xref: /titanic_51/usr/src/uts/i86pc/os/trap.c (revision 688a63ed70eca66e1dc82c8f096cb66f8bd94013)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
28 /*		All Rights Reserved   				*/
29 /*								*/
30 /*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
31 /*		All Rights Reserved   				*/
32 /*								*/
33 
34 #include <sys/types.h>
35 #include <sys/sysmacros.h>
36 #include <sys/param.h>
37 #include <sys/signal.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/proc.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 #include <sys/core.h>
44 #include <sys/syscall.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vm.h>
47 #include <sys/sysinfo.h>
48 #include <sys/fault.h>
49 #include <sys/stack.h>
50 #include <sys/psw.h>
51 #include <sys/regset.h>
52 #include <sys/fp.h>
53 #include <sys/trap.h>
54 #include <sys/kmem.h>
55 #include <sys/vtrace.h>
56 #include <sys/cmn_err.h>
57 #include <sys/prsystm.h>
58 #include <sys/mutex_impl.h>
59 #include <sys/machsystm.h>
60 #include <sys/archsystm.h>
61 #include <sys/sdt.h>
62 #include <sys/avintr.h>
63 #include <sys/kobj.h>
64 
65 #include <vm/hat.h>
66 
67 #include <vm/seg_kmem.h>
68 #include <vm/as.h>
69 #include <vm/seg.h>
70 #include <vm/hat_pte.h>
71 #include <vm/hat_i86.h>
72 
73 #include <sys/procfs.h>
74 
75 #include <sys/reboot.h>
76 #include <sys/debug.h>
77 #include <sys/debugreg.h>
78 #include <sys/modctl.h>
79 #include <sys/aio_impl.h>
80 #include <sys/tnf.h>
81 #include <sys/tnf_probe.h>
82 #include <sys/cred.h>
83 #include <sys/mman.h>
84 #include <sys/x86_archext.h>
85 #include <sys/copyops.h>
86 #include <c2/audit.h>
87 #include <sys/ftrace.h>
88 #include <sys/panic.h>
89 #include <sys/traptrace.h>
90 #include <sys/ontrap.h>
91 #include <sys/cpc_impl.h>
92 #include <sys/bootconf.h>
93 #include <sys/bootinfo.h>
94 #include <sys/promif.h>
95 #include <sys/mach_mmu.h>
96 #if defined(__xpv)
97 #include <sys/hypervisor.h>
98 #endif
99 #include <sys/contract/process_impl.h>
100 
101 #define	USER	0x10000		/* user-mode flag added to trap type */
102 
103 static const char *trap_type_mnemonic[] = {
104 	"de",	"db",	"2",	"bp",
105 	"of",	"br",	"ud",	"nm",
106 	"df",	"9",	"ts",	"np",
107 	"ss",	"gp",	"pf",	"15",
108 	"mf",	"ac",	"mc",	"xf"
109 };
110 
111 static const char *trap_type[] = {
112 	"Divide error",				/* trap id 0 	*/
113 	"Debug",				/* trap id 1	*/
114 	"NMI interrupt",			/* trap id 2	*/
115 	"Breakpoint",				/* trap id 3 	*/
116 	"Overflow",				/* trap id 4 	*/
117 	"BOUND range exceeded",			/* trap id 5 	*/
118 	"Invalid opcode",			/* trap id 6 	*/
119 	"Device not available",			/* trap id 7 	*/
120 	"Double fault",				/* trap id 8 	*/
121 	"Coprocessor segment overrun",		/* trap id 9 	*/
122 	"Invalid TSS",				/* trap id 10 	*/
123 	"Segment not present",			/* trap id 11 	*/
124 	"Stack segment fault",			/* trap id 12 	*/
125 	"General protection",			/* trap id 13 	*/
126 	"Page fault",				/* trap id 14 	*/
127 	"Reserved",				/* trap id 15 	*/
128 	"x87 floating point error",		/* trap id 16 	*/
129 	"Alignment check",			/* trap id 17 	*/
130 	"Machine check",			/* trap id 18	*/
131 	"SIMD floating point exception",	/* trap id 19	*/
132 };
133 
134 #define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
135 
136 #define	SLOW_SCALL_SIZE	2
137 #define	FAST_SCALL_SIZE	2
138 
139 int tudebug = 0;
140 int tudebugbpt = 0;
141 int tudebugfpe = 0;
142 int tudebugsse = 0;
143 
144 #if defined(TRAPDEBUG) || defined(lint)
145 int tdebug = 0;
146 int lodebug = 0;
147 int faultdebug = 0;
148 #else
149 #define	tdebug	0
150 #define	lodebug	0
151 #define	faultdebug	0
152 #endif /* defined(TRAPDEBUG) || defined(lint) */
153 
154 #if defined(TRAPTRACE)
155 /*
156  * trap trace record for cpu0 is allocated here.
157  * trap trace records for non-boot cpus are allocated in mp_startup_init().
158  */
159 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
160 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
161 	{
162 	    (uintptr_t)trap_tr0,			/* next record */
163 	    (uintptr_t)trap_tr0,			/* first record */
164 	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
165 	    (uintptr_t)0				/* current */
166 	},
167 };
168 
169 /*
170  * default trap buffer size
171  */
172 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
173 int trap_trace_freeze = 0;
174 int trap_trace_off = 0;
175 
176 /*
177  * A dummy TRAPTRACE entry to use after death.
178  */
179 trap_trace_rec_t trap_trace_postmort;
180 
181 static void dump_ttrace(void);
182 #endif	/* TRAPTRACE */
183 static void dumpregs(struct regs *);
184 static void showregs(uint_t, struct regs *, caddr_t);
185 static int kern_gpfault(struct regs *);
186 
187 /*ARGSUSED*/
188 static int
189 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
190 {
191 	struct panic_trap_info ti;
192 	const char *trap_name, *trap_mnemonic;
193 
194 	if (type < TRAP_TYPES) {
195 		trap_name = trap_type[type];
196 		trap_mnemonic = trap_type_mnemonic[type];
197 	} else {
198 		trap_name = "trap";
199 		trap_mnemonic = "-";
200 	}
201 
202 #ifdef TRAPTRACE
203 	TRAPTRACE_FREEZE;
204 #endif
205 
206 	ti.trap_regs = rp;
207 	ti.trap_type = type & ~USER;
208 	ti.trap_addr = addr;
209 
210 	curthread->t_panic_trap = &ti;
211 
212 	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
213 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
214 		    "occurred in module \"%s\" due to %s",
215 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
216 		    mod_containing_pc((caddr_t)rp->r_pc),
217 		    addr < (caddr_t)PAGESIZE ?
218 		    "a NULL pointer dereference" :
219 		    "an illegal access to a user address");
220 	} else
221 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
222 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
223 	return (0);
224 }
225 
226 /*
227  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
228  *
229  * int <vector> is two bytes: 0xCD <vector>
230  */
231 
232 static int
233 rewrite_syscall(caddr_t pc)
234 {
235 	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
236 
237 	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
238 	    (uintptr_t)pc) != 0)
239 		return (1);
240 
241 	return (0);
242 }
243 
244 /*
245  * Test to see if the instruction at pc is sysenter or syscall. The second
246  * argument should be the x86 feature flag corresponding to the expected
247  * instruction.
248  *
249  * sysenter is two bytes: 0x0F 0x34
250  * syscall is two bytes:  0x0F 0x05
251  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
252  */
253 
254 static int
255 instr_is_other_syscall(caddr_t pc, int which)
256 {
257 	uchar_t instr[FAST_SCALL_SIZE];
258 
259 	ASSERT(which == X86_SEP || which == X86_ASYSC || which == 0xCD);
260 
261 	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
262 		return (0);
263 
264 	switch (which) {
265 	case X86_SEP:
266 		if (instr[0] == 0x0F && instr[1] == 0x34)
267 			return (1);
268 		break;
269 	case X86_ASYSC:
270 		if (instr[0] == 0x0F && instr[1] == 0x05)
271 			return (1);
272 		break;
273 	case 0xCD:
274 		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
275 			return (1);
276 		break;
277 	}
278 
279 	return (0);
280 }
281 
282 static const char *
283 syscall_insn_string(int syscall_insn)
284 {
285 	switch (syscall_insn) {
286 	case X86_SEP:
287 		return ("sysenter");
288 	case X86_ASYSC:
289 		return ("syscall");
290 	case 0xCD:
291 		return ("int");
292 	default:
293 		return ("Unknown");
294 	}
295 }
296 
297 static int
298 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
299 {
300 	caddr_t	linearpc;
301 	int return_code = 0;
302 
303 	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
304 
305 	if (linear_pc(rp, p, &linearpc) == 0) {
306 
307 		/*
308 		 * If another thread beat us here, it already changed
309 		 * this site to the slower (int) syscall instruction.
310 		 */
311 		if (instr_is_other_syscall(linearpc, 0xCD)) {
312 			return_code = 1;
313 		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
314 
315 			if (rewrite_syscall(linearpc) == 0) {
316 				return_code = 1;
317 			}
318 #ifdef DEBUG
319 			else
320 				cmn_err(CE_WARN, "failed to rewrite %s "
321 				    "instruction in process %d",
322 				    syscall_insn_string(syscall_insn),
323 				    p->p_pid);
324 #endif /* DEBUG */
325 		}
326 	}
327 
328 	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
329 
330 	return (return_code);
331 }
332 
333 /*
334  * Test to see if the instruction at pc is a system call instruction.
335  *
336  * The bytes of an lcall instruction used for the syscall trap.
337  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
338  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
339  */
340 
341 #define	LCALLSIZE	7
342 
343 static int
344 instr_is_lcall_syscall(caddr_t pc)
345 {
346 	uchar_t instr[LCALLSIZE];
347 
348 	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
349 	    instr[0] == 0x9a &&
350 	    instr[1] == 0 &&
351 	    instr[2] == 0 &&
352 	    instr[3] == 0 &&
353 	    instr[4] == 0 &&
354 	    (instr[5] == 0x7 || instr[5] == 0x27) &&
355 	    instr[6] == 0)
356 		return (1);
357 
358 	return (0);
359 }
360 
361 #ifdef __amd64
362 
363 /*
364  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
365  * SAHF instructions were not implemented in 64-bit mode. Later revisions
366  * did implement these instructions. An extension to the cpuid instruction
367  * was added to check for the capability of executing these instructions
368  * in 64-bit mode.
369  *
370  * Intel originally did not implement these instructions in EM64T either,
371  * but added them in later revisions.
372  *
373  * So, there are different chip revisions by both vendors out there that
374  * may or may not implement these instructions. The easy solution is to
375  * just always emulate these instructions on demand.
376  *
377  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
378  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
379  */
380 
381 #define	LSAHFSIZE 1
382 
383 static int
384 instr_is_lsahf(caddr_t pc, uchar_t *instr)
385 {
386 	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
387 	    (*instr == 0x9e || *instr == 0x9f))
388 		return (1);
389 	return (0);
390 }
391 
392 /*
393  * Emulate the LAHF and SAHF instructions. The reference manuals define
394  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
395  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
396  *
397  * Note that %ah is bits 8-15 of %rax.
398  */
399 static void
400 emulate_lsahf(struct regs *rp, uchar_t instr)
401 {
402 	if (instr == 0x9e) {
403 		/* sahf. Copy bits from %ah to flags. */
404 		rp->r_ps = (rp->r_ps & ~0xff) |
405 		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
406 	} else {
407 		/* lahf. Copy bits from flags to %ah. */
408 		rp->r_rax = (rp->r_rax & ~0xff00) |
409 		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
410 	}
411 	rp->r_pc += LSAHFSIZE;
412 }
413 #endif /* __amd64 */
414 
415 #ifdef OPTERON_ERRATUM_91
416 
417 /*
418  * Test to see if the instruction at pc is a prefetch instruction.
419  *
420  * The first byte of prefetch instructions is always 0x0F.
421  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
422  * The third byte (ModRM) contains the register field bits (bits 3-5).
423  * These bits must be between 0 and 3 inclusive for regular prefetch and
424  * 0 and 1 inclusive for AMD 3dnow prefetch.
425  *
426  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
427  */
428 
429 static int
430 cmp_to_prefetch(uchar_t *p)
431 {
432 #ifdef _LP64
433 	if ((p[0] & 0xF0) == 0x40)	/* 64-bit REX prefix */
434 		p++;
435 #endif
436 	return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
437 	    (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
438 }
439 
440 static int
441 instr_is_prefetch(caddr_t pc)
442 {
443 	uchar_t instr[4];	/* optional REX prefix plus 3-byte opcode */
444 
445 	return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
446 	    cmp_to_prefetch(instr));
447 }
448 
449 #endif /* OPTERON_ERRATUM_91 */
450 
451 /*
452  * Called from the trap handler when a processor trap occurs.
453  *
454  * Note: All user-level traps that might call stop() must exit
455  * trap() by 'goto out' or by falling through.
456  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
457  * however, there are paths that arrive here with PS_IE == 0 so special care
458  * must be taken in those cases.
459  */
460 void
461 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
462 {
463 	kthread_t *ct = curthread;
464 	enum seg_rw rw;
465 	unsigned type;
466 	proc_t *p = ttoproc(ct);
467 	klwp_t *lwp = ttolwp(ct);
468 	uintptr_t lofault;
469 	faultcode_t pagefault(), res, errcode;
470 	enum fault_type fault_type;
471 	k_siginfo_t siginfo;
472 	uint_t fault = 0;
473 	int mstate;
474 	int sicode = 0;
475 	int watchcode;
476 	int watchpage;
477 	caddr_t vaddr;
478 	int singlestep_twiddle;
479 	size_t sz;
480 	int ta;
481 #ifdef __amd64
482 	uchar_t instr;
483 #endif
484 
485 	ASSERT_STACK_ALIGNED();
486 
487 	type = rp->r_trapno;
488 	CPU_STATS_ADDQ(CPU, sys, trap, 1);
489 	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
490 
491 	if (type == T_PGFLT) {
492 
493 		errcode = rp->r_err;
494 		if (errcode & PF_ERR_WRITE)
495 			rw = S_WRITE;
496 		else if ((caddr_t)rp->r_pc == addr ||
497 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
498 			rw = S_EXEC;
499 		else
500 			rw = S_READ;
501 
502 #if defined(__i386)
503 		/*
504 		 * Pentium Pro work-around
505 		 */
506 		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
507 			uint_t	attr;
508 			uint_t	priv_violation;
509 			uint_t	access_violation;
510 
511 			if (hat_getattr(addr < (caddr_t)kernelbase ?
512 			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
513 			    == -1) {
514 				errcode &= ~PF_ERR_PROT;
515 			} else {
516 				priv_violation = (errcode & PF_ERR_USER) &&
517 				    !(attr & PROT_USER);
518 				access_violation = (errcode & PF_ERR_WRITE) &&
519 				    !(attr & PROT_WRITE);
520 				if (!priv_violation && !access_violation)
521 					goto cleanup;
522 			}
523 		}
524 #endif /* __i386 */
525 
526 	} else if (type == T_SGLSTP && lwp != NULL)
527 		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
528 
529 	if (tdebug)
530 		showregs(type, rp, addr);
531 
532 	if (USERMODE(rp->r_cs)) {
533 		/*
534 		 * Set up the current cred to use during this trap. u_cred
535 		 * no longer exists.  t_cred is used instead.
536 		 * The current process credential applies to the thread for
537 		 * the entire trap.  If trapping from the kernel, this
538 		 * should already be set up.
539 		 */
540 		if (ct->t_cred != p->p_cred) {
541 			cred_t *oldcred = ct->t_cred;
542 			/*
543 			 * DTrace accesses t_cred in probe context.  t_cred
544 			 * must always be either NULL, or point to a valid,
545 			 * allocated cred structure.
546 			 */
547 			ct->t_cred = crgetcred();
548 			crfree(oldcred);
549 		}
550 		ASSERT(lwp != NULL);
551 		type |= USER;
552 		ASSERT(lwptoregs(lwp) == rp);
553 		lwp->lwp_state = LWP_SYS;
554 
555 		switch (type) {
556 		case T_PGFLT + USER:
557 			if ((caddr_t)rp->r_pc == addr)
558 				mstate = LMS_TFAULT;
559 			else
560 				mstate = LMS_DFAULT;
561 			break;
562 		default:
563 			mstate = LMS_TRAP;
564 			break;
565 		}
566 		/* Kernel probe */
567 		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
568 		    tnf_microstate, state, mstate);
569 		mstate = new_mstate(ct, mstate);
570 
571 		bzero(&siginfo, sizeof (siginfo));
572 	}
573 
574 	switch (type) {
575 	case T_PGFLT + USER:
576 	case T_SGLSTP:
577 	case T_SGLSTP + USER:
578 	case T_BPTFLT + USER:
579 		break;
580 
581 	default:
582 		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
583 		    (ulong_t)type, (ulong_t)rp);
584 		break;
585 	}
586 
587 	switch (type) {
588 	case T_SIMDFPE:
589 		/* Make sure we enable interrupts before die()ing */
590 		sti();	/* The SIMD exception comes in via cmninttrap */
591 		/*FALLTHROUGH*/
592 	default:
593 		if (type & USER) {
594 			if (tudebug)
595 				showregs(type, rp, (caddr_t)0);
596 			printf("trap: Unknown trap type %d in user mode\n",
597 			    type & ~USER);
598 			siginfo.si_signo = SIGILL;
599 			siginfo.si_code  = ILL_ILLTRP;
600 			siginfo.si_addr  = (caddr_t)rp->r_pc;
601 			siginfo.si_trapno = type & ~USER;
602 			fault = FLTILL;
603 			break;
604 		} else {
605 			(void) die(type, rp, addr, cpuid);
606 			/*NOTREACHED*/
607 		}
608 
609 	case T_PGFLT:		/* system page fault */
610 		/*
611 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
612 		 * set ot_trap and bounce back to the on_trap() call site
613 		 * via the installed trampoline.
614 		 */
615 		if ((ct->t_ontrap != NULL) &&
616 		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
617 			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
618 			rp->r_pc = ct->t_ontrap->ot_trampoline;
619 			goto cleanup;
620 		}
621 
622 		/*
623 		 * See if we can handle as pagefault. Save lofault
624 		 * across this. Here we assume that an address
625 		 * less than KERNELBASE is a user fault.
626 		 * We can do this as copy.s routines verify that the
627 		 * starting address is less than KERNELBASE before
628 		 * starting and because we know that we always have
629 		 * KERNELBASE mapped as invalid to serve as a "barrier".
630 		 */
631 		lofault = ct->t_lofault;
632 		ct->t_lofault = 0;
633 
634 		mstate = new_mstate(ct, LMS_KFAULT);
635 
636 		if (addr < (caddr_t)kernelbase) {
637 			res = pagefault(addr,
638 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
639 			if (res == FC_NOMAP &&
640 			    addr < p->p_usrstack &&
641 			    grow(addr))
642 				res = 0;
643 		} else {
644 			res = pagefault(addr,
645 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
646 		}
647 		(void) new_mstate(ct, mstate);
648 
649 		/*
650 		 * Restore lofault. If we resolved the fault, exit.
651 		 * If we didn't and lofault wasn't set, die.
652 		 */
653 		ct->t_lofault = lofault;
654 		if (res == 0)
655 			goto cleanup;
656 
657 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
658 		if (lofault == 0 && opteron_erratum_93) {
659 			/*
660 			 * Workaround for Opteron Erratum 93. On return from
661 			 * a System Managment Interrupt at a HLT instruction
662 			 * the %rip might be truncated to a 32 bit value.
663 			 * BIOS is supposed to fix this, but some don't.
664 			 * If this occurs we simply restore the high order bits.
665 			 * The HLT instruction is 1 byte of 0xf4.
666 			 */
667 			uintptr_t	rip = rp->r_pc;
668 
669 			if ((rip & 0xfffffffful) == rip) {
670 				rip |= 0xfffffffful << 32;
671 				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
672 				    PFN_INVALID &&
673 				    (*(uchar_t *)rip == 0xf4 ||
674 				    *(uchar_t *)(rip - 1) == 0xf4)) {
675 					rp->r_pc = rip;
676 					goto cleanup;
677 				}
678 			}
679 		}
680 #endif /* OPTERON_ERRATUM_93 && _LP64 */
681 
682 #ifdef OPTERON_ERRATUM_91
683 		if (lofault == 0 && opteron_erratum_91) {
684 			/*
685 			 * Workaround for Opteron Erratum 91. Prefetches may
686 			 * generate a page fault (they're not supposed to do
687 			 * that!). If this occurs we simply return back to the
688 			 * instruction.
689 			 */
690 			caddr_t		pc = (caddr_t)rp->r_pc;
691 
692 			/*
693 			 * If the faulting PC is not mapped, this is a
694 			 * legitimate kernel page fault that must result in a
695 			 * panic. If the faulting PC is mapped, it could contain
696 			 * a prefetch instruction. Check for that here.
697 			 */
698 			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
699 				if (cmp_to_prefetch((uchar_t *)pc)) {
700 #ifdef DEBUG
701 					cmn_err(CE_WARN, "Opteron erratum 91 "
702 					    "occurred: kernel prefetch"
703 					    " at %p generated a page fault!",
704 					    (void *)rp->r_pc);
705 #endif /* DEBUG */
706 					goto cleanup;
707 				}
708 			}
709 			(void) die(type, rp, addr, cpuid);
710 		}
711 #endif /* OPTERON_ERRATUM_91 */
712 
713 		if (lofault == 0)
714 			(void) die(type, rp, addr, cpuid);
715 
716 		/*
717 		 * Cannot resolve fault.  Return to lofault.
718 		 */
719 		if (lodebug) {
720 			showregs(type, rp, addr);
721 			traceregs(rp);
722 		}
723 		if (FC_CODE(res) == FC_OBJERR)
724 			res = FC_ERRNO(res);
725 		else
726 			res = EFAULT;
727 		rp->r_r0 = res;
728 		rp->r_pc = ct->t_lofault;
729 		goto cleanup;
730 
731 	case T_PGFLT + USER:	/* user page fault */
732 		if (faultdebug) {
733 			char *fault_str;
734 
735 			switch (rw) {
736 			case S_READ:
737 				fault_str = "read";
738 				break;
739 			case S_WRITE:
740 				fault_str = "write";
741 				break;
742 			case S_EXEC:
743 				fault_str = "exec";
744 				break;
745 			default:
746 				fault_str = "";
747 				break;
748 			}
749 			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
750 			    fault_str, (uintptr_t)addr, errcode);
751 		}
752 
753 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
754 		/*
755 		 * Workaround for AMD erratum 100
756 		 *
757 		 * A 32-bit process may receive a page fault on a non
758 		 * 32-bit address by mistake. The range of the faulting
759 		 * address will be
760 		 *
761 		 *	0xffffffff80000000 .. 0xffffffffffffffff or
762 		 *	0x0000000100000000 .. 0x000000017fffffff
763 		 *
764 		 * The fault is always due to an instruction fetch, however
765 		 * the value of r_pc should be correct (in 32 bit range),
766 		 * so we ignore the page fault on the bogus address.
767 		 */
768 		if (p->p_model == DATAMODEL_ILP32 &&
769 		    (0xffffffff80000000 <= (uintptr_t)addr ||
770 		    (0x100000000 <= (uintptr_t)addr &&
771 		    (uintptr_t)addr <= 0x17fffffff))) {
772 			if (!opteron_erratum_100)
773 				panic("unexpected erratum #100");
774 			if (rp->r_pc <= 0xffffffff)
775 				goto out;
776 		}
777 #endif /* OPTERON_ERRATUM_100 && _LP64 */
778 
779 		ASSERT(!(curthread->t_flag & T_WATCHPT));
780 		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
781 #ifdef __i386
782 		/*
783 		 * In 32-bit mode, the lcall (system call) instruction fetches
784 		 * one word from the stack, at the stack pointer, because of the
785 		 * way the call gate is constructed.  This is a bogus
786 		 * read and should not be counted as a read watchpoint.
787 		 * We work around the problem here by testing to see if
788 		 * this situation applies and, if so, simply jumping to
789 		 * the code in locore.s that fields the system call trap.
790 		 * The registers on the stack are already set up properly
791 		 * due to the match between the call gate sequence and the
792 		 * trap gate sequence.  We just have to adjust the pc.
793 		 */
794 		if (watchpage && addr == (caddr_t)rp->r_sp &&
795 		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
796 			extern void watch_syscall(void);
797 
798 			rp->r_pc += LCALLSIZE;
799 			watch_syscall();	/* never returns */
800 			/* NOTREACHED */
801 		}
802 #endif /* __i386 */
803 		vaddr = addr;
804 		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
805 			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
806 		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
807 		    sz, NULL, rw)) != 0) {
808 			if (ta) {
809 				do_watch_step(vaddr, sz, rw,
810 				    watchcode, rp->r_pc);
811 				fault_type = F_INVAL;
812 			} else {
813 				bzero(&siginfo, sizeof (siginfo));
814 				siginfo.si_signo = SIGTRAP;
815 				siginfo.si_code = watchcode;
816 				siginfo.si_addr = vaddr;
817 				siginfo.si_trapafter = 0;
818 				siginfo.si_pc = (caddr_t)rp->r_pc;
819 				fault = FLTWATCH;
820 				break;
821 			}
822 		} else {
823 			/* XXX pr_watch_emul() never succeeds (for now) */
824 			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
825 				goto out;
826 			do_watch_step(vaddr, sz, rw, 0, 0);
827 			fault_type = F_INVAL;
828 		}
829 
830 		res = pagefault(addr, fault_type, rw, 0);
831 
832 		/*
833 		 * If pagefault() succeeded, ok.
834 		 * Otherwise attempt to grow the stack.
835 		 */
836 		if (res == 0 ||
837 		    (res == FC_NOMAP &&
838 		    addr < p->p_usrstack &&
839 		    grow(addr))) {
840 			lwp->lwp_lastfault = FLTPAGE;
841 			lwp->lwp_lastfaddr = addr;
842 			if (prismember(&p->p_fltmask, FLTPAGE)) {
843 				bzero(&siginfo, sizeof (siginfo));
844 				siginfo.si_addr = addr;
845 				(void) stop_on_fault(FLTPAGE, &siginfo);
846 			}
847 			goto out;
848 		} else if (res == FC_PROT && addr < p->p_usrstack &&
849 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
850 			report_stack_exec(p, addr);
851 		}
852 
853 #ifdef OPTERON_ERRATUM_91
854 		/*
855 		 * Workaround for Opteron Erratum 91. Prefetches may generate a
856 		 * page fault (they're not supposed to do that!). If this
857 		 * occurs we simply return back to the instruction.
858 		 *
859 		 * We rely on copyin to properly fault in the page with r_pc.
860 		 */
861 		if (opteron_erratum_91 &&
862 		    addr != (caddr_t)rp->r_pc &&
863 		    instr_is_prefetch((caddr_t)rp->r_pc)) {
864 #ifdef DEBUG
865 			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
866 			    "prefetch at %p in pid %d generated a trap!",
867 			    (void *)rp->r_pc, p->p_pid);
868 #endif /* DEBUG */
869 			goto out;
870 		}
871 #endif /* OPTERON_ERRATUM_91 */
872 
873 		if (tudebug)
874 			showregs(type, rp, addr);
875 		/*
876 		 * In the case where both pagefault and grow fail,
877 		 * set the code to the value provided by pagefault.
878 		 * We map all errors returned from pagefault() to SIGSEGV.
879 		 */
880 		bzero(&siginfo, sizeof (siginfo));
881 		siginfo.si_addr = addr;
882 		switch (FC_CODE(res)) {
883 		case FC_HWERR:
884 		case FC_NOSUPPORT:
885 			siginfo.si_signo = SIGBUS;
886 			siginfo.si_code = BUS_ADRERR;
887 			fault = FLTACCESS;
888 			break;
889 		case FC_ALIGN:
890 			siginfo.si_signo = SIGBUS;
891 			siginfo.si_code = BUS_ADRALN;
892 			fault = FLTACCESS;
893 			break;
894 		case FC_OBJERR:
895 			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
896 				siginfo.si_signo = SIGBUS;
897 				siginfo.si_code = BUS_OBJERR;
898 				fault = FLTACCESS;
899 			}
900 			break;
901 		default:	/* FC_NOMAP or FC_PROT */
902 			siginfo.si_signo = SIGSEGV;
903 			siginfo.si_code =
904 			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
905 			fault = FLTBOUNDS;
906 			break;
907 		}
908 		break;
909 
910 	case T_ILLINST + USER:	/* invalid opcode fault */
911 		/*
912 		 * If the syscall instruction is disabled due to LDT usage, a
913 		 * user program that attempts to execute it will trigger a #ud
914 		 * trap. Check for that case here. If this occurs on a CPU which
915 		 * doesn't even support syscall, the result of all of this will
916 		 * be to emulate that particular instruction.
917 		 */
918 		if (p->p_ldt != NULL &&
919 		    ldt_rewrite_syscall(rp, p, X86_ASYSC))
920 			goto out;
921 
922 #ifdef __amd64
923 		/*
924 		 * Emulate the LAHF and SAHF instructions if needed.
925 		 * See the instr_is_lsahf function for details.
926 		 */
927 		if (p->p_model == DATAMODEL_LP64 &&
928 		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
929 			emulate_lsahf(rp, instr);
930 			goto out;
931 		}
932 #endif
933 
934 		/*FALLTHROUGH*/
935 
936 		if (tudebug)
937 			showregs(type, rp, (caddr_t)0);
938 		siginfo.si_signo = SIGILL;
939 		siginfo.si_code  = ILL_ILLOPC;
940 		siginfo.si_addr  = (caddr_t)rp->r_pc;
941 		fault = FLTILL;
942 		break;
943 
944 	case T_ZERODIV + USER:		/* integer divide by zero */
945 		if (tudebug && tudebugfpe)
946 			showregs(type, rp, (caddr_t)0);
947 		siginfo.si_signo = SIGFPE;
948 		siginfo.si_code  = FPE_INTDIV;
949 		siginfo.si_addr  = (caddr_t)rp->r_pc;
950 		fault = FLTIZDIV;
951 		break;
952 
953 	case T_OVFLW + USER:	/* integer overflow */
954 		if (tudebug && tudebugfpe)
955 			showregs(type, rp, (caddr_t)0);
956 		siginfo.si_signo = SIGFPE;
957 		siginfo.si_code  = FPE_INTOVF;
958 		siginfo.si_addr  = (caddr_t)rp->r_pc;
959 		fault = FLTIOVF;
960 		break;
961 
962 	case T_NOEXTFLT + USER:	/* math coprocessor not available */
963 		if (tudebug && tudebugfpe)
964 			showregs(type, rp, addr);
965 		if (fpnoextflt(rp)) {
966 			siginfo.si_signo = SIGILL;
967 			siginfo.si_code  = ILL_ILLOPC;
968 			siginfo.si_addr  = (caddr_t)rp->r_pc;
969 			fault = FLTILL;
970 		}
971 		break;
972 
973 	case T_EXTOVRFLT:	/* extension overrun fault */
974 		/* check if we took a kernel trap on behalf of user */
975 		{
976 			extern  void ndptrap_frstor(void);
977 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
978 				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
979 				(void) die(type, rp, addr, cpuid);
980 			}
981 			type |= USER;
982 		}
983 		/*FALLTHROUGH*/
984 	case T_EXTOVRFLT + USER:	/* extension overrun fault */
985 		if (tudebug && tudebugfpe)
986 			showregs(type, rp, addr);
987 		if (fpextovrflt(rp)) {
988 			siginfo.si_signo = SIGSEGV;
989 			siginfo.si_code  = SEGV_MAPERR;
990 			siginfo.si_addr  = (caddr_t)rp->r_pc;
991 			fault = FLTBOUNDS;
992 		}
993 		break;
994 
995 	case T_EXTERRFLT:	/* x87 floating point exception pending */
996 		/* check if we took a kernel trap on behalf of user */
997 		{
998 			extern  void ndptrap_frstor(void);
999 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1000 				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1001 				(void) die(type, rp, addr, cpuid);
1002 			}
1003 			type |= USER;
1004 		}
1005 		/*FALLTHROUGH*/
1006 
1007 	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1008 		if (tudebug && tudebugfpe)
1009 			showregs(type, rp, addr);
1010 		if (sicode = fpexterrflt(rp)) {
1011 			siginfo.si_signo = SIGFPE;
1012 			siginfo.si_code  = sicode;
1013 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1014 			fault = FLTFPE;
1015 		}
1016 		break;
1017 
1018 	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1019 		if (tudebug && tudebugsse)
1020 			showregs(type, rp, addr);
1021 		if ((x86_feature & (X86_SSE|X86_SSE2)) == 0) {
1022 			/*
1023 			 * There are rumours that some user instructions
1024 			 * on older CPUs can cause this trap to occur; in
1025 			 * which case send a SIGILL instead of a SIGFPE.
1026 			 */
1027 			siginfo.si_signo = SIGILL;
1028 			siginfo.si_code  = ILL_ILLTRP;
1029 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1030 			siginfo.si_trapno = type & ~USER;
1031 			fault = FLTILL;
1032 		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1033 			siginfo.si_signo = SIGFPE;
1034 			siginfo.si_code = sicode;
1035 			siginfo.si_addr = (caddr_t)rp->r_pc;
1036 			fault = FLTFPE;
1037 		}
1038 
1039 		sti();	/* The SIMD exception comes in via cmninttrap */
1040 		break;
1041 
1042 	case T_BPTFLT:	/* breakpoint trap */
1043 		/*
1044 		 * Kernel breakpoint traps should only happen when kmdb is
1045 		 * active, and even then, it'll have interposed on the IDT, so
1046 		 * control won't get here.  If it does, we've hit a breakpoint
1047 		 * without the debugger, which is very strange, and very
1048 		 * fatal.
1049 		 */
1050 		if (tudebug && tudebugbpt)
1051 			showregs(type, rp, (caddr_t)0);
1052 
1053 		(void) die(type, rp, addr, cpuid);
1054 		break;
1055 
1056 	case T_SGLSTP: /* single step/hw breakpoint exception */
1057 
1058 		/* Now evaluate how we got here */
1059 		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1060 			/*
1061 			 * i386 single-steps even through lcalls which
1062 			 * change the privilege level. So we take a trap at
1063 			 * the first instruction in privileged mode.
1064 			 *
1065 			 * Set a flag to indicate that upon completion of
1066 			 * the system call, deal with the single-step trap.
1067 			 *
1068 			 * The same thing happens for sysenter, too.
1069 			 */
1070 			singlestep_twiddle = 0;
1071 			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1072 			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1073 				singlestep_twiddle = 1;
1074 #if defined(__amd64)
1075 				/*
1076 				 * Since we are already on the kernel's
1077 				 * %gs, on 64-bit systems the sysenter case
1078 				 * needs to adjust the pc to avoid
1079 				 * executing the swapgs instruction at the
1080 				 * top of the handler.
1081 				 */
1082 				if (rp->r_pc == (uintptr_t)sys_sysenter)
1083 					rp->r_pc = (uintptr_t)
1084 					    _sys_sysenter_post_swapgs;
1085 				else
1086 					rp->r_pc = (uintptr_t)
1087 					    _brand_sys_sysenter_post_swapgs;
1088 #endif
1089 			}
1090 #if defined(__i386)
1091 			else if (rp->r_pc == (uintptr_t)sys_call ||
1092 			    rp->r_pc == (uintptr_t)brand_sys_call) {
1093 				singlestep_twiddle = 1;
1094 			}
1095 #endif
1096 			else {
1097 				/* not on sysenter/syscall; uregs available */
1098 				if (tudebug && tudebugbpt)
1099 					showregs(type, rp, (caddr_t)0);
1100 			}
1101 			if (singlestep_twiddle) {
1102 				rp->r_ps &= ~PS_T; /* turn off trace */
1103 				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1104 				ct->t_post_sys = 1;
1105 				aston(curthread);
1106 				goto cleanup;
1107 			}
1108 		}
1109 		/* XXX - needs review on debugger interface? */
1110 		if (boothowto & RB_DEBUG)
1111 			debug_enter((char *)NULL);
1112 		else
1113 			(void) die(type, rp, addr, cpuid);
1114 		break;
1115 
1116 	case T_NMIFLT:	/* NMI interrupt */
1117 		printf("Unexpected NMI in system mode\n");
1118 		goto cleanup;
1119 
1120 	case T_NMIFLT + USER:	/* NMI interrupt */
1121 		printf("Unexpected NMI in user mode\n");
1122 		break;
1123 
1124 	case T_GPFLT:	/* general protection violation */
1125 		/*
1126 		 * Any #GP that occurs during an on_trap .. no_trap bracket
1127 		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1128 		 * or in a on_fault .. no_fault bracket, is forgiven
1129 		 * and we trampoline.  This protection is given regardless
1130 		 * of whether we are 32/64 bit etc - if a distinction is
1131 		 * required then define new on_trap protection types.
1132 		 *
1133 		 * On amd64, we can get a #gp from referencing addresses
1134 		 * in the virtual address hole e.g. from a copyin or in
1135 		 * update_sregs while updating user segment registers.
1136 		 *
1137 		 * On the 32-bit hypervisor we could also generate one in
1138 		 * mfn_to_pfn by reaching around or into where the hypervisor
1139 		 * lives which is protected by segmentation.
1140 		 */
1141 
1142 		/*
1143 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1144 		 * set ot_trap and trampoline back to the on_trap() call site
1145 		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1146 		 */
1147 		if (ct->t_ontrap != NULL) {
1148 			int ttype =  ct->t_ontrap->ot_prot &
1149 			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1150 
1151 			if (ttype != 0) {
1152 				ct->t_ontrap->ot_trap |= ttype;
1153 				if (tudebug)
1154 					showregs(type, rp, (caddr_t)0);
1155 				rp->r_pc = ct->t_ontrap->ot_trampoline;
1156 				goto cleanup;
1157 			}
1158 		}
1159 
1160 		/*
1161 		 * If we're under lofault protection (copyin etc.),
1162 		 * longjmp back to lofault with an EFAULT.
1163 		 */
1164 		if (ct->t_lofault) {
1165 			/*
1166 			 * Fault is not resolvable, so just return to lofault
1167 			 */
1168 			if (lodebug) {
1169 				showregs(type, rp, addr);
1170 				traceregs(rp);
1171 			}
1172 			rp->r_r0 = EFAULT;
1173 			rp->r_pc = ct->t_lofault;
1174 			goto cleanup;
1175 		}
1176 
1177 		/*
1178 		 * We fall through to the next case, which repeats
1179 		 * the OT_SEGMENT_ACCESS check which we've already
1180 		 * done, so we'll always fall through to the
1181 		 * T_STKFLT case.
1182 		 */
1183 		/*FALLTHROUGH*/
1184 	case T_SEGFLT:	/* segment not present fault */
1185 		/*
1186 		 * One example of this is #NP in update_sregs while
1187 		 * attempting to update a user segment register
1188 		 * that points to a descriptor that is marked not
1189 		 * present.
1190 		 */
1191 		if (ct->t_ontrap != NULL &&
1192 		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1193 			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1194 			if (tudebug)
1195 				showregs(type, rp, (caddr_t)0);
1196 			rp->r_pc = ct->t_ontrap->ot_trampoline;
1197 			goto cleanup;
1198 		}
1199 		/*FALLTHROUGH*/
1200 	case T_STKFLT:	/* stack fault */
1201 	case T_TSSFLT:	/* invalid TSS fault */
1202 		if (tudebug)
1203 			showregs(type, rp, (caddr_t)0);
1204 		if (kern_gpfault(rp))
1205 			(void) die(type, rp, addr, cpuid);
1206 		goto cleanup;
1207 
1208 	/*
1209 	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1210 	 * should have no need for them, so we put a stop to it here.
1211 	 *
1212 	 * So: not-present fault is ONLY valid for 32-bit processes with
1213 	 * a private LDT trying to do a system call. Emulate it.
1214 	 *
1215 	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1216 	 * have a private LDT, and are trying to do a system call. Emulate it.
1217 	 */
1218 
1219 	case T_SEGFLT + USER:	/* segment not present fault */
1220 	case T_GPFLT + USER:	/* general protection violation */
1221 #ifdef _SYSCALL32_IMPL
1222 		if (p->p_model != DATAMODEL_NATIVE) {
1223 #endif /* _SYSCALL32_IMPL */
1224 		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1225 			if (type == T_SEGFLT + USER)
1226 				ASSERT(p->p_ldt != NULL);
1227 
1228 			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1229 			    type == T_SEGFLT + USER) {
1230 
1231 			/*
1232 			 * The user attempted a system call via the obsolete
1233 			 * call gate mechanism. Because the process doesn't have
1234 			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1235 			 * Emulate the syscall here, just as we do above for a
1236 			 * #np trap.
1237 			 */
1238 
1239 			/*
1240 			 * Since this is a not-present trap, rp->r_pc points to
1241 			 * the trapping lcall instruction. We need to bump it
1242 			 * to the next insn so the app can continue on.
1243 			 */
1244 			rp->r_pc += LCALLSIZE;
1245 			lwp->lwp_regs = rp;
1246 
1247 			/*
1248 			 * Normally the microstate of the LWP is forced back to
1249 			 * LMS_USER by the syscall handlers. Emulate that
1250 			 * behavior here.
1251 			 */
1252 			mstate = LMS_USER;
1253 
1254 			dosyscall();
1255 			goto out;
1256 			}
1257 		}
1258 #ifdef _SYSCALL32_IMPL
1259 		}
1260 #endif /* _SYSCALL32_IMPL */
1261 		/*
1262 		 * If the current process is using a private LDT and the
1263 		 * trapping instruction is sysenter, the sysenter instruction
1264 		 * has been disabled on the CPU because it destroys segment
1265 		 * registers. If this is the case, rewrite the instruction to
1266 		 * be a safe system call and retry it. If this occurs on a CPU
1267 		 * which doesn't even support sysenter, the result of all of
1268 		 * this will be to emulate that particular instruction.
1269 		 */
1270 		if (p->p_ldt != NULL &&
1271 		    ldt_rewrite_syscall(rp, p, X86_SEP))
1272 			goto out;
1273 
1274 		/*FALLTHROUGH*/
1275 
1276 	case T_BOUNDFLT + USER:	/* bound fault */
1277 	case T_STKFLT + USER:	/* stack fault */
1278 	case T_TSSFLT + USER:	/* invalid TSS fault */
1279 		if (tudebug)
1280 			showregs(type, rp, (caddr_t)0);
1281 		siginfo.si_signo = SIGSEGV;
1282 		siginfo.si_code  = SEGV_MAPERR;
1283 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1284 		fault = FLTBOUNDS;
1285 		break;
1286 
1287 	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1288 		if (tudebug)
1289 			showregs(type, rp, (caddr_t)0);
1290 		bzero(&siginfo, sizeof (siginfo));
1291 		siginfo.si_signo = SIGBUS;
1292 		siginfo.si_code = BUS_ADRALN;
1293 		siginfo.si_addr = (caddr_t)rp->r_pc;
1294 		fault = FLTACCESS;
1295 		break;
1296 
1297 	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1298 		if (tudebug && tudebugbpt)
1299 			showregs(type, rp, (caddr_t)0);
1300 
1301 		/* Was it single-stepping? */
1302 		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1303 			pcb_t *pcb = &lwp->lwp_pcb;
1304 
1305 			rp->r_ps &= ~PS_T;
1306 			/*
1307 			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1308 			 * give precedence to WATCH_STEP.  If neither is set,
1309 			 * user must have set the PS_T bit in %efl; treat this
1310 			 * as NORMAL_STEP.
1311 			 */
1312 			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1313 			    ((pcb->pcb_flags & NORMAL_STEP) ||
1314 			    !(pcb->pcb_flags & WATCH_STEP))) {
1315 				siginfo.si_signo = SIGTRAP;
1316 				siginfo.si_code = TRAP_TRACE;
1317 				siginfo.si_addr = (caddr_t)rp->r_pc;
1318 				fault = FLTTRACE;
1319 			}
1320 			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1321 		}
1322 		break;
1323 
1324 	case T_BPTFLT + USER:	/* breakpoint trap */
1325 		if (tudebug && tudebugbpt)
1326 			showregs(type, rp, (caddr_t)0);
1327 		/*
1328 		 * int 3 (the breakpoint instruction) leaves the pc referring
1329 		 * to the address one byte after the breakpointed address.
1330 		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1331 		 * it back so it refers to the breakpointed address.
1332 		 */
1333 		if (p->p_proc_flag & P_PR_BPTADJ)
1334 			rp->r_pc--;
1335 		siginfo.si_signo = SIGTRAP;
1336 		siginfo.si_code  = TRAP_BRKPT;
1337 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1338 		fault = FLTBPT;
1339 		break;
1340 
1341 	case T_AST:
1342 		/*
1343 		 * This occurs only after the cs register has been made to
1344 		 * look like a kernel selector, either through debugging or
1345 		 * possibly by functions like setcontext().  The thread is
1346 		 * about to cause a general protection fault at common_iret()
1347 		 * in locore.  We let that happen immediately instead of
1348 		 * doing the T_AST processing.
1349 		 */
1350 		goto cleanup;
1351 
1352 	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1353 		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1354 			proc_t *p = ttoproc(curthread);
1355 			extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1356 
1357 			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1358 			print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1359 			    p);
1360 			contract_process_hwerr(p->p_ct_process, p);
1361 			siginfo.si_signo = SIGKILL;
1362 			siginfo.si_code = SI_NOINFO;
1363 		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1364 			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1365 			if (kcpc_overflow_ast()) {
1366 				/*
1367 				 * Signal performance counter overflow
1368 				 */
1369 				if (tudebug)
1370 					showregs(type, rp, (caddr_t)0);
1371 				bzero(&siginfo, sizeof (siginfo));
1372 				siginfo.si_signo = SIGEMT;
1373 				siginfo.si_code = EMT_CPCOVF;
1374 				siginfo.si_addr = (caddr_t)rp->r_pc;
1375 				fault = FLTCPCOVF;
1376 			}
1377 		}
1378 
1379 		break;
1380 	}
1381 
1382 	/*
1383 	 * We can't get here from a system trap
1384 	 */
1385 	ASSERT(type & USER);
1386 
1387 	if (fault) {
1388 		/* We took a fault so abort single step. */
1389 		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1390 		/*
1391 		 * Remember the fault and fault adddress
1392 		 * for real-time (SIGPROF) profiling.
1393 		 */
1394 		lwp->lwp_lastfault = fault;
1395 		lwp->lwp_lastfaddr = siginfo.si_addr;
1396 
1397 		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1398 
1399 		/*
1400 		 * If a debugger has declared this fault to be an
1401 		 * event of interest, stop the lwp.  Otherwise just
1402 		 * deliver the associated signal.
1403 		 */
1404 		if (siginfo.si_signo != SIGKILL &&
1405 		    prismember(&p->p_fltmask, fault) &&
1406 		    stop_on_fault(fault, &siginfo) == 0)
1407 			siginfo.si_signo = 0;
1408 	}
1409 
1410 	if (siginfo.si_signo)
1411 		trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1412 
1413 	if (lwp->lwp_oweupc)
1414 		profil_tick(rp->r_pc);
1415 
1416 	if (ct->t_astflag | ct->t_sig_check) {
1417 		/*
1418 		 * Turn off the AST flag before checking all the conditions that
1419 		 * may have caused an AST.  This flag is on whenever a signal or
1420 		 * unusual condition should be handled after the next trap or
1421 		 * syscall.
1422 		 */
1423 		astoff(ct);
1424 		/*
1425 		 * If a single-step trap occurred on a syscall (see above)
1426 		 * recognize it now.  Do this before checking for signals
1427 		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1428 		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1429 		 */
1430 		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1431 			deferred_singlestep_trap((caddr_t)rp->r_pc);
1432 
1433 		ct->t_sig_check = 0;
1434 
1435 		mutex_enter(&p->p_lock);
1436 		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1437 			timer_lwpbind();
1438 			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1439 		}
1440 		mutex_exit(&p->p_lock);
1441 
1442 		/*
1443 		 * for kaio requests that are on the per-process poll queue,
1444 		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1445 		 * should copyout their result_t to user memory. by copying
1446 		 * out the result_t, the user can poll on memory waiting
1447 		 * for the kaio request to complete.
1448 		 */
1449 		if (p->p_aio)
1450 			aio_cleanup(0);
1451 		/*
1452 		 * If this LWP was asked to hold, call holdlwp(), which will
1453 		 * stop.  holdlwps() sets this up and calls pokelwps() which
1454 		 * sets the AST flag.
1455 		 *
1456 		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1457 		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1458 		 * syscall failed after creating the LWP.
1459 		 */
1460 		if (ISHOLD(p))
1461 			holdlwp();
1462 
1463 		/*
1464 		 * All code that sets signals and makes ISSIG evaluate true must
1465 		 * set t_astflag afterwards.
1466 		 */
1467 		if (ISSIG_PENDING(ct, lwp, p)) {
1468 			if (issig(FORREAL))
1469 				psig();
1470 			ct->t_sig_check = 1;
1471 		}
1472 
1473 		if (ct->t_rprof != NULL) {
1474 			realsigprof(0, 0, 0);
1475 			ct->t_sig_check = 1;
1476 		}
1477 
1478 		/*
1479 		 * /proc can't enable/disable the trace bit itself
1480 		 * because that could race with the call gate used by
1481 		 * system calls via "lcall". If that happened, an
1482 		 * invalid EFLAGS would result. prstep()/prnostep()
1483 		 * therefore schedule an AST for the purpose.
1484 		 */
1485 		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1486 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1487 			rp->r_ps |= PS_T;
1488 		}
1489 		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1490 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1491 			rp->r_ps &= ~PS_T;
1492 		}
1493 	}
1494 
1495 out:	/* We can't get here from a system trap */
1496 	ASSERT(type & USER);
1497 
1498 	if (ISHOLD(p))
1499 		holdlwp();
1500 
1501 	/*
1502 	 * Set state to LWP_USER here so preempt won't give us a kernel
1503 	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1504 	 * restore the user-level priority.
1505 	 *
1506 	 * It is important that no locks (other than spinlocks) be entered
1507 	 * after this point before returning to user mode (unless lwp_state
1508 	 * is set back to LWP_SYS).
1509 	 */
1510 	lwp->lwp_state = LWP_USER;
1511 
1512 	if (ct->t_trapret) {
1513 		ct->t_trapret = 0;
1514 		thread_lock(ct);
1515 		CL_TRAPRET(ct);
1516 		thread_unlock(ct);
1517 	}
1518 	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1519 		preempt();
1520 	prunstop();
1521 	(void) new_mstate(ct, mstate);
1522 
1523 	/* Kernel probe */
1524 	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1525 	    tnf_microstate, state, LMS_USER);
1526 
1527 	return;
1528 
1529 cleanup:	/* system traps end up here */
1530 	ASSERT(!(type & USER));
1531 }
1532 
1533 /*
1534  * Patch non-zero to disable preemption of threads in the kernel.
1535  */
1536 int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1537 
1538 struct kpreempt_cnts {		/* kernel preemption statistics */
1539 	int	kpc_idle;	/* executing idle thread */
1540 	int	kpc_intr;	/* executing interrupt thread */
1541 	int	kpc_clock;	/* executing clock thread */
1542 	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1543 	int	kpc_notonproc;	/* thread is surrendering processor */
1544 	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1545 	int	kpc_prilevel;	/* processor interrupt level is too high */
1546 	int	kpc_apreempt;	/* asynchronous preemption */
1547 	int	kpc_spreempt;	/* synchronous preemption */
1548 } kpreempt_cnts;
1549 
1550 /*
1551  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1552  *	the argument is old PIL for an interrupt,
1553  *	or the distingished value KPREEMPT_SYNC.
1554  */
1555 void
1556 kpreempt(int asyncspl)
1557 {
1558 	kthread_t *ct = curthread;
1559 
1560 	if (IGNORE_KERNEL_PREEMPTION) {
1561 		aston(CPU->cpu_dispthread);
1562 		return;
1563 	}
1564 
1565 	/*
1566 	 * Check that conditions are right for kernel preemption
1567 	 */
1568 	do {
1569 		if (ct->t_preempt) {
1570 			/*
1571 			 * either a privileged thread (idle, panic, interrupt)
1572 			 * or will check when t_preempt is lowered
1573 			 * We need to specifically handle the case where
1574 			 * the thread is in the middle of swtch (resume has
1575 			 * been called) and has its t_preempt set
1576 			 * [idle thread and a thread which is in kpreempt
1577 			 * already] and then a high priority thread is
1578 			 * available in the local dispatch queue.
1579 			 * In this case the resumed thread needs to take a
1580 			 * trap so that it can call kpreempt. We achieve
1581 			 * this by using siron().
1582 			 * How do we detect this condition:
1583 			 * idle thread is running and is in the midst of
1584 			 * resume: curthread->t_pri == -1 && CPU->dispthread
1585 			 * != CPU->thread
1586 			 * Need to ensure that this happens only at high pil
1587 			 * resume is called at high pil
1588 			 * Only in resume_from_idle is the pil changed.
1589 			 */
1590 			if (ct->t_pri < 0) {
1591 				kpreempt_cnts.kpc_idle++;
1592 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1593 					siron();
1594 			} else if (ct->t_flag & T_INTR_THREAD) {
1595 				kpreempt_cnts.kpc_intr++;
1596 				if (ct->t_pil == CLOCK_LEVEL)
1597 					kpreempt_cnts.kpc_clock++;
1598 			} else {
1599 				kpreempt_cnts.kpc_blocked++;
1600 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1601 					siron();
1602 			}
1603 			aston(CPU->cpu_dispthread);
1604 			return;
1605 		}
1606 		if (ct->t_state != TS_ONPROC ||
1607 		    ct->t_disp_queue != CPU->cpu_disp) {
1608 			/* this thread will be calling swtch() shortly */
1609 			kpreempt_cnts.kpc_notonproc++;
1610 			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1611 				/* already in swtch(), force another */
1612 				kpreempt_cnts.kpc_inswtch++;
1613 				siron();
1614 			}
1615 			return;
1616 		}
1617 		if (getpil() >= DISP_LEVEL) {
1618 			/*
1619 			 * We can't preempt this thread if it is at
1620 			 * a PIL >= DISP_LEVEL since it may be holding
1621 			 * a spin lock (like sched_lock).
1622 			 */
1623 			siron();	/* check back later */
1624 			kpreempt_cnts.kpc_prilevel++;
1625 			return;
1626 		}
1627 		if (!interrupts_enabled()) {
1628 			/*
1629 			 * Can't preempt while running with ints disabled
1630 			 */
1631 			kpreempt_cnts.kpc_prilevel++;
1632 			return;
1633 		}
1634 		if (asyncspl != KPREEMPT_SYNC)
1635 			kpreempt_cnts.kpc_apreempt++;
1636 		else
1637 			kpreempt_cnts.kpc_spreempt++;
1638 
1639 		ct->t_preempt++;
1640 		preempt();
1641 		ct->t_preempt--;
1642 	} while (CPU->cpu_kprunrun);
1643 }
1644 
1645 /*
1646  * Print out debugging info.
1647  */
1648 static void
1649 showregs(uint_t type, struct regs *rp, caddr_t addr)
1650 {
1651 	int s;
1652 
1653 	s = spl7();
1654 	type &= ~USER;
1655 	if (PTOU(curproc)->u_comm[0])
1656 		printf("%s: ", PTOU(curproc)->u_comm);
1657 	if (type < TRAP_TYPES)
1658 		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1659 	else
1660 		switch (type) {
1661 		case T_SYSCALL:
1662 			printf("Syscall Trap:\n");
1663 			break;
1664 		case T_AST:
1665 			printf("AST\n");
1666 			break;
1667 		default:
1668 			printf("Bad Trap = %d\n", type);
1669 			break;
1670 		}
1671 	if (type == T_PGFLT) {
1672 		printf("Bad %s fault at addr=0x%lx\n",
1673 		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1674 	} else if (addr) {
1675 		printf("addr=0x%lx\n", (uintptr_t)addr);
1676 	}
1677 
1678 	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1679 	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1680 	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1681 
1682 #if defined(__lint)
1683 	/*
1684 	 * this clause can be deleted when lint bug 4870403 is fixed
1685 	 * (lint thinks that bit 32 is illegal in a %b format string)
1686 	 */
1687 	printf("cr0: %x cr4: %b\n",
1688 	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1689 #else
1690 	printf("cr0: %b cr4: %b\n",
1691 	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1692 #endif	/* __lint */
1693 
1694 	printf("cr2: %lx", getcr2());
1695 #if !defined(__xpv)
1696 	printf("cr3: %lx", getcr3());
1697 #if defined(__amd64)
1698 	printf("cr8: %lx\n", getcr8());
1699 #endif
1700 #endif
1701 	printf("\n");
1702 
1703 	dumpregs(rp);
1704 	splx(s);
1705 }
1706 
1707 static void
1708 dumpregs(struct regs *rp)
1709 {
1710 #if defined(__amd64)
1711 	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1712 
1713 	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1714 	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1715 	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1716 	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1717 	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1718 
1719 	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1720 	    " ds", rp->r_ds);
1721 	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1722 
1723 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1724 	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1725 
1726 	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1727 
1728 #elif defined(__i386)
1729 	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1730 
1731 	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1732 	    " es", rp->r_es, " ds", rp->r_ds);
1733 	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1734 	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1735 	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1736 	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1737 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1738 	    "eip", rp->r_eip, " cs", rp->r_cs);
1739 	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1740 	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1741 
1742 #endif	/* __i386 */
1743 }
1744 
1745 /*
1746  * Test to see if the instruction is iret on i386 or iretq on amd64.
1747  *
1748  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1749  * then we are in the context of hypervisor's failsafe handler because it
1750  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1751  */
1752 static int
1753 instr_is_iret(caddr_t pc)
1754 {
1755 
1756 #if defined(__xpv)
1757 	extern void nopop_sys_rtt_syscall(void);
1758 	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1759 
1760 #else
1761 
1762 #if defined(__amd64)
1763 	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1764 
1765 #elif defined(__i386)
1766 	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1767 #endif	/* __i386 */
1768 	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1769 
1770 #endif	/* __xpv */
1771 }
1772 
1773 #if defined(__i386)
1774 
1775 /*
1776  * Test to see if the instruction is part of __SEGREGS_POP
1777  *
1778  * Note carefully the appallingly awful dependency between
1779  * the instruction sequence used in __SEGREGS_POP and these
1780  * instructions encoded here.
1781  */
1782 static int
1783 instr_is_segregs_pop(caddr_t pc)
1784 {
1785 	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1786 	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1787 	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1788 	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1789 
1790 	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1791 	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1792 	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1793 	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1794 		return (1);
1795 
1796 	return (0);
1797 }
1798 
1799 #endif	/* __i386 */
1800 
1801 /*
1802  * Test to see if the instruction is part of _sys_rtt.
1803  *
1804  * Again on the hypervisor if we try to IRET to user land with a bad code
1805  * or stack selector we will get vectored through xen_failsafe_callback.
1806  * In which case we assume we got here via _sys_rtt since we only allow
1807  * IRET to user land to take place in _sys_rtt.
1808  */
1809 static int
1810 instr_is_sys_rtt(caddr_t pc)
1811 {
1812 	extern void _sys_rtt(), _sys_rtt_end();
1813 
1814 	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1815 	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1816 		return (0);
1817 
1818 	return (1);
1819 }
1820 
1821 /*
1822  * Handle #gp faults in kernel mode.
1823  *
1824  * One legitimate way this can happen is if we attempt to update segment
1825  * registers to naughty values on the way out of the kernel.
1826  *
1827  * This can happen in a couple of ways: someone - either accidentally or
1828  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1829  * (signal(2)) a ucontext that contains silly segment register values.
1830  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1831  * of a subject process via /proc to contain silly segment register values.
1832  *
1833  * (The unfortunate part is that we can end up discovering the bad segment
1834  * register value in the middle of an 'iret' after we've popped most of the
1835  * stack.  So it becomes quite difficult to associate an accurate ucontext
1836  * with the lwp, because the act of taking the #gp trap overwrites most of
1837  * what we were going to send the lwp.)
1838  *
1839  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1840  * trying to return to user mode and we get a #gp fault, then we need
1841  * to die() -- which will happen if we return non-zero from this routine.
1842  */
1843 static int
1844 kern_gpfault(struct regs *rp)
1845 {
1846 	kthread_t *t = curthread;
1847 	proc_t *p = ttoproc(t);
1848 	klwp_t *lwp = ttolwp(t);
1849 	struct regs tmpregs, *trp = NULL;
1850 	caddr_t pc = (caddr_t)rp->r_pc;
1851 	int v;
1852 	uint32_t auditing = AU_AUDITING();
1853 
1854 	/*
1855 	 * if we're not an lwp, or in the case of running native the
1856 	 * pc range is outside _sys_rtt, then we should immediately
1857 	 * be die()ing horribly.
1858 	 */
1859 	if (lwp == NULL || !instr_is_sys_rtt(pc))
1860 		return (1);
1861 
1862 	/*
1863 	 * So at least we're in the right part of the kernel.
1864 	 *
1865 	 * Disassemble the instruction at the faulting pc.
1866 	 * Once we know what it is, we carefully reconstruct the stack
1867 	 * based on the order in which the stack is deconstructed in
1868 	 * _sys_rtt. Ew.
1869 	 */
1870 	if (instr_is_iret(pc)) {
1871 		/*
1872 		 * We took the #gp while trying to perform the IRET.
1873 		 * This means that either %cs or %ss are bad.
1874 		 * All we know for sure is that most of the general
1875 		 * registers have been restored, including the
1876 		 * segment registers, and all we have left on the
1877 		 * topmost part of the lwp's stack are the
1878 		 * registers that the iretq was unable to consume.
1879 		 *
1880 		 * All the rest of the state was crushed by the #gp
1881 		 * which pushed -its- registers atop our old save area
1882 		 * (because we had to decrement the stack pointer, sigh) so
1883 		 * all that we can try and do is to reconstruct the
1884 		 * crushed frame from the #gp trap frame itself.
1885 		 */
1886 		trp = &tmpregs;
1887 		trp->r_ss = lwptoregs(lwp)->r_ss;
1888 		trp->r_sp = lwptoregs(lwp)->r_sp;
1889 		trp->r_ps = lwptoregs(lwp)->r_ps;
1890 		trp->r_cs = lwptoregs(lwp)->r_cs;
1891 		trp->r_pc = lwptoregs(lwp)->r_pc;
1892 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1893 
1894 		/*
1895 		 * Validate simple math
1896 		 */
1897 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1898 		ASSERT(trp->r_err == rp->r_err);
1899 
1900 
1901 
1902 	}
1903 
1904 #if defined(__amd64)
1905 	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1906 
1907 		/*
1908 		 * This is the common case -- we're trying to load
1909 		 * a bad segment register value in the only section
1910 		 * of kernel code that ever loads segment registers.
1911 		 *
1912 		 * We don't need to do anything at this point because
1913 		 * the pcb contains all the pending segment register
1914 		 * state, and the regs are still intact because we
1915 		 * didn't adjust the stack pointer yet.  Given the fidelity
1916 		 * of all this, we could conceivably send a signal
1917 		 * to the lwp, rather than core-ing.
1918 		 */
1919 		trp = lwptoregs(lwp);
1920 		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1921 	}
1922 
1923 #elif defined(__i386)
1924 
1925 	if (trp == NULL && instr_is_segregs_pop(pc))
1926 		trp = lwptoregs(lwp);
1927 
1928 #endif	/* __i386 */
1929 
1930 	if (trp == NULL)
1931 		return (1);
1932 
1933 	/*
1934 	 * If we get to here, we're reasonably confident that we've
1935 	 * correctly decoded what happened on the way out of the kernel.
1936 	 * Rewrite the lwp's registers so that we can create a core dump
1937 	 * the (at least vaguely) represents the mcontext we were
1938 	 * being asked to restore when things went so terribly wrong.
1939 	 */
1940 
1941 	/*
1942 	 * Make sure that we have a meaningful %trapno and %err.
1943 	 */
1944 	trp->r_trapno = rp->r_trapno;
1945 	trp->r_err = rp->r_err;
1946 
1947 	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1948 		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1949 
1950 
1951 	mutex_enter(&p->p_lock);
1952 	lwp->lwp_cursig = SIGSEGV;
1953 	mutex_exit(&p->p_lock);
1954 
1955 	/*
1956 	 * Terminate all LWPs but don't discard them.  If another lwp beat
1957 	 * us to the punch by calling exit(), evaporate now.
1958 	 */
1959 	proc_is_exiting(p);
1960 	if (exitlwps(1) != 0) {
1961 		mutex_enter(&p->p_lock);
1962 		lwp_exit();
1963 	}
1964 
1965 	if (auditing)		/* audit core dump */
1966 		audit_core_start(SIGSEGV);
1967 	v = core(SIGSEGV, B_FALSE);
1968 	if (auditing)		/* audit core dump */
1969 		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1970 	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1971 	return (0);
1972 }
1973 
1974 /*
1975  * dump_tss() - Display the TSS structure
1976  */
1977 
1978 #if !defined(__xpv)
1979 #if defined(__amd64)
1980 
1981 static void
1982 dump_tss(void)
1983 {
1984 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1985 	struct tss *tss = CPU->cpu_tss;
1986 
1987 	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1988 	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1989 	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1990 
1991 	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
1992 	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
1993 	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
1994 	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
1995 	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
1996 	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
1997 	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
1998 }
1999 
2000 #elif defined(__i386)
2001 
2002 static void
2003 dump_tss(void)
2004 {
2005 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2006 	struct tss *tss = CPU->cpu_tss;
2007 
2008 	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2009 	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2010 	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2011 	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2012 	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2013 	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2014 	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2015 	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2016 	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2017 	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2018 	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2019 	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2020 	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2021 	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2022 	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2023 }
2024 
2025 #endif	/* __amd64 */
2026 #endif	/* !__xpv */
2027 
2028 #if defined(TRAPTRACE)
2029 
2030 int ttrace_nrec = 10;		/* number of records to dump out */
2031 int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2032 
2033 /*
2034  * Dump out the last ttrace_nrec traptrace records on each CPU
2035  */
2036 static void
2037 dump_ttrace(void)
2038 {
2039 	trap_trace_ctl_t *ttc;
2040 	trap_trace_rec_t *rec;
2041 	uintptr_t current;
2042 	int i, j, k;
2043 	int n = NCPU;
2044 #if defined(__amd64)
2045 	const char banner[] =
2046 	    "\ncpu          address    timestamp "
2047 	    "type  vc  handler   pc\n";
2048 	const char fmt1[] = "%3d %016lx %12llx ";
2049 #elif defined(__i386)
2050 	const char banner[] =
2051 	    "\ncpu  address     timestamp type  vc  handler   pc\n";
2052 	const char fmt1[] = "%3d %08lx %12llx ";
2053 #endif
2054 	const char fmt2[] = "%4s %3x ";
2055 	const char fmt3[] = "%8s ";
2056 
2057 	if (ttrace_nrec == 0)
2058 		return;
2059 
2060 	printf(banner);
2061 
2062 	for (i = 0; i < n; i++) {
2063 		ttc = &trap_trace_ctl[i];
2064 		if (ttc->ttc_first == NULL)
2065 			continue;
2066 
2067 		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2068 		for (j = 0; j < ttrace_nrec; j++) {
2069 			struct sysent	*sys;
2070 			struct autovec	*vec;
2071 			extern struct av_head autovect[];
2072 			int type;
2073 			ulong_t	off;
2074 			char *sym, *stype;
2075 
2076 			if (current < ttc->ttc_first)
2077 				current =
2078 				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2079 
2080 			if (current == NULL)
2081 				continue;
2082 
2083 			rec = (trap_trace_rec_t *)current;
2084 
2085 			if (rec->ttr_stamp == 0)
2086 				break;
2087 
2088 			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2089 
2090 			switch (rec->ttr_marker) {
2091 			case TT_SYSCALL:
2092 			case TT_SYSENTER:
2093 			case TT_SYSC:
2094 			case TT_SYSC64:
2095 #if defined(__amd64)
2096 				sys = &sysent32[rec->ttr_sysnum];
2097 				switch (rec->ttr_marker) {
2098 				case TT_SYSC64:
2099 					sys = &sysent[rec->ttr_sysnum];
2100 					/*FALLTHROUGH*/
2101 #elif defined(__i386)
2102 				sys = &sysent[rec->ttr_sysnum];
2103 				switch (rec->ttr_marker) {
2104 				case TT_SYSC64:
2105 #endif
2106 				case TT_SYSC:
2107 					stype = "sysc";	/* syscall */
2108 					break;
2109 				case TT_SYSCALL:
2110 					stype = "lcal";	/* lcall */
2111 					break;
2112 				case TT_SYSENTER:
2113 					stype = "syse";	/* sysenter */
2114 					break;
2115 				default:
2116 					break;
2117 				}
2118 				printf(fmt2, "sysc", rec->ttr_sysnum);
2119 				if (sys != NULL) {
2120 					sym = kobj_getsymname(
2121 					    (uintptr_t)sys->sy_callc,
2122 					    &off);
2123 					if (sym != NULL)
2124 						printf(fmt3, sym);
2125 					else
2126 						printf("%p ", sys->sy_callc);
2127 				} else {
2128 					printf(fmt3, "unknown");
2129 				}
2130 				break;
2131 
2132 			case TT_INTERRUPT:
2133 				printf(fmt2, "intr", rec->ttr_vector);
2134 				if (get_intr_handler != NULL)
2135 					vec = (struct autovec *)
2136 					    (*get_intr_handler)
2137 					    (rec->ttr_cpuid, rec->ttr_vector);
2138 				else
2139 					vec =
2140 					    autovect[rec->ttr_vector].avh_link;
2141 
2142 				if (vec != NULL) {
2143 					sym = kobj_getsymname(
2144 					    (uintptr_t)vec->av_vector, &off);
2145 					if (sym != NULL)
2146 						printf(fmt3, sym);
2147 					else
2148 						printf("%p ", vec->av_vector);
2149 				} else {
2150 					printf(fmt3, "unknown ");
2151 				}
2152 				break;
2153 
2154 			case TT_TRAP:
2155 			case TT_EVENT:
2156 				type = rec->ttr_regs.r_trapno;
2157 				printf(fmt2, "trap", type);
2158 				if (type < TRAP_TYPES)
2159 					printf("     #%s ",
2160 					    trap_type_mnemonic[type]);
2161 				else
2162 					switch (type) {
2163 					case T_AST:
2164 						printf(fmt3, "ast");
2165 						break;
2166 					default:
2167 						printf(fmt3, "");
2168 						break;
2169 					}
2170 				break;
2171 
2172 			default:
2173 				break;
2174 			}
2175 
2176 			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2177 			if (sym != NULL)
2178 				printf("%s+%lx\n", sym, off);
2179 			else
2180 				printf("%lx\n", rec->ttr_regs.r_pc);
2181 
2182 			if (ttrace_dump_nregs-- > 0) {
2183 				int s;
2184 
2185 				if (rec->ttr_marker == TT_INTERRUPT)
2186 					printf(
2187 					    "\t\tipl %x spl %x pri %x\n",
2188 					    rec->ttr_ipl,
2189 					    rec->ttr_spl,
2190 					    rec->ttr_pri);
2191 
2192 				dumpregs(&rec->ttr_regs);
2193 
2194 				printf("\t%3s: %p\n\n", " ct",
2195 				    (void *)rec->ttr_curthread);
2196 
2197 				/*
2198 				 * print out the pc stack that we recorded
2199 				 * at trap time (if any)
2200 				 */
2201 				for (s = 0; s < rec->ttr_sdepth; s++) {
2202 					uintptr_t fullpc;
2203 
2204 					if (s >= TTR_STACK_DEPTH) {
2205 						printf("ttr_sdepth corrupt\n");
2206 						break;
2207 					}
2208 
2209 					fullpc = (uintptr_t)rec->ttr_stack[s];
2210 
2211 					sym = kobj_getsymname(fullpc, &off);
2212 					if (sym != NULL)
2213 						printf("-> %s+0x%lx()\n",
2214 						    sym, off);
2215 					else
2216 						printf("-> 0x%lx()\n", fullpc);
2217 				}
2218 				printf("\n");
2219 			}
2220 			current -= sizeof (trap_trace_rec_t);
2221 		}
2222 	}
2223 }
2224 
2225 #endif	/* TRAPTRACE */
2226 
2227 void
2228 panic_showtrap(struct panic_trap_info *tip)
2229 {
2230 	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2231 
2232 #if defined(TRAPTRACE)
2233 	dump_ttrace();
2234 #endif
2235 
2236 #if !defined(__xpv)
2237 	if (tip->trap_type == T_DBLFLT)
2238 		dump_tss();
2239 #endif
2240 }
2241 
2242 void
2243 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2244 {
2245 	panic_saveregs(pdp, tip->trap_regs);
2246 }
2247