xref: /titanic_51/usr/src/uts/i86pc/os/startup.c (revision fd0939ef389f48c901faf4bf0b60b82d4bc58b64)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/mman.h>
34 #include <sys/vm.h>
35 #include <sys/conf.h>
36 #include <sys/avintr.h>
37 #include <sys/autoconf.h>
38 #include <sys/disp.h>
39 #include <sys/class.h>
40 #include <sys/bitmap.h>
41 
42 #include <sys/privregs.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 #include <sys/mem.h>
48 #include <sys/kstat.h>
49 
50 #include <sys/reboot.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 
58 #include <sys/vfs.h>
59 #include <sys/cmn_err.h>
60 #include <sys/utsname.h>
61 #include <sys/debug.h>
62 #include <sys/kdi.h>
63 
64 #include <sys/dumphdr.h>
65 #include <sys/bootconf.h>
66 #include <sys/varargs.h>
67 #include <sys/promif.h>
68 #include <sys/modctl.h>
69 
70 #include <sys/sunddi.h>
71 #include <sys/sunndi.h>
72 #include <sys/ndi_impldefs.h>
73 #include <sys/ddidmareq.h>
74 #include <sys/psw.h>
75 #include <sys/regset.h>
76 #include <sys/clock.h>
77 #include <sys/pte.h>
78 #include <sys/tss.h>
79 #include <sys/stack.h>
80 #include <sys/trap.h>
81 #include <sys/fp.h>
82 #include <vm/kboot_mmu.h>
83 #include <vm/anon.h>
84 #include <vm/as.h>
85 #include <vm/page.h>
86 #include <vm/seg.h>
87 #include <vm/seg_dev.h>
88 #include <vm/seg_kmem.h>
89 #include <vm/seg_kpm.h>
90 #include <vm/seg_map.h>
91 #include <vm/seg_vn.h>
92 #include <vm/seg_kp.h>
93 #include <sys/memnode.h>
94 #include <vm/vm_dep.h>
95 #include <sys/thread.h>
96 #include <sys/sysconf.h>
97 #include <sys/vm_machparam.h>
98 #include <sys/archsystm.h>
99 #include <sys/machsystm.h>
100 #include <vm/hat.h>
101 #include <vm/hat_i86.h>
102 #include <sys/pmem.h>
103 #include <sys/smp_impldefs.h>
104 #include <sys/x86_archext.h>
105 #include <sys/cpuvar.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/cpu_module.h>
112 #include <sys/smbios.h>
113 #include <sys/debug_info.h>
114 #include <sys/bootinfo.h>
115 #include <sys/ddi_timer.h>
116 #include <sys/systeminfo.h>
117 #include <sys/multiboot.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 extern void pcf_init(void);
139 extern void pg_init(void);
140 
141 extern int size_pse_array(pgcnt_t, int);
142 
143 #if defined(_SOFT_HOSTID)
144 
145 #include <sys/rtc.h>
146 
147 static int32_t set_soft_hostid(void);
148 static char hostid_file[] = "/etc/hostid";
149 
150 #endif
151 
152 void *gfx_devinfo_list;
153 
154 /*
155  * XXX make declaration below "static" when drivers no longer use this
156  * interface.
157  */
158 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
159 
160 /*
161  * segkp
162  */
163 extern int segkp_fromheap;
164 
165 static void kvm_init(void);
166 static void startup_init(void);
167 static void startup_memlist(void);
168 static void startup_kmem(void);
169 static void startup_modules(void);
170 static void startup_vm(void);
171 static void startup_end(void);
172 static void layout_kernel_va(void);
173 
174 #if !defined(__xpv)
175 void (*rootnex_iommu_init)(void) = NULL;
176 #endif
177 
178 /*
179  * Declare these as initialized data so we can patch them.
180  */
181 #ifdef __i386
182 
183 /*
184  * Due to virtual address space limitations running in 32 bit mode, restrict
185  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
186  *
187  * If the physical max memory size of 64g were allowed to be configured, the
188  * size of user virtual address space will be less than 1g. A limited user
189  * address space greatly reduces the range of applications that can run.
190  *
191  * If more physical memory than PHYSMEM is required, users should preferably
192  * run in 64 bit mode which has far looser virtual address space limitations.
193  *
194  * If 64 bit mode is not available (as in IA32) and/or more physical memory
195  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
196  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
197  * should also be carefully tuned to balance out the need of the user
198  * application while minimizing the risk of kernel heap exhaustion due to
199  * kernelbase being set too high.
200  */
201 #define	PHYSMEM	0x400000
202 
203 #else /* __amd64 */
204 
205 /*
206  * For now we can handle memory with physical addresses up to about
207  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
208  * half the VA space for seg_kpm. When systems get bigger than 64TB this
209  * code will need revisiting. There is an implicit assumption that there
210  * are no *huge* holes in the physical address space too.
211  */
212 #define	TERABYTE		(1ul << 40)
213 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
214 #define	PHYSMEM			PHYSMEM_MAX64
215 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
216 
217 #endif /* __amd64 */
218 
219 pgcnt_t physmem = PHYSMEM;
220 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
221 
222 char *kobj_file_buf;
223 int kobj_file_bufsize;	/* set in /etc/system */
224 
225 /* Global variables for MP support. Used in mp_startup */
226 caddr_t	rm_platter_va = 0;
227 uint32_t rm_platter_pa;
228 
229 int	auto_lpg_disable = 1;
230 
231 /*
232  * Some CPUs have holes in the middle of the 64-bit virtual address range.
233  */
234 uintptr_t hole_start, hole_end;
235 
236 /*
237  * kpm mapping window
238  */
239 caddr_t kpm_vbase;
240 size_t  kpm_size;
241 static int kpm_desired;
242 #ifdef __amd64
243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
244 #endif
245 
246 /*
247  * Configuration parameters set at boot time.
248  */
249 
250 caddr_t econtig;		/* end of first block of contiguous kernel */
251 
252 struct bootops		*bootops = 0;	/* passed in from boot */
253 struct bootops		**bootopsp;
254 struct boot_syscalls	*sysp;		/* passed in from boot */
255 
256 char bootblock_fstype[16];
257 
258 char kern_bootargs[OBP_MAXPATHLEN];
259 char kern_bootfile[OBP_MAXPATHLEN];
260 
261 /*
262  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
263  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
264  * zio buffers from their own segment, otherwise they are allocated from the
265  * heap.  The optimization of allocating zio buffers from their own segment is
266  * only valid on 64-bit kernels.
267  */
268 #if defined(__amd64)
269 int segzio_fromheap = 0;
270 #else
271 int segzio_fromheap = 1;
272 #endif
273 
274 /*
275  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
276  * depends on number of BOP_ALLOC calls made and requested size, memory size
277  * combination and whether boot.bin memory needs to be freed.
278  */
279 #define	POSS_NEW_FRAGMENTS	12
280 
281 /*
282  * VM data structures
283  */
284 long page_hashsz;		/* Size of page hash table (power of two) */
285 struct page *pp_base;		/* Base of initial system page struct array */
286 struct page **page_hash;	/* Page hash table */
287 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
288 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
289 int pse_shift;			/* log2(pse_table_size) */
290 struct seg ktextseg;		/* Segment used for kernel executable image */
291 struct seg kvalloc;		/* Segment used for "valloc" mapping */
292 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
293 struct seg kmapseg;		/* Segment used for generic kernel mappings */
294 struct seg kdebugseg;		/* Segment used for the kernel debugger */
295 
296 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
297 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
298 
299 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
300 
301 #if defined(__amd64)
302 struct seg kvseg_core;		/* Segment used for the core heap */
303 struct seg kpmseg;		/* Segment used for physical mapping */
304 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
305 #else
306 struct seg *segkpm = NULL;	/* Unused on IA32 */
307 #endif
308 
309 caddr_t segkp_base;		/* Base address of segkp */
310 caddr_t segzio_base;		/* Base address of segzio */
311 #if defined(__amd64)
312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
313 #else
314 pgcnt_t segkpsize = 0;
315 #endif
316 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
317 
318 /*
319  * VA range available to the debugger
320  */
321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
322 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
323 
324 struct memseg *memseg_base;
325 struct vnode unused_pages_vp;
326 
327 #define	FOURGB	0x100000000LL
328 
329 struct memlist *memlist;
330 
331 caddr_t s_text;		/* start of kernel text segment */
332 caddr_t e_text;		/* end of kernel text segment */
333 caddr_t s_data;		/* start of kernel data segment */
334 caddr_t e_data;		/* end of kernel data segment */
335 caddr_t modtext;	/* start of loadable module text reserved */
336 caddr_t e_modtext;	/* end of loadable module text reserved */
337 caddr_t moddata;	/* start of loadable module data reserved */
338 caddr_t e_moddata;	/* end of loadable module data reserved */
339 
340 struct memlist *phys_install;	/* Total installed physical memory */
341 struct memlist *phys_avail;	/* Total available physical memory */
342 struct memlist *bios_rsvd;	/* Bios reserved memory */
343 
344 /*
345  * kphysm_init returns the number of pages that were processed
346  */
347 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
348 
349 #define	IO_PROP_SIZE	64	/* device property size */
350 
351 /*
352  * a couple useful roundup macros
353  */
354 #define	ROUND_UP_PAGE(x)	\
355 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
356 #define	ROUND_UP_LPAGE(x)	\
357 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
358 #define	ROUND_UP_4MEG(x)	\
359 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
360 #define	ROUND_UP_TOPLEVEL(x)	\
361 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
362 
363 /*
364  *	32-bit Kernel's Virtual memory layout.
365  *		+-----------------------+
366  *		|			|
367  * 0xFFC00000  -|-----------------------|- ARGSBASE
368  *		|	debugger	|
369  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
370  *		|      Kernel Data	|
371  * 0xFEC00000  -|-----------------------|
372  *              |      Kernel Text	|
373  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
374  *		|---       GDT       ---|- GDT page (GDT_VA)
375  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
376  *		|			|
377  * 		|   page_t structures	|
378  * 		|   memsegs, memlists, 	|
379  * 		|   page hash, etc.	|
380  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
381  *		|			|  (segkp is just an arena in the heap)
382  *		|			|
383  *		|	kvseg		|
384  *		|			|
385  *		|			|
386  * ---         -|-----------------------|- kernelheap (floating)
387  * 		|        Segkmap	|
388  * 0xC3002000  -|-----------------------|- segmap_start (floating)
389  *		|	Red Zone	|
390  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
391  *		|			|			||
392  *		|     Shared objects	|			\/
393  *		|			|
394  *		:			:
395  *		|	user data	|
396  *		|-----------------------|
397  *		|	user text	|
398  * 0x08048000  -|-----------------------|
399  *		|	user stack	|
400  *		:			:
401  *		|	invalid		|
402  * 0x00000000	+-----------------------+
403  *
404  *
405  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
406  *			+-----------------------+
407  *			|			|
408  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
409  *			|	debugger (?)	|
410  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
411  *			|      unused    	|
412  *			+-----------------------+
413  *			|      Kernel Data	|
414  * 0xFFFFFFFF.FBC00000  |-----------------------|
415  *			|      Kernel Text	|
416  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
417  *			|---       GDT       ---|- GDT page (GDT_VA)
418  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
419  *			|			|
420  * 			|      Core heap	| (used for loadable modules)
421  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
422  *			|	 Kernel		|
423  *			|	  heap		|
424  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
425  *			|	 segmap		|
426  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
427  *			|    device mappings	|
428  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
429  *			|	  segzio	|
430  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
431  *			|	  segkp		|
432  * ---                  |-----------------------|- segkp_base (floating)
433  * 			|   page_t structures	|  valloc_base + valloc_sz
434  * 			|   memsegs, memlists, 	|
435  * 			|   page hash, etc.	|
436  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
437  *			|	 segkpm		|
438  * 0xFFFFFE00.00000000  |-----------------------|
439  *			|	Red Zone	|
440  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
441  *			|     User stack	|- User space memory
442  * 			|			|
443  * 			| shared objects, etc	|	(grows downwards)
444  *			:			:
445  * 			|			|
446  * 0xFFFF8000.00000000  |-----------------------|
447  * 			|			|
448  * 			| VA Hole / unused	|
449  * 			|			|
450  * 0x00008000.00000000  |-----------------------|
451  *			|			|
452  *			|			|
453  *			:			:
454  *			|	user heap	|	(grows upwards)
455  *			|			|
456  *			|	user data	|
457  *			|-----------------------|
458  *			|	user text	|
459  * 0x00000000.04000000  |-----------------------|
460  *			|	invalid		|
461  * 0x00000000.00000000	+-----------------------+
462  *
463  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
464  * kernel, except that userlimit is raised to 0xfe000000
465  *
466  * Floating values:
467  *
468  * valloc_base: start of the kernel's memory management/tracking data
469  * structures.  This region contains page_t structures for
470  * physical memory, memsegs, memlists, and the page hash.
471  *
472  * core_base: start of the kernel's "core" heap area on 64-bit systems.
473  * This area is intended to be used for global data as well as for module
474  * text/data that does not fit into the nucleus pages.  The core heap is
475  * restricted to a 2GB range, allowing every address within it to be
476  * accessed using rip-relative addressing
477  *
478  * ekernelheap: end of kernelheap and start of segmap.
479  *
480  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
481  * above a red zone that separates the user's address space from the
482  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
483  *
484  * segmap_start: start of segmap. The length of segmap can be modified
485  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
486  * on 64-bit systems.
487  *
488  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
489  * decreased by 2X the size required for page_t.  This allows the kernel
490  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
491  * bytes, the following shows the values of kernelbase and kernel heap
492  * sizes for different memory configurations (assuming default segmap and
493  * segkp sizes).
494  *
495  *	mem	size for	kernelbase	kernel heap
496  *	size	page_t's			size
497  *	----	---------	----------	-----------
498  *	1gb	0x01400000	0xd1800000	684MB
499  *	2gb	0x02800000	0xcf000000	704MB
500  *	4gb	0x05000000	0xca000000	744MB
501  *	6gb	0x07800000	0xc5000000	784MB
502  *	8gb	0x0a000000	0xc0000000	824MB
503  *	16gb	0x14000000	0xac000000	984MB
504  *	32gb	0x28000000	0x84000000	1304MB
505  *	64gb	0x50000000	0x34000000	1944MB (*)
506  *
507  * kernelbase is less than the abi minimum of 0xc0000000 for memory
508  * configurations above 8gb.
509  *
510  * (*) support for memory configurations above 32gb will require manual tuning
511  * of kernelbase to balance out the need of user applications.
512  */
513 
514 /* real-time-clock initialization parameters */
515 extern time_t process_rtc_config_file(void);
516 
517 uintptr_t	kernelbase;
518 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
519 uintptr_t	eprom_kernelbase;
520 size_t		segmapsize;
521 uintptr_t	segmap_start;
522 int		segmapfreelists;
523 pgcnt_t		npages;
524 pgcnt_t		orig_npages;
525 size_t		core_size;		/* size of "core" heap */
526 uintptr_t	core_base;		/* base address of "core" heap */
527 
528 /*
529  * List of bootstrap pages. We mark these as allocated in startup.
530  * release_bootstrap() will free them when we're completely done with
531  * the bootstrap.
532  */
533 static page_t *bootpages;
534 
535 /*
536  * boot time pages that have a vnode from the ramdisk will keep that forever.
537  */
538 static page_t *rd_pages;
539 
540 /*
541  * Lower 64K
542  */
543 static page_t *lower_pages = NULL;
544 static int lower_pages_count = 0;
545 
546 struct system_hardware system_hardware;
547 
548 /*
549  * Enable some debugging messages concerning memory usage...
550  */
551 static void
552 print_memlist(char *title, struct memlist *mp)
553 {
554 	prom_printf("MEMLIST: %s:\n", title);
555 	while (mp != NULL)  {
556 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
557 		    mp->ml_address, mp->ml_size);
558 		mp = mp->ml_next;
559 	}
560 }
561 
562 /*
563  * XX64 need a comment here.. are these just default values, surely
564  * we read the "cpuid" type information to figure this out.
565  */
566 int	l2cache_sz = 0x80000;
567 int	l2cache_linesz = 0x40;
568 int	l2cache_assoc = 1;
569 
570 static size_t	textrepl_min_gb = 10;
571 
572 /*
573  * on 64 bit we use a predifined VA range for mapping devices in the kernel
574  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
575  */
576 #ifdef __amd64
577 
578 vmem_t		*device_arena;
579 uintptr_t	toxic_addr = (uintptr_t)NULL;
580 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
581 
582 #else	/* __i386 */
583 
584 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
585 size_t		toxic_bit_map_len = 0;	/* in bits */
586 
587 #endif	/* __i386 */
588 
589 /*
590  * Simple boot time debug facilities
591  */
592 static char *prm_dbg_str[] = {
593 	"%s:%d: '%s' is 0x%x\n",
594 	"%s:%d: '%s' is 0x%llx\n"
595 };
596 
597 int prom_debug;
598 
599 #define	PRM_DEBUG(q)	if (prom_debug) 	\
600 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
601 #define	PRM_POINT(q)	if (prom_debug) 	\
602 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
603 
604 /*
605  * This structure is used to keep track of the intial allocations
606  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
607  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
608  */
609 #define	NUM_ALLOCATIONS 8
610 int num_allocations = 0;
611 struct {
612 	void **al_ptr;
613 	size_t al_size;
614 } allocations[NUM_ALLOCATIONS];
615 size_t valloc_sz = 0;
616 uintptr_t valloc_base;
617 
618 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
619 		size = ROUND_UP_PAGE(size);		 		\
620 		if (num_allocations == NUM_ALLOCATIONS)			\
621 			panic("too many ADD_TO_ALLOCATIONS()");		\
622 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
623 		allocations[num_allocations].al_size = size;		\
624 		valloc_sz += size;					\
625 		++num_allocations;				 	\
626 	}
627 
628 /*
629  * Allocate all the initial memory needed by the page allocator.
630  */
631 static void
632 perform_allocations(void)
633 {
634 	caddr_t mem;
635 	int i;
636 	int valloc_align;
637 
638 	PRM_DEBUG(valloc_base);
639 	PRM_DEBUG(valloc_sz);
640 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
641 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
642 	if (mem != (caddr_t)valloc_base)
643 		panic("BOP_ALLOC() failed");
644 	bzero(mem, valloc_sz);
645 	for (i = 0; i < num_allocations; ++i) {
646 		*allocations[i].al_ptr = (void *)mem;
647 		mem += allocations[i].al_size;
648 	}
649 }
650 
651 /*
652  * Our world looks like this at startup time.
653  *
654  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
655  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
656  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
657  * addresses are fixed in the binary at link time.
658  *
659  * On the text page:
660  * unix/genunix/krtld/module text loads.
661  *
662  * On the data page:
663  * unix/genunix/krtld/module data loads.
664  *
665  * Machine-dependent startup code
666  */
667 void
668 startup(void)
669 {
670 #if !defined(__xpv)
671 	extern void startup_pci_bios(void);
672 	extern int post_fastreboot;
673 #endif
674 	extern cpuset_t cpu_ready_set;
675 
676 	/*
677 	 * Make sure that nobody tries to use sekpm until we have
678 	 * initialized it properly.
679 	 */
680 #if defined(__amd64)
681 	kpm_desired = 1;
682 #endif
683 	kpm_enable = 0;
684 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
685 
686 #if defined(__xpv)	/* XXPV fix me! */
687 	{
688 		extern int segvn_use_regions;
689 		segvn_use_regions = 0;
690 	}
691 #endif
692 	progressbar_init();
693 	startup_init();
694 #if defined(__xpv)
695 	startup_xen_version();
696 #endif
697 	startup_memlist();
698 	startup_kmem();
699 	startup_vm();
700 #if !defined(__xpv)
701 	if (!post_fastreboot)
702 		startup_pci_bios();
703 #endif
704 #if defined(__xpv)
705 	startup_xen_mca();
706 #endif
707 	startup_modules();
708 
709 	startup_end();
710 	progressbar_start();
711 }
712 
713 static void
714 startup_init()
715 {
716 	PRM_POINT("startup_init() starting...");
717 
718 	/*
719 	 * Complete the extraction of cpuid data
720 	 */
721 	cpuid_pass2(CPU);
722 
723 	(void) check_boot_version(BOP_GETVERSION(bootops));
724 
725 	/*
726 	 * Check for prom_debug in boot environment
727 	 */
728 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
729 		++prom_debug;
730 		PRM_POINT("prom_debug found in boot enviroment");
731 	}
732 
733 	/*
734 	 * Collect node, cpu and memory configuration information.
735 	 */
736 	get_system_configuration();
737 
738 	/*
739 	 * Halt if this is an unsupported processor.
740 	 */
741 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
742 		printf("\n486 processor (\"%s\") detected.\n",
743 		    CPU->cpu_brandstr);
744 		halt("This processor is not supported by this release "
745 		    "of Solaris.");
746 	}
747 
748 	PRM_POINT("startup_init() done");
749 }
750 
751 /*
752  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
753  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
754  * also filters out physical page zero.  There is some reliance on the
755  * boot loader allocating only a few contiguous physical memory chunks.
756  */
757 static void
758 avail_filter(uint64_t *addr, uint64_t *size)
759 {
760 	uintptr_t va;
761 	uintptr_t next_va;
762 	pfn_t pfn;
763 	uint64_t pfn_addr;
764 	uint64_t pfn_eaddr;
765 	uint_t prot;
766 	size_t len;
767 	uint_t change;
768 
769 	if (prom_debug)
770 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
771 		    *addr, *size);
772 
773 	/*
774 	 * page zero is required for BIOS.. never make it available
775 	 */
776 	if (*addr == 0) {
777 		*addr += MMU_PAGESIZE;
778 		*size -= MMU_PAGESIZE;
779 	}
780 
781 	/*
782 	 * First we trim from the front of the range. Since kbm_probe()
783 	 * walks ranges in virtual order, but addr/size are physical, we need
784 	 * to the list until no changes are seen.  This deals with the case
785 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
786 	 * but w < v.
787 	 */
788 	do {
789 		change = 0;
790 		for (va = KERNEL_TEXT;
791 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
792 		    va = next_va) {
793 
794 			next_va = va + len;
795 			pfn_addr = pfn_to_pa(pfn);
796 			pfn_eaddr = pfn_addr + len;
797 
798 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
799 				change = 1;
800 				while (*size > 0 && len > 0) {
801 					*addr += MMU_PAGESIZE;
802 					*size -= MMU_PAGESIZE;
803 					len -= MMU_PAGESIZE;
804 				}
805 			}
806 		}
807 		if (change && prom_debug)
808 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
809 			    *addr, *size);
810 	} while (change);
811 
812 	/*
813 	 * Trim pages from the end of the range.
814 	 */
815 	for (va = KERNEL_TEXT;
816 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
817 	    va = next_va) {
818 
819 		next_va = va + len;
820 		pfn_addr = pfn_to_pa(pfn);
821 
822 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
823 			*size = pfn_addr - *addr;
824 	}
825 
826 	if (prom_debug)
827 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
828 		    *addr, *size);
829 }
830 
831 static void
832 kpm_init()
833 {
834 	struct segkpm_crargs b;
835 
836 	/*
837 	 * These variables were all designed for sfmmu in which segkpm is
838 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
839 	 * might use 2+ page sizes on a single machine, so none of these
840 	 * variables have a single correct value.  They are set up as if we
841 	 * always use a 4KB pagesize, which should do no harm.  In the long
842 	 * run, we should get rid of KPM's assumption that only a single
843 	 * pagesize is used.
844 	 */
845 	kpm_pgshft = MMU_PAGESHIFT;
846 	kpm_pgsz =  MMU_PAGESIZE;
847 	kpm_pgoff = MMU_PAGEOFFSET;
848 	kpmp2pshft = 0;
849 	kpmpnpgs = 1;
850 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
851 
852 	PRM_POINT("about to create segkpm");
853 	rw_enter(&kas.a_lock, RW_WRITER);
854 
855 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
856 		panic("cannot attach segkpm");
857 
858 	b.prot = PROT_READ | PROT_WRITE;
859 	b.nvcolors = 1;
860 
861 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
862 		panic("segkpm_create segkpm");
863 
864 	rw_exit(&kas.a_lock);
865 }
866 
867 /*
868  * The debug info page provides enough information to allow external
869  * inspectors (e.g. when running under a hypervisor) to bootstrap
870  * themselves into allowing full-blown kernel debugging.
871  */
872 static void
873 init_debug_info(void)
874 {
875 	caddr_t mem;
876 	debug_info_t *di;
877 
878 #ifndef __lint
879 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
880 #endif
881 
882 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
883 	    MMU_PAGESIZE);
884 
885 	if (mem != (caddr_t)DEBUG_INFO_VA)
886 		panic("BOP_ALLOC() failed");
887 	bzero(mem, MMU_PAGESIZE);
888 
889 	di = (debug_info_t *)mem;
890 
891 	di->di_magic = DEBUG_INFO_MAGIC;
892 	di->di_version = DEBUG_INFO_VERSION;
893 	di->di_modules = (uintptr_t)&modules;
894 	di->di_s_text = (uintptr_t)s_text;
895 	di->di_e_text = (uintptr_t)e_text;
896 	di->di_s_data = (uintptr_t)s_data;
897 	di->di_e_data = (uintptr_t)e_data;
898 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
899 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
900 }
901 
902 /*
903  * Build the memlists and other kernel essential memory system data structures.
904  * This is everything at valloc_base.
905  */
906 static void
907 startup_memlist(void)
908 {
909 	size_t memlist_sz;
910 	size_t memseg_sz;
911 	size_t pagehash_sz;
912 	size_t pp_sz;
913 	uintptr_t va;
914 	size_t len;
915 	uint_t prot;
916 	pfn_t pfn;
917 	int memblocks;
918 	pfn_t rsvd_high_pfn;
919 	pgcnt_t rsvd_pgcnt;
920 	size_t rsvdmemlist_sz;
921 	int rsvdmemblocks;
922 	caddr_t pagecolor_mem;
923 	size_t pagecolor_memsz;
924 	caddr_t page_ctrs_mem;
925 	size_t page_ctrs_size;
926 	size_t pse_table_alloc_size;
927 	struct memlist *current;
928 	extern void startup_build_mem_nodes(struct memlist *);
929 
930 	/* XX64 fix these - they should be in include files */
931 	extern size_t page_coloring_init(uint_t, int, int);
932 	extern void page_coloring_setup(caddr_t);
933 
934 	PRM_POINT("startup_memlist() starting...");
935 
936 	/*
937 	 * Use leftover large page nucleus text/data space for loadable modules.
938 	 * Use at most MODTEXT/MODDATA.
939 	 */
940 	len = kbm_nucleus_size;
941 	ASSERT(len > MMU_PAGESIZE);
942 
943 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
944 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
945 	if (e_moddata - moddata > MODDATA)
946 		e_moddata = moddata + MODDATA;
947 
948 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
949 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
950 	if (e_modtext - modtext > MODTEXT)
951 		e_modtext = modtext + MODTEXT;
952 
953 	econtig = e_moddata;
954 
955 	PRM_DEBUG(modtext);
956 	PRM_DEBUG(e_modtext);
957 	PRM_DEBUG(moddata);
958 	PRM_DEBUG(e_moddata);
959 	PRM_DEBUG(econtig);
960 
961 	/*
962 	 * Examine the boot loader physical memory map to find out:
963 	 * - total memory in system - physinstalled
964 	 * - the max physical address - physmax
965 	 * - the number of discontiguous segments of memory.
966 	 */
967 	if (prom_debug)
968 		print_memlist("boot physinstalled",
969 		    bootops->boot_mem->physinstalled);
970 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
971 	    &physinstalled, &memblocks);
972 	PRM_DEBUG(physmax);
973 	PRM_DEBUG(physinstalled);
974 	PRM_DEBUG(memblocks);
975 
976 	/*
977 	 * Examine the bios reserved memory to find out:
978 	 * - the number of discontiguous segments of memory.
979 	 */
980 	if (prom_debug)
981 		print_memlist("boot reserved mem",
982 		    bootops->boot_mem->rsvdmem);
983 	installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
984 	    &rsvd_pgcnt, &rsvdmemblocks);
985 	PRM_DEBUG(rsvd_high_pfn);
986 	PRM_DEBUG(rsvd_pgcnt);
987 	PRM_DEBUG(rsvdmemblocks);
988 
989 	/*
990 	 * Initialize hat's mmu parameters.
991 	 * Check for enforce-prot-exec in boot environment. It's used to
992 	 * enable/disable support for the page table entry NX bit.
993 	 * The default is to enforce PROT_EXEC on processors that support NX.
994 	 * Boot seems to round up the "len", but 8 seems to be big enough.
995 	 */
996 	mmu_init();
997 
998 #ifdef	__i386
999 	/*
1000 	 * physmax is lowered if there is more memory than can be
1001 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1002 	 */
1003 	if (mmu.pae_hat) {
1004 		if (PFN_ABOVE64G(physmax)) {
1005 			physinstalled -= (physmax - (PFN_64G - 1));
1006 			physmax = PFN_64G - 1;
1007 		}
1008 	} else {
1009 		if (PFN_ABOVE4G(physmax)) {
1010 			physinstalled -= (physmax - (PFN_4G - 1));
1011 			physmax = PFN_4G - 1;
1012 		}
1013 	}
1014 #endif
1015 
1016 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1017 
1018 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1019 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1020 		char value[8];
1021 
1022 		if (len < 8)
1023 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1024 		else
1025 			(void) strcpy(value, "");
1026 		if (strcmp(value, "off") == 0)
1027 			mmu.pt_nx = 0;
1028 	}
1029 	PRM_DEBUG(mmu.pt_nx);
1030 
1031 	/*
1032 	 * We will need page_t's for every page in the system, except for
1033 	 * memory mapped at or above above the start of the kernel text segment.
1034 	 *
1035 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1036 	 */
1037 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1038 	obp_pages = 0;
1039 	va = KERNEL_TEXT;
1040 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1041 		npages -= len >> MMU_PAGESHIFT;
1042 		if (va >= (uintptr_t)e_moddata)
1043 			obp_pages += len >> MMU_PAGESHIFT;
1044 		va += len;
1045 	}
1046 	PRM_DEBUG(npages);
1047 	PRM_DEBUG(obp_pages);
1048 
1049 	/*
1050 	 * If physmem is patched to be non-zero, use it instead of the computed
1051 	 * value unless it is larger than the actual amount of memory on hand.
1052 	 */
1053 	if (physmem == 0 || physmem > npages) {
1054 		physmem = npages;
1055 	} else if (physmem < npages) {
1056 		orig_npages = npages;
1057 		npages = physmem;
1058 	}
1059 	PRM_DEBUG(physmem);
1060 
1061 	/*
1062 	 * We now compute the sizes of all the  initial allocations for
1063 	 * structures the kernel needs in order do kmem_alloc(). These
1064 	 * include:
1065 	 *	memsegs
1066 	 *	memlists
1067 	 *	page hash table
1068 	 *	page_t's
1069 	 *	page coloring data structs
1070 	 */
1071 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1072 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1073 	PRM_DEBUG(memseg_sz);
1074 
1075 	/*
1076 	 * Reserve space for memlists. There's no real good way to know exactly
1077 	 * how much room we'll need, but this should be a good upper bound.
1078 	 */
1079 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1080 	    (memblocks + POSS_NEW_FRAGMENTS));
1081 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1082 	PRM_DEBUG(memlist_sz);
1083 
1084 	/*
1085 	 * Reserve space for bios reserved memlists.
1086 	 */
1087 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1088 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1089 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1090 	PRM_DEBUG(rsvdmemlist_sz);
1091 
1092 	/*
1093 	 * The page structure hash table size is a power of 2
1094 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1095 	 */
1096 	page_hashsz = npages / PAGE_HASHAVELEN;
1097 	page_hashsz = 1 << highbit(page_hashsz);
1098 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1099 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1100 	PRM_DEBUG(pagehash_sz);
1101 
1102 	/*
1103 	 * Set aside room for the page structures themselves.
1104 	 */
1105 	PRM_DEBUG(npages);
1106 	pp_sz = sizeof (struct page) * npages;
1107 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1108 	PRM_DEBUG(pp_sz);
1109 
1110 	/*
1111 	 * determine l2 cache info and memory size for page coloring
1112 	 */
1113 	(void) getl2cacheinfo(CPU,
1114 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1115 	pagecolor_memsz =
1116 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1117 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1118 	PRM_DEBUG(pagecolor_memsz);
1119 
1120 	page_ctrs_size = page_ctrs_sz();
1121 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1122 	PRM_DEBUG(page_ctrs_size);
1123 
1124 	/*
1125 	 * Allocate the array that protects pp->p_selock.
1126 	 */
1127 	pse_shift = size_pse_array(physmem, max_ncpus);
1128 	pse_table_size = 1 << pse_shift;
1129 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1130 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1131 
1132 #if defined(__amd64)
1133 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1134 	valloc_base = VALLOC_BASE;
1135 
1136 	/*
1137 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1138 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1139 	 * memory is at addresses above 1 TB.
1140 	 */
1141 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1142 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1143 
1144 		/* Round to largest possible pagesize for now */
1145 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1146 
1147 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1148 
1149 		/* make sure we leave some space for user apps above hole */
1150 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1151 		if (segkpm_base > SEGKPM_BASE)
1152 			segkpm_base = SEGKPM_BASE;
1153 		PRM_DEBUG(segkpm_base);
1154 
1155 		valloc_base = segkpm_base + kpm_resv_amount;
1156 		PRM_DEBUG(valloc_base);
1157 	}
1158 #else	/* __i386 */
1159 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1160 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1161 	PRM_DEBUG(valloc_base);
1162 #endif	/* __i386 */
1163 
1164 	/*
1165 	 * do all the initial allocations
1166 	 */
1167 	perform_allocations();
1168 
1169 	/*
1170 	 * Build phys_install and phys_avail in kernel memspace.
1171 	 * - phys_install should be all memory in the system.
1172 	 * - phys_avail is phys_install minus any memory mapped before this
1173 	 *    point above KERNEL_TEXT.
1174 	 */
1175 	current = phys_install = memlist;
1176 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1177 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1178 		panic("physinstalled was too big!");
1179 	if (prom_debug)
1180 		print_memlist("phys_install", phys_install);
1181 
1182 	phys_avail = current;
1183 	PRM_POINT("Building phys_avail:\n");
1184 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1185 	    avail_filter);
1186 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1187 		panic("physavail was too big!");
1188 	if (prom_debug)
1189 		print_memlist("phys_avail", phys_avail);
1190 
1191 	/*
1192 	 * Build bios reserved memspace
1193 	 */
1194 	current = bios_rsvd;
1195 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1196 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1197 		panic("bios_rsvd was too big!");
1198 	if (prom_debug)
1199 		print_memlist("bios_rsvd", bios_rsvd);
1200 
1201 	/*
1202 	 * setup page coloring
1203 	 */
1204 	page_coloring_setup(pagecolor_mem);
1205 	page_lock_init();	/* currently a no-op */
1206 
1207 	/*
1208 	 * free page list counters
1209 	 */
1210 	(void) page_ctrs_alloc(page_ctrs_mem);
1211 
1212 	/*
1213 	 * Size the pcf array based on the number of cpus in the box at
1214 	 * boot time.
1215 	 */
1216 
1217 	pcf_init();
1218 
1219 	/*
1220 	 * Initialize the page structures from the memory lists.
1221 	 */
1222 	availrmem_initial = availrmem = freemem = 0;
1223 	PRM_POINT("Calling kphysm_init()...");
1224 	npages = kphysm_init(pp_base, npages);
1225 	PRM_POINT("kphysm_init() done");
1226 	PRM_DEBUG(npages);
1227 
1228 	init_debug_info();
1229 
1230 	/*
1231 	 * Now that page_t's have been initialized, remove all the
1232 	 * initial allocation pages from the kernel free page lists.
1233 	 */
1234 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1235 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1236 	PRM_POINT("startup_memlist() done");
1237 
1238 	PRM_DEBUG(valloc_sz);
1239 
1240 #if defined(__amd64)
1241 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1242 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1243 		extern size_t textrepl_size_thresh;
1244 		textrepl_size_thresh = (16 << 20) - 1;
1245 	}
1246 #endif
1247 }
1248 
1249 /*
1250  * Layout the kernel's part of address space and initialize kmem allocator.
1251  */
1252 static void
1253 startup_kmem(void)
1254 {
1255 	extern void page_set_colorequiv_arr(void);
1256 	const char *fmt = "?features: %b\n";
1257 
1258 	PRM_POINT("startup_kmem() starting...");
1259 
1260 #if defined(__amd64)
1261 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1262 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1263 		    "systems.");
1264 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1265 	core_base = (uintptr_t)COREHEAP_BASE;
1266 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1267 #else	/* __i386 */
1268 	/*
1269 	 * We configure kernelbase based on:
1270 	 *
1271 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1272 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1273 	 *
1274 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1275 	 *    On large memory systems we must lower kernelbase to allow
1276 	 *    enough room for page_t's for all of memory.
1277 	 *
1278 	 * The value set here, might be changed a little later.
1279 	 */
1280 	if (eprom_kernelbase) {
1281 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1282 		if (kernelbase > KERNELBASE_MAX)
1283 			kernelbase = KERNELBASE_MAX;
1284 	} else {
1285 		kernelbase = (uintptr_t)KERNELBASE;
1286 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1287 	}
1288 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1289 	core_base = valloc_base;
1290 	core_size = 0;
1291 #endif	/* __i386 */
1292 
1293 	PRM_DEBUG(core_base);
1294 	PRM_DEBUG(core_size);
1295 	PRM_DEBUG(kernelbase);
1296 
1297 #if defined(__i386)
1298 	segkp_fromheap = 1;
1299 #endif	/* __i386 */
1300 
1301 	ekernelheap = (char *)core_base;
1302 	PRM_DEBUG(ekernelheap);
1303 
1304 	/*
1305 	 * Now that we know the real value of kernelbase,
1306 	 * update variables that were initialized with a value of
1307 	 * KERNELBASE (in common/conf/param.c).
1308 	 *
1309 	 * XXX	The problem with this sort of hackery is that the
1310 	 *	compiler just may feel like putting the const declarations
1311 	 *	(in param.c) into the .text section.  Perhaps they should
1312 	 *	just be declared as variables there?
1313 	 */
1314 
1315 	*(uintptr_t *)&_kernelbase = kernelbase;
1316 	*(uintptr_t *)&_userlimit = kernelbase;
1317 #if defined(__amd64)
1318 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1319 #else
1320 	*(uintptr_t *)&_userlimit32 = _userlimit;
1321 #endif
1322 	PRM_DEBUG(_kernelbase);
1323 	PRM_DEBUG(_userlimit);
1324 	PRM_DEBUG(_userlimit32);
1325 
1326 	layout_kernel_va();
1327 
1328 #if defined(__i386)
1329 	/*
1330 	 * If segmap is too large we can push the bottom of the kernel heap
1331 	 * higher than the base.  Or worse, it could exceed the top of the
1332 	 * VA space entirely, causing it to wrap around.
1333 	 */
1334 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1335 		panic("too little address space available for kernelheap,"
1336 		    " use eeprom for lower kernelbase or smaller segmapsize");
1337 #endif	/* __i386 */
1338 
1339 	/*
1340 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1341 	 */
1342 	kernelheap_init(kernelheap, ekernelheap,
1343 	    kernelheap + MMU_PAGESIZE,
1344 	    (void *)core_base, (void *)(core_base + core_size));
1345 
1346 #if defined(__xpv)
1347 	/*
1348 	 * Link pending events struct into cpu struct
1349 	 */
1350 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1351 #endif
1352 	/*
1353 	 * Initialize kernel memory allocator.
1354 	 */
1355 	kmem_init();
1356 
1357 	/*
1358 	 * Factor in colorequiv to check additional 'equivalent' bins
1359 	 */
1360 	page_set_colorequiv_arr();
1361 
1362 	/*
1363 	 * print this out early so that we know what's going on
1364 	 */
1365 	cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE);
1366 
1367 	/*
1368 	 * Initialize bp_mapin().
1369 	 */
1370 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1371 
1372 	/*
1373 	 * orig_npages is non-zero if physmem has been configured for less
1374 	 * than the available memory.
1375 	 */
1376 	if (orig_npages) {
1377 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1378 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1379 		    npages, orig_npages);
1380 	}
1381 #if defined(__i386)
1382 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1383 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1384 		    "System using 0x%lx",
1385 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1386 #endif
1387 
1388 #ifdef	KERNELBASE_ABI_MIN
1389 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1390 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1391 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1392 	}
1393 #endif
1394 
1395 #ifdef __xpv
1396 	/*
1397 	 * Some of the xen start information has to be relocated up
1398 	 * into the kernel's permanent address space.
1399 	 */
1400 	PRM_POINT("calling xen_relocate_start_info()");
1401 	xen_relocate_start_info();
1402 	PRM_POINT("xen_relocate_start_info() done");
1403 
1404 	/*
1405 	 * (Update the vcpu pointer in our cpu structure to point into
1406 	 * the relocated shared info.)
1407 	 */
1408 	CPU->cpu_m.mcpu_vcpu_info =
1409 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1410 #endif
1411 
1412 	PRM_POINT("startup_kmem() done");
1413 }
1414 
1415 #ifndef __xpv
1416 /*
1417  * If we have detected that we are running in an HVM environment, we need
1418  * to prepend the PV driver directory to the module search path.
1419  */
1420 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1421 static void
1422 update_default_path()
1423 {
1424 	char *current, *newpath;
1425 	int newlen;
1426 
1427 	/*
1428 	 * We are about to resync with krtld.  krtld will reset its
1429 	 * internal module search path iff Solaris has set default_path.
1430 	 * We want to be sure we're prepending this new directory to the
1431 	 * right search path.
1432 	 */
1433 	current = (default_path == NULL) ? kobj_module_path : default_path;
1434 
1435 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
1436 	newpath = kmem_alloc(newlen, KM_SLEEP);
1437 	(void) strcpy(newpath, HVM_MOD_DIR);
1438 	(void) strcat(newpath, " ");
1439 	(void) strcat(newpath, current);
1440 
1441 	default_path = newpath;
1442 }
1443 #endif
1444 
1445 static void
1446 startup_modules(void)
1447 {
1448 	int cnt;
1449 	extern void prom_setup(void);
1450 	int32_t v, h;
1451 	char d[11];
1452 	char *cp;
1453 	cmi_hdl_t hdl;
1454 
1455 	PRM_POINT("startup_modules() starting...");
1456 
1457 #ifndef __xpv
1458 	/*
1459 	 * Initialize ten-micro second timer so that drivers will
1460 	 * not get short changed in their init phase. This was
1461 	 * not getting called until clkinit which, on fast cpu's
1462 	 * caused the drv_usecwait to be way too short.
1463 	 */
1464 	microfind();
1465 
1466 	if (get_hwenv() == HW_XEN_HVM)
1467 		update_default_path();
1468 #endif
1469 
1470 	/*
1471 	 * Read the GMT lag from /etc/rtc_config.
1472 	 */
1473 	sgmtl(process_rtc_config_file());
1474 
1475 	/*
1476 	 * Calculate default settings of system parameters based upon
1477 	 * maxusers, yet allow to be overridden via the /etc/system file.
1478 	 */
1479 	param_calc(0);
1480 
1481 	mod_setup();
1482 
1483 	/*
1484 	 * Initialize system parameters.
1485 	 */
1486 	param_init();
1487 
1488 	/*
1489 	 * Initialize the default brands
1490 	 */
1491 	brand_init();
1492 
1493 	/*
1494 	 * maxmem is the amount of physical memory we're playing with.
1495 	 */
1496 	maxmem = physmem;
1497 
1498 	/*
1499 	 * Initialize segment management stuff.
1500 	 */
1501 	seg_init();
1502 
1503 	if (modload("fs", "specfs") == -1)
1504 		halt("Can't load specfs");
1505 
1506 	if (modload("fs", "devfs") == -1)
1507 		halt("Can't load devfs");
1508 
1509 	if (modload("fs", "dev") == -1)
1510 		halt("Can't load dev");
1511 
1512 	if (modload("fs", "procfs") == -1)
1513 		halt("Can't load procfs");
1514 
1515 	(void) modloadonly("sys", "lbl_edition");
1516 
1517 	dispinit();
1518 
1519 	/*
1520 	 * This is needed here to initialize hw_serial[] for cluster booting.
1521 	 */
1522 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1523 		cmn_err(CE_WARN, "Unable to set hostid");
1524 	} else {
1525 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1526 			d[cnt] = (char)(v % 10);
1527 			v /= 10;
1528 			if (v == 0)
1529 				break;
1530 		}
1531 		for (cp = hw_serial; cnt >= 0; cnt--)
1532 			*cp++ = d[cnt] + '0';
1533 		*cp = 0;
1534 	}
1535 
1536 	/* Read cluster configuration data. */
1537 	clconf_init();
1538 
1539 #if defined(__xpv)
1540 	(void) ec_init();
1541 	gnttab_init();
1542 	(void) xs_early_init();
1543 #endif /* __xpv */
1544 
1545 	/*
1546 	 * Create a kernel device tree. First, create rootnex and
1547 	 * then invoke bus specific code to probe devices.
1548 	 */
1549 	setup_ddi();
1550 
1551 #ifdef __xpv
1552 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1553 #endif
1554 	{
1555 		/*
1556 		 * Load the System Management BIOS into the global ksmbios
1557 		 * handle, if an SMBIOS is present on this system.
1558 		 */
1559 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1560 	}
1561 
1562 
1563 	/*
1564 	 * Set up the CPU module subsystem for the boot cpu in the native
1565 	 * case, and all physical cpu resource in the xpv dom0 case.
1566 	 * Modifies the device tree, so this must be done after
1567 	 * setup_ddi().
1568 	 */
1569 #ifdef __xpv
1570 	/*
1571 	 * If paravirtualized and on dom0 then we initialize all physical
1572 	 * cpu handles now;  if paravirtualized on a domU then do not
1573 	 * initialize.
1574 	 */
1575 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1576 		xen_mc_lcpu_cookie_t cpi;
1577 
1578 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1579 		    cpi = xen_physcpu_next(cpi)) {
1580 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1581 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1582 			    xen_physcpu_strandid(cpi))) != NULL &&
1583 			    (x86_feature & X86_MCA))
1584 				cmi_mca_init(hdl);
1585 		}
1586 	}
1587 #else
1588 	/*
1589 	 * Initialize a handle for the boot cpu - others will initialize
1590 	 * as they startup.  Do not do this if we know we are in an HVM domU.
1591 	 */
1592 	if ((get_hwenv() != HW_XEN_HVM) &&
1593 	    (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1594 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1595 	    (x86_feature & X86_MCA))
1596 			cmi_mca_init(hdl);
1597 #endif	/* __xpv */
1598 
1599 	/*
1600 	 * Fake a prom tree such that /dev/openprom continues to work
1601 	 */
1602 	PRM_POINT("startup_modules: calling prom_setup...");
1603 	prom_setup();
1604 	PRM_POINT("startup_modules: done");
1605 
1606 	/*
1607 	 * Load all platform specific modules
1608 	 */
1609 	PRM_POINT("startup_modules: calling psm_modload...");
1610 	psm_modload();
1611 
1612 	PRM_POINT("startup_modules() done");
1613 }
1614 
1615 /*
1616  * claim a "setaside" boot page for use in the kernel
1617  */
1618 page_t *
1619 boot_claim_page(pfn_t pfn)
1620 {
1621 	page_t *pp;
1622 
1623 	pp = page_numtopp_nolock(pfn);
1624 	ASSERT(pp != NULL);
1625 
1626 	if (PP_ISBOOTPAGES(pp)) {
1627 		if (pp->p_next != NULL)
1628 			pp->p_next->p_prev = pp->p_prev;
1629 		if (pp->p_prev == NULL)
1630 			bootpages = pp->p_next;
1631 		else
1632 			pp->p_prev->p_next = pp->p_next;
1633 	} else {
1634 		/*
1635 		 * htable_attach() expects a base pagesize page
1636 		 */
1637 		if (pp->p_szc != 0)
1638 			page_boot_demote(pp);
1639 		pp = page_numtopp(pfn, SE_EXCL);
1640 	}
1641 	return (pp);
1642 }
1643 
1644 /*
1645  * Walk through the pagetables looking for pages mapped in by boot.  If the
1646  * setaside flag is set the pages are expected to be returned to the
1647  * kernel later in boot, so we add them to the bootpages list.
1648  */
1649 static void
1650 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1651 {
1652 	uintptr_t va = low;
1653 	size_t len;
1654 	uint_t prot;
1655 	pfn_t pfn;
1656 	page_t *pp;
1657 	pgcnt_t boot_protect_cnt = 0;
1658 
1659 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1660 		if (va + len >= high)
1661 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1662 			    "legal range.", len, (void *)va);
1663 
1664 		while (len > 0) {
1665 			pp = page_numtopp_alloc(pfn);
1666 			if (pp != NULL) {
1667 				if (setaside == 0)
1668 					panic("Unexpected mapping by boot.  "
1669 					    "addr=%p pfn=%lx\n",
1670 					    (void *)va, pfn);
1671 
1672 				pp->p_next = bootpages;
1673 				pp->p_prev = NULL;
1674 				PP_SETBOOTPAGES(pp);
1675 				if (bootpages != NULL) {
1676 					bootpages->p_prev = pp;
1677 				}
1678 				bootpages = pp;
1679 				++boot_protect_cnt;
1680 			}
1681 
1682 			++pfn;
1683 			len -= MMU_PAGESIZE;
1684 			va += MMU_PAGESIZE;
1685 		}
1686 	}
1687 	PRM_DEBUG(boot_protect_cnt);
1688 }
1689 
1690 /*
1691  *
1692  */
1693 static void
1694 layout_kernel_va(void)
1695 {
1696 	PRM_POINT("layout_kernel_va() starting...");
1697 	/*
1698 	 * Establish the final size of the kernel's heap, size of segmap,
1699 	 * segkp, etc.
1700 	 */
1701 
1702 #if defined(__amd64)
1703 
1704 	kpm_vbase = (caddr_t)segkpm_base;
1705 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1706 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1707 		panic("not enough room for kpm!");
1708 	PRM_DEBUG(kpm_size);
1709 	PRM_DEBUG(kpm_vbase);
1710 
1711 	/*
1712 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1713 	 * faster to access than embedding it in the heap.
1714 	 */
1715 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1716 	if (!segkp_fromheap) {
1717 		size_t sz = mmu_ptob(segkpsize);
1718 
1719 		/*
1720 		 * determine size of segkp
1721 		 */
1722 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1723 			sz = SEGKPDEFSIZE;
1724 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1725 			    "segkpsize has been reset to %ld pages",
1726 			    mmu_btop(sz));
1727 		}
1728 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1729 
1730 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1731 	}
1732 	PRM_DEBUG(segkp_base);
1733 	PRM_DEBUG(segkpsize);
1734 
1735 	/*
1736 	 * segzio is used for ZFS cached data. It uses a distinct VA
1737 	 * segment (from kernel heap) so that we can easily tell not to
1738 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1739 	 * to give it lots of VA, but not constrain the kernel heap.
1740 	 * We scale the size of segzio linearly with physmem up to
1741 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1742 	 */
1743 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1744 	if (segzio_fromheap) {
1745 		segziosize = 0;
1746 	} else {
1747 		size_t physmem_size = mmu_ptob(physmem);
1748 		size_t size = (segziosize == 0) ?
1749 		    physmem_size : mmu_ptob(segziosize);
1750 
1751 		if (size < SEGZIOMINSIZE)
1752 			size = SEGZIOMINSIZE;
1753 		if (size > SEGZIOMAXSIZE) {
1754 			size = SEGZIOMAXSIZE;
1755 			if (physmem_size > size)
1756 				size += (physmem_size - size) / 2;
1757 		}
1758 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1759 	}
1760 	PRM_DEBUG(segziosize);
1761 	PRM_DEBUG(segzio_base);
1762 
1763 	/*
1764 	 * Put the range of VA for device mappings next, kmdb knows to not
1765 	 * grep in this range of addresses.
1766 	 */
1767 	toxic_addr =
1768 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1769 	PRM_DEBUG(toxic_addr);
1770 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1771 #else /* __i386 */
1772 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1773 #endif /* __i386 */
1774 	PRM_DEBUG(segmap_start);
1775 
1776 	/*
1777 	 * Users can change segmapsize through eeprom. If the variable
1778 	 * is tuned through eeprom, there is no upper bound on the
1779 	 * size of segmap.
1780 	 */
1781 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1782 
1783 #if defined(__i386)
1784 	/*
1785 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1786 	 * the bottom of the kernel's address range.  Set aside space for a
1787 	 * small red zone just below the start of segmap.
1788 	 */
1789 	segmap_start += KERNEL_REDZONE_SIZE;
1790 	segmapsize -= KERNEL_REDZONE_SIZE;
1791 #endif
1792 
1793 	PRM_DEBUG(segmap_start);
1794 	PRM_DEBUG(segmapsize);
1795 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1796 	PRM_DEBUG(kernelheap);
1797 	PRM_POINT("layout_kernel_va() done...");
1798 }
1799 
1800 /*
1801  * Finish initializing the VM system, now that we are no longer
1802  * relying on the boot time memory allocators.
1803  */
1804 static void
1805 startup_vm(void)
1806 {
1807 	struct segmap_crargs a;
1808 
1809 	extern int use_brk_lpg, use_stk_lpg;
1810 
1811 	PRM_POINT("startup_vm() starting...");
1812 
1813 	/*
1814 	 * Initialize the hat layer.
1815 	 */
1816 	hat_init();
1817 
1818 	/*
1819 	 * Do final allocations of HAT data structures that need to
1820 	 * be allocated before quiescing the boot loader.
1821 	 */
1822 	PRM_POINT("Calling hat_kern_alloc()...");
1823 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1824 	PRM_POINT("hat_kern_alloc() done");
1825 
1826 #ifndef __xpv
1827 	/*
1828 	 * Setup Page Attribute Table
1829 	 */
1830 	pat_sync();
1831 #endif
1832 
1833 	/*
1834 	 * The next two loops are done in distinct steps in order
1835 	 * to be sure that any page that is doubly mapped (both above
1836 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1837 	 * Note this may never happen, but it might someday.
1838 	 */
1839 	bootpages = NULL;
1840 	PRM_POINT("Protecting boot pages");
1841 
1842 	/*
1843 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1844 	 * page_t's. This can only happen if something weird allocated
1845 	 * in this range (like kadb/kmdb).
1846 	 */
1847 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1848 
1849 	/*
1850 	 * Before we can take over memory allocation/mapping from the boot
1851 	 * loader we must remove from our free page lists any boot allocated
1852 	 * pages that stay mapped until release_bootstrap().
1853 	 */
1854 	protect_boot_range(0, kernelbase, 1);
1855 
1856 
1857 	/*
1858 	 * Switch to running on regular HAT (not boot_mmu)
1859 	 */
1860 	PRM_POINT("Calling hat_kern_setup()...");
1861 	hat_kern_setup();
1862 
1863 	/*
1864 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1865 	 */
1866 	bop_no_more_mem();
1867 
1868 	PRM_POINT("hat_kern_setup() done");
1869 
1870 	hat_cpu_online(CPU);
1871 
1872 	/*
1873 	 * Initialize VM system
1874 	 */
1875 	PRM_POINT("Calling kvm_init()...");
1876 	kvm_init();
1877 	PRM_POINT("kvm_init() done");
1878 
1879 	/*
1880 	 * Tell kmdb that the VM system is now working
1881 	 */
1882 	if (boothowto & RB_DEBUG)
1883 		kdi_dvec_vmready();
1884 
1885 #if defined(__xpv)
1886 	/*
1887 	 * Populate the I/O pool on domain 0
1888 	 */
1889 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1890 		extern long populate_io_pool(void);
1891 		long init_io_pool_cnt;
1892 
1893 		PRM_POINT("Populating reserve I/O page pool");
1894 		init_io_pool_cnt = populate_io_pool();
1895 		PRM_DEBUG(init_io_pool_cnt);
1896 	}
1897 #endif
1898 	/*
1899 	 * Mangle the brand string etc.
1900 	 */
1901 	cpuid_pass3(CPU);
1902 
1903 #if defined(__amd64)
1904 
1905 	/*
1906 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1907 	 */
1908 	device_arena = vmem_create("device", (void *)toxic_addr,
1909 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1910 
1911 #else	/* __i386 */
1912 
1913 	/*
1914 	 * allocate the bit map that tracks toxic pages
1915 	 */
1916 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1917 	PRM_DEBUG(toxic_bit_map_len);
1918 	toxic_bit_map =
1919 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1920 	ASSERT(toxic_bit_map != NULL);
1921 	PRM_DEBUG(toxic_bit_map);
1922 
1923 #endif	/* __i386 */
1924 
1925 
1926 	/*
1927 	 * Now that we've got more VA, as well as the ability to allocate from
1928 	 * it, tell the debugger.
1929 	 */
1930 	if (boothowto & RB_DEBUG)
1931 		kdi_dvec_memavail();
1932 
1933 	/*
1934 	 * The following code installs a special page fault handler (#pf)
1935 	 * to work around a pentium bug.
1936 	 */
1937 #if !defined(__amd64) && !defined(__xpv)
1938 	if (x86_type == X86_TYPE_P5) {
1939 		desctbr_t idtr;
1940 		gate_desc_t *newidt;
1941 
1942 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1943 			panic("failed to install pentium_pftrap");
1944 
1945 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
1946 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1947 		    KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
1948 
1949 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1950 		    PROT_READ | PROT_EXEC);
1951 
1952 		CPU->cpu_idt = newidt;
1953 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
1954 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
1955 		wr_idtr(&idtr);
1956 	}
1957 #endif	/* !__amd64 */
1958 
1959 #if !defined(__xpv)
1960 	/*
1961 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1962 	 * parameters left there by controllers/BIOS.
1963 	 */
1964 	PRM_POINT("setup up p0_va");
1965 	p0_va = i86devmap(0, 1, PROT_READ);
1966 	PRM_DEBUG(p0_va);
1967 #endif
1968 
1969 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1970 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1971 
1972 	/*
1973 	 * disable automatic large pages for small memory systems or
1974 	 * when the disable flag is set.
1975 	 *
1976 	 * Do not yet consider page sizes larger than 2m/4m.
1977 	 */
1978 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1979 		max_uheap_lpsize = LEVEL_SIZE(1);
1980 		max_ustack_lpsize = LEVEL_SIZE(1);
1981 		max_privmap_lpsize = LEVEL_SIZE(1);
1982 		max_uidata_lpsize = LEVEL_SIZE(1);
1983 		max_utext_lpsize = LEVEL_SIZE(1);
1984 		max_shm_lpsize = LEVEL_SIZE(1);
1985 	}
1986 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1987 	    auto_lpg_disable) {
1988 		use_brk_lpg = 0;
1989 		use_stk_lpg = 0;
1990 	}
1991 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
1992 
1993 	PRM_POINT("Calling hat_init_finish()...");
1994 	hat_init_finish();
1995 	PRM_POINT("hat_init_finish() done");
1996 
1997 	/*
1998 	 * Initialize the segkp segment type.
1999 	 */
2000 	rw_enter(&kas.a_lock, RW_WRITER);
2001 	PRM_POINT("Attaching segkp");
2002 	if (segkp_fromheap) {
2003 		segkp->s_as = &kas;
2004 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2005 	    segkp) < 0) {
2006 		panic("startup: cannot attach segkp");
2007 		/*NOTREACHED*/
2008 	}
2009 	PRM_POINT("Doing segkp_create()");
2010 	if (segkp_create(segkp) != 0) {
2011 		panic("startup: segkp_create failed");
2012 		/*NOTREACHED*/
2013 	}
2014 	PRM_DEBUG(segkp);
2015 	rw_exit(&kas.a_lock);
2016 
2017 	/*
2018 	 * kpm segment
2019 	 */
2020 	segmap_kpm = 0;
2021 	if (kpm_desired) {
2022 		kpm_init();
2023 		kpm_enable = 1;
2024 	}
2025 
2026 	/*
2027 	 * Now create segmap segment.
2028 	 */
2029 	rw_enter(&kas.a_lock, RW_WRITER);
2030 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2031 		panic("cannot attach segmap");
2032 		/*NOTREACHED*/
2033 	}
2034 	PRM_DEBUG(segmap);
2035 
2036 	a.prot = PROT_READ | PROT_WRITE;
2037 	a.shmsize = 0;
2038 	a.nfreelist = segmapfreelists;
2039 
2040 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2041 		panic("segmap_create segmap");
2042 	rw_exit(&kas.a_lock);
2043 
2044 	setup_vaddr_for_ppcopy(CPU);
2045 
2046 	segdev_init();
2047 #if defined(__xpv)
2048 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2049 #endif
2050 		pmem_init();
2051 
2052 	PRM_POINT("startup_vm() done");
2053 }
2054 
2055 /*
2056  * Load a tod module for the non-standard tod part found on this system.
2057  */
2058 static void
2059 load_tod_module(char *todmod)
2060 {
2061 	if (modload("tod", todmod) == -1)
2062 		halt("Can't load TOD module");
2063 }
2064 
2065 static void
2066 startup_end(void)
2067 {
2068 	int i;
2069 	extern void setx86isalist(void);
2070 	extern void cpu_event_init(void);
2071 
2072 	PRM_POINT("startup_end() starting...");
2073 
2074 	/*
2075 	 * Perform tasks that get done after most of the VM
2076 	 * initialization has been done but before the clock
2077 	 * and other devices get started.
2078 	 */
2079 	kern_setup1();
2080 
2081 	/*
2082 	 * Perform CPC initialization for this CPU.
2083 	 */
2084 	kcpc_hw_init(CPU);
2085 
2086 	/*
2087 	 * Initialize cpu event framework.
2088 	 */
2089 	cpu_event_init();
2090 
2091 #if defined(OPTERON_WORKAROUND_6323525)
2092 	if (opteron_workaround_6323525)
2093 		patch_workaround_6323525();
2094 #endif
2095 	/*
2096 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2097 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2098 	 */
2099 	if (tod_module_name != NULL) {
2100 		PRM_POINT("load_tod_module()");
2101 		load_tod_module(tod_module_name);
2102 	}
2103 
2104 #if defined(__xpv)
2105 	/*
2106 	 * Forceload interposing TOD module for the hypervisor.
2107 	 */
2108 	PRM_POINT("load_tod_module()");
2109 	load_tod_module("xpvtod");
2110 #endif
2111 
2112 	/*
2113 	 * Configure the system.
2114 	 */
2115 	PRM_POINT("Calling configure()...");
2116 	configure();		/* set up devices */
2117 	PRM_POINT("configure() done");
2118 
2119 	/*
2120 	 * Set the isa_list string to the defined instruction sets we
2121 	 * support.
2122 	 */
2123 	setx86isalist();
2124 	cpu_intr_alloc(CPU, NINTR_THREADS);
2125 	psm_install();
2126 
2127 	/*
2128 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2129 	 * we're still using bootsvcs.
2130 	 */
2131 	PRM_POINT("NULLing out bootops");
2132 	*bootopsp = (struct bootops *)NULL;
2133 	bootops = (struct bootops *)NULL;
2134 
2135 #if defined(__xpv)
2136 	ec_init_debug_irq();
2137 	xs_domu_init();
2138 #endif
2139 
2140 #if !defined(__xpv)
2141 	if (rootnex_iommu_init != NULL) {
2142 		rootnex_iommu_init();
2143 	}
2144 #endif
2145 	PRM_POINT("Enabling interrupts");
2146 	(*picinitf)();
2147 	sti();
2148 #if defined(__xpv)
2149 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2150 	xen_late_startup();
2151 #endif
2152 
2153 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2154 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2155 
2156 	/*
2157 	 * Register these software interrupts for ddi timer.
2158 	 * Software interrupts up to the level 10 are supported.
2159 	 */
2160 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2161 		char name[sizeof ("timer_softintr") + 2];
2162 		(void) sprintf(name, "timer_softintr%02d", i);
2163 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2164 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2165 	}
2166 
2167 #if !defined(__xpv)
2168 	if (modload("drv", "amd_iommu") < 0) {
2169 		PRM_POINT("No AMD IOMMU present\n");
2170 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2171 	    "amd_iommu")) == NULL) {
2172 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2173 	}
2174 #endif
2175 	post_startup_cpu_fixups();
2176 
2177 	PRM_POINT("startup_end() done");
2178 }
2179 
2180 /*
2181  * Don't remove the following 2 variables.  They are necessary
2182  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2183  */
2184 char *_hs1107 = hw_serial;
2185 ulong_t  _bdhs34;
2186 
2187 void
2188 post_startup(void)
2189 {
2190 	extern void cpupm_init(cpu_t *);
2191 	extern void cpu_event_init_cpu(cpu_t *);
2192 
2193 	/*
2194 	 * Set the system wide, processor-specific flags to be passed
2195 	 * to userland via the aux vector for performance hints and
2196 	 * instruction set extensions.
2197 	 */
2198 	bind_hwcap();
2199 
2200 #ifdef __xpv
2201 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2202 #endif
2203 	{
2204 #if defined(__xpv)
2205 		xpv_panic_init();
2206 #else
2207 		/*
2208 		 * Startup the memory scrubber.
2209 		 * XXPV	This should be running somewhere ..
2210 		 */
2211 		if (get_hwenv() != HW_XEN_HVM)
2212 			memscrub_init();
2213 #endif
2214 	}
2215 
2216 	/*
2217 	 * Complete CPU module initialization
2218 	 */
2219 	cmi_post_startup();
2220 
2221 	/*
2222 	 * Perform forceloading tasks for /etc/system.
2223 	 */
2224 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2225 
2226 	/*
2227 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2228 	 * ON4.0: This must be fixed or restated in /etc/systems.
2229 	 */
2230 	(void) modload("fs", "procfs");
2231 
2232 	(void) i_ddi_attach_hw_nodes("pit_beep");
2233 
2234 #if defined(__i386)
2235 	/*
2236 	 * Check for required functional Floating Point hardware,
2237 	 * unless FP hardware explicitly disabled.
2238 	 */
2239 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2240 		halt("No working FP hardware found");
2241 #endif
2242 
2243 	maxmem = freemem;
2244 
2245 	cpu_event_init_cpu(CPU);
2246 	cpupm_init(CPU);
2247 	(void) mach_cpu_create_device_node(CPU, NULL);
2248 
2249 	pg_init();
2250 }
2251 
2252 static int
2253 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2254 {
2255 	return ((pp->p_pagenum >= btop(low_addr)) &&
2256 	    (pp->p_pagenum < btopr(high_addr)));
2257 }
2258 
2259 void
2260 release_bootstrap(void)
2261 {
2262 	int root_is_ramdisk;
2263 	page_t *pp;
2264 	extern void kobj_boot_unmountroot(void);
2265 	extern dev_t rootdev;
2266 #if !defined(__xpv)
2267 	pfn_t	pfn;
2268 #endif
2269 
2270 	/* unmount boot ramdisk and release kmem usage */
2271 	kobj_boot_unmountroot();
2272 
2273 	/*
2274 	 * We're finished using the boot loader so free its pages.
2275 	 */
2276 	PRM_POINT("Unmapping lower boot pages");
2277 
2278 	clear_boot_mappings(0, _userlimit);
2279 
2280 	postbootkernelbase = kernelbase;
2281 
2282 	/*
2283 	 * If root isn't on ramdisk, destroy the hardcoded
2284 	 * ramdisk node now and release the memory. Else,
2285 	 * ramdisk memory is kept in rd_pages.
2286 	 */
2287 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2288 	if (!root_is_ramdisk) {
2289 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2290 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2291 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2292 		(void) ddi_remove_child(dip, 0);
2293 	}
2294 
2295 	PRM_POINT("Releasing boot pages");
2296 	while (bootpages) {
2297 		extern uint64_t ramdisk_start, ramdisk_end;
2298 		pp = bootpages;
2299 		bootpages = pp->p_next;
2300 
2301 
2302 		/* Keep pages for the lower 64K */
2303 		if (pp_in_range(pp, 0, 0x40000)) {
2304 			pp->p_next = lower_pages;
2305 			lower_pages = pp;
2306 			lower_pages_count++;
2307 			continue;
2308 		}
2309 
2310 
2311 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2312 		    ramdisk_end)) {
2313 			pp->p_next = rd_pages;
2314 			rd_pages = pp;
2315 			continue;
2316 		}
2317 		pp->p_next = (struct page *)0;
2318 		pp->p_prev = (struct page *)0;
2319 		PP_CLRBOOTPAGES(pp);
2320 		page_free(pp, 1);
2321 	}
2322 	PRM_POINT("Boot pages released");
2323 
2324 #if !defined(__xpv)
2325 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2326 	/*
2327 	 * Find 1 page below 1 MB so that other processors can boot up or
2328 	 * so that any processor can resume.
2329 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2330 	 * We should have just free'd one up.
2331 	 */
2332 
2333 	/*
2334 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2335 	 * for BIOS.
2336 	 */
2337 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2338 		if (page_numtopp_alloc(pfn) == NULL)
2339 			continue;
2340 		rm_platter_va = i86devmap(pfn, 1,
2341 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2342 		rm_platter_pa = ptob(pfn);
2343 		hat_devload(kas.a_hat,
2344 		    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2345 		    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2346 		    HAT_LOAD_NOCONSIST);
2347 		break;
2348 	}
2349 	if (pfn == btop(1*1024*1024) && use_mp)
2350 		panic("No page below 1M available for starting "
2351 		    "other processors or for resuming from system-suspend");
2352 #endif	/* !__xpv */
2353 }
2354 
2355 /*
2356  * Initialize the platform-specific parts of a page_t.
2357  */
2358 void
2359 add_physmem_cb(page_t *pp, pfn_t pnum)
2360 {
2361 	pp->p_pagenum = pnum;
2362 	pp->p_mapping = NULL;
2363 	pp->p_embed = 0;
2364 	pp->p_share = 0;
2365 	pp->p_mlentry = 0;
2366 }
2367 
2368 /*
2369  * kphysm_init() initializes physical memory.
2370  */
2371 static pgcnt_t
2372 kphysm_init(
2373 	page_t *pp,
2374 	pgcnt_t npages)
2375 {
2376 	struct memlist	*pmem;
2377 	struct memseg	*cur_memseg;
2378 	pfn_t		base_pfn;
2379 	pfn_t		end_pfn;
2380 	pgcnt_t		num;
2381 	pgcnt_t		pages_done = 0;
2382 	uint64_t	addr;
2383 	uint64_t	size;
2384 	extern pfn_t	ddiphysmin;
2385 	extern int	mnode_xwa;
2386 	int		ms = 0, me = 0;
2387 
2388 	ASSERT(page_hash != NULL && page_hashsz != 0);
2389 
2390 	cur_memseg = memseg_base;
2391 	for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2392 		/*
2393 		 * In a 32 bit kernel can't use higher memory if we're
2394 		 * not booting in PAE mode. This check takes care of that.
2395 		 */
2396 		addr = pmem->ml_address;
2397 		size = pmem->ml_size;
2398 		if (btop(addr) > physmax)
2399 			continue;
2400 
2401 		/*
2402 		 * align addr and size - they may not be at page boundaries
2403 		 */
2404 		if ((addr & MMU_PAGEOFFSET) != 0) {
2405 			addr += MMU_PAGEOFFSET;
2406 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2407 			size -= addr - pmem->ml_address;
2408 		}
2409 
2410 		/* only process pages below or equal to physmax */
2411 		if ((btop(addr + size) - 1) > physmax)
2412 			size = ptob(physmax - btop(addr) + 1);
2413 
2414 		num = btop(size);
2415 		if (num == 0)
2416 			continue;
2417 
2418 		if (num > npages)
2419 			num = npages;
2420 
2421 		npages -= num;
2422 		pages_done += num;
2423 		base_pfn = btop(addr);
2424 
2425 		if (prom_debug)
2426 			prom_printf("MEMSEG addr=0x%" PRIx64
2427 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2428 			    addr, num, base_pfn, base_pfn + num);
2429 
2430 		/*
2431 		 * Ignore pages below ddiphysmin to simplify ddi memory
2432 		 * allocation with non-zero addr_lo requests.
2433 		 */
2434 		if (base_pfn < ddiphysmin) {
2435 			if (base_pfn + num <= ddiphysmin)
2436 				continue;
2437 			pp += (ddiphysmin - base_pfn);
2438 			num -= (ddiphysmin - base_pfn);
2439 			base_pfn = ddiphysmin;
2440 		}
2441 
2442 		/*
2443 		 * mnode_xwa is greater than 1 when large pages regions can
2444 		 * cross memory node boundaries. To prevent the formation
2445 		 * of these large pages, configure the memsegs based on the
2446 		 * memory node ranges which had been made non-contiguous.
2447 		 */
2448 		if (mnode_xwa > 1) {
2449 
2450 			end_pfn = base_pfn + num - 1;
2451 			ms = PFN_2_MEM_NODE(base_pfn);
2452 			me = PFN_2_MEM_NODE(end_pfn);
2453 
2454 			if (ms != me) {
2455 				/*
2456 				 * current range spans more than 1 memory node.
2457 				 * Set num to only the pfn range in the start
2458 				 * memory node.
2459 				 */
2460 				num = mem_node_config[ms].physmax - base_pfn
2461 				    + 1;
2462 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2463 			}
2464 		}
2465 
2466 		for (;;) {
2467 			/*
2468 			 * Build the memsegs entry
2469 			 */
2470 			cur_memseg->pages = pp;
2471 			cur_memseg->epages = pp + num;
2472 			cur_memseg->pages_base = base_pfn;
2473 			cur_memseg->pages_end = base_pfn + num;
2474 
2475 			/*
2476 			 * Insert into memseg list in decreasing pfn range
2477 			 * order. Low memory is typically more fragmented such
2478 			 * that this ordering keeps the larger ranges at the
2479 			 * front of the list for code that searches memseg.
2480 			 * This ASSERTS that the memsegs coming in from boot
2481 			 * are in increasing physical address order and not
2482 			 * contiguous.
2483 			 */
2484 			if (memsegs != NULL) {
2485 				ASSERT(cur_memseg->pages_base >=
2486 				    memsegs->pages_end);
2487 				cur_memseg->next = memsegs;
2488 			}
2489 			memsegs = cur_memseg;
2490 
2491 			/*
2492 			 * add_physmem() initializes the PSM part of the page
2493 			 * struct by calling the PSM back with add_physmem_cb().
2494 			 * In addition it coalesces pages into larger pages as
2495 			 * it initializes them.
2496 			 */
2497 			add_physmem(pp, num, base_pfn);
2498 			cur_memseg++;
2499 			availrmem_initial += num;
2500 			availrmem += num;
2501 
2502 			pp += num;
2503 			if (ms >= me)
2504 				break;
2505 
2506 			/* process next memory node range */
2507 			ms++;
2508 			base_pfn = mem_node_config[ms].physbase;
2509 			num = MIN(mem_node_config[ms].physmax,
2510 			    end_pfn) - base_pfn + 1;
2511 		}
2512 	}
2513 
2514 	PRM_DEBUG(availrmem_initial);
2515 	PRM_DEBUG(availrmem);
2516 	PRM_DEBUG(freemem);
2517 	build_pfn_hash();
2518 	return (pages_done);
2519 }
2520 
2521 /*
2522  * Kernel VM initialization.
2523  */
2524 static void
2525 kvm_init(void)
2526 {
2527 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2528 
2529 	/*
2530 	 * Put the kernel segments in kernel address space.
2531 	 */
2532 	rw_enter(&kas.a_lock, RW_WRITER);
2533 	as_avlinit(&kas);
2534 
2535 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2536 	(void) segkmem_create(&ktextseg);
2537 
2538 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2539 	(void) segkmem_create(&kvalloc);
2540 
2541 	(void) seg_attach(&kas, kernelheap,
2542 	    ekernelheap - kernelheap, &kvseg);
2543 	(void) segkmem_create(&kvseg);
2544 
2545 	if (core_size > 0) {
2546 		PRM_POINT("attaching kvseg_core");
2547 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2548 		    &kvseg_core);
2549 		(void) segkmem_create(&kvseg_core);
2550 	}
2551 
2552 	if (segziosize > 0) {
2553 		PRM_POINT("attaching segzio");
2554 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2555 		    &kzioseg);
2556 		(void) segkmem_zio_create(&kzioseg);
2557 
2558 		/* create zio area covering new segment */
2559 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2560 	}
2561 
2562 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2563 	(void) segkmem_create(&kdebugseg);
2564 
2565 	rw_exit(&kas.a_lock);
2566 
2567 	/*
2568 	 * Ensure that the red zone at kernelbase is never accessible.
2569 	 */
2570 	PRM_POINT("protecting redzone");
2571 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2572 
2573 	/*
2574 	 * Make the text writable so that it can be hot patched by DTrace.
2575 	 */
2576 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2577 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2578 
2579 	/*
2580 	 * Make data writable until end.
2581 	 */
2582 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2583 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2584 }
2585 
2586 #ifndef __xpv
2587 /*
2588  * Solaris adds an entry for Write Combining caching to the PAT
2589  */
2590 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2591 
2592 void
2593 pat_sync(void)
2594 {
2595 	ulong_t	cr0, cr0_orig, cr4;
2596 
2597 	if (!(x86_feature & X86_PAT))
2598 		return;
2599 	cr0_orig = cr0 = getcr0();
2600 	cr4 = getcr4();
2601 
2602 	/* disable caching and flush all caches and TLBs */
2603 	cr0 |= CR0_CD;
2604 	cr0 &= ~CR0_NW;
2605 	setcr0(cr0);
2606 	invalidate_cache();
2607 	if (cr4 & CR4_PGE) {
2608 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2609 		setcr4(cr4);
2610 	} else {
2611 		reload_cr3();
2612 	}
2613 
2614 	/* add our entry to the PAT */
2615 	wrmsr(REG_PAT, pat_attr_reg);
2616 
2617 	/* flush TLBs and cache again, then reenable cr0 caching */
2618 	if (cr4 & CR4_PGE) {
2619 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2620 		setcr4(cr4);
2621 	} else {
2622 		reload_cr3();
2623 	}
2624 	invalidate_cache();
2625 	setcr0(cr0_orig);
2626 }
2627 
2628 #endif /* !__xpv */
2629 
2630 #if defined(_SOFT_HOSTID)
2631 /*
2632  * On platforms that do not have a hardware serial number, attempt
2633  * to set one based on the contents of /etc/hostid.  If this file does
2634  * not exist, assume that we are to generate a new hostid and set
2635  * it in the kernel, for subsequent saving by a userland process
2636  * once the system is up and the root filesystem is mounted r/w.
2637  *
2638  * In order to gracefully support upgrade on OpenSolaris, if
2639  * /etc/hostid does not exist, we will attempt to get a serial number
2640  * using the legacy method (/kernel/misc/sysinit).
2641  *
2642  * In an attempt to make the hostid less prone to abuse
2643  * (for license circumvention, etc), we store it in /etc/hostid
2644  * in rot47 format.
2645  */
2646 extern volatile unsigned long tenmicrodata;
2647 static int atoi(char *);
2648 
2649 static int32_t
2650 set_soft_hostid(void)
2651 {
2652 	struct _buf *file;
2653 	char tokbuf[MAXNAMELEN];
2654 	token_t token;
2655 	int done = 0;
2656 	u_longlong_t tmp;
2657 	int i;
2658 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2659 	unsigned char *c;
2660 	hrtime_t tsc;
2661 
2662 	/*
2663 	 * If /etc/hostid file not found, we'd like to get a pseudo
2664 	 * random number to use at the hostid.  A nice way to do this
2665 	 * is to read the real time clock.  To remain xen-compatible,
2666 	 * we can't poke the real hardware, so we use tsc_read() to
2667 	 * read the real time clock.  However, there is an ominous
2668 	 * warning in tsc_read that says it can return zero, so we
2669 	 * deal with that possibility by falling back to using the
2670 	 * (hopefully random enough) value in tenmicrodata.
2671 	 */
2672 
2673 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2674 		/*
2675 		 * hostid file not found - try to load sysinit module
2676 		 * and see if it has a nonzero hostid value...use that
2677 		 * instead of generating a new hostid here if so.
2678 		 */
2679 		if ((i = modload("misc", "sysinit")) != -1) {
2680 			if (strlen(hw_serial) > 0)
2681 				hostid = (int32_t)atoi(hw_serial);
2682 			(void) modunload(i);
2683 		}
2684 		if (hostid == HW_INVALID_HOSTID) {
2685 			tsc = tsc_read();
2686 			if (tsc == 0)	/* tsc_read can return zero sometimes */
2687 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2688 			else
2689 				hostid = (int32_t)tsc & 0x0CFFFFF;
2690 		}
2691 	} else {
2692 		/* hostid file found */
2693 		while (!done) {
2694 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2695 
2696 			switch (token) {
2697 			case POUND:
2698 				/*
2699 				 * skip comments
2700 				 */
2701 				kobj_find_eol(file);
2702 				break;
2703 			case STRING:
2704 				/*
2705 				 * un-rot47 - obviously this
2706 				 * nonsense is ascii-specific
2707 				 */
2708 				for (c = (unsigned char *)tokbuf;
2709 				    *c != '\0'; c++) {
2710 					*c += 47;
2711 					if (*c > '~')
2712 						*c -= 94;
2713 					else if (*c < '!')
2714 						*c += 94;
2715 				}
2716 				/*
2717 				 * now we should have a real number
2718 				 */
2719 
2720 				if (kobj_getvalue(tokbuf, &tmp) != 0)
2721 					kobj_file_err(CE_WARN, file,
2722 					    "Bad value %s for hostid",
2723 					    tokbuf);
2724 				else
2725 					hostid = (int32_t)tmp;
2726 
2727 				break;
2728 			case EOF:
2729 				done = 1;
2730 				/* FALLTHROUGH */
2731 			case NEWLINE:
2732 				kobj_newline(file);
2733 				break;
2734 			default:
2735 				break;
2736 
2737 			}
2738 		}
2739 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2740 			kobj_file_err(CE_WARN, file,
2741 			    "hostid missing or corrupt");
2742 
2743 		kobj_close_file(file);
2744 	}
2745 	/*
2746 	 * hostid is now the value read from /etc/hostid, or the
2747 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2748 	 * set.
2749 	 */
2750 	return (hostid);
2751 }
2752 
2753 static int
2754 atoi(char *p)
2755 {
2756 	int i = 0;
2757 
2758 	while (*p != '\0')
2759 		i = 10 * i + (*p++ - '0');
2760 
2761 	return (i);
2762 }
2763 
2764 #endif /* _SOFT_HOSTID */
2765 
2766 void
2767 get_system_configuration(void)
2768 {
2769 	char	prop[32];
2770 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2771 
2772 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2773 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2774 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2775 	    nodes_ll > MAXNODES ||
2776 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2777 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2778 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2779 		system_hardware.hd_nodes = 1;
2780 		system_hardware.hd_cpus_per_node = 0;
2781 	} else {
2782 		system_hardware.hd_nodes = (int)nodes_ll;
2783 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2784 	}
2785 
2786 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2787 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2788 	    kobj_getvalue(prop, &lvalue) == -1)
2789 		eprom_kernelbase = NULL;
2790 	else
2791 		eprom_kernelbase = (uintptr_t)lvalue;
2792 
2793 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2794 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2795 	    kobj_getvalue(prop, &lvalue) == -1)
2796 		segmapsize = SEGMAPDEFAULT;
2797 	else
2798 		segmapsize = (uintptr_t)lvalue;
2799 
2800 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2801 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2802 	    kobj_getvalue(prop, &lvalue) == -1)
2803 		segmapfreelists = 0;	/* use segmap driver default */
2804 	else
2805 		segmapfreelists = (int)lvalue;
2806 
2807 	/* physmem used to be here, but moved much earlier to fakebop.c */
2808 }
2809 
2810 /*
2811  * Add to a memory list.
2812  * start = start of new memory segment
2813  * len = length of new memory segment in bytes
2814  * new = pointer to a new struct memlist
2815  * memlistp = memory list to which to add segment.
2816  */
2817 void
2818 memlist_add(
2819 	uint64_t start,
2820 	uint64_t len,
2821 	struct memlist *new,
2822 	struct memlist **memlistp)
2823 {
2824 	struct memlist *cur;
2825 	uint64_t end = start + len;
2826 
2827 	new->ml_address = start;
2828 	new->ml_size = len;
2829 
2830 	cur = *memlistp;
2831 
2832 	while (cur) {
2833 		if (cur->ml_address >= end) {
2834 			new->ml_next = cur;
2835 			*memlistp = new;
2836 			new->ml_prev = cur->ml_prev;
2837 			cur->ml_prev = new;
2838 			return;
2839 		}
2840 		ASSERT(cur->ml_address + cur->ml_size <= start);
2841 		if (cur->ml_next == NULL) {
2842 			cur->ml_next = new;
2843 			new->ml_prev = cur;
2844 			new->ml_next = NULL;
2845 			return;
2846 		}
2847 		memlistp = &cur->ml_next;
2848 		cur = cur->ml_next;
2849 	}
2850 }
2851 
2852 void
2853 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2854 {
2855 	size_t tsize = e_modtext - modtext;
2856 	size_t dsize = e_moddata - moddata;
2857 
2858 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2859 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2860 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2861 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2862 }
2863 
2864 caddr_t
2865 kobj_text_alloc(vmem_t *arena, size_t size)
2866 {
2867 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2868 }
2869 
2870 /*ARGSUSED*/
2871 caddr_t
2872 kobj_texthole_alloc(caddr_t addr, size_t size)
2873 {
2874 	panic("unexpected call to kobj_texthole_alloc()");
2875 	/*NOTREACHED*/
2876 	return (0);
2877 }
2878 
2879 /*ARGSUSED*/
2880 void
2881 kobj_texthole_free(caddr_t addr, size_t size)
2882 {
2883 	panic("unexpected call to kobj_texthole_free()");
2884 }
2885 
2886 /*
2887  * This is called just after configure() in startup().
2888  *
2889  * The ISALIST concept is a bit hopeless on Intel, because
2890  * there's no guarantee of an ever-more-capable processor
2891  * given that various parts of the instruction set may appear
2892  * and disappear between different implementations.
2893  *
2894  * While it would be possible to correct it and even enhance
2895  * it somewhat, the explicit hardware capability bitmask allows
2896  * more flexibility.
2897  *
2898  * So, we just leave this alone.
2899  */
2900 void
2901 setx86isalist(void)
2902 {
2903 	char *tp;
2904 	size_t len;
2905 	extern char *isa_list;
2906 
2907 #define	TBUFSIZE	1024
2908 
2909 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2910 	*tp = '\0';
2911 
2912 #if defined(__amd64)
2913 	(void) strcpy(tp, "amd64 ");
2914 #endif
2915 
2916 	switch (x86_vendor) {
2917 	case X86_VENDOR_Intel:
2918 	case X86_VENDOR_AMD:
2919 	case X86_VENDOR_TM:
2920 		if (x86_feature & X86_CMOV) {
2921 			/*
2922 			 * Pentium Pro or later
2923 			 */
2924 			(void) strcat(tp, "pentium_pro");
2925 			(void) strcat(tp, x86_feature & X86_MMX ?
2926 			    "+mmx pentium_pro " : " ");
2927 		}
2928 		/*FALLTHROUGH*/
2929 	case X86_VENDOR_Cyrix:
2930 		/*
2931 		 * The Cyrix 6x86 does not have any Pentium features
2932 		 * accessible while not at privilege level 0.
2933 		 */
2934 		if (x86_feature & X86_CPUID) {
2935 			(void) strcat(tp, "pentium");
2936 			(void) strcat(tp, x86_feature & X86_MMX ?
2937 			    "+mmx pentium " : " ");
2938 		}
2939 		break;
2940 	default:
2941 		break;
2942 	}
2943 	(void) strcat(tp, "i486 i386 i86");
2944 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2945 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2946 	kmem_free(tp, TBUFSIZE);
2947 
2948 #undef TBUFSIZE
2949 }
2950 
2951 
2952 #ifdef __amd64
2953 
2954 void *
2955 device_arena_alloc(size_t size, int vm_flag)
2956 {
2957 	return (vmem_alloc(device_arena, size, vm_flag));
2958 }
2959 
2960 void
2961 device_arena_free(void *vaddr, size_t size)
2962 {
2963 	vmem_free(device_arena, vaddr, size);
2964 }
2965 
2966 #else /* __i386 */
2967 
2968 void *
2969 device_arena_alloc(size_t size, int vm_flag)
2970 {
2971 	caddr_t	vaddr;
2972 	uintptr_t v;
2973 	size_t	start;
2974 	size_t	end;
2975 
2976 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2977 	if (vaddr == NULL)
2978 		return (NULL);
2979 
2980 	v = (uintptr_t)vaddr;
2981 	ASSERT(v >= kernelbase);
2982 	ASSERT(v + size <= valloc_base);
2983 
2984 	start = btop(v - kernelbase);
2985 	end = btop(v + size - 1 - kernelbase);
2986 	ASSERT(start < toxic_bit_map_len);
2987 	ASSERT(end < toxic_bit_map_len);
2988 
2989 	while (start <= end) {
2990 		BT_ATOMIC_SET(toxic_bit_map, start);
2991 		++start;
2992 	}
2993 	return (vaddr);
2994 }
2995 
2996 void
2997 device_arena_free(void *vaddr, size_t size)
2998 {
2999 	uintptr_t v = (uintptr_t)vaddr;
3000 	size_t	start;
3001 	size_t	end;
3002 
3003 	ASSERT(v >= kernelbase);
3004 	ASSERT(v + size <= valloc_base);
3005 
3006 	start = btop(v - kernelbase);
3007 	end = btop(v + size - 1 - kernelbase);
3008 	ASSERT(start < toxic_bit_map_len);
3009 	ASSERT(end < toxic_bit_map_len);
3010 
3011 	while (start <= end) {
3012 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3013 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3014 		++start;
3015 	}
3016 	vmem_free(heap_arena, vaddr, size);
3017 }
3018 
3019 /*
3020  * returns 1st address in range that is in device arena, or NULL
3021  * if len is not NULL it returns the length of the toxic range
3022  */
3023 void *
3024 device_arena_contains(void *vaddr, size_t size, size_t *len)
3025 {
3026 	uintptr_t v = (uintptr_t)vaddr;
3027 	uintptr_t eaddr = v + size;
3028 	size_t start;
3029 	size_t end;
3030 
3031 	/*
3032 	 * if called very early by kmdb, just return NULL
3033 	 */
3034 	if (toxic_bit_map == NULL)
3035 		return (NULL);
3036 
3037 	/*
3038 	 * First check if we're completely outside the bitmap range.
3039 	 */
3040 	if (v >= valloc_base || eaddr < kernelbase)
3041 		return (NULL);
3042 
3043 	/*
3044 	 * Trim ends of search to look at only what the bitmap covers.
3045 	 */
3046 	if (v < kernelbase)
3047 		v = kernelbase;
3048 	start = btop(v - kernelbase);
3049 	end = btop(eaddr - kernelbase);
3050 	if (end >= toxic_bit_map_len)
3051 		end = toxic_bit_map_len;
3052 
3053 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3054 		return (NULL);
3055 
3056 	v = kernelbase + ptob(start);
3057 	if (len != NULL)
3058 		*len = ptob(end - start);
3059 	return ((void *)v);
3060 }
3061 
3062 #endif	/* __i386 */
3063