
1246 			break;
1247 	}
1248 	if (ht)
1249 		++ht->ht_busy;
1250 
1251 	HTABLE_EXIT(hashval);
1252 	return (ht);
1253 }
1254 
1255 /*
1256  * Acquires a hold on a known htable (from a locked hment entry).
1257  */
1258 void
1259 htable_acquire(htable_t *ht)
1260 {
1261 	hat_t		*hat = ht->ht_hat;
1262 	level_t		level = ht->ht_level;
1263 	uintptr_t	base = ht->ht_vaddr;
1264 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1265 
1266 	HTABLE_ENTER(hashval);
1267 #ifdef DEBUG
1268 	/*
1269 	 * make sure the htable is there
1270 	 */
1271 	{
1272 		htable_t	*h;
1273 
1274 		for (h = hat->hat_ht_hash[hashval];
1275 		    h && h != ht;
1276 		    h = h->ht_next)
1277 			;
1278 		ASSERT(h == ht);
1279 	}
1280 #endif /* DEBUG */
1281 	++ht->ht_busy;
1282 	HTABLE_EXIT(hashval);
1283 }
1284 
1285 /*
1286  * Find the htable for the pagetable at the given level for the given address.
1287  * If found acquires a hold that eventually needs to be htable_release()d
1288  * If not found the table is created.
1289  *
1290  * Since we can't hold a hash table mutex during allocation, we have to
1291  * drop it and redo the search on a create. Then we may have to free the newly
1292  * allocated htable if another thread raced in and created it ahead of us.
1293  */
1294 htable_t *
1295 htable_create(
1296 	hat_t		*hat,
1297 	uintptr_t	vaddr,
1298 	level_t		level,
1299 	htable_t	*shared)
1300 {
1301 	uint_t		h;
1302 	level_t		l;
1303 	uintptr_t	base;
1304 	htable_t	*ht;
1305 	htable_t	*higher = NULL;
1306 	htable_t	*new = NULL;
1307 
1308 	if (level < 0 || level > TOP_LEVEL(hat))
1309 		panic("htable_create(): level %d out of range\n", level);
1310 
1311 	/*
1312 	 * Create the page tables in top down order.
1313 	 */
1314 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1315 		new = NULL;
1316 		if (l == TOP_LEVEL(hat))
1317 			base = 0;
1318 		else
1319 			base = vaddr & LEVEL_MASK(l + 1);
1320 
1321 		h = HTABLE_HASH(hat, base, l);
1322 try_again:
1323 		/*
1324 		 * look up the htable at this level
1325 		 */
1326 		HTABLE_ENTER(h);
1327 		if (l == TOP_LEVEL(hat)) {
1328 			ht = hat->hat_htable;
1329 		} else {
1330 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1331 				ASSERT(ht->ht_hat == hat);
1332 				if (ht->ht_vaddr == base &&
1333 				    ht->ht_level == l)
1334 					break;
1335 			}
1336 		}
1337 
1338 		/*
1339 		 * if we found the htable, increment its busy cnt
1340 		 * and if we had allocated a new htable, free it.
1341 		 */
1342 		if (ht != NULL) {
1343 			/*
1344 			 * If we find a pre-existing shared table, it must
1345 			 * share from the same place.
1346 			 */
1347 			if (l == level && shared && ht->ht_shares &&
1348 			    ht->ht_shares != shared) {
1349 				panic("htable shared from wrong place "
1350 				    "found htable=%p shared=%p",
1351 				    (void *)ht, (void *)shared);
1352 			}
1353 			++ht->ht_busy;
1354 			HTABLE_EXIT(h);
1355 			if (new)
1356 				htable_free(new);
1357 			if (higher != NULL)
1358 				htable_release(higher);
1359 			higher = ht;
1360 
1361 		/*
1362 		 * if we didn't find it on the first search
1363 		 * allocate a new one and search again
1364 		 */
1365 		} else if (new == NULL) {
1366 			HTABLE_EXIT(h);
1367 			new = htable_alloc(hat, base, l,
1368 			    l == level ? shared : NULL);
1369 			goto try_again;
1370 
1371 		/*
1372 		 * 2nd search and still not there, use "new" table
1373 		 * Link new table into higher, when not at top level.
1374 		 */
1375 		} else {
1376 			ht = new;
1377 			if (higher != NULL) {
1378 				link_ptp(higher, ht, base);
1379 				ht->ht_parent = higher;
1380 			}
1381 			ht->ht_next = hat->hat_ht_hash[h];
1382 			ASSERT(ht->ht_prev == NULL);
1383 			if (hat->hat_ht_hash[h])
1384 				hat->hat_ht_hash[h]->ht_prev = ht;
1385 			hat->hat_ht_hash[h] = ht;
1386 			HTABLE_EXIT(h);
1387 
1388 			/*
1389 			 * Note we don't do htable_release(higher).
1390 			 * That happens recursively when "new" is removed by
1391 			 * htable_release() or htable_steal().
1392 			 */
1393 			higher = ht;
1394 
1395 			/*
1396 			 * If we just created a new shared page table we
1397 			 * increment the shared htable's busy count, so that
1398 			 * it can't be the victim of a steal even if it's empty.
1399 			 */
1400 			if (l == level && shared) {
1401 				(void) htable_lookup(shared->ht_hat,
1402 				    shared->ht_vaddr, shared->ht_level);
1403 				HATSTAT_INC(hs_htable_shared);
1404 			}
1405 		}
1406 	}
1407 
1408 	return (ht);
1409 }
1410 
1411 /*
1412  * Inherit initial pagetables from the boot program. On the 64-bit
1413  * hypervisor we also temporarily mark the p_index field of page table
1414  * pages, so we know not to try making them writable in seg_kpm.
1415  */
1416 void
1417 htable_attach(
1418 	hat_t *hat,
1419 	uintptr_t base,
1420 	level_t level,
1421 	htable_t *parent,
1422 	pfn_t pfn)
1423 {
1424 	htable_t	*ht;
1425 	uint_t		h;
1426 	uint_t		i;
1427 	x86pte_t	pte;
1428 	x86pte_t	*ptep;
1429 	page_t		*pp;
1430 	extern page_t	*boot_claim_page(pfn_t);
1431 
1432 	ht = htable_get_reserve();
1433 	if (level == mmu.max_level)
1434 		kas.a_hat->hat_htable = ht;
1435 	ht->ht_hat = hat;
1436 	ht->ht_parent = parent;
1437 	ht->ht_vaddr = base;
1438 	ht->ht_level = level;
1439 	ht->ht_busy = 1;
1440 	ht->ht_next = NULL;
1441 	ht->ht_prev = NULL;
1442 	ht->ht_flags = 0;
1443 	ht->ht_pfn = pfn;
1444 	ht->ht_lock_cnt = 0;
1445 	ht->ht_valid_cnt = 0;
1446 	if (parent != NULL)
1447 		++parent->ht_busy;
1448 
1449 	h = HTABLE_HASH(hat, base, level);
1450 	HTABLE_ENTER(h);
1451 	ht->ht_next = hat->hat_ht_hash[h];
1452 	ASSERT(ht->ht_prev == NULL);
1453 	if (hat->hat_ht_hash[h])
1454 		hat->hat_ht_hash[h]->ht_prev = ht;
1455 	hat->hat_ht_hash[h] = ht;
1456 	HTABLE_EXIT(h);
1457 
1458 	/*
1459 	 * make sure the page table physical page is not FREE
1460 	 */
1461 	if (page_resv(1, KM_NOSLEEP) == 0)
1462 		panic("page_resv() failed in ptable alloc");
1463 
1464 	pp = boot_claim_page(pfn);
1465 	ASSERT(pp != NULL);
1466 	page_downgrade(pp);
1467 #if defined(__xpv) && defined(__amd64)
1468 	/*
1469 	 * Record in the page_t that is a pagetable for segkpm setup.
1470 	 */
1471 	if (kpm_vbase)
1472 		pp->p_index = 1;
1473 #endif
1474 
1475 	/*
1476 	 * Count valid mappings and recursively attach lower level pagetables.
1477 	 */
1478 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1479 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1480 		if (mmu.pae_hat)
1481 			pte = ptep[i];
1482 		else
1483 			pte = ((x86pte32_t *)ptep)[i];
1484 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1485 			++ht->ht_valid_cnt;
1486 			if (!PTE_ISPAGE(pte, level)) {
1487 				htable_attach(hat, base, level - 1,
1488 				    ht, PTE2PFN(pte, level));
1489 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1490 			}
1491 		}
1492 		base += LEVEL_SIZE(level);
1493 		if (base == mmu.hole_start)
1494 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1495 	}
1496 
1497 	/*
1498 	 * As long as all the mappings we had were below kernel base
1499 	 * we can release the htable.
1500 	 */
1501 	if (base < kernelbase)
1502 		htable_release(ht);
1503 }
1504 
1505 /*
1506  * Walk through a given htable looking for the first valid entry.  This
1507  * routine takes both a starting and ending address.  The starting address
1508  * is required to be within the htable provided by the caller, but there is
1509  * no such restriction on the ending address.
1510  *
1511  * If the routine finds a valid entry in the htable (at or beyond the
1512  * starting address), the PTE (and its address) will be returned.
1513  * This PTE may correspond to either a page or a pagetable - it is the
1514  * caller's responsibility to determine which.  If no valid entry is
1515  * found, 0 (and invalid PTE) and the next unexamined address will be
1516  * returned.
1517  *
1518  * The loop has been carefully coded for optimization.
1519  */
1520 static x86pte_t
1521 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1522 {
1523 	uint_t e;
1524 	x86pte_t found_pte = (x86pte_t)0;
1525 	caddr_t pte_ptr;
1526 	caddr_t end_pte_ptr;
1527 	int l = ht->ht_level;
1528 	uintptr_t va = *vap & LEVEL_MASK(l);
1529 	size_t pgsize = LEVEL_SIZE(l);
1530 
1531 	ASSERT(va >= ht->ht_vaddr);
1532 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1533 
1534 	/*
1535 	 * Compute the starting index and ending virtual address
1536 	 */
1537 	e = htable_va2entry(va, ht);
1538 
1539 	/*
1540 	 * The following page table scan code knows that the valid
1541 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1542 	 */
1543 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1544 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1545 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1546 	while (!PTE_ISVALID(*pte_ptr)) {
1547 		va += pgsize;
1548 		if (va >= eaddr)
1549 			break;
1550 		pte_ptr += mmu.pte_size;
1551 		ASSERT(pte_ptr <= end_pte_ptr);
1552 		if (pte_ptr == end_pte_ptr)
1553 			break;
1554 	}
1555 
1556 	/*
1557 	 * if we found a valid PTE, load the entire PTE
1558 	 */
1559 	if (va < eaddr && pte_ptr != end_pte_ptr)
1560 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1561 	x86pte_release_pagetable(ht);
1562 
1563 #if defined(__amd64)
1564 	/*
1565 	 * deal with VA hole on amd64
1566 	 */
1567 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1568 		va = mmu.hole_end + va - mmu.hole_start;
1569 #endif /* __amd64 */
1570 
1571 	*vap = va;
1572 	return (found_pte);
1573 }
1574 
1575 /*
1576  * Find the address and htable for the first populated translation at or
1577  * above the given virtual address.  The caller may also specify an upper
1578  * limit to the address range to search.  Uses level information to quickly
1579  * skip unpopulated sections of virtual address spaces.
1580  *
1581  * If not found returns NULL. When found, returns the htable and virt addr
1582  * and has a hold on the htable.
1583  */
1584 x86pte_t
1585 htable_walk(
1586 	struct hat *hat,
1587 	htable_t **htp,
1588 	uintptr_t *vaddr,
1589 	uintptr_t eaddr)
1590 {
1591 	uintptr_t va = *vaddr;
1592 	htable_t *ht;
1593 	htable_t *prev = *htp;
1594 	level_t l;
1595 	level_t max_mapped_level;
1596 	x86pte_t pte;
1597 
1598 	ASSERT(eaddr > va);
1599 
1600 	/*
1601 	 * If this is a user address, then we know we need not look beyond
1602 	 * kernelbase.
1603 	 */
1604 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1605 	    eaddr == HTABLE_WALK_TO_END);
1606 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1607 		eaddr = kernelbase;
1608 
1609 	/*
1610 	 * If we're coming in with a previous page table, search it first
1611 	 * without doing an htable_lookup(), this should be frequent.
1612 	 */
1613 	if (prev) {
1614 		ASSERT(prev->ht_busy > 0);
1615 		ASSERT(prev->ht_vaddr <= va);
1616 		l = prev->ht_level;
1617 		if (va <= HTABLE_LAST_PAGE(prev)) {
1618 			pte = htable_scan(prev, &va, eaddr);
1619 
1620 			if (PTE_ISPAGE(pte, l)) {
1621 				*vaddr = va;
1622 				*htp = prev;
1623 				return (pte);
1624 			}
1625 		}
1626 
1627 		/*
1628 		 * We found nothing in the htable provided by the caller,
1629 		 * so fall through and do the full search
1630 		 */
1631 		htable_release(prev);
1632 	}
1633 
1634 	/*
1635 	 * Find the level of the largest pagesize used by this HAT.
1636 	 */
1637 	if (hat->hat_ism_pgcnt > 0) {
1638 		max_mapped_level = mmu.umax_page_level;
1639 	} else {
1640 		max_mapped_level = 0;
1641 		for (l = 1; l <= mmu.max_page_level; ++l)
1642 			if (hat->hat_pages_mapped[l] != 0)
1643 				max_mapped_level = l;
1644 	}
1645 
1646 	while (va < eaddr && va >= *vaddr) {
1647 		ASSERT(!IN_VA_HOLE(va));
1648 
1649 		/*
1650 		 *  Find lowest table with any entry for given address.
1651 		 */
1652 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1653 			ht = htable_lookup(hat, va, l);
1654 			if (ht != NULL) {
1655 				pte = htable_scan(ht, &va, eaddr);
1656 				if (PTE_ISPAGE(pte, l)) {
1657 					*vaddr = va;
1658 					*htp = ht;
1659 					return (pte);
1660 				}
1661 				htable_release(ht);
1662 				break;
1663 			}
1664 
1665 			/*
1666 			 * No htable at this level for the address. If there
1667 			 * is no larger page size that could cover it, we can
1668 			 * skip right to the start of the next page table.
1669 			 */
1670 			ASSERT(l < TOP_LEVEL(hat));
1671 			if (l >= max_mapped_level) {
1672 				va = NEXT_ENTRY_VA(va, l + 1);
1673 				if (va >= eaddr)
1674 					break;
1675 			}
1676 		}
1677 	}
1678 
1679 	*vaddr = 0;
1680 	*htp = NULL;
1681 	return (0);
1682 }
1683 
1684 /*
1685  * Find the htable and page table entry index of the given virtual address
1686  * with pagesize at or below given level.
1687  * If not found returns NULL. When found, returns the htable, sets
1688  * entry, and has a hold on the htable.
1689  */
1690 htable_t *
1691 htable_getpte(
1692 	struct hat *hat,
1693 	uintptr_t vaddr,
1694 	uint_t *entry,
1695 	x86pte_t *pte,
1696 	level_t level)
1697 {
1698 	htable_t	*ht;
1699 	level_t		l;
1700 	uint_t		e;
1701 
1702 	ASSERT(level <= mmu.max_page_level);
1703 
1704 	for (l = 0; l <= level; ++l) {
1705 		ht = htable_lookup(hat, vaddr, l);
1706 		if (ht == NULL)
1707 			continue;
1708 		e = htable_va2entry(vaddr, ht);
1709 		if (entry != NULL)
1710 			*entry = e;
1711 		if (pte != NULL)
1712 			*pte = x86pte_get(ht, e);
1713 		return (ht);
1714 	}
1715 	return (NULL);
1716 }
1717 
1718 /*
1719  * Find the htable and page table entry index of the given virtual address.
1720  * There must be a valid page mapped at the given address.
1721  * If not found returns NULL. When found, returns the htable, sets
1722  * entry, and has a hold on the htable.
1723  */
1724 htable_t *
1725 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1726 {
1727 	htable_t	*ht;
1728 	uint_t		e;
1729 	x86pte_t	pte;
1730 
1731 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1732 	if (ht == NULL)
1733 		return (NULL);
1734 
1735 	if (entry)
1736 		*entry = e;
1737 
1738 	if (PTE_ISPAGE(pte, ht->ht_level))
1739 		return (ht);
1740 	htable_release(ht);
1741 	return (NULL);
1742 }
1743 
1744 
1745 void
1746 htable_init()
1747 {
1748 	/*
1749 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1750 	 * kernels.
1751 	 */
1752 #if defined(__amd64)
1753 	int	kmem_flags = KMC_NOHASH;
1754 #elif defined(__i386)
1755 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1756 #endif
1757 
1758 	/*
1759 	 * initialize kmem caches
1760 	 */
1761 	htable_cache = kmem_cache_create("htable_t",
1762 	    sizeof (htable_t), 0, NULL, NULL,
1763 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1764 }
1765 
1766 /*
1767  * get the pte index for the virtual address in the given htable's pagetable
1768  */
1769 uint_t
1770 htable_va2entry(uintptr_t va, htable_t *ht)
1771 {
1772 	level_t	l = ht->ht_level;
1773 
1774 	ASSERT(va >= ht->ht_vaddr);
1775 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1776 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1777 }
1778 
1779 /*
1780  * Given an htable and the index of a pte in it, return the virtual address
1781  * of the page.
1782  */
1783 uintptr_t
1784 htable_e2va(htable_t *ht, uint_t entry)
1785 {
1786 	level_t	l = ht->ht_level;
1787 	uintptr_t va;
1788 
1789 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1790 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1791 
1792 	/*
1793 	 * Need to skip over any VA hole in top level table
1794 	 */
1795 #if defined(__amd64)
1796 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1797 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1798 #endif
1799 
1800 	return (va);
1801 }
1802 
1803 /*
1804  * The code uses compare and swap instructions to read/write PTE's to
1805  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1806  * will naturally be atomic.
1807  *
1808  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1809  * are used to ensure that an interrupt won't overwrite a temporary mapping
1810  * while it's in use. If an interrupt thread tries to access a PTE, it will
1811  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1812  */
1813 void
1814 x86pte_cpu_init(cpu_t *cpu)
1815 {
1816 	struct hat_cpu_info *hci;
1817 
1818 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1819 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1820 	cpu->cpu_hat_info = hci;
1821 }
1822 
1823 void
1824 x86pte_cpu_fini(cpu_t *cpu)
1825 {
1826 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1827 
1828 	kmem_free(hci, sizeof (*hci));
1829 	cpu->cpu_hat_info = NULL;
1830 }
1831 
1832 #ifdef __i386
1833 /*
1834  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1835  */
1836 x86pte_t
1837 get_pte64(x86pte_t *ptr)
1838 {
1839 	volatile uint32_t *p = (uint32_t *)ptr;
1840 	x86pte_t t;
1841 
1842 	ASSERT(mmu.pae_hat != 0);
1843 	for (;;) {
1844 		t = p[0];
1845 		t |= (uint64_t)p[1] << 32;
1846 		if ((t & 0xffffffff) == p[0])
1847 			return (t);
1848 	}
1849 }
1850 #endif /* __i386 */
1851 
1852 /*
1853  * Disable preemption and establish a mapping to the pagetable with the
1854  * given pfn. This is optimized for there case where it's the same
1855  * pfn as we last used referenced from this CPU.
1856  */
1857 static x86pte_t *
1858 x86pte_access_pagetable(htable_t *ht, uint_t index)
1859 {
1860 	/*
1861 	 * VLP pagetables are contained in the hat_t
1862 	 */
1863 	if (ht->ht_flags & HTABLE_VLP)
1864 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1865 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1866 }
1867 
1868 /*
1869  * map the given pfn into the page table window.
1870  */
1871 /*ARGSUSED*/
1872 x86pte_t *
1873 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1874 {
1875 	x86pte_t *pteptr;
1876 	x86pte_t pte = 0;
1877 	x86pte_t newpte;
1878 	int x;
1879 
1880 	ASSERT(pfn != PFN_INVALID);
1881 
1882 	if (!khat_running) {
1883 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1884 		return (PT_INDEX_PTR(va, index));
1885 	}
1886 
1887 	/*
1888 	 * If kpm is available, use it.
1889 	 */
1890 	if (kpm_vbase)
1891 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1892 
1893 	/*
1894 	 * Disable preemption and grab the CPU's hci_mutex
1895 	 */
1896 	kpreempt_disable();
1897 	ASSERT(CPU->cpu_hat_info != NULL);
1898 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1899 	x = PWIN_TABLE(CPU->cpu_id);
1900 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1901 #ifndef __xpv
1902 	if (mmu.pae_hat)
1903 		pte = *pteptr;
1904 	else
1905 		pte = *(x86pte32_t *)pteptr;
1906 #endif
1907 
1908 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1909 
1910 	/*
1911 	 * For hardware we can use a writable mapping.
1912 	 */
1913 #ifdef __xpv
1914 	if (IN_XPV_PANIC())
1915 #endif
1916 		newpte |= PT_WRITABLE;
1917 
1918 	if (!PTE_EQUIV(newpte, pte)) {
1919 
1920 #ifdef __xpv
1921 		if (!IN_XPV_PANIC()) {
1922 			xen_map(newpte, PWIN_VA(x));
1923 		} else
1924 #endif
1925 		{
1926 			XPV_ALLOW_PAGETABLE_UPDATES();
1927 			if (mmu.pae_hat)
1928 				*pteptr = newpte;
1929 			else
1930 				*(x86pte32_t *)pteptr = newpte;
1931 			XPV_DISALLOW_PAGETABLE_UPDATES();
1932 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1933 		}
1934 	}
1935 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1936 }
1937 
1938 /*
1939  * Release access to a page table.
1940  */
1941 static void
1942 x86pte_release_pagetable(htable_t *ht)
1943 {
1944 	/*
1945 	 * nothing to do for VLP htables
1946 	 */
1947 	if (ht->ht_flags & HTABLE_VLP)
1948 		return;
1949 
1950 	x86pte_mapout();
1951 }
1952 
1953 void
1954 x86pte_mapout(void)
1955 {
1956 	if (kpm_vbase != NULL || !khat_running)
1957 		return;
1958 
1959 	/*
1960 	 * Drop the CPU's hci_mutex and restore preemption.
1961 	 */
1962 #ifdef __xpv
1963 	if (!IN_XPV_PANIC()) {
1964 		uintptr_t va;
1965 
1966 		/*
1967 		 * We need to always clear the mapping in case a page
1968 		 * that was once a page table page is ballooned out.
1969 		 */
1970 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
1971 		(void) HYPERVISOR_update_va_mapping(va, 0,
1972 		    UVMF_INVLPG | UVMF_LOCAL);
1973 	}
1974 #endif
1975 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1976 	kpreempt_enable();
1977 }
1978 
1979 /*
1980  * Atomic retrieval of a pagetable entry
1981  */
1982 x86pte_t
1983 x86pte_get(htable_t *ht, uint_t entry)
1984 {
1985 	x86pte_t	pte;
1986 	x86pte_t	*ptep;
1987 
1988 	/*
1989 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
1990 	 */
1991 	ASSERT(entry < mmu.ptes_per_table);
1992 	ptep = x86pte_access_pagetable(ht, entry);
1993 	pte = GET_PTE(ptep);
1994 	x86pte_release_pagetable(ht);
1995 	return (pte);
1996 }
1997 
1998 /*
1999  * Atomic unconditional set of a page table entry, it returns the previous
2000  * value. For pre-existing mappings if the PFN changes, then we don't care
2001  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2002  * the MOD/REF bits unchanged.
2003  *
2004  * If asked to overwrite a link to a lower page table with a large page
2005  * mapping, this routine returns the special value of LPAGE_ERROR. This
2006  * allows the upper HAT layers to retry with a smaller mapping size.
2007  */
2008 x86pte_t
2009 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2010 {
2011 	x86pte_t	old;
2012 	x86pte_t	prev;
2013 	x86pte_t	*ptep;
2014 	level_t		l = ht->ht_level;
2015 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2016 	x86pte_t	n;
2017 	uintptr_t	addr = htable_e2va(ht, entry);
2018 	hat_t		*hat = ht->ht_hat;
2019 
2020 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2021 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2022 	if (ptr == NULL)
2023 		ptep = x86pte_access_pagetable(ht, entry);
2024 	else
2025 		ptep = ptr;
2026 
2027 	/*
2028 	 * Install the new PTE. If remapping the same PFN, then
2029 	 * copy existing REF/MOD bits to new mapping.
2030 	 */
2031 	do {
2032 		prev = GET_PTE(ptep);
2033 		n = new;
2034 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2035 			n |= prev & (PT_REF | PT_MOD);
2036 
2037 		/*
2038 		 * Another thread may have installed this mapping already,
2039 		 * flush the local TLB and be done.
2040 		 */
2041 		if (prev == n) {
2042 			old = new;
2043 #ifdef __xpv
2044 			if (!IN_XPV_PANIC())
2045 				xen_flush_va((caddr_t)addr);
2046 			else
2047 #endif
2048 				mmu_tlbflush_entry((caddr_t)addr);
2049 			goto done;
2050 		}
2051 
2052 		/*
2053 		 * Detect if we have a collision of installing a large
2054 		 * page mapping where there already is a lower page table.
2055 		 */
2056 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2057 			old = LPAGE_ERROR;
2058 			goto done;
2059 		}
2060 
2061 		XPV_ALLOW_PAGETABLE_UPDATES();
2062 		old = CAS_PTE(ptep, prev, n);
2063 		XPV_DISALLOW_PAGETABLE_UPDATES();
2064 	} while (old != prev);
2065 
2066 	/*
2067 	 * Do a TLB demap if needed, ie. the old pte was valid.
2068 	 *
2069 	 * Note that a stale TLB writeback to the PTE here either can't happen
2070 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2071 	 * mappings, but they were created with REF and MOD already set, so
2072 	 * no stale writeback will happen.
2073 	 *
2074 	 * Segmap is the only place where remaps happen on the same pfn and for
2075 	 * that we want to preserve the stale REF/MOD bits.
2076 	 */
2077 	if (old & PT_REF)
2078 		hat_tlb_inval(hat, addr);
2079 
2080 done:
2081 	if (ptr == NULL)
2082 		x86pte_release_pagetable(ht);
2083 	return (old);
2084 }
2085 
2086 /*
2087  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2088  * This is used for links between pagetables of different levels.
2089  * Note we always create these links with dirty/access set, so they should
2090  * never change.
2091  */
2092 x86pte_t
2093 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2094 {
2095 	x86pte_t	pte;
2096 	x86pte_t	*ptep;
2097 #ifdef __xpv
2098 	/*
2099 	 * We can't use writable pagetables for upper level tables, so fake it.
2100 	 */
2101 	mmu_update_t t[2];
2102 	int cnt = 1;
2103 	int count;
2104 	maddr_t ma;
2105 
2106 	if (!IN_XPV_PANIC()) {
2107 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2108 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2109 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2110 		t[0].val = new;
2111 
2112 #if defined(__amd64)
2113 		/*
2114 		 * On the 64-bit hypervisor we need to maintain the user mode
2115 		 * top page table too.
2116 		 */
2117 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2118 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2119 			    ht->ht_hat->hat_user_ptable), entry));
2120 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2121 			t[1].val = new;
2122 			++cnt;
2123 		}
2124 #endif	/* __amd64 */
2125 
2126 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2127 			panic("HYPERVISOR_mmu_update() failed");
2128 		ASSERT(count == cnt);
2129 		return (old);
2130 	}
2131 #endif
2132 	ptep = x86pte_access_pagetable(ht, entry);
2133 	XPV_ALLOW_PAGETABLE_UPDATES();
2134 	pte = CAS_PTE(ptep, old, new);
2135 	XPV_DISALLOW_PAGETABLE_UPDATES();
2136 	x86pte_release_pagetable(ht);
2137 	return (pte);
2138 }
2139 
2140 /*
2141  * Invalidate a page table entry as long as it currently maps something that
2142  * matches the value determined by expect.
2143  *
2144  * Also invalidates any TLB entries and returns the previous value of the PTE.
2145  */
2146 x86pte_t
2147 x86pte_inval(
2148 	htable_t *ht,
2149 	uint_t entry,
2150 	x86pte_t expect,
2151 	x86pte_t *pte_ptr)
2152 {
2153 	x86pte_t	*ptep;
2154 	x86pte_t	oldpte;
2155 	x86pte_t	found;
2156 
2157 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2158 	ASSERT(ht->ht_level <= mmu.max_page_level);
2159 
2160 	if (pte_ptr != NULL)
2161 		ptep = pte_ptr;
2162 	else
2163 		ptep = x86pte_access_pagetable(ht, entry);
2164 
2165 #if defined(__xpv)
2166 	/*
2167 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2168 	 * with anything else.
2169 	 */
2170 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2171 		int count;
2172 		mmu_update_t t[1];
2173 		maddr_t ma;
2174 
2175 		oldpte = GET_PTE(ptep);
2176 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2177 			goto done;
2178 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2179 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2180 		t[0].val = 0;
2181 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2182 			panic("HYPERVISOR_mmu_update() failed");
2183 		ASSERT(count == 1);
2184 		goto done;
2185 	}
2186 #endif /* __xpv */
2187 
2188 	/*
2189 	 * Note that the loop is needed to handle changes due to h/w updating
2190 	 * of PT_MOD/PT_REF.
2191 	 */
2192 	do {
2193 		oldpte = GET_PTE(ptep);
2194 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2195 			goto done;
2196 		XPV_ALLOW_PAGETABLE_UPDATES();
2197 		found = CAS_PTE(ptep, oldpte, 0);
2198 		XPV_DISALLOW_PAGETABLE_UPDATES();
2199 	} while (found != oldpte);
2200 	if (oldpte & (PT_REF | PT_MOD))
2201 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2202 
2203 done:
2204 	if (pte_ptr == NULL)
2205 		x86pte_release_pagetable(ht);
2206 	return (oldpte);
2207 }
2208 
2209 /*
2210  * Change a page table entry af it currently matches the value in expect.
2211  */
2212 x86pte_t
2213 x86pte_update(
2214 	htable_t *ht,
2215 	uint_t entry,
2216 	x86pte_t expect,
2217 	x86pte_t new)
2218 {
2219 	x86pte_t	*ptep;
2220 	x86pte_t	found;
2221 
2222 	ASSERT(new != 0);
2223 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2224 	ASSERT(ht->ht_level <= mmu.max_page_level);
2225 
2226 	ptep = x86pte_access_pagetable(ht, entry);
2227 	XPV_ALLOW_PAGETABLE_UPDATES();
2228 	found = CAS_PTE(ptep, expect, new);
2229 	XPV_DISALLOW_PAGETABLE_UPDATES();
2230 	if (found == expect) {
2231 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2232 
2233 		/*
2234 		 * When removing write permission *and* clearing the
2235 		 * MOD bit, check if a write happened via a stale
2236 		 * TLB entry before the TLB shootdown finished.
2237 		 *
2238 		 * If it did happen, simply re-enable write permission and
2239 		 * act like the original CAS failed.
2240 		 */
2241 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2242 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2243 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2244 			do {
2245 				found = GET_PTE(ptep);
2246 				XPV_ALLOW_PAGETABLE_UPDATES();
2247 				found =
2248 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2249 				XPV_DISALLOW_PAGETABLE_UPDATES();
2250 			} while ((found & PT_WRITABLE) == 0);
2251 		}
2252 	}
2253 	x86pte_release_pagetable(ht);
2254 	return (found);
2255 }
2256 
2257 #ifndef __xpv
2258 /*
2259  * Copy page tables - this is just a little more complicated than the
2260  * previous routines. Note that it's also not atomic! It also is never
2261  * used for VLP pagetables.
2262  */
2263 void
2264 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2265 {
2266 	caddr_t	src_va;
2267 	caddr_t dst_va;
2268 	size_t size;
2269 	x86pte_t *pteptr;
2270 	x86pte_t pte;
2271 
2272 	ASSERT(khat_running);
2273 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2274 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2275 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2276 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2277 
2278 	/*
2279 	 * Acquire access to the CPU pagetable windows for the dest and source.
2280 	 */
2281 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2282 	if (kpm_vbase) {
2283 		src_va = (caddr_t)
2284 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2285 	} else {
2286 		uint_t x = PWIN_SRC(CPU->cpu_id);
2287 
2288 		/*
2289 		 * Finish defining the src pagetable mapping
2290 		 */
2291 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2292 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2293 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2294 		if (mmu.pae_hat)
2295 			*pteptr = pte;
2296 		else
2297 			*(x86pte32_t *)pteptr = pte;
2298 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2299 	}
2300 
2301 	/*
2302 	 * now do the copy
2303 	 */
2304 	size = count << mmu.pte_size_shift;
2305 	bcopy(src_va, dst_va, size);
2306 
2307 	x86pte_release_pagetable(dest);
2308 }
2309 
2310 #else /* __xpv */
2311 
2312 /*
2313  * The hypervisor only supports writable pagetables at level 0, so we have
2314  * to install these 1 by 1 the slow way.
2315  */
2316 void
2317 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2318 {
2319 	caddr_t	src_va;
2320 	x86pte_t pte;
2321 
2322 	ASSERT(!IN_XPV_PANIC());
2323 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2324 	while (count) {
2325 		if (mmu.pae_hat)
2326 			pte = *(x86pte_t *)src_va;
2327 		else
2328 			pte = *(x86pte32_t *)src_va;
2329 		if (pte != 0) {
2330 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2331 			    dest->ht_level, pte);
2332 #ifdef __amd64
2333 			if (dest->ht_level == mmu.max_level &&
2334 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2335 				set_pteval(
2336 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2337 				    entry, dest->ht_level, pte);
2338 #endif
2339 		}
2340 		--count;
2341 		++entry;
2342 		src_va += mmu.pte_size;
2343 	}
2344 	x86pte_release_pagetable(src);
2345 }
2346 #endif /* __xpv */
2347 
2348 /*
2349  * Zero page table entries - Note this doesn't use atomic stores!
2350  */
2351 static void
2352 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2353 {
2354 	caddr_t dst_va;
2355 	size_t size;
2356 #ifdef __xpv
2357 	int x;
2358 	x86pte_t newpte;
2359 #endif
2360 
2361 	/*
2362 	 * Map in the page table to be zeroed.
2363 	 */
2364 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2365 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2366 
2367 	/*
2368 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2369 	 * in this case the page is not pinned yet.
2370 	 */
2371 #ifdef __xpv
2372 	if (kpm_vbase == NULL) {
2373 		kpreempt_disable();
2374 		ASSERT(CPU->cpu_hat_info != NULL);
2375 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2376 		x = PWIN_TABLE(CPU->cpu_id);
2377 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2378 		xen_map(newpte, PWIN_VA(x));
2379 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2380 	} else
2381 #endif
2382 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2383 
2384 	size = count << mmu.pte_size_shift;
2385 	ASSERT(size > BLOCKZEROALIGN);
2386 #ifdef __i386
2387 	if ((x86_feature & X86_SSE2) == 0)
2388 		bzero(dst_va, size);
2389 	else
2390 #endif
2391 		block_zero_no_xmm(dst_va, size);
2392 
2393 #ifdef __xpv
2394 	if (kpm_vbase == NULL) {
2395 		xen_map(0, PWIN_VA(x));
2396 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2397 		kpreempt_enable();
2398 	} else
2399 #endif
2400 		x86pte_release_pagetable(dest);
2401 }
2402 
2403 /*
2404  * Called to ensure that all pagetables are in the system dump
2405  */
2406 void
2407 hat_dump(void)
2408 {
2409 	hat_t *hat;
2410 	uint_t h;
2411 	htable_t *ht;
2412 
2413 	/*
2414 	 * Dump all page tables
2415 	 */
2416 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2417 		for (h = 0; h < hat->hat_num_hash; ++h) {
2418 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2419 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2420 					dump_page(ht->ht_pfn);
2421 			}
2422 		}
2423 	}
2424 }
2425