1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 #include <sys/controlregs.h> 62 #include <sys/bootconf.h> 63 #include <sys/bootsvcs.h> 64 #include <sys/bootinfo.h> 65 #include <sys/archsystm.h> 66 67 #include <vm/seg_kmem.h> 68 #include <vm/hat_i86.h> 69 #include <vm/as.h> 70 #include <vm/seg.h> 71 #include <vm/page.h> 72 #include <vm/seg_kp.h> 73 #include <vm/seg_kpm.h> 74 #include <vm/vm_dep.h> 75 #ifdef __xpv 76 #include <sys/hypervisor.h> 77 #endif 78 #include <vm/kboot_mmu.h> 79 #include <vm/seg_spt.h> 80 81 #include <sys/cmn_err.h> 82 83 /* 84 * Basic parameters for hat operation. 85 */ 86 struct hat_mmu_info mmu; 87 88 /* 89 * The page that is the kernel's top level pagetable. 90 * 91 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 92 * on this 4K page for its top level page table. The remaining groups of 93 * 4 entries are used for per processor copies of user VLP pagetables for 94 * running threads. See hat_switch() and reload_pae32() for details. 95 * 96 * vlp_page[0..3] - level==2 PTEs for kernel HAT 97 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 98 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 99 * etc... 100 */ 101 static x86pte_t *vlp_page; 102 103 /* 104 * forward declaration of internal utility routines 105 */ 106 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 107 x86pte_t new); 108 109 /* 110 * The kernel address space exists in all HATs. To implement this the 111 * kernel reserves a fixed number of entries in the topmost level(s) of page 112 * tables. The values are setup during startup and then copied to every user 113 * hat created by hat_alloc(). This means that kernelbase must be: 114 * 115 * 4Meg aligned for 32 bit kernels 116 * 512Gig aligned for x86_64 64 bit kernel 117 * 118 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 119 * to each user hat. 120 */ 121 typedef struct hat_kernel_range { 122 level_t hkr_level; 123 uintptr_t hkr_start_va; 124 uintptr_t hkr_end_va; /* zero means to end of memory */ 125 } hat_kernel_range_t; 126 #define NUM_KERNEL_RANGE 2 127 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 128 static int num_kernel_ranges; 129 130 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 131 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 132 133 /* 134 * A cpuset for all cpus. This is used for kernel address cross calls, since 135 * the kernel addresses apply to all cpus. 136 */ 137 cpuset_t khat_cpuset; 138 139 /* 140 * management stuff for hat structures 141 */ 142 kmutex_t hat_list_lock; 143 kcondvar_t hat_list_cv; 144 kmem_cache_t *hat_cache; 145 kmem_cache_t *hat_hash_cache; 146 kmem_cache_t *vlp_hash_cache; 147 148 /* 149 * Simple statistics 150 */ 151 struct hatstats hatstat; 152 153 /* 154 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 155 */ 156 extern void atomic_orb(uchar_t *addr, uchar_t val); 157 extern void atomic_andb(uchar_t *addr, uchar_t val); 158 159 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 160 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 161 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 162 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 163 164 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 165 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 166 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 167 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 168 169 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 170 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 171 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 172 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 173 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 174 175 /* 176 * kmem cache constructor for struct hat 177 */ 178 /*ARGSUSED*/ 179 static int 180 hati_constructor(void *buf, void *handle, int kmflags) 181 { 182 hat_t *hat = buf; 183 184 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 185 bzero(hat->hat_pages_mapped, 186 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 187 hat->hat_ism_pgcnt = 0; 188 hat->hat_stats = 0; 189 hat->hat_flags = 0; 190 CPUSET_ZERO(hat->hat_cpus); 191 hat->hat_htable = NULL; 192 hat->hat_ht_hash = NULL; 193 return (0); 194 } 195 196 /* 197 * Allocate a hat structure for as. We also create the top level 198 * htable and initialize it to contain the kernel hat entries. 199 */ 200 hat_t * 201 hat_alloc(struct as *as) 202 { 203 hat_t *hat; 204 htable_t *ht; /* top level htable */ 205 uint_t use_vlp; 206 uint_t r; 207 hat_kernel_range_t *rp; 208 uintptr_t va; 209 uintptr_t eva; 210 uint_t start; 211 uint_t cnt; 212 htable_t *src; 213 214 /* 215 * Once we start creating user process HATs we can enable 216 * the htable_steal() code. 217 */ 218 if (can_steal_post_boot == 0) 219 can_steal_post_boot = 1; 220 221 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 222 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 223 hat->hat_as = as; 224 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 225 ASSERT(hat->hat_flags == 0); 226 227 #if defined(__xpv) 228 /* 229 * No VLP stuff on the hypervisor due to the 64-bit split top level 230 * page tables. On 32-bit it's not needed as the hypervisor takes 231 * care of copying the top level PTEs to a below 4Gig page. 232 */ 233 use_vlp = 0; 234 #else /* __xpv */ 235 /* 32 bit processes uses a VLP style hat when running with PAE */ 236 #if defined(__amd64) 237 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 238 #elif defined(__i386) 239 use_vlp = mmu.pae_hat; 240 #endif 241 #endif /* __xpv */ 242 if (use_vlp) { 243 hat->hat_flags = HAT_VLP; 244 bzero(hat->hat_vlp_ptes, VLP_SIZE); 245 } 246 247 /* 248 * Allocate the htable hash 249 */ 250 if ((hat->hat_flags & HAT_VLP)) { 251 hat->hat_num_hash = mmu.vlp_hash_cnt; 252 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 253 } else { 254 hat->hat_num_hash = mmu.hash_cnt; 255 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 256 } 257 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 258 259 /* 260 * Initialize Kernel HAT entries at the top of the top level page 261 * tables for the new hat. 262 */ 263 hat->hat_htable = NULL; 264 hat->hat_ht_cached = NULL; 265 XPV_DISALLOW_MIGRATE(); 266 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 267 hat->hat_htable = ht; 268 269 #if defined(__amd64) 270 if (hat->hat_flags & HAT_VLP) 271 goto init_done; 272 #endif 273 274 for (r = 0; r < num_kernel_ranges; ++r) { 275 rp = &kernel_ranges[r]; 276 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 277 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 278 279 if (rp->hkr_level == TOP_LEVEL(hat)) 280 ht = hat->hat_htable; 281 else 282 ht = htable_create(hat, va, rp->hkr_level, 283 NULL); 284 285 start = htable_va2entry(va, ht); 286 cnt = HTABLE_NUM_PTES(ht) - start; 287 eva = va + 288 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 289 if (rp->hkr_end_va != 0 && 290 (eva > rp->hkr_end_va || eva == 0)) 291 cnt = htable_va2entry(rp->hkr_end_va, ht) - 292 start; 293 294 #if defined(__i386) && !defined(__xpv) 295 if (ht->ht_flags & HTABLE_VLP) { 296 bcopy(&vlp_page[start], 297 &hat->hat_vlp_ptes[start], 298 cnt * sizeof (x86pte_t)); 299 continue; 300 } 301 #endif 302 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 303 ASSERT(src != NULL); 304 x86pte_copy(src, ht, start, cnt); 305 htable_release(src); 306 } 307 } 308 309 init_done: 310 XPV_ALLOW_MIGRATE(); 311 312 #if defined(__xpv) 313 /* 314 * Pin top level page tables after initializing them 315 */ 316 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 317 #if defined(__amd64) 318 xen_pin(hat->hat_user_ptable, mmu.max_level); 319 #endif 320 #endif 321 322 /* 323 * Put it at the start of the global list of all hats (used by stealing) 324 * 325 * kas.a_hat is not in the list but is instead used to find the 326 * first and last items in the list. 327 * 328 * - kas.a_hat->hat_next points to the start of the user hats. 329 * The list ends where hat->hat_next == NULL 330 * 331 * - kas.a_hat->hat_prev points to the last of the user hats. 332 * The list begins where hat->hat_prev == NULL 333 */ 334 mutex_enter(&hat_list_lock); 335 hat->hat_prev = NULL; 336 hat->hat_next = kas.a_hat->hat_next; 337 if (hat->hat_next) 338 hat->hat_next->hat_prev = hat; 339 else 340 kas.a_hat->hat_prev = hat; 341 kas.a_hat->hat_next = hat; 342 mutex_exit(&hat_list_lock); 343 344 return (hat); 345 } 346 347 /* 348 * process has finished executing but as has not been cleaned up yet. 349 */ 350 /*ARGSUSED*/ 351 void 352 hat_free_start(hat_t *hat) 353 { 354 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 355 356 /* 357 * If the hat is currently a stealing victim, wait for the stealing 358 * to finish. Once we mark it as HAT_FREEING, htable_steal() 359 * won't look at its pagetables anymore. 360 */ 361 mutex_enter(&hat_list_lock); 362 while (hat->hat_flags & HAT_VICTIM) 363 cv_wait(&hat_list_cv, &hat_list_lock); 364 hat->hat_flags |= HAT_FREEING; 365 mutex_exit(&hat_list_lock); 366 } 367 368 /* 369 * An address space is being destroyed, so we destroy the associated hat. 370 */ 371 void 372 hat_free_end(hat_t *hat) 373 { 374 kmem_cache_t *cache; 375 376 ASSERT(hat->hat_flags & HAT_FREEING); 377 378 /* 379 * must not be running on the given hat 380 */ 381 ASSERT(CPU->cpu_current_hat != hat); 382 383 /* 384 * Remove it from the list of HATs 385 */ 386 mutex_enter(&hat_list_lock); 387 if (hat->hat_prev) 388 hat->hat_prev->hat_next = hat->hat_next; 389 else 390 kas.a_hat->hat_next = hat->hat_next; 391 if (hat->hat_next) 392 hat->hat_next->hat_prev = hat->hat_prev; 393 else 394 kas.a_hat->hat_prev = hat->hat_prev; 395 mutex_exit(&hat_list_lock); 396 hat->hat_next = hat->hat_prev = NULL; 397 398 #if defined(__xpv) 399 /* 400 * On the hypervisor, unpin top level page table(s) 401 */ 402 xen_unpin(hat->hat_htable->ht_pfn); 403 #if defined(__amd64) 404 xen_unpin(hat->hat_user_ptable); 405 #endif 406 #endif 407 408 /* 409 * Make a pass through the htables freeing them all up. 410 */ 411 htable_purge_hat(hat); 412 413 /* 414 * Decide which kmem cache the hash table came from, then free it. 415 */ 416 if (hat->hat_flags & HAT_VLP) 417 cache = vlp_hash_cache; 418 else 419 cache = hat_hash_cache; 420 kmem_cache_free(cache, hat->hat_ht_hash); 421 hat->hat_ht_hash = NULL; 422 423 hat->hat_flags = 0; 424 kmem_cache_free(hat_cache, hat); 425 } 426 427 /* 428 * round kernelbase down to a supported value to use for _userlimit 429 * 430 * userlimit must be aligned down to an entry in the top level htable. 431 * The one exception is for 32 bit HAT's running PAE. 432 */ 433 uintptr_t 434 hat_kernelbase(uintptr_t va) 435 { 436 #if defined(__i386) 437 va &= LEVEL_MASK(1); 438 #endif 439 if (IN_VA_HOLE(va)) 440 panic("_userlimit %p will fall in VA hole\n", (void *)va); 441 return (va); 442 } 443 444 /* 445 * Initialize hat data structures based on processor MMU information. 446 */ 447 void 448 mmu_init(void) 449 { 450 uint_t max_htables; 451 uint_t pa_bits; 452 uint_t va_bits; 453 int i; 454 455 /* 456 * If CPU enabled the page table global bit, use it for the kernel 457 * This is bit 7 in CR4 (PGE - Page Global Enable). 458 */ 459 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 460 mmu.pt_global = PT_GLOBAL; 461 462 /* 463 * Detect NX and PAE usage. 464 */ 465 mmu.pae_hat = kbm_pae_support; 466 if (kbm_nx_support) 467 mmu.pt_nx = PT_NX; 468 else 469 mmu.pt_nx = 0; 470 471 /* 472 * Use CPU info to set various MMU parameters 473 */ 474 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 475 476 if (va_bits < sizeof (void *) * NBBY) { 477 mmu.hole_start = (1ul << (va_bits - 1)); 478 mmu.hole_end = 0ul - mmu.hole_start - 1; 479 } else { 480 mmu.hole_end = 0; 481 mmu.hole_start = mmu.hole_end - 1; 482 } 483 #if defined(OPTERON_ERRATUM_121) 484 /* 485 * If erratum 121 has already been detected at this time, hole_start 486 * contains the value to be subtracted from mmu.hole_start. 487 */ 488 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 489 hole_start = mmu.hole_start - hole_start; 490 #else 491 hole_start = mmu.hole_start; 492 #endif 493 hole_end = mmu.hole_end; 494 495 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 496 if (mmu.pae_hat == 0 && pa_bits > 32) 497 mmu.highest_pfn = PFN_4G - 1; 498 499 if (mmu.pae_hat) { 500 mmu.pte_size = 8; /* 8 byte PTEs */ 501 mmu.pte_size_shift = 3; 502 } else { 503 mmu.pte_size = 4; /* 4 byte PTEs */ 504 mmu.pte_size_shift = 2; 505 } 506 507 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 508 panic("Processor does not support PAE"); 509 510 if ((x86_feature & X86_CX8) == 0) 511 panic("Processor does not support cmpxchg8b instruction"); 512 513 /* 514 * Initialize parameters based on the 64 or 32 bit kernels and 515 * for the 32 bit kernel decide if we should use PAE. 516 */ 517 if (kbm_largepage_support) 518 mmu.max_page_level = 1; 519 else 520 mmu.max_page_level = 0; 521 mmu_page_sizes = mmu.max_page_level + 1; 522 mmu_exported_page_sizes = mmu_page_sizes; 523 524 #if defined(__amd64) 525 526 mmu.num_level = 4; 527 mmu.max_level = 3; 528 mmu.ptes_per_table = 512; 529 mmu.top_level_count = 512; 530 531 mmu.level_shift[0] = 12; 532 mmu.level_shift[1] = 21; 533 mmu.level_shift[2] = 30; 534 mmu.level_shift[3] = 39; 535 536 #elif defined(__i386) 537 538 if (mmu.pae_hat) { 539 mmu.num_level = 3; 540 mmu.max_level = 2; 541 mmu.ptes_per_table = 512; 542 mmu.top_level_count = 4; 543 544 mmu.level_shift[0] = 12; 545 mmu.level_shift[1] = 21; 546 mmu.level_shift[2] = 30; 547 548 } else { 549 mmu.num_level = 2; 550 mmu.max_level = 1; 551 mmu.ptes_per_table = 1024; 552 mmu.top_level_count = 1024; 553 554 mmu.level_shift[0] = 12; 555 mmu.level_shift[1] = 22; 556 } 557 558 #endif /* __i386 */ 559 560 for (i = 0; i < mmu.num_level; ++i) { 561 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 562 mmu.level_offset[i] = mmu.level_size[i] - 1; 563 mmu.level_mask[i] = ~mmu.level_offset[i]; 564 } 565 566 for (i = 0; i <= mmu.max_page_level; ++i) { 567 mmu.pte_bits[i] = PT_VALID; 568 #if defined(__xpv) && defined(__amd64) 569 mmu.pte_bits[i] |= PT_USER; 570 #endif 571 if (i > 0) 572 mmu.pte_bits[i] |= PT_PAGESIZE; 573 } 574 575 /* 576 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 577 */ 578 for (i = 1; i < mmu.num_level; ++i) 579 mmu.ptp_bits[i] = PT_PTPBITS; 580 581 #if defined(__i386) 582 mmu.ptp_bits[2] = PT_VALID; 583 #endif 584 585 /* 586 * Compute how many hash table entries to have per process for htables. 587 * We start with 1 page's worth of entries. 588 * 589 * If physical memory is small, reduce the amount need to cover it. 590 */ 591 max_htables = physmax / mmu.ptes_per_table; 592 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 593 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 594 mmu.hash_cnt >>= 1; 595 mmu.vlp_hash_cnt = mmu.hash_cnt; 596 597 #if defined(__amd64) 598 /* 599 * If running in 64 bits and physical memory is large, 600 * increase the size of the cache to cover all of memory for 601 * a 64 bit process. 602 */ 603 #define HASH_MAX_LENGTH 4 604 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 605 mmu.hash_cnt <<= 1; 606 #endif 607 } 608 609 610 /* 611 * initialize hat data structures 612 */ 613 void 614 hat_init() 615 { 616 #if defined(__i386) 617 /* 618 * _userlimit must be aligned correctly 619 */ 620 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 621 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 622 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 623 halt("hat_init(): Unable to continue"); 624 } 625 #endif 626 627 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 628 629 /* 630 * initialize kmem caches 631 */ 632 htable_init(); 633 hment_init(); 634 635 hat_cache = kmem_cache_create("hat_t", 636 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 637 NULL, 0, 0); 638 639 hat_hash_cache = kmem_cache_create("HatHash", 640 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 641 NULL, 0, 0); 642 643 /* 644 * VLP hats can use a smaller hash table size on large memroy machines 645 */ 646 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 647 vlp_hash_cache = hat_hash_cache; 648 } else { 649 vlp_hash_cache = kmem_cache_create("HatVlpHash", 650 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 651 NULL, 0, 0); 652 } 653 654 /* 655 * Set up the kernel's hat 656 */ 657 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 658 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 659 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 660 kas.a_hat->hat_as = &kas; 661 kas.a_hat->hat_flags = 0; 662 AS_LOCK_EXIT(&kas, &kas.a_lock); 663 664 CPUSET_ZERO(khat_cpuset); 665 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 666 667 /* 668 * The kernel hat's next pointer serves as the head of the hat list . 669 * The kernel hat's prev pointer tracks the last hat on the list for 670 * htable_steal() to use. 671 */ 672 kas.a_hat->hat_next = NULL; 673 kas.a_hat->hat_prev = NULL; 674 675 /* 676 * Allocate an htable hash bucket for the kernel 677 * XX64 - tune for 64 bit procs 678 */ 679 kas.a_hat->hat_num_hash = mmu.hash_cnt; 680 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 681 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 682 683 /* 684 * zero out the top level and cached htable pointers 685 */ 686 kas.a_hat->hat_ht_cached = NULL; 687 kas.a_hat->hat_htable = NULL; 688 689 /* 690 * Pre-allocate hrm_hashtab before enabling the collection of 691 * refmod statistics. Allocating on the fly would mean us 692 * running the risk of suffering recursive mutex enters or 693 * deadlocks. 694 */ 695 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 696 KM_SLEEP); 697 } 698 699 /* 700 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 701 * 702 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 703 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 704 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 705 */ 706 /*ARGSUSED*/ 707 static void 708 hat_vlp_setup(struct cpu *cpu) 709 { 710 #if defined(__amd64) && !defined(__xpv) 711 struct hat_cpu_info *hci = cpu->cpu_hat_info; 712 pfn_t pfn; 713 714 /* 715 * allocate the level==2 page table for the bottom most 716 * 512Gig of address space (this is where 32 bit apps live) 717 */ 718 ASSERT(hci != NULL); 719 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 720 721 /* 722 * Allocate a top level pagetable and copy the kernel's 723 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 724 */ 725 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 726 hci->hci_vlp_pfn = 727 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 728 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 729 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 730 731 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 732 ASSERT(pfn != PFN_INVALID); 733 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 734 #endif /* __amd64 && !__xpv */ 735 } 736 737 /*ARGSUSED*/ 738 static void 739 hat_vlp_teardown(cpu_t *cpu) 740 { 741 #if defined(__amd64) && !defined(__xpv) 742 struct hat_cpu_info *hci; 743 744 if ((hci = cpu->cpu_hat_info) == NULL) 745 return; 746 if (hci->hci_vlp_l2ptes) 747 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 748 if (hci->hci_vlp_l3ptes) 749 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 750 #endif 751 } 752 753 #define NEXT_HKR(r, l, s, e) { \ 754 kernel_ranges[r].hkr_level = l; \ 755 kernel_ranges[r].hkr_start_va = s; \ 756 kernel_ranges[r].hkr_end_va = e; \ 757 ++r; \ 758 } 759 760 /* 761 * Finish filling in the kernel hat. 762 * Pre fill in all top level kernel page table entries for the kernel's 763 * part of the address range. From this point on we can't use any new 764 * kernel large pages if they need PTE's at max_level 765 * 766 * create the kmap mappings. 767 */ 768 void 769 hat_init_finish(void) 770 { 771 size_t size; 772 uint_t r = 0; 773 uintptr_t va; 774 hat_kernel_range_t *rp; 775 776 777 /* 778 * We are now effectively running on the kernel hat. 779 * Clearing use_boot_reserve shuts off using the pre-allocated boot 780 * reserve for all HAT allocations. From here on, the reserves are 781 * only used when avoiding recursion in kmem_alloc(). 782 */ 783 use_boot_reserve = 0; 784 htable_adjust_reserve(); 785 786 /* 787 * User HATs are initialized with copies of all kernel mappings in 788 * higher level page tables. Ensure that those entries exist. 789 */ 790 #if defined(__amd64) 791 792 NEXT_HKR(r, 3, kernelbase, 0); 793 #if defined(__xpv) 794 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 795 #endif 796 797 #elif defined(__i386) 798 799 #if !defined(__xpv) 800 if (mmu.pae_hat) { 801 va = kernelbase; 802 if ((va & LEVEL_MASK(2)) != va) { 803 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 804 NEXT_HKR(r, 1, kernelbase, va); 805 } 806 if (va != 0) 807 NEXT_HKR(r, 2, va, 0); 808 } else 809 #endif /* __xpv */ 810 NEXT_HKR(r, 1, kernelbase, 0); 811 812 #endif /* __i386 */ 813 814 num_kernel_ranges = r; 815 816 /* 817 * Create all the kernel pagetables that will have entries 818 * shared to user HATs. 819 */ 820 for (r = 0; r < num_kernel_ranges; ++r) { 821 rp = &kernel_ranges[r]; 822 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 823 va += LEVEL_SIZE(rp->hkr_level)) { 824 htable_t *ht; 825 826 if (IN_HYPERVISOR_VA(va)) 827 continue; 828 829 /* can/must skip if a page mapping already exists */ 830 if (rp->hkr_level <= mmu.max_page_level && 831 (ht = htable_getpage(kas.a_hat, va, NULL)) != 832 NULL) { 833 htable_release(ht); 834 continue; 835 } 836 837 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 838 NULL); 839 } 840 } 841 842 /* 843 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 844 * page holding the top level pagetable. We use the remainder for 845 * the "per CPU" page tables for VLP processes. 846 * Map the top level kernel pagetable into the kernel to make 847 * it easy to use bcopy access these tables. 848 */ 849 if (mmu.pae_hat) { 850 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 851 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 852 kas.a_hat->hat_htable->ht_pfn, 853 #if !defined(__xpv) 854 PROT_WRITE | 855 #endif 856 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 857 HAT_LOAD | HAT_LOAD_NOCONSIST); 858 } 859 hat_vlp_setup(CPU); 860 861 /* 862 * Create kmap (cached mappings of kernel PTEs) 863 * for 32 bit we map from segmap_start .. ekernelheap 864 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 865 */ 866 #if defined(__i386) 867 size = (uintptr_t)ekernelheap - segmap_start; 868 #elif defined(__amd64) 869 size = segmapsize; 870 #endif 871 hat_kmap_init((uintptr_t)segmap_start, size); 872 } 873 874 /* 875 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 876 * are 32 bit, so for safety we must use cas64() to install these. 877 */ 878 #ifdef __i386 879 static void 880 reload_pae32(hat_t *hat, cpu_t *cpu) 881 { 882 x86pte_t *src; 883 x86pte_t *dest; 884 x86pte_t pte; 885 int i; 886 887 /* 888 * Load the 4 entries of the level 2 page table into this 889 * cpu's range of the vlp_page and point cr3 at them. 890 */ 891 ASSERT(mmu.pae_hat); 892 src = hat->hat_vlp_ptes; 893 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 894 for (i = 0; i < VLP_NUM_PTES; ++i) { 895 for (;;) { 896 pte = dest[i]; 897 if (pte == src[i]) 898 break; 899 if (cas64(dest + i, pte, src[i]) != src[i]) 900 break; 901 } 902 } 903 } 904 #endif 905 906 /* 907 * Switch to a new active hat, maintaining bit masks to track active CPUs. 908 * 909 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 910 * remains a 32-bit value. 911 */ 912 void 913 hat_switch(hat_t *hat) 914 { 915 uint64_t newcr3; 916 cpu_t *cpu = CPU; 917 hat_t *old = cpu->cpu_current_hat; 918 919 /* 920 * set up this information first, so we don't miss any cross calls 921 */ 922 if (old != NULL) { 923 if (old == hat) 924 return; 925 if (old != kas.a_hat) 926 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 927 } 928 929 /* 930 * Add this CPU to the active set for this HAT. 931 */ 932 if (hat != kas.a_hat) { 933 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 934 } 935 cpu->cpu_current_hat = hat; 936 937 /* 938 * now go ahead and load cr3 939 */ 940 if (hat->hat_flags & HAT_VLP) { 941 #if defined(__amd64) 942 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 943 944 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 945 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 946 #elif defined(__i386) 947 reload_pae32(hat, cpu); 948 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 949 (cpu->cpu_id + 1) * VLP_SIZE; 950 #endif 951 } else { 952 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 953 } 954 #ifdef __xpv 955 { 956 struct mmuext_op t[2]; 957 uint_t retcnt; 958 uint_t opcnt = 1; 959 960 t[0].cmd = MMUEXT_NEW_BASEPTR; 961 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 962 #if defined(__amd64) 963 /* 964 * There's an interesting problem here, as to what to 965 * actually specify when switching to the kernel hat. 966 * For now we'll reuse the kernel hat again. 967 */ 968 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 969 if (hat == kas.a_hat) 970 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 971 else 972 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 973 ++opcnt; 974 #endif /* __amd64 */ 975 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 976 panic("HYPERVISOR_mmu_update() failed"); 977 ASSERT(retcnt == opcnt); 978 979 } 980 #else 981 setcr3(newcr3); 982 #endif 983 ASSERT(cpu == CPU); 984 } 985 986 /* 987 * Utility to return a valid x86pte_t from protections, pfn, and level number 988 */ 989 static x86pte_t 990 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 991 { 992 x86pte_t pte; 993 uint_t cache_attr = attr & HAT_ORDER_MASK; 994 995 pte = MAKEPTE(pfn, level); 996 997 if (attr & PROT_WRITE) 998 PTE_SET(pte, PT_WRITABLE); 999 1000 if (attr & PROT_USER) 1001 PTE_SET(pte, PT_USER); 1002 1003 if (!(attr & PROT_EXEC)) 1004 PTE_SET(pte, mmu.pt_nx); 1005 1006 /* 1007 * Set the software bits used track ref/mod sync's and hments. 1008 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1009 */ 1010 if (flags & HAT_LOAD_NOCONSIST) 1011 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1012 else if (attr & HAT_NOSYNC) 1013 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1014 1015 /* 1016 * Set the caching attributes in the PTE. The combination 1017 * of attributes are poorly defined, so we pay attention 1018 * to them in the given order. 1019 * 1020 * The test for HAT_STRICTORDER is different because it's defined 1021 * as "0" - which was a stupid thing to do, but is too late to change! 1022 */ 1023 if (cache_attr == HAT_STRICTORDER) { 1024 PTE_SET(pte, PT_NOCACHE); 1025 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1026 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1027 /* nothing to set */; 1028 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1029 PTE_SET(pte, PT_NOCACHE); 1030 if (x86_feature & X86_PAT) 1031 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1032 else 1033 PTE_SET(pte, PT_WRITETHRU); 1034 } else { 1035 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1036 } 1037 1038 return (pte); 1039 } 1040 1041 /* 1042 * Duplicate address translations of the parent to the child. 1043 * This function really isn't used anymore. 1044 */ 1045 /*ARGSUSED*/ 1046 int 1047 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1048 { 1049 ASSERT((uintptr_t)addr < kernelbase); 1050 ASSERT(new != kas.a_hat); 1051 ASSERT(old != kas.a_hat); 1052 return (0); 1053 } 1054 1055 /* 1056 * Allocate any hat resources required for a process being swapped in. 1057 */ 1058 /*ARGSUSED*/ 1059 void 1060 hat_swapin(hat_t *hat) 1061 { 1062 /* do nothing - we let everything fault back in */ 1063 } 1064 1065 /* 1066 * Unload all translations associated with an address space of a process 1067 * that is being swapped out. 1068 */ 1069 void 1070 hat_swapout(hat_t *hat) 1071 { 1072 uintptr_t vaddr = (uintptr_t)0; 1073 uintptr_t eaddr = _userlimit; 1074 htable_t *ht = NULL; 1075 level_t l; 1076 1077 XPV_DISALLOW_MIGRATE(); 1078 /* 1079 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1080 * seg_spt and shared pagetables can't be swapped out. 1081 * Take a look at segspt_shmswapout() - it's a big no-op. 1082 * 1083 * Instead we'll walk through all the address space and unload 1084 * any mappings which we are sure are not shared, not locked. 1085 */ 1086 ASSERT(IS_PAGEALIGNED(vaddr)); 1087 ASSERT(IS_PAGEALIGNED(eaddr)); 1088 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1089 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1090 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1091 1092 while (vaddr < eaddr) { 1093 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1094 if (ht == NULL) 1095 break; 1096 1097 ASSERT(!IN_VA_HOLE(vaddr)); 1098 1099 /* 1100 * If the page table is shared skip its entire range. 1101 * This code knows that only level 0 page tables are shared 1102 */ 1103 l = ht->ht_level; 1104 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1105 ASSERT(l == 0); 1106 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1107 htable_release(ht); 1108 ht = NULL; 1109 continue; 1110 } 1111 1112 /* 1113 * If the page table has no locked entries, unload this one. 1114 */ 1115 if (ht->ht_lock_cnt == 0) 1116 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1117 HAT_UNLOAD_UNMAP); 1118 1119 /* 1120 * If we have a level 0 page table with locked entries, 1121 * skip the entire page table, otherwise skip just one entry. 1122 */ 1123 if (ht->ht_lock_cnt > 0 && l == 0) 1124 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1125 else 1126 vaddr += LEVEL_SIZE(l); 1127 } 1128 if (ht) 1129 htable_release(ht); 1130 1131 /* 1132 * We're in swapout because the system is low on memory, so 1133 * go back and flush all the htables off the cached list. 1134 */ 1135 htable_purge_hat(hat); 1136 XPV_ALLOW_MIGRATE(); 1137 } 1138 1139 /* 1140 * returns number of bytes that have valid mappings in hat. 1141 */ 1142 size_t 1143 hat_get_mapped_size(hat_t *hat) 1144 { 1145 size_t total = 0; 1146 int l; 1147 1148 for (l = 0; l <= mmu.max_page_level; l++) 1149 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1150 total += hat->hat_ism_pgcnt; 1151 1152 return (total); 1153 } 1154 1155 /* 1156 * enable/disable collection of stats for hat. 1157 */ 1158 int 1159 hat_stats_enable(hat_t *hat) 1160 { 1161 atomic_add_32(&hat->hat_stats, 1); 1162 return (1); 1163 } 1164 1165 void 1166 hat_stats_disable(hat_t *hat) 1167 { 1168 atomic_add_32(&hat->hat_stats, -1); 1169 } 1170 1171 /* 1172 * Utility to sync the ref/mod bits from a page table entry to the page_t 1173 * We must be holding the mapping list lock when this is called. 1174 */ 1175 static void 1176 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1177 { 1178 uint_t rm = 0; 1179 pgcnt_t pgcnt; 1180 1181 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1182 return; 1183 1184 if (PTE_GET(pte, PT_REF)) 1185 rm |= P_REF; 1186 1187 if (PTE_GET(pte, PT_MOD)) 1188 rm |= P_MOD; 1189 1190 if (rm == 0) 1191 return; 1192 1193 /* 1194 * sync to all constituent pages of a large page 1195 */ 1196 ASSERT(x86_hm_held(pp)); 1197 pgcnt = page_get_pagecnt(level); 1198 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1199 for (; pgcnt > 0; --pgcnt) { 1200 /* 1201 * hat_page_demote() can't decrease 1202 * pszc below this mapping size 1203 * since this large mapping existed after we 1204 * took mlist lock. 1205 */ 1206 ASSERT(pp->p_szc >= level); 1207 hat_page_setattr(pp, rm); 1208 ++pp; 1209 } 1210 } 1211 1212 /* 1213 * This the set of PTE bits for PFN, permissions and caching 1214 * that are allowed to change on a HAT_LOAD_REMAP 1215 */ 1216 #define PT_REMAP_BITS \ 1217 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1218 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1219 1220 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1221 /* 1222 * Do the low-level work to get a mapping entered into a HAT's pagetables 1223 * and in the mapping list of the associated page_t. 1224 */ 1225 static int 1226 hati_pte_map( 1227 htable_t *ht, 1228 uint_t entry, 1229 page_t *pp, 1230 x86pte_t pte, 1231 int flags, 1232 void *pte_ptr) 1233 { 1234 hat_t *hat = ht->ht_hat; 1235 x86pte_t old_pte; 1236 level_t l = ht->ht_level; 1237 hment_t *hm; 1238 uint_t is_consist; 1239 int rv = 0; 1240 1241 /* 1242 * Is this a consistant (ie. need mapping list lock) mapping? 1243 */ 1244 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1245 1246 /* 1247 * Track locked mapping count in the htable. Do this first, 1248 * as we track locking even if there already is a mapping present. 1249 */ 1250 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1251 HTABLE_LOCK_INC(ht); 1252 1253 /* 1254 * Acquire the page's mapping list lock and get an hment to use. 1255 * Note that hment_prepare() might return NULL. 1256 */ 1257 if (is_consist) { 1258 x86_hm_enter(pp); 1259 hm = hment_prepare(ht, entry, pp); 1260 } 1261 1262 /* 1263 * Set the new pte, retrieving the old one at the same time. 1264 */ 1265 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1266 1267 /* 1268 * did we get a large page / page table collision? 1269 */ 1270 if (old_pte == LPAGE_ERROR) { 1271 rv = -1; 1272 goto done; 1273 } 1274 1275 /* 1276 * If the mapping didn't change there is nothing more to do. 1277 */ 1278 if (PTE_EQUIV(pte, old_pte)) 1279 goto done; 1280 1281 /* 1282 * Install a new mapping in the page's mapping list 1283 */ 1284 if (!PTE_ISVALID(old_pte)) { 1285 if (is_consist) { 1286 hment_assign(ht, entry, pp, hm); 1287 x86_hm_exit(pp); 1288 } else { 1289 ASSERT(flags & HAT_LOAD_NOCONSIST); 1290 } 1291 HTABLE_INC(ht->ht_valid_cnt); 1292 PGCNT_INC(hat, l); 1293 return (rv); 1294 } 1295 1296 /* 1297 * Remap's are more complicated: 1298 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1299 * We also require that NOCONSIST be specified. 1300 * - Otherwise only permission or caching bits may change. 1301 */ 1302 if (!PTE_ISPAGE(old_pte, l)) 1303 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1304 1305 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1306 REMAPASSERT(flags & HAT_LOAD_REMAP); 1307 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1308 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1309 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1310 pf_is_memory(PTE2PFN(pte, l))); 1311 REMAPASSERT(!is_consist); 1312 } 1313 1314 /* 1315 * We only let remaps change the certain bits in the PTE. 1316 */ 1317 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1318 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1319 old_pte, pte); 1320 1321 /* 1322 * We don't create any mapping list entries on a remap, so release 1323 * any allocated hment after we drop the mapping list lock. 1324 */ 1325 done: 1326 if (is_consist) { 1327 x86_hm_exit(pp); 1328 if (hm != NULL) 1329 hment_free(hm); 1330 } 1331 return (rv); 1332 } 1333 1334 /* 1335 * Internal routine to load a single page table entry. This only fails if 1336 * we attempt to overwrite a page table link with a large page. 1337 */ 1338 static int 1339 hati_load_common( 1340 hat_t *hat, 1341 uintptr_t va, 1342 page_t *pp, 1343 uint_t attr, 1344 uint_t flags, 1345 level_t level, 1346 pfn_t pfn) 1347 { 1348 htable_t *ht; 1349 uint_t entry; 1350 x86pte_t pte; 1351 int rv = 0; 1352 1353 /* 1354 * The number 16 is arbitrary and here to catch a recursion problem 1355 * early before we blow out the kernel stack. 1356 */ 1357 ++curthread->t_hatdepth; 1358 ASSERT(curthread->t_hatdepth < 16); 1359 1360 ASSERT(hat == kas.a_hat || 1361 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1362 1363 if (flags & HAT_LOAD_SHARE) 1364 hat->hat_flags |= HAT_SHARED; 1365 1366 /* 1367 * Find the page table that maps this page if it already exists. 1368 */ 1369 ht = htable_lookup(hat, va, level); 1370 1371 /* 1372 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1373 */ 1374 if (pp == NULL) 1375 flags |= HAT_LOAD_NOCONSIST; 1376 1377 if (ht == NULL) { 1378 ht = htable_create(hat, va, level, NULL); 1379 ASSERT(ht != NULL); 1380 } 1381 entry = htable_va2entry(va, ht); 1382 1383 /* 1384 * a bunch of paranoid error checking 1385 */ 1386 ASSERT(ht->ht_busy > 0); 1387 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1388 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1389 ASSERT(ht->ht_level == level); 1390 1391 /* 1392 * construct the new PTE 1393 */ 1394 if (hat == kas.a_hat) 1395 attr &= ~PROT_USER; 1396 pte = hati_mkpte(pfn, attr, level, flags); 1397 if (hat == kas.a_hat && va >= kernelbase) 1398 PTE_SET(pte, mmu.pt_global); 1399 1400 /* 1401 * establish the mapping 1402 */ 1403 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1404 1405 /* 1406 * release the htable and any reserves 1407 */ 1408 htable_release(ht); 1409 --curthread->t_hatdepth; 1410 return (rv); 1411 } 1412 1413 /* 1414 * special case of hat_memload to deal with some kernel addrs for performance 1415 */ 1416 static void 1417 hat_kmap_load( 1418 caddr_t addr, 1419 page_t *pp, 1420 uint_t attr, 1421 uint_t flags) 1422 { 1423 uintptr_t va = (uintptr_t)addr; 1424 x86pte_t pte; 1425 pfn_t pfn = page_pptonum(pp); 1426 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1427 htable_t *ht; 1428 uint_t entry; 1429 void *pte_ptr; 1430 1431 /* 1432 * construct the requested PTE 1433 */ 1434 attr &= ~PROT_USER; 1435 attr |= HAT_STORECACHING_OK; 1436 pte = hati_mkpte(pfn, attr, 0, flags); 1437 PTE_SET(pte, mmu.pt_global); 1438 1439 /* 1440 * Figure out the pte_ptr and htable and use common code to finish up 1441 */ 1442 if (mmu.pae_hat) 1443 pte_ptr = mmu.kmap_ptes + pg_off; 1444 else 1445 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1446 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1447 LEVEL_SHIFT(1)]; 1448 entry = htable_va2entry(va, ht); 1449 ++curthread->t_hatdepth; 1450 ASSERT(curthread->t_hatdepth < 16); 1451 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1452 --curthread->t_hatdepth; 1453 } 1454 1455 /* 1456 * hat_memload() - load a translation to the given page struct 1457 * 1458 * Flags for hat_memload/hat_devload/hat_*attr. 1459 * 1460 * HAT_LOAD Default flags to load a translation to the page. 1461 * 1462 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1463 * and hat_devload(). 1464 * 1465 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1466 * sets PT_NOCONSIST 1467 * 1468 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1469 * that map some user pages (not kas) is shared by more 1470 * than one process (eg. ISM). 1471 * 1472 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1473 * 1474 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1475 * point, it's setting up mapping to allocate internal 1476 * hat layer data structures. This flag forces hat layer 1477 * to tap its reserves in order to prevent infinite 1478 * recursion. 1479 * 1480 * The following is a protection attribute (like PROT_READ, etc.) 1481 * 1482 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1483 * are never cleared. 1484 * 1485 * Installing new valid PTE's and creation of the mapping list 1486 * entry are controlled under the same lock. It's derived from the 1487 * page_t being mapped. 1488 */ 1489 static uint_t supported_memload_flags = 1490 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1491 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1492 1493 void 1494 hat_memload( 1495 hat_t *hat, 1496 caddr_t addr, 1497 page_t *pp, 1498 uint_t attr, 1499 uint_t flags) 1500 { 1501 uintptr_t va = (uintptr_t)addr; 1502 level_t level = 0; 1503 pfn_t pfn = page_pptonum(pp); 1504 1505 XPV_DISALLOW_MIGRATE(); 1506 ASSERT(IS_PAGEALIGNED(va)); 1507 ASSERT(hat == kas.a_hat || va < _userlimit); 1508 ASSERT(hat == kas.a_hat || 1509 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1510 ASSERT((flags & supported_memload_flags) == flags); 1511 1512 ASSERT(!IN_VA_HOLE(va)); 1513 ASSERT(!PP_ISFREE(pp)); 1514 1515 /* 1516 * kernel address special case for performance. 1517 */ 1518 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1519 ASSERT(hat == kas.a_hat); 1520 hat_kmap_load(addr, pp, attr, flags); 1521 XPV_ALLOW_MIGRATE(); 1522 return; 1523 } 1524 1525 /* 1526 * This is used for memory with normal caching enabled, so 1527 * always set HAT_STORECACHING_OK. 1528 */ 1529 attr |= HAT_STORECACHING_OK; 1530 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1531 panic("unexpected hati_load_common() failure"); 1532 XPV_ALLOW_MIGRATE(); 1533 } 1534 1535 /* ARGSUSED */ 1536 void 1537 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1538 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1539 { 1540 hat_memload(hat, addr, pp, attr, flags); 1541 } 1542 1543 /* 1544 * Load the given array of page structs using large pages when possible 1545 */ 1546 void 1547 hat_memload_array( 1548 hat_t *hat, 1549 caddr_t addr, 1550 size_t len, 1551 page_t **pages, 1552 uint_t attr, 1553 uint_t flags) 1554 { 1555 uintptr_t va = (uintptr_t)addr; 1556 uintptr_t eaddr = va + len; 1557 level_t level; 1558 size_t pgsize; 1559 pgcnt_t pgindx = 0; 1560 pfn_t pfn; 1561 pgcnt_t i; 1562 1563 XPV_DISALLOW_MIGRATE(); 1564 ASSERT(IS_PAGEALIGNED(va)); 1565 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1566 ASSERT(hat == kas.a_hat || 1567 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1568 ASSERT((flags & supported_memload_flags) == flags); 1569 1570 /* 1571 * memload is used for memory with full caching enabled, so 1572 * set HAT_STORECACHING_OK. 1573 */ 1574 attr |= HAT_STORECACHING_OK; 1575 1576 /* 1577 * handle all pages using largest possible pagesize 1578 */ 1579 while (va < eaddr) { 1580 /* 1581 * decide what level mapping to use (ie. pagesize) 1582 */ 1583 pfn = page_pptonum(pages[pgindx]); 1584 for (level = mmu.max_page_level; ; --level) { 1585 pgsize = LEVEL_SIZE(level); 1586 if (level == 0) 1587 break; 1588 1589 if (!IS_P2ALIGNED(va, pgsize) || 1590 (eaddr - va) < pgsize || 1591 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1592 continue; 1593 1594 /* 1595 * To use a large mapping of this size, all the 1596 * pages we are passed must be sequential subpages 1597 * of the large page. 1598 * hat_page_demote() can't change p_szc because 1599 * all pages are locked. 1600 */ 1601 if (pages[pgindx]->p_szc >= level) { 1602 for (i = 0; i < mmu_btop(pgsize); ++i) { 1603 if (pfn + i != 1604 page_pptonum(pages[pgindx + i])) 1605 break; 1606 ASSERT(pages[pgindx + i]->p_szc >= 1607 level); 1608 ASSERT(pages[pgindx] + i == 1609 pages[pgindx + i]); 1610 } 1611 if (i == mmu_btop(pgsize)) 1612 break; 1613 } 1614 } 1615 1616 /* 1617 * Load this page mapping. If the load fails, try a smaller 1618 * pagesize. 1619 */ 1620 ASSERT(!IN_VA_HOLE(va)); 1621 while (hati_load_common(hat, va, pages[pgindx], attr, 1622 flags, level, pfn) != 0) { 1623 if (level == 0) 1624 panic("unexpected hati_load_common() failure"); 1625 --level; 1626 pgsize = LEVEL_SIZE(level); 1627 } 1628 1629 /* 1630 * move to next page 1631 */ 1632 va += pgsize; 1633 pgindx += mmu_btop(pgsize); 1634 } 1635 XPV_ALLOW_MIGRATE(); 1636 } 1637 1638 /* ARGSUSED */ 1639 void 1640 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1641 struct page **pps, uint_t attr, uint_t flags, 1642 hat_region_cookie_t rcookie) 1643 { 1644 hat_memload_array(hat, addr, len, pps, attr, flags); 1645 } 1646 1647 /* 1648 * void hat_devload(hat, addr, len, pf, attr, flags) 1649 * load/lock the given page frame number 1650 * 1651 * Advisory ordering attributes. Apply only to device mappings. 1652 * 1653 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1654 * programmer specified. This is the default. 1655 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1656 * of reordering; store or load with store or load). 1657 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1658 * to consecutive locations (for example, turn two consecutive byte 1659 * stores into one halfword store), and it may batch individual loads 1660 * (for example, turn two consecutive byte loads into one halfword load). 1661 * This also implies re-ordering. 1662 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1663 * until another store occurs. The default is to fetch new data 1664 * on every load. This also implies merging. 1665 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1666 * the device (perhaps with other data) at a later time. The default is 1667 * to push the data right away. This also implies load caching. 1668 * 1669 * Equivalent of hat_memload(), but can be used for device memory where 1670 * there are no page_t's and we support additional flags (write merging, etc). 1671 * Note that we can have large page mappings with this interface. 1672 */ 1673 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1674 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1675 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1676 1677 void 1678 hat_devload( 1679 hat_t *hat, 1680 caddr_t addr, 1681 size_t len, 1682 pfn_t pfn, 1683 uint_t attr, 1684 int flags) 1685 { 1686 uintptr_t va = ALIGN2PAGE(addr); 1687 uintptr_t eva = va + len; 1688 level_t level; 1689 size_t pgsize; 1690 page_t *pp; 1691 int f; /* per PTE copy of flags - maybe modified */ 1692 uint_t a; /* per PTE copy of attr */ 1693 1694 XPV_DISALLOW_MIGRATE(); 1695 ASSERT(IS_PAGEALIGNED(va)); 1696 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1697 ASSERT(hat == kas.a_hat || 1698 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1699 ASSERT((flags & supported_devload_flags) == flags); 1700 1701 /* 1702 * handle all pages 1703 */ 1704 while (va < eva) { 1705 1706 /* 1707 * decide what level mapping to use (ie. pagesize) 1708 */ 1709 for (level = mmu.max_page_level; ; --level) { 1710 pgsize = LEVEL_SIZE(level); 1711 if (level == 0) 1712 break; 1713 if (IS_P2ALIGNED(va, pgsize) && 1714 (eva - va) >= pgsize && 1715 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1716 break; 1717 } 1718 1719 /* 1720 * If this is just memory then allow caching (this happens 1721 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1722 * to override that. If we don't have a page_t then make sure 1723 * NOCONSIST is set. 1724 */ 1725 a = attr; 1726 f = flags; 1727 if (!pf_is_memory(pfn)) 1728 f |= HAT_LOAD_NOCONSIST; 1729 else if (!(a & HAT_PLAT_NOCACHE)) 1730 a |= HAT_STORECACHING_OK; 1731 1732 if (f & HAT_LOAD_NOCONSIST) 1733 pp = NULL; 1734 else 1735 pp = page_numtopp_nolock(pfn); 1736 1737 /* 1738 * load this page mapping 1739 */ 1740 ASSERT(!IN_VA_HOLE(va)); 1741 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1742 if (level == 0) 1743 panic("unexpected hati_load_common() failure"); 1744 --level; 1745 pgsize = LEVEL_SIZE(level); 1746 } 1747 1748 /* 1749 * move to next page 1750 */ 1751 va += pgsize; 1752 pfn += mmu_btop(pgsize); 1753 } 1754 XPV_ALLOW_MIGRATE(); 1755 } 1756 1757 /* 1758 * void hat_unlock(hat, addr, len) 1759 * unlock the mappings to a given range of addresses 1760 * 1761 * Locks are tracked by ht_lock_cnt in the htable. 1762 */ 1763 void 1764 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1765 { 1766 uintptr_t vaddr = (uintptr_t)addr; 1767 uintptr_t eaddr = vaddr + len; 1768 htable_t *ht = NULL; 1769 1770 /* 1771 * kernel entries are always locked, we don't track lock counts 1772 */ 1773 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1774 ASSERT(IS_PAGEALIGNED(vaddr)); 1775 ASSERT(IS_PAGEALIGNED(eaddr)); 1776 if (hat == kas.a_hat) 1777 return; 1778 if (eaddr > _userlimit) 1779 panic("hat_unlock() address out of range - above _userlimit"); 1780 1781 XPV_DISALLOW_MIGRATE(); 1782 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1783 while (vaddr < eaddr) { 1784 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1785 if (ht == NULL) 1786 break; 1787 1788 ASSERT(!IN_VA_HOLE(vaddr)); 1789 1790 if (ht->ht_lock_cnt < 1) 1791 panic("hat_unlock(): lock_cnt < 1, " 1792 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1793 HTABLE_LOCK_DEC(ht); 1794 1795 vaddr += LEVEL_SIZE(ht->ht_level); 1796 } 1797 if (ht) 1798 htable_release(ht); 1799 XPV_ALLOW_MIGRATE(); 1800 } 1801 1802 /* ARGSUSED */ 1803 void 1804 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1805 hat_region_cookie_t rcookie) 1806 { 1807 panic("No shared region support on x86"); 1808 } 1809 1810 #if !defined(__xpv) 1811 /* 1812 * Cross call service routine to demap a virtual page on 1813 * the current CPU or flush all mappings in TLB. 1814 */ 1815 /*ARGSUSED*/ 1816 static int 1817 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1818 { 1819 hat_t *hat = (hat_t *)a1; 1820 caddr_t addr = (caddr_t)a2; 1821 1822 /* 1823 * If the target hat isn't the kernel and this CPU isn't operating 1824 * in the target hat, we can ignore the cross call. 1825 */ 1826 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1827 return (0); 1828 1829 /* 1830 * For a normal address, we just flush one page mapping 1831 */ 1832 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1833 mmu_tlbflush_entry(addr); 1834 return (0); 1835 } 1836 1837 /* 1838 * Otherwise we reload cr3 to effect a complete TLB flush. 1839 * 1840 * A reload of cr3 on a VLP process also means we must also recopy in 1841 * the pte values from the struct hat 1842 */ 1843 if (hat->hat_flags & HAT_VLP) { 1844 #if defined(__amd64) 1845 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1846 1847 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1848 #elif defined(__i386) 1849 reload_pae32(hat, CPU); 1850 #endif 1851 } 1852 reload_cr3(); 1853 return (0); 1854 } 1855 1856 /* 1857 * Flush all TLB entries, including global (ie. kernel) ones. 1858 */ 1859 static void 1860 flush_all_tlb_entries(void) 1861 { 1862 ulong_t cr4 = getcr4(); 1863 1864 if (cr4 & CR4_PGE) { 1865 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1866 setcr4(cr4); 1867 1868 /* 1869 * 32 bit PAE also needs to always reload_cr3() 1870 */ 1871 if (mmu.max_level == 2) 1872 reload_cr3(); 1873 } else { 1874 reload_cr3(); 1875 } 1876 } 1877 1878 #define TLB_CPU_HALTED (01ul) 1879 #define TLB_INVAL_ALL (02ul) 1880 #define CAS_TLB_INFO(cpu, old, new) \ 1881 caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1882 1883 /* 1884 * Record that a CPU is going idle 1885 */ 1886 void 1887 tlb_going_idle(void) 1888 { 1889 atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1890 } 1891 1892 /* 1893 * Service a delayed TLB flush if coming out of being idle. 1894 */ 1895 void 1896 tlb_service(void) 1897 { 1898 ulong_t flags = getflags(); 1899 ulong_t tlb_info; 1900 ulong_t found; 1901 1902 /* 1903 * Be sure interrupts are off while doing this so that 1904 * higher level interrupts correctly wait for flushes to finish. 1905 */ 1906 if (flags & PS_IE) 1907 flags = intr_clear(); 1908 1909 /* 1910 * We only have to do something if coming out of being idle. 1911 */ 1912 tlb_info = CPU->cpu_m.mcpu_tlb_info; 1913 if (tlb_info & TLB_CPU_HALTED) { 1914 ASSERT(CPU->cpu_current_hat == kas.a_hat); 1915 1916 /* 1917 * Atomic clear and fetch of old state. 1918 */ 1919 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 1920 ASSERT(found & TLB_CPU_HALTED); 1921 tlb_info = found; 1922 SMT_PAUSE(); 1923 } 1924 if (tlb_info & TLB_INVAL_ALL) 1925 flush_all_tlb_entries(); 1926 } 1927 1928 /* 1929 * Restore interrupt enable control bit. 1930 */ 1931 if (flags & PS_IE) 1932 sti(); 1933 } 1934 #endif /* !__xpv */ 1935 1936 /* 1937 * Internal routine to do cross calls to invalidate a range of pages on 1938 * all CPUs using a given hat. 1939 */ 1940 void 1941 hat_tlb_inval(hat_t *hat, uintptr_t va) 1942 { 1943 extern int flushes_require_xcalls; /* from mp_startup.c */ 1944 cpuset_t justme; 1945 cpuset_t cpus_to_shootdown; 1946 #ifndef __xpv 1947 cpuset_t check_cpus; 1948 cpu_t *cpup; 1949 int c; 1950 #endif 1951 1952 /* 1953 * If the hat is being destroyed, there are no more users, so 1954 * demap need not do anything. 1955 */ 1956 if (hat->hat_flags & HAT_FREEING) 1957 return; 1958 1959 /* 1960 * If demapping from a shared pagetable, we best demap the 1961 * entire set of user TLBs, since we don't know what addresses 1962 * these were shared at. 1963 */ 1964 if (hat->hat_flags & HAT_SHARED) { 1965 hat = kas.a_hat; 1966 va = DEMAP_ALL_ADDR; 1967 } 1968 1969 /* 1970 * if not running with multiple CPUs, don't use cross calls 1971 */ 1972 if (panicstr || !flushes_require_xcalls) { 1973 #ifdef __xpv 1974 if (va == DEMAP_ALL_ADDR) 1975 xen_flush_tlb(); 1976 else 1977 xen_flush_va((caddr_t)va); 1978 #else 1979 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1980 #endif 1981 return; 1982 } 1983 1984 1985 /* 1986 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 1987 * Otherwise it's just CPUs currently executing in this hat. 1988 */ 1989 kpreempt_disable(); 1990 CPUSET_ONLY(justme, CPU->cpu_id); 1991 if (hat == kas.a_hat) 1992 cpus_to_shootdown = khat_cpuset; 1993 else 1994 cpus_to_shootdown = hat->hat_cpus; 1995 1996 #ifndef __xpv 1997 /* 1998 * If any CPUs in the set are idle, just request a delayed flush 1999 * and avoid waking them up. 2000 */ 2001 check_cpus = cpus_to_shootdown; 2002 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2003 ulong_t tlb_info; 2004 2005 if (!CPU_IN_SET(check_cpus, c)) 2006 continue; 2007 CPUSET_DEL(check_cpus, c); 2008 cpup = cpu[c]; 2009 if (cpup == NULL) 2010 continue; 2011 2012 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2013 while (tlb_info == TLB_CPU_HALTED) { 2014 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2015 TLB_CPU_HALTED | TLB_INVAL_ALL); 2016 SMT_PAUSE(); 2017 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2018 } 2019 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2020 HATSTAT_INC(hs_tlb_inval_delayed); 2021 CPUSET_DEL(cpus_to_shootdown, c); 2022 } 2023 } 2024 #endif 2025 2026 if (CPUSET_ISNULL(cpus_to_shootdown) || 2027 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2028 2029 #ifdef __xpv 2030 if (va == DEMAP_ALL_ADDR) 2031 xen_flush_tlb(); 2032 else 2033 xen_flush_va((caddr_t)va); 2034 #else 2035 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2036 #endif 2037 2038 } else { 2039 2040 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2041 #ifdef __xpv 2042 if (va == DEMAP_ALL_ADDR) 2043 xen_gflush_tlb(cpus_to_shootdown); 2044 else 2045 xen_gflush_va((caddr_t)va, cpus_to_shootdown); 2046 #else 2047 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, 2048 cpus_to_shootdown, hati_demap_func); 2049 #endif 2050 2051 } 2052 kpreempt_enable(); 2053 } 2054 2055 /* 2056 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2057 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2058 * handle releasing of the htables. 2059 */ 2060 void 2061 hat_pte_unmap( 2062 htable_t *ht, 2063 uint_t entry, 2064 uint_t flags, 2065 x86pte_t old_pte, 2066 void *pte_ptr) 2067 { 2068 hat_t *hat = ht->ht_hat; 2069 hment_t *hm = NULL; 2070 page_t *pp = NULL; 2071 level_t l = ht->ht_level; 2072 pfn_t pfn; 2073 2074 /* 2075 * We always track the locking counts, even if nothing is unmapped 2076 */ 2077 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2078 ASSERT(ht->ht_lock_cnt > 0); 2079 HTABLE_LOCK_DEC(ht); 2080 } 2081 2082 /* 2083 * Figure out which page's mapping list lock to acquire using the PFN 2084 * passed in "old" PTE. We then attempt to invalidate the PTE. 2085 * If another thread, probably a hat_pageunload, has asynchronously 2086 * unmapped/remapped this address we'll loop here. 2087 */ 2088 ASSERT(ht->ht_busy > 0); 2089 while (PTE_ISVALID(old_pte)) { 2090 pfn = PTE2PFN(old_pte, l); 2091 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2092 pp = NULL; 2093 } else { 2094 #ifdef __xpv 2095 if (pfn == PFN_INVALID) 2096 panic("Invalid PFN, but not PT_NOCONSIST"); 2097 #endif 2098 pp = page_numtopp_nolock(pfn); 2099 if (pp == NULL) { 2100 panic("no page_t, not NOCONSIST: old_pte=" 2101 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2102 old_pte, (uintptr_t)ht, entry, 2103 (uintptr_t)pte_ptr); 2104 } 2105 x86_hm_enter(pp); 2106 } 2107 2108 /* 2109 * If freeing the address space, check that the PTE 2110 * hasn't changed, as the mappings are no longer in use by 2111 * any thread, invalidation is unnecessary. 2112 * If not freeing, do a full invalidate. 2113 * 2114 * On the hypervisor we must always remove mappings, as a 2115 * writable mapping left behind could cause a page table 2116 * allocation to fail. 2117 */ 2118 #if !defined(__xpv) 2119 if (hat->hat_flags & HAT_FREEING) 2120 old_pte = x86pte_get(ht, entry); 2121 else 2122 #endif 2123 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2124 2125 /* 2126 * If the page hadn't changed we've unmapped it and can proceed 2127 */ 2128 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2129 break; 2130 2131 /* 2132 * Otherwise, we'll have to retry with the current old_pte. 2133 * Drop the hment lock, since the pfn may have changed. 2134 */ 2135 if (pp != NULL) { 2136 x86_hm_exit(pp); 2137 pp = NULL; 2138 } else { 2139 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2140 } 2141 } 2142 2143 /* 2144 * If the old mapping wasn't valid, there's nothing more to do 2145 */ 2146 if (!PTE_ISVALID(old_pte)) { 2147 if (pp != NULL) 2148 x86_hm_exit(pp); 2149 return; 2150 } 2151 2152 /* 2153 * Take care of syncing any MOD/REF bits and removing the hment. 2154 */ 2155 if (pp != NULL) { 2156 if (!(flags & HAT_UNLOAD_NOSYNC)) 2157 hati_sync_pte_to_page(pp, old_pte, l); 2158 hm = hment_remove(pp, ht, entry); 2159 x86_hm_exit(pp); 2160 if (hm != NULL) 2161 hment_free(hm); 2162 } 2163 2164 /* 2165 * Handle book keeping in the htable and hat 2166 */ 2167 ASSERT(ht->ht_valid_cnt > 0); 2168 HTABLE_DEC(ht->ht_valid_cnt); 2169 PGCNT_DEC(hat, l); 2170 } 2171 2172 /* 2173 * very cheap unload implementation to special case some kernel addresses 2174 */ 2175 static void 2176 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2177 { 2178 uintptr_t va = (uintptr_t)addr; 2179 uintptr_t eva = va + len; 2180 pgcnt_t pg_index; 2181 htable_t *ht; 2182 uint_t entry; 2183 x86pte_t *pte_ptr; 2184 x86pte_t old_pte; 2185 2186 for (; va < eva; va += MMU_PAGESIZE) { 2187 /* 2188 * Get the PTE 2189 */ 2190 pg_index = mmu_btop(va - mmu.kmap_addr); 2191 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2192 old_pte = GET_PTE(pte_ptr); 2193 2194 /* 2195 * get the htable / entry 2196 */ 2197 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2198 >> LEVEL_SHIFT(1)]; 2199 entry = htable_va2entry(va, ht); 2200 2201 /* 2202 * use mostly common code to unmap it. 2203 */ 2204 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2205 } 2206 } 2207 2208 2209 /* 2210 * unload a range of virtual address space (no callback) 2211 */ 2212 void 2213 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2214 { 2215 uintptr_t va = (uintptr_t)addr; 2216 2217 XPV_DISALLOW_MIGRATE(); 2218 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2219 2220 /* 2221 * special case for performance. 2222 */ 2223 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2224 ASSERT(hat == kas.a_hat); 2225 hat_kmap_unload(addr, len, flags); 2226 } else { 2227 hat_unload_callback(hat, addr, len, flags, NULL); 2228 } 2229 XPV_ALLOW_MIGRATE(); 2230 } 2231 2232 /* 2233 * Do the callbacks for ranges being unloaded. 2234 */ 2235 typedef struct range_info { 2236 uintptr_t rng_va; 2237 ulong_t rng_cnt; 2238 level_t rng_level; 2239 } range_info_t; 2240 2241 static void 2242 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2243 { 2244 /* 2245 * do callbacks to upper level VM system 2246 */ 2247 while (cb != NULL && cnt > 0) { 2248 --cnt; 2249 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2250 cb->hcb_end_addr = cb->hcb_start_addr; 2251 cb->hcb_end_addr += 2252 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2253 cb->hcb_function(cb); 2254 } 2255 } 2256 2257 /* 2258 * Unload a given range of addresses (has optional callback) 2259 * 2260 * Flags: 2261 * define HAT_UNLOAD 0x00 2262 * define HAT_UNLOAD_NOSYNC 0x02 2263 * define HAT_UNLOAD_UNLOCK 0x04 2264 * define HAT_UNLOAD_OTHER 0x08 - not used 2265 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2266 */ 2267 #define MAX_UNLOAD_CNT (8) 2268 void 2269 hat_unload_callback( 2270 hat_t *hat, 2271 caddr_t addr, 2272 size_t len, 2273 uint_t flags, 2274 hat_callback_t *cb) 2275 { 2276 uintptr_t vaddr = (uintptr_t)addr; 2277 uintptr_t eaddr = vaddr + len; 2278 htable_t *ht = NULL; 2279 uint_t entry; 2280 uintptr_t contig_va = (uintptr_t)-1L; 2281 range_info_t r[MAX_UNLOAD_CNT]; 2282 uint_t r_cnt = 0; 2283 x86pte_t old_pte; 2284 2285 XPV_DISALLOW_MIGRATE(); 2286 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2287 ASSERT(IS_PAGEALIGNED(vaddr)); 2288 ASSERT(IS_PAGEALIGNED(eaddr)); 2289 2290 /* 2291 * Special case a single page being unloaded for speed. This happens 2292 * quite frequently, COW faults after a fork() for example. 2293 */ 2294 if (cb == NULL && len == MMU_PAGESIZE) { 2295 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2296 if (ht != NULL) { 2297 if (PTE_ISVALID(old_pte)) 2298 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2299 htable_release(ht); 2300 } 2301 XPV_ALLOW_MIGRATE(); 2302 return; 2303 } 2304 2305 while (vaddr < eaddr) { 2306 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2307 if (ht == NULL) 2308 break; 2309 2310 ASSERT(!IN_VA_HOLE(vaddr)); 2311 2312 if (vaddr < (uintptr_t)addr) 2313 panic("hat_unload_callback(): unmap inside large page"); 2314 2315 /* 2316 * We'll do the call backs for contiguous ranges 2317 */ 2318 if (vaddr != contig_va || 2319 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2320 if (r_cnt == MAX_UNLOAD_CNT) { 2321 handle_ranges(cb, r_cnt, r); 2322 r_cnt = 0; 2323 } 2324 r[r_cnt].rng_va = vaddr; 2325 r[r_cnt].rng_cnt = 0; 2326 r[r_cnt].rng_level = ht->ht_level; 2327 ++r_cnt; 2328 } 2329 2330 /* 2331 * Unload one mapping from the page tables. 2332 */ 2333 entry = htable_va2entry(vaddr, ht); 2334 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2335 ASSERT(ht->ht_level <= mmu.max_page_level); 2336 vaddr += LEVEL_SIZE(ht->ht_level); 2337 contig_va = vaddr; 2338 ++r[r_cnt - 1].rng_cnt; 2339 } 2340 if (ht) 2341 htable_release(ht); 2342 2343 /* 2344 * handle last range for callbacks 2345 */ 2346 if (r_cnt > 0) 2347 handle_ranges(cb, r_cnt, r); 2348 XPV_ALLOW_MIGRATE(); 2349 } 2350 2351 /* 2352 * synchronize mapping with software data structures 2353 * 2354 * This interface is currently only used by the working set monitor 2355 * driver. 2356 */ 2357 /*ARGSUSED*/ 2358 void 2359 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2360 { 2361 uintptr_t vaddr = (uintptr_t)addr; 2362 uintptr_t eaddr = vaddr + len; 2363 htable_t *ht = NULL; 2364 uint_t entry; 2365 x86pte_t pte; 2366 x86pte_t save_pte; 2367 x86pte_t new; 2368 page_t *pp; 2369 2370 ASSERT(!IN_VA_HOLE(vaddr)); 2371 ASSERT(IS_PAGEALIGNED(vaddr)); 2372 ASSERT(IS_PAGEALIGNED(eaddr)); 2373 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2374 2375 XPV_DISALLOW_MIGRATE(); 2376 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2377 try_again: 2378 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2379 if (ht == NULL) 2380 break; 2381 entry = htable_va2entry(vaddr, ht); 2382 2383 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2384 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2385 continue; 2386 2387 /* 2388 * We need to acquire the mapping list lock to protect 2389 * against hat_pageunload(), hat_unload(), etc. 2390 */ 2391 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2392 if (pp == NULL) 2393 break; 2394 x86_hm_enter(pp); 2395 save_pte = pte; 2396 pte = x86pte_get(ht, entry); 2397 if (pte != save_pte) { 2398 x86_hm_exit(pp); 2399 goto try_again; 2400 } 2401 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2402 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2403 x86_hm_exit(pp); 2404 continue; 2405 } 2406 2407 /* 2408 * Need to clear ref or mod bits. We may compete with 2409 * hardware updating the R/M bits and have to try again. 2410 */ 2411 if (flags == HAT_SYNC_ZERORM) { 2412 new = pte; 2413 PTE_CLR(new, PT_REF | PT_MOD); 2414 pte = hati_update_pte(ht, entry, pte, new); 2415 if (pte != 0) { 2416 x86_hm_exit(pp); 2417 goto try_again; 2418 } 2419 } else { 2420 /* 2421 * sync the PTE to the page_t 2422 */ 2423 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2424 } 2425 x86_hm_exit(pp); 2426 } 2427 if (ht) 2428 htable_release(ht); 2429 XPV_ALLOW_MIGRATE(); 2430 } 2431 2432 /* 2433 * void hat_map(hat, addr, len, flags) 2434 */ 2435 /*ARGSUSED*/ 2436 void 2437 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2438 { 2439 /* does nothing */ 2440 } 2441 2442 /* 2443 * uint_t hat_getattr(hat, addr, *attr) 2444 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2445 * mapping and *attr is valid, nonzero if there was no mapping and 2446 * *attr is not valid. 2447 */ 2448 uint_t 2449 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2450 { 2451 uintptr_t vaddr = ALIGN2PAGE(addr); 2452 htable_t *ht = NULL; 2453 x86pte_t pte; 2454 2455 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2456 2457 if (IN_VA_HOLE(vaddr)) 2458 return ((uint_t)-1); 2459 2460 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2461 if (ht == NULL) 2462 return ((uint_t)-1); 2463 2464 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2465 htable_release(ht); 2466 return ((uint_t)-1); 2467 } 2468 2469 *attr = PROT_READ; 2470 if (PTE_GET(pte, PT_WRITABLE)) 2471 *attr |= PROT_WRITE; 2472 if (PTE_GET(pte, PT_USER)) 2473 *attr |= PROT_USER; 2474 if (!PTE_GET(pte, mmu.pt_nx)) 2475 *attr |= PROT_EXEC; 2476 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2477 *attr |= HAT_NOSYNC; 2478 htable_release(ht); 2479 return (0); 2480 } 2481 2482 /* 2483 * hat_updateattr() applies the given attribute change to an existing mapping 2484 */ 2485 #define HAT_LOAD_ATTR 1 2486 #define HAT_SET_ATTR 2 2487 #define HAT_CLR_ATTR 3 2488 2489 static void 2490 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2491 { 2492 uintptr_t vaddr = (uintptr_t)addr; 2493 uintptr_t eaddr = (uintptr_t)addr + len; 2494 htable_t *ht = NULL; 2495 uint_t entry; 2496 x86pte_t oldpte, newpte; 2497 page_t *pp; 2498 2499 XPV_DISALLOW_MIGRATE(); 2500 ASSERT(IS_PAGEALIGNED(vaddr)); 2501 ASSERT(IS_PAGEALIGNED(eaddr)); 2502 ASSERT(hat == kas.a_hat || 2503 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2504 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2505 try_again: 2506 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2507 if (ht == NULL) 2508 break; 2509 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2510 continue; 2511 2512 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2513 if (pp == NULL) 2514 continue; 2515 x86_hm_enter(pp); 2516 2517 newpte = oldpte; 2518 /* 2519 * We found a page table entry in the desired range, 2520 * figure out the new attributes. 2521 */ 2522 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2523 if ((attr & PROT_WRITE) && 2524 !PTE_GET(oldpte, PT_WRITABLE)) 2525 newpte |= PT_WRITABLE; 2526 2527 if ((attr & HAT_NOSYNC) && 2528 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2529 newpte |= PT_NOSYNC; 2530 2531 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2532 newpte &= ~mmu.pt_nx; 2533 } 2534 2535 if (what == HAT_LOAD_ATTR) { 2536 if (!(attr & PROT_WRITE) && 2537 PTE_GET(oldpte, PT_WRITABLE)) 2538 newpte &= ~PT_WRITABLE; 2539 2540 if (!(attr & HAT_NOSYNC) && 2541 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2542 newpte &= ~PT_SOFTWARE; 2543 2544 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2545 newpte |= mmu.pt_nx; 2546 } 2547 2548 if (what == HAT_CLR_ATTR) { 2549 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2550 newpte &= ~PT_WRITABLE; 2551 2552 if ((attr & HAT_NOSYNC) && 2553 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2554 newpte &= ~PT_SOFTWARE; 2555 2556 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2557 newpte |= mmu.pt_nx; 2558 } 2559 2560 /* 2561 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2562 * x86pte_set() depends on this. 2563 */ 2564 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2565 newpte |= PT_REF | PT_MOD; 2566 2567 /* 2568 * what about PROT_READ or others? this code only handles: 2569 * EXEC, WRITE, NOSYNC 2570 */ 2571 2572 /* 2573 * If new PTE really changed, update the table. 2574 */ 2575 if (newpte != oldpte) { 2576 entry = htable_va2entry(vaddr, ht); 2577 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2578 if (oldpte != 0) { 2579 x86_hm_exit(pp); 2580 goto try_again; 2581 } 2582 } 2583 x86_hm_exit(pp); 2584 } 2585 if (ht) 2586 htable_release(ht); 2587 XPV_ALLOW_MIGRATE(); 2588 } 2589 2590 /* 2591 * Various wrappers for hat_updateattr() 2592 */ 2593 void 2594 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2595 { 2596 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2597 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2598 } 2599 2600 void 2601 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2602 { 2603 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2604 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2605 } 2606 2607 void 2608 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2609 { 2610 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2611 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2612 } 2613 2614 void 2615 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2616 { 2617 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2618 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2619 } 2620 2621 /* 2622 * size_t hat_getpagesize(hat, addr) 2623 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2624 * no mapping. This is an advisory call. 2625 */ 2626 ssize_t 2627 hat_getpagesize(hat_t *hat, caddr_t addr) 2628 { 2629 uintptr_t vaddr = ALIGN2PAGE(addr); 2630 htable_t *ht; 2631 size_t pagesize; 2632 2633 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2634 if (IN_VA_HOLE(vaddr)) 2635 return (-1); 2636 ht = htable_getpage(hat, vaddr, NULL); 2637 if (ht == NULL) 2638 return (-1); 2639 pagesize = LEVEL_SIZE(ht->ht_level); 2640 htable_release(ht); 2641 return (pagesize); 2642 } 2643 2644 2645 2646 /* 2647 * pfn_t hat_getpfnum(hat, addr) 2648 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2649 */ 2650 pfn_t 2651 hat_getpfnum(hat_t *hat, caddr_t addr) 2652 { 2653 uintptr_t vaddr = ALIGN2PAGE(addr); 2654 htable_t *ht; 2655 uint_t entry; 2656 pfn_t pfn = PFN_INVALID; 2657 2658 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2659 if (khat_running == 0) 2660 return (PFN_INVALID); 2661 2662 if (IN_VA_HOLE(vaddr)) 2663 return (PFN_INVALID); 2664 2665 XPV_DISALLOW_MIGRATE(); 2666 /* 2667 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2668 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2669 * this up. 2670 */ 2671 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2672 x86pte_t pte; 2673 pgcnt_t pg_index; 2674 2675 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2676 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2677 if (PTE_ISVALID(pte)) 2678 /*LINTED [use of constant 0 causes a lint warning] */ 2679 pfn = PTE2PFN(pte, 0); 2680 XPV_ALLOW_MIGRATE(); 2681 return (pfn); 2682 } 2683 2684 ht = htable_getpage(hat, vaddr, &entry); 2685 if (ht == NULL) { 2686 XPV_ALLOW_MIGRATE(); 2687 return (PFN_INVALID); 2688 } 2689 ASSERT(vaddr >= ht->ht_vaddr); 2690 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2691 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2692 if (ht->ht_level > 0) 2693 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2694 htable_release(ht); 2695 XPV_ALLOW_MIGRATE(); 2696 return (pfn); 2697 } 2698 2699 /* 2700 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2701 * Use hat_getpfnum(kas.a_hat, ...) instead. 2702 * 2703 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2704 * but can't right now due to the fact that some software has grown to use 2705 * this interface incorrectly. So for now when the interface is misused, 2706 * return a warning to the user that in the future it won't work in the 2707 * way they're abusing it, and carry on. 2708 * 2709 * Note that hat_getkpfnum() is never supported on amd64. 2710 */ 2711 #if !defined(__amd64) 2712 pfn_t 2713 hat_getkpfnum(caddr_t addr) 2714 { 2715 pfn_t pfn; 2716 int badcaller = 0; 2717 2718 if (khat_running == 0) 2719 panic("hat_getkpfnum(): called too early\n"); 2720 if ((uintptr_t)addr < kernelbase) 2721 return (PFN_INVALID); 2722 2723 XPV_DISALLOW_MIGRATE(); 2724 if (segkpm && IS_KPM_ADDR(addr)) { 2725 badcaller = 1; 2726 pfn = hat_kpm_va2pfn(addr); 2727 } else { 2728 pfn = hat_getpfnum(kas.a_hat, addr); 2729 badcaller = pf_is_memory(pfn); 2730 } 2731 2732 if (badcaller) 2733 hat_getkpfnum_badcall(caller()); 2734 XPV_ALLOW_MIGRATE(); 2735 return (pfn); 2736 } 2737 #endif /* __amd64 */ 2738 2739 /* 2740 * int hat_probe(hat, addr) 2741 * return 0 if no valid mapping is present. Faster version 2742 * of hat_getattr in certain architectures. 2743 */ 2744 int 2745 hat_probe(hat_t *hat, caddr_t addr) 2746 { 2747 uintptr_t vaddr = ALIGN2PAGE(addr); 2748 uint_t entry; 2749 htable_t *ht; 2750 pgcnt_t pg_off; 2751 2752 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2753 ASSERT(hat == kas.a_hat || 2754 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2755 if (IN_VA_HOLE(vaddr)) 2756 return (0); 2757 2758 /* 2759 * Most common use of hat_probe is from segmap. We special case it 2760 * for performance. 2761 */ 2762 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2763 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2764 if (mmu.pae_hat) 2765 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2766 else 2767 return (PTE_ISVALID( 2768 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2769 } 2770 2771 ht = htable_getpage(hat, vaddr, &entry); 2772 htable_release(ht); 2773 return (ht != NULL); 2774 } 2775 2776 /* 2777 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2778 */ 2779 static int 2780 is_it_dism(hat_t *hat, caddr_t va) 2781 { 2782 struct seg *seg; 2783 struct shm_data *shmd; 2784 struct spt_data *sptd; 2785 2786 seg = as_findseg(hat->hat_as, va, 0); 2787 ASSERT(seg != NULL); 2788 ASSERT(seg->s_base <= va); 2789 shmd = (struct shm_data *)seg->s_data; 2790 ASSERT(shmd != NULL); 2791 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2792 ASSERT(sptd != NULL); 2793 if (sptd->spt_flags & SHM_PAGEABLE) 2794 return (1); 2795 return (0); 2796 } 2797 2798 /* 2799 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2800 * except that we use the ism_hat's existing mappings to determine the pages 2801 * and protections to use for this hat. If we find a full properly aligned 2802 * and sized pagetable, we will attempt to share the pagetable itself. 2803 */ 2804 /*ARGSUSED*/ 2805 int 2806 hat_share( 2807 hat_t *hat, 2808 caddr_t addr, 2809 hat_t *ism_hat, 2810 caddr_t src_addr, 2811 size_t len, /* almost useless value, see below.. */ 2812 uint_t ismszc) 2813 { 2814 uintptr_t vaddr_start = (uintptr_t)addr; 2815 uintptr_t vaddr; 2816 uintptr_t eaddr = vaddr_start + len; 2817 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2818 uintptr_t ism_addr = ism_addr_start; 2819 uintptr_t e_ism_addr = ism_addr + len; 2820 htable_t *ism_ht = NULL; 2821 htable_t *ht; 2822 x86pte_t pte; 2823 page_t *pp; 2824 pfn_t pfn; 2825 level_t l; 2826 pgcnt_t pgcnt; 2827 uint_t prot; 2828 int is_dism; 2829 int flags; 2830 2831 /* 2832 * We might be asked to share an empty DISM hat by as_dup() 2833 */ 2834 ASSERT(hat != kas.a_hat); 2835 ASSERT(eaddr <= _userlimit); 2836 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2837 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2838 return (0); 2839 } 2840 XPV_DISALLOW_MIGRATE(); 2841 2842 /* 2843 * The SPT segment driver often passes us a size larger than there are 2844 * valid mappings. That's because it rounds the segment size up to a 2845 * large pagesize, even if the actual memory mapped by ism_hat is less. 2846 */ 2847 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2848 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2849 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2850 is_dism = is_it_dism(hat, addr); 2851 while (ism_addr < e_ism_addr) { 2852 /* 2853 * use htable_walk to get the next valid ISM mapping 2854 */ 2855 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2856 if (ism_ht == NULL) 2857 break; 2858 2859 /* 2860 * First check to see if we already share the page table. 2861 */ 2862 l = ism_ht->ht_level; 2863 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2864 ht = htable_lookup(hat, vaddr, l); 2865 if (ht != NULL) { 2866 if (ht->ht_flags & HTABLE_SHARED_PFN) 2867 goto shared; 2868 htable_release(ht); 2869 goto not_shared; 2870 } 2871 2872 /* 2873 * Can't ever share top table. 2874 */ 2875 if (l == mmu.max_level) 2876 goto not_shared; 2877 2878 /* 2879 * Avoid level mismatches later due to DISM faults. 2880 */ 2881 if (is_dism && l > 0) 2882 goto not_shared; 2883 2884 /* 2885 * addresses and lengths must align 2886 * table must be fully populated 2887 * no lower level page tables 2888 */ 2889 if (ism_addr != ism_ht->ht_vaddr || 2890 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2891 goto not_shared; 2892 2893 /* 2894 * The range of address space must cover a full table. 2895 */ 2896 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 2897 goto not_shared; 2898 2899 /* 2900 * All entries in the ISM page table must be leaf PTEs. 2901 */ 2902 if (l > 0) { 2903 int e; 2904 2905 /* 2906 * We know the 0th is from htable_walk() above. 2907 */ 2908 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 2909 x86pte_t pte; 2910 pte = x86pte_get(ism_ht, e); 2911 if (!PTE_ISPAGE(pte, l)) 2912 goto not_shared; 2913 } 2914 } 2915 2916 /* 2917 * share the page table 2918 */ 2919 ht = htable_create(hat, vaddr, l, ism_ht); 2920 shared: 2921 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 2922 ASSERT(ht->ht_shares == ism_ht); 2923 hat->hat_ism_pgcnt += 2924 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 2925 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 2926 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 2927 htable_release(ht); 2928 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 2929 htable_release(ism_ht); 2930 ism_ht = NULL; 2931 continue; 2932 2933 not_shared: 2934 /* 2935 * Unable to share the page table. Instead we will 2936 * create new mappings from the values in the ISM mappings. 2937 * Figure out what level size mappings to use; 2938 */ 2939 for (l = ism_ht->ht_level; l > 0; --l) { 2940 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2941 (vaddr & LEVEL_OFFSET(l)) == 0) 2942 break; 2943 } 2944 2945 /* 2946 * The ISM mapping might be larger than the share area, 2947 * be careful to truncate it if needed. 2948 */ 2949 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2950 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2951 } else { 2952 pgcnt = mmu_btop(eaddr - vaddr); 2953 l = 0; 2954 } 2955 2956 pfn = PTE2PFN(pte, ism_ht->ht_level); 2957 ASSERT(pfn != PFN_INVALID); 2958 while (pgcnt > 0) { 2959 /* 2960 * Make a new pte for the PFN for this level. 2961 * Copy protections for the pte from the ISM pte. 2962 */ 2963 pp = page_numtopp_nolock(pfn); 2964 ASSERT(pp != NULL); 2965 2966 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2967 if (PTE_GET(pte, PT_WRITABLE)) 2968 prot |= PROT_WRITE; 2969 if (!PTE_GET(pte, PT_NX)) 2970 prot |= PROT_EXEC; 2971 2972 flags = HAT_LOAD; 2973 if (!is_dism) 2974 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 2975 while (hati_load_common(hat, vaddr, pp, prot, flags, 2976 l, pfn) != 0) { 2977 if (l == 0) 2978 panic("hati_load_common() failure"); 2979 --l; 2980 } 2981 2982 vaddr += LEVEL_SIZE(l); 2983 ism_addr += LEVEL_SIZE(l); 2984 pfn += mmu_btop(LEVEL_SIZE(l)); 2985 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2986 } 2987 } 2988 if (ism_ht != NULL) 2989 htable_release(ism_ht); 2990 XPV_ALLOW_MIGRATE(); 2991 return (0); 2992 } 2993 2994 2995 /* 2996 * hat_unshare() is similar to hat_unload_callback(), but 2997 * we have to look for empty shared pagetables. Note that 2998 * hat_unshare() is always invoked against an entire segment. 2999 */ 3000 /*ARGSUSED*/ 3001 void 3002 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3003 { 3004 uint64_t vaddr = (uintptr_t)addr; 3005 uintptr_t eaddr = vaddr + len; 3006 htable_t *ht = NULL; 3007 uint_t need_demaps = 0; 3008 int flags = HAT_UNLOAD_UNMAP; 3009 level_t l; 3010 3011 ASSERT(hat != kas.a_hat); 3012 ASSERT(eaddr <= _userlimit); 3013 ASSERT(IS_PAGEALIGNED(vaddr)); 3014 ASSERT(IS_PAGEALIGNED(eaddr)); 3015 XPV_DISALLOW_MIGRATE(); 3016 3017 /* 3018 * First go through and remove any shared pagetables. 3019 * 3020 * Note that it's ok to delay the TLB shootdown till the entire range is 3021 * finished, because if hat_pageunload() were to unload a shared 3022 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3023 */ 3024 l = mmu.max_page_level; 3025 if (l == mmu.max_level) 3026 --l; 3027 for (; l >= 0; --l) { 3028 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3029 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3030 ASSERT(!IN_VA_HOLE(vaddr)); 3031 /* 3032 * find a pagetable that maps the current address 3033 */ 3034 ht = htable_lookup(hat, vaddr, l); 3035 if (ht == NULL) 3036 continue; 3037 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3038 /* 3039 * clear page count, set valid_cnt to 0, 3040 * let htable_release() finish the job 3041 */ 3042 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3043 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3044 ht->ht_valid_cnt = 0; 3045 need_demaps = 1; 3046 } 3047 htable_release(ht); 3048 } 3049 } 3050 3051 /* 3052 * flush the TLBs - since we're probably dealing with MANY mappings 3053 * we do just one CR3 reload. 3054 */ 3055 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3056 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3057 3058 /* 3059 * Now go back and clean up any unaligned mappings that 3060 * couldn't share pagetables. 3061 */ 3062 if (!is_it_dism(hat, addr)) 3063 flags |= HAT_UNLOAD_UNLOCK; 3064 hat_unload(hat, addr, len, flags); 3065 XPV_ALLOW_MIGRATE(); 3066 } 3067 3068 3069 /* 3070 * hat_reserve() does nothing 3071 */ 3072 /*ARGSUSED*/ 3073 void 3074 hat_reserve(struct as *as, caddr_t addr, size_t len) 3075 { 3076 } 3077 3078 3079 /* 3080 * Called when all mappings to a page should have write permission removed. 3081 * Mostly stolem from hat_pagesync() 3082 */ 3083 static void 3084 hati_page_clrwrt(struct page *pp) 3085 { 3086 hment_t *hm = NULL; 3087 htable_t *ht; 3088 uint_t entry; 3089 x86pte_t old; 3090 x86pte_t new; 3091 uint_t pszc = 0; 3092 3093 XPV_DISALLOW_MIGRATE(); 3094 next_size: 3095 /* 3096 * walk thru the mapping list clearing write permission 3097 */ 3098 x86_hm_enter(pp); 3099 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3100 if (ht->ht_level < pszc) 3101 continue; 3102 old = x86pte_get(ht, entry); 3103 3104 for (;;) { 3105 /* 3106 * Is this mapping of interest? 3107 */ 3108 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3109 PTE_GET(old, PT_WRITABLE) == 0) 3110 break; 3111 3112 /* 3113 * Clear ref/mod writable bits. This requires cross 3114 * calls to ensure any executing TLBs see cleared bits. 3115 */ 3116 new = old; 3117 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3118 old = hati_update_pte(ht, entry, old, new); 3119 if (old != 0) 3120 continue; 3121 3122 break; 3123 } 3124 } 3125 x86_hm_exit(pp); 3126 while (pszc < pp->p_szc) { 3127 page_t *tpp; 3128 pszc++; 3129 tpp = PP_GROUPLEADER(pp, pszc); 3130 if (pp != tpp) { 3131 pp = tpp; 3132 goto next_size; 3133 } 3134 } 3135 XPV_ALLOW_MIGRATE(); 3136 } 3137 3138 /* 3139 * void hat_page_setattr(pp, flag) 3140 * void hat_page_clrattr(pp, flag) 3141 * used to set/clr ref/mod bits. 3142 */ 3143 void 3144 hat_page_setattr(struct page *pp, uint_t flag) 3145 { 3146 vnode_t *vp = pp->p_vnode; 3147 kmutex_t *vphm = NULL; 3148 page_t **listp; 3149 int noshuffle; 3150 3151 noshuffle = flag & P_NSH; 3152 flag &= ~P_NSH; 3153 3154 if (PP_GETRM(pp, flag) == flag) 3155 return; 3156 3157 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3158 !noshuffle) { 3159 vphm = page_vnode_mutex(vp); 3160 mutex_enter(vphm); 3161 } 3162 3163 PP_SETRM(pp, flag); 3164 3165 if (vphm != NULL) { 3166 3167 /* 3168 * Some File Systems examine v_pages for NULL w/o 3169 * grabbing the vphm mutex. Must not let it become NULL when 3170 * pp is the only page on the list. 3171 */ 3172 if (pp->p_vpnext != pp) { 3173 page_vpsub(&vp->v_pages, pp); 3174 if (vp->v_pages != NULL) 3175 listp = &vp->v_pages->p_vpprev->p_vpnext; 3176 else 3177 listp = &vp->v_pages; 3178 page_vpadd(listp, pp); 3179 } 3180 mutex_exit(vphm); 3181 } 3182 } 3183 3184 void 3185 hat_page_clrattr(struct page *pp, uint_t flag) 3186 { 3187 vnode_t *vp = pp->p_vnode; 3188 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3189 3190 /* 3191 * Caller is expected to hold page's io lock for VMODSORT to work 3192 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3193 * bit is cleared. 3194 * We don't have assert to avoid tripping some existing third party 3195 * code. The dirty page is moved back to top of the v_page list 3196 * after IO is done in pvn_write_done(). 3197 */ 3198 PP_CLRRM(pp, flag); 3199 3200 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3201 3202 /* 3203 * VMODSORT works by removing write permissions and getting 3204 * a fault when a page is made dirty. At this point 3205 * we need to remove write permission from all mappings 3206 * to this page. 3207 */ 3208 hati_page_clrwrt(pp); 3209 } 3210 } 3211 3212 /* 3213 * If flag is specified, returns 0 if attribute is disabled 3214 * and non zero if enabled. If flag specifes multiple attributs 3215 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3216 * call. 3217 */ 3218 uint_t 3219 hat_page_getattr(struct page *pp, uint_t flag) 3220 { 3221 return (PP_GETRM(pp, flag)); 3222 } 3223 3224 3225 /* 3226 * common code used by hat_pageunload() and hment_steal() 3227 */ 3228 hment_t * 3229 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3230 { 3231 x86pte_t old_pte; 3232 pfn_t pfn = pp->p_pagenum; 3233 hment_t *hm; 3234 3235 /* 3236 * We need to acquire a hold on the htable in order to 3237 * do the invalidate. We know the htable must exist, since 3238 * unmap's don't release the htable until after removing any 3239 * hment. Having x86_hm_enter() keeps that from proceeding. 3240 */ 3241 htable_acquire(ht); 3242 3243 /* 3244 * Invalidate the PTE and remove the hment. 3245 */ 3246 old_pte = x86pte_inval(ht, entry, 0, NULL); 3247 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3248 panic("x86pte_inval() failure found PTE = " FMT_PTE 3249 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3250 old_pte, pfn, (uintptr_t)ht, entry); 3251 } 3252 3253 /* 3254 * Clean up all the htable information for this mapping 3255 */ 3256 ASSERT(ht->ht_valid_cnt > 0); 3257 HTABLE_DEC(ht->ht_valid_cnt); 3258 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3259 3260 /* 3261 * sync ref/mod bits to the page_t 3262 */ 3263 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3264 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3265 3266 /* 3267 * Remove the mapping list entry for this page. 3268 */ 3269 hm = hment_remove(pp, ht, entry); 3270 3271 /* 3272 * drop the mapping list lock so that we might free the 3273 * hment and htable. 3274 */ 3275 x86_hm_exit(pp); 3276 htable_release(ht); 3277 return (hm); 3278 } 3279 3280 extern int vpm_enable; 3281 /* 3282 * Unload all translations to a page. If the page is a subpage of a large 3283 * page, the large page mappings are also removed. 3284 * 3285 * The forceflags are unused. 3286 */ 3287 3288 /*ARGSUSED*/ 3289 static int 3290 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3291 { 3292 page_t *cur_pp = pp; 3293 hment_t *hm; 3294 hment_t *prev; 3295 htable_t *ht; 3296 uint_t entry; 3297 level_t level; 3298 3299 XPV_DISALLOW_MIGRATE(); 3300 #if defined(__amd64) 3301 /* 3302 * clear the vpm ref. 3303 */ 3304 if (vpm_enable) { 3305 pp->p_vpmref = 0; 3306 } 3307 #endif 3308 /* 3309 * The loop with next_size handles pages with multiple pagesize mappings 3310 */ 3311 next_size: 3312 for (;;) { 3313 3314 /* 3315 * Get a mapping list entry 3316 */ 3317 x86_hm_enter(cur_pp); 3318 for (prev = NULL; ; prev = hm) { 3319 hm = hment_walk(cur_pp, &ht, &entry, prev); 3320 if (hm == NULL) { 3321 x86_hm_exit(cur_pp); 3322 3323 /* 3324 * If not part of a larger page, we're done. 3325 */ 3326 if (cur_pp->p_szc <= pg_szcd) { 3327 XPV_ALLOW_MIGRATE(); 3328 return (0); 3329 } 3330 3331 /* 3332 * Else check the next larger page size. 3333 * hat_page_demote() may decrease p_szc 3334 * but that's ok we'll just take an extra 3335 * trip discover there're no larger mappings 3336 * and return. 3337 */ 3338 ++pg_szcd; 3339 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3340 goto next_size; 3341 } 3342 3343 /* 3344 * If this mapping size matches, remove it. 3345 */ 3346 level = ht->ht_level; 3347 if (level == pg_szcd) 3348 break; 3349 } 3350 3351 /* 3352 * Remove the mapping list entry for this page. 3353 * Note this does the x86_hm_exit() for us. 3354 */ 3355 hm = hati_page_unmap(cur_pp, ht, entry); 3356 if (hm != NULL) 3357 hment_free(hm); 3358 } 3359 } 3360 3361 int 3362 hat_pageunload(struct page *pp, uint_t forceflag) 3363 { 3364 ASSERT(PAGE_EXCL(pp)); 3365 return (hati_pageunload(pp, 0, forceflag)); 3366 } 3367 3368 /* 3369 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3370 * page level that included pp. 3371 * 3372 * pp must be locked EXCL. Even though no other constituent pages are locked 3373 * it's legal to unload large mappings to pp because all constituent pages of 3374 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3375 * lock on one of constituent pages none of the large mappings to pp are 3376 * locked. 3377 * 3378 * Change (always decrease) p_szc field starting from the last constituent 3379 * page and ending with root constituent page so that root's pszc always shows 3380 * the area where hat_page_demote() may be active. 3381 * 3382 * This mechanism is only used for file system pages where it's not always 3383 * possible to get EXCL locks on all constituent pages to demote the size code 3384 * (as is done for anonymous or kernel large pages). 3385 */ 3386 void 3387 hat_page_demote(page_t *pp) 3388 { 3389 uint_t pszc; 3390 uint_t rszc; 3391 uint_t szc; 3392 page_t *rootpp; 3393 page_t *firstpp; 3394 page_t *lastpp; 3395 pgcnt_t pgcnt; 3396 3397 ASSERT(PAGE_EXCL(pp)); 3398 ASSERT(!PP_ISFREE(pp)); 3399 ASSERT(page_szc_lock_assert(pp)); 3400 3401 if (pp->p_szc == 0) 3402 return; 3403 3404 rootpp = PP_GROUPLEADER(pp, 1); 3405 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3406 3407 /* 3408 * all large mappings to pp are gone 3409 * and no new can be setup since pp is locked exclusively. 3410 * 3411 * Lock the root to make sure there's only one hat_page_demote() 3412 * outstanding within the area of this root's pszc. 3413 * 3414 * Second potential hat_page_demote() is already eliminated by upper 3415 * VM layer via page_szc_lock() but we don't rely on it and use our 3416 * own locking (so that upper layer locking can be changed without 3417 * assumptions that hat depends on upper layer VM to prevent multiple 3418 * hat_page_demote() to be issued simultaneously to the same large 3419 * page). 3420 */ 3421 again: 3422 pszc = pp->p_szc; 3423 if (pszc == 0) 3424 return; 3425 rootpp = PP_GROUPLEADER(pp, pszc); 3426 x86_hm_enter(rootpp); 3427 /* 3428 * If root's p_szc is different from pszc we raced with another 3429 * hat_page_demote(). Drop the lock and try to find the root again. 3430 * If root's p_szc is greater than pszc previous hat_page_demote() is 3431 * not done yet. Take and release mlist lock of root's root to wait 3432 * for previous hat_page_demote() to complete. 3433 */ 3434 if ((rszc = rootpp->p_szc) != pszc) { 3435 x86_hm_exit(rootpp); 3436 if (rszc > pszc) { 3437 /* p_szc of a locked non free page can't increase */ 3438 ASSERT(pp != rootpp); 3439 3440 rootpp = PP_GROUPLEADER(rootpp, rszc); 3441 x86_hm_enter(rootpp); 3442 x86_hm_exit(rootpp); 3443 } 3444 goto again; 3445 } 3446 ASSERT(pp->p_szc == pszc); 3447 3448 /* 3449 * Decrement by 1 p_szc of every constituent page of a region that 3450 * covered pp. For example if original szc is 3 it gets changed to 2 3451 * everywhere except in region 2 that covered pp. Region 2 that 3452 * covered pp gets demoted to 1 everywhere except in region 1 that 3453 * covered pp. The region 1 that covered pp is demoted to region 3454 * 0. It's done this way because from region 3 we removed level 3 3455 * mappings, from region 2 that covered pp we removed level 2 mappings 3456 * and from region 1 that covered pp we removed level 1 mappings. All 3457 * changes are done from from high pfn's to low pfn's so that roots 3458 * are changed last allowing one to know the largest region where 3459 * hat_page_demote() is stil active by only looking at the root page. 3460 * 3461 * This algorithm is implemented in 2 while loops. First loop changes 3462 * p_szc of pages to the right of pp's level 1 region and second 3463 * loop changes p_szc of pages of level 1 region that covers pp 3464 * and all pages to the left of level 1 region that covers pp. 3465 * In the first loop p_szc keeps dropping with every iteration 3466 * and in the second loop it keeps increasing with every iteration. 3467 * 3468 * First loop description: Demote pages to the right of pp outside of 3469 * level 1 region that covers pp. In every iteration of the while 3470 * loop below find the last page of szc region and the first page of 3471 * (szc - 1) region that is immediately to the right of (szc - 1) 3472 * region that covers pp. From last such page to first such page 3473 * change every page's szc to szc - 1. Decrement szc and continue 3474 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3475 * of szc region skip to the next iteration. 3476 */ 3477 szc = pszc; 3478 while (szc > 1) { 3479 lastpp = PP_GROUPLEADER(pp, szc); 3480 pgcnt = page_get_pagecnt(szc); 3481 lastpp += pgcnt - 1; 3482 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3483 pgcnt = page_get_pagecnt(szc - 1); 3484 if (lastpp - firstpp < pgcnt) { 3485 szc--; 3486 continue; 3487 } 3488 firstpp += pgcnt; 3489 while (lastpp != firstpp) { 3490 ASSERT(lastpp->p_szc == pszc); 3491 lastpp->p_szc = szc - 1; 3492 lastpp--; 3493 } 3494 firstpp->p_szc = szc - 1; 3495 szc--; 3496 } 3497 3498 /* 3499 * Second loop description: 3500 * First iteration changes p_szc to 0 of every 3501 * page of level 1 region that covers pp. 3502 * Subsequent iterations find last page of szc region 3503 * immediately to the left of szc region that covered pp 3504 * and first page of (szc + 1) region that covers pp. 3505 * From last to first page change p_szc of every page to szc. 3506 * Increment szc and continue looping until szc is pszc. 3507 * If pp belongs to the fist szc region of (szc + 1) region 3508 * skip to the next iteration. 3509 * 3510 */ 3511 szc = 0; 3512 while (szc < pszc) { 3513 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3514 if (szc == 0) { 3515 pgcnt = page_get_pagecnt(1); 3516 lastpp = firstpp + (pgcnt - 1); 3517 } else { 3518 lastpp = PP_GROUPLEADER(pp, szc); 3519 if (firstpp == lastpp) { 3520 szc++; 3521 continue; 3522 } 3523 lastpp--; 3524 pgcnt = page_get_pagecnt(szc); 3525 } 3526 while (lastpp != firstpp) { 3527 ASSERT(lastpp->p_szc == pszc); 3528 lastpp->p_szc = szc; 3529 lastpp--; 3530 } 3531 firstpp->p_szc = szc; 3532 if (firstpp == rootpp) 3533 break; 3534 szc++; 3535 } 3536 x86_hm_exit(rootpp); 3537 } 3538 3539 /* 3540 * get hw stats from hardware into page struct and reset hw stats 3541 * returns attributes of page 3542 * Flags for hat_pagesync, hat_getstat, hat_sync 3543 * 3544 * define HAT_SYNC_ZERORM 0x01 3545 * 3546 * Additional flags for hat_pagesync 3547 * 3548 * define HAT_SYNC_STOPON_REF 0x02 3549 * define HAT_SYNC_STOPON_MOD 0x04 3550 * define HAT_SYNC_STOPON_RM 0x06 3551 * define HAT_SYNC_STOPON_SHARED 0x08 3552 */ 3553 uint_t 3554 hat_pagesync(struct page *pp, uint_t flags) 3555 { 3556 hment_t *hm = NULL; 3557 htable_t *ht; 3558 uint_t entry; 3559 x86pte_t old, save_old; 3560 x86pte_t new; 3561 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3562 extern ulong_t po_share; 3563 page_t *save_pp = pp; 3564 uint_t pszc = 0; 3565 3566 ASSERT(PAGE_LOCKED(pp) || panicstr); 3567 3568 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3569 return (pp->p_nrm & nrmbits); 3570 3571 if ((flags & HAT_SYNC_ZERORM) == 0) { 3572 3573 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3574 return (pp->p_nrm & nrmbits); 3575 3576 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3577 return (pp->p_nrm & nrmbits); 3578 3579 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3580 hat_page_getshare(pp) > po_share) { 3581 if (PP_ISRO(pp)) 3582 PP_SETREF(pp); 3583 return (pp->p_nrm & nrmbits); 3584 } 3585 } 3586 3587 XPV_DISALLOW_MIGRATE(); 3588 next_size: 3589 /* 3590 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3591 */ 3592 x86_hm_enter(pp); 3593 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3594 if (ht->ht_level < pszc) 3595 continue; 3596 old = x86pte_get(ht, entry); 3597 try_again: 3598 3599 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3600 3601 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3602 continue; 3603 3604 save_old = old; 3605 if ((flags & HAT_SYNC_ZERORM) != 0) { 3606 3607 /* 3608 * Need to clear ref or mod bits. Need to demap 3609 * to make sure any executing TLBs see cleared bits. 3610 */ 3611 new = old; 3612 PTE_CLR(new, PT_REF | PT_MOD); 3613 old = hati_update_pte(ht, entry, old, new); 3614 if (old != 0) 3615 goto try_again; 3616 3617 old = save_old; 3618 } 3619 3620 /* 3621 * Sync the PTE 3622 */ 3623 if (!(flags & HAT_SYNC_ZERORM) && 3624 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3625 hati_sync_pte_to_page(pp, old, ht->ht_level); 3626 3627 /* 3628 * can stop short if we found a ref'd or mod'd page 3629 */ 3630 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3631 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3632 x86_hm_exit(pp); 3633 goto done; 3634 } 3635 } 3636 x86_hm_exit(pp); 3637 while (pszc < pp->p_szc) { 3638 page_t *tpp; 3639 pszc++; 3640 tpp = PP_GROUPLEADER(pp, pszc); 3641 if (pp != tpp) { 3642 pp = tpp; 3643 goto next_size; 3644 } 3645 } 3646 done: 3647 XPV_ALLOW_MIGRATE(); 3648 return (save_pp->p_nrm & nrmbits); 3649 } 3650 3651 /* 3652 * returns approx number of mappings to this pp. A return of 0 implies 3653 * there are no mappings to the page. 3654 */ 3655 ulong_t 3656 hat_page_getshare(page_t *pp) 3657 { 3658 uint_t cnt; 3659 cnt = hment_mapcnt(pp); 3660 #if defined(__amd64) 3661 if (vpm_enable && pp->p_vpmref) { 3662 cnt += 1; 3663 } 3664 #endif 3665 return (cnt); 3666 } 3667 3668 /* 3669 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3670 * otherwise. 3671 */ 3672 int 3673 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3674 { 3675 return (hat_page_getshare(pp) > sh_thresh); 3676 } 3677 3678 /* 3679 * hat_softlock isn't supported anymore 3680 */ 3681 /*ARGSUSED*/ 3682 faultcode_t 3683 hat_softlock( 3684 hat_t *hat, 3685 caddr_t addr, 3686 size_t *len, 3687 struct page **page_array, 3688 uint_t flags) 3689 { 3690 return (FC_NOSUPPORT); 3691 } 3692 3693 3694 3695 /* 3696 * Routine to expose supported HAT features to platform independent code. 3697 */ 3698 /*ARGSUSED*/ 3699 int 3700 hat_supported(enum hat_features feature, void *arg) 3701 { 3702 switch (feature) { 3703 3704 case HAT_SHARED_PT: /* this is really ISM */ 3705 return (1); 3706 3707 case HAT_DYNAMIC_ISM_UNMAP: 3708 return (0); 3709 3710 case HAT_VMODSORT: 3711 return (1); 3712 3713 case HAT_SHARED_REGIONS: 3714 return (0); 3715 3716 default: 3717 panic("hat_supported() - unknown feature"); 3718 } 3719 return (0); 3720 } 3721 3722 /* 3723 * Called when a thread is exiting and has been switched to the kernel AS 3724 */ 3725 void 3726 hat_thread_exit(kthread_t *thd) 3727 { 3728 ASSERT(thd->t_procp->p_as == &kas); 3729 XPV_DISALLOW_MIGRATE(); 3730 hat_switch(thd->t_procp->p_as->a_hat); 3731 XPV_ALLOW_MIGRATE(); 3732 } 3733 3734 /* 3735 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3736 */ 3737 /*ARGSUSED*/ 3738 void 3739 hat_setup(hat_t *hat, int flags) 3740 { 3741 XPV_DISALLOW_MIGRATE(); 3742 kpreempt_disable(); 3743 3744 hat_switch(hat); 3745 3746 kpreempt_enable(); 3747 XPV_ALLOW_MIGRATE(); 3748 } 3749 3750 /* 3751 * Prepare for a CPU private mapping for the given address. 3752 * 3753 * The address can only be used from a single CPU and can be remapped 3754 * using hat_mempte_remap(). Return the address of the PTE. 3755 * 3756 * We do the htable_create() if necessary and increment the valid count so 3757 * the htable can't disappear. We also hat_devload() the page table into 3758 * kernel so that the PTE is quickly accessed. 3759 */ 3760 hat_mempte_t 3761 hat_mempte_setup(caddr_t addr) 3762 { 3763 uintptr_t va = (uintptr_t)addr; 3764 htable_t *ht; 3765 uint_t entry; 3766 x86pte_t oldpte; 3767 hat_mempte_t p; 3768 3769 ASSERT(IS_PAGEALIGNED(va)); 3770 ASSERT(!IN_VA_HOLE(va)); 3771 ++curthread->t_hatdepth; 3772 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3773 if (ht == NULL) { 3774 ht = htable_create(kas.a_hat, va, 0, NULL); 3775 entry = htable_va2entry(va, ht); 3776 ASSERT(ht->ht_level == 0); 3777 oldpte = x86pte_get(ht, entry); 3778 } 3779 if (PTE_ISVALID(oldpte)) 3780 panic("hat_mempte_setup(): address already mapped" 3781 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3782 3783 /* 3784 * increment ht_valid_cnt so that the pagetable can't disappear 3785 */ 3786 HTABLE_INC(ht->ht_valid_cnt); 3787 3788 /* 3789 * return the PTE physical address to the caller. 3790 */ 3791 htable_release(ht); 3792 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3793 --curthread->t_hatdepth; 3794 return (p); 3795 } 3796 3797 /* 3798 * Release a CPU private mapping for the given address. 3799 * We decrement the htable valid count so it might be destroyed. 3800 */ 3801 /*ARGSUSED1*/ 3802 void 3803 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3804 { 3805 htable_t *ht; 3806 3807 /* 3808 * invalidate any left over mapping and decrement the htable valid count 3809 */ 3810 #ifdef __xpv 3811 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3812 UVMF_INVLPG | UVMF_LOCAL)) 3813 panic("HYPERVISOR_update_va_mapping() failed"); 3814 #else 3815 { 3816 x86pte_t *pteptr; 3817 3818 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3819 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3820 if (mmu.pae_hat) 3821 *pteptr = 0; 3822 else 3823 *(x86pte32_t *)pteptr = 0; 3824 mmu_tlbflush_entry(addr); 3825 x86pte_mapout(); 3826 } 3827 #endif 3828 3829 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3830 if (ht == NULL) 3831 panic("hat_mempte_release(): invalid address"); 3832 ASSERT(ht->ht_level == 0); 3833 HTABLE_DEC(ht->ht_valid_cnt); 3834 htable_release(ht); 3835 } 3836 3837 /* 3838 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3839 * on this CPU, so this ought to have been called with preemption disabled. 3840 */ 3841 void 3842 hat_mempte_remap( 3843 pfn_t pfn, 3844 caddr_t addr, 3845 hat_mempte_t pte_pa, 3846 uint_t attr, 3847 uint_t flags) 3848 { 3849 uintptr_t va = (uintptr_t)addr; 3850 x86pte_t pte; 3851 3852 /* 3853 * Remap the given PTE to the new page's PFN. Invalidate only 3854 * on this CPU. 3855 */ 3856 #ifdef DEBUG 3857 htable_t *ht; 3858 uint_t entry; 3859 3860 ASSERT(IS_PAGEALIGNED(va)); 3861 ASSERT(!IN_VA_HOLE(va)); 3862 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3863 ASSERT(ht != NULL); 3864 ASSERT(ht->ht_level == 0); 3865 ASSERT(ht->ht_valid_cnt > 0); 3866 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3867 htable_release(ht); 3868 #endif 3869 XPV_DISALLOW_MIGRATE(); 3870 pte = hati_mkpte(pfn, attr, 0, flags); 3871 #ifdef __xpv 3872 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3873 panic("HYPERVISOR_update_va_mapping() failed"); 3874 #else 3875 { 3876 x86pte_t *pteptr; 3877 3878 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3879 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3880 if (mmu.pae_hat) 3881 *(x86pte_t *)pteptr = pte; 3882 else 3883 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3884 mmu_tlbflush_entry(addr); 3885 x86pte_mapout(); 3886 } 3887 #endif 3888 XPV_ALLOW_MIGRATE(); 3889 } 3890 3891 3892 3893 /* 3894 * Hat locking functions 3895 * XXX - these two functions are currently being used by hatstats 3896 * they can be removed by using a per-as mutex for hatstats. 3897 */ 3898 void 3899 hat_enter(hat_t *hat) 3900 { 3901 mutex_enter(&hat->hat_mutex); 3902 } 3903 3904 void 3905 hat_exit(hat_t *hat) 3906 { 3907 mutex_exit(&hat->hat_mutex); 3908 } 3909 3910 /* 3911 * HAT part of cpu initialization. 3912 */ 3913 void 3914 hat_cpu_online(struct cpu *cpup) 3915 { 3916 if (cpup != CPU) { 3917 x86pte_cpu_init(cpup); 3918 hat_vlp_setup(cpup); 3919 } 3920 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3921 } 3922 3923 /* 3924 * HAT part of cpu deletion. 3925 * (currently, we only call this after the cpu is safely passivated.) 3926 */ 3927 void 3928 hat_cpu_offline(struct cpu *cpup) 3929 { 3930 ASSERT(cpup != CPU); 3931 3932 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 3933 x86pte_cpu_fini(cpup); 3934 hat_vlp_teardown(cpup); 3935 } 3936 3937 /* 3938 * Function called after all CPUs are brought online. 3939 * Used to remove low address boot mappings. 3940 */ 3941 void 3942 clear_boot_mappings(uintptr_t low, uintptr_t high) 3943 { 3944 uintptr_t vaddr = low; 3945 htable_t *ht = NULL; 3946 level_t level; 3947 uint_t entry; 3948 x86pte_t pte; 3949 3950 /* 3951 * On 1st CPU we can unload the prom mappings, basically we blow away 3952 * all virtual mappings under _userlimit. 3953 */ 3954 while (vaddr < high) { 3955 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3956 if (ht == NULL) 3957 break; 3958 3959 level = ht->ht_level; 3960 entry = htable_va2entry(vaddr, ht); 3961 ASSERT(level <= mmu.max_page_level); 3962 ASSERT(PTE_ISPAGE(pte, level)); 3963 3964 /* 3965 * Unload the mapping from the page tables. 3966 */ 3967 (void) x86pte_inval(ht, entry, 0, NULL); 3968 ASSERT(ht->ht_valid_cnt > 0); 3969 HTABLE_DEC(ht->ht_valid_cnt); 3970 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3971 3972 vaddr += LEVEL_SIZE(ht->ht_level); 3973 } 3974 if (ht) 3975 htable_release(ht); 3976 } 3977 3978 /* 3979 * Atomically update a new translation for a single page. If the 3980 * currently installed PTE doesn't match the value we expect to find, 3981 * it's not updated and we return the PTE we found. 3982 * 3983 * If activating nosync or NOWRITE and the page was modified we need to sync 3984 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3985 */ 3986 static x86pte_t 3987 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3988 { 3989 page_t *pp; 3990 uint_t rm = 0; 3991 x86pte_t replaced; 3992 3993 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 3994 PTE_GET(expected, PT_MOD | PT_REF) && 3995 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3996 !PTE_GET(new, PT_MOD | PT_REF))) { 3997 3998 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 3999 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4000 ASSERT(pp != NULL); 4001 if (PTE_GET(expected, PT_MOD)) 4002 rm |= P_MOD; 4003 if (PTE_GET(expected, PT_REF)) 4004 rm |= P_REF; 4005 PTE_CLR(new, PT_MOD | PT_REF); 4006 } 4007 4008 replaced = x86pte_update(ht, entry, expected, new); 4009 if (replaced != expected) 4010 return (replaced); 4011 4012 if (rm) { 4013 /* 4014 * sync to all constituent pages of a large page 4015 */ 4016 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4017 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4018 while (pgcnt-- > 0) { 4019 /* 4020 * hat_page_demote() can't decrease 4021 * pszc below this mapping size 4022 * since large mapping existed after we 4023 * took mlist lock. 4024 */ 4025 ASSERT(pp->p_szc >= ht->ht_level); 4026 hat_page_setattr(pp, rm); 4027 ++pp; 4028 } 4029 } 4030 4031 return (0); 4032 } 4033 4034 /* ARGSUSED */ 4035 void 4036 hat_join_srd(struct hat *hat, vnode_t *evp) 4037 { 4038 } 4039 4040 /* ARGSUSED */ 4041 hat_region_cookie_t 4042 hat_join_region(struct hat *hat, 4043 caddr_t r_saddr, 4044 size_t r_size, 4045 void *r_obj, 4046 u_offset_t r_objoff, 4047 uchar_t r_perm, 4048 uchar_t r_pgszc, 4049 hat_rgn_cb_func_t r_cb_function, 4050 uint_t flags) 4051 { 4052 panic("No shared region support on x86"); 4053 return (HAT_INVALID_REGION_COOKIE); 4054 } 4055 4056 /* ARGSUSED */ 4057 void 4058 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4059 { 4060 panic("No shared region support on x86"); 4061 } 4062 4063 /* ARGSUSED */ 4064 void 4065 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4066 { 4067 panic("No shared region support on x86"); 4068 } 4069 4070 4071 /* 4072 * Kernel Physical Mapping (kpm) facility 4073 * 4074 * Most of the routines needed to support segkpm are almost no-ops on the 4075 * x86 platform. We map in the entire segment when it is created and leave 4076 * it mapped in, so there is no additional work required to set up and tear 4077 * down individual mappings. All of these routines were created to support 4078 * SPARC platforms that have to avoid aliasing in their virtually indexed 4079 * caches. 4080 * 4081 * Most of the routines have sanity checks in them (e.g. verifying that the 4082 * passed-in page is locked). We don't actually care about most of these 4083 * checks on x86, but we leave them in place to identify problems in the 4084 * upper levels. 4085 */ 4086 4087 /* 4088 * Map in a locked page and return the vaddr. 4089 */ 4090 /*ARGSUSED*/ 4091 caddr_t 4092 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4093 { 4094 caddr_t vaddr; 4095 4096 #ifdef DEBUG 4097 if (kpm_enable == 0) { 4098 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4099 return ((caddr_t)NULL); 4100 } 4101 4102 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4103 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4104 return ((caddr_t)NULL); 4105 } 4106 #endif 4107 4108 vaddr = hat_kpm_page2va(pp, 1); 4109 4110 return (vaddr); 4111 } 4112 4113 /* 4114 * Mapout a locked page. 4115 */ 4116 /*ARGSUSED*/ 4117 void 4118 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4119 { 4120 #ifdef DEBUG 4121 if (kpm_enable == 0) { 4122 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4123 return; 4124 } 4125 4126 if (IS_KPM_ADDR(vaddr) == 0) { 4127 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4128 return; 4129 } 4130 4131 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4132 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4133 return; 4134 } 4135 #endif 4136 } 4137 4138 /* 4139 * Return the kpm virtual address for a specific pfn 4140 */ 4141 caddr_t 4142 hat_kpm_pfn2va(pfn_t pfn) 4143 { 4144 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4145 4146 return ((caddr_t)vaddr); 4147 } 4148 4149 /* 4150 * Return the kpm virtual address for the page at pp. 4151 */ 4152 /*ARGSUSED*/ 4153 caddr_t 4154 hat_kpm_page2va(struct page *pp, int checkswap) 4155 { 4156 return (hat_kpm_pfn2va(pp->p_pagenum)); 4157 } 4158 4159 /* 4160 * Return the page frame number for the kpm virtual address vaddr. 4161 */ 4162 pfn_t 4163 hat_kpm_va2pfn(caddr_t vaddr) 4164 { 4165 pfn_t pfn; 4166 4167 ASSERT(IS_KPM_ADDR(vaddr)); 4168 4169 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4170 4171 return (pfn); 4172 } 4173 4174 4175 /* 4176 * Return the page for the kpm virtual address vaddr. 4177 */ 4178 page_t * 4179 hat_kpm_vaddr2page(caddr_t vaddr) 4180 { 4181 pfn_t pfn; 4182 4183 ASSERT(IS_KPM_ADDR(vaddr)); 4184 4185 pfn = hat_kpm_va2pfn(vaddr); 4186 4187 return (page_numtopp_nolock(pfn)); 4188 } 4189 4190 /* 4191 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4192 * KPM page. This should never happen on x86 4193 */ 4194 int 4195 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4196 { 4197 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 4198 4199 return (0); 4200 } 4201 4202 /*ARGSUSED*/ 4203 void 4204 hat_kpm_mseghash_clear(int nentries) 4205 {} 4206 4207 /*ARGSUSED*/ 4208 void 4209 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4210 {} 4211 4212 #ifdef __xpv 4213 /* 4214 * There are specific Hypervisor calls to establish and remove mappings 4215 * to grant table references and the privcmd driver. We have to ensure 4216 * that a page table actually exists. 4217 */ 4218 void 4219 hat_prepare_mapping(hat_t *hat, caddr_t addr) 4220 { 4221 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4222 (void) htable_create(hat, (uintptr_t)addr, 0, NULL); 4223 } 4224 4225 void 4226 hat_release_mapping(hat_t *hat, caddr_t addr) 4227 { 4228 htable_t *ht; 4229 4230 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4231 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4232 ASSERT(ht != NULL); 4233 ASSERT(ht->ht_busy >= 2); 4234 htable_release(ht); 4235 htable_release(ht); 4236 } 4237 #endif 4238