xref: /titanic_51/usr/src/uts/i86pc/vm/hat_i86.c (revision bf1d7e28fd966a3f7e92b40aa301efdedc81ef7b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for i386 and amd64
30  *
31  * Implementation of the interfaces described in <common/vm/hat.h>
32  *
33  * Nearly all the details of how the hardware is managed should not be
34  * visible outside this layer except for misc. machine specific functions
35  * that work in conjunction with this code.
36  *
37  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
38  */
39 
40 #include <sys/machparam.h>
41 #include <sys/machsystm.h>
42 #include <sys/mman.h>
43 #include <sys/types.h>
44 #include <sys/systm.h>
45 #include <sys/cpuvar.h>
46 #include <sys/thread.h>
47 #include <sys/proc.h>
48 #include <sys/cpu.h>
49 #include <sys/kmem.h>
50 #include <sys/disp.h>
51 #include <sys/shm.h>
52 #include <sys/sysmacros.h>
53 #include <sys/machparam.h>
54 #include <sys/vmem.h>
55 #include <sys/vmsystm.h>
56 #include <sys/promif.h>
57 #include <sys/var.h>
58 #include <sys/x86_archext.h>
59 #include <sys/atomic.h>
60 #include <sys/bitmap.h>
61 #include <sys/controlregs.h>
62 #include <sys/bootconf.h>
63 #include <sys/bootsvcs.h>
64 #include <sys/bootinfo.h>
65 
66 #include <vm/seg_kmem.h>
67 #include <vm/hat_i86.h>
68 #include <vm/as.h>
69 #include <vm/seg.h>
70 #include <vm/page.h>
71 #include <vm/seg_kp.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
74 #include <vm/kboot_mmu.h>
75 
76 #include <sys/cmn_err.h>
77 
78 /*
79  * Basic parameters for hat operation.
80  */
81 struct hat_mmu_info mmu;
82 
83 /*
84  * The page that is the kernel's top level pagetable.
85  *
86  * For 32 bit VLP support, the kernel hat will use the 1st 4 entries
87  * on this 4K page for its top level page table. The remaining groups of
88  * 4 entries are used for per processor copies of user VLP pagetables for
89  * running threads.  See hat_switch() and reload_pae32() for details.
90  *
91  * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero)
92  * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero)
93  * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory)
94  * vlp_page[3] - 3rd level==2 PTE for kernel
95  *
96  * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0
97  * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0
98  * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0
99  * vlp_page[7] - probably copy of kernel PTE
100  *
101  * vlp_page[8]  - 0th level==2 PTE for user thread on cpu 1
102  * vlp_page[9]  - 1st level==2 PTE for user thread on cpu 1
103  * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1
104  * vlp_page[11] - probably copy of kernel PTE
105  * ...
106  *
107  * when / where the kernel PTE's are (entry 2 or 3 or none) depends
108  * on kernelbase.
109  */
110 static x86pte_t *vlp_page;
111 
112 /*
113  * forward declaration of internal utility routines
114  */
115 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
116 	x86pte_t new);
117 
118 /*
119  * The kernel address space exists in all HATs. To implement this the
120  * kernel reserves a fixed number of entries in every topmost level page
121  * table. The values are setup in hat_init() and then copied to every hat
122  * created by hat_alloc(). This means that kernelbase must be:
123  *
124  *	  4Meg aligned for 32 bit kernels
125  *	512Gig aligned for x86_64 64 bit kernel
126  *
127  * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig
128  * alignment would use too much VA for the kernel.
129  *
130  */
131 static uint_t	khat_start;	/* index of 1st entry in kernel's top ptable */
132 static uint_t	khat_entries;	/* number of entries in kernel's top ptable */
133 
134 #if defined(__i386)
135 
136 static htable_t	*khat_pae32_htable = NULL;
137 static uint_t	khat_pae32_start;
138 static uint_t	khat_pae32_entries;
139 
140 #endif
141 
142 /*
143  * Locks, etc. to control use of the hat reserves when recursively
144  * allocating pagetables for the hat data structures.
145  */
146 static kmutex_t hat_reserves_lock;
147 static kcondvar_t hat_reserves_cv;
148 kthread_t *hat_reserves_thread;
149 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
150 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
151 
152 /*
153  * A cpuset for all cpus. This is used for kernel address cross calls, since
154  * the kernel addresses apply to all cpus.
155  */
156 cpuset_t khat_cpuset;
157 
158 /*
159  * management stuff for hat structures
160  */
161 kmutex_t	hat_list_lock;
162 kcondvar_t	hat_list_cv;
163 kmem_cache_t	*hat_cache;
164 kmem_cache_t	*hat_hash_cache;
165 kmem_cache_t	*vlp_hash_cache;
166 
167 /*
168  * Simple statistics
169  */
170 struct hatstats hatstat;
171 
172 /*
173  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
174  */
175 extern void atomic_orb(uchar_t *addr, uchar_t val);
176 extern void atomic_andb(uchar_t *addr, uchar_t val);
177 
178 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
179 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
180 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
181 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
182 
183 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
184 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
185 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
186 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
187 
188 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
189 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
190 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
191 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
192 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
193 
194 /*
195  * some useful tracing macros
196  */
197 
198 int hattrace = 0;
199 #ifdef DEBUG
200 
201 #define	HATIN(r, h, a, l)	\
202 	if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l)
203 
204 #define	HATOUT(r, h, a)		\
205 	if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a)
206 #else
207 
208 #define	HATIN(r, h, a, l)
209 #define	HATOUT(r, h, a)
210 
211 #endif
212 
213 
214 /*
215  * kmem cache constructor for struct hat
216  */
217 /*ARGSUSED*/
218 static int
219 hati_constructor(void *buf, void *handle, int kmflags)
220 {
221 	hat_t	*hat = buf;
222 
223 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
224 	bzero(hat->hat_pages_mapped,
225 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
226 	hat->hat_stats = 0;
227 	hat->hat_flags = 0;
228 	mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER,
229 	    (void *)ipltospl(DISP_LEVEL));
230 	CPUSET_ZERO(hat->hat_cpus);
231 	hat->hat_htable = NULL;
232 	hat->hat_ht_hash = NULL;
233 	return (0);
234 }
235 
236 /*
237  * Allocate a hat structure for as. We also create the top level
238  * htable and initialize it to contain the kernel hat entries.
239  */
240 hat_t *
241 hat_alloc(struct as *as)
242 {
243 	hat_t		*hat;
244 	htable_t	*ht;	/* top level htable */
245 	uint_t		use_vlp;
246 
247 	/*
248 	 * Once we start creating user process HATs we can enable
249 	 * the htable_steal() code.
250 	 */
251 	if (can_steal_post_boot == 0)
252 		can_steal_post_boot = 1;
253 
254 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
255 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
256 	hat->hat_as = as;
257 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
258 	ASSERT(hat->hat_flags == 0);
259 
260 	/*
261 	 * a 32 bit process uses a VLP style hat when using PAE
262 	 */
263 #if defined(__amd64)
264 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
265 #elif defined(__i386)
266 	use_vlp = mmu.pae_hat;
267 #endif
268 	if (use_vlp) {
269 		hat->hat_flags = HAT_VLP;
270 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
271 	}
272 
273 	/*
274 	 * Allocate the htable hash
275 	 */
276 	if ((hat->hat_flags & HAT_VLP)) {
277 		hat->hat_num_hash = mmu.vlp_hash_cnt;
278 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
279 	} else {
280 		hat->hat_num_hash = mmu.hash_cnt;
281 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
282 	}
283 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
284 
285 	/*
286 	 * Initialize Kernel HAT entries at the top of the top level page
287 	 * table for the new hat.
288 	 *
289 	 * Note that we don't call htable_release() for the top level, that
290 	 * happens when the hat is destroyed in hat_free_end()
291 	 */
292 	hat->hat_htable = NULL;
293 	hat->hat_ht_cached = NULL;
294 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
295 
296 	if (!(hat->hat_flags & HAT_VLP))
297 		x86pte_copy(kas.a_hat->hat_htable, ht, khat_start,
298 		    khat_entries);
299 #if defined(__i386)
300 	else if (khat_entries > 0)
301 		bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start,
302 		    khat_entries * sizeof (x86pte_t));
303 #endif
304 	hat->hat_htable = ht;
305 
306 #if defined(__i386)
307 	/*
308 	 * PAE32 HAT alignment is less restrictive than the others to keep
309 	 * the kernel from using too much VA. Because of this we may need
310 	 * one layer further down when kernelbase isn't 1Gig aligned.
311 	 * See hat_free_end() for the htable_release() that goes with this
312 	 * htable_create()
313 	 */
314 	if (khat_pae32_htable != NULL) {
315 		ht = htable_create(hat, kernelbase,
316 		    khat_pae32_htable->ht_level, NULL);
317 		x86pte_copy(khat_pae32_htable, ht, khat_pae32_start,
318 		    khat_pae32_entries);
319 		ht->ht_valid_cnt = khat_pae32_entries;
320 	}
321 #endif
322 
323 	/*
324 	 * Put it at the start of the global list of all hats (used by stealing)
325 	 *
326 	 * kas.a_hat is not in the list but is instead used to find the
327 	 * first and last items in the list.
328 	 *
329 	 * - kas.a_hat->hat_next points to the start of the user hats.
330 	 *   The list ends where hat->hat_next == NULL
331 	 *
332 	 * - kas.a_hat->hat_prev points to the last of the user hats.
333 	 *   The list begins where hat->hat_prev == NULL
334 	 */
335 	mutex_enter(&hat_list_lock);
336 	hat->hat_prev = NULL;
337 	hat->hat_next = kas.a_hat->hat_next;
338 	if (hat->hat_next)
339 		hat->hat_next->hat_prev = hat;
340 	else
341 		kas.a_hat->hat_prev = hat;
342 	kas.a_hat->hat_next = hat;
343 	mutex_exit(&hat_list_lock);
344 
345 	return (hat);
346 }
347 
348 /*
349  * process has finished executing but as has not been cleaned up yet.
350  */
351 /*ARGSUSED*/
352 void
353 hat_free_start(hat_t *hat)
354 {
355 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
356 
357 	/*
358 	 * If the hat is currently a stealing victim, wait for the stealing
359 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
360 	 * won't look at its pagetables anymore.
361 	 */
362 	mutex_enter(&hat_list_lock);
363 	while (hat->hat_flags & HAT_VICTIM)
364 		cv_wait(&hat_list_cv, &hat_list_lock);
365 	hat->hat_flags |= HAT_FREEING;
366 	mutex_exit(&hat_list_lock);
367 }
368 
369 /*
370  * An address space is being destroyed, so we destroy the associated hat.
371  */
372 void
373 hat_free_end(hat_t *hat)
374 {
375 	int i;
376 	kmem_cache_t *cache;
377 
378 #ifdef DEBUG
379 	for (i = 0; i <= mmu.max_page_level; i++)
380 		ASSERT(hat->hat_pages_mapped[i] == 0);
381 #endif
382 	ASSERT(hat->hat_flags & HAT_FREEING);
383 
384 	/*
385 	 * must not be running on the given hat
386 	 */
387 	ASSERT(CPU->cpu_current_hat != hat);
388 
389 	/*
390 	 * Remove it from the list of HATs
391 	 */
392 	mutex_enter(&hat_list_lock);
393 	if (hat->hat_prev)
394 		hat->hat_prev->hat_next = hat->hat_next;
395 	else
396 		kas.a_hat->hat_next = hat->hat_next;
397 	if (hat->hat_next)
398 		hat->hat_next->hat_prev = hat->hat_prev;
399 	else
400 		kas.a_hat->hat_prev = hat->hat_prev;
401 	mutex_exit(&hat_list_lock);
402 	hat->hat_next = hat->hat_prev = NULL;
403 
404 	/*
405 	 * Make a pass through the htables freeing them all up.
406 	 */
407 	htable_purge_hat(hat);
408 
409 	/*
410 	 * Decide which kmem cache the hash table came from, then free it.
411 	 */
412 	if (hat->hat_flags & HAT_VLP)
413 		cache = vlp_hash_cache;
414 	else
415 		cache = hat_hash_cache;
416 	kmem_cache_free(cache, hat->hat_ht_hash);
417 	hat->hat_ht_hash = NULL;
418 
419 	hat->hat_flags = 0;
420 	kmem_cache_free(hat_cache, hat);
421 }
422 
423 /*
424  * round kernelbase down to a supported value to use for _userlimit
425  *
426  * userlimit must be aligned down to an entry in the top level htable.
427  * The one exception is for 32 bit HAT's running PAE.
428  */
429 uintptr_t
430 hat_kernelbase(uintptr_t va)
431 {
432 #if defined(__i386)
433 	va &= LEVEL_MASK(1);
434 #endif
435 	if (IN_VA_HOLE(va))
436 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
437 	return (va);
438 }
439 
440 /*
441  * Initialize hat data structures based on processor MMU information.
442  */
443 void
444 mmu_init(void)
445 {
446 	uint_t max_htables;
447 	uint_t pa_bits;
448 	uint_t va_bits;
449 	int i;
450 
451 	/*
452 	 * If CPU enabled the page table global bit, use it for the kernel
453 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
454 	 */
455 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
456 		mmu.pt_global = PT_GLOBAL;
457 
458 	/*
459 	 * Detect NX and PAE usage.
460 	 */
461 	mmu.pae_hat = kbm_pae_support;
462 	if (kbm_nx_support)
463 		mmu.pt_nx = PT_NX;
464 	else
465 		mmu.pt_nx = 0;
466 
467 	/*
468 	 * Use CPU info to set various MMU parameters
469 	 */
470 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
471 
472 	if (va_bits < sizeof (void *) * NBBY) {
473 		mmu.hole_start = (1ul << (va_bits - 1));
474 		mmu.hole_end = 0ul - mmu.hole_start - 1;
475 	} else {
476 		mmu.hole_end = 0;
477 		mmu.hole_start = mmu.hole_end - 1;
478 	}
479 #if defined(OPTERON_ERRATUM_121)
480 	/*
481 	 * If erratum 121 has already been detected at this time, hole_start
482 	 * contains the value to be subtracted from mmu.hole_start.
483 	 */
484 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
485 	hole_start = mmu.hole_start - hole_start;
486 #else
487 	hole_start = mmu.hole_start;
488 #endif
489 	hole_end = mmu.hole_end;
490 
491 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
492 	if (mmu.pae_hat == 0 && pa_bits > 32)
493 		mmu.highest_pfn = PFN_4G - 1;
494 
495 	if (mmu.pae_hat) {
496 		mmu.pte_size = 8;	/* 8 byte PTEs */
497 		mmu.pte_size_shift = 3;
498 	} else {
499 		mmu.pte_size = 4;	/* 4 byte PTEs */
500 		mmu.pte_size_shift = 2;
501 	}
502 
503 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
504 		panic("Processor does not support PAE");
505 
506 	if ((x86_feature & X86_CX8) == 0)
507 		panic("Processor does not support cmpxchg8b instruction");
508 
509 	/*
510 	 * Initialize parameters based on the 64 or 32 bit kernels and
511 	 * for the 32 bit kernel decide if we should use PAE.
512 	 */
513 	if (kbm_largepage_support)
514 		mmu.max_page_level = 1;
515 	else
516 		mmu.max_page_level = 0;
517 	mmu_page_sizes = mmu.max_page_level + 1;
518 	mmu_exported_page_sizes = mmu_page_sizes;
519 
520 #if defined(__amd64)
521 
522 	mmu.num_level = 4;
523 	mmu.max_level = 3;
524 	mmu.ptes_per_table = 512;
525 	mmu.top_level_count = 512;
526 
527 	mmu.level_shift[0] = 12;
528 	mmu.level_shift[1] = 21;
529 	mmu.level_shift[2] = 30;
530 	mmu.level_shift[3] = 39;
531 
532 #elif defined(__i386)
533 
534 	if (mmu.pae_hat) {
535 		mmu.num_level = 3;
536 		mmu.max_level = 2;
537 		mmu.ptes_per_table = 512;
538 		mmu.top_level_count = 4;
539 
540 		mmu.level_shift[0] = 12;
541 		mmu.level_shift[1] = 21;
542 		mmu.level_shift[2] = 30;
543 
544 	} else {
545 		mmu.num_level = 2;
546 		mmu.max_level = 1;
547 		mmu.ptes_per_table = 1024;
548 		mmu.top_level_count = 1024;
549 
550 		mmu.level_shift[0] = 12;
551 		mmu.level_shift[1] = 22;
552 	}
553 
554 #endif	/* __i386 */
555 
556 	for (i = 0; i < mmu.num_level; ++i) {
557 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
558 		mmu.level_offset[i] = mmu.level_size[i] - 1;
559 		mmu.level_mask[i] = ~mmu.level_offset[i];
560 	}
561 
562 	for (i = 0; i <= mmu.max_page_level; ++i) {
563 		mmu.pte_bits[i] = PT_VALID;
564 		if (i > 0)
565 			mmu.pte_bits[i] |= PT_PAGESIZE;
566 	}
567 
568 	/*
569 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
570 	 */
571 	for (i = 1; i < mmu.num_level; ++i)
572 		mmu.ptp_bits[i] = PT_PTPBITS;
573 
574 #if defined(__i386)
575 	mmu.ptp_bits[2] = PT_VALID;
576 #endif
577 
578 	/*
579 	 * Compute how many hash table entries to have per process for htables.
580 	 * We start with 1 page's worth of entries.
581 	 *
582 	 * If physical memory is small, reduce the amount need to cover it.
583 	 */
584 	max_htables = physmax / mmu.ptes_per_table;
585 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
586 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
587 		mmu.hash_cnt >>= 1;
588 	mmu.vlp_hash_cnt = mmu.hash_cnt;
589 
590 #if defined(__amd64)
591 	/*
592 	 * If running in 64 bits and physical memory is large,
593 	 * increase the size of the cache to cover all of memory for
594 	 * a 64 bit process.
595 	 */
596 #define	HASH_MAX_LENGTH 4
597 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
598 		mmu.hash_cnt <<= 1;
599 #endif
600 }
601 
602 
603 /*
604  * initialize hat data structures
605  */
606 void
607 hat_init()
608 {
609 #if defined(__i386)
610 	/*
611 	 * _userlimit must be aligned correctly
612 	 */
613 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
614 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
615 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
616 		halt("hat_init(): Unable to continue");
617 	}
618 #endif
619 
620 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
621 
622 	/*
623 	 * initialize kmem caches
624 	 */
625 	htable_init();
626 	hment_init();
627 
628 	hat_cache = kmem_cache_create("hat_t",
629 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
630 	    NULL, 0, 0);
631 
632 	hat_hash_cache = kmem_cache_create("HatHash",
633 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
634 	    NULL, 0, 0);
635 
636 	/*
637 	 * VLP hats can use a smaller hash table size on large memroy machines
638 	 */
639 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
640 		vlp_hash_cache = hat_hash_cache;
641 	} else {
642 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
643 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
644 		    NULL, 0, 0);
645 	}
646 
647 	/*
648 	 * Set up the kernel's hat
649 	 */
650 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
651 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
652 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
653 	kas.a_hat->hat_as = &kas;
654 	kas.a_hat->hat_flags = 0;
655 	AS_LOCK_EXIT(&kas, &kas.a_lock);
656 
657 	CPUSET_ZERO(khat_cpuset);
658 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
659 
660 	/*
661 	 * The kernel hat's next pointer serves as the head of the hat list .
662 	 * The kernel hat's prev pointer tracks the last hat on the list for
663 	 * htable_steal() to use.
664 	 */
665 	kas.a_hat->hat_next = NULL;
666 	kas.a_hat->hat_prev = NULL;
667 
668 	/*
669 	 * Allocate an htable hash bucket for the kernel
670 	 * XX64 - tune for 64 bit procs
671 	 */
672 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
673 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
674 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
675 
676 	/*
677 	 * zero out the top level and cached htable pointers
678 	 */
679 	kas.a_hat->hat_ht_cached = NULL;
680 	kas.a_hat->hat_htable = NULL;
681 
682 	/*
683 	 * Pre-allocate hrm_hashtab before enabling the collection of
684 	 * refmod statistics.  Allocating on the fly would mean us
685 	 * running the risk of suffering recursive mutex enters or
686 	 * deadlocks.
687 	 */
688 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
689 	    KM_SLEEP);
690 }
691 
692 /*
693  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
694  *
695  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
696  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
697  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
698  */
699 /*ARGSUSED*/
700 static void
701 hat_vlp_setup(struct cpu *cpu)
702 {
703 #if defined(__amd64)
704 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
705 	pfn_t pfn;
706 
707 	/*
708 	 * allocate the level==2 page table for the bottom most
709 	 * 512Gig of address space (this is where 32 bit apps live)
710 	 */
711 	ASSERT(hci != NULL);
712 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
713 
714 	/*
715 	 * Allocate a top level pagetable and copy the kernel's
716 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
717 	 */
718 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
719 	hci->hci_vlp_pfn =
720 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
721 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
722 	bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start,
723 	    khat_entries * sizeof (x86pte_t));
724 
725 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
726 	ASSERT(pfn != PFN_INVALID);
727 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
728 #endif /* __amd64 */
729 }
730 
731 /*ARGSUSED*/
732 static void
733 hat_vlp_teardown(cpu_t *cpu)
734 {
735 #if defined(__amd64)
736 	struct hat_cpu_info *hci;
737 
738 	if ((hci = cpu->cpu_hat_info) == NULL)
739 		return;
740 	if (hci->hci_vlp_l2ptes)
741 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
742 	if (hci->hci_vlp_l3ptes)
743 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
744 #endif	/* __amd64 */
745 }
746 
747 /*
748  * Finish filling in the kernel hat.
749  * Pre fill in all top level kernel page table entries for the kernel's
750  * part of the address range.  From this point on we can't use any new
751  * kernel large pages if they need PTE's at max_level
752  *
753  * create the kmap mappings.
754  */
755 void
756 hat_init_finish(void)
757 {
758 	htable_t	*top = kas.a_hat->hat_htable;
759 	htable_t	*ht;
760 	uint_t		e;
761 	x86pte_t	pte;
762 	uintptr_t	va = kernelbase;
763 	size_t		size;
764 
765 
766 #if defined(__i386)
767 	ASSERT((va & LEVEL_MASK(1)) == va);
768 
769 	/*
770 	 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats.
771 	 */
772 	if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) {
773 		khat_pae32_htable = NULL;
774 	} else {
775 		ASSERT(mmu.max_level == 2);
776 		ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0);
777 		khat_pae32_htable =
778 		    htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
779 		khat_pae32_start = htable_va2entry(va, khat_pae32_htable);
780 		khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start;
781 		for (e = khat_pae32_start; e < mmu.ptes_per_table;
782 		    ++e, va += LEVEL_SIZE(mmu.max_level - 1)) {
783 			pte = x86pte_get(khat_pae32_htable, e);
784 			if (PTE_ISVALID(pte))
785 				continue;
786 			ht = htable_create(kas.a_hat, va, mmu.max_level - 2,
787 			    NULL);
788 			ASSERT(ht != NULL);
789 		}
790 	}
791 #endif
792 
793 	/*
794 	 * The kernel hat will need fixed values in the highest level
795 	 * ptable for copying to all other hat's. This implies
796 	 * alignment restrictions on _userlimit.
797 	 *
798 	 * Note we don't htable_release() these htables. This keeps them
799 	 * from ever being stolen or free'd.
800 	 *
801 	 * top_level_count is used instead of ptes_per_table, since
802 	 * on 32-bit PAE we only have 4 usable entries at the top level ptable.
803 	 */
804 	if (va == 0)
805 		khat_start = mmu.top_level_count;
806 	else
807 		khat_start = htable_va2entry(va, kas.a_hat->hat_htable);
808 	khat_entries = mmu.top_level_count - khat_start;
809 	for (e = khat_start; e < mmu.top_level_count;
810 	    ++e, va += LEVEL_SIZE(mmu.max_level)) {
811 		if (IN_HYPERVISOR_VA(va))
812 			continue;
813 		pte = x86pte_get(top, e);
814 		if (PTE_ISVALID(pte))
815 			continue;
816 		ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
817 		ASSERT(ht != NULL);
818 	}
819 
820 	/*
821 	 * We are now effectively running on the kernel hat.
822 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
823 	 * reserve for all HAT allocations.  From here on, the reserves are
824 	 * only used when mapping in memory for the hat's own allocations.
825 	 */
826 	use_boot_reserve = 0;
827 	htable_adjust_reserve();
828 
829 	/*
830 	 * 32 bit kernels use only 4 of the 512 entries in its top level
831 	 * pagetable. We'll use the remainder for the "per CPU" page tables
832 	 * for VLP processes.
833 	 *
834 	 * We also map the top level kernel pagetable into the kernel to make
835 	 * it easy to use bcopy to initialize new address spaces.
836 	 */
837 	if (mmu.pae_hat) {
838 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
839 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
840 		    kas.a_hat->hat_htable->ht_pfn,
841 		    PROT_WRITE |
842 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
843 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
844 	}
845 	hat_vlp_setup(CPU);
846 
847 	/*
848 	 * Create kmap (cached mappings of kernel PTEs)
849 	 * for 32 bit we map from segmap_start .. ekernelheap
850 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
851 	 */
852 #if defined(__i386)
853 	size = (uintptr_t)ekernelheap - segmap_start;
854 #elif defined(__amd64)
855 	size = segmapsize;
856 #endif
857 	hat_kmap_init((uintptr_t)segmap_start, size);
858 }
859 
860 /*
861  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
862  * are 32 bit, so for safety we must use cas64() to install these.
863  */
864 #ifdef __i386
865 static void
866 reload_pae32(hat_t *hat, cpu_t *cpu)
867 {
868 	x86pte_t *src;
869 	x86pte_t *dest;
870 	x86pte_t pte;
871 	int i;
872 
873 	/*
874 	 * Load the 4 entries of the level 2 page table into this
875 	 * cpu's range of the vlp_page and point cr3 at them.
876 	 */
877 	ASSERT(mmu.pae_hat);
878 	src = hat->hat_vlp_ptes;
879 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
880 	for (i = 0; i < VLP_NUM_PTES; ++i) {
881 		for (;;) {
882 			pte = dest[i];
883 			if (pte == src[i])
884 				break;
885 			if (cas64(dest + i, pte, src[i]) != src[i])
886 				break;
887 		}
888 	}
889 }
890 #endif
891 
892 /*
893  * Switch to a new active hat, maintaining bit masks to track active CPUs.
894  */
895 void
896 hat_switch(hat_t *hat)
897 {
898 	uintptr_t	newcr3;
899 	cpu_t		*cpu = CPU;
900 	hat_t		*old = cpu->cpu_current_hat;
901 
902 	/*
903 	 * set up this information first, so we don't miss any cross calls
904 	 */
905 	if (old != NULL) {
906 		if (old == hat)
907 			return;
908 		if (old != kas.a_hat)
909 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
910 	}
911 
912 	/*
913 	 * Wait for any in flight pagetable invalidates on this hat to finish.
914 	 * This is a spin lock at DISP_LEVEL
915 	 */
916 	if (hat != kas.a_hat) {
917 		mutex_enter(&hat->hat_switch_mutex);
918 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
919 		mutex_exit(&hat->hat_switch_mutex);
920 	}
921 	cpu->cpu_current_hat = hat;
922 
923 	/*
924 	 * now go ahead and load cr3
925 	 */
926 	if (hat->hat_flags & HAT_VLP) {
927 #if defined(__amd64)
928 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
929 
930 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
931 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
932 #elif defined(__i386)
933 		reload_pae32(hat, cpu);
934 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
935 		    (cpu->cpu_id + 1) * VLP_SIZE;
936 #endif
937 	} else {
938 		newcr3 = MAKECR3(hat->hat_htable->ht_pfn);
939 	}
940 	setcr3(newcr3);
941 	ASSERT(cpu == CPU);
942 }
943 
944 /*
945  * Utility to return a valid x86pte_t from protections, pfn, and level number
946  */
947 static x86pte_t
948 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
949 {
950 	x86pte_t	pte;
951 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
952 
953 	pte = MAKEPTE(pfn, level);
954 
955 	if (attr & PROT_WRITE)
956 		PTE_SET(pte, PT_WRITABLE);
957 
958 	if (attr & PROT_USER)
959 		PTE_SET(pte, PT_USER);
960 
961 	if (!(attr & PROT_EXEC))
962 		PTE_SET(pte, mmu.pt_nx);
963 
964 	/*
965 	 * Set the software bits used track ref/mod sync's and hments.
966 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
967 	 */
968 	if (flags & HAT_LOAD_NOCONSIST)
969 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
970 	else if (attr & HAT_NOSYNC)
971 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
972 
973 	/*
974 	 * Set the caching attributes in the PTE. The combination
975 	 * of attributes are poorly defined, so we pay attention
976 	 * to them in the given order.
977 	 *
978 	 * The test for HAT_STRICTORDER is different because it's defined
979 	 * as "0" - which was a stupid thing to do, but is too late to change!
980 	 */
981 	if (cache_attr == HAT_STRICTORDER) {
982 		PTE_SET(pte, PT_NOCACHE);
983 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
984 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
985 		/* nothing to set */;
986 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
987 		PTE_SET(pte, PT_NOCACHE);
988 		if (x86_feature & X86_PAT)
989 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
990 		else
991 			PTE_SET(pte, PT_WRITETHRU);
992 	} else {
993 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
994 	}
995 
996 	return (pte);
997 }
998 
999 /*
1000  * Duplicate address translations of the parent to the child.
1001  * This function really isn't used anymore.
1002  */
1003 /*ARGSUSED*/
1004 int
1005 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1006 {
1007 	ASSERT((uintptr_t)addr < kernelbase);
1008 	ASSERT(new != kas.a_hat);
1009 	ASSERT(old != kas.a_hat);
1010 	return (0);
1011 }
1012 
1013 /*
1014  * Allocate any hat resources required for a process being swapped in.
1015  */
1016 /*ARGSUSED*/
1017 void
1018 hat_swapin(hat_t *hat)
1019 {
1020 	/* do nothing - we let everything fault back in */
1021 }
1022 
1023 /*
1024  * Unload all translations associated with an address space of a process
1025  * that is being swapped out.
1026  */
1027 void
1028 hat_swapout(hat_t *hat)
1029 {
1030 	uintptr_t	vaddr = (uintptr_t)0;
1031 	uintptr_t	eaddr = _userlimit;
1032 	htable_t	*ht = NULL;
1033 	level_t		l;
1034 
1035 	/*
1036 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1037 	 * seg_spt and shared pagetables can't be swapped out.
1038 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1039 	 *
1040 	 * Instead we'll walk through all the address space and unload
1041 	 * any mappings which we are sure are not shared, not locked.
1042 	 */
1043 	ASSERT(IS_PAGEALIGNED(vaddr));
1044 	ASSERT(IS_PAGEALIGNED(eaddr));
1045 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1046 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1047 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1048 
1049 	while (vaddr < eaddr) {
1050 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1051 		if (ht == NULL)
1052 			break;
1053 
1054 		ASSERT(!IN_VA_HOLE(vaddr));
1055 
1056 		/*
1057 		 * If the page table is shared skip its entire range.
1058 		 * This code knows that only level 0 page tables are shared
1059 		 */
1060 		l = ht->ht_level;
1061 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1062 			ASSERT(l == 0);
1063 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1064 			htable_release(ht);
1065 			ht = NULL;
1066 			continue;
1067 		}
1068 
1069 		/*
1070 		 * If the page table has no locked entries, unload this one.
1071 		 */
1072 		if (ht->ht_lock_cnt == 0)
1073 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1074 			    HAT_UNLOAD_UNMAP);
1075 
1076 		/*
1077 		 * If we have a level 0 page table with locked entries,
1078 		 * skip the entire page table, otherwise skip just one entry.
1079 		 */
1080 		if (ht->ht_lock_cnt > 0 && l == 0)
1081 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1082 		else
1083 			vaddr += LEVEL_SIZE(l);
1084 	}
1085 	if (ht)
1086 		htable_release(ht);
1087 
1088 	/*
1089 	 * We're in swapout because the system is low on memory, so
1090 	 * go back and flush all the htables off the cached list.
1091 	 */
1092 	htable_purge_hat(hat);
1093 }
1094 
1095 /*
1096  * returns number of bytes that have valid mappings in hat.
1097  */
1098 size_t
1099 hat_get_mapped_size(hat_t *hat)
1100 {
1101 	size_t total = 0;
1102 	int l;
1103 
1104 	for (l = 0; l <= mmu.max_page_level; l++)
1105 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1106 
1107 	return (total);
1108 }
1109 
1110 /*
1111  * enable/disable collection of stats for hat.
1112  */
1113 int
1114 hat_stats_enable(hat_t *hat)
1115 {
1116 	atomic_add_32(&hat->hat_stats, 1);
1117 	return (1);
1118 }
1119 
1120 void
1121 hat_stats_disable(hat_t *hat)
1122 {
1123 	atomic_add_32(&hat->hat_stats, -1);
1124 }
1125 
1126 /*
1127  * Utility to sync the ref/mod bits from a page table entry to the page_t
1128  * We must be holding the mapping list lock when this is called.
1129  */
1130 static void
1131 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1132 {
1133 	uint_t	rm = 0;
1134 	pgcnt_t	pgcnt;
1135 
1136 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1137 		return;
1138 
1139 	if (PTE_GET(pte, PT_REF))
1140 		rm |= P_REF;
1141 
1142 	if (PTE_GET(pte, PT_MOD))
1143 		rm |= P_MOD;
1144 
1145 	if (rm == 0)
1146 		return;
1147 
1148 	/*
1149 	 * sync to all constituent pages of a large page
1150 	 */
1151 	ASSERT(x86_hm_held(pp));
1152 	pgcnt = page_get_pagecnt(level);
1153 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1154 	for (; pgcnt > 0; --pgcnt) {
1155 		/*
1156 		 * hat_page_demote() can't decrease
1157 		 * pszc below this mapping size
1158 		 * since this large mapping existed after we
1159 		 * took mlist lock.
1160 		 */
1161 		ASSERT(pp->p_szc >= level);
1162 		hat_page_setattr(pp, rm);
1163 		++pp;
1164 	}
1165 }
1166 
1167 /*
1168  * This the set of PTE bits for PFN, permissions and caching
1169  * that require a TLB flush (hat_tlb_inval) if changed on a HAT_LOAD_REMAP
1170  */
1171 #define	PT_REMAP_BITS							\
1172 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1173 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE)
1174 
1175 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1176 /*
1177  * Do the low-level work to get a mapping entered into a HAT's pagetables
1178  * and in the mapping list of the associated page_t.
1179  */
1180 static int
1181 hati_pte_map(
1182 	htable_t	*ht,
1183 	uint_t		entry,
1184 	page_t		*pp,
1185 	x86pte_t	pte,
1186 	int		flags,
1187 	void		*pte_ptr)
1188 {
1189 	hat_t		*hat = ht->ht_hat;
1190 	x86pte_t	old_pte;
1191 	level_t		l = ht->ht_level;
1192 	hment_t		*hm;
1193 	uint_t		is_consist;
1194 	int		rv = 0;
1195 
1196 	/*
1197 	 * Is this a consistant (ie. need mapping list lock) mapping?
1198 	 */
1199 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1200 
1201 	/*
1202 	 * Track locked mapping count in the htable.  Do this first,
1203 	 * as we track locking even if there already is a mapping present.
1204 	 */
1205 	if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat)
1206 		HTABLE_LOCK_INC(ht);
1207 
1208 	/*
1209 	 * Acquire the page's mapping list lock and get an hment to use.
1210 	 * Note that hment_prepare() might return NULL.
1211 	 */
1212 	if (is_consist) {
1213 		x86_hm_enter(pp);
1214 		hm = hment_prepare(ht, entry, pp);
1215 	}
1216 
1217 	/*
1218 	 * Set the new pte, retrieving the old one at the same time.
1219 	 */
1220 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1221 
1222 	/*
1223 	 * did we get a large page / page table collision?
1224 	 */
1225 	if (old_pte == LPAGE_ERROR) {
1226 		rv = -1;
1227 		goto done;
1228 	}
1229 
1230 	/*
1231 	 * If the mapping didn't change there is nothing more to do.
1232 	 */
1233 	if (PTE_EQUIV(pte, old_pte))
1234 		goto done;
1235 
1236 	/*
1237 	 * Install a new mapping in the page's mapping list
1238 	 */
1239 	if (!PTE_ISVALID(old_pte)) {
1240 		if (is_consist) {
1241 			hment_assign(ht, entry, pp, hm);
1242 			x86_hm_exit(pp);
1243 		} else {
1244 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1245 		}
1246 		HTABLE_INC(ht->ht_valid_cnt);
1247 		PGCNT_INC(hat, l);
1248 		return (rv);
1249 	}
1250 
1251 	/*
1252 	 * Remap's are more complicated:
1253 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1254 	 *    We also require that NOCONSIST be specified.
1255 	 *  - Otherwise only permission or caching bits may change.
1256 	 */
1257 	if (!PTE_ISPAGE(old_pte, l))
1258 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1259 
1260 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1261 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1262 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1263 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1264 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1265 		    pf_is_memory(PTE2PFN(pte, l)));
1266 		REMAPASSERT(!is_consist);
1267 	}
1268 
1269 	/*
1270 	 * We only let remaps change the bits for PFNs, permissions
1271 	 * or caching type.
1272 	 */
1273 	ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) ==
1274 	    PTE_GET(pte, ~PT_REMAP_BITS));
1275 
1276 	/*
1277 	 * We don't create any mapping list entries on a remap, so release
1278 	 * any allocated hment after we drop the mapping list lock.
1279 	 */
1280 done:
1281 	if (is_consist) {
1282 		x86_hm_exit(pp);
1283 		if (hm != NULL)
1284 			hment_free(hm);
1285 	}
1286 	return (rv);
1287 }
1288 
1289 /*
1290  * The t_hatdepth field is an 8-bit counter.  We use the lower seven bits
1291  * to track exactly how deep we are in the memload->kmem_alloc recursion.
1292  * If the depth is greater than 1, that indicates that we are performing a
1293  * hat operation to satisfy another hat operation.  To prevent infinite
1294  * recursion, we switch over to using pre-allocated "reserves" of htables
1295  * and hments.
1296  *
1297  * The uppermost bit is used to indicate that we are transitioning away
1298  * from being the reserves thread.  See hati_reserves_exit() for the
1299  * details.
1300  */
1301 #define	EXITING_FLAG		(1 << 7)
1302 #define	DEPTH_MASK		(~EXITING_FLAG)
1303 #define	HAT_DEPTH(t)		((t)->t_hatdepth & DEPTH_MASK)
1304 #define	EXITING_RESERVES(t)	((t)->t_hatdepth & EXITING_FLAG)
1305 
1306 /*
1307  * Access to reserves for HAT_NO_KALLOC is single threaded.
1308  * If someone else is in the reserves, we'll politely wait for them
1309  * to finish. This keeps normal hat_memload()s from eating up
1310  * the mappings needed to replenish the reserve.
1311  */
1312 static void
1313 hati_reserves_enter(uint_t kmem_for_hat)
1314 {
1315 	/*
1316 	 * 64 is an arbitrary number to catch serious problems.  I'm not
1317 	 * sure what the absolute maximum depth is, but it should be
1318 	 * substantially less than this.
1319 	 */
1320 	ASSERT(HAT_DEPTH(curthread) < 64);
1321 
1322 	/*
1323 	 * If we are doing a memload to satisfy a kmem operation, we enter
1324 	 * the reserves immediately; we don't wait to recurse to a second
1325 	 * level of memload.
1326 	 */
1327 	ASSERT(kmem_for_hat < 2);
1328 	curthread->t_hatdepth += (1 + kmem_for_hat);
1329 
1330 	if (hat_reserves_thread == curthread || use_boot_reserve)
1331 		return;
1332 
1333 	if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) {
1334 		mutex_enter(&hat_reserves_lock);
1335 		while (hat_reserves_thread != NULL)
1336 			cv_wait(&hat_reserves_cv, &hat_reserves_lock);
1337 
1338 		if (HAT_DEPTH(curthread) > 1)
1339 			hat_reserves_thread = curthread;
1340 
1341 		mutex_exit(&hat_reserves_lock);
1342 	}
1343 }
1344 
1345 /*
1346  * If we are the reserves_thread and we've finally finished with all our
1347  * memloads (ie. no longer doing hat slabs), we can release our use of the
1348  * reserve.
1349  */
1350 static void
1351 hati_reserves_exit(uint_t kmem_for_hat)
1352 {
1353 	ASSERT(kmem_for_hat < 2);
1354 	curthread->t_hatdepth -= (1 + kmem_for_hat);
1355 
1356 	/*
1357 	 * Simple case: either we are not the reserves thread, or we are
1358 	 * the reserves thread and we are nested deeply enough that we
1359 	 * should still be the reserves thread.
1360 	 *
1361 	 * Note: we may not become the reserves thread after we recursively
1362 	 * enter our second HAT routine, but we don't stop being the
1363 	 * reserves thread until we exit the toplevel HAT routine.  This is
1364 	 * to work around vmem's inability to determine when an allocation
1365 	 * should be satisfied from the hat_memload arena, which can lead
1366 	 * to an infinite loop of memload->vmem_populate->memload->.
1367 	 */
1368 	if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 ||
1369 	    use_boot_reserve)
1370 		return;
1371 
1372 	mutex_enter(&hat_reserves_lock);
1373 	ASSERT(hat_reserves_thread == curthread);
1374 	hat_reserves_thread = NULL;
1375 	cv_broadcast(&hat_reserves_cv);
1376 	mutex_exit(&hat_reserves_lock);
1377 
1378 	/*
1379 	 * As we leave the reserves, we want to be sure the reserve lists
1380 	 * aren't overstocked.  Freeing excess reserves requires that we
1381 	 * call kmem_free(), which may require additional allocations,
1382 	 * causing us to re-enter the reserves.  To avoid infinite
1383 	 * recursion, we only try to adjust reserves at the very top level.
1384 	 */
1385 	if (!kmem_for_hat && !EXITING_RESERVES(curthread)) {
1386 		curthread->t_hatdepth |= EXITING_FLAG;
1387 		htable_adjust_reserve();
1388 		hment_adjust_reserve();
1389 		curthread->t_hatdepth &= (~EXITING_FLAG);
1390 	}
1391 
1392 	/*
1393 	 * just in case something went wrong in doing adjust reserves
1394 	 */
1395 	ASSERT(hat_reserves_thread != curthread);
1396 }
1397 
1398 /*
1399  * Internal routine to load a single page table entry. This only fails if
1400  * we attempt to overwrite a page table link with a large page.
1401  */
1402 static int
1403 hati_load_common(
1404 	hat_t		*hat,
1405 	uintptr_t	va,
1406 	page_t		*pp,
1407 	uint_t		attr,
1408 	uint_t		flags,
1409 	level_t		level,
1410 	pfn_t		pfn)
1411 {
1412 	htable_t	*ht;
1413 	uint_t		entry;
1414 	x86pte_t	pte;
1415 	uint_t		kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0;
1416 	int		rv = 0;
1417 
1418 	ASSERT(hat == kas.a_hat ||
1419 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1420 
1421 	if (flags & HAT_LOAD_SHARE)
1422 		hat->hat_flags |= HAT_SHARED;
1423 
1424 	/*
1425 	 * Find the page table that maps this page if it already exists.
1426 	 */
1427 	ht = htable_lookup(hat, va, level);
1428 
1429 	/*
1430 	 * All threads go through hati_reserves_enter() to at least wait
1431 	 * for any existing reserves user to finish. This helps reduce
1432 	 * pressure on the reserves. In addition, if this thread needs
1433 	 * to become the new reserve user it will.
1434 	 */
1435 	hati_reserves_enter(kmem_for_hat);
1436 
1437 	ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase);
1438 
1439 	/*
1440 	 * Kernel memloads for HAT data should never use hments!
1441 	 * If it did that would seriously complicate the reserves system, since
1442 	 * hment_alloc() would need to know about HAT_NO_KALLOC.
1443 	 *
1444 	 * We also must have HAT_LOAD_NOCONSIST if page_t is NULL.
1445 	 */
1446 	if (HAT_DEPTH(curthread) > 1 || pp == NULL)
1447 		flags |= HAT_LOAD_NOCONSIST;
1448 
1449 	if (ht == NULL) {
1450 		ht = htable_create(hat, va, level, NULL);
1451 		ASSERT(ht != NULL);
1452 	}
1453 	entry = htable_va2entry(va, ht);
1454 
1455 	/*
1456 	 * a bunch of paranoid error checking
1457 	 */
1458 	ASSERT(ht->ht_busy > 0);
1459 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1460 		panic("hati_load_common: bad htable %p, va %p", ht, (void *)va);
1461 	ASSERT(ht->ht_level == level);
1462 
1463 	/*
1464 	 * construct the new PTE
1465 	 */
1466 	if (hat == kas.a_hat)
1467 		attr &= ~PROT_USER;
1468 	pte = hati_mkpte(pfn, attr, level, flags);
1469 	if (hat == kas.a_hat && va >= kernelbase)
1470 		PTE_SET(pte, mmu.pt_global);
1471 
1472 	/*
1473 	 * establish the mapping
1474 	 */
1475 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1476 
1477 	/*
1478 	 * release the htable and any reserves
1479 	 */
1480 	htable_release(ht);
1481 	hati_reserves_exit(kmem_for_hat);
1482 	return (rv);
1483 }
1484 
1485 /*
1486  * special case of hat_memload to deal with some kernel addrs for performance
1487  */
1488 static void
1489 hat_kmap_load(
1490 	caddr_t		addr,
1491 	page_t		*pp,
1492 	uint_t		attr,
1493 	uint_t		flags)
1494 {
1495 	uintptr_t	va = (uintptr_t)addr;
1496 	x86pte_t	pte;
1497 	pfn_t		pfn = page_pptonum(pp);
1498 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1499 	htable_t	*ht;
1500 	uint_t		entry;
1501 	void		*pte_ptr;
1502 
1503 	/*
1504 	 * construct the requested PTE
1505 	 */
1506 	attr &= ~PROT_USER;
1507 	attr |= HAT_STORECACHING_OK;
1508 	pte = hati_mkpte(pfn, attr, 0, flags);
1509 	PTE_SET(pte, mmu.pt_global);
1510 
1511 	/*
1512 	 * Figure out the pte_ptr and htable and use common code to finish up
1513 	 */
1514 	if (mmu.pae_hat)
1515 		pte_ptr = mmu.kmap_ptes + pg_off;
1516 	else
1517 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1518 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1519 	    LEVEL_SHIFT(1)];
1520 	entry = htable_va2entry(va, ht);
1521 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1522 }
1523 
1524 /*
1525  * hat_memload() - load a translation to the given page struct
1526  *
1527  * Flags for hat_memload/hat_devload/hat_*attr.
1528  *
1529  * 	HAT_LOAD	Default flags to load a translation to the page.
1530  *
1531  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1532  *			and hat_devload().
1533  *
1534  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1535  *			sets PT_NOCONSIST
1536  *
1537  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1538  *			that map some user pages (not kas) is shared by more
1539  *			than one process (eg. ISM).
1540  *
1541  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1542  *
1543  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1544  *			point, it's setting up mapping to allocate internal
1545  *			hat layer data structures.  This flag forces hat layer
1546  *			to tap its reserves in order to prevent infinite
1547  *			recursion.
1548  *
1549  * The following is a protection attribute (like PROT_READ, etc.)
1550  *
1551  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1552  *			are never cleared.
1553  *
1554  * Installing new valid PTE's and creation of the mapping list
1555  * entry are controlled under the same lock. It's derived from the
1556  * page_t being mapped.
1557  */
1558 static uint_t supported_memload_flags =
1559 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1560 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1561 
1562 void
1563 hat_memload(
1564 	hat_t		*hat,
1565 	caddr_t		addr,
1566 	page_t		*pp,
1567 	uint_t		attr,
1568 	uint_t		flags)
1569 {
1570 	uintptr_t	va = (uintptr_t)addr;
1571 	level_t		level = 0;
1572 	pfn_t		pfn = page_pptonum(pp);
1573 
1574 	HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE);
1575 	ASSERT(IS_PAGEALIGNED(va));
1576 	ASSERT(hat == kas.a_hat || va < _userlimit);
1577 	ASSERT(hat == kas.a_hat ||
1578 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1579 	ASSERT((flags & supported_memload_flags) == flags);
1580 
1581 	ASSERT(!IN_VA_HOLE(va));
1582 	ASSERT(!PP_ISFREE(pp));
1583 
1584 	/*
1585 	 * kernel address special case for performance.
1586 	 */
1587 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1588 		ASSERT(hat == kas.a_hat);
1589 		hat_kmap_load(addr, pp, attr, flags);
1590 		return;
1591 	}
1592 
1593 	/*
1594 	 * This is used for memory with normal caching enabled, so
1595 	 * always set HAT_STORECACHING_OK.
1596 	 */
1597 	attr |= HAT_STORECACHING_OK;
1598 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1599 		panic("unexpected hati_load_common() failure");
1600 	HATOUT(hat_memload, hat, addr);
1601 }
1602 
1603 /*
1604  * Load the given array of page structs using large pages when possible
1605  */
1606 void
1607 hat_memload_array(
1608 	hat_t		*hat,
1609 	caddr_t		addr,
1610 	size_t		len,
1611 	page_t		**pages,
1612 	uint_t		attr,
1613 	uint_t		flags)
1614 {
1615 	uintptr_t	va = (uintptr_t)addr;
1616 	uintptr_t	eaddr = va + len;
1617 	level_t		level;
1618 	size_t		pgsize;
1619 	pgcnt_t		pgindx = 0;
1620 	pfn_t		pfn;
1621 	pgcnt_t		i;
1622 
1623 	HATIN(hat_memload_array, hat, addr, len);
1624 	ASSERT(IS_PAGEALIGNED(va));
1625 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1626 	ASSERT(hat == kas.a_hat ||
1627 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1628 	ASSERT((flags & supported_memload_flags) == flags);
1629 
1630 	/*
1631 	 * memload is used for memory with full caching enabled, so
1632 	 * set HAT_STORECACHING_OK.
1633 	 */
1634 	attr |= HAT_STORECACHING_OK;
1635 
1636 	/*
1637 	 * handle all pages using largest possible pagesize
1638 	 */
1639 	while (va < eaddr) {
1640 		/*
1641 		 * decide what level mapping to use (ie. pagesize)
1642 		 */
1643 		pfn = page_pptonum(pages[pgindx]);
1644 		for (level = mmu.max_page_level; ; --level) {
1645 			pgsize = LEVEL_SIZE(level);
1646 			if (level == 0)
1647 				break;
1648 
1649 			if (!IS_P2ALIGNED(va, pgsize) ||
1650 			    (eaddr - va) < pgsize ||
1651 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1652 				continue;
1653 
1654 			/*
1655 			 * To use a large mapping of this size, all the
1656 			 * pages we are passed must be sequential subpages
1657 			 * of the large page.
1658 			 * hat_page_demote() can't change p_szc because
1659 			 * all pages are locked.
1660 			 */
1661 			if (pages[pgindx]->p_szc >= level) {
1662 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1663 					if (pfn + i !=
1664 					    page_pptonum(pages[pgindx + i]))
1665 						break;
1666 					ASSERT(pages[pgindx + i]->p_szc >=
1667 					    level);
1668 					ASSERT(pages[pgindx] + i ==
1669 					    pages[pgindx + i]);
1670 				}
1671 				if (i == mmu_btop(pgsize))
1672 					break;
1673 			}
1674 		}
1675 
1676 		/*
1677 		 * Load this page mapping. If the load fails, try a smaller
1678 		 * pagesize.
1679 		 */
1680 		ASSERT(!IN_VA_HOLE(va));
1681 		while (hati_load_common(hat, va, pages[pgindx], attr,
1682 			    flags, level, pfn) != 0) {
1683 			if (level == 0)
1684 				panic("unexpected hati_load_common() failure");
1685 			--level;
1686 			pgsize = LEVEL_SIZE(level);
1687 		}
1688 
1689 		/*
1690 		 * move to next page
1691 		 */
1692 		va += pgsize;
1693 		pgindx += mmu_btop(pgsize);
1694 	}
1695 	HATOUT(hat_memload_array, hat, addr);
1696 }
1697 
1698 /*
1699  * void hat_devload(hat, addr, len, pf, attr, flags)
1700  *	load/lock the given page frame number
1701  *
1702  * Advisory ordering attributes. Apply only to device mappings.
1703  *
1704  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1705  *	programmer specified.  This is the default.
1706  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1707  *	of reordering; store or load with store or load).
1708  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1709  *	to consecutive locations (for example, turn two consecutive byte
1710  *	stores into one halfword store), and it may batch individual loads
1711  *	(for example, turn two consecutive byte loads into one halfword load).
1712  *	This also implies re-ordering.
1713  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1714  *	until another store occurs.  The default is to fetch new data
1715  *	on every load.  This also implies merging.
1716  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1717  *	the device (perhaps with other data) at a later time.  The default is
1718  *	to push the data right away.  This also implies load caching.
1719  *
1720  * Equivalent of hat_memload(), but can be used for device memory where
1721  * there are no page_t's and we support additional flags (write merging, etc).
1722  * Note that we can have large page mappings with this interface.
1723  */
1724 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1725 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1726 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1727 
1728 void
1729 hat_devload(
1730 	hat_t		*hat,
1731 	caddr_t		addr,
1732 	size_t		len,
1733 	pfn_t		pfn,
1734 	uint_t		attr,
1735 	int		flags)
1736 {
1737 	uintptr_t	va = ALIGN2PAGE(addr);
1738 	uintptr_t	eva = va + len;
1739 	level_t		level;
1740 	size_t		pgsize;
1741 	page_t		*pp;
1742 	int		f;	/* per PTE copy of flags  - maybe modified */
1743 	uint_t		a;	/* per PTE copy of attr */
1744 
1745 	HATIN(hat_devload, hat, addr, len);
1746 	ASSERT(IS_PAGEALIGNED(va));
1747 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1748 	ASSERT(hat == kas.a_hat ||
1749 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1750 	ASSERT((flags & supported_devload_flags) == flags);
1751 
1752 	/*
1753 	 * handle all pages
1754 	 */
1755 	while (va < eva) {
1756 
1757 		/*
1758 		 * decide what level mapping to use (ie. pagesize)
1759 		 */
1760 		for (level = mmu.max_page_level; ; --level) {
1761 			pgsize = LEVEL_SIZE(level);
1762 			if (level == 0)
1763 				break;
1764 			if (IS_P2ALIGNED(va, pgsize) &&
1765 			    (eva - va) >= pgsize &&
1766 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize)))
1767 				break;
1768 		}
1769 
1770 		/*
1771 		 * If this is just memory then allow caching (this happens
1772 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1773 		 * to override that. If we don't have a page_t then make sure
1774 		 * NOCONSIST is set.
1775 		 */
1776 		a = attr;
1777 		f = flags;
1778 		if (pf_is_memory(pfn)) {
1779 			if (!(a & HAT_PLAT_NOCACHE))
1780 				a |= HAT_STORECACHING_OK;
1781 
1782 			if (f & HAT_LOAD_NOCONSIST)
1783 				pp = NULL;
1784 			else
1785 				pp = page_numtopp_nolock(pfn);
1786 		} else {
1787 			pp = NULL;
1788 			f |= HAT_LOAD_NOCONSIST;
1789 		}
1790 
1791 		/*
1792 		 * load this page mapping
1793 		 */
1794 		ASSERT(!IN_VA_HOLE(va));
1795 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1796 			if (level == 0)
1797 				panic("unexpected hati_load_common() failure");
1798 			--level;
1799 			pgsize = LEVEL_SIZE(level);
1800 		}
1801 
1802 		/*
1803 		 * move to next page
1804 		 */
1805 		va += pgsize;
1806 		pfn += mmu_btop(pgsize);
1807 	}
1808 	HATOUT(hat_devload, hat, addr);
1809 }
1810 
1811 /*
1812  * void hat_unlock(hat, addr, len)
1813  *	unlock the mappings to a given range of addresses
1814  *
1815  * Locks are tracked by ht_lock_cnt in the htable.
1816  */
1817 void
1818 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1819 {
1820 	uintptr_t	vaddr = (uintptr_t)addr;
1821 	uintptr_t	eaddr = vaddr + len;
1822 	htable_t	*ht = NULL;
1823 
1824 	/*
1825 	 * kernel entries are always locked, we don't track lock counts
1826 	 */
1827 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1828 	ASSERT(IS_PAGEALIGNED(vaddr));
1829 	ASSERT(IS_PAGEALIGNED(eaddr));
1830 	if (hat == kas.a_hat)
1831 		return;
1832 	if (eaddr > _userlimit)
1833 		panic("hat_unlock() address out of range - above _userlimit");
1834 
1835 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1836 	while (vaddr < eaddr) {
1837 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1838 		if (ht == NULL)
1839 			break;
1840 
1841 		ASSERT(!IN_VA_HOLE(vaddr));
1842 
1843 		if (ht->ht_lock_cnt < 1)
1844 			panic("hat_unlock(): lock_cnt < 1, "
1845 			    "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr);
1846 		HTABLE_LOCK_DEC(ht);
1847 
1848 		vaddr += LEVEL_SIZE(ht->ht_level);
1849 	}
1850 	if (ht)
1851 		htable_release(ht);
1852 }
1853 
1854 /*
1855  * Cross call service routine to demap a virtual page on
1856  * the current CPU or flush all mappings in TLB.
1857  */
1858 /*ARGSUSED*/
1859 static int
1860 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1861 {
1862 	hat_t	*hat = (hat_t *)a1;
1863 	caddr_t	addr = (caddr_t)a2;
1864 
1865 	/*
1866 	 * If the target hat isn't the kernel and this CPU isn't operating
1867 	 * in the target hat, we can ignore the cross call.
1868 	 */
1869 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1870 		return (0);
1871 
1872 	/*
1873 	 * For a normal address, we just flush one page mapping
1874 	 */
1875 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1876 		mmu_tlbflush_entry(addr);
1877 		return (0);
1878 	}
1879 
1880 	/*
1881 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1882 	 *
1883 	 * A reload of cr3 on a VLP process also means we must also recopy in
1884 	 * the pte values from the struct hat
1885 	 */
1886 	if (hat->hat_flags & HAT_VLP) {
1887 #if defined(__amd64)
1888 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1889 
1890 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1891 #elif defined(__i386)
1892 		reload_pae32(hat, CPU);
1893 #endif
1894 	}
1895 	reload_cr3();
1896 	return (0);
1897 }
1898 
1899 /*
1900  * Internal routine to do cross calls to invalidate a range of pages on
1901  * all CPUs using a given hat.
1902  */
1903 void
1904 hat_tlb_inval(hat_t *hat, uintptr_t va)
1905 {
1906 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
1907 	cpuset_t	justme;
1908 	cpuset_t	cpus_to_shootdown;
1909 
1910 	/*
1911 	 * If the hat is being destroyed, there are no more users, so
1912 	 * demap need not do anything.
1913 	 */
1914 	if (hat->hat_flags & HAT_FREEING)
1915 		return;
1916 
1917 	/*
1918 	 * If demapping from a shared pagetable, we best demap the
1919 	 * entire set of user TLBs, since we don't know what addresses
1920 	 * these were shared at.
1921 	 */
1922 	if (hat->hat_flags & HAT_SHARED) {
1923 		hat = kas.a_hat;
1924 		va = DEMAP_ALL_ADDR;
1925 	}
1926 
1927 	/*
1928 	 * if not running with multiple CPUs, don't use cross calls
1929 	 */
1930 	if (panicstr || !flushes_require_xcalls) {
1931 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1932 		return;
1933 	}
1934 
1935 
1936 	/*
1937 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
1938 	 * Otherwise it's just CPUs currently executing in this hat.
1939 	 */
1940 	kpreempt_disable();
1941 	CPUSET_ONLY(justme, CPU->cpu_id);
1942 	if (hat == kas.a_hat)
1943 		cpus_to_shootdown = khat_cpuset;
1944 	else
1945 		cpus_to_shootdown = hat->hat_cpus;
1946 
1947 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
1948 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
1949 
1950 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1951 
1952 	} else {
1953 
1954 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
1955 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI,
1956 		    cpus_to_shootdown, hati_demap_func);
1957 
1958 	}
1959 	kpreempt_enable();
1960 }
1961 
1962 /*
1963  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
1964  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
1965  * handle releasing of the htables.
1966  */
1967 void
1968 hat_pte_unmap(
1969 	htable_t	*ht,
1970 	uint_t		entry,
1971 	uint_t		flags,
1972 	x86pte_t	old_pte,
1973 	void		*pte_ptr)
1974 {
1975 	hat_t		*hat = ht->ht_hat;
1976 	hment_t		*hm = NULL;
1977 	page_t		*pp = NULL;
1978 	level_t		l = ht->ht_level;
1979 	pfn_t		pfn;
1980 
1981 	/*
1982 	 * We always track the locking counts, even if nothing is unmapped
1983 	 */
1984 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
1985 		ASSERT(ht->ht_lock_cnt > 0);
1986 		HTABLE_LOCK_DEC(ht);
1987 	}
1988 
1989 	/*
1990 	 * Figure out which page's mapping list lock to acquire using the PFN
1991 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
1992 	 * If another thread, probably a hat_pageunload, has asynchronously
1993 	 * unmapped/remapped this address we'll loop here.
1994 	 */
1995 	ASSERT(ht->ht_busy > 0);
1996 	while (PTE_ISVALID(old_pte)) {
1997 		pfn = PTE2PFN(old_pte, l);
1998 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
1999 			pp = NULL;
2000 		} else {
2001 			pp = page_numtopp_nolock(pfn);
2002 			if (pp == NULL) {
2003 				panic("no page_t, not NOCONSIST: old_pte="
2004 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2005 				    old_pte, (uintptr_t)ht, entry,
2006 				    (uintptr_t)pte_ptr);
2007 			}
2008 			x86_hm_enter(pp);
2009 		}
2010 
2011 		/*
2012 		 * If freeing the address space, check that the PTE
2013 		 * hasn't changed, as the mappings are no longer in use by
2014 		 * any thread, invalidation is unnecessary.
2015 		 * If not freeing, do a full invalidate.
2016 		 */
2017 		if (hat->hat_flags & HAT_FREEING)
2018 			old_pte = x86pte_get(ht, entry);
2019 		else
2020 			old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2021 
2022 		/*
2023 		 * If the page hadn't changed we've unmapped it and can proceed
2024 		 */
2025 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2026 			break;
2027 
2028 		/*
2029 		 * Otherwise, we'll have to retry with the current old_pte.
2030 		 * Drop the hment lock, since the pfn may have changed.
2031 		 */
2032 		if (pp != NULL) {
2033 			x86_hm_exit(pp);
2034 			pp = NULL;
2035 		} else {
2036 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * If the old mapping wasn't valid, there's nothing more to do
2042 	 */
2043 	if (!PTE_ISVALID(old_pte)) {
2044 		if (pp != NULL)
2045 			x86_hm_exit(pp);
2046 		return;
2047 	}
2048 
2049 	/*
2050 	 * Take care of syncing any MOD/REF bits and removing the hment.
2051 	 */
2052 	if (pp != NULL) {
2053 		if (!(flags & HAT_UNLOAD_NOSYNC))
2054 			hati_sync_pte_to_page(pp, old_pte, l);
2055 		hm = hment_remove(pp, ht, entry);
2056 		x86_hm_exit(pp);
2057 		if (hm != NULL)
2058 			hment_free(hm);
2059 	}
2060 
2061 	/*
2062 	 * Handle book keeping in the htable and hat
2063 	 */
2064 	ASSERT(ht->ht_valid_cnt > 0);
2065 	HTABLE_DEC(ht->ht_valid_cnt);
2066 	PGCNT_DEC(hat, l);
2067 }
2068 
2069 /*
2070  * very cheap unload implementation to special case some kernel addresses
2071  */
2072 static void
2073 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2074 {
2075 	uintptr_t	va = (uintptr_t)addr;
2076 	uintptr_t	eva = va + len;
2077 	pgcnt_t		pg_index;
2078 	htable_t	*ht;
2079 	uint_t		entry;
2080 	x86pte_t	*pte_ptr;
2081 	x86pte_t	old_pte;
2082 
2083 	for (; va < eva; va += MMU_PAGESIZE) {
2084 		/*
2085 		 * Get the PTE
2086 		 */
2087 		pg_index = mmu_btop(va - mmu.kmap_addr);
2088 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2089 		old_pte = GET_PTE(pte_ptr);
2090 
2091 		/*
2092 		 * get the htable / entry
2093 		 */
2094 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2095 		    >> LEVEL_SHIFT(1)];
2096 		entry = htable_va2entry(va, ht);
2097 
2098 		/*
2099 		 * use mostly common code to unmap it.
2100 		 */
2101 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2102 	}
2103 }
2104 
2105 
2106 /*
2107  * unload a range of virtual address space (no callback)
2108  */
2109 void
2110 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2111 {
2112 	uintptr_t va = (uintptr_t)addr;
2113 
2114 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2115 
2116 	/*
2117 	 * special case for performance.
2118 	 */
2119 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2120 		ASSERT(hat == kas.a_hat);
2121 		hat_kmap_unload(addr, len, flags);
2122 	} else {
2123 		hat_unload_callback(hat, addr, len, flags, NULL);
2124 	}
2125 }
2126 
2127 /*
2128  * Do the callbacks for ranges being unloaded.
2129  */
2130 typedef struct range_info {
2131 	uintptr_t	rng_va;
2132 	ulong_t		rng_cnt;
2133 	level_t		rng_level;
2134 } range_info_t;
2135 
2136 static void
2137 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2138 {
2139 	/*
2140 	 * do callbacks to upper level VM system
2141 	 */
2142 	while (cb != NULL && cnt > 0) {
2143 		--cnt;
2144 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2145 		cb->hcb_end_addr = cb->hcb_start_addr;
2146 		cb->hcb_end_addr +=
2147 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2148 		cb->hcb_function(cb);
2149 	}
2150 }
2151 
2152 /*
2153  * Unload a given range of addresses (has optional callback)
2154  *
2155  * Flags:
2156  * define	HAT_UNLOAD		0x00
2157  * define	HAT_UNLOAD_NOSYNC	0x02
2158  * define	HAT_UNLOAD_UNLOCK	0x04
2159  * define	HAT_UNLOAD_OTHER	0x08 - not used
2160  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2161  */
2162 #define	MAX_UNLOAD_CNT (8)
2163 void
2164 hat_unload_callback(
2165 	hat_t		*hat,
2166 	caddr_t		addr,
2167 	size_t		len,
2168 	uint_t		flags,
2169 	hat_callback_t	*cb)
2170 {
2171 	uintptr_t	vaddr = (uintptr_t)addr;
2172 	uintptr_t	eaddr = vaddr + len;
2173 	htable_t	*ht = NULL;
2174 	uint_t		entry;
2175 	uintptr_t	contig_va = (uintptr_t)-1L;
2176 	range_info_t	r[MAX_UNLOAD_CNT];
2177 	uint_t		r_cnt = 0;
2178 	x86pte_t	old_pte;
2179 
2180 	HATIN(hat_unload_callback, hat, addr, len);
2181 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2182 	ASSERT(IS_PAGEALIGNED(vaddr));
2183 	ASSERT(IS_PAGEALIGNED(eaddr));
2184 
2185 	/*
2186 	 * Special case a single page being unloaded for speed. This happens
2187 	 * quite frequently, COW faults after a fork() for example.
2188 	 */
2189 	if (cb == NULL && len == MMU_PAGESIZE) {
2190 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2191 		if (ht != NULL) {
2192 			if (PTE_ISVALID(old_pte))
2193 				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2194 			htable_release(ht);
2195 		}
2196 		return;
2197 	}
2198 
2199 	while (vaddr < eaddr) {
2200 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2201 		if (ht == NULL)
2202 			break;
2203 
2204 		ASSERT(!IN_VA_HOLE(vaddr));
2205 
2206 		if (vaddr < (uintptr_t)addr)
2207 			panic("hat_unload_callback(): unmap inside large page");
2208 
2209 		/*
2210 		 * We'll do the call backs for contiguous ranges
2211 		 */
2212 		if (vaddr != contig_va ||
2213 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2214 			if (r_cnt == MAX_UNLOAD_CNT) {
2215 				handle_ranges(cb, r_cnt, r);
2216 				r_cnt = 0;
2217 			}
2218 			r[r_cnt].rng_va = vaddr;
2219 			r[r_cnt].rng_cnt = 0;
2220 			r[r_cnt].rng_level = ht->ht_level;
2221 			++r_cnt;
2222 		}
2223 
2224 		/*
2225 		 * Unload one mapping from the page tables.
2226 		 */
2227 		entry = htable_va2entry(vaddr, ht);
2228 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2229 		ASSERT(ht->ht_level <= mmu.max_page_level);
2230 		vaddr += LEVEL_SIZE(ht->ht_level);
2231 		contig_va = vaddr;
2232 		++r[r_cnt - 1].rng_cnt;
2233 	}
2234 	if (ht)
2235 		htable_release(ht);
2236 
2237 	/*
2238 	 * handle last range for callbacks
2239 	 */
2240 	if (r_cnt > 0)
2241 		handle_ranges(cb, r_cnt, r);
2242 
2243 	HATOUT(hat_unload_callback, hat, addr);
2244 }
2245 
2246 /*
2247  * synchronize mapping with software data structures
2248  *
2249  * This interface is currently only used by the working set monitor
2250  * driver.
2251  */
2252 /*ARGSUSED*/
2253 void
2254 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2255 {
2256 	uintptr_t	vaddr = (uintptr_t)addr;
2257 	uintptr_t	eaddr = vaddr + len;
2258 	htable_t	*ht = NULL;
2259 	uint_t		entry;
2260 	x86pte_t	pte;
2261 	x86pte_t	save_pte;
2262 	x86pte_t	new;
2263 	page_t		*pp;
2264 
2265 	ASSERT(!IN_VA_HOLE(vaddr));
2266 	ASSERT(IS_PAGEALIGNED(vaddr));
2267 	ASSERT(IS_PAGEALIGNED(eaddr));
2268 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2269 
2270 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2271 try_again:
2272 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2273 		if (ht == NULL)
2274 			break;
2275 		entry = htable_va2entry(vaddr, ht);
2276 
2277 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2278 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2279 			continue;
2280 
2281 		/*
2282 		 * We need to acquire the mapping list lock to protect
2283 		 * against hat_pageunload(), hat_unload(), etc.
2284 		 */
2285 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2286 		if (pp == NULL)
2287 			break;
2288 		x86_hm_enter(pp);
2289 		save_pte = pte;
2290 		pte = x86pte_get(ht, entry);
2291 		if (pte != save_pte) {
2292 			x86_hm_exit(pp);
2293 			goto try_again;
2294 		}
2295 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2296 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2297 			x86_hm_exit(pp);
2298 			continue;
2299 		}
2300 
2301 		/*
2302 		 * Need to clear ref or mod bits. We may compete with
2303 		 * hardware updating the R/M bits and have to try again.
2304 		 */
2305 		if (flags == HAT_SYNC_ZERORM) {
2306 			new = pte;
2307 			PTE_CLR(new, PT_REF | PT_MOD);
2308 			pte = hati_update_pte(ht, entry, pte, new);
2309 			if (pte != 0) {
2310 				x86_hm_exit(pp);
2311 				goto try_again;
2312 			}
2313 		} else {
2314 			/*
2315 			 * sync the PTE to the page_t
2316 			 */
2317 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2318 		}
2319 		x86_hm_exit(pp);
2320 	}
2321 	if (ht)
2322 		htable_release(ht);
2323 }
2324 
2325 /*
2326  * void	hat_map(hat, addr, len, flags)
2327  */
2328 /*ARGSUSED*/
2329 void
2330 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2331 {
2332 	/* does nothing */
2333 }
2334 
2335 /*
2336  * uint_t hat_getattr(hat, addr, *attr)
2337  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2338  *	mapping and *attr is valid, nonzero if there was no mapping and
2339  *	*attr is not valid.
2340  */
2341 uint_t
2342 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2343 {
2344 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2345 	htable_t	*ht = NULL;
2346 	x86pte_t	pte;
2347 
2348 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2349 
2350 	if (IN_VA_HOLE(vaddr))
2351 		return ((uint_t)-1);
2352 
2353 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2354 	if (ht == NULL)
2355 		return ((uint_t)-1);
2356 
2357 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2358 		htable_release(ht);
2359 		return ((uint_t)-1);
2360 	}
2361 
2362 	*attr = PROT_READ;
2363 	if (PTE_GET(pte, PT_WRITABLE))
2364 		*attr |= PROT_WRITE;
2365 	if (PTE_GET(pte, PT_USER))
2366 		*attr |= PROT_USER;
2367 	if (!PTE_GET(pte, mmu.pt_nx))
2368 		*attr |= PROT_EXEC;
2369 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2370 		*attr |= HAT_NOSYNC;
2371 	htable_release(ht);
2372 	return (0);
2373 }
2374 
2375 /*
2376  * hat_updateattr() applies the given attribute change to an existing mapping
2377  */
2378 #define	HAT_LOAD_ATTR		1
2379 #define	HAT_SET_ATTR		2
2380 #define	HAT_CLR_ATTR		3
2381 
2382 static void
2383 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2384 {
2385 	uintptr_t	vaddr = (uintptr_t)addr;
2386 	uintptr_t	eaddr = (uintptr_t)addr + len;
2387 	htable_t	*ht = NULL;
2388 	uint_t		entry;
2389 	x86pte_t	oldpte, newpte;
2390 	page_t		*pp;
2391 
2392 	ASSERT(IS_PAGEALIGNED(vaddr));
2393 	ASSERT(IS_PAGEALIGNED(eaddr));
2394 	ASSERT(hat == kas.a_hat ||
2395 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2396 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2397 try_again:
2398 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2399 		if (ht == NULL)
2400 			break;
2401 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2402 			continue;
2403 
2404 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2405 		if (pp == NULL)
2406 			continue;
2407 		x86_hm_enter(pp);
2408 
2409 		newpte = oldpte;
2410 		/*
2411 		 * We found a page table entry in the desired range,
2412 		 * figure out the new attributes.
2413 		 */
2414 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2415 			if ((attr & PROT_WRITE) &&
2416 			    !PTE_GET(oldpte, PT_WRITABLE))
2417 				newpte |= PT_WRITABLE;
2418 
2419 			if ((attr & HAT_NOSYNC) &&
2420 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2421 				newpte |= PT_NOSYNC;
2422 
2423 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2424 				newpte &= ~mmu.pt_nx;
2425 		}
2426 
2427 		if (what == HAT_LOAD_ATTR) {
2428 			if (!(attr & PROT_WRITE) &&
2429 			    PTE_GET(oldpte, PT_WRITABLE))
2430 				newpte &= ~PT_WRITABLE;
2431 
2432 			if (!(attr & HAT_NOSYNC) &&
2433 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2434 				newpte &= ~PT_SOFTWARE;
2435 
2436 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2437 				newpte |= mmu.pt_nx;
2438 		}
2439 
2440 		if (what == HAT_CLR_ATTR) {
2441 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2442 				newpte &= ~PT_WRITABLE;
2443 
2444 			if ((attr & HAT_NOSYNC) &&
2445 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2446 				newpte &= ~PT_SOFTWARE;
2447 
2448 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2449 				newpte |= mmu.pt_nx;
2450 		}
2451 
2452 		/*
2453 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2454 		 * x86pte_set() depends on this.
2455 		 */
2456 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2457 			newpte |= PT_REF | PT_MOD;
2458 
2459 		/*
2460 		 * what about PROT_READ or others? this code only handles:
2461 		 * EXEC, WRITE, NOSYNC
2462 		 */
2463 
2464 		/*
2465 		 * If new PTE really changed, update the table.
2466 		 */
2467 		if (newpte != oldpte) {
2468 			entry = htable_va2entry(vaddr, ht);
2469 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2470 			if (oldpte != 0) {
2471 				x86_hm_exit(pp);
2472 				goto try_again;
2473 			}
2474 		}
2475 		x86_hm_exit(pp);
2476 	}
2477 	if (ht)
2478 		htable_release(ht);
2479 }
2480 
2481 /*
2482  * Various wrappers for hat_updateattr()
2483  */
2484 void
2485 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2486 {
2487 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2488 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2489 }
2490 
2491 void
2492 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2493 {
2494 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2495 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2496 }
2497 
2498 void
2499 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2500 {
2501 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2502 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2503 }
2504 
2505 void
2506 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2507 {
2508 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2509 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2510 }
2511 
2512 /*
2513  * size_t hat_getpagesize(hat, addr)
2514  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2515  *	no mapping. This is an advisory call.
2516  */
2517 ssize_t
2518 hat_getpagesize(hat_t *hat, caddr_t addr)
2519 {
2520 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2521 	htable_t	*ht;
2522 	size_t		pagesize;
2523 
2524 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2525 	if (IN_VA_HOLE(vaddr))
2526 		return (-1);
2527 	ht = htable_getpage(hat, vaddr, NULL);
2528 	if (ht == NULL)
2529 		return (-1);
2530 	pagesize = LEVEL_SIZE(ht->ht_level);
2531 	htable_release(ht);
2532 	return (pagesize);
2533 }
2534 
2535 
2536 
2537 /*
2538  * pfn_t hat_getpfnum(hat, addr)
2539  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2540  */
2541 pfn_t
2542 hat_getpfnum(hat_t *hat, caddr_t addr)
2543 {
2544 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2545 	htable_t	*ht;
2546 	uint_t		entry;
2547 	pfn_t		pfn = PFN_INVALID;
2548 
2549 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2550 	if (khat_running == 0)
2551 		return (PFN_INVALID);
2552 
2553 	if (IN_VA_HOLE(vaddr))
2554 		return (PFN_INVALID);
2555 
2556 	/*
2557 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2558 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2559 	 * this up.
2560 	 */
2561 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2562 		x86pte_t pte;
2563 		pgcnt_t pg_index;
2564 
2565 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2566 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2567 		if (!PTE_ISVALID(pte))
2568 			return (PFN_INVALID);
2569 		/*LINTED [use of constant 0 causes a silly lint warning] */
2570 		return (PTE2PFN(pte, 0));
2571 	}
2572 
2573 	ht = htable_getpage(hat, vaddr, &entry);
2574 	if (ht == NULL)
2575 		return (PFN_INVALID);
2576 	ASSERT(vaddr >= ht->ht_vaddr);
2577 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2578 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2579 	if (ht->ht_level > 0)
2580 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2581 	htable_release(ht);
2582 	return (pfn);
2583 }
2584 
2585 /*
2586  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2587  * Use hat_getpfnum(kas.a_hat, ...) instead.
2588  *
2589  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2590  * but can't right now due to the fact that some software has grown to use
2591  * this interface incorrectly. So for now when the interface is misused,
2592  * return a warning to the user that in the future it won't work in the
2593  * way they're abusing it, and carry on.
2594  *
2595  * Note that hat_getkpfnum() is never supported on amd64.
2596  */
2597 #if !defined(__amd64)
2598 pfn_t
2599 hat_getkpfnum(caddr_t addr)
2600 {
2601 	pfn_t	pfn;
2602 	int badcaller = 0;
2603 
2604 	if (khat_running == 0)
2605 		panic("hat_getkpfnum(): called too early\n");
2606 	if ((uintptr_t)addr < kernelbase)
2607 		return (PFN_INVALID);
2608 
2609 
2610 	if (segkpm && IS_KPM_ADDR(addr)) {
2611 		badcaller = 1;
2612 		pfn = hat_kpm_va2pfn(addr);
2613 	} else {
2614 		pfn = hat_getpfnum(kas.a_hat, addr);
2615 		badcaller = pf_is_memory(pfn);
2616 	}
2617 
2618 	if (badcaller)
2619 		hat_getkpfnum_badcall(caller());
2620 	return (pfn);
2621 }
2622 #endif /* __amd64 */
2623 
2624 /*
2625  * int hat_probe(hat, addr)
2626  *	return 0 if no valid mapping is present.  Faster version
2627  *	of hat_getattr in certain architectures.
2628  */
2629 int
2630 hat_probe(hat_t *hat, caddr_t addr)
2631 {
2632 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2633 	uint_t		entry;
2634 	htable_t	*ht;
2635 	pgcnt_t		pg_off;
2636 
2637 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2638 	ASSERT(hat == kas.a_hat ||
2639 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2640 	if (IN_VA_HOLE(vaddr))
2641 		return (0);
2642 
2643 	/*
2644 	 * Most common use of hat_probe is from segmap. We special case it
2645 	 * for performance.
2646 	 */
2647 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2648 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2649 		if (mmu.pae_hat)
2650 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2651 		else
2652 			return (PTE_ISVALID(
2653 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2654 	}
2655 
2656 	ht = htable_getpage(hat, vaddr, &entry);
2657 	if (ht == NULL)
2658 		return (0);
2659 	htable_release(ht);
2660 	return (1);
2661 }
2662 
2663 /*
2664  * Simple implementation of ISM. hat_share() is just like hat_memload_array(),
2665  * except that we use the ism_hat's existing mappings to determine the pages
2666  * and protections to use for this hat. In case we find a properly aligned
2667  * and sized pagetable of 4K mappings, we will attempt to share the pagetable
2668  * itself.
2669  */
2670 /*ARGSUSED*/
2671 int
2672 hat_share(
2673 	hat_t		*hat,
2674 	caddr_t		addr,
2675 	hat_t		*ism_hat,
2676 	caddr_t		src_addr,
2677 	size_t		len,	/* almost useless value, see below.. */
2678 	uint_t		ismszc)
2679 {
2680 	uintptr_t	vaddr_start = (uintptr_t)addr;
2681 	uintptr_t	vaddr;
2682 	uintptr_t	pt_vaddr;
2683 	uintptr_t	eaddr = vaddr_start + len;
2684 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2685 	uintptr_t	ism_addr = ism_addr_start;
2686 	uintptr_t	e_ism_addr = ism_addr + len;
2687 	htable_t	*ism_ht = NULL;
2688 	htable_t	*ht;
2689 	x86pte_t	pte;
2690 	page_t		*pp;
2691 	pfn_t		pfn;
2692 	level_t		l;
2693 	pgcnt_t		pgcnt;
2694 	uint_t		prot;
2695 	uint_t		valid_cnt;
2696 
2697 	/*
2698 	 * We might be asked to share an empty DISM hat by as_dup()
2699 	 */
2700 	ASSERT(hat != kas.a_hat);
2701 	ASSERT(eaddr <= _userlimit);
2702 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2703 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2704 		return (0);
2705 	}
2706 
2707 	/*
2708 	 * The SPT segment driver often passes us a size larger than there are
2709 	 * valid mappings. That's because it rounds the segment size up to a
2710 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2711 	 */
2712 	HATIN(hat_share, hat, addr, len);
2713 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2714 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2715 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2716 	while (ism_addr < e_ism_addr) {
2717 		/*
2718 		 * use htable_walk to get the next valid ISM mapping
2719 		 */
2720 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2721 		if (ism_ht == NULL)
2722 			break;
2723 
2724 		/*
2725 		 * Find the largest page size we can use, based on the
2726 		 * ISM mapping size, our address alignment and the remaining
2727 		 * map length.
2728 		 */
2729 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2730 		for (l = ism_ht->ht_level; l > 0; --l) {
2731 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
2732 			    (vaddr & LEVEL_OFFSET(l)) == 0)
2733 				break;
2734 		}
2735 
2736 		/*
2737 		 * attempt to share the pagetable
2738 		 *
2739 		 * - only 4K pagetables are shared (ie. level == 0)
2740 		 * - the hat_share() length must cover the whole pagetable
2741 		 * - the shared address must align at level 1
2742 		 * - a shared PTE for this address already exists OR
2743 		 * - no page table for this address exists yet
2744 		 */
2745 		pt_vaddr =
2746 		    vaddr_start + (ism_ht->ht_vaddr - ism_addr_start);
2747 		if (ism_ht->ht_level == 0 &&
2748 		    ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr &&
2749 		    (pt_vaddr & LEVEL_OFFSET(1)) == 0) {
2750 
2751 			ht = htable_lookup(hat, pt_vaddr, 0);
2752 			if (ht == NULL)
2753 				ht = htable_create(hat, pt_vaddr, 0, ism_ht);
2754 
2755 			if (ht->ht_level > 0 ||
2756 			    !(ht->ht_flags & HTABLE_SHARED_PFN)) {
2757 
2758 				htable_release(ht);
2759 
2760 			} else {
2761 
2762 				/*
2763 				 * share the page table
2764 				 */
2765 				ASSERT(ht->ht_level == 0);
2766 				ASSERT(ht->ht_shares == ism_ht);
2767 				valid_cnt = ism_ht->ht_valid_cnt;
2768 				atomic_add_long(&hat->hat_pages_mapped[0],
2769 				    valid_cnt - ht->ht_valid_cnt);
2770 				ht->ht_valid_cnt = valid_cnt;
2771 				htable_release(ht);
2772 				ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1);
2773 				htable_release(ism_ht);
2774 				ism_ht = NULL;
2775 				continue;
2776 			}
2777 		}
2778 
2779 		/*
2780 		 * Unable to share the page table. Instead we will
2781 		 * create new mappings from the values in the ISM mappings.
2782 		 *
2783 		 * The ISM mapping might be larger than the share area,
2784 		 * be careful to trunctate it if needed.
2785 		 */
2786 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
2787 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
2788 		} else {
2789 			pgcnt = mmu_btop(eaddr - vaddr);
2790 			l = 0;
2791 		}
2792 
2793 		pfn = PTE2PFN(pte, ism_ht->ht_level);
2794 		ASSERT(pfn != PFN_INVALID);
2795 		while (pgcnt > 0) {
2796 			/*
2797 			 * Make a new pte for the PFN for this level.
2798 			 * Copy protections for the pte from the ISM pte.
2799 			 */
2800 			pp = page_numtopp_nolock(pfn);
2801 			ASSERT(pp != NULL);
2802 
2803 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
2804 			if (PTE_GET(pte, PT_WRITABLE))
2805 				prot |= PROT_WRITE;
2806 			if (!PTE_GET(pte, PT_NX))
2807 				prot |= PROT_EXEC;
2808 
2809 			/*
2810 			 * XX64 -- can shm ever be written to swap?
2811 			 * if not we could use HAT_NOSYNC here.
2812 			 */
2813 			while (hati_load_common(hat, vaddr, pp, prot, HAT_LOAD,
2814 			    l, pfn) != 0) {
2815 				if (l == 0)
2816 					panic("hati_load_common() failure");
2817 				--l;
2818 			}
2819 
2820 			vaddr += LEVEL_SIZE(l);
2821 			ism_addr += LEVEL_SIZE(l);
2822 			pfn += mmu_btop(LEVEL_SIZE(l));
2823 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
2824 		}
2825 	}
2826 	if (ism_ht != NULL)
2827 		htable_release(ism_ht);
2828 
2829 	HATOUT(hat_share, hat, addr);
2830 	return (0);
2831 }
2832 
2833 
2834 /*
2835  * hat_unshare() is similar to hat_unload_callback(), but
2836  * we have to look for empty shared pagetables. Note that
2837  * hat_unshare() is always invoked against an entire segment.
2838  */
2839 /*ARGSUSED*/
2840 void
2841 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
2842 {
2843 	uintptr_t	vaddr = (uintptr_t)addr;
2844 	uintptr_t	eaddr = vaddr + len;
2845 	htable_t	*ht = NULL;
2846 	uint_t		need_demaps = 0;
2847 
2848 	ASSERT(hat != kas.a_hat);
2849 	ASSERT(eaddr <= _userlimit);
2850 	HATIN(hat_unshare, hat, addr, len);
2851 	ASSERT(IS_PAGEALIGNED(vaddr));
2852 	ASSERT(IS_PAGEALIGNED(eaddr));
2853 
2854 	/*
2855 	 * First go through and remove any shared pagetables.
2856 	 *
2857 	 * Note that it's ok to delay the TLB shootdown till the entire range is
2858 	 * finished, because if hat_pageunload() were to unload a shared
2859 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
2860 	 */
2861 	while (vaddr < eaddr) {
2862 		ASSERT(!IN_VA_HOLE(vaddr));
2863 		/*
2864 		 * find the pagetable that would map the current address
2865 		 */
2866 		ht = htable_lookup(hat, vaddr, 0);
2867 		if (ht != NULL) {
2868 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
2869 				/*
2870 				 * clear mapped pages count, set valid_cnt to 0
2871 				 * and let htable_release() finish the job
2872 				 */
2873 				atomic_add_long(&hat->hat_pages_mapped[0],
2874 				    -ht->ht_valid_cnt);
2875 				ht->ht_valid_cnt = 0;
2876 				need_demaps = 1;
2877 			}
2878 			htable_release(ht);
2879 		}
2880 		vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1);
2881 	}
2882 
2883 	/*
2884 	 * flush the TLBs - since we're probably dealing with MANY mappings
2885 	 * we do just one CR3 reload.
2886 	 */
2887 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
2888 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
2889 
2890 	/*
2891 	 * Now go back and clean up any unaligned mappings that
2892 	 * couldn't share pagetables.
2893 	 */
2894 	hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP);
2895 
2896 	HATOUT(hat_unshare, hat, addr);
2897 }
2898 
2899 
2900 /*
2901  * hat_reserve() does nothing
2902  */
2903 /*ARGSUSED*/
2904 void
2905 hat_reserve(struct as *as, caddr_t addr, size_t len)
2906 {
2907 }
2908 
2909 
2910 /*
2911  * Called when all mappings to a page should have write permission removed.
2912  * Mostly stolem from hat_pagesync()
2913  */
2914 static void
2915 hati_page_clrwrt(struct page *pp)
2916 {
2917 	hment_t		*hm = NULL;
2918 	htable_t	*ht;
2919 	uint_t		entry;
2920 	x86pte_t	old;
2921 	x86pte_t	new;
2922 	uint_t		pszc = 0;
2923 
2924 next_size:
2925 	/*
2926 	 * walk thru the mapping list clearing write permission
2927 	 */
2928 	x86_hm_enter(pp);
2929 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
2930 		if (ht->ht_level < pszc)
2931 			continue;
2932 		old = x86pte_get(ht, entry);
2933 
2934 		for (;;) {
2935 			/*
2936 			 * Is this mapping of interest?
2937 			 */
2938 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
2939 			    PTE_GET(old, PT_WRITABLE) == 0)
2940 				break;
2941 
2942 			/*
2943 			 * Clear ref/mod writable bits. This requires cross
2944 			 * calls to ensure any executing TLBs see cleared bits.
2945 			 */
2946 			new = old;
2947 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
2948 			old = hati_update_pte(ht, entry, old, new);
2949 			if (old != 0)
2950 				continue;
2951 
2952 			break;
2953 		}
2954 	}
2955 	x86_hm_exit(pp);
2956 	while (pszc < pp->p_szc) {
2957 		page_t *tpp;
2958 		pszc++;
2959 		tpp = PP_GROUPLEADER(pp, pszc);
2960 		if (pp != tpp) {
2961 			pp = tpp;
2962 			goto next_size;
2963 		}
2964 	}
2965 }
2966 
2967 /*
2968  * void hat_page_setattr(pp, flag)
2969  * void hat_page_clrattr(pp, flag)
2970  *	used to set/clr ref/mod bits.
2971  */
2972 void
2973 hat_page_setattr(struct page *pp, uint_t flag)
2974 {
2975 	vnode_t		*vp = pp->p_vnode;
2976 	kmutex_t	*vphm = NULL;
2977 	page_t		**listp;
2978 
2979 	if (PP_GETRM(pp, flag) == flag)
2980 		return;
2981 
2982 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
2983 		vphm = page_vnode_mutex(vp);
2984 		mutex_enter(vphm);
2985 	}
2986 
2987 	PP_SETRM(pp, flag);
2988 
2989 	if (vphm != NULL) {
2990 
2991 		/*
2992 		 * Some File Systems examine v_pages for NULL w/o
2993 		 * grabbing the vphm mutex. Must not let it become NULL when
2994 		 * pp is the only page on the list.
2995 		 */
2996 		if (pp->p_vpnext != pp) {
2997 			page_vpsub(&vp->v_pages, pp);
2998 			if (vp->v_pages != NULL)
2999 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3000 			else
3001 				listp = &vp->v_pages;
3002 			page_vpadd(listp, pp);
3003 		}
3004 		mutex_exit(vphm);
3005 	}
3006 }
3007 
3008 void
3009 hat_page_clrattr(struct page *pp, uint_t flag)
3010 {
3011 	vnode_t		*vp = pp->p_vnode;
3012 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3013 
3014 	/*
3015 	 * Caller is expected to hold page's io lock for VMODSORT to work
3016 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3017 	 * bit is cleared.
3018 	 * We don't have assert to avoid tripping some existing third party
3019 	 * code. The dirty page is moved back to top of the v_page list
3020 	 * after IO is done in pvn_write_done().
3021 	 */
3022 	PP_CLRRM(pp, flag);
3023 
3024 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3025 
3026 		/*
3027 		 * VMODSORT works by removing write permissions and getting
3028 		 * a fault when a page is made dirty. At this point
3029 		 * we need to remove write permission from all mappings
3030 		 * to this page.
3031 		 */
3032 		hati_page_clrwrt(pp);
3033 	}
3034 }
3035 
3036 /*
3037  *	If flag is specified, returns 0 if attribute is disabled
3038  *	and non zero if enabled.  If flag specifes multiple attributs
3039  *	then returns 0 if ALL atriibutes are disabled.  This is an advisory
3040  *	call.
3041  */
3042 uint_t
3043 hat_page_getattr(struct page *pp, uint_t flag)
3044 {
3045 	return (PP_GETRM(pp, flag));
3046 }
3047 
3048 
3049 /*
3050  * common code used by hat_pageunload() and hment_steal()
3051  */
3052 hment_t *
3053 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3054 {
3055 	x86pte_t old_pte;
3056 	pfn_t pfn = pp->p_pagenum;
3057 	hment_t *hm;
3058 
3059 	/*
3060 	 * We need to acquire a hold on the htable in order to
3061 	 * do the invalidate. We know the htable must exist, since
3062 	 * unmap's don't release the htable until after removing any
3063 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3064 	 */
3065 	htable_acquire(ht);
3066 
3067 	/*
3068 	 * Invalidate the PTE and remove the hment.
3069 	 */
3070 	old_pte = x86pte_inval(ht, entry, 0, NULL);
3071 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3072 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3073 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3074 		    old_pte, pfn, (uintptr_t)ht, entry);
3075 	}
3076 
3077 	/*
3078 	 * Clean up all the htable information for this mapping
3079 	 */
3080 	ASSERT(ht->ht_valid_cnt > 0);
3081 	HTABLE_DEC(ht->ht_valid_cnt);
3082 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3083 
3084 	/*
3085 	 * sync ref/mod bits to the page_t
3086 	 */
3087 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3088 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3089 
3090 	/*
3091 	 * Remove the mapping list entry for this page.
3092 	 */
3093 	hm = hment_remove(pp, ht, entry);
3094 
3095 	/*
3096 	 * drop the mapping list lock so that we might free the
3097 	 * hment and htable.
3098 	 */
3099 	x86_hm_exit(pp);
3100 	htable_release(ht);
3101 	return (hm);
3102 }
3103 
3104 extern int	vpm_enable;
3105 /*
3106  * Unload all translations to a page. If the page is a subpage of a large
3107  * page, the large page mappings are also removed.
3108  *
3109  * The forceflags are unused.
3110  */
3111 
3112 /*ARGSUSED*/
3113 static int
3114 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3115 {
3116 	page_t		*cur_pp = pp;
3117 	hment_t		*hm;
3118 	hment_t		*prev;
3119 	htable_t	*ht;
3120 	uint_t		entry;
3121 	level_t		level;
3122 
3123 #if defined(__amd64)
3124 	/*
3125 	 * clear the vpm ref.
3126 	 */
3127 	if (vpm_enable) {
3128 		pp->p_vpmref = 0;
3129 	}
3130 #endif
3131 	/*
3132 	 * The loop with next_size handles pages with multiple pagesize mappings
3133 	 */
3134 next_size:
3135 	for (;;) {
3136 
3137 		/*
3138 		 * Get a mapping list entry
3139 		 */
3140 		x86_hm_enter(cur_pp);
3141 		for (prev = NULL; ; prev = hm) {
3142 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3143 			if (hm == NULL) {
3144 				x86_hm_exit(cur_pp);
3145 
3146 				/*
3147 				 * If not part of a larger page, we're done.
3148 				 */
3149 				if (cur_pp->p_szc <= pg_szcd) {
3150 					return (0);
3151 				}
3152 
3153 				/*
3154 				 * Else check the next larger page size.
3155 				 * hat_page_demote() may decrease p_szc
3156 				 * but that's ok we'll just take an extra
3157 				 * trip discover there're no larger mappings
3158 				 * and return.
3159 				 */
3160 				++pg_szcd;
3161 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3162 				goto next_size;
3163 			}
3164 
3165 			/*
3166 			 * If this mapping size matches, remove it.
3167 			 */
3168 			level = ht->ht_level;
3169 			if (level == pg_szcd)
3170 				break;
3171 		}
3172 
3173 		/*
3174 		 * Remove the mapping list entry for this page.
3175 		 * Note this does the x86_hm_exit() for us.
3176 		 */
3177 		hm = hati_page_unmap(cur_pp, ht, entry);
3178 		if (hm != NULL)
3179 			hment_free(hm);
3180 	}
3181 }
3182 
3183 int
3184 hat_pageunload(struct page *pp, uint_t forceflag)
3185 {
3186 	ASSERT(PAGE_EXCL(pp));
3187 	return (hati_pageunload(pp, 0, forceflag));
3188 }
3189 
3190 /*
3191  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3192  * page level that included pp.
3193  *
3194  * pp must be locked EXCL. Even though no other constituent pages are locked
3195  * it's legal to unload large mappings to pp because all constituent pages of
3196  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3197  * lock on one of constituent pages none of the large mappings to pp are
3198  * locked.
3199  *
3200  * Change (always decrease) p_szc field starting from the last constituent
3201  * page and ending with root constituent page so that root's pszc always shows
3202  * the area where hat_page_demote() may be active.
3203  *
3204  * This mechanism is only used for file system pages where it's not always
3205  * possible to get EXCL locks on all constituent pages to demote the size code
3206  * (as is done for anonymous or kernel large pages).
3207  */
3208 void
3209 hat_page_demote(page_t *pp)
3210 {
3211 	uint_t		pszc;
3212 	uint_t		rszc;
3213 	uint_t		szc;
3214 	page_t		*rootpp;
3215 	page_t		*firstpp;
3216 	page_t		*lastpp;
3217 	pgcnt_t		pgcnt;
3218 
3219 	ASSERT(PAGE_EXCL(pp));
3220 	ASSERT(!PP_ISFREE(pp));
3221 	ASSERT(page_szc_lock_assert(pp));
3222 
3223 	if (pp->p_szc == 0)
3224 		return;
3225 
3226 	rootpp = PP_GROUPLEADER(pp, 1);
3227 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3228 
3229 	/*
3230 	 * all large mappings to pp are gone
3231 	 * and no new can be setup since pp is locked exclusively.
3232 	 *
3233 	 * Lock the root to make sure there's only one hat_page_demote()
3234 	 * outstanding within the area of this root's pszc.
3235 	 *
3236 	 * Second potential hat_page_demote() is already eliminated by upper
3237 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3238 	 * own locking (so that upper layer locking can be changed without
3239 	 * assumptions that hat depends on upper layer VM to prevent multiple
3240 	 * hat_page_demote() to be issued simultaneously to the same large
3241 	 * page).
3242 	 */
3243 again:
3244 	pszc = pp->p_szc;
3245 	if (pszc == 0)
3246 		return;
3247 	rootpp = PP_GROUPLEADER(pp, pszc);
3248 	x86_hm_enter(rootpp);
3249 	/*
3250 	 * If root's p_szc is different from pszc we raced with another
3251 	 * hat_page_demote().  Drop the lock and try to find the root again.
3252 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3253 	 * not done yet.  Take and release mlist lock of root's root to wait
3254 	 * for previous hat_page_demote() to complete.
3255 	 */
3256 	if ((rszc = rootpp->p_szc) != pszc) {
3257 		x86_hm_exit(rootpp);
3258 		if (rszc > pszc) {
3259 			/* p_szc of a locked non free page can't increase */
3260 			ASSERT(pp != rootpp);
3261 
3262 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3263 			x86_hm_enter(rootpp);
3264 			x86_hm_exit(rootpp);
3265 		}
3266 		goto again;
3267 	}
3268 	ASSERT(pp->p_szc == pszc);
3269 
3270 	/*
3271 	 * Decrement by 1 p_szc of every constituent page of a region that
3272 	 * covered pp. For example if original szc is 3 it gets changed to 2
3273 	 * everywhere except in region 2 that covered pp. Region 2 that
3274 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3275 	 * covered pp. The region 1 that covered pp is demoted to region
3276 	 * 0. It's done this way because from region 3 we removed level 3
3277 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3278 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3279 	 * changes are done from from high pfn's to low pfn's so that roots
3280 	 * are changed last allowing one to know the largest region where
3281 	 * hat_page_demote() is stil active by only looking at the root page.
3282 	 *
3283 	 * This algorithm is implemented in 2 while loops. First loop changes
3284 	 * p_szc of pages to the right of pp's level 1 region and second
3285 	 * loop changes p_szc of pages of level 1 region that covers pp
3286 	 * and all pages to the left of level 1 region that covers pp.
3287 	 * In the first loop p_szc keeps dropping with every iteration
3288 	 * and in the second loop it keeps increasing with every iteration.
3289 	 *
3290 	 * First loop description: Demote pages to the right of pp outside of
3291 	 * level 1 region that covers pp.  In every iteration of the while
3292 	 * loop below find the last page of szc region and the first page of
3293 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3294 	 * region that covers pp.  From last such page to first such page
3295 	 * change every page's szc to szc - 1. Decrement szc and continue
3296 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3297 	 * of szc region skip to the next iteration.
3298 	 */
3299 	szc = pszc;
3300 	while (szc > 1) {
3301 		lastpp = PP_GROUPLEADER(pp, szc);
3302 		pgcnt = page_get_pagecnt(szc);
3303 		lastpp += pgcnt - 1;
3304 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3305 		pgcnt = page_get_pagecnt(szc - 1);
3306 		if (lastpp - firstpp < pgcnt) {
3307 			szc--;
3308 			continue;
3309 		}
3310 		firstpp += pgcnt;
3311 		while (lastpp != firstpp) {
3312 			ASSERT(lastpp->p_szc == pszc);
3313 			lastpp->p_szc = szc - 1;
3314 			lastpp--;
3315 		}
3316 		firstpp->p_szc = szc - 1;
3317 		szc--;
3318 	}
3319 
3320 	/*
3321 	 * Second loop description:
3322 	 * First iteration changes p_szc to 0 of every
3323 	 * page of level 1 region that covers pp.
3324 	 * Subsequent iterations find last page of szc region
3325 	 * immediately to the left of szc region that covered pp
3326 	 * and first page of (szc + 1) region that covers pp.
3327 	 * From last to first page change p_szc of every page to szc.
3328 	 * Increment szc and continue looping until szc is pszc.
3329 	 * If pp belongs to the fist szc region of (szc + 1) region
3330 	 * skip to the next iteration.
3331 	 *
3332 	 */
3333 	szc = 0;
3334 	while (szc < pszc) {
3335 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3336 		if (szc == 0) {
3337 			pgcnt = page_get_pagecnt(1);
3338 			lastpp = firstpp + (pgcnt - 1);
3339 		} else {
3340 			lastpp = PP_GROUPLEADER(pp, szc);
3341 			if (firstpp == lastpp) {
3342 				szc++;
3343 				continue;
3344 			}
3345 			lastpp--;
3346 			pgcnt = page_get_pagecnt(szc);
3347 		}
3348 		while (lastpp != firstpp) {
3349 			ASSERT(lastpp->p_szc == pszc);
3350 			lastpp->p_szc = szc;
3351 			lastpp--;
3352 		}
3353 		firstpp->p_szc = szc;
3354 		if (firstpp == rootpp)
3355 			break;
3356 		szc++;
3357 	}
3358 	x86_hm_exit(rootpp);
3359 }
3360 
3361 /*
3362  * get hw stats from hardware into page struct and reset hw stats
3363  * returns attributes of page
3364  * Flags for hat_pagesync, hat_getstat, hat_sync
3365  *
3366  * define	HAT_SYNC_ZERORM		0x01
3367  *
3368  * Additional flags for hat_pagesync
3369  *
3370  * define	HAT_SYNC_STOPON_REF	0x02
3371  * define	HAT_SYNC_STOPON_MOD	0x04
3372  * define	HAT_SYNC_STOPON_RM	0x06
3373  * define	HAT_SYNC_STOPON_SHARED	0x08
3374  */
3375 uint_t
3376 hat_pagesync(struct page *pp, uint_t flags)
3377 {
3378 	hment_t		*hm = NULL;
3379 	htable_t	*ht;
3380 	uint_t		entry;
3381 	x86pte_t	old, save_old;
3382 	x86pte_t	new;
3383 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3384 	extern ulong_t	po_share;
3385 	page_t		*save_pp = pp;
3386 	uint_t		pszc = 0;
3387 
3388 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3389 
3390 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3391 		return (pp->p_nrm & nrmbits);
3392 
3393 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3394 
3395 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3396 			return (pp->p_nrm & nrmbits);
3397 
3398 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3399 			return (pp->p_nrm & nrmbits);
3400 
3401 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3402 		    hat_page_getshare(pp) > po_share) {
3403 			if (PP_ISRO(pp))
3404 				PP_SETREF(pp);
3405 			return (pp->p_nrm & nrmbits);
3406 		}
3407 	}
3408 
3409 next_size:
3410 	/*
3411 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3412 	 */
3413 	x86_hm_enter(pp);
3414 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3415 		if (ht->ht_level < pszc)
3416 			continue;
3417 		old = x86pte_get(ht, entry);
3418 try_again:
3419 
3420 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3421 
3422 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3423 			continue;
3424 
3425 		save_old = old;
3426 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3427 
3428 			/*
3429 			 * Need to clear ref or mod bits. Need to demap
3430 			 * to make sure any executing TLBs see cleared bits.
3431 			 */
3432 			new = old;
3433 			PTE_CLR(new, PT_REF | PT_MOD);
3434 			old = hati_update_pte(ht, entry, old, new);
3435 			if (old != 0)
3436 				goto try_again;
3437 
3438 			old = save_old;
3439 		}
3440 
3441 		/*
3442 		 * Sync the PTE
3443 		 */
3444 		if (!(flags & HAT_SYNC_ZERORM) &&
3445 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3446 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3447 
3448 		/*
3449 		 * can stop short if we found a ref'd or mod'd page
3450 		 */
3451 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3452 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3453 			x86_hm_exit(pp);
3454 			goto done;
3455 		}
3456 	}
3457 	x86_hm_exit(pp);
3458 	while (pszc < pp->p_szc) {
3459 		page_t *tpp;
3460 		pszc++;
3461 		tpp = PP_GROUPLEADER(pp, pszc);
3462 		if (pp != tpp) {
3463 			pp = tpp;
3464 			goto next_size;
3465 		}
3466 	}
3467 done:
3468 	return (save_pp->p_nrm & nrmbits);
3469 }
3470 
3471 /*
3472  * returns approx number of mappings to this pp.  A return of 0 implies
3473  * there are no mappings to the page.
3474  */
3475 ulong_t
3476 hat_page_getshare(page_t *pp)
3477 {
3478 	uint_t cnt;
3479 	cnt = hment_mapcnt(pp);
3480 #if defined(__amd64)
3481 	if (vpm_enable && pp->p_vpmref) {
3482 		cnt += 1;
3483 	}
3484 #endif
3485 	return (cnt);
3486 }
3487 
3488 /*
3489  * hat_softlock isn't supported anymore
3490  */
3491 /*ARGSUSED*/
3492 faultcode_t
3493 hat_softlock(
3494 	hat_t *hat,
3495 	caddr_t addr,
3496 	size_t *len,
3497 	struct page **page_array,
3498 	uint_t flags)
3499 {
3500 	return (FC_NOSUPPORT);
3501 }
3502 
3503 
3504 
3505 /*
3506  * Routine to expose supported HAT features to platform independent code.
3507  */
3508 /*ARGSUSED*/
3509 int
3510 hat_supported(enum hat_features feature, void *arg)
3511 {
3512 	switch (feature) {
3513 
3514 	case HAT_SHARED_PT:	/* this is really ISM */
3515 		return (1);
3516 
3517 	case HAT_DYNAMIC_ISM_UNMAP:
3518 		return (0);
3519 
3520 	case HAT_VMODSORT:
3521 		return (1);
3522 
3523 	default:
3524 		panic("hat_supported() - unknown feature");
3525 	}
3526 	return (0);
3527 }
3528 
3529 /*
3530  * Called when a thread is exiting and has been switched to the kernel AS
3531  */
3532 void
3533 hat_thread_exit(kthread_t *thd)
3534 {
3535 	ASSERT(thd->t_procp->p_as == &kas);
3536 	hat_switch(thd->t_procp->p_as->a_hat);
3537 }
3538 
3539 /*
3540  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3541  */
3542 /*ARGSUSED*/
3543 void
3544 hat_setup(hat_t *hat, int flags)
3545 {
3546 	kpreempt_disable();
3547 
3548 	hat_switch(hat);
3549 
3550 	kpreempt_enable();
3551 }
3552 
3553 /*
3554  * Prepare for a CPU private mapping for the given address.
3555  *
3556  * The address can only be used from a single CPU and can be remapped
3557  * using hat_mempte_remap().  Return the address of the PTE.
3558  *
3559  * We do the htable_create() if necessary and increment the valid count so
3560  * the htable can't disappear.  We also hat_devload() the page table into
3561  * kernel so that the PTE is quickly accessed.
3562  */
3563 hat_mempte_t
3564 hat_mempte_setup(caddr_t addr)
3565 {
3566 	uintptr_t	va = (uintptr_t)addr;
3567 	htable_t	*ht;
3568 	uint_t		entry;
3569 	x86pte_t	oldpte;
3570 	hat_mempte_t	p;
3571 	uint_t		created = 0;
3572 
3573 	ASSERT(IS_PAGEALIGNED(va));
3574 	ASSERT(!IN_VA_HOLE(va));
3575 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3576 	if (ht == NULL) {
3577 		ht = htable_create(kas.a_hat, va, 0, NULL);
3578 		entry = htable_va2entry(va, ht);
3579 		ASSERT(ht->ht_level == 0);
3580 		oldpte = x86pte_get(ht, entry);
3581 		created = 1;
3582 	}
3583 	if (PTE_ISVALID(oldpte))
3584 		panic("hat_mempte_setup(): address already mapped"
3585 		    "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte);
3586 
3587 	/*
3588 	 * increment ht_valid_cnt so that the pagetable can't disappear
3589 	 */
3590 	HTABLE_INC(ht->ht_valid_cnt);
3591 
3592 	/*
3593 	 * return the PTE physical address to the caller.
3594 	 */
3595 	htable_release(ht);
3596 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3597 	if (created)
3598 		hati_reserves_exit(0);
3599 	return (p);
3600 }
3601 
3602 /*
3603  * Release a CPU private mapping for the given address.
3604  * We decrement the htable valid count so it might be destroyed.
3605  */
3606 /*ARGSUSED1*/
3607 void
3608 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3609 {
3610 	htable_t	*ht;
3611 
3612 	/*
3613 	 * invalidate any left over mapping and decrement the htable valid count
3614 	 */
3615 	{
3616 		x86pte_t *pteptr;
3617 
3618 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3619 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3620 		if (mmu.pae_hat)
3621 			*pteptr = 0;
3622 		else
3623 			*(x86pte32_t *)pteptr = 0;
3624 		mmu_tlbflush_entry(addr);
3625 		x86pte_mapout();
3626 	}
3627 
3628 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3629 	if (ht == NULL)
3630 		panic("hat_mempte_release(): invalid address");
3631 	ASSERT(ht->ht_level == 0);
3632 	HTABLE_DEC(ht->ht_valid_cnt);
3633 	htable_release(ht);
3634 }
3635 
3636 /*
3637  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3638  * on this CPU, so this ought to have been called with preemption disabled.
3639  */
3640 void
3641 hat_mempte_remap(
3642 	pfn_t		pfn,
3643 	caddr_t		addr,
3644 	hat_mempte_t	pte_pa,
3645 	uint_t		attr,
3646 	uint_t		flags)
3647 {
3648 	uintptr_t	va = (uintptr_t)addr;
3649 	x86pte_t	pte;
3650 
3651 	/*
3652 	 * Remap the given PTE to the new page's PFN. Invalidate only
3653 	 * on this CPU.
3654 	 */
3655 #ifdef DEBUG
3656 	htable_t	*ht;
3657 	uint_t		entry;
3658 
3659 	ASSERT(IS_PAGEALIGNED(va));
3660 	ASSERT(!IN_VA_HOLE(va));
3661 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3662 	ASSERT(ht != NULL);
3663 	ASSERT(ht->ht_level == 0);
3664 	ASSERT(ht->ht_valid_cnt > 0);
3665 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3666 	htable_release(ht);
3667 #endif
3668 	pte = hati_mkpte(pfn, attr, 0, flags);
3669 	{
3670 		x86pte_t *pteptr;
3671 
3672 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3673 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3674 		if (mmu.pae_hat)
3675 			*(x86pte_t *)pteptr = pte;
3676 		else
3677 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3678 		mmu_tlbflush_entry(addr);
3679 		x86pte_mapout();
3680 	}
3681 }
3682 
3683 
3684 
3685 /*
3686  * Hat locking functions
3687  * XXX - these two functions are currently being used by hatstats
3688  * 	they can be removed by using a per-as mutex for hatstats.
3689  */
3690 void
3691 hat_enter(hat_t *hat)
3692 {
3693 	mutex_enter(&hat->hat_mutex);
3694 }
3695 
3696 void
3697 hat_exit(hat_t *hat)
3698 {
3699 	mutex_exit(&hat->hat_mutex);
3700 }
3701 
3702 /*
3703  * HAT part of cpu initialization.
3704  */
3705 void
3706 hat_cpu_online(struct cpu *cpup)
3707 {
3708 	if (cpup != CPU) {
3709 		x86pte_cpu_init(cpup);
3710 		hat_vlp_setup(cpup);
3711 	}
3712 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
3713 }
3714 
3715 /*
3716  * HAT part of cpu deletion.
3717  * (currently, we only call this after the cpu is safely passivated.)
3718  */
3719 void
3720 hat_cpu_offline(struct cpu *cpup)
3721 {
3722 	ASSERT(cpup != CPU);
3723 
3724 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
3725 	x86pte_cpu_fini(cpup);
3726 	hat_vlp_teardown(cpup);
3727 }
3728 
3729 /*
3730  * Function called after all CPUs are brought online.
3731  * Used to remove low address boot mappings.
3732  */
3733 void
3734 clear_boot_mappings(uintptr_t low, uintptr_t high)
3735 {
3736 	uintptr_t vaddr = low;
3737 	htable_t *ht = NULL;
3738 	level_t level;
3739 	uint_t entry;
3740 	x86pte_t pte;
3741 
3742 	/*
3743 	 * On 1st CPU we can unload the prom mappings, basically we blow away
3744 	 * all virtual mappings under _userlimit.
3745 	 */
3746 	while (vaddr < high) {
3747 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
3748 		if (ht == NULL)
3749 			break;
3750 
3751 		level = ht->ht_level;
3752 		entry = htable_va2entry(vaddr, ht);
3753 		ASSERT(level <= mmu.max_page_level);
3754 		ASSERT(PTE_ISPAGE(pte, level));
3755 
3756 		/*
3757 		 * Unload the mapping from the page tables.
3758 		 */
3759 		(void) x86pte_inval(ht, entry, 0, NULL);
3760 		ASSERT(ht->ht_valid_cnt > 0);
3761 		HTABLE_DEC(ht->ht_valid_cnt);
3762 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
3763 
3764 		vaddr += LEVEL_SIZE(ht->ht_level);
3765 	}
3766 	if (ht)
3767 		htable_release(ht);
3768 }
3769 
3770 /*
3771  * Atomically update a new translation for a single page.  If the
3772  * currently installed PTE doesn't match the value we expect to find,
3773  * it's not updated and we return the PTE we found.
3774  *
3775  * If activating nosync or NOWRITE and the page was modified we need to sync
3776  * with the page_t. Also sync with page_t if clearing ref/mod bits.
3777  */
3778 static x86pte_t
3779 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
3780 {
3781 	page_t		*pp;
3782 	uint_t		rm = 0;
3783 	x86pte_t	replaced;
3784 
3785 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
3786 	    PTE_GET(expected, PT_MOD | PT_REF) &&
3787 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
3788 		!PTE_GET(new, PT_MOD | PT_REF))) {
3789 
3790 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
3791 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
3792 		ASSERT(pp != NULL);
3793 		if (PTE_GET(expected, PT_MOD))
3794 			rm |= P_MOD;
3795 		if (PTE_GET(expected, PT_REF))
3796 			rm |= P_REF;
3797 		PTE_CLR(new, PT_MOD | PT_REF);
3798 	}
3799 
3800 	replaced = x86pte_update(ht, entry, expected, new);
3801 	if (replaced != expected)
3802 		return (replaced);
3803 
3804 	if (rm) {
3805 		/*
3806 		 * sync to all constituent pages of a large page
3807 		 */
3808 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
3809 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
3810 		while (pgcnt-- > 0) {
3811 			/*
3812 			 * hat_page_demote() can't decrease
3813 			 * pszc below this mapping size
3814 			 * since large mapping existed after we
3815 			 * took mlist lock.
3816 			 */
3817 			ASSERT(pp->p_szc >= ht->ht_level);
3818 			hat_page_setattr(pp, rm);
3819 			++pp;
3820 		}
3821 	}
3822 
3823 	return (0);
3824 }
3825 
3826 /*
3827  * Kernel Physical Mapping (kpm) facility
3828  *
3829  * Most of the routines needed to support segkpm are almost no-ops on the
3830  * x86 platform.  We map in the entire segment when it is created and leave
3831  * it mapped in, so there is no additional work required to set up and tear
3832  * down individual mappings.  All of these routines were created to support
3833  * SPARC platforms that have to avoid aliasing in their virtually indexed
3834  * caches.
3835  *
3836  * Most of the routines have sanity checks in them (e.g. verifying that the
3837  * passed-in page is locked).  We don't actually care about most of these
3838  * checks on x86, but we leave them in place to identify problems in the
3839  * upper levels.
3840  */
3841 
3842 /*
3843  * Map in a locked page and return the vaddr.
3844  */
3845 /*ARGSUSED*/
3846 caddr_t
3847 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
3848 {
3849 	caddr_t		vaddr;
3850 
3851 #ifdef DEBUG
3852 	if (kpm_enable == 0) {
3853 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
3854 		return ((caddr_t)NULL);
3855 	}
3856 
3857 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
3858 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
3859 		return ((caddr_t)NULL);
3860 	}
3861 #endif
3862 
3863 	vaddr = hat_kpm_page2va(pp, 1);
3864 
3865 	return (vaddr);
3866 }
3867 
3868 /*
3869  * Mapout a locked page.
3870  */
3871 /*ARGSUSED*/
3872 void
3873 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
3874 {
3875 #ifdef DEBUG
3876 	if (kpm_enable == 0) {
3877 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
3878 		return;
3879 	}
3880 
3881 	if (IS_KPM_ADDR(vaddr) == 0) {
3882 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
3883 		return;
3884 	}
3885 
3886 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
3887 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
3888 		return;
3889 	}
3890 #endif
3891 }
3892 
3893 /*
3894  * Return the kpm virtual address for a specific pfn
3895  */
3896 caddr_t
3897 hat_kpm_pfn2va(pfn_t pfn)
3898 {
3899 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
3900 
3901 	return ((caddr_t)vaddr);
3902 }
3903 
3904 /*
3905  * Return the kpm virtual address for the page at pp.
3906  */
3907 /*ARGSUSED*/
3908 caddr_t
3909 hat_kpm_page2va(struct page *pp, int checkswap)
3910 {
3911 	return (hat_kpm_pfn2va(pp->p_pagenum));
3912 }
3913 
3914 /*
3915  * Return the page frame number for the kpm virtual address vaddr.
3916  */
3917 pfn_t
3918 hat_kpm_va2pfn(caddr_t vaddr)
3919 {
3920 	pfn_t		pfn;
3921 
3922 	ASSERT(IS_KPM_ADDR(vaddr));
3923 
3924 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
3925 
3926 	return (pfn);
3927 }
3928 
3929 
3930 /*
3931  * Return the page for the kpm virtual address vaddr.
3932  */
3933 page_t *
3934 hat_kpm_vaddr2page(caddr_t vaddr)
3935 {
3936 	pfn_t		pfn;
3937 
3938 	ASSERT(IS_KPM_ADDR(vaddr));
3939 
3940 	pfn = hat_kpm_va2pfn(vaddr);
3941 
3942 	return (page_numtopp_nolock(pfn));
3943 }
3944 
3945 /*
3946  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
3947  * KPM page.  This should never happen on x86
3948  */
3949 int
3950 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
3951 {
3952 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p", hat, vaddr);
3953 
3954 	return (0);
3955 }
3956 
3957 /*ARGSUSED*/
3958 void
3959 hat_kpm_mseghash_clear(int nentries)
3960 {}
3961 
3962 /*ARGSUSED*/
3963 void
3964 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
3965 {}
3966