xref: /titanic_51/usr/src/uts/i86pc/os/timestamp.c (revision 77e515715b61e28fcf0c3f30936492888cecfd8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/disp.h>
33 #include <sys/var.h>
34 #include <sys/cmn_err.h>
35 #include <sys/debug.h>
36 #include <sys/x86_archext.h>
37 #include <sys/archsystm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/psm_defs.h>
40 #include <sys/clock.h>
41 #include <sys/atomic.h>
42 #include <sys/lockstat.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/dtrace.h>
45 #include <sys/time.h>
46 #include <sys/panic.h>
47 
48 /*
49  * Using the Pentium's TSC register for gethrtime()
50  * ------------------------------------------------
51  *
52  * The Pentium family, like many chip architectures, has a high-resolution
53  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
54  * of the timestamp counter are read with the RDTSC instruction.
55  *
56  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
57  * must be translated into nanoseconds in order to implement gethrtime().
58  * We avoid inducing floating point operations in this conversion by
59  * implementing the same nsec_scale algorithm as that found in the sun4u
60  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
61  * a detailed description of the algorithm; the comment is not reproduced
62  * here.  This implementation differs only in its value for NSEC_SHIFT:
63  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
64  * 60 MHz Pentiums.
65  *
66  * While TSC and %tick are both cycle counting registers, TSC's functionality
67  * falls short in several critical ways:
68  *
69  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
70  *	practice they often _are_ in sync, this isn't guaranteed by the
71  *	architecture.
72  *
73  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
74  *	only supports writing the low 32-bits of TSC, making it impractical
75  *	to rewrite.
76  *
77  *  (c)	The architecture doesn't have the capacity to interrupt based on
78  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
79  *
80  * Together, (a) and (b) imply that software must track the skew between
81  * TSCs and account for it (it is assumed that while there may exist skew,
82  * there does not exist drift).  To determine the skew between CPUs, we
83  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
84  * the online operation calls tsc_sync_master().  Once both CPUs are ready,
85  * the master sets a shared flag, and each reads its TSC register.  To reduce
86  * bias, we then wait until both CPUs are ready again, but this time the
87  * slave sets the shared flag, and each reads its TSC register again. The
88  * master compares the average of the two sample values, and, if observable
89  * skew is found, changes the gethrtimef function pointer to point to a
90  * gethrtime() implementation which will take the discovered skew into
91  * consideration.
92  *
93  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
94  * sync with gettimeofday().  This is problematic; given (c), the software
95  * cannot drive its time-of-day source from TSC, and yet they must somehow be
96  * kept in sync.  We implement this by having a routine, tsc_tick(), which
97  * is called once per second from the interrupt which drives time-of-day.
98  * tsc_tick() recalculates nsec_scale based on the number of the CPU cycles
99  * since boot versus the number of seconds since boot.  This algorithm
100  * becomes more accurate over time and converges quickly; the error in
101  * nsec_scale is typically under 1 ppm less than 10 seconds after boot, and
102  * is less than 100 ppb 1 minute after boot.
103  *
104  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
105  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
106  * monotonically increases.
107  */
108 
109 #define	NSEC_SHIFT 5
110 
111 static uint_t nsec_scale;
112 
113 /*
114  * These two variables used to be grouped together inside of a structure that
115  * lived on a single cache line. A regression (bug ID 4623398) caused the
116  * compiler to emit code that "optimized" away the while-loops below. The
117  * result was that no synchronization between the onlining and onlined CPUs
118  * took place.
119  */
120 static volatile int tsc_ready;
121 static volatile int tsc_sync_go;
122 
123 /*
124  * Used as indices into the tsc_sync_snaps[] array.
125  */
126 #define	TSC_MASTER		0
127 #define	TSC_SLAVE		1
128 
129 /*
130  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
131  */
132 #define	TSC_SYNC_STOP		1
133 #define	TSC_SYNC_GO		2
134 #define	TSC_SYNC_AGAIN		3
135 
136 #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) {	 	\
137 	unsigned int *_l = (unsigned int *)&(tsc); 	\
138 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; 	\
139 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
140 }
141 
142 #define	TSC_CONVERT(tsc, hrt, scale) { 			\
143 	unsigned int *_l = (unsigned int *)&(tsc); 	\
144 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; 	\
145 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
146 }
147 
148 int tsc_master_slave_sync_needed = 1;
149 
150 static int	tsc_max_delta;
151 static hrtime_t tsc_sync_snaps[2];
152 static hrtime_t tsc_sync_delta[NCPU];
153 static hrtime_t tsc_sync_tick_delta[NCPU];
154 static hrtime_t	tsc_last = 0;
155 static hrtime_t	tsc_last_jumped = 0;
156 static hrtime_t	tsc_hrtime_base = 0;
157 static int	tsc_jumped = 0;
158 
159 static hrtime_t	shadow_tsc_hrtime_base;
160 static hrtime_t	shadow_tsc_last;
161 static uint_t	shadow_nsec_scale;
162 static uint32_t	shadow_hres_lock;
163 int get_tsc_ready();
164 
165 hrtime_t
166 tsc_gethrtime(void)
167 {
168 	uint32_t old_hres_lock;
169 	hrtime_t tsc, hrt;
170 
171 	do {
172 		old_hres_lock = hres_lock;
173 
174 		if ((tsc = tsc_read()) >= tsc_last) {
175 			/*
176 			 * It would seem to be obvious that this is true
177 			 * (that is, the past is less than the present),
178 			 * but it isn't true in the presence of suspend/resume
179 			 * cycles.  If we manage to call gethrtime()
180 			 * after a resume, but before the first call to
181 			 * tsc_tick(), we will see the jump.  In this case,
182 			 * we will simply use the value in TSC as the delta.
183 			 */
184 			tsc -= tsc_last;
185 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
186 			/*
187 			 * There is a chance that tsc_tick() has just run on
188 			 * another CPU, and we have drifted just enough so that
189 			 * we appear behind tsc_last.  In this case, force the
190 			 * delta to be zero.
191 			 */
192 			tsc = 0;
193 		}
194 
195 		hrt = tsc_hrtime_base;
196 
197 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
198 	} while ((old_hres_lock & ~1) != hres_lock);
199 
200 	return (hrt);
201 }
202 
203 hrtime_t
204 tsc_gethrtime_delta(void)
205 {
206 	uint32_t old_hres_lock;
207 	hrtime_t tsc, hrt;
208 	ulong_t flags;
209 
210 	do {
211 		old_hres_lock = hres_lock;
212 
213 		/*
214 		 * We need to disable interrupts here to assure that we
215 		 * don't migrate between the call to tsc_read() and
216 		 * adding the CPU's TSC tick delta. Note that disabling
217 		 * and reenabling preemption is forbidden here because
218 		 * we may be in the middle of a fast trap. In the amd64
219 		 * kernel we cannot tolerate preemption during a fast
220 		 * trap. See _update_sregs().
221 		 */
222 
223 		flags = clear_int_flag();
224 		tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id];
225 		restore_int_flag(flags);
226 
227 		/* See comments in tsc_gethrtime() above */
228 
229 		if (tsc >= tsc_last) {
230 			tsc -= tsc_last;
231 		} else if (tsc >= tsc_last - 2 * tsc_max_delta) {
232 			tsc = 0;
233 		}
234 
235 		hrt = tsc_hrtime_base;
236 
237 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
238 	} while ((old_hres_lock & ~1) != hres_lock);
239 
240 	return (hrt);
241 }
242 
243 /*
244  * This is similar to the above, but it cannot actually spin on hres_lock.
245  * As a result, it caches all of the variables it needs; if the variables
246  * don't change, it's done.
247  */
248 hrtime_t
249 dtrace_gethrtime(void)
250 {
251 	uint32_t old_hres_lock;
252 	hrtime_t tsc, hrt;
253 	ulong_t flags;
254 
255 	do {
256 		old_hres_lock = hres_lock;
257 
258 		/*
259 		 * Interrupts are disabled to ensure that the thread isn't
260 		 * migrated between the tsc_read() and adding the CPU's
261 		 * TSC tick delta.
262 		 */
263 		flags = clear_int_flag();
264 
265 		tsc = tsc_read();
266 
267 		if (gethrtimef == tsc_gethrtime_delta)
268 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
269 
270 		restore_int_flag(flags);
271 
272 		/*
273 		 * See the comments in tsc_gethrtime(), above.
274 		 */
275 		if (tsc >= tsc_last)
276 			tsc -= tsc_last;
277 		else if (tsc >= tsc_last - 2*tsc_max_delta)
278 			tsc = 0;
279 
280 		hrt = tsc_hrtime_base;
281 
282 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
283 
284 		if ((old_hres_lock & ~1) == hres_lock)
285 			break;
286 
287 		/*
288 		 * If we're here, the clock lock is locked -- or it has been
289 		 * unlocked and locked since we looked.  This may be due to
290 		 * tsc_tick() running on another CPU -- or it may be because
291 		 * some code path has ended up in dtrace_probe() with
292 		 * CLOCK_LOCK held.  We'll try to determine that we're in
293 		 * the former case by taking another lap if the lock has
294 		 * changed since when we first looked at it.
295 		 */
296 		if (old_hres_lock != hres_lock)
297 			continue;
298 
299 		/*
300 		 * So the lock was and is locked.  We'll use the old data
301 		 * instead.
302 		 */
303 		old_hres_lock = shadow_hres_lock;
304 
305 		/*
306 		 * Again, disable interrupts to ensure that the thread
307 		 * isn't migrated between the tsc_read() and adding
308 		 * the CPU's TSC tick delta.
309 		 */
310 		flags = clear_int_flag();
311 
312 		tsc = tsc_read();
313 
314 		if (gethrtimef == tsc_gethrtime_delta)
315 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
316 
317 		restore_int_flag(flags);
318 
319 		/*
320 		 * See the comments in tsc_gethrtime(), above.
321 		 */
322 		if (tsc >= shadow_tsc_last)
323 			tsc -= shadow_tsc_last;
324 		else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta)
325 			tsc = 0;
326 
327 		hrt = shadow_tsc_hrtime_base;
328 
329 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
330 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
331 
332 	return (hrt);
333 }
334 
335 hrtime_t
336 tsc_gethrtimeunscaled(void)
337 {
338 	uint32_t old_hres_lock;
339 	hrtime_t tsc;
340 
341 	do {
342 		old_hres_lock = hres_lock;
343 
344 		/* See tsc_tick(). */
345 		tsc = tsc_read() + tsc_last_jumped;
346 	} while ((old_hres_lock & ~1) != hres_lock);
347 
348 	return (tsc);
349 }
350 
351 
352 /* Convert a tsc timestamp to nanoseconds */
353 void
354 tsc_scalehrtime(hrtime_t *tsc)
355 {
356 	hrtime_t hrt;
357 	hrtime_t mytsc;
358 
359 	if (tsc == NULL)
360 		return;
361 	mytsc = *tsc;
362 
363 	TSC_CONVERT(mytsc, hrt, nsec_scale);
364 	*tsc  = hrt;
365 }
366 
367 hrtime_t
368 tsc_gethrtimeunscaled_delta(void)
369 {
370 	hrtime_t hrt;
371 	ulong_t flags;
372 
373 	/*
374 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
375 	 * to prevent migration between the call to tsc_gethrtimeunscaled
376 	 * and adding the CPU's hrtime delta. Note that disabling and
377 	 * reenabling preemption is forbidden here because we may be in the
378 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
379 	 * preemption during a fast trap. See _update_sregs().
380 	 */
381 
382 	flags = clear_int_flag();
383 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
384 	restore_int_flag(flags);
385 
386 	return (hrt);
387 }
388 
389 /*
390  * Called by the master after the sync operation is complete.  If the
391  * slave is discovered to lag, gethrtimef will be changed to point to
392  * tsc_gethrtime_delta().
393  */
394 static void
395 tsc_digest(processorid_t target)
396 {
397 	hrtime_t tdelta, hdelta = 0;
398 	int max = tsc_max_delta;
399 	processorid_t source = CPU->cpu_id;
400 	int update;
401 
402 	update = tsc_sync_delta[source] != 0 ||
403 	    gethrtimef == tsc_gethrtime_delta;
404 
405 	/*
406 	 * We divide by 2 since each of the data points is the sum of two TSC
407 	 * reads; this takes the average of the two.
408 	 */
409 	tdelta = (tsc_sync_snaps[TSC_SLAVE] - tsc_sync_snaps[TSC_MASTER]) / 2;
410 	if ((tdelta > max) || ((tdelta >= 0) && update)) {
411 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
412 		tsc_sync_delta[target] = tsc_sync_delta[source] - hdelta;
413 		tsc_sync_tick_delta[target] = tsc_sync_tick_delta[source]
414 		    -tdelta;
415 		gethrtimef = tsc_gethrtime_delta;
416 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
417 		return;
418 	}
419 
420 	tdelta = -tdelta;
421 	if ((tdelta > max) || update) {
422 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
423 		tsc_sync_delta[target] = tsc_sync_delta[source] + hdelta;
424 		tsc_sync_tick_delta[target] = tsc_sync_tick_delta[source]
425 		    + tdelta;
426 		gethrtimef = tsc_gethrtime_delta;
427 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
428 	}
429 
430 }
431 
432 /*
433  * Called by a CPU which has just performed an online operation on another
434  * CPU.  It is expected that the newly onlined CPU will call tsc_sync_slave().
435  */
436 void
437 tsc_sync_master(processorid_t slave)
438 {
439 	ulong_t flags;
440 	hrtime_t hrt;
441 
442 	if (!tsc_master_slave_sync_needed)
443 		return;
444 
445 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
446 
447 	flags = clear_int_flag();
448 
449 	/*
450 	 * Wait for the slave CPU to arrive.
451 	 */
452 	while (tsc_ready != TSC_SYNC_GO)
453 		continue;
454 
455 	/*
456 	 * Tell the slave CPU to begin reading its TSC; read our own.
457 	 */
458 	tsc_sync_go = TSC_SYNC_GO;
459 	hrt = tsc_read();
460 
461 	/*
462 	 * Tell the slave that we're ready, and wait for the slave to tell us
463 	 * to read our TSC again.
464 	 */
465 	tsc_ready = TSC_SYNC_AGAIN;
466 	while (tsc_sync_go != TSC_SYNC_AGAIN)
467 		continue;
468 
469 	hrt += tsc_read();
470 	tsc_sync_snaps[TSC_MASTER] = hrt;
471 
472 	/*
473 	 * Wait for the slave to finish reading its TSC.
474 	 */
475 	while (tsc_ready != TSC_SYNC_STOP)
476 		continue;
477 
478 	/*
479 	 * At this point, both CPUs have performed their tsc_read() calls.
480 	 * We'll digest it now before letting the slave CPU return.
481 	 */
482 	tsc_digest(slave);
483 	tsc_sync_go = TSC_SYNC_STOP;
484 
485 	restore_int_flag(flags);
486 }
487 
488 /*
489  * Called by a CPU which has just been onlined.  It is expected that the CPU
490  * performing the online operation will call tsc_sync_master().
491  */
492 void
493 tsc_sync_slave(void)
494 {
495 	ulong_t flags;
496 	hrtime_t hrt;
497 
498 	if (!tsc_master_slave_sync_needed)
499 		return;
500 
501 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
502 
503 	flags = clear_int_flag();
504 
505 	/* to test tsc_gethrtime_delta, add wrmsr(REG_TSC, 0) here */
506 
507 	/*
508 	 * Tell the master CPU that we're ready, and wait for the master to
509 	 * tell us to begin reading our TSC.
510 	 */
511 	tsc_ready = TSC_SYNC_GO;
512 	while (tsc_sync_go != TSC_SYNC_GO)
513 		continue;
514 
515 	hrt = tsc_read();
516 
517 	/*
518 	 * Wait for the master CPU to be ready to read its TSC again.
519 	 */
520 	while (tsc_ready != TSC_SYNC_AGAIN)
521 		continue;
522 
523 	/*
524 	 * Tell the master CPU to read its TSC again; read ours again.
525 	 */
526 	tsc_sync_go = TSC_SYNC_AGAIN;
527 
528 	hrt += tsc_read();
529 	tsc_sync_snaps[TSC_SLAVE] = hrt;
530 
531 	/*
532 	 * Tell the master that we're done, and wait to be dismissed.
533 	 */
534 	tsc_ready = TSC_SYNC_STOP;
535 	while (tsc_sync_go != TSC_SYNC_STOP)
536 		continue;
537 
538 	restore_int_flag(flags);
539 }
540 
541 /*
542  * Called once per second on a CPU from the cyclic subsystem's
543  * CY_HIGH_LEVEL interrupt.  (No longer just cpu0-only)
544  */
545 void
546 tsc_tick(void)
547 {
548 	hrtime_t now, delta;
549 	ushort_t spl;
550 
551 	/*
552 	 * Before we set the new variables, we set the shadow values.  This
553 	 * allows for lock free operation in dtrace_gethrtime().
554 	 */
555 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
556 	    ipltospl(CBE_HIGH_PIL), &spl);
557 
558 	shadow_tsc_hrtime_base = tsc_hrtime_base;
559 	shadow_tsc_last = tsc_last;
560 	shadow_nsec_scale = nsec_scale;
561 
562 	shadow_hres_lock++;
563 	splx(spl);
564 
565 	CLOCK_LOCK(&spl);
566 
567 	now = tsc_read();
568 
569 	if (gethrtimef == tsc_gethrtime_delta)
570 		now += tsc_sync_tick_delta[CPU->cpu_id];
571 
572 	if (now < tsc_last) {
573 		/*
574 		 * The TSC has just jumped into the past.  We assume that
575 		 * this is due to a suspend/resume cycle, and we're going
576 		 * to use the _current_ value of TSC as the delta.  This
577 		 * will keep tsc_hrtime_base correct.  We're also going to
578 		 * assume that rate of tsc does not change after a suspend
579 		 * resume (i.e nsec_scale remains the same).
580 		 */
581 		delta = now;
582 		tsc_last_jumped += tsc_last;
583 		tsc_jumped = 1;
584 	} else {
585 		/*
586 		 * Determine the number of TSC ticks since the last clock
587 		 * tick, and add that to the hrtime base.
588 		 */
589 		delta = now - tsc_last;
590 	}
591 
592 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
593 	tsc_last = now;
594 
595 	CLOCK_UNLOCK(spl);
596 }
597 
598 void
599 tsc_hrtimeinit(uint64_t cpu_freq_hz)
600 {
601 	extern int gethrtime_hires;
602 	longlong_t tsc;
603 	ulong_t flags;
604 
605 	/*
606 	 * cpu_freq_hz is the measured cpu frequency in hertz
607 	 */
608 
609 	/*
610 	 * We can't accommodate CPUs slower than 31.25 MHz.
611 	 */
612 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
613 	nsec_scale =
614 	    (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
615 
616 	flags = clear_int_flag();
617 	tsc = tsc_read();
618 	(void) tsc_gethrtime();
619 	tsc_max_delta = tsc_read() - tsc;
620 	restore_int_flag(flags);
621 	gethrtimef = tsc_gethrtime;
622 	gethrtimeunscaledf = tsc_gethrtimeunscaled;
623 	scalehrtimef = tsc_scalehrtime;
624 	hrtime_tick = tsc_tick;
625 	gethrtime_hires = 1;
626 }
627 
628 int
629 get_tsc_ready()
630 {
631 	return (tsc_ready);
632 }
633 
634 /*
635  * Adjust all the deltas by adding the passed value to the array.
636  * Then use the "delt" versions of the the gethrtime functions.
637  * Note that 'tdelta' _could_ be a negative number, which should
638  * reduce the values in the array (used, for example, if the Solaris
639  * instance was moved by a virtual manager to a machine with a higher
640  * value of tsc).
641  */
642 void
643 tsc_adjust_delta(hrtime_t tdelta)
644 {
645 	int		i;
646 	hrtime_t	hdelta = 0;
647 
648 	TSC_CONVERT(tdelta, hdelta, nsec_scale);
649 
650 	for (i = 0; i < NCPU; i++) {
651 		tsc_sync_delta[i] += hdelta;
652 		tsc_sync_tick_delta[i] += tdelta;
653 	}
654 
655 	gethrtimef = tsc_gethrtime_delta;
656 	gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
657 }
658 
659 /*
660  * Functions to manage TSC and high-res time on suspend and resume.
661  */
662 
663 /*
664  * declarations needed for time adjustment
665  */
666 extern void	rtcsync(void);
667 extern tod_ops_t *tod_ops;
668 /* There must be a better way than exposing nsec_scale! */
669 extern uint_t	nsec_scale;
670 static uint64_t tsc_saved_tsc = 0; /* 1 in 2^64 chance this'll screw up! */
671 static timestruc_t tsc_saved_ts;
672 static int	tsc_needs_resume = 0;	/* We only want to do this once. */
673 int		tsc_delta_onsuspend = 0;
674 int		tsc_adjust_seconds = 1;
675 int		tsc_suspend_count = 0;
676 int		tsc_resume_in_cyclic = 0;
677 
678 /*
679  * Let timestamp.c know that we are suspending.  It needs to take
680  * snapshots of the current time, and do any pre-suspend work.
681  */
682 void
683 tsc_suspend(void)
684 {
685 /*
686  * What we need to do here, is to get the time we suspended, so that we
687  * know how much we should add to the resume.
688  * This routine is called by each CPU, so we need to handle reentry.
689  */
690 	if (tsc_gethrtime_enable) {
691 		/*
692 		 * We put the tsc_read() inside the lock as it
693 		 * as no locking constraints, and it puts the
694 		 * aquired value closer to the time stamp (in
695 		 * case we delay getting the lock).
696 		 */
697 		mutex_enter(&tod_lock);
698 		tsc_saved_tsc = tsc_read();
699 		tsc_saved_ts = TODOP_GET(tod_ops);
700 		mutex_exit(&tod_lock);
701 		/* We only want to do this once. */
702 		if (tsc_needs_resume == 0) {
703 			if (tsc_delta_onsuspend) {
704 				tsc_adjust_delta(tsc_saved_tsc);
705 			} else {
706 				tsc_adjust_delta(nsec_scale);
707 			}
708 			tsc_suspend_count++;
709 		}
710 	}
711 
712 	invalidate_cache();
713 	tsc_needs_resume = 1;
714 }
715 
716 /*
717  * Restore all timestamp state based on the snapshots taken at
718  * suspend time.
719  */
720 void
721 tsc_resume(void)
722 {
723 	/*
724 	 * We only need to (and want to) do this once.  So let the first
725 	 * caller handle this (we are locked by the cpu lock), as it
726 	 * is preferential that we get the earliest sync.
727 	 */
728 	if (tsc_needs_resume) {
729 		/*
730 		 * If using the TSC, adjust the delta based on how long
731 		 * we were sleeping (or away).  We also adjust for
732 		 * migration and a grown TSC.
733 		 */
734 		if (tsc_saved_tsc != 0) {
735 			timestruc_t	ts;
736 			hrtime_t	now, sleep_tsc = 0;
737 			int		sleep_sec;
738 			extern void	tsc_tick(void);
739 			extern uint64_t cpu_freq_hz;
740 
741 			/* tsc_read() MUST be before TODOP_GET() */
742 			mutex_enter(&tod_lock);
743 			now = tsc_read();
744 			ts = TODOP_GET(tod_ops);
745 			mutex_exit(&tod_lock);
746 
747 			/* Compute seconds of sleep time */
748 			sleep_sec = ts.tv_sec - tsc_saved_ts.tv_sec;
749 
750 			/*
751 			 * If the saved sec is less that or equal to
752 			 * the current ts, then there is likely a
753 			 * problem with the clock.  Assume at least
754 			 * one second has passed, so that time goes forward.
755 			 */
756 			if (sleep_sec <= 0) {
757 				sleep_sec = 1;
758 			}
759 
760 			/* How many TSC's should have occured while sleeping */
761 			if (tsc_adjust_seconds)
762 				sleep_tsc = sleep_sec * cpu_freq_hz;
763 
764 			/*
765 			 * We also want to subtract from the "sleep_tsc"
766 			 * the current value of tsc_read(), so that our
767 			 * adjustment accounts for the amount of time we
768 			 * have been resumed _or_ an adjustment based on
769 			 * the fact that we didn't actually power off the
770 			 * CPU (migration is another issue, but _should_
771 			 * also comply with this calculation).  If the CPU
772 			 * never powered off, then:
773 			 *    'now == sleep_tsc + saved_tsc'
774 			 * and the delta will effectively be "0".
775 			 */
776 			sleep_tsc -= now;
777 			if (tsc_delta_onsuspend) {
778 				tsc_adjust_delta(sleep_tsc);
779 			} else {
780 				tsc_adjust_delta(tsc_saved_tsc + sleep_tsc);
781 			}
782 			tsc_saved_tsc = 0;
783 
784 			tsc_tick();
785 		}
786 		tsc_needs_resume = 0;
787 	}
788 
789 }
790