xref: /titanic_51/usr/src/uts/i86pc/vm/hment.c (revision f482c776bc557f0256e776932c7842b9db390de1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/systm.h>
34 #include <vm/seg_kmem.h>
35 #include <vm/hat.h>
36 #include <vm/vm_dep.h>
37 #include <vm/hat_i86.h>
38 #include <sys/cmn_err.h>
39 
40 
41 /*
42  * When pages are shared by more than one mapping, a list of these
43  * structs hangs off of the page_t connected by the hm_next and hm_prev
44  * fields.  Every hment is also indexed by a system-wide hash table, using
45  * hm_hashnext to connect it to the chain of hments in a single hash
46  * bucket.
47  */
48 struct hment {
49 	struct hment	*hm_hashnext;	/* next mapping on hash chain */
50 	struct hment	*hm_next;	/* next mapping of same page */
51 	struct hment	*hm_prev;	/* previous mapping of same page */
52 	htable_t	*hm_htable;	/* corresponding htable_t */
53 	pfn_t		hm_pfn;		/* mapping page frame number */
54 	uint16_t	hm_entry;	/* index of pte in htable */
55 	uint16_t	hm_pad;		/* explicitly expose compiler padding */
56 #ifdef __amd64
57 	uint32_t	hm_pad2;	/* explicitly expose compiler padding */
58 #endif
59 };
60 
61 /*
62  * Value returned by hment_walk() when dealing with a single mapping
63  * embedded in the page_t.
64  */
65 #define	HMENT_EMBEDDED ((hment_t *)(uintptr_t)1)
66 
67 kmem_cache_t *hment_cache;
68 
69 /*
70  * The hment reserve is similar to the htable reserve, with the following
71  * exception. Hment's are never needed for HAT kmem allocs.
72  *
73  * The hment_reserve_amount variable is used, so that you can change it's
74  * value to zero via a kernel debugger to force stealing to get tested.
75  */
76 #define	HMENT_RESERVE_AMOUNT	(200)	/* currently a guess at right value. */
77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT;
78 kmutex_t hment_reserve_mutex;
79 uint_t	hment_reserve_count;
80 hment_t	*hment_reserve_pool;
81 
82 /*
83  * Possible performance RFE: we might need to make this dynamic, perhaps
84  * based on the number of pages in the system.
85  */
86 #define	HMENT_HASH_SIZE (64 * 1024)
87 static uint_t hment_hash_entries = HMENT_HASH_SIZE;
88 static hment_t **hment_hash;
89 
90 /*
91  * Lots of highly shared pages will have the same value for "entry" (consider
92  * the starting address of "xterm" or "sh"). So we'll distinguish them by
93  * adding the pfn of the page table into both the high bits.
94  * The shift by 9 corresponds to the range of values for entry (0..511).
95  */
96 #define	HMENT_HASH(pfn, entry) (uint32_t) 	\
97 	((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1))
98 
99 /*
100  * "mlist_lock" is a hashed mutex lock for protecting per-page mapping
101  * lists and "hash_lock" is a similar lock protecting the hment hash
102  * table.  The hashed approach is taken to avoid the spatial overhead of
103  * maintaining a separate lock for each page, while still achieving better
104  * scalability than a single lock would allow.
105  */
106 #define	MLIST_NUM_LOCK	256		/* must be power of two */
107 static kmutex_t mlist_lock[MLIST_NUM_LOCK];
108 
109 /*
110  * the shift by 9 is so that all large pages don't use the same hash bucket
111  */
112 #define	MLIST_MUTEX(pp) \
113 	&mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \
114 	(MLIST_NUM_LOCK - 1)]
115 
116 #define	HASH_NUM_LOCK	256		/* must be power of two */
117 static kmutex_t hash_lock[HASH_NUM_LOCK];
118 
119 #define	HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)]
120 
121 static hment_t *hment_steal(void);
122 
123 /*
124  * put one hment onto the reserves list
125  */
126 static void
127 hment_put_reserve(hment_t *hm)
128 {
129 	HATSTAT_INC(hs_hm_put_reserve);
130 	mutex_enter(&hment_reserve_mutex);
131 	hm->hm_next = hment_reserve_pool;
132 	hment_reserve_pool = hm;
133 	++hment_reserve_count;
134 	mutex_exit(&hment_reserve_mutex);
135 }
136 
137 /*
138  * Take one hment from the reserve.
139  */
140 static hment_t *
141 hment_get_reserve(void)
142 {
143 	hment_t *hm = NULL;
144 
145 	/*
146 	 * We rely on a "donation system" to refill the hment reserve
147 	 * list, which only takes place when we are allocating hments for
148 	 * user mappings.  It is theoretically possible that an incredibly
149 	 * long string of kernel hment_alloc()s with no intervening user
150 	 * hment_alloc()s could exhaust that pool.
151 	 */
152 	HATSTAT_INC(hs_hm_get_reserve);
153 	mutex_enter(&hment_reserve_mutex);
154 	if (hment_reserve_count != 0) {
155 		hm = hment_reserve_pool;
156 		hment_reserve_pool = hm->hm_next;
157 		--hment_reserve_count;
158 	}
159 	mutex_exit(&hment_reserve_mutex);
160 	return (hm);
161 }
162 
163 /*
164  * Allocate an hment
165  */
166 static hment_t *
167 hment_alloc()
168 {
169 	int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP;
170 	hment_t	*hm = NULL;
171 
172 	/*
173 	 * If we aren't using the reserves, try using kmem to get an hment.
174 	 * Donate any successful allocations to reserves if low.
175 	 *
176 	 * If we're in panic, resort to using the reserves.
177 	 */
178 	HATSTAT_INC(hs_hm_alloc);
179 	if (!USE_HAT_RESERVES()) {
180 		for (;;) {
181 			hm = kmem_cache_alloc(hment_cache, km_flag);
182 			if (USE_HAT_RESERVES() ||
183 			    hment_reserve_count >= hment_reserve_amount)
184 				break;
185 			hment_put_reserve(hm);
186 		}
187 	}
188 
189 	/*
190 	 * If allocation failed, we need to tap the reserves or steal
191 	 */
192 	if (hm == NULL) {
193 		if (USE_HAT_RESERVES())
194 			hm = hment_get_reserve();
195 
196 		/*
197 		 * If we still haven't gotten an hment, attempt to steal one by
198 		 * victimizing a mapping in a user htable.
199 		 */
200 		if (hm == NULL && can_steal_post_boot)
201 			hm = hment_steal();
202 
203 		/*
204 		 * we're in dire straights, try the reserve
205 		 */
206 		if (hm == NULL)
207 			hm = hment_get_reserve();
208 
209 		/*
210 		 * still no hment is a serious problem.
211 		 */
212 		if (hm == NULL)
213 			panic("hment_alloc(): no reserve, couldn't steal");
214 	}
215 
216 
217 	hm->hm_entry = 0;
218 	hm->hm_htable = NULL;
219 	hm->hm_hashnext = NULL;
220 	hm->hm_next = NULL;
221 	hm->hm_prev = NULL;
222 	hm->hm_pfn = PFN_INVALID;
223 	return (hm);
224 }
225 
226 /*
227  * Free an hment, possibly to the reserves list when called from the
228  * thread using the reserves. For example, when freeing an hment during an
229  * htable_steal(), we can't recurse into the kmem allocator, so we just
230  * push the hment onto the reserve list.
231  */
232 void
233 hment_free(hment_t *hm)
234 {
235 #ifdef DEBUG
236 	/*
237 	 * zero out all fields to try and force any race conditions to segfault
238 	 */
239 	bzero(hm, sizeof (*hm));
240 #endif
241 	HATSTAT_INC(hs_hm_free);
242 	if (USE_HAT_RESERVES() ||
243 	    hment_reserve_count < hment_reserve_amount) {
244 		hment_put_reserve(hm);
245 	} else {
246 		kmem_cache_free(hment_cache, hm);
247 		hment_adjust_reserve();
248 	}
249 }
250 
251 int
252 x86_hm_held(page_t *pp)
253 {
254 	ASSERT(pp != NULL);
255 	return (MUTEX_HELD(MLIST_MUTEX(pp)));
256 }
257 
258 void
259 x86_hm_enter(page_t *pp)
260 {
261 	ASSERT(pp != NULL);
262 	mutex_enter(MLIST_MUTEX(pp));
263 }
264 
265 void
266 x86_hm_exit(page_t *pp)
267 {
268 	ASSERT(pp != NULL);
269 	mutex_exit(MLIST_MUTEX(pp));
270 }
271 
272 /*
273  * Internal routine to add a full hment to a page_t mapping list
274  */
275 static void
276 hment_insert(hment_t *hm, page_t *pp)
277 {
278 	uint_t		idx;
279 
280 	ASSERT(x86_hm_held(pp));
281 	ASSERT(!pp->p_embed);
282 
283 	/*
284 	 * Add the hment to the page's mapping list.
285 	 */
286 	++pp->p_share;
287 	hm->hm_next = pp->p_mapping;
288 	if (pp->p_mapping != NULL)
289 		((hment_t *)pp->p_mapping)->hm_prev = hm;
290 	pp->p_mapping = hm;
291 
292 	/*
293 	 * Add the hment to the system-wide hash table.
294 	 */
295 	idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry);
296 
297 	mutex_enter(HASH_MUTEX(idx));
298 	hm->hm_hashnext = hment_hash[idx];
299 	hment_hash[idx] = hm;
300 	mutex_exit(HASH_MUTEX(idx));
301 }
302 
303 /*
304  * Prepare a mapping list entry to the given page.
305  *
306  * There are 4 different situations to deal with:
307  *
308  * - Adding the first mapping to a page_t as an embedded hment
309  * - Refaulting on an existing embedded mapping
310  * - Upgrading an embedded mapping when adding a 2nd mapping
311  * - Adding another mapping to a page_t that already has multiple mappings
312  *	 note we don't optimized for the refaulting case here.
313  *
314  * Due to competition with other threads that may be mapping/unmapping the
315  * same page and the need to drop all locks while allocating hments, any or
316  * all of the 3 situations can occur (and in almost any order) in any given
317  * call. Isn't this fun!
318  */
319 hment_t *
320 hment_prepare(htable_t *htable, uint_t entry, page_t *pp)
321 {
322 	hment_t		*hm = NULL;
323 
324 	ASSERT(x86_hm_held(pp));
325 
326 	for (;;) {
327 
328 		/*
329 		 * The most common case is establishing the first mapping to a
330 		 * page, so check that first. This doesn't need any allocated
331 		 * hment.
332 		 */
333 		if (pp->p_mapping == NULL) {
334 			ASSERT(!pp->p_embed);
335 			ASSERT(pp->p_share == 0);
336 			if (hm == NULL)
337 				break;
338 
339 			/*
340 			 * we had an hment already, so free it and retry
341 			 */
342 			goto free_and_continue;
343 		}
344 
345 		/*
346 		 * If there is an embedded mapping, we may need to
347 		 * convert it to an hment.
348 		 */
349 		if (pp->p_embed) {
350 
351 			/* should point to htable */
352 			ASSERT(pp->p_mapping != NULL);
353 
354 			/*
355 			 * If we are faulting on a pre-existing mapping
356 			 * there is no need to promote/allocate a new hment.
357 			 * This happens a lot due to segmap.
358 			 */
359 			if (pp->p_mapping == htable && pp->p_mlentry == entry) {
360 				if (hm == NULL)
361 					break;
362 				goto free_and_continue;
363 			}
364 
365 			/*
366 			 * If we have an hment allocated, use it to promote the
367 			 * existing embedded mapping.
368 			 */
369 			if (hm != NULL) {
370 				hm->hm_htable = pp->p_mapping;
371 				hm->hm_entry = pp->p_mlentry;
372 				hm->hm_pfn = pp->p_pagenum;
373 				pp->p_mapping = NULL;
374 				pp->p_share = 0;
375 				pp->p_embed = 0;
376 				hment_insert(hm, pp);
377 			}
378 
379 			/*
380 			 * We either didn't have an hment allocated or we just
381 			 * used it for the embedded mapping. In either case,
382 			 * allocate another hment and restart.
383 			 */
384 			goto allocate_and_continue;
385 		}
386 
387 		/*
388 		 * Last possibility is that we're adding an hment to a list
389 		 * of hments.
390 		 */
391 		if (hm != NULL)
392 			break;
393 allocate_and_continue:
394 		x86_hm_exit(pp);
395 		hm = hment_alloc();
396 		x86_hm_enter(pp);
397 		continue;
398 
399 free_and_continue:
400 		/*
401 		 * we allocated an hment already, free it and retry
402 		 */
403 		x86_hm_exit(pp);
404 		hment_free(hm);
405 		hm = NULL;
406 		x86_hm_enter(pp);
407 	}
408 	ASSERT(x86_hm_held(pp));
409 	return (hm);
410 }
411 
412 /*
413  * Record a mapping list entry for the htable/entry to the given page.
414  *
415  * hment_prepare() should have properly set up the situation.
416  */
417 void
418 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm)
419 {
420 	ASSERT(x86_hm_held(pp));
421 
422 	/*
423 	 * The most common case is establishing the first mapping to a
424 	 * page, so check that first. This doesn't need any allocated
425 	 * hment.
426 	 */
427 	if (pp->p_mapping == NULL) {
428 		ASSERT(hm == NULL);
429 		ASSERT(!pp->p_embed);
430 		ASSERT(pp->p_share == 0);
431 		pp->p_embed = 1;
432 		pp->p_mapping = htable;
433 		pp->p_mlentry = entry;
434 		return;
435 	}
436 
437 	/*
438 	 * We should never get here with a pre-existing embedded maping
439 	 */
440 	ASSERT(!pp->p_embed);
441 
442 	/*
443 	 * add the new hment to the mapping list
444 	 */
445 	ASSERT(hm != NULL);
446 	hm->hm_htable = htable;
447 	hm->hm_entry = entry;
448 	hm->hm_pfn = pp->p_pagenum;
449 	hment_insert(hm, pp);
450 }
451 
452 /*
453  * Walk through the mappings for a page.
454  *
455  * must already have done an x86_hm_enter()
456  */
457 hment_t *
458 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev)
459 {
460 	hment_t		*hm;
461 
462 	ASSERT(x86_hm_held(pp));
463 
464 	if (pp->p_embed) {
465 		if (prev == NULL) {
466 			*ht = (htable_t *)pp->p_mapping;
467 			*entry = pp->p_mlentry;
468 			hm = HMENT_EMBEDDED;
469 		} else {
470 			ASSERT(prev == HMENT_EMBEDDED);
471 			hm = NULL;
472 		}
473 	} else {
474 		if (prev == NULL) {
475 			ASSERT(prev != HMENT_EMBEDDED);
476 			hm = (hment_t *)pp->p_mapping;
477 		} else {
478 			hm = prev->hm_next;
479 		}
480 
481 		if (hm != NULL) {
482 			*ht = hm->hm_htable;
483 			*entry = hm->hm_entry;
484 		}
485 	}
486 	return (hm);
487 }
488 
489 /*
490  * Remove a mapping to a page from its mapping list. Must have
491  * the corresponding mapping list locked.
492  * Finds the mapping list entry with the given pte_t and
493  * unlinks it from the mapping list.
494  */
495 hment_t *
496 hment_remove(page_t *pp, htable_t *ht, uint_t entry)
497 {
498 	hment_t		*prev = NULL;
499 	hment_t		*hm;
500 	uint_t		idx;
501 	pfn_t		pfn;
502 
503 	ASSERT(x86_hm_held(pp));
504 
505 	/*
506 	 * Check if we have only one mapping embedded in the page_t.
507 	 */
508 	if (pp->p_embed) {
509 		ASSERT(ht == (htable_t *)pp->p_mapping);
510 		ASSERT(entry == pp->p_mlentry);
511 		ASSERT(pp->p_share == 0);
512 		pp->p_mapping = NULL;
513 		pp->p_mlentry = 0;
514 		pp->p_embed = 0;
515 		return (NULL);
516 	}
517 
518 	/*
519 	 * Otherwise it must be in the list of hments.
520 	 * Find the hment in the system-wide hash table and remove it.
521 	 */
522 	ASSERT(pp->p_share != 0);
523 	pfn = pp->p_pagenum;
524 	idx = HMENT_HASH(ht->ht_pfn, entry);
525 	mutex_enter(HASH_MUTEX(idx));
526 	hm = hment_hash[idx];
527 	while (hm && (hm->hm_htable != ht || hm->hm_entry != entry ||
528 	    hm->hm_pfn != pfn)) {
529 		prev = hm;
530 		hm = hm->hm_hashnext;
531 	}
532 	if (hm == NULL) {
533 		panic("hment_remove() missing in hash table pp=%lx, ht=%lx,"
534 		    "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht,
535 		    entry, idx);
536 	}
537 
538 	if (prev)
539 		prev->hm_hashnext = hm->hm_hashnext;
540 	else
541 		hment_hash[idx] = hm->hm_hashnext;
542 	mutex_exit(HASH_MUTEX(idx));
543 
544 	/*
545 	 * Remove the hment from the page's mapping list
546 	 */
547 	if (hm->hm_next)
548 		hm->hm_next->hm_prev = hm->hm_prev;
549 	if (hm->hm_prev)
550 		hm->hm_prev->hm_next = hm->hm_next;
551 	else
552 		pp->p_mapping = hm->hm_next;
553 
554 	--pp->p_share;
555 	hm->hm_hashnext = NULL;
556 	hm->hm_next = NULL;
557 	hm->hm_prev = NULL;
558 
559 	return (hm);
560 }
561 
562 /*
563  * Put initial hment's in the reserve pool.
564  */
565 void
566 hment_reserve(uint_t count)
567 {
568 	hment_t	*hm;
569 
570 	count += hment_reserve_amount;
571 
572 	while (hment_reserve_count < count) {
573 		hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP);
574 		if (hm == NULL)
575 			return;
576 		hment_put_reserve(hm);
577 	}
578 }
579 
580 /*
581  * Readjust the hment reserves after they may have been used.
582  */
583 void
584 hment_adjust_reserve()
585 {
586 	hment_t	*hm;
587 
588 	/*
589 	 * Free up any excess reserves
590 	 */
591 	while (hment_reserve_count > hment_reserve_amount &&
592 	    !USE_HAT_RESERVES()) {
593 		hm = hment_get_reserve();
594 		if (hm == NULL)
595 			return;
596 		kmem_cache_free(hment_cache, hm);
597 	}
598 }
599 
600 /*
601  * initialize hment data structures
602  */
603 void
604 hment_init(void)
605 {
606 	int i;
607 	int flags = KMC_NOHASH | KMC_NODEBUG;
608 
609 	/*
610 	 * Initialize kmem caches. On 32 bit kernel's we shut off
611 	 * debug information to save on precious kernel VA usage.
612 	 */
613 	hment_cache = kmem_cache_create("hment_t",
614 	    sizeof (hment_t), 0, NULL, NULL, NULL,
615 	    NULL, hat_memload_arena, flags);
616 
617 	hment_hash = kmem_zalloc(hment_hash_entries * sizeof (hment_t *),
618 	    KM_SLEEP);
619 
620 	for (i = 0; i < MLIST_NUM_LOCK; i++)
621 		mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL);
622 
623 	for (i = 0; i < HASH_NUM_LOCK; i++)
624 		mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
625 
626 
627 }
628 
629 /*
630  * return the number of mappings to a page
631  *
632  * Note there is no ASSERT() that the MUTEX is held for this.
633  * Hence the return value might be inaccurate if this is called without
634  * doing an x86_hm_enter().
635  */
636 uint_t
637 hment_mapcnt(page_t *pp)
638 {
639 	uint_t cnt;
640 	uint_t szc;
641 	page_t *larger;
642 	hment_t	*hm;
643 
644 	x86_hm_enter(pp);
645 	if (pp->p_mapping == NULL)
646 		cnt = 0;
647 	else if (pp->p_embed)
648 		cnt = 1;
649 	else
650 		cnt = pp->p_share;
651 	x86_hm_exit(pp);
652 
653 	/*
654 	 * walk through all larger mapping sizes counting mappings
655 	 */
656 	for (szc = 1; szc <= pp->p_szc; ++szc) {
657 		larger = PP_GROUPLEADER(pp, szc);
658 		if (larger == pp)	/* don't double count large mappings */
659 			continue;
660 
661 		x86_hm_enter(larger);
662 		if (larger->p_mapping != NULL) {
663 			if (larger->p_embed &&
664 			    ((htable_t *)larger->p_mapping)->ht_level == szc) {
665 				++cnt;
666 			} else if (!larger->p_embed) {
667 				for (hm = larger->p_mapping; hm;
668 				    hm = hm->hm_next) {
669 					if (hm->hm_htable->ht_level == szc)
670 						++cnt;
671 				}
672 			}
673 		}
674 		x86_hm_exit(larger);
675 	}
676 	return (cnt);
677 }
678 
679 /*
680  * We need to steal an hment. Walk through all the page_t's until we
681  * find one that has multiple mappings. Unload one of the mappings
682  * and reclaim that hment. Note that we'll save/restart the starting
683  * page to try and spread the pain.
684  */
685 static page_t *last_page = NULL;
686 
687 static hment_t *
688 hment_steal(void)
689 {
690 	page_t *last = last_page;
691 	page_t *pp = last;
692 	hment_t *hm = NULL;
693 	hment_t *hm2;
694 	htable_t *ht;
695 	uint_t found_one = 0;
696 
697 	HATSTAT_INC(hs_hm_steals);
698 	if (pp == NULL)
699 		last = pp = page_first();
700 
701 	while (!found_one) {
702 		HATSTAT_INC(hs_hm_steal_exam);
703 		pp = page_next(pp);
704 		if (pp == NULL)
705 			pp = page_first();
706 
707 		/*
708 		 * The loop and function exit here if nothing found to steal.
709 		 */
710 		if (pp == last)
711 			return (NULL);
712 
713 		/*
714 		 * Only lock the page_t if it has hments.
715 		 */
716 		if (pp->p_mapping == NULL || pp->p_embed)
717 			continue;
718 
719 		/*
720 		 * Search the mapping list for a usable mapping.
721 		 */
722 		x86_hm_enter(pp);
723 		if (!pp->p_embed) {
724 			for (hm = pp->p_mapping; hm; hm = hm->hm_next) {
725 				ht = hm->hm_htable;
726 				if (ht->ht_hat != kas.a_hat &&
727 				    ht->ht_busy == 0 &&
728 				    ht->ht_lock_cnt == 0) {
729 					found_one = 1;
730 					break;
731 				}
732 			}
733 		}
734 		if (!found_one)
735 			x86_hm_exit(pp);
736 	}
737 
738 	/*
739 	 * Steal the mapping we found.  Note that hati_page_unmap() will
740 	 * do the x86_hm_exit().
741 	 */
742 	hm2 = hati_page_unmap(pp, ht, hm->hm_entry);
743 	ASSERT(hm2 == hm);
744 	last_page = pp;
745 	return (hm);
746 }
747