xref: /titanic_51/usr/src/uts/i86pc/os/startup.c (revision f275d02f08c70e13825071e2577d1481e8bba78e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/mman.h>
34 #include <sys/vm.h>
35 #include <sys/conf.h>
36 #include <sys/avintr.h>
37 #include <sys/autoconf.h>
38 #include <sys/disp.h>
39 #include <sys/class.h>
40 #include <sys/bitmap.h>
41 
42 #include <sys/privregs.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 #include <sys/mem.h>
48 #include <sys/kstat.h>
49 
50 #include <sys/reboot.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 
58 #include <sys/vfs.h>
59 #include <sys/cmn_err.h>
60 #include <sys/utsname.h>
61 #include <sys/debug.h>
62 #include <sys/kdi.h>
63 
64 #include <sys/dumphdr.h>
65 #include <sys/bootconf.h>
66 #include <sys/varargs.h>
67 #include <sys/promif.h>
68 #include <sys/modctl.h>
69 
70 #include <sys/sunddi.h>
71 #include <sys/sunndi.h>
72 #include <sys/ndi_impldefs.h>
73 #include <sys/ddidmareq.h>
74 #include <sys/psw.h>
75 #include <sys/regset.h>
76 #include <sys/clock.h>
77 #include <sys/pte.h>
78 #include <sys/tss.h>
79 #include <sys/stack.h>
80 #include <sys/trap.h>
81 #include <sys/fp.h>
82 #include <vm/kboot_mmu.h>
83 #include <vm/anon.h>
84 #include <vm/as.h>
85 #include <vm/page.h>
86 #include <vm/seg.h>
87 #include <vm/seg_dev.h>
88 #include <vm/seg_kmem.h>
89 #include <vm/seg_kpm.h>
90 #include <vm/seg_map.h>
91 #include <vm/seg_vn.h>
92 #include <vm/seg_kp.h>
93 #include <sys/memnode.h>
94 #include <vm/vm_dep.h>
95 #include <sys/thread.h>
96 #include <sys/sysconf.h>
97 #include <sys/vm_machparam.h>
98 #include <sys/archsystm.h>
99 #include <sys/machsystm.h>
100 #include <vm/hat.h>
101 #include <vm/hat_i86.h>
102 #include <sys/pmem.h>
103 #include <sys/smp_impldefs.h>
104 #include <sys/x86_archext.h>
105 #include <sys/cpuvar.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/cpu_module.h>
112 #include <sys/smbios.h>
113 #include <sys/debug_info.h>
114 #include <sys/bootinfo.h>
115 #include <sys/ddi_timer.h>
116 #include <sys/systeminfo.h>
117 #include <sys/multiboot.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 extern void pcf_init(void);
139 extern void pg_init(void);
140 
141 extern int size_pse_array(pgcnt_t, int);
142 
143 #if defined(_SOFT_HOSTID)
144 
145 #include <sys/rtc.h>
146 
147 static int32_t set_soft_hostid(void);
148 static char hostid_file[] = "/etc/hostid";
149 
150 #endif
151 
152 void *gfx_devinfo_list;
153 
154 /*
155  * XXX make declaration below "static" when drivers no longer use this
156  * interface.
157  */
158 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
159 
160 /*
161  * segkp
162  */
163 extern int segkp_fromheap;
164 
165 static void kvm_init(void);
166 static void startup_init(void);
167 static void startup_memlist(void);
168 static void startup_kmem(void);
169 static void startup_modules(void);
170 static void startup_vm(void);
171 static void startup_end(void);
172 static void layout_kernel_va(void);
173 
174 #if !defined(__xpv)
175 void (*rootnex_iommu_init)(void) = NULL;
176 #endif
177 
178 /*
179  * Declare these as initialized data so we can patch them.
180  */
181 #ifdef __i386
182 
183 /*
184  * Due to virtual address space limitations running in 32 bit mode, restrict
185  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
186  *
187  * If the physical max memory size of 64g were allowed to be configured, the
188  * size of user virtual address space will be less than 1g. A limited user
189  * address space greatly reduces the range of applications that can run.
190  *
191  * If more physical memory than PHYSMEM is required, users should preferably
192  * run in 64 bit mode which has far looser virtual address space limitations.
193  *
194  * If 64 bit mode is not available (as in IA32) and/or more physical memory
195  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
196  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
197  * should also be carefully tuned to balance out the need of the user
198  * application while minimizing the risk of kernel heap exhaustion due to
199  * kernelbase being set too high.
200  */
201 #define	PHYSMEM	0x400000
202 
203 #else /* __amd64 */
204 
205 /*
206  * For now we can handle memory with physical addresses up to about
207  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
208  * half the VA space for seg_kpm. When systems get bigger than 64TB this
209  * code will need revisiting. There is an implicit assumption that there
210  * are no *huge* holes in the physical address space too.
211  */
212 #define	TERABYTE		(1ul << 40)
213 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
214 #define	PHYSMEM			PHYSMEM_MAX64
215 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
216 
217 #endif /* __amd64 */
218 
219 pgcnt_t physmem = PHYSMEM;
220 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
221 
222 char *kobj_file_buf;
223 int kobj_file_bufsize;	/* set in /etc/system */
224 
225 /* Global variables for MP support. Used in mp_startup */
226 caddr_t	rm_platter_va = 0;
227 uint32_t rm_platter_pa;
228 
229 int	auto_lpg_disable = 1;
230 
231 /*
232  * Some CPUs have holes in the middle of the 64-bit virtual address range.
233  */
234 uintptr_t hole_start, hole_end;
235 
236 /*
237  * kpm mapping window
238  */
239 caddr_t kpm_vbase;
240 size_t  kpm_size;
241 static int kpm_desired;
242 #ifdef __amd64
243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
244 #endif
245 
246 /*
247  * Configuration parameters set at boot time.
248  */
249 
250 caddr_t econtig;		/* end of first block of contiguous kernel */
251 
252 struct bootops		*bootops = 0;	/* passed in from boot */
253 struct bootops		**bootopsp;
254 struct boot_syscalls	*sysp;		/* passed in from boot */
255 
256 char bootblock_fstype[16];
257 
258 char kern_bootargs[OBP_MAXPATHLEN];
259 char kern_bootfile[OBP_MAXPATHLEN];
260 
261 /*
262  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
263  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
264  * zio buffers from their own segment, otherwise they are allocated from the
265  * heap.  The optimization of allocating zio buffers from their own segment is
266  * only valid on 64-bit kernels.
267  */
268 #if defined(__amd64)
269 int segzio_fromheap = 0;
270 #else
271 int segzio_fromheap = 1;
272 #endif
273 
274 /*
275  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
276  * depends on number of BOP_ALLOC calls made and requested size, memory size
277  * combination and whether boot.bin memory needs to be freed.
278  */
279 #define	POSS_NEW_FRAGMENTS	12
280 
281 /*
282  * VM data structures
283  */
284 long page_hashsz;		/* Size of page hash table (power of two) */
285 struct page *pp_base;		/* Base of initial system page struct array */
286 struct page **page_hash;	/* Page hash table */
287 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
288 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
289 int pse_shift;			/* log2(pse_table_size) */
290 struct seg ktextseg;		/* Segment used for kernel executable image */
291 struct seg kvalloc;		/* Segment used for "valloc" mapping */
292 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
293 struct seg kmapseg;		/* Segment used for generic kernel mappings */
294 struct seg kdebugseg;		/* Segment used for the kernel debugger */
295 
296 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
297 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
298 
299 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
300 
301 #if defined(__amd64)
302 struct seg kvseg_core;		/* Segment used for the core heap */
303 struct seg kpmseg;		/* Segment used for physical mapping */
304 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
305 #else
306 struct seg *segkpm = NULL;	/* Unused on IA32 */
307 #endif
308 
309 caddr_t segkp_base;		/* Base address of segkp */
310 caddr_t segzio_base;		/* Base address of segzio */
311 #if defined(__amd64)
312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
313 #else
314 pgcnt_t segkpsize = 0;
315 #endif
316 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
317 
318 /*
319  * VA range available to the debugger
320  */
321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
322 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
323 
324 struct memseg *memseg_base;
325 struct vnode unused_pages_vp;
326 
327 #define	FOURGB	0x100000000LL
328 
329 struct memlist *memlist;
330 
331 caddr_t s_text;		/* start of kernel text segment */
332 caddr_t e_text;		/* end of kernel text segment */
333 caddr_t s_data;		/* start of kernel data segment */
334 caddr_t e_data;		/* end of kernel data segment */
335 caddr_t modtext;	/* start of loadable module text reserved */
336 caddr_t e_modtext;	/* end of loadable module text reserved */
337 caddr_t moddata;	/* start of loadable module data reserved */
338 caddr_t e_moddata;	/* end of loadable module data reserved */
339 
340 struct memlist *phys_install;	/* Total installed physical memory */
341 struct memlist *phys_avail;	/* Total available physical memory */
342 struct memlist *bios_rsvd;	/* Bios reserved memory */
343 
344 /*
345  * kphysm_init returns the number of pages that were processed
346  */
347 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
348 
349 #define	IO_PROP_SIZE	64	/* device property size */
350 
351 /*
352  * a couple useful roundup macros
353  */
354 #define	ROUND_UP_PAGE(x)	\
355 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
356 #define	ROUND_UP_LPAGE(x)	\
357 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
358 #define	ROUND_UP_4MEG(x)	\
359 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
360 #define	ROUND_UP_TOPLEVEL(x)	\
361 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
362 
363 /*
364  *	32-bit Kernel's Virtual memory layout.
365  *		+-----------------------+
366  *		|			|
367  * 0xFFC00000  -|-----------------------|- ARGSBASE
368  *		|	debugger	|
369  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
370  *		|      Kernel Data	|
371  * 0xFEC00000  -|-----------------------|
372  *              |      Kernel Text	|
373  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
374  *		|---       GDT       ---|- GDT page (GDT_VA)
375  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
376  *		|			|
377  * 		|   page_t structures	|
378  * 		|   memsegs, memlists, 	|
379  * 		|   page hash, etc.	|
380  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
381  *		|			|  (segkp is just an arena in the heap)
382  *		|			|
383  *		|	kvseg		|
384  *		|			|
385  *		|			|
386  * ---         -|-----------------------|- kernelheap (floating)
387  * 		|        Segkmap	|
388  * 0xC3002000  -|-----------------------|- segmap_start (floating)
389  *		|	Red Zone	|
390  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
391  *		|			|			||
392  *		|     Shared objects	|			\/
393  *		|			|
394  *		:			:
395  *		|	user data	|
396  *		|-----------------------|
397  *		|	user text	|
398  * 0x08048000  -|-----------------------|
399  *		|	user stack	|
400  *		:			:
401  *		|	invalid		|
402  * 0x00000000	+-----------------------+
403  *
404  *
405  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
406  *			+-----------------------+
407  *			|			|
408  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
409  *			|	debugger (?)	|
410  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
411  *			|      unused    	|
412  *			+-----------------------+
413  *			|      Kernel Data	|
414  * 0xFFFFFFFF.FBC00000  |-----------------------|
415  *			|      Kernel Text	|
416  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
417  *			|---       GDT       ---|- GDT page (GDT_VA)
418  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
419  *			|			|
420  * 			|      Core heap	| (used for loadable modules)
421  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
422  *			|	 Kernel		|
423  *			|	  heap		|
424  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
425  *			|	 segmap		|
426  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
427  *			|    device mappings	|
428  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
429  *			|	  segzio	|
430  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
431  *			|	  segkp		|
432  * ---                  |-----------------------|- segkp_base (floating)
433  * 			|   page_t structures	|  valloc_base + valloc_sz
434  * 			|   memsegs, memlists, 	|
435  * 			|   page hash, etc.	|
436  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
437  *			|	 segkpm		|
438  * 0xFFFFFE00.00000000  |-----------------------|
439  *			|	Red Zone	|
440  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
441  *			|     User stack	|- User space memory
442  * 			|			|
443  * 			| shared objects, etc	|	(grows downwards)
444  *			:			:
445  * 			|			|
446  * 0xFFFF8000.00000000  |-----------------------|
447  * 			|			|
448  * 			| VA Hole / unused	|
449  * 			|			|
450  * 0x00008000.00000000  |-----------------------|
451  *			|			|
452  *			|			|
453  *			:			:
454  *			|	user heap	|	(grows upwards)
455  *			|			|
456  *			|	user data	|
457  *			|-----------------------|
458  *			|	user text	|
459  * 0x00000000.04000000  |-----------------------|
460  *			|	invalid		|
461  * 0x00000000.00000000	+-----------------------+
462  *
463  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
464  * kernel, except that userlimit is raised to 0xfe000000
465  *
466  * Floating values:
467  *
468  * valloc_base: start of the kernel's memory management/tracking data
469  * structures.  This region contains page_t structures for
470  * physical memory, memsegs, memlists, and the page hash.
471  *
472  * core_base: start of the kernel's "core" heap area on 64-bit systems.
473  * This area is intended to be used for global data as well as for module
474  * text/data that does not fit into the nucleus pages.  The core heap is
475  * restricted to a 2GB range, allowing every address within it to be
476  * accessed using rip-relative addressing
477  *
478  * ekernelheap: end of kernelheap and start of segmap.
479  *
480  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
481  * above a red zone that separates the user's address space from the
482  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
483  *
484  * segmap_start: start of segmap. The length of segmap can be modified
485  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
486  * on 64-bit systems.
487  *
488  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
489  * decreased by 2X the size required for page_t.  This allows the kernel
490  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
491  * bytes, the following shows the values of kernelbase and kernel heap
492  * sizes for different memory configurations (assuming default segmap and
493  * segkp sizes).
494  *
495  *	mem	size for	kernelbase	kernel heap
496  *	size	page_t's			size
497  *	----	---------	----------	-----------
498  *	1gb	0x01400000	0xd1800000	684MB
499  *	2gb	0x02800000	0xcf000000	704MB
500  *	4gb	0x05000000	0xca000000	744MB
501  *	6gb	0x07800000	0xc5000000	784MB
502  *	8gb	0x0a000000	0xc0000000	824MB
503  *	16gb	0x14000000	0xac000000	984MB
504  *	32gb	0x28000000	0x84000000	1304MB
505  *	64gb	0x50000000	0x34000000	1944MB (*)
506  *
507  * kernelbase is less than the abi minimum of 0xc0000000 for memory
508  * configurations above 8gb.
509  *
510  * (*) support for memory configurations above 32gb will require manual tuning
511  * of kernelbase to balance out the need of user applications.
512  */
513 
514 /* real-time-clock initialization parameters */
515 extern time_t process_rtc_config_file(void);
516 
517 uintptr_t	kernelbase;
518 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
519 uintptr_t	eprom_kernelbase;
520 size_t		segmapsize;
521 uintptr_t	segmap_start;
522 int		segmapfreelists;
523 pgcnt_t		npages;
524 pgcnt_t		orig_npages;
525 size_t		core_size;		/* size of "core" heap */
526 uintptr_t	core_base;		/* base address of "core" heap */
527 
528 /*
529  * List of bootstrap pages. We mark these as allocated in startup.
530  * release_bootstrap() will free them when we're completely done with
531  * the bootstrap.
532  */
533 static page_t *bootpages;
534 
535 /*
536  * boot time pages that have a vnode from the ramdisk will keep that forever.
537  */
538 static page_t *rd_pages;
539 
540 /*
541  * Lower 64K
542  */
543 static page_t *lower_pages = NULL;
544 static int lower_pages_count = 0;
545 
546 struct system_hardware system_hardware;
547 
548 /*
549  * Enable some debugging messages concerning memory usage...
550  */
551 static void
552 print_memlist(char *title, struct memlist *mp)
553 {
554 	prom_printf("MEMLIST: %s:\n", title);
555 	while (mp != NULL)  {
556 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
557 		    mp->address, mp->size);
558 		mp = mp->next;
559 	}
560 }
561 
562 /*
563  * XX64 need a comment here.. are these just default values, surely
564  * we read the "cpuid" type information to figure this out.
565  */
566 int	l2cache_sz = 0x80000;
567 int	l2cache_linesz = 0x40;
568 int	l2cache_assoc = 1;
569 
570 static size_t	textrepl_min_gb = 10;
571 
572 /*
573  * on 64 bit we use a predifined VA range for mapping devices in the kernel
574  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
575  */
576 #ifdef __amd64
577 
578 vmem_t		*device_arena;
579 uintptr_t	toxic_addr = (uintptr_t)NULL;
580 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
581 
582 #else	/* __i386 */
583 
584 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
585 size_t		toxic_bit_map_len = 0;	/* in bits */
586 
587 #endif	/* __i386 */
588 
589 /*
590  * Simple boot time debug facilities
591  */
592 static char *prm_dbg_str[] = {
593 	"%s:%d: '%s' is 0x%x\n",
594 	"%s:%d: '%s' is 0x%llx\n"
595 };
596 
597 int prom_debug;
598 
599 #define	PRM_DEBUG(q)	if (prom_debug) 	\
600 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
601 #define	PRM_POINT(q)	if (prom_debug) 	\
602 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
603 
604 /*
605  * This structure is used to keep track of the intial allocations
606  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
607  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
608  */
609 #define	NUM_ALLOCATIONS 8
610 int num_allocations = 0;
611 struct {
612 	void **al_ptr;
613 	size_t al_size;
614 } allocations[NUM_ALLOCATIONS];
615 size_t valloc_sz = 0;
616 uintptr_t valloc_base;
617 
618 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
619 		size = ROUND_UP_PAGE(size);		 		\
620 		if (num_allocations == NUM_ALLOCATIONS)			\
621 			panic("too many ADD_TO_ALLOCATIONS()");		\
622 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
623 		allocations[num_allocations].al_size = size;		\
624 		valloc_sz += size;					\
625 		++num_allocations;				 	\
626 	}
627 
628 /*
629  * Allocate all the initial memory needed by the page allocator.
630  */
631 static void
632 perform_allocations(void)
633 {
634 	caddr_t mem;
635 	int i;
636 	int valloc_align;
637 
638 	PRM_DEBUG(valloc_base);
639 	PRM_DEBUG(valloc_sz);
640 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
641 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
642 	if (mem != (caddr_t)valloc_base)
643 		panic("BOP_ALLOC() failed");
644 	bzero(mem, valloc_sz);
645 	for (i = 0; i < num_allocations; ++i) {
646 		*allocations[i].al_ptr = (void *)mem;
647 		mem += allocations[i].al_size;
648 	}
649 }
650 
651 /*
652  * Our world looks like this at startup time.
653  *
654  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
655  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
656  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
657  * addresses are fixed in the binary at link time.
658  *
659  * On the text page:
660  * unix/genunix/krtld/module text loads.
661  *
662  * On the data page:
663  * unix/genunix/krtld/module data loads.
664  *
665  * Machine-dependent startup code
666  */
667 void
668 startup(void)
669 {
670 #if !defined(__xpv)
671 	extern void startup_bios_disk(void);
672 	extern void startup_pci_bios(void);
673 	extern int post_fastreboot;
674 #endif
675 	extern cpuset_t cpu_ready_set;
676 
677 	/*
678 	 * Make sure that nobody tries to use sekpm until we have
679 	 * initialized it properly.
680 	 */
681 #if defined(__amd64)
682 	kpm_desired = 1;
683 #endif
684 	kpm_enable = 0;
685 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
686 
687 #if defined(__xpv)	/* XXPV fix me! */
688 	{
689 		extern int segvn_use_regions;
690 		segvn_use_regions = 0;
691 	}
692 #endif
693 	progressbar_init();
694 	startup_init();
695 #if defined(__xpv)
696 	startup_xen_version();
697 #endif
698 	startup_memlist();
699 	startup_kmem();
700 	startup_vm();
701 #if !defined(__xpv)
702 	if (!post_fastreboot)
703 		startup_pci_bios();
704 #endif
705 #if defined(__xpv)
706 	startup_xen_mca();
707 #endif
708 	startup_modules();
709 #if !defined(__xpv)
710 	if (!post_fastreboot)
711 		startup_bios_disk();
712 #endif
713 	startup_end();
714 	progressbar_start();
715 }
716 
717 static void
718 startup_init()
719 {
720 	PRM_POINT("startup_init() starting...");
721 
722 	/*
723 	 * Complete the extraction of cpuid data
724 	 */
725 	cpuid_pass2(CPU);
726 
727 	(void) check_boot_version(BOP_GETVERSION(bootops));
728 
729 	/*
730 	 * Check for prom_debug in boot environment
731 	 */
732 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
733 		++prom_debug;
734 		PRM_POINT("prom_debug found in boot enviroment");
735 	}
736 
737 	/*
738 	 * Collect node, cpu and memory configuration information.
739 	 */
740 	get_system_configuration();
741 
742 	/*
743 	 * Halt if this is an unsupported processor.
744 	 */
745 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
746 		printf("\n486 processor (\"%s\") detected.\n",
747 		    CPU->cpu_brandstr);
748 		halt("This processor is not supported by this release "
749 		    "of Solaris.");
750 	}
751 
752 	PRM_POINT("startup_init() done");
753 }
754 
755 /*
756  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
757  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
758  * also filters out physical page zero.  There is some reliance on the
759  * boot loader allocating only a few contiguous physical memory chunks.
760  */
761 static void
762 avail_filter(uint64_t *addr, uint64_t *size)
763 {
764 	uintptr_t va;
765 	uintptr_t next_va;
766 	pfn_t pfn;
767 	uint64_t pfn_addr;
768 	uint64_t pfn_eaddr;
769 	uint_t prot;
770 	size_t len;
771 	uint_t change;
772 
773 	if (prom_debug)
774 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
775 		    *addr, *size);
776 
777 	/*
778 	 * page zero is required for BIOS.. never make it available
779 	 */
780 	if (*addr == 0) {
781 		*addr += MMU_PAGESIZE;
782 		*size -= MMU_PAGESIZE;
783 	}
784 
785 	/*
786 	 * First we trim from the front of the range. Since kbm_probe()
787 	 * walks ranges in virtual order, but addr/size are physical, we need
788 	 * to the list until no changes are seen.  This deals with the case
789 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
790 	 * but w < v.
791 	 */
792 	do {
793 		change = 0;
794 		for (va = KERNEL_TEXT;
795 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
796 		    va = next_va) {
797 
798 			next_va = va + len;
799 			pfn_addr = pfn_to_pa(pfn);
800 			pfn_eaddr = pfn_addr + len;
801 
802 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
803 				change = 1;
804 				while (*size > 0 && len > 0) {
805 					*addr += MMU_PAGESIZE;
806 					*size -= MMU_PAGESIZE;
807 					len -= MMU_PAGESIZE;
808 				}
809 			}
810 		}
811 		if (change && prom_debug)
812 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
813 			    *addr, *size);
814 	} while (change);
815 
816 	/*
817 	 * Trim pages from the end of the range.
818 	 */
819 	for (va = KERNEL_TEXT;
820 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
821 	    va = next_va) {
822 
823 		next_va = va + len;
824 		pfn_addr = pfn_to_pa(pfn);
825 
826 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
827 			*size = pfn_addr - *addr;
828 	}
829 
830 	if (prom_debug)
831 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
832 		    *addr, *size);
833 }
834 
835 static void
836 kpm_init()
837 {
838 	struct segkpm_crargs b;
839 
840 	/*
841 	 * These variables were all designed for sfmmu in which segkpm is
842 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
843 	 * might use 2+ page sizes on a single machine, so none of these
844 	 * variables have a single correct value.  They are set up as if we
845 	 * always use a 4KB pagesize, which should do no harm.  In the long
846 	 * run, we should get rid of KPM's assumption that only a single
847 	 * pagesize is used.
848 	 */
849 	kpm_pgshft = MMU_PAGESHIFT;
850 	kpm_pgsz =  MMU_PAGESIZE;
851 	kpm_pgoff = MMU_PAGEOFFSET;
852 	kpmp2pshft = 0;
853 	kpmpnpgs = 1;
854 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
855 
856 	PRM_POINT("about to create segkpm");
857 	rw_enter(&kas.a_lock, RW_WRITER);
858 
859 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
860 		panic("cannot attach segkpm");
861 
862 	b.prot = PROT_READ | PROT_WRITE;
863 	b.nvcolors = 1;
864 
865 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
866 		panic("segkpm_create segkpm");
867 
868 	rw_exit(&kas.a_lock);
869 }
870 
871 /*
872  * The debug info page provides enough information to allow external
873  * inspectors (e.g. when running under a hypervisor) to bootstrap
874  * themselves into allowing full-blown kernel debugging.
875  */
876 static void
877 init_debug_info(void)
878 {
879 	caddr_t mem;
880 	debug_info_t *di;
881 
882 #ifndef __lint
883 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
884 #endif
885 
886 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
887 	    MMU_PAGESIZE);
888 
889 	if (mem != (caddr_t)DEBUG_INFO_VA)
890 		panic("BOP_ALLOC() failed");
891 	bzero(mem, MMU_PAGESIZE);
892 
893 	di = (debug_info_t *)mem;
894 
895 	di->di_magic = DEBUG_INFO_MAGIC;
896 	di->di_version = DEBUG_INFO_VERSION;
897 	di->di_modules = (uintptr_t)&modules;
898 	di->di_s_text = (uintptr_t)s_text;
899 	di->di_e_text = (uintptr_t)e_text;
900 	di->di_s_data = (uintptr_t)s_data;
901 	di->di_e_data = (uintptr_t)e_data;
902 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
903 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
904 }
905 
906 /*
907  * Build the memlists and other kernel essential memory system data structures.
908  * This is everything at valloc_base.
909  */
910 static void
911 startup_memlist(void)
912 {
913 	size_t memlist_sz;
914 	size_t memseg_sz;
915 	size_t pagehash_sz;
916 	size_t pp_sz;
917 	uintptr_t va;
918 	size_t len;
919 	uint_t prot;
920 	pfn_t pfn;
921 	int memblocks;
922 	pfn_t rsvd_high_pfn;
923 	pgcnt_t rsvd_pgcnt;
924 	size_t rsvdmemlist_sz;
925 	int rsvdmemblocks;
926 	caddr_t pagecolor_mem;
927 	size_t pagecolor_memsz;
928 	caddr_t page_ctrs_mem;
929 	size_t page_ctrs_size;
930 	size_t pse_table_alloc_size;
931 	struct memlist *current;
932 	extern void startup_build_mem_nodes(struct memlist *);
933 
934 	/* XX64 fix these - they should be in include files */
935 	extern size_t page_coloring_init(uint_t, int, int);
936 	extern void page_coloring_setup(caddr_t);
937 
938 	PRM_POINT("startup_memlist() starting...");
939 
940 	/*
941 	 * Use leftover large page nucleus text/data space for loadable modules.
942 	 * Use at most MODTEXT/MODDATA.
943 	 */
944 	len = kbm_nucleus_size;
945 	ASSERT(len > MMU_PAGESIZE);
946 
947 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
948 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
949 	if (e_moddata - moddata > MODDATA)
950 		e_moddata = moddata + MODDATA;
951 
952 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
953 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
954 	if (e_modtext - modtext > MODTEXT)
955 		e_modtext = modtext + MODTEXT;
956 
957 	econtig = e_moddata;
958 
959 	PRM_DEBUG(modtext);
960 	PRM_DEBUG(e_modtext);
961 	PRM_DEBUG(moddata);
962 	PRM_DEBUG(e_moddata);
963 	PRM_DEBUG(econtig);
964 
965 	/*
966 	 * Examine the boot loader physical memory map to find out:
967 	 * - total memory in system - physinstalled
968 	 * - the max physical address - physmax
969 	 * - the number of discontiguous segments of memory.
970 	 */
971 	if (prom_debug)
972 		print_memlist("boot physinstalled",
973 		    bootops->boot_mem->physinstalled);
974 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
975 	    &physinstalled, &memblocks);
976 	PRM_DEBUG(physmax);
977 	PRM_DEBUG(physinstalled);
978 	PRM_DEBUG(memblocks);
979 
980 	/*
981 	 * Examine the bios reserved memory to find out:
982 	 * - the number of discontiguous segments of memory.
983 	 */
984 	if (prom_debug)
985 		print_memlist("boot reserved mem",
986 		    bootops->boot_mem->rsvdmem);
987 	installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
988 	    &rsvd_pgcnt, &rsvdmemblocks);
989 	PRM_DEBUG(rsvd_high_pfn);
990 	PRM_DEBUG(rsvd_pgcnt);
991 	PRM_DEBUG(rsvdmemblocks);
992 
993 	/*
994 	 * Initialize hat's mmu parameters.
995 	 * Check for enforce-prot-exec in boot environment. It's used to
996 	 * enable/disable support for the page table entry NX bit.
997 	 * The default is to enforce PROT_EXEC on processors that support NX.
998 	 * Boot seems to round up the "len", but 8 seems to be big enough.
999 	 */
1000 	mmu_init();
1001 
1002 #ifdef	__i386
1003 	/*
1004 	 * physmax is lowered if there is more memory than can be
1005 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1006 	 */
1007 	if (mmu.pae_hat) {
1008 		if (PFN_ABOVE64G(physmax)) {
1009 			physinstalled -= (physmax - (PFN_64G - 1));
1010 			physmax = PFN_64G - 1;
1011 		}
1012 	} else {
1013 		if (PFN_ABOVE4G(physmax)) {
1014 			physinstalled -= (physmax - (PFN_4G - 1));
1015 			physmax = PFN_4G - 1;
1016 		}
1017 	}
1018 #endif
1019 
1020 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1021 
1022 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1023 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1024 		char value[8];
1025 
1026 		if (len < 8)
1027 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1028 		else
1029 			(void) strcpy(value, "");
1030 		if (strcmp(value, "off") == 0)
1031 			mmu.pt_nx = 0;
1032 	}
1033 	PRM_DEBUG(mmu.pt_nx);
1034 
1035 	/*
1036 	 * We will need page_t's for every page in the system, except for
1037 	 * memory mapped at or above above the start of the kernel text segment.
1038 	 *
1039 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1040 	 */
1041 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1042 	obp_pages = 0;
1043 	va = KERNEL_TEXT;
1044 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1045 		npages -= len >> MMU_PAGESHIFT;
1046 		if (va >= (uintptr_t)e_moddata)
1047 			obp_pages += len >> MMU_PAGESHIFT;
1048 		va += len;
1049 	}
1050 	PRM_DEBUG(npages);
1051 	PRM_DEBUG(obp_pages);
1052 
1053 	/*
1054 	 * If physmem is patched to be non-zero, use it instead of the computed
1055 	 * value unless it is larger than the actual amount of memory on hand.
1056 	 */
1057 	if (physmem == 0 || physmem > npages) {
1058 		physmem = npages;
1059 	} else if (physmem < npages) {
1060 		orig_npages = npages;
1061 		npages = physmem;
1062 	}
1063 	PRM_DEBUG(physmem);
1064 
1065 	/*
1066 	 * We now compute the sizes of all the  initial allocations for
1067 	 * structures the kernel needs in order do kmem_alloc(). These
1068 	 * include:
1069 	 *	memsegs
1070 	 *	memlists
1071 	 *	page hash table
1072 	 *	page_t's
1073 	 *	page coloring data structs
1074 	 */
1075 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1076 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1077 	PRM_DEBUG(memseg_sz);
1078 
1079 	/*
1080 	 * Reserve space for memlists. There's no real good way to know exactly
1081 	 * how much room we'll need, but this should be a good upper bound.
1082 	 */
1083 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1084 	    (memblocks + POSS_NEW_FRAGMENTS));
1085 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1086 	PRM_DEBUG(memlist_sz);
1087 
1088 	/*
1089 	 * Reserve space for bios reserved memlists.
1090 	 */
1091 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1092 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1093 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1094 	PRM_DEBUG(rsvdmemlist_sz);
1095 
1096 	/*
1097 	 * The page structure hash table size is a power of 2
1098 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1099 	 */
1100 	page_hashsz = npages / PAGE_HASHAVELEN;
1101 	page_hashsz = 1 << highbit(page_hashsz);
1102 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1103 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1104 	PRM_DEBUG(pagehash_sz);
1105 
1106 	/*
1107 	 * Set aside room for the page structures themselves.
1108 	 */
1109 	PRM_DEBUG(npages);
1110 	pp_sz = sizeof (struct page) * npages;
1111 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1112 	PRM_DEBUG(pp_sz);
1113 
1114 	/*
1115 	 * determine l2 cache info and memory size for page coloring
1116 	 */
1117 	(void) getl2cacheinfo(CPU,
1118 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1119 	pagecolor_memsz =
1120 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1121 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1122 	PRM_DEBUG(pagecolor_memsz);
1123 
1124 	page_ctrs_size = page_ctrs_sz();
1125 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1126 	PRM_DEBUG(page_ctrs_size);
1127 
1128 	/*
1129 	 * Allocate the array that protects pp->p_selock.
1130 	 */
1131 	pse_shift = size_pse_array(physmem, max_ncpus);
1132 	pse_table_size = 1 << pse_shift;
1133 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1134 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1135 
1136 #if defined(__amd64)
1137 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1138 	valloc_base = VALLOC_BASE;
1139 
1140 	/*
1141 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1142 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1143 	 * memory is at addresses above 1 TB.
1144 	 */
1145 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1146 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1147 
1148 		/* Round to largest possible pagesize for now */
1149 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1150 
1151 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1152 
1153 		/* make sure we leave some space for user apps above hole */
1154 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1155 		if (segkpm_base > SEGKPM_BASE)
1156 			segkpm_base = SEGKPM_BASE;
1157 		PRM_DEBUG(segkpm_base);
1158 
1159 		valloc_base = segkpm_base + kpm_resv_amount;
1160 		PRM_DEBUG(valloc_base);
1161 	}
1162 #else	/* __i386 */
1163 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1164 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1165 	PRM_DEBUG(valloc_base);
1166 #endif	/* __i386 */
1167 
1168 	/*
1169 	 * do all the initial allocations
1170 	 */
1171 	perform_allocations();
1172 
1173 	/*
1174 	 * Build phys_install and phys_avail in kernel memspace.
1175 	 * - phys_install should be all memory in the system.
1176 	 * - phys_avail is phys_install minus any memory mapped before this
1177 	 *    point above KERNEL_TEXT.
1178 	 */
1179 	current = phys_install = memlist;
1180 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1181 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1182 		panic("physinstalled was too big!");
1183 	if (prom_debug)
1184 		print_memlist("phys_install", phys_install);
1185 
1186 	phys_avail = current;
1187 	PRM_POINT("Building phys_avail:\n");
1188 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1189 	    avail_filter);
1190 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1191 		panic("physavail was too big!");
1192 	if (prom_debug)
1193 		print_memlist("phys_avail", phys_avail);
1194 
1195 	/*
1196 	 * Build bios reserved memspace
1197 	 */
1198 	current = bios_rsvd;
1199 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1200 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1201 		panic("bios_rsvd was too big!");
1202 	if (prom_debug)
1203 		print_memlist("bios_rsvd", bios_rsvd);
1204 
1205 	/*
1206 	 * setup page coloring
1207 	 */
1208 	page_coloring_setup(pagecolor_mem);
1209 	page_lock_init();	/* currently a no-op */
1210 
1211 	/*
1212 	 * free page list counters
1213 	 */
1214 	(void) page_ctrs_alloc(page_ctrs_mem);
1215 
1216 	/*
1217 	 * Size the pcf array based on the number of cpus in the box at
1218 	 * boot time.
1219 	 */
1220 
1221 	pcf_init();
1222 
1223 	/*
1224 	 * Initialize the page structures from the memory lists.
1225 	 */
1226 	availrmem_initial = availrmem = freemem = 0;
1227 	PRM_POINT("Calling kphysm_init()...");
1228 	npages = kphysm_init(pp_base, npages);
1229 	PRM_POINT("kphysm_init() done");
1230 	PRM_DEBUG(npages);
1231 
1232 	init_debug_info();
1233 
1234 	/*
1235 	 * Now that page_t's have been initialized, remove all the
1236 	 * initial allocation pages from the kernel free page lists.
1237 	 */
1238 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1239 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1240 	PRM_POINT("startup_memlist() done");
1241 
1242 	PRM_DEBUG(valloc_sz);
1243 
1244 #if defined(__amd64)
1245 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1246 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1247 		extern size_t textrepl_size_thresh;
1248 		textrepl_size_thresh = (16 << 20) - 1;
1249 	}
1250 #endif
1251 }
1252 
1253 /*
1254  * Layout the kernel's part of address space and initialize kmem allocator.
1255  */
1256 static void
1257 startup_kmem(void)
1258 {
1259 	extern void page_set_colorequiv_arr(void);
1260 	const char *fmt = "?features: %b\n";
1261 
1262 	PRM_POINT("startup_kmem() starting...");
1263 
1264 #if defined(__amd64)
1265 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1266 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1267 		    "systems.");
1268 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1269 	core_base = (uintptr_t)COREHEAP_BASE;
1270 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1271 #else	/* __i386 */
1272 	/*
1273 	 * We configure kernelbase based on:
1274 	 *
1275 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1276 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1277 	 *
1278 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1279 	 *    On large memory systems we must lower kernelbase to allow
1280 	 *    enough room for page_t's for all of memory.
1281 	 *
1282 	 * The value set here, might be changed a little later.
1283 	 */
1284 	if (eprom_kernelbase) {
1285 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1286 		if (kernelbase > KERNELBASE_MAX)
1287 			kernelbase = KERNELBASE_MAX;
1288 	} else {
1289 		kernelbase = (uintptr_t)KERNELBASE;
1290 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1291 	}
1292 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1293 	core_base = valloc_base;
1294 	core_size = 0;
1295 #endif	/* __i386 */
1296 
1297 	PRM_DEBUG(core_base);
1298 	PRM_DEBUG(core_size);
1299 	PRM_DEBUG(kernelbase);
1300 
1301 #if defined(__i386)
1302 	segkp_fromheap = 1;
1303 #endif	/* __i386 */
1304 
1305 	ekernelheap = (char *)core_base;
1306 	PRM_DEBUG(ekernelheap);
1307 
1308 	/*
1309 	 * Now that we know the real value of kernelbase,
1310 	 * update variables that were initialized with a value of
1311 	 * KERNELBASE (in common/conf/param.c).
1312 	 *
1313 	 * XXX	The problem with this sort of hackery is that the
1314 	 *	compiler just may feel like putting the const declarations
1315 	 *	(in param.c) into the .text section.  Perhaps they should
1316 	 *	just be declared as variables there?
1317 	 */
1318 
1319 	*(uintptr_t *)&_kernelbase = kernelbase;
1320 	*(uintptr_t *)&_userlimit = kernelbase;
1321 #if defined(__amd64)
1322 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1323 #else
1324 	*(uintptr_t *)&_userlimit32 = _userlimit;
1325 #endif
1326 	PRM_DEBUG(_kernelbase);
1327 	PRM_DEBUG(_userlimit);
1328 	PRM_DEBUG(_userlimit32);
1329 
1330 	layout_kernel_va();
1331 
1332 #if defined(__i386)
1333 	/*
1334 	 * If segmap is too large we can push the bottom of the kernel heap
1335 	 * higher than the base.  Or worse, it could exceed the top of the
1336 	 * VA space entirely, causing it to wrap around.
1337 	 */
1338 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1339 		panic("too little address space available for kernelheap,"
1340 		    " use eeprom for lower kernelbase or smaller segmapsize");
1341 #endif	/* __i386 */
1342 
1343 	/*
1344 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1345 	 */
1346 	kernelheap_init(kernelheap, ekernelheap,
1347 	    kernelheap + MMU_PAGESIZE,
1348 	    (void *)core_base, (void *)(core_base + core_size));
1349 
1350 #if defined(__xpv)
1351 	/*
1352 	 * Link pending events struct into cpu struct
1353 	 */
1354 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1355 #endif
1356 	/*
1357 	 * Initialize kernel memory allocator.
1358 	 */
1359 	kmem_init();
1360 
1361 	/*
1362 	 * Factor in colorequiv to check additional 'equivalent' bins
1363 	 */
1364 	page_set_colorequiv_arr();
1365 
1366 	/*
1367 	 * print this out early so that we know what's going on
1368 	 */
1369 	cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE);
1370 
1371 	/*
1372 	 * Initialize bp_mapin().
1373 	 */
1374 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1375 
1376 	/*
1377 	 * orig_npages is non-zero if physmem has been configured for less
1378 	 * than the available memory.
1379 	 */
1380 	if (orig_npages) {
1381 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1382 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1383 		    npages, orig_npages);
1384 	}
1385 #if defined(__i386)
1386 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1387 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1388 		    "System using 0x%lx",
1389 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1390 #endif
1391 
1392 #ifdef	KERNELBASE_ABI_MIN
1393 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1394 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1395 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1396 	}
1397 #endif
1398 
1399 #ifdef __xpv
1400 	/*
1401 	 * Some of the xen start information has to be relocated up
1402 	 * into the kernel's permanent address space.
1403 	 */
1404 	PRM_POINT("calling xen_relocate_start_info()");
1405 	xen_relocate_start_info();
1406 	PRM_POINT("xen_relocate_start_info() done");
1407 
1408 	/*
1409 	 * (Update the vcpu pointer in our cpu structure to point into
1410 	 * the relocated shared info.)
1411 	 */
1412 	CPU->cpu_m.mcpu_vcpu_info =
1413 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1414 #endif
1415 
1416 	PRM_POINT("startup_kmem() done");
1417 }
1418 
1419 #ifndef __xpv
1420 /*
1421  * If we have detected that we are running in an HVM environment, we need
1422  * to prepend the PV driver directory to the module search path.
1423  */
1424 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1425 static void
1426 update_default_path()
1427 {
1428 	char *current, *newpath;
1429 	int newlen;
1430 
1431 	/*
1432 	 * We are about to resync with krtld.  krtld will reset its
1433 	 * internal module search path iff Solaris has set default_path.
1434 	 * We want to be sure we're prepending this new directory to the
1435 	 * right search path.
1436 	 */
1437 	current = (default_path == NULL) ? kobj_module_path : default_path;
1438 
1439 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
1440 	newpath = kmem_alloc(newlen, KM_SLEEP);
1441 	(void) strcpy(newpath, HVM_MOD_DIR);
1442 	(void) strcat(newpath, " ");
1443 	(void) strcat(newpath, current);
1444 
1445 	default_path = newpath;
1446 }
1447 #endif
1448 
1449 static void
1450 startup_modules(void)
1451 {
1452 	int cnt;
1453 	extern void prom_setup(void);
1454 	int32_t v, h;
1455 	char d[11];
1456 	char *cp;
1457 	cmi_hdl_t hdl;
1458 
1459 	PRM_POINT("startup_modules() starting...");
1460 
1461 #ifndef __xpv
1462 	/*
1463 	 * Initialize ten-micro second timer so that drivers will
1464 	 * not get short changed in their init phase. This was
1465 	 * not getting called until clkinit which, on fast cpu's
1466 	 * caused the drv_usecwait to be way too short.
1467 	 */
1468 	microfind();
1469 
1470 	if (get_hwenv() == HW_XEN_HVM)
1471 		update_default_path();
1472 #endif
1473 
1474 	/*
1475 	 * Read the GMT lag from /etc/rtc_config.
1476 	 */
1477 	sgmtl(process_rtc_config_file());
1478 
1479 	/*
1480 	 * Calculate default settings of system parameters based upon
1481 	 * maxusers, yet allow to be overridden via the /etc/system file.
1482 	 */
1483 	param_calc(0);
1484 
1485 	mod_setup();
1486 
1487 	/*
1488 	 * Initialize system parameters.
1489 	 */
1490 	param_init();
1491 
1492 	/*
1493 	 * Initialize the default brands
1494 	 */
1495 	brand_init();
1496 
1497 	/*
1498 	 * maxmem is the amount of physical memory we're playing with.
1499 	 */
1500 	maxmem = physmem;
1501 
1502 	/*
1503 	 * Initialize segment management stuff.
1504 	 */
1505 	seg_init();
1506 
1507 	if (modload("fs", "specfs") == -1)
1508 		halt("Can't load specfs");
1509 
1510 	if (modload("fs", "devfs") == -1)
1511 		halt("Can't load devfs");
1512 
1513 	if (modload("fs", "dev") == -1)
1514 		halt("Can't load dev");
1515 
1516 	(void) modloadonly("sys", "lbl_edition");
1517 
1518 	dispinit();
1519 
1520 	/*
1521 	 * This is needed here to initialize hw_serial[] for cluster booting.
1522 	 */
1523 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1524 		cmn_err(CE_WARN, "Unable to set hostid");
1525 	} else {
1526 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1527 			d[cnt] = (char)(v % 10);
1528 			v /= 10;
1529 			if (v == 0)
1530 				break;
1531 		}
1532 		for (cp = hw_serial; cnt >= 0; cnt--)
1533 			*cp++ = d[cnt] + '0';
1534 		*cp = 0;
1535 	}
1536 
1537 	/* Read cluster configuration data. */
1538 	clconf_init();
1539 
1540 #if defined(__xpv)
1541 	ec_init();
1542 	gnttab_init();
1543 	(void) xs_early_init();
1544 #endif /* __xpv */
1545 
1546 	/*
1547 	 * Create a kernel device tree. First, create rootnex and
1548 	 * then invoke bus specific code to probe devices.
1549 	 */
1550 	setup_ddi();
1551 
1552 	/*
1553 	 * Set up the CPU module subsystem for the boot cpu in the native
1554 	 * case, and all physical cpu resource in the xpv dom0 case.
1555 	 * Modifies the device tree, so this must be done after
1556 	 * setup_ddi().
1557 	 */
1558 #ifdef __xpv
1559 	/*
1560 	 * If paravirtualized and on dom0 then we initialize all physical
1561 	 * cpu handles now;  if paravirtualized on a domU then do not
1562 	 * initialize.
1563 	 */
1564 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1565 		xen_mc_lcpu_cookie_t cpi;
1566 
1567 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1568 		    cpi = xen_physcpu_next(cpi)) {
1569 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1570 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1571 			    xen_physcpu_strandid(cpi))) != NULL &&
1572 			    (x86_feature & X86_MCA))
1573 				cmi_mca_init(hdl);
1574 		}
1575 	}
1576 #else
1577 	/*
1578 	 * Initialize a handle for the boot cpu - others will initialize
1579 	 * as they startup.  Do not do this if we know we are in an HVM domU.
1580 	 */
1581 	if ((get_hwenv() != HW_XEN_HVM) &&
1582 	    (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1583 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1584 	    (x86_feature & X86_MCA))
1585 			cmi_mca_init(hdl);
1586 #endif	/* __xpv */
1587 
1588 	/*
1589 	 * Fake a prom tree such that /dev/openprom continues to work
1590 	 */
1591 	PRM_POINT("startup_modules: calling prom_setup...");
1592 	prom_setup();
1593 	PRM_POINT("startup_modules: done");
1594 
1595 	/*
1596 	 * Load all platform specific modules
1597 	 */
1598 	PRM_POINT("startup_modules: calling psm_modload...");
1599 	psm_modload();
1600 
1601 	PRM_POINT("startup_modules() done");
1602 }
1603 
1604 /*
1605  * claim a "setaside" boot page for use in the kernel
1606  */
1607 page_t *
1608 boot_claim_page(pfn_t pfn)
1609 {
1610 	page_t *pp;
1611 
1612 	pp = page_numtopp_nolock(pfn);
1613 	ASSERT(pp != NULL);
1614 
1615 	if (PP_ISBOOTPAGES(pp)) {
1616 		if (pp->p_next != NULL)
1617 			pp->p_next->p_prev = pp->p_prev;
1618 		if (pp->p_prev == NULL)
1619 			bootpages = pp->p_next;
1620 		else
1621 			pp->p_prev->p_next = pp->p_next;
1622 	} else {
1623 		/*
1624 		 * htable_attach() expects a base pagesize page
1625 		 */
1626 		if (pp->p_szc != 0)
1627 			page_boot_demote(pp);
1628 		pp = page_numtopp(pfn, SE_EXCL);
1629 	}
1630 	return (pp);
1631 }
1632 
1633 /*
1634  * Walk through the pagetables looking for pages mapped in by boot.  If the
1635  * setaside flag is set the pages are expected to be returned to the
1636  * kernel later in boot, so we add them to the bootpages list.
1637  */
1638 static void
1639 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1640 {
1641 	uintptr_t va = low;
1642 	size_t len;
1643 	uint_t prot;
1644 	pfn_t pfn;
1645 	page_t *pp;
1646 	pgcnt_t boot_protect_cnt = 0;
1647 
1648 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1649 		if (va + len >= high)
1650 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1651 			    "legal range.", len, (void *)va);
1652 
1653 		while (len > 0) {
1654 			pp = page_numtopp_alloc(pfn);
1655 			if (pp != NULL) {
1656 				if (setaside == 0)
1657 					panic("Unexpected mapping by boot.  "
1658 					    "addr=%p pfn=%lx\n",
1659 					    (void *)va, pfn);
1660 
1661 				pp->p_next = bootpages;
1662 				pp->p_prev = NULL;
1663 				PP_SETBOOTPAGES(pp);
1664 				if (bootpages != NULL) {
1665 					bootpages->p_prev = pp;
1666 				}
1667 				bootpages = pp;
1668 				++boot_protect_cnt;
1669 			}
1670 
1671 			++pfn;
1672 			len -= MMU_PAGESIZE;
1673 			va += MMU_PAGESIZE;
1674 		}
1675 	}
1676 	PRM_DEBUG(boot_protect_cnt);
1677 }
1678 
1679 /*
1680  *
1681  */
1682 static void
1683 layout_kernel_va(void)
1684 {
1685 	PRM_POINT("layout_kernel_va() starting...");
1686 	/*
1687 	 * Establish the final size of the kernel's heap, size of segmap,
1688 	 * segkp, etc.
1689 	 */
1690 
1691 #if defined(__amd64)
1692 
1693 	kpm_vbase = (caddr_t)segkpm_base;
1694 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1695 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1696 		panic("not enough room for kpm!");
1697 	PRM_DEBUG(kpm_size);
1698 	PRM_DEBUG(kpm_vbase);
1699 
1700 	/*
1701 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1702 	 * faster to access than embedding it in the heap.
1703 	 */
1704 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1705 	if (!segkp_fromheap) {
1706 		size_t sz = mmu_ptob(segkpsize);
1707 
1708 		/*
1709 		 * determine size of segkp
1710 		 */
1711 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1712 			sz = SEGKPDEFSIZE;
1713 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1714 			    "segkpsize has been reset to %ld pages",
1715 			    mmu_btop(sz));
1716 		}
1717 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1718 
1719 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1720 	}
1721 	PRM_DEBUG(segkp_base);
1722 	PRM_DEBUG(segkpsize);
1723 
1724 	/*
1725 	 * segzio is used for ZFS cached data. It uses a distinct VA
1726 	 * segment (from kernel heap) so that we can easily tell not to
1727 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1728 	 * to give it lots of VA, but not constrain the kernel heap.
1729 	 * We scale the size of segzio linearly with physmem up to
1730 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1731 	 */
1732 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1733 	if (segzio_fromheap) {
1734 		segziosize = 0;
1735 	} else {
1736 		size_t physmem_size = mmu_ptob(physmem);
1737 		size_t size = (segziosize == 0) ?
1738 		    physmem_size : mmu_ptob(segziosize);
1739 
1740 		if (size < SEGZIOMINSIZE)
1741 			size = SEGZIOMINSIZE;
1742 		if (size > SEGZIOMAXSIZE) {
1743 			size = SEGZIOMAXSIZE;
1744 			if (physmem_size > size)
1745 				size += (physmem_size - size) / 2;
1746 		}
1747 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1748 	}
1749 	PRM_DEBUG(segziosize);
1750 	PRM_DEBUG(segzio_base);
1751 
1752 	/*
1753 	 * Put the range of VA for device mappings next, kmdb knows to not
1754 	 * grep in this range of addresses.
1755 	 */
1756 	toxic_addr =
1757 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1758 	PRM_DEBUG(toxic_addr);
1759 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1760 #else /* __i386 */
1761 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1762 #endif /* __i386 */
1763 	PRM_DEBUG(segmap_start);
1764 
1765 	/*
1766 	 * Users can change segmapsize through eeprom. If the variable
1767 	 * is tuned through eeprom, there is no upper bound on the
1768 	 * size of segmap.
1769 	 */
1770 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1771 
1772 #if defined(__i386)
1773 	/*
1774 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1775 	 * the bottom of the kernel's address range.  Set aside space for a
1776 	 * small red zone just below the start of segmap.
1777 	 */
1778 	segmap_start += KERNEL_REDZONE_SIZE;
1779 	segmapsize -= KERNEL_REDZONE_SIZE;
1780 #endif
1781 
1782 	PRM_DEBUG(segmap_start);
1783 	PRM_DEBUG(segmapsize);
1784 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1785 	PRM_DEBUG(kernelheap);
1786 	PRM_POINT("layout_kernel_va() done...");
1787 }
1788 
1789 /*
1790  * Finish initializing the VM system, now that we are no longer
1791  * relying on the boot time memory allocators.
1792  */
1793 static void
1794 startup_vm(void)
1795 {
1796 	struct segmap_crargs a;
1797 
1798 	extern int use_brk_lpg, use_stk_lpg;
1799 
1800 	PRM_POINT("startup_vm() starting...");
1801 
1802 	/*
1803 	 * Initialize the hat layer.
1804 	 */
1805 	hat_init();
1806 
1807 	/*
1808 	 * Do final allocations of HAT data structures that need to
1809 	 * be allocated before quiescing the boot loader.
1810 	 */
1811 	PRM_POINT("Calling hat_kern_alloc()...");
1812 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1813 	PRM_POINT("hat_kern_alloc() done");
1814 
1815 #ifndef __xpv
1816 	/*
1817 	 * Setup Page Attribute Table
1818 	 */
1819 	pat_sync();
1820 #endif
1821 
1822 	/*
1823 	 * The next two loops are done in distinct steps in order
1824 	 * to be sure that any page that is doubly mapped (both above
1825 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1826 	 * Note this may never happen, but it might someday.
1827 	 */
1828 	bootpages = NULL;
1829 	PRM_POINT("Protecting boot pages");
1830 
1831 	/*
1832 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1833 	 * page_t's. This can only happen if something weird allocated
1834 	 * in this range (like kadb/kmdb).
1835 	 */
1836 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1837 
1838 	/*
1839 	 * Before we can take over memory allocation/mapping from the boot
1840 	 * loader we must remove from our free page lists any boot allocated
1841 	 * pages that stay mapped until release_bootstrap().
1842 	 */
1843 	protect_boot_range(0, kernelbase, 1);
1844 
1845 
1846 	/*
1847 	 * Switch to running on regular HAT (not boot_mmu)
1848 	 */
1849 	PRM_POINT("Calling hat_kern_setup()...");
1850 	hat_kern_setup();
1851 
1852 	/*
1853 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1854 	 */
1855 	bop_no_more_mem();
1856 
1857 	PRM_POINT("hat_kern_setup() done");
1858 
1859 	hat_cpu_online(CPU);
1860 
1861 	/*
1862 	 * Initialize VM system
1863 	 */
1864 	PRM_POINT("Calling kvm_init()...");
1865 	kvm_init();
1866 	PRM_POINT("kvm_init() done");
1867 
1868 	/*
1869 	 * Tell kmdb that the VM system is now working
1870 	 */
1871 	if (boothowto & RB_DEBUG)
1872 		kdi_dvec_vmready();
1873 
1874 #if defined(__xpv)
1875 	/*
1876 	 * Populate the I/O pool on domain 0
1877 	 */
1878 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1879 		extern long populate_io_pool(void);
1880 		long init_io_pool_cnt;
1881 
1882 		PRM_POINT("Populating reserve I/O page pool");
1883 		init_io_pool_cnt = populate_io_pool();
1884 		PRM_DEBUG(init_io_pool_cnt);
1885 	}
1886 #endif
1887 	/*
1888 	 * Mangle the brand string etc.
1889 	 */
1890 	cpuid_pass3(CPU);
1891 
1892 #if defined(__amd64)
1893 
1894 	/*
1895 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1896 	 */
1897 	device_arena = vmem_create("device", (void *)toxic_addr,
1898 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1899 
1900 #else	/* __i386 */
1901 
1902 	/*
1903 	 * allocate the bit map that tracks toxic pages
1904 	 */
1905 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1906 	PRM_DEBUG(toxic_bit_map_len);
1907 	toxic_bit_map =
1908 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1909 	ASSERT(toxic_bit_map != NULL);
1910 	PRM_DEBUG(toxic_bit_map);
1911 
1912 #endif	/* __i386 */
1913 
1914 
1915 	/*
1916 	 * Now that we've got more VA, as well as the ability to allocate from
1917 	 * it, tell the debugger.
1918 	 */
1919 	if (boothowto & RB_DEBUG)
1920 		kdi_dvec_memavail();
1921 
1922 	/*
1923 	 * The following code installs a special page fault handler (#pf)
1924 	 * to work around a pentium bug.
1925 	 */
1926 #if !defined(__amd64) && !defined(__xpv)
1927 	if (x86_type == X86_TYPE_P5) {
1928 		desctbr_t idtr;
1929 		gate_desc_t *newidt;
1930 
1931 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1932 			panic("failed to install pentium_pftrap");
1933 
1934 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
1935 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1936 		    KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
1937 
1938 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1939 		    PROT_READ | PROT_EXEC);
1940 
1941 		CPU->cpu_idt = newidt;
1942 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
1943 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
1944 		wr_idtr(&idtr);
1945 	}
1946 #endif	/* !__amd64 */
1947 
1948 #if !defined(__xpv)
1949 	/*
1950 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1951 	 * parameters left there by controllers/BIOS.
1952 	 */
1953 	PRM_POINT("setup up p0_va");
1954 	p0_va = i86devmap(0, 1, PROT_READ);
1955 	PRM_DEBUG(p0_va);
1956 #endif
1957 
1958 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1959 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1960 
1961 	/*
1962 	 * disable automatic large pages for small memory systems or
1963 	 * when the disable flag is set.
1964 	 *
1965 	 * Do not yet consider page sizes larger than 2m/4m.
1966 	 */
1967 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1968 		max_uheap_lpsize = LEVEL_SIZE(1);
1969 		max_ustack_lpsize = LEVEL_SIZE(1);
1970 		max_privmap_lpsize = LEVEL_SIZE(1);
1971 		max_uidata_lpsize = LEVEL_SIZE(1);
1972 		max_utext_lpsize = LEVEL_SIZE(1);
1973 		max_shm_lpsize = LEVEL_SIZE(1);
1974 	}
1975 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1976 	    auto_lpg_disable) {
1977 		use_brk_lpg = 0;
1978 		use_stk_lpg = 0;
1979 	}
1980 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
1981 
1982 	PRM_POINT("Calling hat_init_finish()...");
1983 	hat_init_finish();
1984 	PRM_POINT("hat_init_finish() done");
1985 
1986 	/*
1987 	 * Initialize the segkp segment type.
1988 	 */
1989 	rw_enter(&kas.a_lock, RW_WRITER);
1990 	PRM_POINT("Attaching segkp");
1991 	if (segkp_fromheap) {
1992 		segkp->s_as = &kas;
1993 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1994 	    segkp) < 0) {
1995 		panic("startup: cannot attach segkp");
1996 		/*NOTREACHED*/
1997 	}
1998 	PRM_POINT("Doing segkp_create()");
1999 	if (segkp_create(segkp) != 0) {
2000 		panic("startup: segkp_create failed");
2001 		/*NOTREACHED*/
2002 	}
2003 	PRM_DEBUG(segkp);
2004 	rw_exit(&kas.a_lock);
2005 
2006 	/*
2007 	 * kpm segment
2008 	 */
2009 	segmap_kpm = 0;
2010 	if (kpm_desired) {
2011 		kpm_init();
2012 		kpm_enable = 1;
2013 	}
2014 
2015 	/*
2016 	 * Now create segmap segment.
2017 	 */
2018 	rw_enter(&kas.a_lock, RW_WRITER);
2019 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2020 		panic("cannot attach segmap");
2021 		/*NOTREACHED*/
2022 	}
2023 	PRM_DEBUG(segmap);
2024 
2025 	a.prot = PROT_READ | PROT_WRITE;
2026 	a.shmsize = 0;
2027 	a.nfreelist = segmapfreelists;
2028 
2029 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2030 		panic("segmap_create segmap");
2031 	rw_exit(&kas.a_lock);
2032 
2033 	setup_vaddr_for_ppcopy(CPU);
2034 
2035 	segdev_init();
2036 #if defined(__xpv)
2037 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2038 #endif
2039 		pmem_init();
2040 
2041 	PRM_POINT("startup_vm() done");
2042 }
2043 
2044 /*
2045  * Load a tod module for the non-standard tod part found on this system.
2046  */
2047 static void
2048 load_tod_module(char *todmod)
2049 {
2050 	if (modload("tod", todmod) == -1)
2051 		halt("Can't load TOD module");
2052 }
2053 
2054 static void
2055 startup_end(void)
2056 {
2057 	int i;
2058 	extern void setx86isalist(void);
2059 	extern void cpu_event_init(void);
2060 
2061 	PRM_POINT("startup_end() starting...");
2062 
2063 	/*
2064 	 * Perform tasks that get done after most of the VM
2065 	 * initialization has been done but before the clock
2066 	 * and other devices get started.
2067 	 */
2068 	kern_setup1();
2069 
2070 	/*
2071 	 * Perform CPC initialization for this CPU.
2072 	 */
2073 	kcpc_hw_init(CPU);
2074 
2075 	/*
2076 	 * Initialize cpu event framework.
2077 	 */
2078 	cpu_event_init();
2079 
2080 #if defined(OPTERON_WORKAROUND_6323525)
2081 	if (opteron_workaround_6323525)
2082 		patch_workaround_6323525();
2083 #endif
2084 	/*
2085 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2086 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2087 	 */
2088 	if (tod_module_name != NULL) {
2089 		PRM_POINT("load_tod_module()");
2090 		load_tod_module(tod_module_name);
2091 	}
2092 
2093 #if defined(__xpv)
2094 	/*
2095 	 * Forceload interposing TOD module for the hypervisor.
2096 	 */
2097 	PRM_POINT("load_tod_module()");
2098 	load_tod_module("xpvtod");
2099 #endif
2100 
2101 	/*
2102 	 * Configure the system.
2103 	 */
2104 	PRM_POINT("Calling configure()...");
2105 	configure();		/* set up devices */
2106 	PRM_POINT("configure() done");
2107 
2108 	/*
2109 	 * Set the isa_list string to the defined instruction sets we
2110 	 * support.
2111 	 */
2112 	setx86isalist();
2113 	cpu_intr_alloc(CPU, NINTR_THREADS);
2114 	psm_install();
2115 
2116 	/*
2117 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2118 	 * we're still using bootsvcs.
2119 	 */
2120 	PRM_POINT("NULLing out bootops");
2121 	*bootopsp = (struct bootops *)NULL;
2122 	bootops = (struct bootops *)NULL;
2123 
2124 #if defined(__xpv)
2125 	ec_init_debug_irq();
2126 	xs_domu_init();
2127 #endif
2128 
2129 #if !defined(__xpv)
2130 	if (rootnex_iommu_init != NULL) {
2131 		rootnex_iommu_init();
2132 	}
2133 #endif
2134 	PRM_POINT("Enabling interrupts");
2135 	(*picinitf)();
2136 	sti();
2137 #if defined(__xpv)
2138 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2139 	xen_late_startup();
2140 #endif
2141 
2142 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2143 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2144 
2145 	/*
2146 	 * Register these software interrupts for ddi timer.
2147 	 * Software interrupts up to the level 10 are supported.
2148 	 */
2149 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2150 		char name[sizeof ("timer_softintr") + 2];
2151 		(void) sprintf(name, "timer_softintr%02d", i);
2152 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2153 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2154 	}
2155 
2156 #if !defined(__xpv)
2157 	if (modload("drv", "amd_iommu") < 0) {
2158 		PRM_POINT("No AMD IOMMU present\n");
2159 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2160 	    "amd_iommu")) == NULL) {
2161 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2162 	}
2163 #endif
2164 	post_startup_cpu_fixups();
2165 
2166 	PRM_POINT("startup_end() done");
2167 }
2168 
2169 /*
2170  * Don't remove the following 2 variables.  They are necessary
2171  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2172  */
2173 char *_hs1107 = hw_serial;
2174 ulong_t  _bdhs34;
2175 
2176 void
2177 post_startup(void)
2178 {
2179 	extern void cpupm_init(cpu_t *);
2180 	extern void cpu_event_init_cpu(cpu_t *);
2181 
2182 	/*
2183 	 * Set the system wide, processor-specific flags to be passed
2184 	 * to userland via the aux vector for performance hints and
2185 	 * instruction set extensions.
2186 	 */
2187 	bind_hwcap();
2188 
2189 #ifdef __xpv
2190 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2191 #endif
2192 	{
2193 		/*
2194 		 * Load the System Management BIOS into the global ksmbios
2195 		 * handle, if an SMBIOS is present on this system.
2196 		 */
2197 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2198 
2199 #if defined(__xpv)
2200 		xpv_panic_init();
2201 #else
2202 		/*
2203 		 * Startup the memory scrubber.
2204 		 * XXPV	This should be running somewhere ..
2205 		 */
2206 		if (get_hwenv() != HW_XEN_HVM)
2207 			memscrub_init();
2208 #endif
2209 	}
2210 
2211 	/*
2212 	 * Complete CPU module initialization
2213 	 */
2214 	cmi_post_startup();
2215 
2216 	/*
2217 	 * Perform forceloading tasks for /etc/system.
2218 	 */
2219 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2220 
2221 	/*
2222 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2223 	 * ON4.0: This must be fixed or restated in /etc/systems.
2224 	 */
2225 	(void) modload("fs", "procfs");
2226 
2227 	(void) i_ddi_attach_hw_nodes("pit_beep");
2228 
2229 #if defined(__i386)
2230 	/*
2231 	 * Check for required functional Floating Point hardware,
2232 	 * unless FP hardware explicitly disabled.
2233 	 */
2234 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2235 		halt("No working FP hardware found");
2236 #endif
2237 
2238 	maxmem = freemem;
2239 
2240 	cpu_event_init_cpu(CPU);
2241 	cpupm_init(CPU);
2242 	(void) mach_cpu_create_device_node(CPU, NULL);
2243 
2244 	pg_init();
2245 }
2246 
2247 static int
2248 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2249 {
2250 	return ((pp->p_pagenum >= btop(low_addr)) &&
2251 	    (pp->p_pagenum < btopr(high_addr)));
2252 }
2253 
2254 void
2255 release_bootstrap(void)
2256 {
2257 	int root_is_ramdisk;
2258 	page_t *pp;
2259 	extern void kobj_boot_unmountroot(void);
2260 	extern dev_t rootdev;
2261 #if !defined(__xpv)
2262 	pfn_t	pfn;
2263 #endif
2264 
2265 	/* unmount boot ramdisk and release kmem usage */
2266 	kobj_boot_unmountroot();
2267 
2268 	/*
2269 	 * We're finished using the boot loader so free its pages.
2270 	 */
2271 	PRM_POINT("Unmapping lower boot pages");
2272 
2273 	clear_boot_mappings(0, _userlimit);
2274 
2275 	postbootkernelbase = kernelbase;
2276 
2277 	/*
2278 	 * If root isn't on ramdisk, destroy the hardcoded
2279 	 * ramdisk node now and release the memory. Else,
2280 	 * ramdisk memory is kept in rd_pages.
2281 	 */
2282 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2283 	if (!root_is_ramdisk) {
2284 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2285 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2286 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2287 		(void) ddi_remove_child(dip, 0);
2288 	}
2289 
2290 	PRM_POINT("Releasing boot pages");
2291 	while (bootpages) {
2292 		extern uint64_t ramdisk_start, ramdisk_end;
2293 		pp = bootpages;
2294 		bootpages = pp->p_next;
2295 
2296 
2297 		/* Keep pages for the lower 64K */
2298 		if (pp_in_range(pp, 0, 0x40000)) {
2299 			pp->p_next = lower_pages;
2300 			lower_pages = pp;
2301 			lower_pages_count++;
2302 			continue;
2303 		}
2304 
2305 
2306 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2307 		    ramdisk_end)) {
2308 			pp->p_next = rd_pages;
2309 			rd_pages = pp;
2310 			continue;
2311 		}
2312 		pp->p_next = (struct page *)0;
2313 		pp->p_prev = (struct page *)0;
2314 		PP_CLRBOOTPAGES(pp);
2315 		page_free(pp, 1);
2316 	}
2317 	PRM_POINT("Boot pages released");
2318 
2319 #if !defined(__xpv)
2320 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2321 	/*
2322 	 * Find 1 page below 1 MB so that other processors can boot up or
2323 	 * so that any processor can resume.
2324 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2325 	 * We should have just free'd one up.
2326 	 */
2327 
2328 	/*
2329 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2330 	 * for BIOS.
2331 	 */
2332 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2333 		if (page_numtopp_alloc(pfn) == NULL)
2334 			continue;
2335 		rm_platter_va = i86devmap(pfn, 1,
2336 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2337 		rm_platter_pa = ptob(pfn);
2338 		hat_devload(kas.a_hat,
2339 		    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2340 		    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2341 		    HAT_LOAD_NOCONSIST);
2342 		break;
2343 	}
2344 	if (pfn == btop(1*1024*1024) && use_mp)
2345 		panic("No page below 1M available for starting "
2346 		    "other processors or for resuming from system-suspend");
2347 #endif	/* !__xpv */
2348 }
2349 
2350 /*
2351  * Initialize the platform-specific parts of a page_t.
2352  */
2353 void
2354 add_physmem_cb(page_t *pp, pfn_t pnum)
2355 {
2356 	pp->p_pagenum = pnum;
2357 	pp->p_mapping = NULL;
2358 	pp->p_embed = 0;
2359 	pp->p_share = 0;
2360 	pp->p_mlentry = 0;
2361 }
2362 
2363 /*
2364  * kphysm_init() initializes physical memory.
2365  */
2366 static pgcnt_t
2367 kphysm_init(
2368 	page_t *pp,
2369 	pgcnt_t npages)
2370 {
2371 	struct memlist	*pmem;
2372 	struct memseg	*cur_memseg;
2373 	pfn_t		base_pfn;
2374 	pfn_t		end_pfn;
2375 	pgcnt_t		num;
2376 	pgcnt_t		pages_done = 0;
2377 	uint64_t	addr;
2378 	uint64_t	size;
2379 	extern pfn_t	ddiphysmin;
2380 	extern int	mnode_xwa;
2381 	int		ms = 0, me = 0;
2382 
2383 	ASSERT(page_hash != NULL && page_hashsz != 0);
2384 
2385 	cur_memseg = memseg_base;
2386 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2387 		/*
2388 		 * In a 32 bit kernel can't use higher memory if we're
2389 		 * not booting in PAE mode. This check takes care of that.
2390 		 */
2391 		addr = pmem->address;
2392 		size = pmem->size;
2393 		if (btop(addr) > physmax)
2394 			continue;
2395 
2396 		/*
2397 		 * align addr and size - they may not be at page boundaries
2398 		 */
2399 		if ((addr & MMU_PAGEOFFSET) != 0) {
2400 			addr += MMU_PAGEOFFSET;
2401 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2402 			size -= addr - pmem->address;
2403 		}
2404 
2405 		/* only process pages below or equal to physmax */
2406 		if ((btop(addr + size) - 1) > physmax)
2407 			size = ptob(physmax - btop(addr) + 1);
2408 
2409 		num = btop(size);
2410 		if (num == 0)
2411 			continue;
2412 
2413 		if (num > npages)
2414 			num = npages;
2415 
2416 		npages -= num;
2417 		pages_done += num;
2418 		base_pfn = btop(addr);
2419 
2420 		if (prom_debug)
2421 			prom_printf("MEMSEG addr=0x%" PRIx64
2422 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2423 			    addr, num, base_pfn, base_pfn + num);
2424 
2425 		/*
2426 		 * Ignore pages below ddiphysmin to simplify ddi memory
2427 		 * allocation with non-zero addr_lo requests.
2428 		 */
2429 		if (base_pfn < ddiphysmin) {
2430 			if (base_pfn + num <= ddiphysmin)
2431 				continue;
2432 			pp += (ddiphysmin - base_pfn);
2433 			num -= (ddiphysmin - base_pfn);
2434 			base_pfn = ddiphysmin;
2435 		}
2436 
2437 		/*
2438 		 * mnode_xwa is greater than 1 when large pages regions can
2439 		 * cross memory node boundaries. To prevent the formation
2440 		 * of these large pages, configure the memsegs based on the
2441 		 * memory node ranges which had been made non-contiguous.
2442 		 */
2443 		if (mnode_xwa > 1) {
2444 
2445 			end_pfn = base_pfn + num - 1;
2446 			ms = PFN_2_MEM_NODE(base_pfn);
2447 			me = PFN_2_MEM_NODE(end_pfn);
2448 
2449 			if (ms != me) {
2450 				/*
2451 				 * current range spans more than 1 memory node.
2452 				 * Set num to only the pfn range in the start
2453 				 * memory node.
2454 				 */
2455 				num = mem_node_config[ms].physmax - base_pfn
2456 				    + 1;
2457 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2458 			}
2459 		}
2460 
2461 		for (;;) {
2462 			/*
2463 			 * Build the memsegs entry
2464 			 */
2465 			cur_memseg->pages = pp;
2466 			cur_memseg->epages = pp + num;
2467 			cur_memseg->pages_base = base_pfn;
2468 			cur_memseg->pages_end = base_pfn + num;
2469 
2470 			/*
2471 			 * Insert into memseg list in decreasing pfn range
2472 			 * order. Low memory is typically more fragmented such
2473 			 * that this ordering keeps the larger ranges at the
2474 			 * front of the list for code that searches memseg.
2475 			 * This ASSERTS that the memsegs coming in from boot
2476 			 * are in increasing physical address order and not
2477 			 * contiguous.
2478 			 */
2479 			if (memsegs != NULL) {
2480 				ASSERT(cur_memseg->pages_base >=
2481 				    memsegs->pages_end);
2482 				cur_memseg->next = memsegs;
2483 			}
2484 			memsegs = cur_memseg;
2485 
2486 			/*
2487 			 * add_physmem() initializes the PSM part of the page
2488 			 * struct by calling the PSM back with add_physmem_cb().
2489 			 * In addition it coalesces pages into larger pages as
2490 			 * it initializes them.
2491 			 */
2492 			add_physmem(pp, num, base_pfn);
2493 			cur_memseg++;
2494 			availrmem_initial += num;
2495 			availrmem += num;
2496 
2497 			pp += num;
2498 			if (ms >= me)
2499 				break;
2500 
2501 			/* process next memory node range */
2502 			ms++;
2503 			base_pfn = mem_node_config[ms].physbase;
2504 			num = MIN(mem_node_config[ms].physmax,
2505 			    end_pfn) - base_pfn + 1;
2506 		}
2507 	}
2508 
2509 	PRM_DEBUG(availrmem_initial);
2510 	PRM_DEBUG(availrmem);
2511 	PRM_DEBUG(freemem);
2512 	build_pfn_hash();
2513 	return (pages_done);
2514 }
2515 
2516 /*
2517  * Kernel VM initialization.
2518  */
2519 static void
2520 kvm_init(void)
2521 {
2522 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2523 
2524 	/*
2525 	 * Put the kernel segments in kernel address space.
2526 	 */
2527 	rw_enter(&kas.a_lock, RW_WRITER);
2528 	as_avlinit(&kas);
2529 
2530 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2531 	(void) segkmem_create(&ktextseg);
2532 
2533 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2534 	(void) segkmem_create(&kvalloc);
2535 
2536 	(void) seg_attach(&kas, kernelheap,
2537 	    ekernelheap - kernelheap, &kvseg);
2538 	(void) segkmem_create(&kvseg);
2539 
2540 	if (core_size > 0) {
2541 		PRM_POINT("attaching kvseg_core");
2542 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2543 		    &kvseg_core);
2544 		(void) segkmem_create(&kvseg_core);
2545 	}
2546 
2547 	if (segziosize > 0) {
2548 		PRM_POINT("attaching segzio");
2549 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2550 		    &kzioseg);
2551 		(void) segkmem_zio_create(&kzioseg);
2552 
2553 		/* create zio area covering new segment */
2554 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2555 	}
2556 
2557 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2558 	(void) segkmem_create(&kdebugseg);
2559 
2560 	rw_exit(&kas.a_lock);
2561 
2562 	/*
2563 	 * Ensure that the red zone at kernelbase is never accessible.
2564 	 */
2565 	PRM_POINT("protecting redzone");
2566 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2567 
2568 	/*
2569 	 * Make the text writable so that it can be hot patched by DTrace.
2570 	 */
2571 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2572 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2573 
2574 	/*
2575 	 * Make data writable until end.
2576 	 */
2577 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2578 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2579 }
2580 
2581 #ifndef __xpv
2582 /*
2583  * Solaris adds an entry for Write Combining caching to the PAT
2584  */
2585 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2586 
2587 void
2588 pat_sync(void)
2589 {
2590 	ulong_t	cr0, cr0_orig, cr4;
2591 
2592 	if (!(x86_feature & X86_PAT))
2593 		return;
2594 	cr0_orig = cr0 = getcr0();
2595 	cr4 = getcr4();
2596 
2597 	/* disable caching and flush all caches and TLBs */
2598 	cr0 |= CR0_CD;
2599 	cr0 &= ~CR0_NW;
2600 	setcr0(cr0);
2601 	invalidate_cache();
2602 	if (cr4 & CR4_PGE) {
2603 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2604 		setcr4(cr4);
2605 	} else {
2606 		reload_cr3();
2607 	}
2608 
2609 	/* add our entry to the PAT */
2610 	wrmsr(REG_PAT, pat_attr_reg);
2611 
2612 	/* flush TLBs and cache again, then reenable cr0 caching */
2613 	if (cr4 & CR4_PGE) {
2614 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2615 		setcr4(cr4);
2616 	} else {
2617 		reload_cr3();
2618 	}
2619 	invalidate_cache();
2620 	setcr0(cr0_orig);
2621 }
2622 
2623 #endif /* !__xpv */
2624 
2625 #if defined(_SOFT_HOSTID)
2626 /*
2627  * On platforms that do not have a hardware serial number, attempt
2628  * to set one based on the contents of /etc/hostid.  If this file does
2629  * not exist, assume that we are to generate a new hostid and set
2630  * it in the kernel, for subsequent saving by a userland process
2631  * once the system is up and the root filesystem is mounted r/w.
2632  *
2633  * In order to gracefully support upgrade on OpenSolaris, if
2634  * /etc/hostid does not exist, we will attempt to get a serial number
2635  * using the legacy method (/kernel/misc/sysinit).
2636  *
2637  * In an attempt to make the hostid less prone to abuse
2638  * (for license circumvention, etc), we store it in /etc/hostid
2639  * in rot47 format.
2640  */
2641 extern volatile unsigned long tenmicrodata;
2642 static int atoi(char *);
2643 
2644 static int32_t
2645 set_soft_hostid(void)
2646 {
2647 	struct _buf *file;
2648 	char tokbuf[MAXNAMELEN];
2649 	token_t token;
2650 	int done = 0;
2651 	u_longlong_t tmp;
2652 	int i;
2653 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2654 	unsigned char *c;
2655 	hrtime_t tsc;
2656 
2657 	/*
2658 	 * If /etc/hostid file not found, we'd like to get a pseudo
2659 	 * random number to use at the hostid.  A nice way to do this
2660 	 * is to read the real time clock.  To remain xen-compatible,
2661 	 * we can't poke the real hardware, so we use tsc_read() to
2662 	 * read the real time clock.  However, there is an ominous
2663 	 * warning in tsc_read that says it can return zero, so we
2664 	 * deal with that possibility by falling back to using the
2665 	 * (hopefully random enough) value in tenmicrodata.
2666 	 */
2667 
2668 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2669 		/*
2670 		 * hostid file not found - try to load sysinit module
2671 		 * and see if it has a nonzero hostid value...use that
2672 		 * instead of generating a new hostid here if so.
2673 		 */
2674 		if ((i = modload("misc", "sysinit")) != -1) {
2675 			if (strlen(hw_serial) > 0)
2676 				hostid = (int32_t)atoi(hw_serial);
2677 			(void) modunload(i);
2678 		}
2679 		if (hostid == HW_INVALID_HOSTID) {
2680 			tsc = tsc_read();
2681 			if (tsc == 0)	/* tsc_read can return zero sometimes */
2682 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2683 			else
2684 				hostid = (int32_t)tsc & 0x0CFFFFF;
2685 		}
2686 	} else {
2687 		/* hostid file found */
2688 		while (!done) {
2689 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2690 
2691 			switch (token) {
2692 			case POUND:
2693 				/*
2694 				 * skip comments
2695 				 */
2696 				kobj_find_eol(file);
2697 				break;
2698 			case STRING:
2699 				/*
2700 				 * un-rot47 - obviously this
2701 				 * nonsense is ascii-specific
2702 				 */
2703 				for (c = (unsigned char *)tokbuf;
2704 				    *c != '\0'; c++) {
2705 					*c += 47;
2706 					if (*c > '~')
2707 						*c -= 94;
2708 					else if (*c < '!')
2709 						*c += 94;
2710 				}
2711 				/*
2712 				 * now we should have a real number
2713 				 */
2714 
2715 				if (kobj_getvalue(tokbuf, &tmp) != 0)
2716 					kobj_file_err(CE_WARN, file,
2717 					    "Bad value %s for hostid",
2718 					    tokbuf);
2719 				else
2720 					hostid = (int32_t)tmp;
2721 
2722 				break;
2723 			case EOF:
2724 				done = 1;
2725 				/* FALLTHROUGH */
2726 			case NEWLINE:
2727 				kobj_newline(file);
2728 				break;
2729 			default:
2730 				break;
2731 
2732 			}
2733 		}
2734 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2735 			kobj_file_err(CE_WARN, file,
2736 			    "hostid missing or corrupt");
2737 
2738 		kobj_close_file(file);
2739 	}
2740 	/*
2741 	 * hostid is now the value read from /etc/hostid, or the
2742 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2743 	 * set.
2744 	 */
2745 	return (hostid);
2746 }
2747 
2748 static int
2749 atoi(char *p)
2750 {
2751 	int i = 0;
2752 
2753 	while (*p != '\0')
2754 		i = 10 * i + (*p++ - '0');
2755 
2756 	return (i);
2757 }
2758 
2759 #endif /* _SOFT_HOSTID */
2760 
2761 void
2762 get_system_configuration(void)
2763 {
2764 	char	prop[32];
2765 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2766 
2767 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2768 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2769 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2770 	    nodes_ll > MAXNODES ||
2771 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2772 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2773 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2774 		system_hardware.hd_nodes = 1;
2775 		system_hardware.hd_cpus_per_node = 0;
2776 	} else {
2777 		system_hardware.hd_nodes = (int)nodes_ll;
2778 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2779 	}
2780 
2781 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2782 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2783 	    kobj_getvalue(prop, &lvalue) == -1)
2784 		eprom_kernelbase = NULL;
2785 	else
2786 		eprom_kernelbase = (uintptr_t)lvalue;
2787 
2788 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2789 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2790 	    kobj_getvalue(prop, &lvalue) == -1)
2791 		segmapsize = SEGMAPDEFAULT;
2792 	else
2793 		segmapsize = (uintptr_t)lvalue;
2794 
2795 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2796 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2797 	    kobj_getvalue(prop, &lvalue) == -1)
2798 		segmapfreelists = 0;	/* use segmap driver default */
2799 	else
2800 		segmapfreelists = (int)lvalue;
2801 
2802 	/* physmem used to be here, but moved much earlier to fakebop.c */
2803 }
2804 
2805 /*
2806  * Add to a memory list.
2807  * start = start of new memory segment
2808  * len = length of new memory segment in bytes
2809  * new = pointer to a new struct memlist
2810  * memlistp = memory list to which to add segment.
2811  */
2812 void
2813 memlist_add(
2814 	uint64_t start,
2815 	uint64_t len,
2816 	struct memlist *new,
2817 	struct memlist **memlistp)
2818 {
2819 	struct memlist *cur;
2820 	uint64_t end = start + len;
2821 
2822 	new->address = start;
2823 	new->size = len;
2824 
2825 	cur = *memlistp;
2826 
2827 	while (cur) {
2828 		if (cur->address >= end) {
2829 			new->next = cur;
2830 			*memlistp = new;
2831 			new->prev = cur->prev;
2832 			cur->prev = new;
2833 			return;
2834 		}
2835 		ASSERT(cur->address + cur->size <= start);
2836 		if (cur->next == NULL) {
2837 			cur->next = new;
2838 			new->prev = cur;
2839 			new->next = NULL;
2840 			return;
2841 		}
2842 		memlistp = &cur->next;
2843 		cur = cur->next;
2844 	}
2845 }
2846 
2847 void
2848 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2849 {
2850 	size_t tsize = e_modtext - modtext;
2851 	size_t dsize = e_moddata - moddata;
2852 
2853 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2854 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2855 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2856 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2857 }
2858 
2859 caddr_t
2860 kobj_text_alloc(vmem_t *arena, size_t size)
2861 {
2862 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2863 }
2864 
2865 /*ARGSUSED*/
2866 caddr_t
2867 kobj_texthole_alloc(caddr_t addr, size_t size)
2868 {
2869 	panic("unexpected call to kobj_texthole_alloc()");
2870 	/*NOTREACHED*/
2871 	return (0);
2872 }
2873 
2874 /*ARGSUSED*/
2875 void
2876 kobj_texthole_free(caddr_t addr, size_t size)
2877 {
2878 	panic("unexpected call to kobj_texthole_free()");
2879 }
2880 
2881 /*
2882  * This is called just after configure() in startup().
2883  *
2884  * The ISALIST concept is a bit hopeless on Intel, because
2885  * there's no guarantee of an ever-more-capable processor
2886  * given that various parts of the instruction set may appear
2887  * and disappear between different implementations.
2888  *
2889  * While it would be possible to correct it and even enhance
2890  * it somewhat, the explicit hardware capability bitmask allows
2891  * more flexibility.
2892  *
2893  * So, we just leave this alone.
2894  */
2895 void
2896 setx86isalist(void)
2897 {
2898 	char *tp;
2899 	size_t len;
2900 	extern char *isa_list;
2901 
2902 #define	TBUFSIZE	1024
2903 
2904 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2905 	*tp = '\0';
2906 
2907 #if defined(__amd64)
2908 	(void) strcpy(tp, "amd64 ");
2909 #endif
2910 
2911 	switch (x86_vendor) {
2912 	case X86_VENDOR_Intel:
2913 	case X86_VENDOR_AMD:
2914 	case X86_VENDOR_TM:
2915 		if (x86_feature & X86_CMOV) {
2916 			/*
2917 			 * Pentium Pro or later
2918 			 */
2919 			(void) strcat(tp, "pentium_pro");
2920 			(void) strcat(tp, x86_feature & X86_MMX ?
2921 			    "+mmx pentium_pro " : " ");
2922 		}
2923 		/*FALLTHROUGH*/
2924 	case X86_VENDOR_Cyrix:
2925 		/*
2926 		 * The Cyrix 6x86 does not have any Pentium features
2927 		 * accessible while not at privilege level 0.
2928 		 */
2929 		if (x86_feature & X86_CPUID) {
2930 			(void) strcat(tp, "pentium");
2931 			(void) strcat(tp, x86_feature & X86_MMX ?
2932 			    "+mmx pentium " : " ");
2933 		}
2934 		break;
2935 	default:
2936 		break;
2937 	}
2938 	(void) strcat(tp, "i486 i386 i86");
2939 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2940 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2941 	kmem_free(tp, TBUFSIZE);
2942 
2943 #undef TBUFSIZE
2944 }
2945 
2946 
2947 #ifdef __amd64
2948 
2949 void *
2950 device_arena_alloc(size_t size, int vm_flag)
2951 {
2952 	return (vmem_alloc(device_arena, size, vm_flag));
2953 }
2954 
2955 void
2956 device_arena_free(void *vaddr, size_t size)
2957 {
2958 	vmem_free(device_arena, vaddr, size);
2959 }
2960 
2961 #else /* __i386 */
2962 
2963 void *
2964 device_arena_alloc(size_t size, int vm_flag)
2965 {
2966 	caddr_t	vaddr;
2967 	uintptr_t v;
2968 	size_t	start;
2969 	size_t	end;
2970 
2971 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2972 	if (vaddr == NULL)
2973 		return (NULL);
2974 
2975 	v = (uintptr_t)vaddr;
2976 	ASSERT(v >= kernelbase);
2977 	ASSERT(v + size <= valloc_base);
2978 
2979 	start = btop(v - kernelbase);
2980 	end = btop(v + size - 1 - kernelbase);
2981 	ASSERT(start < toxic_bit_map_len);
2982 	ASSERT(end < toxic_bit_map_len);
2983 
2984 	while (start <= end) {
2985 		BT_ATOMIC_SET(toxic_bit_map, start);
2986 		++start;
2987 	}
2988 	return (vaddr);
2989 }
2990 
2991 void
2992 device_arena_free(void *vaddr, size_t size)
2993 {
2994 	uintptr_t v = (uintptr_t)vaddr;
2995 	size_t	start;
2996 	size_t	end;
2997 
2998 	ASSERT(v >= kernelbase);
2999 	ASSERT(v + size <= valloc_base);
3000 
3001 	start = btop(v - kernelbase);
3002 	end = btop(v + size - 1 - kernelbase);
3003 	ASSERT(start < toxic_bit_map_len);
3004 	ASSERT(end < toxic_bit_map_len);
3005 
3006 	while (start <= end) {
3007 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3008 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3009 		++start;
3010 	}
3011 	vmem_free(heap_arena, vaddr, size);
3012 }
3013 
3014 /*
3015  * returns 1st address in range that is in device arena, or NULL
3016  * if len is not NULL it returns the length of the toxic range
3017  */
3018 void *
3019 device_arena_contains(void *vaddr, size_t size, size_t *len)
3020 {
3021 	uintptr_t v = (uintptr_t)vaddr;
3022 	uintptr_t eaddr = v + size;
3023 	size_t start;
3024 	size_t end;
3025 
3026 	/*
3027 	 * if called very early by kmdb, just return NULL
3028 	 */
3029 	if (toxic_bit_map == NULL)
3030 		return (NULL);
3031 
3032 	/*
3033 	 * First check if we're completely outside the bitmap range.
3034 	 */
3035 	if (v >= valloc_base || eaddr < kernelbase)
3036 		return (NULL);
3037 
3038 	/*
3039 	 * Trim ends of search to look at only what the bitmap covers.
3040 	 */
3041 	if (v < kernelbase)
3042 		v = kernelbase;
3043 	start = btop(v - kernelbase);
3044 	end = btop(eaddr - kernelbase);
3045 	if (end >= toxic_bit_map_len)
3046 		end = toxic_bit_map_len;
3047 
3048 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3049 		return (NULL);
3050 
3051 	v = kernelbase + ptob(start);
3052 	if (len != NULL)
3053 		*len = ptob(end - start);
3054 	return ((void *)v);
3055 }
3056 
3057 #endif	/* __i386 */
3058