xref: /titanic_51/usr/src/uts/i86pc/vm/hat_i86.c (revision 6733190958bbcc0bd6d1d601e7ae0a6994dafb45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for i386 and amd64
30  *
31  * Implementation of the interfaces described in <common/vm/hat.h>
32  *
33  * Nearly all the details of how the hardware is managed should not be
34  * visible outside this layer except for misc. machine specific functions
35  * that work in conjunction with this code.
36  *
37  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
38  */
39 
40 #include <sys/machparam.h>
41 #include <sys/machsystm.h>
42 #include <sys/mman.h>
43 #include <sys/types.h>
44 #include <sys/systm.h>
45 #include <sys/cpuvar.h>
46 #include <sys/thread.h>
47 #include <sys/proc.h>
48 #include <sys/cpu.h>
49 #include <sys/kmem.h>
50 #include <sys/disp.h>
51 #include <sys/shm.h>
52 #include <sys/sysmacros.h>
53 #include <sys/machparam.h>
54 #include <sys/vmem.h>
55 #include <sys/vmsystm.h>
56 #include <sys/promif.h>
57 #include <sys/var.h>
58 #include <sys/x86_archext.h>
59 #include <sys/atomic.h>
60 #include <sys/bitmap.h>
61 #include <sys/controlregs.h>
62 #include <sys/bootconf.h>
63 #include <sys/bootsvcs.h>
64 #include <sys/bootinfo.h>
65 
66 #include <vm/seg_kmem.h>
67 #include <vm/hat_i86.h>
68 #include <vm/as.h>
69 #include <vm/seg.h>
70 #include <vm/page.h>
71 #include <vm/seg_kp.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
74 #include <vm/kboot_mmu.h>
75 
76 #include <sys/cmn_err.h>
77 
78 /*
79  * Basic parameters for hat operation.
80  */
81 struct hat_mmu_info mmu;
82 
83 /*
84  * The page that is the kernel's top level pagetable.
85  *
86  * For 32 bit VLP support, the kernel hat will use the 1st 4 entries
87  * on this 4K page for its top level page table. The remaining groups of
88  * 4 entries are used for per processor copies of user VLP pagetables for
89  * running threads.  See hat_switch() and reload_pae32() for details.
90  *
91  * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero)
92  * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero)
93  * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory)
94  * vlp_page[3] - 3rd level==2 PTE for kernel
95  *
96  * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0
97  * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0
98  * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0
99  * vlp_page[7] - probably copy of kernel PTE
100  *
101  * vlp_page[8]  - 0th level==2 PTE for user thread on cpu 1
102  * vlp_page[9]  - 1st level==2 PTE for user thread on cpu 1
103  * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1
104  * vlp_page[11] - probably copy of kernel PTE
105  * ...
106  *
107  * when / where the kernel PTE's are (entry 2 or 3 or none) depends
108  * on kernelbase.
109  */
110 static x86pte_t *vlp_page;
111 
112 /*
113  * forward declaration of internal utility routines
114  */
115 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
116 	x86pte_t new);
117 
118 /*
119  * The kernel address space exists in all HATs. To implement this the
120  * kernel reserves a fixed number of entries in every topmost level page
121  * table. The values are setup in hat_init() and then copied to every hat
122  * created by hat_alloc(). This means that kernelbase must be:
123  *
124  *	  4Meg aligned for 32 bit kernels
125  *	512Gig aligned for x86_64 64 bit kernel
126  *
127  * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig
128  * alignment would use too much VA for the kernel.
129  *
130  */
131 static uint_t	khat_start;	/* index of 1st entry in kernel's top ptable */
132 static uint_t	khat_entries;	/* number of entries in kernel's top ptable */
133 
134 #if defined(__i386)
135 
136 static htable_t	*khat_pae32_htable = NULL;
137 static uint_t	khat_pae32_start;
138 static uint_t	khat_pae32_entries;
139 
140 #endif
141 
142 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
143 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
144 
145 /*
146  * A cpuset for all cpus. This is used for kernel address cross calls, since
147  * the kernel addresses apply to all cpus.
148  */
149 cpuset_t khat_cpuset;
150 
151 /*
152  * management stuff for hat structures
153  */
154 kmutex_t	hat_list_lock;
155 kcondvar_t	hat_list_cv;
156 kmem_cache_t	*hat_cache;
157 kmem_cache_t	*hat_hash_cache;
158 kmem_cache_t	*vlp_hash_cache;
159 
160 /*
161  * Simple statistics
162  */
163 struct hatstats hatstat;
164 
165 /*
166  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
167  */
168 extern void atomic_orb(uchar_t *addr, uchar_t val);
169 extern void atomic_andb(uchar_t *addr, uchar_t val);
170 
171 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
172 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
173 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
174 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
175 
176 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
177 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
178 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
179 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
180 
181 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
182 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
183 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
184 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
185 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
186 
187 /*
188  * some useful tracing macros
189  */
190 
191 int hattrace = 0;
192 #ifdef DEBUG
193 
194 #define	HATIN(r, h, a, l)	\
195 	if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l)
196 
197 #define	HATOUT(r, h, a)		\
198 	if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a)
199 #else
200 
201 #define	HATIN(r, h, a, l)
202 #define	HATOUT(r, h, a)
203 
204 #endif
205 
206 
207 /*
208  * kmem cache constructor for struct hat
209  */
210 /*ARGSUSED*/
211 static int
212 hati_constructor(void *buf, void *handle, int kmflags)
213 {
214 	hat_t	*hat = buf;
215 
216 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
217 	bzero(hat->hat_pages_mapped,
218 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
219 	hat->hat_stats = 0;
220 	hat->hat_flags = 0;
221 	mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER,
222 	    (void *)ipltospl(DISP_LEVEL));
223 	CPUSET_ZERO(hat->hat_cpus);
224 	hat->hat_htable = NULL;
225 	hat->hat_ht_hash = NULL;
226 	return (0);
227 }
228 
229 /*
230  * Allocate a hat structure for as. We also create the top level
231  * htable and initialize it to contain the kernel hat entries.
232  */
233 hat_t *
234 hat_alloc(struct as *as)
235 {
236 	hat_t		*hat;
237 	htable_t	*ht;	/* top level htable */
238 	uint_t		use_vlp;
239 
240 	/*
241 	 * Once we start creating user process HATs we can enable
242 	 * the htable_steal() code.
243 	 */
244 	if (can_steal_post_boot == 0)
245 		can_steal_post_boot = 1;
246 
247 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
248 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
249 	hat->hat_as = as;
250 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
251 	ASSERT(hat->hat_flags == 0);
252 
253 	/*
254 	 * a 32 bit process uses a VLP style hat when using PAE
255 	 */
256 #if defined(__amd64)
257 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
258 #elif defined(__i386)
259 	use_vlp = mmu.pae_hat;
260 #endif
261 	if (use_vlp) {
262 		hat->hat_flags = HAT_VLP;
263 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
264 	}
265 
266 	/*
267 	 * Allocate the htable hash
268 	 */
269 	if ((hat->hat_flags & HAT_VLP)) {
270 		hat->hat_num_hash = mmu.vlp_hash_cnt;
271 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
272 	} else {
273 		hat->hat_num_hash = mmu.hash_cnt;
274 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
275 	}
276 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
277 
278 	/*
279 	 * Initialize Kernel HAT entries at the top of the top level page
280 	 * table for the new hat.
281 	 *
282 	 * Note that we don't call htable_release() for the top level, that
283 	 * happens when the hat is destroyed in hat_free_end()
284 	 */
285 	hat->hat_htable = NULL;
286 	hat->hat_ht_cached = NULL;
287 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
288 
289 	if (!(hat->hat_flags & HAT_VLP))
290 		x86pte_copy(kas.a_hat->hat_htable, ht, khat_start,
291 		    khat_entries);
292 #if defined(__i386)
293 	else if (khat_entries > 0)
294 		bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start,
295 		    khat_entries * sizeof (x86pte_t));
296 #endif
297 	hat->hat_htable = ht;
298 
299 #if defined(__i386)
300 	/*
301 	 * PAE32 HAT alignment is less restrictive than the others to keep
302 	 * the kernel from using too much VA. Because of this we may need
303 	 * one layer further down when kernelbase isn't 1Gig aligned.
304 	 * See hat_free_end() for the htable_release() that goes with this
305 	 * htable_create()
306 	 */
307 	if (khat_pae32_htable != NULL) {
308 		ht = htable_create(hat, kernelbase,
309 		    khat_pae32_htable->ht_level, NULL);
310 		x86pte_copy(khat_pae32_htable, ht, khat_pae32_start,
311 		    khat_pae32_entries);
312 		ht->ht_valid_cnt = khat_pae32_entries;
313 	}
314 #endif
315 
316 	/*
317 	 * Put it at the start of the global list of all hats (used by stealing)
318 	 *
319 	 * kas.a_hat is not in the list but is instead used to find the
320 	 * first and last items in the list.
321 	 *
322 	 * - kas.a_hat->hat_next points to the start of the user hats.
323 	 *   The list ends where hat->hat_next == NULL
324 	 *
325 	 * - kas.a_hat->hat_prev points to the last of the user hats.
326 	 *   The list begins where hat->hat_prev == NULL
327 	 */
328 	mutex_enter(&hat_list_lock);
329 	hat->hat_prev = NULL;
330 	hat->hat_next = kas.a_hat->hat_next;
331 	if (hat->hat_next)
332 		hat->hat_next->hat_prev = hat;
333 	else
334 		kas.a_hat->hat_prev = hat;
335 	kas.a_hat->hat_next = hat;
336 	mutex_exit(&hat_list_lock);
337 
338 	return (hat);
339 }
340 
341 /*
342  * process has finished executing but as has not been cleaned up yet.
343  */
344 /*ARGSUSED*/
345 void
346 hat_free_start(hat_t *hat)
347 {
348 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
349 
350 	/*
351 	 * If the hat is currently a stealing victim, wait for the stealing
352 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
353 	 * won't look at its pagetables anymore.
354 	 */
355 	mutex_enter(&hat_list_lock);
356 	while (hat->hat_flags & HAT_VICTIM)
357 		cv_wait(&hat_list_cv, &hat_list_lock);
358 	hat->hat_flags |= HAT_FREEING;
359 	mutex_exit(&hat_list_lock);
360 }
361 
362 /*
363  * An address space is being destroyed, so we destroy the associated hat.
364  */
365 void
366 hat_free_end(hat_t *hat)
367 {
368 	int i;
369 	kmem_cache_t *cache;
370 
371 #ifdef DEBUG
372 	for (i = 0; i <= mmu.max_page_level; i++)
373 		ASSERT(hat->hat_pages_mapped[i] == 0);
374 #endif
375 	ASSERT(hat->hat_flags & HAT_FREEING);
376 
377 	/*
378 	 * must not be running on the given hat
379 	 */
380 	ASSERT(CPU->cpu_current_hat != hat);
381 
382 	/*
383 	 * Remove it from the list of HATs
384 	 */
385 	mutex_enter(&hat_list_lock);
386 	if (hat->hat_prev)
387 		hat->hat_prev->hat_next = hat->hat_next;
388 	else
389 		kas.a_hat->hat_next = hat->hat_next;
390 	if (hat->hat_next)
391 		hat->hat_next->hat_prev = hat->hat_prev;
392 	else
393 		kas.a_hat->hat_prev = hat->hat_prev;
394 	mutex_exit(&hat_list_lock);
395 	hat->hat_next = hat->hat_prev = NULL;
396 
397 	/*
398 	 * Make a pass through the htables freeing them all up.
399 	 */
400 	htable_purge_hat(hat);
401 
402 	/*
403 	 * Decide which kmem cache the hash table came from, then free it.
404 	 */
405 	if (hat->hat_flags & HAT_VLP)
406 		cache = vlp_hash_cache;
407 	else
408 		cache = hat_hash_cache;
409 	kmem_cache_free(cache, hat->hat_ht_hash);
410 	hat->hat_ht_hash = NULL;
411 
412 	hat->hat_flags = 0;
413 	kmem_cache_free(hat_cache, hat);
414 }
415 
416 /*
417  * round kernelbase down to a supported value to use for _userlimit
418  *
419  * userlimit must be aligned down to an entry in the top level htable.
420  * The one exception is for 32 bit HAT's running PAE.
421  */
422 uintptr_t
423 hat_kernelbase(uintptr_t va)
424 {
425 #if defined(__i386)
426 	va &= LEVEL_MASK(1);
427 #endif
428 	if (IN_VA_HOLE(va))
429 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
430 	return (va);
431 }
432 
433 /*
434  * Initialize hat data structures based on processor MMU information.
435  */
436 void
437 mmu_init(void)
438 {
439 	uint_t max_htables;
440 	uint_t pa_bits;
441 	uint_t va_bits;
442 	int i;
443 
444 	/*
445 	 * If CPU enabled the page table global bit, use it for the kernel
446 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
447 	 */
448 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
449 		mmu.pt_global = PT_GLOBAL;
450 
451 	/*
452 	 * Detect NX and PAE usage.
453 	 */
454 	mmu.pae_hat = kbm_pae_support;
455 	if (kbm_nx_support)
456 		mmu.pt_nx = PT_NX;
457 	else
458 		mmu.pt_nx = 0;
459 
460 	/*
461 	 * Intel CPUs allow speculative caching (in TLB-like h/w) of
462 	 * entries in upper page tables even though there may not be
463 	 * any valid entries in lower tables. This implies we have to
464 	 * re-INVLPG at every upper page table entry invalidation.
465 	 */
466 	if (cpuid_getvendor(CPU) == X86_VENDOR_Intel)
467 		mmu.inval_nonleaf = 1;
468 	else
469 		mmu.inval_nonleaf = 0;
470 	/*
471 	 * Use CPU info to set various MMU parameters
472 	 */
473 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
474 
475 	if (va_bits < sizeof (void *) * NBBY) {
476 		mmu.hole_start = (1ul << (va_bits - 1));
477 		mmu.hole_end = 0ul - mmu.hole_start - 1;
478 	} else {
479 		mmu.hole_end = 0;
480 		mmu.hole_start = mmu.hole_end - 1;
481 	}
482 #if defined(OPTERON_ERRATUM_121)
483 	/*
484 	 * If erratum 121 has already been detected at this time, hole_start
485 	 * contains the value to be subtracted from mmu.hole_start.
486 	 */
487 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
488 	hole_start = mmu.hole_start - hole_start;
489 #else
490 	hole_start = mmu.hole_start;
491 #endif
492 	hole_end = mmu.hole_end;
493 
494 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
495 	if (mmu.pae_hat == 0 && pa_bits > 32)
496 		mmu.highest_pfn = PFN_4G - 1;
497 
498 	if (mmu.pae_hat) {
499 		mmu.pte_size = 8;	/* 8 byte PTEs */
500 		mmu.pte_size_shift = 3;
501 	} else {
502 		mmu.pte_size = 4;	/* 4 byte PTEs */
503 		mmu.pte_size_shift = 2;
504 	}
505 
506 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
507 		panic("Processor does not support PAE");
508 
509 	if ((x86_feature & X86_CX8) == 0)
510 		panic("Processor does not support cmpxchg8b instruction");
511 
512 	/*
513 	 * Initialize parameters based on the 64 or 32 bit kernels and
514 	 * for the 32 bit kernel decide if we should use PAE.
515 	 */
516 	if (kbm_largepage_support)
517 		mmu.max_page_level = 1;
518 	else
519 		mmu.max_page_level = 0;
520 	mmu_page_sizes = mmu.max_page_level + 1;
521 	mmu_exported_page_sizes = mmu_page_sizes;
522 
523 #if defined(__amd64)
524 
525 	mmu.num_level = 4;
526 	mmu.max_level = 3;
527 	mmu.ptes_per_table = 512;
528 	mmu.top_level_count = 512;
529 
530 	mmu.level_shift[0] = 12;
531 	mmu.level_shift[1] = 21;
532 	mmu.level_shift[2] = 30;
533 	mmu.level_shift[3] = 39;
534 
535 #elif defined(__i386)
536 
537 	if (mmu.pae_hat) {
538 		mmu.num_level = 3;
539 		mmu.max_level = 2;
540 		mmu.ptes_per_table = 512;
541 		mmu.top_level_count = 4;
542 
543 		mmu.level_shift[0] = 12;
544 		mmu.level_shift[1] = 21;
545 		mmu.level_shift[2] = 30;
546 
547 	} else {
548 		mmu.num_level = 2;
549 		mmu.max_level = 1;
550 		mmu.ptes_per_table = 1024;
551 		mmu.top_level_count = 1024;
552 
553 		mmu.level_shift[0] = 12;
554 		mmu.level_shift[1] = 22;
555 	}
556 
557 #endif	/* __i386 */
558 
559 	for (i = 0; i < mmu.num_level; ++i) {
560 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
561 		mmu.level_offset[i] = mmu.level_size[i] - 1;
562 		mmu.level_mask[i] = ~mmu.level_offset[i];
563 	}
564 
565 	for (i = 0; i <= mmu.max_page_level; ++i) {
566 		mmu.pte_bits[i] = PT_VALID;
567 		if (i > 0)
568 			mmu.pte_bits[i] |= PT_PAGESIZE;
569 	}
570 
571 	/*
572 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
573 	 */
574 	for (i = 1; i < mmu.num_level; ++i)
575 		mmu.ptp_bits[i] = PT_PTPBITS;
576 
577 #if defined(__i386)
578 	mmu.ptp_bits[2] = PT_VALID;
579 #endif
580 
581 	/*
582 	 * Compute how many hash table entries to have per process for htables.
583 	 * We start with 1 page's worth of entries.
584 	 *
585 	 * If physical memory is small, reduce the amount need to cover it.
586 	 */
587 	max_htables = physmax / mmu.ptes_per_table;
588 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
589 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
590 		mmu.hash_cnt >>= 1;
591 	mmu.vlp_hash_cnt = mmu.hash_cnt;
592 
593 #if defined(__amd64)
594 	/*
595 	 * If running in 64 bits and physical memory is large,
596 	 * increase the size of the cache to cover all of memory for
597 	 * a 64 bit process.
598 	 */
599 #define	HASH_MAX_LENGTH 4
600 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
601 		mmu.hash_cnt <<= 1;
602 #endif
603 }
604 
605 
606 /*
607  * initialize hat data structures
608  */
609 void
610 hat_init()
611 {
612 #if defined(__i386)
613 	/*
614 	 * _userlimit must be aligned correctly
615 	 */
616 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
617 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
618 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
619 		halt("hat_init(): Unable to continue");
620 	}
621 #endif
622 
623 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
624 
625 	/*
626 	 * initialize kmem caches
627 	 */
628 	htable_init();
629 	hment_init();
630 
631 	hat_cache = kmem_cache_create("hat_t",
632 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
633 	    NULL, 0, 0);
634 
635 	hat_hash_cache = kmem_cache_create("HatHash",
636 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
637 	    NULL, 0, 0);
638 
639 	/*
640 	 * VLP hats can use a smaller hash table size on large memroy machines
641 	 */
642 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
643 		vlp_hash_cache = hat_hash_cache;
644 	} else {
645 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
646 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
647 		    NULL, 0, 0);
648 	}
649 
650 	/*
651 	 * Set up the kernel's hat
652 	 */
653 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
654 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
655 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
656 	kas.a_hat->hat_as = &kas;
657 	kas.a_hat->hat_flags = 0;
658 	AS_LOCK_EXIT(&kas, &kas.a_lock);
659 
660 	CPUSET_ZERO(khat_cpuset);
661 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
662 
663 	/*
664 	 * The kernel hat's next pointer serves as the head of the hat list .
665 	 * The kernel hat's prev pointer tracks the last hat on the list for
666 	 * htable_steal() to use.
667 	 */
668 	kas.a_hat->hat_next = NULL;
669 	kas.a_hat->hat_prev = NULL;
670 
671 	/*
672 	 * Allocate an htable hash bucket for the kernel
673 	 * XX64 - tune for 64 bit procs
674 	 */
675 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
676 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
677 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
678 
679 	/*
680 	 * zero out the top level and cached htable pointers
681 	 */
682 	kas.a_hat->hat_ht_cached = NULL;
683 	kas.a_hat->hat_htable = NULL;
684 
685 	/*
686 	 * Pre-allocate hrm_hashtab before enabling the collection of
687 	 * refmod statistics.  Allocating on the fly would mean us
688 	 * running the risk of suffering recursive mutex enters or
689 	 * deadlocks.
690 	 */
691 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
692 	    KM_SLEEP);
693 }
694 
695 /*
696  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
697  *
698  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
699  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
700  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
701  */
702 /*ARGSUSED*/
703 static void
704 hat_vlp_setup(struct cpu *cpu)
705 {
706 #if defined(__amd64)
707 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
708 	pfn_t pfn;
709 
710 	/*
711 	 * allocate the level==2 page table for the bottom most
712 	 * 512Gig of address space (this is where 32 bit apps live)
713 	 */
714 	ASSERT(hci != NULL);
715 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
716 
717 	/*
718 	 * Allocate a top level pagetable and copy the kernel's
719 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
720 	 */
721 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
722 	hci->hci_vlp_pfn =
723 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
724 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
725 	bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start,
726 	    khat_entries * sizeof (x86pte_t));
727 
728 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
729 	ASSERT(pfn != PFN_INVALID);
730 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
731 #endif /* __amd64 */
732 }
733 
734 /*ARGSUSED*/
735 static void
736 hat_vlp_teardown(cpu_t *cpu)
737 {
738 #if defined(__amd64)
739 	struct hat_cpu_info *hci;
740 
741 	if ((hci = cpu->cpu_hat_info) == NULL)
742 		return;
743 	if (hci->hci_vlp_l2ptes)
744 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
745 	if (hci->hci_vlp_l3ptes)
746 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
747 #endif	/* __amd64 */
748 }
749 
750 /*
751  * Finish filling in the kernel hat.
752  * Pre fill in all top level kernel page table entries for the kernel's
753  * part of the address range.  From this point on we can't use any new
754  * kernel large pages if they need PTE's at max_level
755  *
756  * create the kmap mappings.
757  */
758 void
759 hat_init_finish(void)
760 {
761 	htable_t	*top = kas.a_hat->hat_htable;
762 	htable_t	*ht;
763 	uint_t		e;
764 	x86pte_t	pte;
765 	uintptr_t	va = kernelbase;
766 	size_t		size;
767 
768 
769 #if defined(__i386)
770 	ASSERT((va & LEVEL_MASK(1)) == va);
771 
772 	/*
773 	 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats.
774 	 */
775 	if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) {
776 		khat_pae32_htable = NULL;
777 	} else {
778 		ASSERT(mmu.max_level == 2);
779 		ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0);
780 		khat_pae32_htable =
781 		    htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
782 		khat_pae32_start = htable_va2entry(va, khat_pae32_htable);
783 		khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start;
784 		for (e = khat_pae32_start; e < mmu.ptes_per_table;
785 		    ++e, va += LEVEL_SIZE(mmu.max_level - 1)) {
786 			pte = x86pte_get(khat_pae32_htable, e);
787 			if (PTE_ISVALID(pte))
788 				continue;
789 			ht = htable_create(kas.a_hat, va, mmu.max_level - 2,
790 			    NULL);
791 			ASSERT(ht != NULL);
792 		}
793 	}
794 #endif
795 
796 	/*
797 	 * The kernel hat will need fixed values in the highest level
798 	 * ptable for copying to all other hat's. This implies
799 	 * alignment restrictions on _userlimit.
800 	 *
801 	 * Note we don't htable_release() these htables. This keeps them
802 	 * from ever being stolen or free'd.
803 	 *
804 	 * top_level_count is used instead of ptes_per_table, since
805 	 * on 32-bit PAE we only have 4 usable entries at the top level ptable.
806 	 */
807 	if (va == 0)
808 		khat_start = mmu.top_level_count;
809 	else
810 		khat_start = htable_va2entry(va, kas.a_hat->hat_htable);
811 	khat_entries = mmu.top_level_count - khat_start;
812 	for (e = khat_start; e < mmu.top_level_count;
813 	    ++e, va += LEVEL_SIZE(mmu.max_level)) {
814 		if (IN_HYPERVISOR_VA(va))
815 			continue;
816 		pte = x86pte_get(top, e);
817 		if (PTE_ISVALID(pte))
818 			continue;
819 		ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
820 		ASSERT(ht != NULL);
821 	}
822 
823 	/*
824 	 * We are now effectively running on the kernel hat.
825 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
826 	 * reserve for all HAT allocations.  From here on, the reserves are
827 	 * only used when mapping in memory for the hat's own allocations.
828 	 */
829 	use_boot_reserve = 0;
830 	htable_adjust_reserve();
831 
832 	/*
833 	 * 32 bit kernels use only 4 of the 512 entries in its top level
834 	 * pagetable. We'll use the remainder for the "per CPU" page tables
835 	 * for VLP processes.
836 	 *
837 	 * We also map the top level kernel pagetable into the kernel to make
838 	 * it easy to use bcopy to initialize new address spaces.
839 	 */
840 	if (mmu.pae_hat) {
841 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
842 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
843 		    kas.a_hat->hat_htable->ht_pfn,
844 		    PROT_WRITE |
845 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
846 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
847 	}
848 	hat_vlp_setup(CPU);
849 
850 	/*
851 	 * Create kmap (cached mappings of kernel PTEs)
852 	 * for 32 bit we map from segmap_start .. ekernelheap
853 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
854 	 */
855 #if defined(__i386)
856 	size = (uintptr_t)ekernelheap - segmap_start;
857 #elif defined(__amd64)
858 	size = segmapsize;
859 #endif
860 	hat_kmap_init((uintptr_t)segmap_start, size);
861 }
862 
863 /*
864  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
865  * are 32 bit, so for safety we must use cas64() to install these.
866  */
867 #ifdef __i386
868 static void
869 reload_pae32(hat_t *hat, cpu_t *cpu)
870 {
871 	x86pte_t *src;
872 	x86pte_t *dest;
873 	x86pte_t pte;
874 	int i;
875 
876 	/*
877 	 * Load the 4 entries of the level 2 page table into this
878 	 * cpu's range of the vlp_page and point cr3 at them.
879 	 */
880 	ASSERT(mmu.pae_hat);
881 	src = hat->hat_vlp_ptes;
882 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
883 	for (i = 0; i < VLP_NUM_PTES; ++i) {
884 		for (;;) {
885 			pte = dest[i];
886 			if (pte == src[i])
887 				break;
888 			if (cas64(dest + i, pte, src[i]) != src[i])
889 				break;
890 		}
891 	}
892 }
893 #endif
894 
895 /*
896  * Switch to a new active hat, maintaining bit masks to track active CPUs.
897  */
898 void
899 hat_switch(hat_t *hat)
900 {
901 	uintptr_t	newcr3;
902 	cpu_t		*cpu = CPU;
903 	hat_t		*old = cpu->cpu_current_hat;
904 
905 	/*
906 	 * set up this information first, so we don't miss any cross calls
907 	 */
908 	if (old != NULL) {
909 		if (old == hat)
910 			return;
911 		if (old != kas.a_hat)
912 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
913 	}
914 
915 	/*
916 	 * Wait for any in flight pagetable invalidates on this hat to finish.
917 	 * This is a spin lock at DISP_LEVEL
918 	 */
919 	if (hat != kas.a_hat) {
920 		mutex_enter(&hat->hat_switch_mutex);
921 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
922 		mutex_exit(&hat->hat_switch_mutex);
923 	}
924 	cpu->cpu_current_hat = hat;
925 
926 	/*
927 	 * now go ahead and load cr3
928 	 */
929 	if (hat->hat_flags & HAT_VLP) {
930 #if defined(__amd64)
931 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
932 
933 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
934 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
935 #elif defined(__i386)
936 		reload_pae32(hat, cpu);
937 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
938 		    (cpu->cpu_id + 1) * VLP_SIZE;
939 #endif
940 	} else {
941 		newcr3 = MAKECR3(hat->hat_htable->ht_pfn);
942 	}
943 	setcr3(newcr3);
944 	ASSERT(cpu == CPU);
945 }
946 
947 /*
948  * Utility to return a valid x86pte_t from protections, pfn, and level number
949  */
950 static x86pte_t
951 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
952 {
953 	x86pte_t	pte;
954 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
955 
956 	pte = MAKEPTE(pfn, level);
957 
958 	if (attr & PROT_WRITE)
959 		PTE_SET(pte, PT_WRITABLE);
960 
961 	if (attr & PROT_USER)
962 		PTE_SET(pte, PT_USER);
963 
964 	if (!(attr & PROT_EXEC))
965 		PTE_SET(pte, mmu.pt_nx);
966 
967 	/*
968 	 * Set the software bits used track ref/mod sync's and hments.
969 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
970 	 */
971 	if (flags & HAT_LOAD_NOCONSIST)
972 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
973 	else if (attr & HAT_NOSYNC)
974 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
975 
976 	/*
977 	 * Set the caching attributes in the PTE. The combination
978 	 * of attributes are poorly defined, so we pay attention
979 	 * to them in the given order.
980 	 *
981 	 * The test for HAT_STRICTORDER is different because it's defined
982 	 * as "0" - which was a stupid thing to do, but is too late to change!
983 	 */
984 	if (cache_attr == HAT_STRICTORDER) {
985 		PTE_SET(pte, PT_NOCACHE);
986 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
987 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
988 		/* nothing to set */;
989 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
990 		PTE_SET(pte, PT_NOCACHE);
991 		if (x86_feature & X86_PAT)
992 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
993 		else
994 			PTE_SET(pte, PT_WRITETHRU);
995 	} else {
996 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
997 	}
998 
999 	return (pte);
1000 }
1001 
1002 /*
1003  * Duplicate address translations of the parent to the child.
1004  * This function really isn't used anymore.
1005  */
1006 /*ARGSUSED*/
1007 int
1008 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1009 {
1010 	ASSERT((uintptr_t)addr < kernelbase);
1011 	ASSERT(new != kas.a_hat);
1012 	ASSERT(old != kas.a_hat);
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Allocate any hat resources required for a process being swapped in.
1018  */
1019 /*ARGSUSED*/
1020 void
1021 hat_swapin(hat_t *hat)
1022 {
1023 	/* do nothing - we let everything fault back in */
1024 }
1025 
1026 /*
1027  * Unload all translations associated with an address space of a process
1028  * that is being swapped out.
1029  */
1030 void
1031 hat_swapout(hat_t *hat)
1032 {
1033 	uintptr_t	vaddr = (uintptr_t)0;
1034 	uintptr_t	eaddr = _userlimit;
1035 	htable_t	*ht = NULL;
1036 	level_t		l;
1037 
1038 	/*
1039 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1040 	 * seg_spt and shared pagetables can't be swapped out.
1041 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1042 	 *
1043 	 * Instead we'll walk through all the address space and unload
1044 	 * any mappings which we are sure are not shared, not locked.
1045 	 */
1046 	ASSERT(IS_PAGEALIGNED(vaddr));
1047 	ASSERT(IS_PAGEALIGNED(eaddr));
1048 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1049 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1050 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1051 
1052 	while (vaddr < eaddr) {
1053 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1054 		if (ht == NULL)
1055 			break;
1056 
1057 		ASSERT(!IN_VA_HOLE(vaddr));
1058 
1059 		/*
1060 		 * If the page table is shared skip its entire range.
1061 		 * This code knows that only level 0 page tables are shared
1062 		 */
1063 		l = ht->ht_level;
1064 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1065 			ASSERT(l == 0);
1066 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1067 			htable_release(ht);
1068 			ht = NULL;
1069 			continue;
1070 		}
1071 
1072 		/*
1073 		 * If the page table has no locked entries, unload this one.
1074 		 */
1075 		if (ht->ht_lock_cnt == 0)
1076 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1077 			    HAT_UNLOAD_UNMAP);
1078 
1079 		/*
1080 		 * If we have a level 0 page table with locked entries,
1081 		 * skip the entire page table, otherwise skip just one entry.
1082 		 */
1083 		if (ht->ht_lock_cnt > 0 && l == 0)
1084 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1085 		else
1086 			vaddr += LEVEL_SIZE(l);
1087 	}
1088 	if (ht)
1089 		htable_release(ht);
1090 
1091 	/*
1092 	 * We're in swapout because the system is low on memory, so
1093 	 * go back and flush all the htables off the cached list.
1094 	 */
1095 	htable_purge_hat(hat);
1096 }
1097 
1098 /*
1099  * returns number of bytes that have valid mappings in hat.
1100  */
1101 size_t
1102 hat_get_mapped_size(hat_t *hat)
1103 {
1104 	size_t total = 0;
1105 	int l;
1106 
1107 	for (l = 0; l <= mmu.max_page_level; l++)
1108 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1109 
1110 	return (total);
1111 }
1112 
1113 /*
1114  * enable/disable collection of stats for hat.
1115  */
1116 int
1117 hat_stats_enable(hat_t *hat)
1118 {
1119 	atomic_add_32(&hat->hat_stats, 1);
1120 	return (1);
1121 }
1122 
1123 void
1124 hat_stats_disable(hat_t *hat)
1125 {
1126 	atomic_add_32(&hat->hat_stats, -1);
1127 }
1128 
1129 /*
1130  * Utility to sync the ref/mod bits from a page table entry to the page_t
1131  * We must be holding the mapping list lock when this is called.
1132  */
1133 static void
1134 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1135 {
1136 	uint_t	rm = 0;
1137 	pgcnt_t	pgcnt;
1138 
1139 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1140 		return;
1141 
1142 	if (PTE_GET(pte, PT_REF))
1143 		rm |= P_REF;
1144 
1145 	if (PTE_GET(pte, PT_MOD))
1146 		rm |= P_MOD;
1147 
1148 	if (rm == 0)
1149 		return;
1150 
1151 	/*
1152 	 * sync to all constituent pages of a large page
1153 	 */
1154 	ASSERT(x86_hm_held(pp));
1155 	pgcnt = page_get_pagecnt(level);
1156 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1157 	for (; pgcnt > 0; --pgcnt) {
1158 		/*
1159 		 * hat_page_demote() can't decrease
1160 		 * pszc below this mapping size
1161 		 * since this large mapping existed after we
1162 		 * took mlist lock.
1163 		 */
1164 		ASSERT(pp->p_szc >= level);
1165 		hat_page_setattr(pp, rm);
1166 		++pp;
1167 	}
1168 }
1169 
1170 /*
1171  * This the set of PTE bits for PFN, permissions and caching
1172  * that require a TLB flush (hat_tlb_inval) if changed on a HAT_LOAD_REMAP
1173  */
1174 #define	PT_REMAP_BITS							\
1175 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1176 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE)
1177 
1178 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1179 /*
1180  * Do the low-level work to get a mapping entered into a HAT's pagetables
1181  * and in the mapping list of the associated page_t.
1182  */
1183 static int
1184 hati_pte_map(
1185 	htable_t	*ht,
1186 	uint_t		entry,
1187 	page_t		*pp,
1188 	x86pte_t	pte,
1189 	int		flags,
1190 	void		*pte_ptr)
1191 {
1192 	hat_t		*hat = ht->ht_hat;
1193 	x86pte_t	old_pte;
1194 	level_t		l = ht->ht_level;
1195 	hment_t		*hm;
1196 	uint_t		is_consist;
1197 	int		rv = 0;
1198 
1199 	/*
1200 	 * Is this a consistant (ie. need mapping list lock) mapping?
1201 	 */
1202 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1203 
1204 	/*
1205 	 * Track locked mapping count in the htable.  Do this first,
1206 	 * as we track locking even if there already is a mapping present.
1207 	 */
1208 	if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat)
1209 		HTABLE_LOCK_INC(ht);
1210 
1211 	/*
1212 	 * Acquire the page's mapping list lock and get an hment to use.
1213 	 * Note that hment_prepare() might return NULL.
1214 	 */
1215 	if (is_consist) {
1216 		x86_hm_enter(pp);
1217 		hm = hment_prepare(ht, entry, pp);
1218 	}
1219 
1220 	/*
1221 	 * Set the new pte, retrieving the old one at the same time.
1222 	 */
1223 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1224 
1225 	/*
1226 	 * did we get a large page / page table collision?
1227 	 */
1228 	if (old_pte == LPAGE_ERROR) {
1229 		rv = -1;
1230 		goto done;
1231 	}
1232 
1233 	/*
1234 	 * If the mapping didn't change there is nothing more to do.
1235 	 */
1236 	if (PTE_EQUIV(pte, old_pte))
1237 		goto done;
1238 
1239 	/*
1240 	 * Install a new mapping in the page's mapping list
1241 	 */
1242 	if (!PTE_ISVALID(old_pte)) {
1243 		if (is_consist) {
1244 			hment_assign(ht, entry, pp, hm);
1245 			x86_hm_exit(pp);
1246 		} else {
1247 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1248 		}
1249 		HTABLE_INC(ht->ht_valid_cnt);
1250 		PGCNT_INC(hat, l);
1251 		return (rv);
1252 	}
1253 
1254 	/*
1255 	 * Remap's are more complicated:
1256 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1257 	 *    We also require that NOCONSIST be specified.
1258 	 *  - Otherwise only permission or caching bits may change.
1259 	 */
1260 	if (!PTE_ISPAGE(old_pte, l))
1261 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1262 
1263 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1264 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1265 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1266 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1267 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1268 		    pf_is_memory(PTE2PFN(pte, l)));
1269 		REMAPASSERT(!is_consist);
1270 	}
1271 
1272 	/*
1273 	 * We only let remaps change the bits for PFNs, permissions
1274 	 * or caching type.
1275 	 */
1276 	ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) ==
1277 	    PTE_GET(pte, ~PT_REMAP_BITS));
1278 
1279 	/*
1280 	 * We don't create any mapping list entries on a remap, so release
1281 	 * any allocated hment after we drop the mapping list lock.
1282 	 */
1283 done:
1284 	if (is_consist) {
1285 		x86_hm_exit(pp);
1286 		if (hm != NULL)
1287 			hment_free(hm);
1288 	}
1289 	return (rv);
1290 }
1291 
1292 /*
1293  * Internal routine to load a single page table entry. This only fails if
1294  * we attempt to overwrite a page table link with a large page.
1295  */
1296 static int
1297 hati_load_common(
1298 	hat_t		*hat,
1299 	uintptr_t	va,
1300 	page_t		*pp,
1301 	uint_t		attr,
1302 	uint_t		flags,
1303 	level_t		level,
1304 	pfn_t		pfn)
1305 {
1306 	htable_t	*ht;
1307 	uint_t		entry;
1308 	x86pte_t	pte;
1309 	int		rv = 0;
1310 
1311 	/*
1312 	 * The number 16 is arbitrary and here to catch a recursion problem
1313 	 * early before we blow out the kernel stack.
1314 	 */
1315 	++curthread->t_hatdepth;
1316 	ASSERT(curthread->t_hatdepth < 16);
1317 
1318 	ASSERT(hat == kas.a_hat ||
1319 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1320 
1321 	if (flags & HAT_LOAD_SHARE)
1322 		hat->hat_flags |= HAT_SHARED;
1323 
1324 	/*
1325 	 * Find the page table that maps this page if it already exists.
1326 	 */
1327 	ht = htable_lookup(hat, va, level);
1328 
1329 	/*
1330 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1331 	 */
1332 	if (pp == NULL)
1333 		flags |= HAT_LOAD_NOCONSIST;
1334 
1335 	if (ht == NULL) {
1336 		ht = htable_create(hat, va, level, NULL);
1337 		ASSERT(ht != NULL);
1338 	}
1339 	entry = htable_va2entry(va, ht);
1340 
1341 	/*
1342 	 * a bunch of paranoid error checking
1343 	 */
1344 	ASSERT(ht->ht_busy > 0);
1345 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1346 		panic("hati_load_common: bad htable %p, va %p", ht, (void *)va);
1347 	ASSERT(ht->ht_level == level);
1348 
1349 	/*
1350 	 * construct the new PTE
1351 	 */
1352 	if (hat == kas.a_hat)
1353 		attr &= ~PROT_USER;
1354 	pte = hati_mkpte(pfn, attr, level, flags);
1355 	if (hat == kas.a_hat && va >= kernelbase)
1356 		PTE_SET(pte, mmu.pt_global);
1357 
1358 	/*
1359 	 * establish the mapping
1360 	 */
1361 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1362 
1363 	/*
1364 	 * release the htable and any reserves
1365 	 */
1366 	htable_release(ht);
1367 	--curthread->t_hatdepth;
1368 	return (rv);
1369 }
1370 
1371 /*
1372  * special case of hat_memload to deal with some kernel addrs for performance
1373  */
1374 static void
1375 hat_kmap_load(
1376 	caddr_t		addr,
1377 	page_t		*pp,
1378 	uint_t		attr,
1379 	uint_t		flags)
1380 {
1381 	uintptr_t	va = (uintptr_t)addr;
1382 	x86pte_t	pte;
1383 	pfn_t		pfn = page_pptonum(pp);
1384 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1385 	htable_t	*ht;
1386 	uint_t		entry;
1387 	void		*pte_ptr;
1388 
1389 	/*
1390 	 * construct the requested PTE
1391 	 */
1392 	attr &= ~PROT_USER;
1393 	attr |= HAT_STORECACHING_OK;
1394 	pte = hati_mkpte(pfn, attr, 0, flags);
1395 	PTE_SET(pte, mmu.pt_global);
1396 
1397 	/*
1398 	 * Figure out the pte_ptr and htable and use common code to finish up
1399 	 */
1400 	if (mmu.pae_hat)
1401 		pte_ptr = mmu.kmap_ptes + pg_off;
1402 	else
1403 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1404 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1405 	    LEVEL_SHIFT(1)];
1406 	entry = htable_va2entry(va, ht);
1407 	++curthread->t_hatdepth;
1408 	ASSERT(curthread->t_hatdepth < 16);
1409 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1410 	--curthread->t_hatdepth;
1411 }
1412 
1413 /*
1414  * hat_memload() - load a translation to the given page struct
1415  *
1416  * Flags for hat_memload/hat_devload/hat_*attr.
1417  *
1418  * 	HAT_LOAD	Default flags to load a translation to the page.
1419  *
1420  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1421  *			and hat_devload().
1422  *
1423  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1424  *			sets PT_NOCONSIST
1425  *
1426  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1427  *			that map some user pages (not kas) is shared by more
1428  *			than one process (eg. ISM).
1429  *
1430  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1431  *
1432  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1433  *			point, it's setting up mapping to allocate internal
1434  *			hat layer data structures.  This flag forces hat layer
1435  *			to tap its reserves in order to prevent infinite
1436  *			recursion.
1437  *
1438  * The following is a protection attribute (like PROT_READ, etc.)
1439  *
1440  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1441  *			are never cleared.
1442  *
1443  * Installing new valid PTE's and creation of the mapping list
1444  * entry are controlled under the same lock. It's derived from the
1445  * page_t being mapped.
1446  */
1447 static uint_t supported_memload_flags =
1448 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1449 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1450 
1451 void
1452 hat_memload(
1453 	hat_t		*hat,
1454 	caddr_t		addr,
1455 	page_t		*pp,
1456 	uint_t		attr,
1457 	uint_t		flags)
1458 {
1459 	uintptr_t	va = (uintptr_t)addr;
1460 	level_t		level = 0;
1461 	pfn_t		pfn = page_pptonum(pp);
1462 
1463 	HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE);
1464 	ASSERT(IS_PAGEALIGNED(va));
1465 	ASSERT(hat == kas.a_hat || va < _userlimit);
1466 	ASSERT(hat == kas.a_hat ||
1467 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1468 	ASSERT((flags & supported_memload_flags) == flags);
1469 
1470 	ASSERT(!IN_VA_HOLE(va));
1471 	ASSERT(!PP_ISFREE(pp));
1472 
1473 	/*
1474 	 * kernel address special case for performance.
1475 	 */
1476 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1477 		ASSERT(hat == kas.a_hat);
1478 		hat_kmap_load(addr, pp, attr, flags);
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * This is used for memory with normal caching enabled, so
1484 	 * always set HAT_STORECACHING_OK.
1485 	 */
1486 	attr |= HAT_STORECACHING_OK;
1487 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1488 		panic("unexpected hati_load_common() failure");
1489 	HATOUT(hat_memload, hat, addr);
1490 }
1491 
1492 /*
1493  * Load the given array of page structs using large pages when possible
1494  */
1495 void
1496 hat_memload_array(
1497 	hat_t		*hat,
1498 	caddr_t		addr,
1499 	size_t		len,
1500 	page_t		**pages,
1501 	uint_t		attr,
1502 	uint_t		flags)
1503 {
1504 	uintptr_t	va = (uintptr_t)addr;
1505 	uintptr_t	eaddr = va + len;
1506 	level_t		level;
1507 	size_t		pgsize;
1508 	pgcnt_t		pgindx = 0;
1509 	pfn_t		pfn;
1510 	pgcnt_t		i;
1511 
1512 	HATIN(hat_memload_array, hat, addr, len);
1513 	ASSERT(IS_PAGEALIGNED(va));
1514 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1515 	ASSERT(hat == kas.a_hat ||
1516 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1517 	ASSERT((flags & supported_memload_flags) == flags);
1518 
1519 	/*
1520 	 * memload is used for memory with full caching enabled, so
1521 	 * set HAT_STORECACHING_OK.
1522 	 */
1523 	attr |= HAT_STORECACHING_OK;
1524 
1525 	/*
1526 	 * handle all pages using largest possible pagesize
1527 	 */
1528 	while (va < eaddr) {
1529 		/*
1530 		 * decide what level mapping to use (ie. pagesize)
1531 		 */
1532 		pfn = page_pptonum(pages[pgindx]);
1533 		for (level = mmu.max_page_level; ; --level) {
1534 			pgsize = LEVEL_SIZE(level);
1535 			if (level == 0)
1536 				break;
1537 
1538 			if (!IS_P2ALIGNED(va, pgsize) ||
1539 			    (eaddr - va) < pgsize ||
1540 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1541 				continue;
1542 
1543 			/*
1544 			 * To use a large mapping of this size, all the
1545 			 * pages we are passed must be sequential subpages
1546 			 * of the large page.
1547 			 * hat_page_demote() can't change p_szc because
1548 			 * all pages are locked.
1549 			 */
1550 			if (pages[pgindx]->p_szc >= level) {
1551 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1552 					if (pfn + i !=
1553 					    page_pptonum(pages[pgindx + i]))
1554 						break;
1555 					ASSERT(pages[pgindx + i]->p_szc >=
1556 					    level);
1557 					ASSERT(pages[pgindx] + i ==
1558 					    pages[pgindx + i]);
1559 				}
1560 				if (i == mmu_btop(pgsize))
1561 					break;
1562 			}
1563 		}
1564 
1565 		/*
1566 		 * Load this page mapping. If the load fails, try a smaller
1567 		 * pagesize.
1568 		 */
1569 		ASSERT(!IN_VA_HOLE(va));
1570 		while (hati_load_common(hat, va, pages[pgindx], attr,
1571 			    flags, level, pfn) != 0) {
1572 			if (level == 0)
1573 				panic("unexpected hati_load_common() failure");
1574 			--level;
1575 			pgsize = LEVEL_SIZE(level);
1576 		}
1577 
1578 		/*
1579 		 * move to next page
1580 		 */
1581 		va += pgsize;
1582 		pgindx += mmu_btop(pgsize);
1583 	}
1584 	HATOUT(hat_memload_array, hat, addr);
1585 }
1586 
1587 /*
1588  * void hat_devload(hat, addr, len, pf, attr, flags)
1589  *	load/lock the given page frame number
1590  *
1591  * Advisory ordering attributes. Apply only to device mappings.
1592  *
1593  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1594  *	programmer specified.  This is the default.
1595  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1596  *	of reordering; store or load with store or load).
1597  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1598  *	to consecutive locations (for example, turn two consecutive byte
1599  *	stores into one halfword store), and it may batch individual loads
1600  *	(for example, turn two consecutive byte loads into one halfword load).
1601  *	This also implies re-ordering.
1602  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1603  *	until another store occurs.  The default is to fetch new data
1604  *	on every load.  This also implies merging.
1605  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1606  *	the device (perhaps with other data) at a later time.  The default is
1607  *	to push the data right away.  This also implies load caching.
1608  *
1609  * Equivalent of hat_memload(), but can be used for device memory where
1610  * there are no page_t's and we support additional flags (write merging, etc).
1611  * Note that we can have large page mappings with this interface.
1612  */
1613 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1614 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1615 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1616 
1617 void
1618 hat_devload(
1619 	hat_t		*hat,
1620 	caddr_t		addr,
1621 	size_t		len,
1622 	pfn_t		pfn,
1623 	uint_t		attr,
1624 	int		flags)
1625 {
1626 	uintptr_t	va = ALIGN2PAGE(addr);
1627 	uintptr_t	eva = va + len;
1628 	level_t		level;
1629 	size_t		pgsize;
1630 	page_t		*pp;
1631 	int		f;	/* per PTE copy of flags  - maybe modified */
1632 	uint_t		a;	/* per PTE copy of attr */
1633 
1634 	HATIN(hat_devload, hat, addr, len);
1635 	ASSERT(IS_PAGEALIGNED(va));
1636 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1637 	ASSERT(hat == kas.a_hat ||
1638 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1639 	ASSERT((flags & supported_devload_flags) == flags);
1640 
1641 	/*
1642 	 * handle all pages
1643 	 */
1644 	while (va < eva) {
1645 
1646 		/*
1647 		 * decide what level mapping to use (ie. pagesize)
1648 		 */
1649 		for (level = mmu.max_page_level; ; --level) {
1650 			pgsize = LEVEL_SIZE(level);
1651 			if (level == 0)
1652 				break;
1653 			if (IS_P2ALIGNED(va, pgsize) &&
1654 			    (eva - va) >= pgsize &&
1655 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize)))
1656 				break;
1657 		}
1658 
1659 		/*
1660 		 * If this is just memory then allow caching (this happens
1661 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1662 		 * to override that. If we don't have a page_t then make sure
1663 		 * NOCONSIST is set.
1664 		 */
1665 		a = attr;
1666 		f = flags;
1667 		if (pf_is_memory(pfn)) {
1668 			if (!(a & HAT_PLAT_NOCACHE))
1669 				a |= HAT_STORECACHING_OK;
1670 
1671 			if (f & HAT_LOAD_NOCONSIST)
1672 				pp = NULL;
1673 			else
1674 				pp = page_numtopp_nolock(pfn);
1675 		} else {
1676 			pp = NULL;
1677 			f |= HAT_LOAD_NOCONSIST;
1678 		}
1679 
1680 		/*
1681 		 * load this page mapping
1682 		 */
1683 		ASSERT(!IN_VA_HOLE(va));
1684 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1685 			if (level == 0)
1686 				panic("unexpected hati_load_common() failure");
1687 			--level;
1688 			pgsize = LEVEL_SIZE(level);
1689 		}
1690 
1691 		/*
1692 		 * move to next page
1693 		 */
1694 		va += pgsize;
1695 		pfn += mmu_btop(pgsize);
1696 	}
1697 	HATOUT(hat_devload, hat, addr);
1698 }
1699 
1700 /*
1701  * void hat_unlock(hat, addr, len)
1702  *	unlock the mappings to a given range of addresses
1703  *
1704  * Locks are tracked by ht_lock_cnt in the htable.
1705  */
1706 void
1707 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1708 {
1709 	uintptr_t	vaddr = (uintptr_t)addr;
1710 	uintptr_t	eaddr = vaddr + len;
1711 	htable_t	*ht = NULL;
1712 
1713 	/*
1714 	 * kernel entries are always locked, we don't track lock counts
1715 	 */
1716 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1717 	ASSERT(IS_PAGEALIGNED(vaddr));
1718 	ASSERT(IS_PAGEALIGNED(eaddr));
1719 	if (hat == kas.a_hat)
1720 		return;
1721 	if (eaddr > _userlimit)
1722 		panic("hat_unlock() address out of range - above _userlimit");
1723 
1724 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1725 	while (vaddr < eaddr) {
1726 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1727 		if (ht == NULL)
1728 			break;
1729 
1730 		ASSERT(!IN_VA_HOLE(vaddr));
1731 
1732 		if (ht->ht_lock_cnt < 1)
1733 			panic("hat_unlock(): lock_cnt < 1, "
1734 			    "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr);
1735 		HTABLE_LOCK_DEC(ht);
1736 
1737 		vaddr += LEVEL_SIZE(ht->ht_level);
1738 	}
1739 	if (ht)
1740 		htable_release(ht);
1741 }
1742 
1743 /*
1744  * Cross call service routine to demap a virtual page on
1745  * the current CPU or flush all mappings in TLB.
1746  */
1747 /*ARGSUSED*/
1748 static int
1749 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1750 {
1751 	hat_t	*hat = (hat_t *)a1;
1752 	caddr_t	addr = (caddr_t)a2;
1753 
1754 	/*
1755 	 * If the target hat isn't the kernel and this CPU isn't operating
1756 	 * in the target hat, we can ignore the cross call.
1757 	 */
1758 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1759 		return (0);
1760 
1761 	/*
1762 	 * For a normal address, we just flush one page mapping
1763 	 */
1764 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1765 		mmu_tlbflush_entry(addr);
1766 		return (0);
1767 	}
1768 
1769 	/*
1770 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1771 	 *
1772 	 * A reload of cr3 on a VLP process also means we must also recopy in
1773 	 * the pte values from the struct hat
1774 	 */
1775 	if (hat->hat_flags & HAT_VLP) {
1776 #if defined(__amd64)
1777 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1778 
1779 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1780 #elif defined(__i386)
1781 		reload_pae32(hat, CPU);
1782 #endif
1783 	}
1784 	reload_cr3();
1785 	return (0);
1786 }
1787 
1788 /*
1789  * Internal routine to do cross calls to invalidate a range of pages on
1790  * all CPUs using a given hat.
1791  */
1792 void
1793 hat_tlb_inval(hat_t *hat, uintptr_t va)
1794 {
1795 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
1796 	cpuset_t	justme;
1797 	cpuset_t	cpus_to_shootdown;
1798 
1799 	/*
1800 	 * If the hat is being destroyed, there are no more users, so
1801 	 * demap need not do anything.
1802 	 */
1803 	if (hat->hat_flags & HAT_FREEING)
1804 		return;
1805 
1806 	/*
1807 	 * If demapping from a shared pagetable, we best demap the
1808 	 * entire set of user TLBs, since we don't know what addresses
1809 	 * these were shared at.
1810 	 */
1811 	if (hat->hat_flags & HAT_SHARED) {
1812 		hat = kas.a_hat;
1813 		va = DEMAP_ALL_ADDR;
1814 	}
1815 
1816 	/*
1817 	 * if not running with multiple CPUs, don't use cross calls
1818 	 */
1819 	if (panicstr || !flushes_require_xcalls) {
1820 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1821 		return;
1822 	}
1823 
1824 
1825 	/*
1826 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
1827 	 * Otherwise it's just CPUs currently executing in this hat.
1828 	 */
1829 	kpreempt_disable();
1830 	CPUSET_ONLY(justme, CPU->cpu_id);
1831 	if (hat == kas.a_hat)
1832 		cpus_to_shootdown = khat_cpuset;
1833 	else
1834 		cpus_to_shootdown = hat->hat_cpus;
1835 
1836 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
1837 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
1838 
1839 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1840 
1841 	} else {
1842 
1843 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
1844 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI,
1845 		    cpus_to_shootdown, hati_demap_func);
1846 
1847 	}
1848 	kpreempt_enable();
1849 }
1850 
1851 /*
1852  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
1853  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
1854  * handle releasing of the htables.
1855  */
1856 void
1857 hat_pte_unmap(
1858 	htable_t	*ht,
1859 	uint_t		entry,
1860 	uint_t		flags,
1861 	x86pte_t	old_pte,
1862 	void		*pte_ptr)
1863 {
1864 	hat_t		*hat = ht->ht_hat;
1865 	hment_t		*hm = NULL;
1866 	page_t		*pp = NULL;
1867 	level_t		l = ht->ht_level;
1868 	pfn_t		pfn;
1869 
1870 	/*
1871 	 * We always track the locking counts, even if nothing is unmapped
1872 	 */
1873 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
1874 		ASSERT(ht->ht_lock_cnt > 0);
1875 		HTABLE_LOCK_DEC(ht);
1876 	}
1877 
1878 	/*
1879 	 * Figure out which page's mapping list lock to acquire using the PFN
1880 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
1881 	 * If another thread, probably a hat_pageunload, has asynchronously
1882 	 * unmapped/remapped this address we'll loop here.
1883 	 */
1884 	ASSERT(ht->ht_busy > 0);
1885 	while (PTE_ISVALID(old_pte)) {
1886 		pfn = PTE2PFN(old_pte, l);
1887 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
1888 			pp = NULL;
1889 		} else {
1890 			pp = page_numtopp_nolock(pfn);
1891 			if (pp == NULL) {
1892 				panic("no page_t, not NOCONSIST: old_pte="
1893 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
1894 				    old_pte, (uintptr_t)ht, entry,
1895 				    (uintptr_t)pte_ptr);
1896 			}
1897 			x86_hm_enter(pp);
1898 		}
1899 
1900 		/*
1901 		 * If freeing the address space, check that the PTE
1902 		 * hasn't changed, as the mappings are no longer in use by
1903 		 * any thread, invalidation is unnecessary.
1904 		 * If not freeing, do a full invalidate.
1905 		 */
1906 		if (hat->hat_flags & HAT_FREEING)
1907 			old_pte = x86pte_get(ht, entry);
1908 		else
1909 			old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
1910 
1911 		/*
1912 		 * If the page hadn't changed we've unmapped it and can proceed
1913 		 */
1914 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
1915 			break;
1916 
1917 		/*
1918 		 * Otherwise, we'll have to retry with the current old_pte.
1919 		 * Drop the hment lock, since the pfn may have changed.
1920 		 */
1921 		if (pp != NULL) {
1922 			x86_hm_exit(pp);
1923 			pp = NULL;
1924 		} else {
1925 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1926 		}
1927 	}
1928 
1929 	/*
1930 	 * If the old mapping wasn't valid, there's nothing more to do
1931 	 */
1932 	if (!PTE_ISVALID(old_pte)) {
1933 		if (pp != NULL)
1934 			x86_hm_exit(pp);
1935 		return;
1936 	}
1937 
1938 	/*
1939 	 * Take care of syncing any MOD/REF bits and removing the hment.
1940 	 */
1941 	if (pp != NULL) {
1942 		if (!(flags & HAT_UNLOAD_NOSYNC))
1943 			hati_sync_pte_to_page(pp, old_pte, l);
1944 		hm = hment_remove(pp, ht, entry);
1945 		x86_hm_exit(pp);
1946 		if (hm != NULL)
1947 			hment_free(hm);
1948 	}
1949 
1950 	/*
1951 	 * Handle book keeping in the htable and hat
1952 	 */
1953 	ASSERT(ht->ht_valid_cnt > 0);
1954 	HTABLE_DEC(ht->ht_valid_cnt);
1955 	PGCNT_DEC(hat, l);
1956 }
1957 
1958 /*
1959  * very cheap unload implementation to special case some kernel addresses
1960  */
1961 static void
1962 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
1963 {
1964 	uintptr_t	va = (uintptr_t)addr;
1965 	uintptr_t	eva = va + len;
1966 	pgcnt_t		pg_index;
1967 	htable_t	*ht;
1968 	uint_t		entry;
1969 	x86pte_t	*pte_ptr;
1970 	x86pte_t	old_pte;
1971 
1972 	for (; va < eva; va += MMU_PAGESIZE) {
1973 		/*
1974 		 * Get the PTE
1975 		 */
1976 		pg_index = mmu_btop(va - mmu.kmap_addr);
1977 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
1978 		old_pte = GET_PTE(pte_ptr);
1979 
1980 		/*
1981 		 * get the htable / entry
1982 		 */
1983 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
1984 		    >> LEVEL_SHIFT(1)];
1985 		entry = htable_va2entry(va, ht);
1986 
1987 		/*
1988 		 * use mostly common code to unmap it.
1989 		 */
1990 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
1991 	}
1992 }
1993 
1994 
1995 /*
1996  * unload a range of virtual address space (no callback)
1997  */
1998 void
1999 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2000 {
2001 	uintptr_t va = (uintptr_t)addr;
2002 
2003 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2004 
2005 	/*
2006 	 * special case for performance.
2007 	 */
2008 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2009 		ASSERT(hat == kas.a_hat);
2010 		hat_kmap_unload(addr, len, flags);
2011 	} else {
2012 		hat_unload_callback(hat, addr, len, flags, NULL);
2013 	}
2014 }
2015 
2016 /*
2017  * Do the callbacks for ranges being unloaded.
2018  */
2019 typedef struct range_info {
2020 	uintptr_t	rng_va;
2021 	ulong_t		rng_cnt;
2022 	level_t		rng_level;
2023 } range_info_t;
2024 
2025 static void
2026 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2027 {
2028 	/*
2029 	 * do callbacks to upper level VM system
2030 	 */
2031 	while (cb != NULL && cnt > 0) {
2032 		--cnt;
2033 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2034 		cb->hcb_end_addr = cb->hcb_start_addr;
2035 		cb->hcb_end_addr +=
2036 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2037 		cb->hcb_function(cb);
2038 	}
2039 }
2040 
2041 /*
2042  * Unload a given range of addresses (has optional callback)
2043  *
2044  * Flags:
2045  * define	HAT_UNLOAD		0x00
2046  * define	HAT_UNLOAD_NOSYNC	0x02
2047  * define	HAT_UNLOAD_UNLOCK	0x04
2048  * define	HAT_UNLOAD_OTHER	0x08 - not used
2049  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2050  */
2051 #define	MAX_UNLOAD_CNT (8)
2052 void
2053 hat_unload_callback(
2054 	hat_t		*hat,
2055 	caddr_t		addr,
2056 	size_t		len,
2057 	uint_t		flags,
2058 	hat_callback_t	*cb)
2059 {
2060 	uintptr_t	vaddr = (uintptr_t)addr;
2061 	uintptr_t	eaddr = vaddr + len;
2062 	htable_t	*ht = NULL;
2063 	uint_t		entry;
2064 	uintptr_t	contig_va = (uintptr_t)-1L;
2065 	range_info_t	r[MAX_UNLOAD_CNT];
2066 	uint_t		r_cnt = 0;
2067 	x86pte_t	old_pte;
2068 
2069 	HATIN(hat_unload_callback, hat, addr, len);
2070 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2071 	ASSERT(IS_PAGEALIGNED(vaddr));
2072 	ASSERT(IS_PAGEALIGNED(eaddr));
2073 
2074 	/*
2075 	 * Special case a single page being unloaded for speed. This happens
2076 	 * quite frequently, COW faults after a fork() for example.
2077 	 */
2078 	if (cb == NULL && len == MMU_PAGESIZE) {
2079 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2080 		if (ht != NULL) {
2081 			if (PTE_ISVALID(old_pte))
2082 				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2083 			htable_release(ht);
2084 		}
2085 		return;
2086 	}
2087 
2088 	while (vaddr < eaddr) {
2089 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2090 		if (ht == NULL)
2091 			break;
2092 
2093 		ASSERT(!IN_VA_HOLE(vaddr));
2094 
2095 		if (vaddr < (uintptr_t)addr)
2096 			panic("hat_unload_callback(): unmap inside large page");
2097 
2098 		/*
2099 		 * We'll do the call backs for contiguous ranges
2100 		 */
2101 		if (vaddr != contig_va ||
2102 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2103 			if (r_cnt == MAX_UNLOAD_CNT) {
2104 				handle_ranges(cb, r_cnt, r);
2105 				r_cnt = 0;
2106 			}
2107 			r[r_cnt].rng_va = vaddr;
2108 			r[r_cnt].rng_cnt = 0;
2109 			r[r_cnt].rng_level = ht->ht_level;
2110 			++r_cnt;
2111 		}
2112 
2113 		/*
2114 		 * Unload one mapping from the page tables.
2115 		 */
2116 		entry = htable_va2entry(vaddr, ht);
2117 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2118 		ASSERT(ht->ht_level <= mmu.max_page_level);
2119 		vaddr += LEVEL_SIZE(ht->ht_level);
2120 		contig_va = vaddr;
2121 		++r[r_cnt - 1].rng_cnt;
2122 	}
2123 	if (ht)
2124 		htable_release(ht);
2125 
2126 	/*
2127 	 * handle last range for callbacks
2128 	 */
2129 	if (r_cnt > 0)
2130 		handle_ranges(cb, r_cnt, r);
2131 
2132 	HATOUT(hat_unload_callback, hat, addr);
2133 }
2134 
2135 /*
2136  * synchronize mapping with software data structures
2137  *
2138  * This interface is currently only used by the working set monitor
2139  * driver.
2140  */
2141 /*ARGSUSED*/
2142 void
2143 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2144 {
2145 	uintptr_t	vaddr = (uintptr_t)addr;
2146 	uintptr_t	eaddr = vaddr + len;
2147 	htable_t	*ht = NULL;
2148 	uint_t		entry;
2149 	x86pte_t	pte;
2150 	x86pte_t	save_pte;
2151 	x86pte_t	new;
2152 	page_t		*pp;
2153 
2154 	ASSERT(!IN_VA_HOLE(vaddr));
2155 	ASSERT(IS_PAGEALIGNED(vaddr));
2156 	ASSERT(IS_PAGEALIGNED(eaddr));
2157 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2158 
2159 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2160 try_again:
2161 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2162 		if (ht == NULL)
2163 			break;
2164 		entry = htable_va2entry(vaddr, ht);
2165 
2166 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2167 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2168 			continue;
2169 
2170 		/*
2171 		 * We need to acquire the mapping list lock to protect
2172 		 * against hat_pageunload(), hat_unload(), etc.
2173 		 */
2174 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2175 		if (pp == NULL)
2176 			break;
2177 		x86_hm_enter(pp);
2178 		save_pte = pte;
2179 		pte = x86pte_get(ht, entry);
2180 		if (pte != save_pte) {
2181 			x86_hm_exit(pp);
2182 			goto try_again;
2183 		}
2184 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2185 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2186 			x86_hm_exit(pp);
2187 			continue;
2188 		}
2189 
2190 		/*
2191 		 * Need to clear ref or mod bits. We may compete with
2192 		 * hardware updating the R/M bits and have to try again.
2193 		 */
2194 		if (flags == HAT_SYNC_ZERORM) {
2195 			new = pte;
2196 			PTE_CLR(new, PT_REF | PT_MOD);
2197 			pte = hati_update_pte(ht, entry, pte, new);
2198 			if (pte != 0) {
2199 				x86_hm_exit(pp);
2200 				goto try_again;
2201 			}
2202 		} else {
2203 			/*
2204 			 * sync the PTE to the page_t
2205 			 */
2206 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2207 		}
2208 		x86_hm_exit(pp);
2209 	}
2210 	if (ht)
2211 		htable_release(ht);
2212 }
2213 
2214 /*
2215  * void	hat_map(hat, addr, len, flags)
2216  */
2217 /*ARGSUSED*/
2218 void
2219 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2220 {
2221 	/* does nothing */
2222 }
2223 
2224 /*
2225  * uint_t hat_getattr(hat, addr, *attr)
2226  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2227  *	mapping and *attr is valid, nonzero if there was no mapping and
2228  *	*attr is not valid.
2229  */
2230 uint_t
2231 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2232 {
2233 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2234 	htable_t	*ht = NULL;
2235 	x86pte_t	pte;
2236 
2237 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2238 
2239 	if (IN_VA_HOLE(vaddr))
2240 		return ((uint_t)-1);
2241 
2242 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2243 	if (ht == NULL)
2244 		return ((uint_t)-1);
2245 
2246 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2247 		htable_release(ht);
2248 		return ((uint_t)-1);
2249 	}
2250 
2251 	*attr = PROT_READ;
2252 	if (PTE_GET(pte, PT_WRITABLE))
2253 		*attr |= PROT_WRITE;
2254 	if (PTE_GET(pte, PT_USER))
2255 		*attr |= PROT_USER;
2256 	if (!PTE_GET(pte, mmu.pt_nx))
2257 		*attr |= PROT_EXEC;
2258 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2259 		*attr |= HAT_NOSYNC;
2260 	htable_release(ht);
2261 	return (0);
2262 }
2263 
2264 /*
2265  * hat_updateattr() applies the given attribute change to an existing mapping
2266  */
2267 #define	HAT_LOAD_ATTR		1
2268 #define	HAT_SET_ATTR		2
2269 #define	HAT_CLR_ATTR		3
2270 
2271 static void
2272 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2273 {
2274 	uintptr_t	vaddr = (uintptr_t)addr;
2275 	uintptr_t	eaddr = (uintptr_t)addr + len;
2276 	htable_t	*ht = NULL;
2277 	uint_t		entry;
2278 	x86pte_t	oldpte, newpte;
2279 	page_t		*pp;
2280 
2281 	ASSERT(IS_PAGEALIGNED(vaddr));
2282 	ASSERT(IS_PAGEALIGNED(eaddr));
2283 	ASSERT(hat == kas.a_hat ||
2284 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2285 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2286 try_again:
2287 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2288 		if (ht == NULL)
2289 			break;
2290 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2291 			continue;
2292 
2293 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2294 		if (pp == NULL)
2295 			continue;
2296 		x86_hm_enter(pp);
2297 
2298 		newpte = oldpte;
2299 		/*
2300 		 * We found a page table entry in the desired range,
2301 		 * figure out the new attributes.
2302 		 */
2303 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2304 			if ((attr & PROT_WRITE) &&
2305 			    !PTE_GET(oldpte, PT_WRITABLE))
2306 				newpte |= PT_WRITABLE;
2307 
2308 			if ((attr & HAT_NOSYNC) &&
2309 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2310 				newpte |= PT_NOSYNC;
2311 
2312 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2313 				newpte &= ~mmu.pt_nx;
2314 		}
2315 
2316 		if (what == HAT_LOAD_ATTR) {
2317 			if (!(attr & PROT_WRITE) &&
2318 			    PTE_GET(oldpte, PT_WRITABLE))
2319 				newpte &= ~PT_WRITABLE;
2320 
2321 			if (!(attr & HAT_NOSYNC) &&
2322 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2323 				newpte &= ~PT_SOFTWARE;
2324 
2325 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2326 				newpte |= mmu.pt_nx;
2327 		}
2328 
2329 		if (what == HAT_CLR_ATTR) {
2330 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2331 				newpte &= ~PT_WRITABLE;
2332 
2333 			if ((attr & HAT_NOSYNC) &&
2334 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2335 				newpte &= ~PT_SOFTWARE;
2336 
2337 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2338 				newpte |= mmu.pt_nx;
2339 		}
2340 
2341 		/*
2342 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2343 		 * x86pte_set() depends on this.
2344 		 */
2345 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2346 			newpte |= PT_REF | PT_MOD;
2347 
2348 		/*
2349 		 * what about PROT_READ or others? this code only handles:
2350 		 * EXEC, WRITE, NOSYNC
2351 		 */
2352 
2353 		/*
2354 		 * If new PTE really changed, update the table.
2355 		 */
2356 		if (newpte != oldpte) {
2357 			entry = htable_va2entry(vaddr, ht);
2358 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2359 			if (oldpte != 0) {
2360 				x86_hm_exit(pp);
2361 				goto try_again;
2362 			}
2363 		}
2364 		x86_hm_exit(pp);
2365 	}
2366 	if (ht)
2367 		htable_release(ht);
2368 }
2369 
2370 /*
2371  * Various wrappers for hat_updateattr()
2372  */
2373 void
2374 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2375 {
2376 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2377 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2378 }
2379 
2380 void
2381 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2382 {
2383 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2384 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2385 }
2386 
2387 void
2388 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2389 {
2390 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2391 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2392 }
2393 
2394 void
2395 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2396 {
2397 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2398 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2399 }
2400 
2401 /*
2402  * size_t hat_getpagesize(hat, addr)
2403  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2404  *	no mapping. This is an advisory call.
2405  */
2406 ssize_t
2407 hat_getpagesize(hat_t *hat, caddr_t addr)
2408 {
2409 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2410 	htable_t	*ht;
2411 	size_t		pagesize;
2412 
2413 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2414 	if (IN_VA_HOLE(vaddr))
2415 		return (-1);
2416 	ht = htable_getpage(hat, vaddr, NULL);
2417 	if (ht == NULL)
2418 		return (-1);
2419 	pagesize = LEVEL_SIZE(ht->ht_level);
2420 	htable_release(ht);
2421 	return (pagesize);
2422 }
2423 
2424 
2425 
2426 /*
2427  * pfn_t hat_getpfnum(hat, addr)
2428  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2429  */
2430 pfn_t
2431 hat_getpfnum(hat_t *hat, caddr_t addr)
2432 {
2433 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2434 	htable_t	*ht;
2435 	uint_t		entry;
2436 	pfn_t		pfn = PFN_INVALID;
2437 
2438 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2439 	if (khat_running == 0)
2440 		return (PFN_INVALID);
2441 
2442 	if (IN_VA_HOLE(vaddr))
2443 		return (PFN_INVALID);
2444 
2445 	/*
2446 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2447 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2448 	 * this up.
2449 	 */
2450 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2451 		x86pte_t pte;
2452 		pgcnt_t pg_index;
2453 
2454 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2455 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2456 		if (!PTE_ISVALID(pte))
2457 			return (PFN_INVALID);
2458 		/*LINTED [use of constant 0 causes a silly lint warning] */
2459 		return (PTE2PFN(pte, 0));
2460 	}
2461 
2462 	ht = htable_getpage(hat, vaddr, &entry);
2463 	if (ht == NULL)
2464 		return (PFN_INVALID);
2465 	ASSERT(vaddr >= ht->ht_vaddr);
2466 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2467 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2468 	if (ht->ht_level > 0)
2469 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2470 	htable_release(ht);
2471 	return (pfn);
2472 }
2473 
2474 /*
2475  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2476  * Use hat_getpfnum(kas.a_hat, ...) instead.
2477  *
2478  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2479  * but can't right now due to the fact that some software has grown to use
2480  * this interface incorrectly. So for now when the interface is misused,
2481  * return a warning to the user that in the future it won't work in the
2482  * way they're abusing it, and carry on.
2483  *
2484  * Note that hat_getkpfnum() is never supported on amd64.
2485  */
2486 #if !defined(__amd64)
2487 pfn_t
2488 hat_getkpfnum(caddr_t addr)
2489 {
2490 	pfn_t	pfn;
2491 	int badcaller = 0;
2492 
2493 	if (khat_running == 0)
2494 		panic("hat_getkpfnum(): called too early\n");
2495 	if ((uintptr_t)addr < kernelbase)
2496 		return (PFN_INVALID);
2497 
2498 
2499 	if (segkpm && IS_KPM_ADDR(addr)) {
2500 		badcaller = 1;
2501 		pfn = hat_kpm_va2pfn(addr);
2502 	} else {
2503 		pfn = hat_getpfnum(kas.a_hat, addr);
2504 		badcaller = pf_is_memory(pfn);
2505 	}
2506 
2507 	if (badcaller)
2508 		hat_getkpfnum_badcall(caller());
2509 	return (pfn);
2510 }
2511 #endif /* __amd64 */
2512 
2513 /*
2514  * int hat_probe(hat, addr)
2515  *	return 0 if no valid mapping is present.  Faster version
2516  *	of hat_getattr in certain architectures.
2517  */
2518 int
2519 hat_probe(hat_t *hat, caddr_t addr)
2520 {
2521 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2522 	uint_t		entry;
2523 	htable_t	*ht;
2524 	pgcnt_t		pg_off;
2525 
2526 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2527 	ASSERT(hat == kas.a_hat ||
2528 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2529 	if (IN_VA_HOLE(vaddr))
2530 		return (0);
2531 
2532 	/*
2533 	 * Most common use of hat_probe is from segmap. We special case it
2534 	 * for performance.
2535 	 */
2536 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2537 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2538 		if (mmu.pae_hat)
2539 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2540 		else
2541 			return (PTE_ISVALID(
2542 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2543 	}
2544 
2545 	ht = htable_getpage(hat, vaddr, &entry);
2546 	if (ht == NULL)
2547 		return (0);
2548 	htable_release(ht);
2549 	return (1);
2550 }
2551 
2552 /*
2553  * Simple implementation of ISM. hat_share() is just like hat_memload_array(),
2554  * except that we use the ism_hat's existing mappings to determine the pages
2555  * and protections to use for this hat. In case we find a properly aligned
2556  * and sized pagetable of 4K mappings, we will attempt to share the pagetable
2557  * itself.
2558  */
2559 /*ARGSUSED*/
2560 int
2561 hat_share(
2562 	hat_t		*hat,
2563 	caddr_t		addr,
2564 	hat_t		*ism_hat,
2565 	caddr_t		src_addr,
2566 	size_t		len,	/* almost useless value, see below.. */
2567 	uint_t		ismszc)
2568 {
2569 	uintptr_t	vaddr_start = (uintptr_t)addr;
2570 	uintptr_t	vaddr;
2571 	uintptr_t	pt_vaddr;
2572 	uintptr_t	eaddr = vaddr_start + len;
2573 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2574 	uintptr_t	ism_addr = ism_addr_start;
2575 	uintptr_t	e_ism_addr = ism_addr + len;
2576 	htable_t	*ism_ht = NULL;
2577 	htable_t	*ht;
2578 	x86pte_t	pte;
2579 	page_t		*pp;
2580 	pfn_t		pfn;
2581 	level_t		l;
2582 	pgcnt_t		pgcnt;
2583 	uint_t		prot;
2584 	uint_t		valid_cnt;
2585 
2586 	/*
2587 	 * We might be asked to share an empty DISM hat by as_dup()
2588 	 */
2589 	ASSERT(hat != kas.a_hat);
2590 	ASSERT(eaddr <= _userlimit);
2591 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2592 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2593 		return (0);
2594 	}
2595 
2596 	/*
2597 	 * The SPT segment driver often passes us a size larger than there are
2598 	 * valid mappings. That's because it rounds the segment size up to a
2599 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2600 	 */
2601 	HATIN(hat_share, hat, addr, len);
2602 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2603 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2604 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2605 	while (ism_addr < e_ism_addr) {
2606 		/*
2607 		 * use htable_walk to get the next valid ISM mapping
2608 		 */
2609 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2610 		if (ism_ht == NULL)
2611 			break;
2612 
2613 		/*
2614 		 * Find the largest page size we can use, based on the
2615 		 * ISM mapping size, our address alignment and the remaining
2616 		 * map length.
2617 		 */
2618 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2619 		for (l = ism_ht->ht_level; l > 0; --l) {
2620 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
2621 			    (vaddr & LEVEL_OFFSET(l)) == 0)
2622 				break;
2623 		}
2624 
2625 		/*
2626 		 * attempt to share the pagetable
2627 		 *
2628 		 * - only 4K pagetables are shared (ie. level == 0)
2629 		 * - the hat_share() length must cover the whole pagetable
2630 		 * - the shared address must align at level 1
2631 		 * - a shared PTE for this address already exists OR
2632 		 * - no page table for this address exists yet
2633 		 */
2634 		pt_vaddr =
2635 		    vaddr_start + (ism_ht->ht_vaddr - ism_addr_start);
2636 		if (ism_ht->ht_level == 0 &&
2637 		    ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr &&
2638 		    (pt_vaddr & LEVEL_OFFSET(1)) == 0) {
2639 
2640 			ht = htable_lookup(hat, pt_vaddr, 0);
2641 			if (ht == NULL)
2642 				ht = htable_create(hat, pt_vaddr, 0, ism_ht);
2643 
2644 			if (ht->ht_level > 0 ||
2645 			    !(ht->ht_flags & HTABLE_SHARED_PFN)) {
2646 
2647 				htable_release(ht);
2648 
2649 			} else {
2650 
2651 				/*
2652 				 * share the page table
2653 				 */
2654 				ASSERT(ht->ht_level == 0);
2655 				ASSERT(ht->ht_shares == ism_ht);
2656 				valid_cnt = ism_ht->ht_valid_cnt;
2657 				atomic_add_long(&hat->hat_pages_mapped[0],
2658 				    valid_cnt - ht->ht_valid_cnt);
2659 				ht->ht_valid_cnt = valid_cnt;
2660 				htable_release(ht);
2661 				ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1);
2662 				htable_release(ism_ht);
2663 				ism_ht = NULL;
2664 				continue;
2665 			}
2666 		}
2667 
2668 		/*
2669 		 * Unable to share the page table. Instead we will
2670 		 * create new mappings from the values in the ISM mappings.
2671 		 *
2672 		 * The ISM mapping might be larger than the share area,
2673 		 * be careful to trunctate it if needed.
2674 		 */
2675 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
2676 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
2677 		} else {
2678 			pgcnt = mmu_btop(eaddr - vaddr);
2679 			l = 0;
2680 		}
2681 
2682 		pfn = PTE2PFN(pte, ism_ht->ht_level);
2683 		ASSERT(pfn != PFN_INVALID);
2684 		while (pgcnt > 0) {
2685 			/*
2686 			 * Make a new pte for the PFN for this level.
2687 			 * Copy protections for the pte from the ISM pte.
2688 			 */
2689 			pp = page_numtopp_nolock(pfn);
2690 			ASSERT(pp != NULL);
2691 
2692 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
2693 			if (PTE_GET(pte, PT_WRITABLE))
2694 				prot |= PROT_WRITE;
2695 			if (!PTE_GET(pte, PT_NX))
2696 				prot |= PROT_EXEC;
2697 
2698 			/*
2699 			 * XX64 -- can shm ever be written to swap?
2700 			 * if not we could use HAT_NOSYNC here.
2701 			 */
2702 			while (hati_load_common(hat, vaddr, pp, prot, HAT_LOAD,
2703 			    l, pfn) != 0) {
2704 				if (l == 0)
2705 					panic("hati_load_common() failure");
2706 				--l;
2707 			}
2708 
2709 			vaddr += LEVEL_SIZE(l);
2710 			ism_addr += LEVEL_SIZE(l);
2711 			pfn += mmu_btop(LEVEL_SIZE(l));
2712 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
2713 		}
2714 	}
2715 	if (ism_ht != NULL)
2716 		htable_release(ism_ht);
2717 
2718 	HATOUT(hat_share, hat, addr);
2719 	return (0);
2720 }
2721 
2722 
2723 /*
2724  * hat_unshare() is similar to hat_unload_callback(), but
2725  * we have to look for empty shared pagetables. Note that
2726  * hat_unshare() is always invoked against an entire segment.
2727  */
2728 /*ARGSUSED*/
2729 void
2730 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
2731 {
2732 	uintptr_t	vaddr = (uintptr_t)addr;
2733 	uintptr_t	eaddr = vaddr + len;
2734 	htable_t	*ht = NULL;
2735 	uint_t		need_demaps = 0;
2736 
2737 	ASSERT(hat != kas.a_hat);
2738 	ASSERT(eaddr <= _userlimit);
2739 	HATIN(hat_unshare, hat, addr, len);
2740 	ASSERT(IS_PAGEALIGNED(vaddr));
2741 	ASSERT(IS_PAGEALIGNED(eaddr));
2742 
2743 	/*
2744 	 * First go through and remove any shared pagetables.
2745 	 *
2746 	 * Note that it's ok to delay the TLB shootdown till the entire range is
2747 	 * finished, because if hat_pageunload() were to unload a shared
2748 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
2749 	 */
2750 	while (vaddr < eaddr) {
2751 		ASSERT(!IN_VA_HOLE(vaddr));
2752 		/*
2753 		 * find the pagetable that would map the current address
2754 		 */
2755 		ht = htable_lookup(hat, vaddr, 0);
2756 		if (ht != NULL) {
2757 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
2758 				/*
2759 				 * clear mapped pages count, set valid_cnt to 0
2760 				 * and let htable_release() finish the job
2761 				 */
2762 				atomic_add_long(&hat->hat_pages_mapped[0],
2763 				    -ht->ht_valid_cnt);
2764 				ht->ht_valid_cnt = 0;
2765 				need_demaps = 1;
2766 			}
2767 			htable_release(ht);
2768 		}
2769 		vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1);
2770 	}
2771 
2772 	/*
2773 	 * flush the TLBs - since we're probably dealing with MANY mappings
2774 	 * we do just one CR3 reload.
2775 	 */
2776 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
2777 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
2778 
2779 	/*
2780 	 * Now go back and clean up any unaligned mappings that
2781 	 * couldn't share pagetables.
2782 	 */
2783 	hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP);
2784 
2785 	HATOUT(hat_unshare, hat, addr);
2786 }
2787 
2788 
2789 /*
2790  * hat_reserve() does nothing
2791  */
2792 /*ARGSUSED*/
2793 void
2794 hat_reserve(struct as *as, caddr_t addr, size_t len)
2795 {
2796 }
2797 
2798 
2799 /*
2800  * Called when all mappings to a page should have write permission removed.
2801  * Mostly stolem from hat_pagesync()
2802  */
2803 static void
2804 hati_page_clrwrt(struct page *pp)
2805 {
2806 	hment_t		*hm = NULL;
2807 	htable_t	*ht;
2808 	uint_t		entry;
2809 	x86pte_t	old;
2810 	x86pte_t	new;
2811 	uint_t		pszc = 0;
2812 
2813 next_size:
2814 	/*
2815 	 * walk thru the mapping list clearing write permission
2816 	 */
2817 	x86_hm_enter(pp);
2818 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
2819 		if (ht->ht_level < pszc)
2820 			continue;
2821 		old = x86pte_get(ht, entry);
2822 
2823 		for (;;) {
2824 			/*
2825 			 * Is this mapping of interest?
2826 			 */
2827 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
2828 			    PTE_GET(old, PT_WRITABLE) == 0)
2829 				break;
2830 
2831 			/*
2832 			 * Clear ref/mod writable bits. This requires cross
2833 			 * calls to ensure any executing TLBs see cleared bits.
2834 			 */
2835 			new = old;
2836 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
2837 			old = hati_update_pte(ht, entry, old, new);
2838 			if (old != 0)
2839 				continue;
2840 
2841 			break;
2842 		}
2843 	}
2844 	x86_hm_exit(pp);
2845 	while (pszc < pp->p_szc) {
2846 		page_t *tpp;
2847 		pszc++;
2848 		tpp = PP_GROUPLEADER(pp, pszc);
2849 		if (pp != tpp) {
2850 			pp = tpp;
2851 			goto next_size;
2852 		}
2853 	}
2854 }
2855 
2856 /*
2857  * void hat_page_setattr(pp, flag)
2858  * void hat_page_clrattr(pp, flag)
2859  *	used to set/clr ref/mod bits.
2860  */
2861 void
2862 hat_page_setattr(struct page *pp, uint_t flag)
2863 {
2864 	vnode_t		*vp = pp->p_vnode;
2865 	kmutex_t	*vphm = NULL;
2866 	page_t		**listp;
2867 
2868 	if (PP_GETRM(pp, flag) == flag)
2869 		return;
2870 
2871 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
2872 		vphm = page_vnode_mutex(vp);
2873 		mutex_enter(vphm);
2874 	}
2875 
2876 	PP_SETRM(pp, flag);
2877 
2878 	if (vphm != NULL) {
2879 
2880 		/*
2881 		 * Some File Systems examine v_pages for NULL w/o
2882 		 * grabbing the vphm mutex. Must not let it become NULL when
2883 		 * pp is the only page on the list.
2884 		 */
2885 		if (pp->p_vpnext != pp) {
2886 			page_vpsub(&vp->v_pages, pp);
2887 			if (vp->v_pages != NULL)
2888 				listp = &vp->v_pages->p_vpprev->p_vpnext;
2889 			else
2890 				listp = &vp->v_pages;
2891 			page_vpadd(listp, pp);
2892 		}
2893 		mutex_exit(vphm);
2894 	}
2895 }
2896 
2897 void
2898 hat_page_clrattr(struct page *pp, uint_t flag)
2899 {
2900 	vnode_t		*vp = pp->p_vnode;
2901 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
2902 
2903 	/*
2904 	 * Caller is expected to hold page's io lock for VMODSORT to work
2905 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
2906 	 * bit is cleared.
2907 	 * We don't have assert to avoid tripping some existing third party
2908 	 * code. The dirty page is moved back to top of the v_page list
2909 	 * after IO is done in pvn_write_done().
2910 	 */
2911 	PP_CLRRM(pp, flag);
2912 
2913 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
2914 
2915 		/*
2916 		 * VMODSORT works by removing write permissions and getting
2917 		 * a fault when a page is made dirty. At this point
2918 		 * we need to remove write permission from all mappings
2919 		 * to this page.
2920 		 */
2921 		hati_page_clrwrt(pp);
2922 	}
2923 }
2924 
2925 /*
2926  *	If flag is specified, returns 0 if attribute is disabled
2927  *	and non zero if enabled.  If flag specifes multiple attributs
2928  *	then returns 0 if ALL atriibutes are disabled.  This is an advisory
2929  *	call.
2930  */
2931 uint_t
2932 hat_page_getattr(struct page *pp, uint_t flag)
2933 {
2934 	return (PP_GETRM(pp, flag));
2935 }
2936 
2937 
2938 /*
2939  * common code used by hat_pageunload() and hment_steal()
2940  */
2941 hment_t *
2942 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
2943 {
2944 	x86pte_t old_pte;
2945 	pfn_t pfn = pp->p_pagenum;
2946 	hment_t *hm;
2947 
2948 	/*
2949 	 * We need to acquire a hold on the htable in order to
2950 	 * do the invalidate. We know the htable must exist, since
2951 	 * unmap's don't release the htable until after removing any
2952 	 * hment. Having x86_hm_enter() keeps that from proceeding.
2953 	 */
2954 	htable_acquire(ht);
2955 
2956 	/*
2957 	 * Invalidate the PTE and remove the hment.
2958 	 */
2959 	old_pte = x86pte_inval(ht, entry, 0, NULL);
2960 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
2961 		panic("x86pte_inval() failure found PTE = " FMT_PTE
2962 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
2963 		    old_pte, pfn, (uintptr_t)ht, entry);
2964 	}
2965 
2966 	/*
2967 	 * Clean up all the htable information for this mapping
2968 	 */
2969 	ASSERT(ht->ht_valid_cnt > 0);
2970 	HTABLE_DEC(ht->ht_valid_cnt);
2971 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
2972 
2973 	/*
2974 	 * sync ref/mod bits to the page_t
2975 	 */
2976 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
2977 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
2978 
2979 	/*
2980 	 * Remove the mapping list entry for this page.
2981 	 */
2982 	hm = hment_remove(pp, ht, entry);
2983 
2984 	/*
2985 	 * drop the mapping list lock so that we might free the
2986 	 * hment and htable.
2987 	 */
2988 	x86_hm_exit(pp);
2989 	htable_release(ht);
2990 	return (hm);
2991 }
2992 
2993 extern int	vpm_enable;
2994 /*
2995  * Unload all translations to a page. If the page is a subpage of a large
2996  * page, the large page mappings are also removed.
2997  *
2998  * The forceflags are unused.
2999  */
3000 
3001 /*ARGSUSED*/
3002 static int
3003 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3004 {
3005 	page_t		*cur_pp = pp;
3006 	hment_t		*hm;
3007 	hment_t		*prev;
3008 	htable_t	*ht;
3009 	uint_t		entry;
3010 	level_t		level;
3011 
3012 #if defined(__amd64)
3013 	/*
3014 	 * clear the vpm ref.
3015 	 */
3016 	if (vpm_enable) {
3017 		pp->p_vpmref = 0;
3018 	}
3019 #endif
3020 	/*
3021 	 * The loop with next_size handles pages with multiple pagesize mappings
3022 	 */
3023 next_size:
3024 	for (;;) {
3025 
3026 		/*
3027 		 * Get a mapping list entry
3028 		 */
3029 		x86_hm_enter(cur_pp);
3030 		for (prev = NULL; ; prev = hm) {
3031 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3032 			if (hm == NULL) {
3033 				x86_hm_exit(cur_pp);
3034 
3035 				/*
3036 				 * If not part of a larger page, we're done.
3037 				 */
3038 				if (cur_pp->p_szc <= pg_szcd) {
3039 					return (0);
3040 				}
3041 
3042 				/*
3043 				 * Else check the next larger page size.
3044 				 * hat_page_demote() may decrease p_szc
3045 				 * but that's ok we'll just take an extra
3046 				 * trip discover there're no larger mappings
3047 				 * and return.
3048 				 */
3049 				++pg_szcd;
3050 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3051 				goto next_size;
3052 			}
3053 
3054 			/*
3055 			 * If this mapping size matches, remove it.
3056 			 */
3057 			level = ht->ht_level;
3058 			if (level == pg_szcd)
3059 				break;
3060 		}
3061 
3062 		/*
3063 		 * Remove the mapping list entry for this page.
3064 		 * Note this does the x86_hm_exit() for us.
3065 		 */
3066 		hm = hati_page_unmap(cur_pp, ht, entry);
3067 		if (hm != NULL)
3068 			hment_free(hm);
3069 	}
3070 }
3071 
3072 int
3073 hat_pageunload(struct page *pp, uint_t forceflag)
3074 {
3075 	ASSERT(PAGE_EXCL(pp));
3076 	return (hati_pageunload(pp, 0, forceflag));
3077 }
3078 
3079 /*
3080  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3081  * page level that included pp.
3082  *
3083  * pp must be locked EXCL. Even though no other constituent pages are locked
3084  * it's legal to unload large mappings to pp because all constituent pages of
3085  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3086  * lock on one of constituent pages none of the large mappings to pp are
3087  * locked.
3088  *
3089  * Change (always decrease) p_szc field starting from the last constituent
3090  * page and ending with root constituent page so that root's pszc always shows
3091  * the area where hat_page_demote() may be active.
3092  *
3093  * This mechanism is only used for file system pages where it's not always
3094  * possible to get EXCL locks on all constituent pages to demote the size code
3095  * (as is done for anonymous or kernel large pages).
3096  */
3097 void
3098 hat_page_demote(page_t *pp)
3099 {
3100 	uint_t		pszc;
3101 	uint_t		rszc;
3102 	uint_t		szc;
3103 	page_t		*rootpp;
3104 	page_t		*firstpp;
3105 	page_t		*lastpp;
3106 	pgcnt_t		pgcnt;
3107 
3108 	ASSERT(PAGE_EXCL(pp));
3109 	ASSERT(!PP_ISFREE(pp));
3110 	ASSERT(page_szc_lock_assert(pp));
3111 
3112 	if (pp->p_szc == 0)
3113 		return;
3114 
3115 	rootpp = PP_GROUPLEADER(pp, 1);
3116 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3117 
3118 	/*
3119 	 * all large mappings to pp are gone
3120 	 * and no new can be setup since pp is locked exclusively.
3121 	 *
3122 	 * Lock the root to make sure there's only one hat_page_demote()
3123 	 * outstanding within the area of this root's pszc.
3124 	 *
3125 	 * Second potential hat_page_demote() is already eliminated by upper
3126 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3127 	 * own locking (so that upper layer locking can be changed without
3128 	 * assumptions that hat depends on upper layer VM to prevent multiple
3129 	 * hat_page_demote() to be issued simultaneously to the same large
3130 	 * page).
3131 	 */
3132 again:
3133 	pszc = pp->p_szc;
3134 	if (pszc == 0)
3135 		return;
3136 	rootpp = PP_GROUPLEADER(pp, pszc);
3137 	x86_hm_enter(rootpp);
3138 	/*
3139 	 * If root's p_szc is different from pszc we raced with another
3140 	 * hat_page_demote().  Drop the lock and try to find the root again.
3141 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3142 	 * not done yet.  Take and release mlist lock of root's root to wait
3143 	 * for previous hat_page_demote() to complete.
3144 	 */
3145 	if ((rszc = rootpp->p_szc) != pszc) {
3146 		x86_hm_exit(rootpp);
3147 		if (rszc > pszc) {
3148 			/* p_szc of a locked non free page can't increase */
3149 			ASSERT(pp != rootpp);
3150 
3151 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3152 			x86_hm_enter(rootpp);
3153 			x86_hm_exit(rootpp);
3154 		}
3155 		goto again;
3156 	}
3157 	ASSERT(pp->p_szc == pszc);
3158 
3159 	/*
3160 	 * Decrement by 1 p_szc of every constituent page of a region that
3161 	 * covered pp. For example if original szc is 3 it gets changed to 2
3162 	 * everywhere except in region 2 that covered pp. Region 2 that
3163 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3164 	 * covered pp. The region 1 that covered pp is demoted to region
3165 	 * 0. It's done this way because from region 3 we removed level 3
3166 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3167 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3168 	 * changes are done from from high pfn's to low pfn's so that roots
3169 	 * are changed last allowing one to know the largest region where
3170 	 * hat_page_demote() is stil active by only looking at the root page.
3171 	 *
3172 	 * This algorithm is implemented in 2 while loops. First loop changes
3173 	 * p_szc of pages to the right of pp's level 1 region and second
3174 	 * loop changes p_szc of pages of level 1 region that covers pp
3175 	 * and all pages to the left of level 1 region that covers pp.
3176 	 * In the first loop p_szc keeps dropping with every iteration
3177 	 * and in the second loop it keeps increasing with every iteration.
3178 	 *
3179 	 * First loop description: Demote pages to the right of pp outside of
3180 	 * level 1 region that covers pp.  In every iteration of the while
3181 	 * loop below find the last page of szc region and the first page of
3182 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3183 	 * region that covers pp.  From last such page to first such page
3184 	 * change every page's szc to szc - 1. Decrement szc and continue
3185 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3186 	 * of szc region skip to the next iteration.
3187 	 */
3188 	szc = pszc;
3189 	while (szc > 1) {
3190 		lastpp = PP_GROUPLEADER(pp, szc);
3191 		pgcnt = page_get_pagecnt(szc);
3192 		lastpp += pgcnt - 1;
3193 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3194 		pgcnt = page_get_pagecnt(szc - 1);
3195 		if (lastpp - firstpp < pgcnt) {
3196 			szc--;
3197 			continue;
3198 		}
3199 		firstpp += pgcnt;
3200 		while (lastpp != firstpp) {
3201 			ASSERT(lastpp->p_szc == pszc);
3202 			lastpp->p_szc = szc - 1;
3203 			lastpp--;
3204 		}
3205 		firstpp->p_szc = szc - 1;
3206 		szc--;
3207 	}
3208 
3209 	/*
3210 	 * Second loop description:
3211 	 * First iteration changes p_szc to 0 of every
3212 	 * page of level 1 region that covers pp.
3213 	 * Subsequent iterations find last page of szc region
3214 	 * immediately to the left of szc region that covered pp
3215 	 * and first page of (szc + 1) region that covers pp.
3216 	 * From last to first page change p_szc of every page to szc.
3217 	 * Increment szc and continue looping until szc is pszc.
3218 	 * If pp belongs to the fist szc region of (szc + 1) region
3219 	 * skip to the next iteration.
3220 	 *
3221 	 */
3222 	szc = 0;
3223 	while (szc < pszc) {
3224 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3225 		if (szc == 0) {
3226 			pgcnt = page_get_pagecnt(1);
3227 			lastpp = firstpp + (pgcnt - 1);
3228 		} else {
3229 			lastpp = PP_GROUPLEADER(pp, szc);
3230 			if (firstpp == lastpp) {
3231 				szc++;
3232 				continue;
3233 			}
3234 			lastpp--;
3235 			pgcnt = page_get_pagecnt(szc);
3236 		}
3237 		while (lastpp != firstpp) {
3238 			ASSERT(lastpp->p_szc == pszc);
3239 			lastpp->p_szc = szc;
3240 			lastpp--;
3241 		}
3242 		firstpp->p_szc = szc;
3243 		if (firstpp == rootpp)
3244 			break;
3245 		szc++;
3246 	}
3247 	x86_hm_exit(rootpp);
3248 }
3249 
3250 /*
3251  * get hw stats from hardware into page struct and reset hw stats
3252  * returns attributes of page
3253  * Flags for hat_pagesync, hat_getstat, hat_sync
3254  *
3255  * define	HAT_SYNC_ZERORM		0x01
3256  *
3257  * Additional flags for hat_pagesync
3258  *
3259  * define	HAT_SYNC_STOPON_REF	0x02
3260  * define	HAT_SYNC_STOPON_MOD	0x04
3261  * define	HAT_SYNC_STOPON_RM	0x06
3262  * define	HAT_SYNC_STOPON_SHARED	0x08
3263  */
3264 uint_t
3265 hat_pagesync(struct page *pp, uint_t flags)
3266 {
3267 	hment_t		*hm = NULL;
3268 	htable_t	*ht;
3269 	uint_t		entry;
3270 	x86pte_t	old, save_old;
3271 	x86pte_t	new;
3272 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3273 	extern ulong_t	po_share;
3274 	page_t		*save_pp = pp;
3275 	uint_t		pszc = 0;
3276 
3277 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3278 
3279 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3280 		return (pp->p_nrm & nrmbits);
3281 
3282 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3283 
3284 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3285 			return (pp->p_nrm & nrmbits);
3286 
3287 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3288 			return (pp->p_nrm & nrmbits);
3289 
3290 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3291 		    hat_page_getshare(pp) > po_share) {
3292 			if (PP_ISRO(pp))
3293 				PP_SETREF(pp);
3294 			return (pp->p_nrm & nrmbits);
3295 		}
3296 	}
3297 
3298 next_size:
3299 	/*
3300 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3301 	 */
3302 	x86_hm_enter(pp);
3303 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3304 		if (ht->ht_level < pszc)
3305 			continue;
3306 		old = x86pte_get(ht, entry);
3307 try_again:
3308 
3309 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3310 
3311 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3312 			continue;
3313 
3314 		save_old = old;
3315 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3316 
3317 			/*
3318 			 * Need to clear ref or mod bits. Need to demap
3319 			 * to make sure any executing TLBs see cleared bits.
3320 			 */
3321 			new = old;
3322 			PTE_CLR(new, PT_REF | PT_MOD);
3323 			old = hati_update_pte(ht, entry, old, new);
3324 			if (old != 0)
3325 				goto try_again;
3326 
3327 			old = save_old;
3328 		}
3329 
3330 		/*
3331 		 * Sync the PTE
3332 		 */
3333 		if (!(flags & HAT_SYNC_ZERORM) &&
3334 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3335 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3336 
3337 		/*
3338 		 * can stop short if we found a ref'd or mod'd page
3339 		 */
3340 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3341 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3342 			x86_hm_exit(pp);
3343 			goto done;
3344 		}
3345 	}
3346 	x86_hm_exit(pp);
3347 	while (pszc < pp->p_szc) {
3348 		page_t *tpp;
3349 		pszc++;
3350 		tpp = PP_GROUPLEADER(pp, pszc);
3351 		if (pp != tpp) {
3352 			pp = tpp;
3353 			goto next_size;
3354 		}
3355 	}
3356 done:
3357 	return (save_pp->p_nrm & nrmbits);
3358 }
3359 
3360 /*
3361  * returns approx number of mappings to this pp.  A return of 0 implies
3362  * there are no mappings to the page.
3363  */
3364 ulong_t
3365 hat_page_getshare(page_t *pp)
3366 {
3367 	uint_t cnt;
3368 	cnt = hment_mapcnt(pp);
3369 #if defined(__amd64)
3370 	if (vpm_enable && pp->p_vpmref) {
3371 		cnt += 1;
3372 	}
3373 #endif
3374 	return (cnt);
3375 }
3376 
3377 /*
3378  * hat_softlock isn't supported anymore
3379  */
3380 /*ARGSUSED*/
3381 faultcode_t
3382 hat_softlock(
3383 	hat_t *hat,
3384 	caddr_t addr,
3385 	size_t *len,
3386 	struct page **page_array,
3387 	uint_t flags)
3388 {
3389 	return (FC_NOSUPPORT);
3390 }
3391 
3392 
3393 
3394 /*
3395  * Routine to expose supported HAT features to platform independent code.
3396  */
3397 /*ARGSUSED*/
3398 int
3399 hat_supported(enum hat_features feature, void *arg)
3400 {
3401 	switch (feature) {
3402 
3403 	case HAT_SHARED_PT:	/* this is really ISM */
3404 		return (1);
3405 
3406 	case HAT_DYNAMIC_ISM_UNMAP:
3407 		return (0);
3408 
3409 	case HAT_VMODSORT:
3410 		return (1);
3411 
3412 	default:
3413 		panic("hat_supported() - unknown feature");
3414 	}
3415 	return (0);
3416 }
3417 
3418 /*
3419  * Called when a thread is exiting and has been switched to the kernel AS
3420  */
3421 void
3422 hat_thread_exit(kthread_t *thd)
3423 {
3424 	ASSERT(thd->t_procp->p_as == &kas);
3425 	hat_switch(thd->t_procp->p_as->a_hat);
3426 }
3427 
3428 /*
3429  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3430  */
3431 /*ARGSUSED*/
3432 void
3433 hat_setup(hat_t *hat, int flags)
3434 {
3435 	kpreempt_disable();
3436 
3437 	hat_switch(hat);
3438 
3439 	kpreempt_enable();
3440 }
3441 
3442 /*
3443  * Prepare for a CPU private mapping for the given address.
3444  *
3445  * The address can only be used from a single CPU and can be remapped
3446  * using hat_mempte_remap().  Return the address of the PTE.
3447  *
3448  * We do the htable_create() if necessary and increment the valid count so
3449  * the htable can't disappear.  We also hat_devload() the page table into
3450  * kernel so that the PTE is quickly accessed.
3451  */
3452 hat_mempte_t
3453 hat_mempte_setup(caddr_t addr)
3454 {
3455 	uintptr_t	va = (uintptr_t)addr;
3456 	htable_t	*ht;
3457 	uint_t		entry;
3458 	x86pte_t	oldpte;
3459 	hat_mempte_t	p;
3460 
3461 	ASSERT(IS_PAGEALIGNED(va));
3462 	ASSERT(!IN_VA_HOLE(va));
3463 	++curthread->t_hatdepth;
3464 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3465 	if (ht == NULL) {
3466 		ht = htable_create(kas.a_hat, va, 0, NULL);
3467 		entry = htable_va2entry(va, ht);
3468 		ASSERT(ht->ht_level == 0);
3469 		oldpte = x86pte_get(ht, entry);
3470 	}
3471 	if (PTE_ISVALID(oldpte))
3472 		panic("hat_mempte_setup(): address already mapped"
3473 		    "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte);
3474 
3475 	/*
3476 	 * increment ht_valid_cnt so that the pagetable can't disappear
3477 	 */
3478 	HTABLE_INC(ht->ht_valid_cnt);
3479 
3480 	/*
3481 	 * return the PTE physical address to the caller.
3482 	 */
3483 	htable_release(ht);
3484 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3485 	--curthread->t_hatdepth;
3486 	return (p);
3487 }
3488 
3489 /*
3490  * Release a CPU private mapping for the given address.
3491  * We decrement the htable valid count so it might be destroyed.
3492  */
3493 /*ARGSUSED1*/
3494 void
3495 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3496 {
3497 	htable_t	*ht;
3498 
3499 	/*
3500 	 * invalidate any left over mapping and decrement the htable valid count
3501 	 */
3502 	{
3503 		x86pte_t *pteptr;
3504 
3505 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3506 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3507 		if (mmu.pae_hat)
3508 			*pteptr = 0;
3509 		else
3510 			*(x86pte32_t *)pteptr = 0;
3511 		mmu_tlbflush_entry(addr);
3512 		x86pte_mapout();
3513 	}
3514 
3515 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3516 	if (ht == NULL)
3517 		panic("hat_mempte_release(): invalid address");
3518 	ASSERT(ht->ht_level == 0);
3519 	HTABLE_DEC(ht->ht_valid_cnt);
3520 	htable_release(ht);
3521 }
3522 
3523 /*
3524  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3525  * on this CPU, so this ought to have been called with preemption disabled.
3526  */
3527 void
3528 hat_mempte_remap(
3529 	pfn_t		pfn,
3530 	caddr_t		addr,
3531 	hat_mempte_t	pte_pa,
3532 	uint_t		attr,
3533 	uint_t		flags)
3534 {
3535 	uintptr_t	va = (uintptr_t)addr;
3536 	x86pte_t	pte;
3537 
3538 	/*
3539 	 * Remap the given PTE to the new page's PFN. Invalidate only
3540 	 * on this CPU.
3541 	 */
3542 #ifdef DEBUG
3543 	htable_t	*ht;
3544 	uint_t		entry;
3545 
3546 	ASSERT(IS_PAGEALIGNED(va));
3547 	ASSERT(!IN_VA_HOLE(va));
3548 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3549 	ASSERT(ht != NULL);
3550 	ASSERT(ht->ht_level == 0);
3551 	ASSERT(ht->ht_valid_cnt > 0);
3552 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3553 	htable_release(ht);
3554 #endif
3555 	pte = hati_mkpte(pfn, attr, 0, flags);
3556 	{
3557 		x86pte_t *pteptr;
3558 
3559 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3560 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3561 		if (mmu.pae_hat)
3562 			*(x86pte_t *)pteptr = pte;
3563 		else
3564 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3565 		mmu_tlbflush_entry(addr);
3566 		x86pte_mapout();
3567 	}
3568 }
3569 
3570 
3571 
3572 /*
3573  * Hat locking functions
3574  * XXX - these two functions are currently being used by hatstats
3575  * 	they can be removed by using a per-as mutex for hatstats.
3576  */
3577 void
3578 hat_enter(hat_t *hat)
3579 {
3580 	mutex_enter(&hat->hat_mutex);
3581 }
3582 
3583 void
3584 hat_exit(hat_t *hat)
3585 {
3586 	mutex_exit(&hat->hat_mutex);
3587 }
3588 
3589 /*
3590  * HAT part of cpu initialization.
3591  */
3592 void
3593 hat_cpu_online(struct cpu *cpup)
3594 {
3595 	if (cpup != CPU) {
3596 		x86pte_cpu_init(cpup);
3597 		hat_vlp_setup(cpup);
3598 	}
3599 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
3600 }
3601 
3602 /*
3603  * HAT part of cpu deletion.
3604  * (currently, we only call this after the cpu is safely passivated.)
3605  */
3606 void
3607 hat_cpu_offline(struct cpu *cpup)
3608 {
3609 	ASSERT(cpup != CPU);
3610 
3611 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
3612 	x86pte_cpu_fini(cpup);
3613 	hat_vlp_teardown(cpup);
3614 }
3615 
3616 /*
3617  * Function called after all CPUs are brought online.
3618  * Used to remove low address boot mappings.
3619  */
3620 void
3621 clear_boot_mappings(uintptr_t low, uintptr_t high)
3622 {
3623 	uintptr_t vaddr = low;
3624 	htable_t *ht = NULL;
3625 	level_t level;
3626 	uint_t entry;
3627 	x86pte_t pte;
3628 
3629 	/*
3630 	 * On 1st CPU we can unload the prom mappings, basically we blow away
3631 	 * all virtual mappings under _userlimit.
3632 	 */
3633 	while (vaddr < high) {
3634 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
3635 		if (ht == NULL)
3636 			break;
3637 
3638 		level = ht->ht_level;
3639 		entry = htable_va2entry(vaddr, ht);
3640 		ASSERT(level <= mmu.max_page_level);
3641 		ASSERT(PTE_ISPAGE(pte, level));
3642 
3643 		/*
3644 		 * Unload the mapping from the page tables.
3645 		 */
3646 		(void) x86pte_inval(ht, entry, 0, NULL);
3647 		ASSERT(ht->ht_valid_cnt > 0);
3648 		HTABLE_DEC(ht->ht_valid_cnt);
3649 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
3650 
3651 		vaddr += LEVEL_SIZE(ht->ht_level);
3652 	}
3653 	if (ht)
3654 		htable_release(ht);
3655 }
3656 
3657 /*
3658  * Atomically update a new translation for a single page.  If the
3659  * currently installed PTE doesn't match the value we expect to find,
3660  * it's not updated and we return the PTE we found.
3661  *
3662  * If activating nosync or NOWRITE and the page was modified we need to sync
3663  * with the page_t. Also sync with page_t if clearing ref/mod bits.
3664  */
3665 static x86pte_t
3666 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
3667 {
3668 	page_t		*pp;
3669 	uint_t		rm = 0;
3670 	x86pte_t	replaced;
3671 
3672 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
3673 	    PTE_GET(expected, PT_MOD | PT_REF) &&
3674 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
3675 		!PTE_GET(new, PT_MOD | PT_REF))) {
3676 
3677 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
3678 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
3679 		ASSERT(pp != NULL);
3680 		if (PTE_GET(expected, PT_MOD))
3681 			rm |= P_MOD;
3682 		if (PTE_GET(expected, PT_REF))
3683 			rm |= P_REF;
3684 		PTE_CLR(new, PT_MOD | PT_REF);
3685 	}
3686 
3687 	replaced = x86pte_update(ht, entry, expected, new);
3688 	if (replaced != expected)
3689 		return (replaced);
3690 
3691 	if (rm) {
3692 		/*
3693 		 * sync to all constituent pages of a large page
3694 		 */
3695 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
3696 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
3697 		while (pgcnt-- > 0) {
3698 			/*
3699 			 * hat_page_demote() can't decrease
3700 			 * pszc below this mapping size
3701 			 * since large mapping existed after we
3702 			 * took mlist lock.
3703 			 */
3704 			ASSERT(pp->p_szc >= ht->ht_level);
3705 			hat_page_setattr(pp, rm);
3706 			++pp;
3707 		}
3708 	}
3709 
3710 	return (0);
3711 }
3712 
3713 /*
3714  * Kernel Physical Mapping (kpm) facility
3715  *
3716  * Most of the routines needed to support segkpm are almost no-ops on the
3717  * x86 platform.  We map in the entire segment when it is created and leave
3718  * it mapped in, so there is no additional work required to set up and tear
3719  * down individual mappings.  All of these routines were created to support
3720  * SPARC platforms that have to avoid aliasing in their virtually indexed
3721  * caches.
3722  *
3723  * Most of the routines have sanity checks in them (e.g. verifying that the
3724  * passed-in page is locked).  We don't actually care about most of these
3725  * checks on x86, but we leave them in place to identify problems in the
3726  * upper levels.
3727  */
3728 
3729 /*
3730  * Map in a locked page and return the vaddr.
3731  */
3732 /*ARGSUSED*/
3733 caddr_t
3734 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
3735 {
3736 	caddr_t		vaddr;
3737 
3738 #ifdef DEBUG
3739 	if (kpm_enable == 0) {
3740 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
3741 		return ((caddr_t)NULL);
3742 	}
3743 
3744 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
3745 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
3746 		return ((caddr_t)NULL);
3747 	}
3748 #endif
3749 
3750 	vaddr = hat_kpm_page2va(pp, 1);
3751 
3752 	return (vaddr);
3753 }
3754 
3755 /*
3756  * Mapout a locked page.
3757  */
3758 /*ARGSUSED*/
3759 void
3760 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
3761 {
3762 #ifdef DEBUG
3763 	if (kpm_enable == 0) {
3764 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
3765 		return;
3766 	}
3767 
3768 	if (IS_KPM_ADDR(vaddr) == 0) {
3769 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
3770 		return;
3771 	}
3772 
3773 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
3774 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
3775 		return;
3776 	}
3777 #endif
3778 }
3779 
3780 /*
3781  * Return the kpm virtual address for a specific pfn
3782  */
3783 caddr_t
3784 hat_kpm_pfn2va(pfn_t pfn)
3785 {
3786 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
3787 
3788 	return ((caddr_t)vaddr);
3789 }
3790 
3791 /*
3792  * Return the kpm virtual address for the page at pp.
3793  */
3794 /*ARGSUSED*/
3795 caddr_t
3796 hat_kpm_page2va(struct page *pp, int checkswap)
3797 {
3798 	return (hat_kpm_pfn2va(pp->p_pagenum));
3799 }
3800 
3801 /*
3802  * Return the page frame number for the kpm virtual address vaddr.
3803  */
3804 pfn_t
3805 hat_kpm_va2pfn(caddr_t vaddr)
3806 {
3807 	pfn_t		pfn;
3808 
3809 	ASSERT(IS_KPM_ADDR(vaddr));
3810 
3811 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
3812 
3813 	return (pfn);
3814 }
3815 
3816 
3817 /*
3818  * Return the page for the kpm virtual address vaddr.
3819  */
3820 page_t *
3821 hat_kpm_vaddr2page(caddr_t vaddr)
3822 {
3823 	pfn_t		pfn;
3824 
3825 	ASSERT(IS_KPM_ADDR(vaddr));
3826 
3827 	pfn = hat_kpm_va2pfn(vaddr);
3828 
3829 	return (page_numtopp_nolock(pfn));
3830 }
3831 
3832 /*
3833  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
3834  * KPM page.  This should never happen on x86
3835  */
3836 int
3837 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
3838 {
3839 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p", hat, vaddr);
3840 
3841 	return (0);
3842 }
3843 
3844 /*ARGSUSED*/
3845 void
3846 hat_kpm_mseghash_clear(int nentries)
3847 {}
3848 
3849 /*ARGSUSED*/
3850 void
3851 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
3852 {}
3853