1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 118 #ifdef __xpv 119 120 #include <sys/hypervisor.h> 121 #include <sys/xen_mmu.h> 122 #include <sys/evtchn_impl.h> 123 #include <sys/gnttab.h> 124 #include <sys/xpv_panic.h> 125 #include <xen/sys/xenbus_comms.h> 126 #include <xen/public/physdev.h> 127 128 extern void xen_late_startup(void); 129 130 struct xen_evt_data cpu0_evt_data; 131 132 #endif /* __xpv */ 133 134 extern void progressbar_init(void); 135 extern void progressbar_start(void); 136 extern void brand_init(void); 137 extern void pcf_init(void); 138 139 extern int size_pse_array(pgcnt_t, int); 140 141 /* 142 * XXX make declaration below "static" when drivers no longer use this 143 * interface. 144 */ 145 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 146 147 /* 148 * segkp 149 */ 150 extern int segkp_fromheap; 151 152 static void kvm_init(void); 153 static void startup_init(void); 154 static void startup_memlist(void); 155 static void startup_kmem(void); 156 static void startup_modules(void); 157 static void startup_vm(void); 158 static void startup_end(void); 159 static void layout_kernel_va(void); 160 161 /* 162 * Declare these as initialized data so we can patch them. 163 */ 164 #ifdef __i386 165 166 /* 167 * Due to virtual address space limitations running in 32 bit mode, restrict 168 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 169 * 170 * If the physical max memory size of 64g were allowed to be configured, the 171 * size of user virtual address space will be less than 1g. A limited user 172 * address space greatly reduces the range of applications that can run. 173 * 174 * If more physical memory than PHYSMEM is required, users should preferably 175 * run in 64 bit mode which has far looser virtual address space limitations. 176 * 177 * If 64 bit mode is not available (as in IA32) and/or more physical memory 178 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 179 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 180 * should also be carefully tuned to balance out the need of the user 181 * application while minimizing the risk of kernel heap exhaustion due to 182 * kernelbase being set too high. 183 */ 184 #define PHYSMEM 0x400000 185 186 #else /* __amd64 */ 187 188 /* 189 * For now we can handle memory with physical addresses up to about 190 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 191 * half the VA space for seg_kpm. When systems get bigger than 64TB this 192 * code will need revisiting. There is an implicit assumption that there 193 * are no *huge* holes in the physical address space too. 194 */ 195 #define TERABYTE (1ul << 40) 196 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 197 #define PHYSMEM PHYSMEM_MAX64 198 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 199 200 #endif /* __amd64 */ 201 202 pgcnt_t physmem = PHYSMEM; 203 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 204 205 char *kobj_file_buf; 206 int kobj_file_bufsize; /* set in /etc/system */ 207 208 /* Global variables for MP support. Used in mp_startup */ 209 caddr_t rm_platter_va; 210 uint32_t rm_platter_pa; 211 212 int auto_lpg_disable = 1; 213 214 /* 215 * Some CPUs have holes in the middle of the 64-bit virtual address range. 216 */ 217 uintptr_t hole_start, hole_end; 218 219 /* 220 * kpm mapping window 221 */ 222 caddr_t kpm_vbase; 223 size_t kpm_size; 224 static int kpm_desired; 225 #ifdef __amd64 226 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 227 #endif 228 229 /* 230 * Configuration parameters set at boot time. 231 */ 232 233 caddr_t econtig; /* end of first block of contiguous kernel */ 234 235 struct bootops *bootops = 0; /* passed in from boot */ 236 struct bootops **bootopsp; 237 struct boot_syscalls *sysp; /* passed in from boot */ 238 239 char bootblock_fstype[16]; 240 241 char kern_bootargs[OBP_MAXPATHLEN]; 242 243 /* 244 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 245 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 246 * zio buffers from their own segment, otherwise they are allocated from the 247 * heap. The optimization of allocating zio buffers from their own segment is 248 * only valid on 64-bit kernels. 249 */ 250 #if defined(__amd64) 251 int segzio_fromheap = 0; 252 #else 253 int segzio_fromheap = 1; 254 #endif 255 256 /* 257 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 258 * depends on number of BOP_ALLOC calls made and requested size, memory size 259 * combination and whether boot.bin memory needs to be freed. 260 */ 261 #define POSS_NEW_FRAGMENTS 12 262 263 /* 264 * VM data structures 265 */ 266 long page_hashsz; /* Size of page hash table (power of two) */ 267 struct page *pp_base; /* Base of initial system page struct array */ 268 struct page **page_hash; /* Page hash table */ 269 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 270 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 271 int pse_shift; /* log2(pse_table_size) */ 272 struct seg ktextseg; /* Segment used for kernel executable image */ 273 struct seg kvalloc; /* Segment used for "valloc" mapping */ 274 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 275 struct seg kmapseg; /* Segment used for generic kernel mappings */ 276 struct seg kdebugseg; /* Segment used for the kernel debugger */ 277 278 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 279 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 280 281 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 282 283 #if defined(__amd64) 284 struct seg kvseg_core; /* Segment used for the core heap */ 285 struct seg kpmseg; /* Segment used for physical mapping */ 286 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 287 #else 288 struct seg *segkpm = NULL; /* Unused on IA32 */ 289 #endif 290 291 caddr_t segkp_base; /* Base address of segkp */ 292 caddr_t segzio_base; /* Base address of segzio */ 293 #if defined(__amd64) 294 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 295 #else 296 pgcnt_t segkpsize = 0; 297 #endif 298 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 299 300 /* 301 * VA range available to the debugger 302 */ 303 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 304 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 305 306 struct memseg *memseg_base; 307 struct vnode unused_pages_vp; 308 309 #define FOURGB 0x100000000LL 310 311 struct memlist *memlist; 312 313 caddr_t s_text; /* start of kernel text segment */ 314 caddr_t e_text; /* end of kernel text segment */ 315 caddr_t s_data; /* start of kernel data segment */ 316 caddr_t e_data; /* end of kernel data segment */ 317 caddr_t modtext; /* start of loadable module text reserved */ 318 caddr_t e_modtext; /* end of loadable module text reserved */ 319 caddr_t moddata; /* start of loadable module data reserved */ 320 caddr_t e_moddata; /* end of loadable module data reserved */ 321 322 struct memlist *phys_install; /* Total installed physical memory */ 323 struct memlist *phys_avail; /* Total available physical memory */ 324 325 /* 326 * kphysm_init returns the number of pages that were processed 327 */ 328 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 329 330 #define IO_PROP_SIZE 64 /* device property size */ 331 332 /* 333 * a couple useful roundup macros 334 */ 335 #define ROUND_UP_PAGE(x) \ 336 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 337 #define ROUND_UP_LPAGE(x) \ 338 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 339 #define ROUND_UP_4MEG(x) \ 340 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 341 #define ROUND_UP_TOPLEVEL(x) \ 342 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 343 344 /* 345 * 32-bit Kernel's Virtual memory layout. 346 * +-----------------------+ 347 * | | 348 * 0xFFC00000 -|-----------------------|- ARGSBASE 349 * | debugger | 350 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 351 * | Kernel Data | 352 * 0xFEC00000 -|-----------------------| 353 * | Kernel Text | 354 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 355 * |--- GDT ---|- GDT page (GDT_VA) 356 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 357 * | | 358 * | page_t structures | 359 * | memsegs, memlists, | 360 * | page hash, etc. | 361 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 362 * | | (segkp is just an arena in the heap) 363 * | | 364 * | kvseg | 365 * | | 366 * | | 367 * --- -|-----------------------|- kernelheap (floating) 368 * | Segkmap | 369 * 0xC3002000 -|-----------------------|- segmap_start (floating) 370 * | Red Zone | 371 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 372 * | | || 373 * | Shared objects | \/ 374 * | | 375 * : : 376 * | user data | 377 * |-----------------------| 378 * | user text | 379 * 0x08048000 -|-----------------------| 380 * | user stack | 381 * : : 382 * | invalid | 383 * 0x00000000 +-----------------------+ 384 * 385 * 386 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 387 * +-----------------------+ 388 * | | 389 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 390 * | debugger (?) | 391 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 392 * | unused | 393 * +-----------------------+ 394 * | Kernel Data | 395 * 0xFFFFFFFF.FBC00000 |-----------------------| 396 * | Kernel Text | 397 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 398 * |--- GDT ---|- GDT page (GDT_VA) 399 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 400 * | | 401 * | Core heap | (used for loadable modules) 402 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 403 * | Kernel | 404 * | heap | 405 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 406 * | segmap | 407 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 408 * | device mappings | 409 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 410 * | segzio | 411 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 412 * | segkp | 413 * --- |-----------------------|- segkp_base (floating) 414 * | page_t structures | valloc_base + valloc_sz 415 * | memsegs, memlists, | 416 * | page hash, etc. | 417 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 418 * | segkpm | 419 * 0xFFFFFE00.00000000 |-----------------------| 420 * | Red Zone | 421 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 422 * | User stack |- User space memory 423 * | | 424 * | shared objects, etc | (grows downwards) 425 * : : 426 * | | 427 * 0xFFFF8000.00000000 |-----------------------| 428 * | | 429 * | VA Hole / unused | 430 * | | 431 * 0x00008000.00000000 |-----------------------| 432 * | | 433 * | | 434 * : : 435 * | user heap | (grows upwards) 436 * | | 437 * | user data | 438 * |-----------------------| 439 * | user text | 440 * 0x00000000.04000000 |-----------------------| 441 * | invalid | 442 * 0x00000000.00000000 +-----------------------+ 443 * 444 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 445 * kernel, except that userlimit is raised to 0xfe000000 446 * 447 * Floating values: 448 * 449 * valloc_base: start of the kernel's memory management/tracking data 450 * structures. This region contains page_t structures for 451 * physical memory, memsegs, memlists, and the page hash. 452 * 453 * core_base: start of the kernel's "core" heap area on 64-bit systems. 454 * This area is intended to be used for global data as well as for module 455 * text/data that does not fit into the nucleus pages. The core heap is 456 * restricted to a 2GB range, allowing every address within it to be 457 * accessed using rip-relative addressing 458 * 459 * ekernelheap: end of kernelheap and start of segmap. 460 * 461 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 462 * above a red zone that separates the user's address space from the 463 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 464 * 465 * segmap_start: start of segmap. The length of segmap can be modified 466 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 467 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 468 * 469 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 470 * decreased by 2X the size required for page_t. This allows the kernel 471 * heap to grow in size with physical memory. With sizeof(page_t) == 80 472 * bytes, the following shows the values of kernelbase and kernel heap 473 * sizes for different memory configurations (assuming default segmap and 474 * segkp sizes). 475 * 476 * mem size for kernelbase kernel heap 477 * size page_t's size 478 * ---- --------- ---------- ----------- 479 * 1gb 0x01400000 0xd1800000 684MB 480 * 2gb 0x02800000 0xcf000000 704MB 481 * 4gb 0x05000000 0xca000000 744MB 482 * 6gb 0x07800000 0xc5000000 784MB 483 * 8gb 0x0a000000 0xc0000000 824MB 484 * 16gb 0x14000000 0xac000000 984MB 485 * 32gb 0x28000000 0x84000000 1304MB 486 * 64gb 0x50000000 0x34000000 1944MB (*) 487 * 488 * kernelbase is less than the abi minimum of 0xc0000000 for memory 489 * configurations above 8gb. 490 * 491 * (*) support for memory configurations above 32gb will require manual tuning 492 * of kernelbase to balance out the need of user applications. 493 */ 494 495 /* real-time-clock initialization parameters */ 496 extern time_t process_rtc_config_file(void); 497 498 uintptr_t kernelbase; 499 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 500 uintptr_t eprom_kernelbase; 501 size_t segmapsize; 502 uintptr_t segmap_start; 503 int segmapfreelists; 504 pgcnt_t npages; 505 pgcnt_t orig_npages; 506 size_t core_size; /* size of "core" heap */ 507 uintptr_t core_base; /* base address of "core" heap */ 508 509 /* 510 * List of bootstrap pages. We mark these as allocated in startup. 511 * release_bootstrap() will free them when we're completely done with 512 * the bootstrap. 513 */ 514 static page_t *bootpages; 515 516 /* 517 * boot time pages that have a vnode from the ramdisk will keep that forever. 518 */ 519 static page_t *rd_pages; 520 521 struct system_hardware system_hardware; 522 523 /* 524 * Is this Solaris instance running in a fully virtualized xVM domain? 525 */ 526 int xpv_is_hvm = 0; 527 528 /* 529 * Enable some debugging messages concerning memory usage... 530 */ 531 static void 532 print_memlist(char *title, struct memlist *mp) 533 { 534 prom_printf("MEMLIST: %s:\n", title); 535 while (mp != NULL) { 536 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 537 mp->address, mp->size); 538 mp = mp->next; 539 } 540 } 541 542 /* 543 * XX64 need a comment here.. are these just default values, surely 544 * we read the "cpuid" type information to figure this out. 545 */ 546 int l2cache_sz = 0x80000; 547 int l2cache_linesz = 0x40; 548 int l2cache_assoc = 1; 549 550 static size_t textrepl_min_gb = 10; 551 552 /* 553 * on 64 bit we use a predifined VA range for mapping devices in the kernel 554 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 555 */ 556 #ifdef __amd64 557 558 vmem_t *device_arena; 559 uintptr_t toxic_addr = (uintptr_t)NULL; 560 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 561 562 #else /* __i386 */ 563 564 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 565 size_t toxic_bit_map_len = 0; /* in bits */ 566 567 #endif /* __i386 */ 568 569 /* 570 * Simple boot time debug facilities 571 */ 572 static char *prm_dbg_str[] = { 573 "%s:%d: '%s' is 0x%x\n", 574 "%s:%d: '%s' is 0x%llx\n" 575 }; 576 577 int prom_debug; 578 579 #define PRM_DEBUG(q) if (prom_debug) \ 580 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 581 #define PRM_POINT(q) if (prom_debug) \ 582 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 583 584 /* 585 * This structure is used to keep track of the intial allocations 586 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 587 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 588 */ 589 #define NUM_ALLOCATIONS 7 590 int num_allocations = 0; 591 struct { 592 void **al_ptr; 593 size_t al_size; 594 } allocations[NUM_ALLOCATIONS]; 595 size_t valloc_sz = 0; 596 uintptr_t valloc_base; 597 598 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 599 size = ROUND_UP_PAGE(size); \ 600 if (num_allocations == NUM_ALLOCATIONS) \ 601 panic("too many ADD_TO_ALLOCATIONS()"); \ 602 allocations[num_allocations].al_ptr = (void**)&ptr; \ 603 allocations[num_allocations].al_size = size; \ 604 valloc_sz += size; \ 605 ++num_allocations; \ 606 } 607 608 /* 609 * Allocate all the initial memory needed by the page allocator. 610 */ 611 static void 612 perform_allocations(void) 613 { 614 caddr_t mem; 615 int i; 616 int valloc_align; 617 618 PRM_DEBUG(valloc_base); 619 PRM_DEBUG(valloc_sz); 620 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 621 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 622 if (mem != (caddr_t)valloc_base) 623 panic("BOP_ALLOC() failed"); 624 bzero(mem, valloc_sz); 625 for (i = 0; i < num_allocations; ++i) { 626 *allocations[i].al_ptr = (void *)mem; 627 mem += allocations[i].al_size; 628 } 629 } 630 631 /* 632 * Our world looks like this at startup time. 633 * 634 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 635 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 636 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 637 * addresses are fixed in the binary at link time. 638 * 639 * On the text page: 640 * unix/genunix/krtld/module text loads. 641 * 642 * On the data page: 643 * unix/genunix/krtld/module data loads. 644 * 645 * Machine-dependent startup code 646 */ 647 void 648 startup(void) 649 { 650 #if !defined(__xpv) 651 extern void startup_bios_disk(void); 652 extern void startup_pci_bios(void); 653 #endif 654 extern cpuset_t cpu_ready_set; 655 656 /* 657 * Make sure that nobody tries to use sekpm until we have 658 * initialized it properly. 659 */ 660 #if defined(__amd64) 661 kpm_desired = 1; 662 #endif 663 kpm_enable = 0; 664 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 665 666 #if defined(__xpv) /* XXPV fix me! */ 667 { 668 extern int segvn_use_regions; 669 segvn_use_regions = 0; 670 } 671 #endif 672 progressbar_init(); 673 startup_init(); 674 #if defined(__xpv) 675 startup_xen_version(); 676 #endif 677 startup_memlist(); 678 startup_kmem(); 679 startup_vm(); 680 #if !defined(__xpv) 681 startup_pci_bios(); 682 #endif 683 #if defined(__xpv) 684 startup_xen_mca(); 685 #endif 686 startup_modules(); 687 #if !defined(__xpv) 688 startup_bios_disk(); 689 #endif 690 startup_end(); 691 progressbar_start(); 692 } 693 694 static void 695 startup_init() 696 { 697 PRM_POINT("startup_init() starting..."); 698 699 /* 700 * Complete the extraction of cpuid data 701 */ 702 cpuid_pass2(CPU); 703 704 (void) check_boot_version(BOP_GETVERSION(bootops)); 705 706 /* 707 * Check for prom_debug in boot environment 708 */ 709 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 710 ++prom_debug; 711 PRM_POINT("prom_debug found in boot enviroment"); 712 } 713 714 /* 715 * Collect node, cpu and memory configuration information. 716 */ 717 get_system_configuration(); 718 719 /* 720 * Halt if this is an unsupported processor. 721 */ 722 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 723 printf("\n486 processor (\"%s\") detected.\n", 724 CPU->cpu_brandstr); 725 halt("This processor is not supported by this release " 726 "of Solaris."); 727 } 728 729 PRM_POINT("startup_init() done"); 730 } 731 732 /* 733 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 734 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 735 * also filters out physical page zero. There is some reliance on the 736 * boot loader allocating only a few contiguous physical memory chunks. 737 */ 738 static void 739 avail_filter(uint64_t *addr, uint64_t *size) 740 { 741 uintptr_t va; 742 uintptr_t next_va; 743 pfn_t pfn; 744 uint64_t pfn_addr; 745 uint64_t pfn_eaddr; 746 uint_t prot; 747 size_t len; 748 uint_t change; 749 750 if (prom_debug) 751 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 752 *addr, *size); 753 754 /* 755 * page zero is required for BIOS.. never make it available 756 */ 757 if (*addr == 0) { 758 *addr += MMU_PAGESIZE; 759 *size -= MMU_PAGESIZE; 760 } 761 762 /* 763 * First we trim from the front of the range. Since kbm_probe() 764 * walks ranges in virtual order, but addr/size are physical, we need 765 * to the list until no changes are seen. This deals with the case 766 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 767 * but w < v. 768 */ 769 do { 770 change = 0; 771 for (va = KERNEL_TEXT; 772 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 773 va = next_va) { 774 775 next_va = va + len; 776 pfn_addr = pfn_to_pa(pfn); 777 pfn_eaddr = pfn_addr + len; 778 779 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 780 change = 1; 781 while (*size > 0 && len > 0) { 782 *addr += MMU_PAGESIZE; 783 *size -= MMU_PAGESIZE; 784 len -= MMU_PAGESIZE; 785 } 786 } 787 } 788 if (change && prom_debug) 789 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 790 *addr, *size); 791 } while (change); 792 793 /* 794 * Trim pages from the end of the range. 795 */ 796 for (va = KERNEL_TEXT; 797 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 798 va = next_va) { 799 800 next_va = va + len; 801 pfn_addr = pfn_to_pa(pfn); 802 803 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 804 *size = pfn_addr - *addr; 805 } 806 807 if (prom_debug) 808 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 809 *addr, *size); 810 } 811 812 static void 813 kpm_init() 814 { 815 struct segkpm_crargs b; 816 817 /* 818 * These variables were all designed for sfmmu in which segkpm is 819 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 820 * might use 2+ page sizes on a single machine, so none of these 821 * variables have a single correct value. They are set up as if we 822 * always use a 4KB pagesize, which should do no harm. In the long 823 * run, we should get rid of KPM's assumption that only a single 824 * pagesize is used. 825 */ 826 kpm_pgshft = MMU_PAGESHIFT; 827 kpm_pgsz = MMU_PAGESIZE; 828 kpm_pgoff = MMU_PAGEOFFSET; 829 kpmp2pshft = 0; 830 kpmpnpgs = 1; 831 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 832 833 PRM_POINT("about to create segkpm"); 834 rw_enter(&kas.a_lock, RW_WRITER); 835 836 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 837 panic("cannot attach segkpm"); 838 839 b.prot = PROT_READ | PROT_WRITE; 840 b.nvcolors = 1; 841 842 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 843 panic("segkpm_create segkpm"); 844 845 rw_exit(&kas.a_lock); 846 } 847 848 /* 849 * The debug info page provides enough information to allow external 850 * inspectors (e.g. when running under a hypervisor) to bootstrap 851 * themselves into allowing full-blown kernel debugging. 852 */ 853 static void 854 init_debug_info(void) 855 { 856 caddr_t mem; 857 debug_info_t *di; 858 859 #ifndef __lint 860 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 861 #endif 862 863 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 864 MMU_PAGESIZE); 865 866 if (mem != (caddr_t)DEBUG_INFO_VA) 867 panic("BOP_ALLOC() failed"); 868 bzero(mem, MMU_PAGESIZE); 869 870 di = (debug_info_t *)mem; 871 872 di->di_magic = DEBUG_INFO_MAGIC; 873 di->di_version = DEBUG_INFO_VERSION; 874 di->di_modules = (uintptr_t)&modules; 875 di->di_s_text = (uintptr_t)s_text; 876 di->di_e_text = (uintptr_t)e_text; 877 di->di_s_data = (uintptr_t)s_data; 878 di->di_e_data = (uintptr_t)e_data; 879 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 880 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 881 } 882 883 /* 884 * Build the memlists and other kernel essential memory system data structures. 885 * This is everything at valloc_base. 886 */ 887 static void 888 startup_memlist(void) 889 { 890 size_t memlist_sz; 891 size_t memseg_sz; 892 size_t pagehash_sz; 893 size_t pp_sz; 894 uintptr_t va; 895 size_t len; 896 uint_t prot; 897 pfn_t pfn; 898 int memblocks; 899 caddr_t pagecolor_mem; 900 size_t pagecolor_memsz; 901 caddr_t page_ctrs_mem; 902 size_t page_ctrs_size; 903 size_t pse_table_alloc_size; 904 struct memlist *current; 905 extern void startup_build_mem_nodes(struct memlist *); 906 907 /* XX64 fix these - they should be in include files */ 908 extern size_t page_coloring_init(uint_t, int, int); 909 extern void page_coloring_setup(caddr_t); 910 911 PRM_POINT("startup_memlist() starting..."); 912 913 /* 914 * Use leftover large page nucleus text/data space for loadable modules. 915 * Use at most MODTEXT/MODDATA. 916 */ 917 len = kbm_nucleus_size; 918 ASSERT(len > MMU_PAGESIZE); 919 920 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 921 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 922 if (e_moddata - moddata > MODDATA) 923 e_moddata = moddata + MODDATA; 924 925 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 926 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 927 if (e_modtext - modtext > MODTEXT) 928 e_modtext = modtext + MODTEXT; 929 930 econtig = e_moddata; 931 932 PRM_DEBUG(modtext); 933 PRM_DEBUG(e_modtext); 934 PRM_DEBUG(moddata); 935 PRM_DEBUG(e_moddata); 936 PRM_DEBUG(econtig); 937 938 /* 939 * Examine the boot loader physical memory map to find out: 940 * - total memory in system - physinstalled 941 * - the max physical address - physmax 942 * - the number of discontiguous segments of memory. 943 */ 944 if (prom_debug) 945 print_memlist("boot physinstalled", 946 bootops->boot_mem->physinstalled); 947 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 948 &physinstalled, &memblocks); 949 PRM_DEBUG(physmax); 950 PRM_DEBUG(physinstalled); 951 PRM_DEBUG(memblocks); 952 953 /* 954 * Initialize hat's mmu parameters. 955 * Check for enforce-prot-exec in boot environment. It's used to 956 * enable/disable support for the page table entry NX bit. 957 * The default is to enforce PROT_EXEC on processors that support NX. 958 * Boot seems to round up the "len", but 8 seems to be big enough. 959 */ 960 mmu_init(); 961 962 #ifdef __i386 963 /* 964 * physmax is lowered if there is more memory than can be 965 * physically addressed in 32 bit (PAE/non-PAE) modes. 966 */ 967 if (mmu.pae_hat) { 968 if (PFN_ABOVE64G(physmax)) { 969 physinstalled -= (physmax - (PFN_64G - 1)); 970 physmax = PFN_64G - 1; 971 } 972 } else { 973 if (PFN_ABOVE4G(physmax)) { 974 physinstalled -= (physmax - (PFN_4G - 1)); 975 physmax = PFN_4G - 1; 976 } 977 } 978 #endif 979 980 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 981 982 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 983 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 984 char value[8]; 985 986 if (len < 8) 987 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 988 else 989 (void) strcpy(value, ""); 990 if (strcmp(value, "off") == 0) 991 mmu.pt_nx = 0; 992 } 993 PRM_DEBUG(mmu.pt_nx); 994 995 /* 996 * We will need page_t's for every page in the system, except for 997 * memory mapped at or above above the start of the kernel text segment. 998 * 999 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1000 */ 1001 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1002 obp_pages = 0; 1003 va = KERNEL_TEXT; 1004 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1005 npages -= len >> MMU_PAGESHIFT; 1006 if (va >= (uintptr_t)e_moddata) 1007 obp_pages += len >> MMU_PAGESHIFT; 1008 va += len; 1009 } 1010 PRM_DEBUG(npages); 1011 PRM_DEBUG(obp_pages); 1012 1013 /* 1014 * If physmem is patched to be non-zero, use it instead of the computed 1015 * value unless it is larger than the actual amount of memory on hand. 1016 */ 1017 if (physmem == 0 || physmem > npages) { 1018 physmem = npages; 1019 } else if (physmem < npages) { 1020 orig_npages = npages; 1021 npages = physmem; 1022 } 1023 PRM_DEBUG(physmem); 1024 1025 /* 1026 * We now compute the sizes of all the initial allocations for 1027 * structures the kernel needs in order do kmem_alloc(). These 1028 * include: 1029 * memsegs 1030 * memlists 1031 * page hash table 1032 * page_t's 1033 * page coloring data structs 1034 */ 1035 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1036 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1037 PRM_DEBUG(memseg_sz); 1038 1039 /* 1040 * Reserve space for memlists. There's no real good way to know exactly 1041 * how much room we'll need, but this should be a good upper bound. 1042 */ 1043 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1044 (memblocks + POSS_NEW_FRAGMENTS)); 1045 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1046 PRM_DEBUG(memlist_sz); 1047 1048 /* 1049 * The page structure hash table size is a power of 2 1050 * such that the average hash chain length is PAGE_HASHAVELEN. 1051 */ 1052 page_hashsz = npages / PAGE_HASHAVELEN; 1053 page_hashsz = 1 << highbit(page_hashsz); 1054 pagehash_sz = sizeof (struct page *) * page_hashsz; 1055 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1056 PRM_DEBUG(pagehash_sz); 1057 1058 /* 1059 * Set aside room for the page structures themselves. 1060 */ 1061 PRM_DEBUG(npages); 1062 pp_sz = sizeof (struct page) * npages; 1063 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1064 PRM_DEBUG(pp_sz); 1065 1066 /* 1067 * determine l2 cache info and memory size for page coloring 1068 */ 1069 (void) getl2cacheinfo(CPU, 1070 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1071 pagecolor_memsz = 1072 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1073 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1074 PRM_DEBUG(pagecolor_memsz); 1075 1076 page_ctrs_size = page_ctrs_sz(); 1077 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1078 PRM_DEBUG(page_ctrs_size); 1079 1080 /* 1081 * Allocate the array that protects pp->p_selock. 1082 */ 1083 pse_shift = size_pse_array(physmem, max_ncpus); 1084 pse_table_size = 1 << pse_shift; 1085 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1086 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1087 1088 #if defined(__amd64) 1089 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1090 valloc_base = VALLOC_BASE; 1091 1092 /* 1093 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1094 * for values of physmax up to 1 Terabyte. They need adjusting when 1095 * memory is at addresses above 1 TB. 1096 */ 1097 if (physmax + 1 > mmu_btop(TERABYTE)) { 1098 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1099 1100 /* Round to largest possible pagesize for now */ 1101 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1102 1103 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1104 1105 /* make sure we leave some space for user apps above hole */ 1106 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1107 if (segkpm_base > SEGKPM_BASE) 1108 segkpm_base = SEGKPM_BASE; 1109 PRM_DEBUG(segkpm_base); 1110 1111 valloc_base = segkpm_base + kpm_resv_amount; 1112 PRM_DEBUG(valloc_base); 1113 } 1114 #else /* __i386 */ 1115 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1116 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1117 PRM_DEBUG(valloc_base); 1118 #endif /* __i386 */ 1119 1120 /* 1121 * do all the initial allocations 1122 */ 1123 perform_allocations(); 1124 1125 /* 1126 * Build phys_install and phys_avail in kernel memspace. 1127 * - phys_install should be all memory in the system. 1128 * - phys_avail is phys_install minus any memory mapped before this 1129 * point above KERNEL_TEXT. 1130 */ 1131 current = phys_install = memlist; 1132 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1133 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1134 panic("physinstalled was too big!"); 1135 if (prom_debug) 1136 print_memlist("phys_install", phys_install); 1137 1138 phys_avail = current; 1139 PRM_POINT("Building phys_avail:\n"); 1140 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1141 avail_filter); 1142 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1143 panic("physavail was too big!"); 1144 if (prom_debug) 1145 print_memlist("phys_avail", phys_avail); 1146 1147 /* 1148 * setup page coloring 1149 */ 1150 page_coloring_setup(pagecolor_mem); 1151 page_lock_init(); /* currently a no-op */ 1152 1153 /* 1154 * free page list counters 1155 */ 1156 (void) page_ctrs_alloc(page_ctrs_mem); 1157 1158 /* 1159 * Size the pcf array based on the number of cpus in the box at 1160 * boot time. 1161 */ 1162 1163 pcf_init(); 1164 1165 /* 1166 * Initialize the page structures from the memory lists. 1167 */ 1168 availrmem_initial = availrmem = freemem = 0; 1169 PRM_POINT("Calling kphysm_init()..."); 1170 npages = kphysm_init(pp_base, npages); 1171 PRM_POINT("kphysm_init() done"); 1172 PRM_DEBUG(npages); 1173 1174 init_debug_info(); 1175 1176 /* 1177 * Now that page_t's have been initialized, remove all the 1178 * initial allocation pages from the kernel free page lists. 1179 */ 1180 boot_mapin((caddr_t)valloc_base, valloc_sz); 1181 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1182 PRM_POINT("startup_memlist() done"); 1183 1184 PRM_DEBUG(valloc_sz); 1185 1186 #if defined(__amd64) 1187 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1188 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1189 extern size_t textrepl_size_thresh; 1190 textrepl_size_thresh = (16 << 20) - 1; 1191 } 1192 #endif 1193 } 1194 1195 /* 1196 * Layout the kernel's part of address space and initialize kmem allocator. 1197 */ 1198 static void 1199 startup_kmem(void) 1200 { 1201 extern void page_set_colorequiv_arr(void); 1202 1203 PRM_POINT("startup_kmem() starting..."); 1204 1205 #if defined(__amd64) 1206 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1207 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1208 "systems."); 1209 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1210 core_base = (uintptr_t)COREHEAP_BASE; 1211 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1212 #else /* __i386 */ 1213 /* 1214 * We configure kernelbase based on: 1215 * 1216 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1217 * KERNELBASE_MAX. we large page align eprom_kernelbase 1218 * 1219 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1220 * On large memory systems we must lower kernelbase to allow 1221 * enough room for page_t's for all of memory. 1222 * 1223 * The value set here, might be changed a little later. 1224 */ 1225 if (eprom_kernelbase) { 1226 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1227 if (kernelbase > KERNELBASE_MAX) 1228 kernelbase = KERNELBASE_MAX; 1229 } else { 1230 kernelbase = (uintptr_t)KERNELBASE; 1231 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1232 } 1233 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1234 core_base = valloc_base; 1235 core_size = 0; 1236 #endif /* __i386 */ 1237 1238 PRM_DEBUG(core_base); 1239 PRM_DEBUG(core_size); 1240 PRM_DEBUG(kernelbase); 1241 1242 #if defined(__i386) 1243 segkp_fromheap = 1; 1244 #endif /* __i386 */ 1245 1246 ekernelheap = (char *)core_base; 1247 PRM_DEBUG(ekernelheap); 1248 1249 /* 1250 * Now that we know the real value of kernelbase, 1251 * update variables that were initialized with a value of 1252 * KERNELBASE (in common/conf/param.c). 1253 * 1254 * XXX The problem with this sort of hackery is that the 1255 * compiler just may feel like putting the const declarations 1256 * (in param.c) into the .text section. Perhaps they should 1257 * just be declared as variables there? 1258 */ 1259 1260 *(uintptr_t *)&_kernelbase = kernelbase; 1261 *(uintptr_t *)&_userlimit = kernelbase; 1262 #if defined(__amd64) 1263 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1264 #else 1265 *(uintptr_t *)&_userlimit32 = _userlimit; 1266 #endif 1267 PRM_DEBUG(_kernelbase); 1268 PRM_DEBUG(_userlimit); 1269 PRM_DEBUG(_userlimit32); 1270 1271 layout_kernel_va(); 1272 1273 #if defined(__i386) 1274 /* 1275 * If segmap is too large we can push the bottom of the kernel heap 1276 * higher than the base. Or worse, it could exceed the top of the 1277 * VA space entirely, causing it to wrap around. 1278 */ 1279 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1280 panic("too little address space available for kernelheap," 1281 " use eeprom for lower kernelbase or smaller segmapsize"); 1282 #endif /* __i386 */ 1283 1284 /* 1285 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1286 */ 1287 kernelheap_init(kernelheap, ekernelheap, 1288 kernelheap + MMU_PAGESIZE, 1289 (void *)core_base, (void *)(core_base + core_size)); 1290 1291 #if defined(__xpv) 1292 /* 1293 * Link pending events struct into cpu struct 1294 */ 1295 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1296 #endif 1297 /* 1298 * Initialize kernel memory allocator. 1299 */ 1300 kmem_init(); 1301 1302 /* 1303 * Factor in colorequiv to check additional 'equivalent' bins 1304 */ 1305 page_set_colorequiv_arr(); 1306 1307 /* 1308 * print this out early so that we know what's going on 1309 */ 1310 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1311 1312 /* 1313 * Initialize bp_mapin(). 1314 */ 1315 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1316 1317 /* 1318 * orig_npages is non-zero if physmem has been configured for less 1319 * than the available memory. 1320 */ 1321 if (orig_npages) { 1322 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1323 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1324 npages, orig_npages); 1325 } 1326 #if defined(__i386) 1327 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1328 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1329 "System using 0x%lx", 1330 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1331 #endif 1332 1333 #ifdef KERNELBASE_ABI_MIN 1334 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1335 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1336 "i386 ABI compliant.", (uintptr_t)kernelbase); 1337 } 1338 #endif 1339 1340 #ifdef __xpv 1341 /* 1342 * Some of the xen start information has to be relocated up 1343 * into the kernel's permanent address space. 1344 */ 1345 PRM_POINT("calling xen_relocate_start_info()"); 1346 xen_relocate_start_info(); 1347 PRM_POINT("xen_relocate_start_info() done"); 1348 1349 /* 1350 * (Update the vcpu pointer in our cpu structure to point into 1351 * the relocated shared info.) 1352 */ 1353 CPU->cpu_m.mcpu_vcpu_info = 1354 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1355 #endif 1356 1357 PRM_POINT("startup_kmem() done"); 1358 } 1359 1360 #ifndef __xpv 1361 /* 1362 * If we have detected that we are running in an HVM environment, we need 1363 * to prepend the PV driver directory to the module search path. 1364 */ 1365 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1366 static void 1367 update_default_path() 1368 { 1369 char *current, *newpath; 1370 int newlen; 1371 1372 /* 1373 * We are about to resync with krtld. krtld will reset its 1374 * internal module search path iff Solaris has set default_path. 1375 * We want to be sure we're prepending this new directory to the 1376 * right search path. 1377 */ 1378 current = (default_path == NULL) ? kobj_module_path : default_path; 1379 1380 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1381 newpath = kmem_alloc(newlen, KM_SLEEP); 1382 (void) strcpy(newpath, HVM_MOD_DIR); 1383 (void) strcat(newpath, " "); 1384 (void) strcat(newpath, current); 1385 1386 default_path = newpath; 1387 } 1388 #endif 1389 1390 static void 1391 startup_modules(void) 1392 { 1393 unsigned int i; 1394 extern void prom_setup(void); 1395 cmi_hdl_t hdl; 1396 1397 PRM_POINT("startup_modules() starting..."); 1398 1399 #ifndef __xpv 1400 /* 1401 * Initialize ten-micro second timer so that drivers will 1402 * not get short changed in their init phase. This was 1403 * not getting called until clkinit which, on fast cpu's 1404 * caused the drv_usecwait to be way too short. 1405 */ 1406 microfind(); 1407 1408 if (xpv_is_hvm) 1409 update_default_path(); 1410 #endif 1411 1412 /* 1413 * Read the GMT lag from /etc/rtc_config. 1414 */ 1415 sgmtl(process_rtc_config_file()); 1416 1417 /* 1418 * Calculate default settings of system parameters based upon 1419 * maxusers, yet allow to be overridden via the /etc/system file. 1420 */ 1421 param_calc(0); 1422 1423 mod_setup(); 1424 1425 /* 1426 * Initialize system parameters. 1427 */ 1428 param_init(); 1429 1430 /* 1431 * Initialize the default brands 1432 */ 1433 brand_init(); 1434 1435 /* 1436 * maxmem is the amount of physical memory we're playing with. 1437 */ 1438 maxmem = physmem; 1439 1440 /* 1441 * Initialize segment management stuff. 1442 */ 1443 seg_init(); 1444 1445 if (modload("fs", "specfs") == -1) 1446 halt("Can't load specfs"); 1447 1448 if (modload("fs", "devfs") == -1) 1449 halt("Can't load devfs"); 1450 1451 if (modload("fs", "dev") == -1) 1452 halt("Can't load dev"); 1453 1454 (void) modloadonly("sys", "lbl_edition"); 1455 1456 dispinit(); 1457 1458 /* 1459 * This is needed here to initialize hw_serial[] for cluster booting. 1460 */ 1461 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1462 (void) modunload(i); 1463 else 1464 cmn_err(CE_CONT, "sysinit load failed"); 1465 1466 /* Read cluster configuration data. */ 1467 clconf_init(); 1468 1469 #if defined(__xpv) 1470 ec_init(); 1471 gnttab_init(); 1472 (void) xs_early_init(); 1473 #endif /* __xpv */ 1474 1475 /* 1476 * Create a kernel device tree. First, create rootnex and 1477 * then invoke bus specific code to probe devices. 1478 */ 1479 setup_ddi(); 1480 1481 /* 1482 * Set up the CPU module subsystem for the boot cpu in the native 1483 * case, and all physical cpu resource in the xpv dom0 case. 1484 * Modifies the device tree, so this must be done after 1485 * setup_ddi(). 1486 */ 1487 #ifdef __xpv 1488 /* 1489 * If paravirtualized and on dom0 then we initialize all physical 1490 * cpu handles now; if paravirtualized on a domU then do not 1491 * initialize. 1492 */ 1493 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1494 xen_mc_lcpu_cookie_t cpi; 1495 1496 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1497 cpi = xen_physcpu_next(cpi)) { 1498 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1499 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1500 xen_physcpu_strandid(cpi))) != NULL && 1501 (x86_feature & X86_MCA)) 1502 cmi_mca_init(hdl); 1503 } 1504 } 1505 #else 1506 /* 1507 * Initialize a handle for the boot cpu - others will initialize 1508 * as they startup. Do not do this if we know we are in an HVM domU. 1509 */ 1510 if (!xpv_is_hvm && 1511 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1512 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1513 (x86_feature & X86_MCA)) 1514 cmi_mca_init(hdl); 1515 #endif /* __xpv */ 1516 1517 /* 1518 * Fake a prom tree such that /dev/openprom continues to work 1519 */ 1520 PRM_POINT("startup_modules: calling prom_setup..."); 1521 prom_setup(); 1522 PRM_POINT("startup_modules: done"); 1523 1524 /* 1525 * Load all platform specific modules 1526 */ 1527 PRM_POINT("startup_modules: calling psm_modload..."); 1528 psm_modload(); 1529 1530 PRM_POINT("startup_modules() done"); 1531 } 1532 1533 /* 1534 * claim a "setaside" boot page for use in the kernel 1535 */ 1536 page_t * 1537 boot_claim_page(pfn_t pfn) 1538 { 1539 page_t *pp; 1540 1541 pp = page_numtopp_nolock(pfn); 1542 ASSERT(pp != NULL); 1543 1544 if (PP_ISBOOTPAGES(pp)) { 1545 if (pp->p_next != NULL) 1546 pp->p_next->p_prev = pp->p_prev; 1547 if (pp->p_prev == NULL) 1548 bootpages = pp->p_next; 1549 else 1550 pp->p_prev->p_next = pp->p_next; 1551 } else { 1552 /* 1553 * htable_attach() expects a base pagesize page 1554 */ 1555 if (pp->p_szc != 0) 1556 page_boot_demote(pp); 1557 pp = page_numtopp(pfn, SE_EXCL); 1558 } 1559 return (pp); 1560 } 1561 1562 /* 1563 * Walk through the pagetables looking for pages mapped in by boot. If the 1564 * setaside flag is set the pages are expected to be returned to the 1565 * kernel later in boot, so we add them to the bootpages list. 1566 */ 1567 static void 1568 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1569 { 1570 uintptr_t va = low; 1571 size_t len; 1572 uint_t prot; 1573 pfn_t pfn; 1574 page_t *pp; 1575 pgcnt_t boot_protect_cnt = 0; 1576 1577 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1578 if (va + len >= high) 1579 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1580 "legal range.", len, (void *)va); 1581 1582 while (len > 0) { 1583 pp = page_numtopp_alloc(pfn); 1584 if (pp != NULL) { 1585 if (setaside == 0) 1586 panic("Unexpected mapping by boot. " 1587 "addr=%p pfn=%lx\n", 1588 (void *)va, pfn); 1589 1590 pp->p_next = bootpages; 1591 pp->p_prev = NULL; 1592 PP_SETBOOTPAGES(pp); 1593 if (bootpages != NULL) { 1594 bootpages->p_prev = pp; 1595 } 1596 bootpages = pp; 1597 ++boot_protect_cnt; 1598 } 1599 1600 ++pfn; 1601 len -= MMU_PAGESIZE; 1602 va += MMU_PAGESIZE; 1603 } 1604 } 1605 PRM_DEBUG(boot_protect_cnt); 1606 } 1607 1608 /* 1609 * 1610 */ 1611 static void 1612 layout_kernel_va(void) 1613 { 1614 PRM_POINT("layout_kernel_va() starting..."); 1615 /* 1616 * Establish the final size of the kernel's heap, size of segmap, 1617 * segkp, etc. 1618 */ 1619 1620 #if defined(__amd64) 1621 1622 kpm_vbase = (caddr_t)segkpm_base; 1623 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1624 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1625 panic("not enough room for kpm!"); 1626 PRM_DEBUG(kpm_size); 1627 PRM_DEBUG(kpm_vbase); 1628 1629 /* 1630 * By default we create a seg_kp in 64 bit kernels, it's a little 1631 * faster to access than embedding it in the heap. 1632 */ 1633 segkp_base = (caddr_t)valloc_base + valloc_sz; 1634 if (!segkp_fromheap) { 1635 size_t sz = mmu_ptob(segkpsize); 1636 1637 /* 1638 * determine size of segkp 1639 */ 1640 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1641 sz = SEGKPDEFSIZE; 1642 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1643 "segkpsize has been reset to %ld pages", 1644 mmu_btop(sz)); 1645 } 1646 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1647 1648 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1649 } 1650 PRM_DEBUG(segkp_base); 1651 PRM_DEBUG(segkpsize); 1652 1653 /* 1654 * segzio is used for ZFS cached data. It uses a distinct VA 1655 * segment (from kernel heap) so that we can easily tell not to 1656 * include it in kernel crash dumps on 64 bit kernels. The trick is 1657 * to give it lots of VA, but not constrain the kernel heap. 1658 * We scale the size of segzio linearly with physmem up to 1659 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1660 */ 1661 segzio_base = segkp_base + mmu_ptob(segkpsize); 1662 if (segzio_fromheap) { 1663 segziosize = 0; 1664 } else { 1665 size_t physmem_size = mmu_ptob(physmem); 1666 size_t size = (segziosize == 0) ? 1667 physmem_size : mmu_ptob(segziosize); 1668 1669 if (size < SEGZIOMINSIZE) 1670 size = SEGZIOMINSIZE; 1671 if (size > SEGZIOMAXSIZE) { 1672 size = SEGZIOMAXSIZE; 1673 if (physmem_size > size) 1674 size += (physmem_size - size) / 2; 1675 } 1676 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1677 } 1678 PRM_DEBUG(segziosize); 1679 PRM_DEBUG(segzio_base); 1680 1681 /* 1682 * Put the range of VA for device mappings next, kmdb knows to not 1683 * grep in this range of addresses. 1684 */ 1685 toxic_addr = 1686 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1687 PRM_DEBUG(toxic_addr); 1688 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1689 #else /* __i386 */ 1690 segmap_start = ROUND_UP_LPAGE(kernelbase); 1691 #endif /* __i386 */ 1692 PRM_DEBUG(segmap_start); 1693 1694 /* 1695 * Users can change segmapsize through eeprom or /etc/system. 1696 * If the variable is tuned through eeprom, there is no upper 1697 * bound on the size of segmap. If it is tuned through 1698 * /etc/system on 32-bit systems, it must be no larger than we 1699 * planned for in startup_memlist(). 1700 */ 1701 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1702 1703 #if defined(__i386) 1704 /* 1705 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1706 * the bottom of the kernel's address range. Set aside space for a 1707 * small red zone just below the start of segmap. 1708 */ 1709 segmap_start += KERNEL_REDZONE_SIZE; 1710 segmapsize -= KERNEL_REDZONE_SIZE; 1711 #endif 1712 1713 PRM_DEBUG(segmap_start); 1714 PRM_DEBUG(segmapsize); 1715 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1716 PRM_DEBUG(kernelheap); 1717 PRM_POINT("layout_kernel_va() done..."); 1718 } 1719 1720 /* 1721 * Finish initializing the VM system, now that we are no longer 1722 * relying on the boot time memory allocators. 1723 */ 1724 static void 1725 startup_vm(void) 1726 { 1727 struct segmap_crargs a; 1728 1729 extern int use_brk_lpg, use_stk_lpg; 1730 1731 PRM_POINT("startup_vm() starting..."); 1732 1733 /* 1734 * Initialize the hat layer. 1735 */ 1736 hat_init(); 1737 1738 /* 1739 * Do final allocations of HAT data structures that need to 1740 * be allocated before quiescing the boot loader. 1741 */ 1742 PRM_POINT("Calling hat_kern_alloc()..."); 1743 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1744 PRM_POINT("hat_kern_alloc() done"); 1745 1746 #ifndef __xpv 1747 /* 1748 * Setup Page Attribute Table 1749 */ 1750 pat_sync(); 1751 #endif 1752 1753 /* 1754 * The next two loops are done in distinct steps in order 1755 * to be sure that any page that is doubly mapped (both above 1756 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1757 * Note this may never happen, but it might someday. 1758 */ 1759 bootpages = NULL; 1760 PRM_POINT("Protecting boot pages"); 1761 1762 /* 1763 * Protect any pages mapped above KERNEL_TEXT that somehow have 1764 * page_t's. This can only happen if something weird allocated 1765 * in this range (like kadb/kmdb). 1766 */ 1767 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1768 1769 /* 1770 * Before we can take over memory allocation/mapping from the boot 1771 * loader we must remove from our free page lists any boot allocated 1772 * pages that stay mapped until release_bootstrap(). 1773 */ 1774 protect_boot_range(0, kernelbase, 1); 1775 1776 1777 /* 1778 * Switch to running on regular HAT (not boot_mmu) 1779 */ 1780 PRM_POINT("Calling hat_kern_setup()..."); 1781 hat_kern_setup(); 1782 1783 /* 1784 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1785 */ 1786 bop_no_more_mem(); 1787 1788 PRM_POINT("hat_kern_setup() done"); 1789 1790 hat_cpu_online(CPU); 1791 1792 /* 1793 * Initialize VM system 1794 */ 1795 PRM_POINT("Calling kvm_init()..."); 1796 kvm_init(); 1797 PRM_POINT("kvm_init() done"); 1798 1799 /* 1800 * Tell kmdb that the VM system is now working 1801 */ 1802 if (boothowto & RB_DEBUG) 1803 kdi_dvec_vmready(); 1804 1805 #if defined(__xpv) 1806 /* 1807 * Populate the I/O pool on domain 0 1808 */ 1809 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1810 extern long populate_io_pool(void); 1811 long init_io_pool_cnt; 1812 1813 PRM_POINT("Populating reserve I/O page pool"); 1814 init_io_pool_cnt = populate_io_pool(); 1815 PRM_DEBUG(init_io_pool_cnt); 1816 } 1817 #endif 1818 /* 1819 * Mangle the brand string etc. 1820 */ 1821 cpuid_pass3(CPU); 1822 1823 #if defined(__amd64) 1824 1825 /* 1826 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1827 */ 1828 device_arena = vmem_create("device", (void *)toxic_addr, 1829 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1830 1831 #else /* __i386 */ 1832 1833 /* 1834 * allocate the bit map that tracks toxic pages 1835 */ 1836 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1837 PRM_DEBUG(toxic_bit_map_len); 1838 toxic_bit_map = 1839 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1840 ASSERT(toxic_bit_map != NULL); 1841 PRM_DEBUG(toxic_bit_map); 1842 1843 #endif /* __i386 */ 1844 1845 1846 /* 1847 * Now that we've got more VA, as well as the ability to allocate from 1848 * it, tell the debugger. 1849 */ 1850 if (boothowto & RB_DEBUG) 1851 kdi_dvec_memavail(); 1852 1853 /* 1854 * The following code installs a special page fault handler (#pf) 1855 * to work around a pentium bug. 1856 */ 1857 #if !defined(__amd64) && !defined(__xpv) 1858 if (x86_type == X86_TYPE_P5) { 1859 desctbr_t idtr; 1860 gate_desc_t *newidt; 1861 1862 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1863 panic("failed to install pentium_pftrap"); 1864 1865 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1866 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1867 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1868 1869 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1870 PROT_READ | PROT_EXEC); 1871 1872 CPU->cpu_idt = newidt; 1873 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1874 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1875 wr_idtr(&idtr); 1876 } 1877 #endif /* !__amd64 */ 1878 1879 #if !defined(__xpv) 1880 /* 1881 * Map page pfn=0 for drivers, such as kd, that need to pick up 1882 * parameters left there by controllers/BIOS. 1883 */ 1884 PRM_POINT("setup up p0_va"); 1885 p0_va = i86devmap(0, 1, PROT_READ); 1886 PRM_DEBUG(p0_va); 1887 #endif 1888 1889 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1890 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1891 1892 /* 1893 * disable automatic large pages for small memory systems or 1894 * when the disable flag is set. 1895 * 1896 * Do not yet consider page sizes larger than 2m/4m. 1897 */ 1898 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1899 max_uheap_lpsize = LEVEL_SIZE(1); 1900 max_ustack_lpsize = LEVEL_SIZE(1); 1901 max_privmap_lpsize = LEVEL_SIZE(1); 1902 max_uidata_lpsize = LEVEL_SIZE(1); 1903 max_utext_lpsize = LEVEL_SIZE(1); 1904 max_shm_lpsize = LEVEL_SIZE(1); 1905 } 1906 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1907 auto_lpg_disable) { 1908 use_brk_lpg = 0; 1909 use_stk_lpg = 0; 1910 } 1911 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1912 1913 PRM_POINT("Calling hat_init_finish()..."); 1914 hat_init_finish(); 1915 PRM_POINT("hat_init_finish() done"); 1916 1917 /* 1918 * Initialize the segkp segment type. 1919 */ 1920 rw_enter(&kas.a_lock, RW_WRITER); 1921 PRM_POINT("Attaching segkp"); 1922 if (segkp_fromheap) { 1923 segkp->s_as = &kas; 1924 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1925 segkp) < 0) { 1926 panic("startup: cannot attach segkp"); 1927 /*NOTREACHED*/ 1928 } 1929 PRM_POINT("Doing segkp_create()"); 1930 if (segkp_create(segkp) != 0) { 1931 panic("startup: segkp_create failed"); 1932 /*NOTREACHED*/ 1933 } 1934 PRM_DEBUG(segkp); 1935 rw_exit(&kas.a_lock); 1936 1937 /* 1938 * kpm segment 1939 */ 1940 segmap_kpm = 0; 1941 if (kpm_desired) { 1942 kpm_init(); 1943 kpm_enable = 1; 1944 vpm_enable = 1; 1945 } 1946 1947 /* 1948 * Now create segmap segment. 1949 */ 1950 rw_enter(&kas.a_lock, RW_WRITER); 1951 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1952 panic("cannot attach segmap"); 1953 /*NOTREACHED*/ 1954 } 1955 PRM_DEBUG(segmap); 1956 1957 a.prot = PROT_READ | PROT_WRITE; 1958 a.shmsize = 0; 1959 a.nfreelist = segmapfreelists; 1960 1961 if (segmap_create(segmap, (caddr_t)&a) != 0) 1962 panic("segmap_create segmap"); 1963 rw_exit(&kas.a_lock); 1964 1965 setup_vaddr_for_ppcopy(CPU); 1966 1967 segdev_init(); 1968 #if defined(__xpv) 1969 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1970 #endif 1971 pmem_init(); 1972 1973 PRM_POINT("startup_vm() done"); 1974 } 1975 1976 /* 1977 * Load a tod module for the non-standard tod part found on this system. 1978 */ 1979 static void 1980 load_tod_module(char *todmod) 1981 { 1982 if (modload("tod", todmod) == -1) 1983 halt("Can't load TOD module"); 1984 } 1985 1986 static void 1987 startup_end(void) 1988 { 1989 int i; 1990 extern void setx86isalist(void); 1991 1992 PRM_POINT("startup_end() starting..."); 1993 1994 /* 1995 * Perform tasks that get done after most of the VM 1996 * initialization has been done but before the clock 1997 * and other devices get started. 1998 */ 1999 kern_setup1(); 2000 2001 /* 2002 * Perform CPC initialization for this CPU. 2003 */ 2004 kcpc_hw_init(CPU); 2005 2006 #if defined(OPTERON_WORKAROUND_6323525) 2007 if (opteron_workaround_6323525) 2008 patch_workaround_6323525(); 2009 #endif 2010 /* 2011 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2012 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2013 */ 2014 if (tod_module_name != NULL) { 2015 PRM_POINT("load_tod_module()"); 2016 load_tod_module(tod_module_name); 2017 } 2018 2019 #if defined(__xpv) 2020 /* 2021 * Forceload interposing TOD module for the hypervisor. 2022 */ 2023 PRM_POINT("load_tod_module()"); 2024 load_tod_module("xpvtod"); 2025 #endif 2026 2027 /* 2028 * Configure the system. 2029 */ 2030 PRM_POINT("Calling configure()..."); 2031 configure(); /* set up devices */ 2032 PRM_POINT("configure() done"); 2033 2034 /* 2035 * Set the isa_list string to the defined instruction sets we 2036 * support. 2037 */ 2038 setx86isalist(); 2039 cpu_intr_alloc(CPU, NINTR_THREADS); 2040 psm_install(); 2041 2042 /* 2043 * We're done with bootops. We don't unmap the bootstrap yet because 2044 * we're still using bootsvcs. 2045 */ 2046 PRM_POINT("NULLing out bootops"); 2047 *bootopsp = (struct bootops *)NULL; 2048 bootops = (struct bootops *)NULL; 2049 2050 #if defined(__xpv) 2051 ec_init_debug_irq(); 2052 xs_domu_init(); 2053 #endif 2054 PRM_POINT("Enabling interrupts"); 2055 (*picinitf)(); 2056 sti(); 2057 #if defined(__xpv) 2058 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2059 xen_late_startup(); 2060 #endif 2061 2062 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2063 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2064 2065 /* 2066 * Register these software interrupts for ddi timer. 2067 * Software interrupts up to the level 10 are supported. 2068 */ 2069 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2070 char name[sizeof ("timer_softintr") + 2]; 2071 (void) sprintf(name, "timer_softintr%02d", i); 2072 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2073 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2074 } 2075 2076 PRM_POINT("startup_end() done"); 2077 } 2078 2079 extern char hw_serial[]; 2080 char *_hs1107 = hw_serial; 2081 ulong_t _bdhs34; 2082 2083 void 2084 post_startup(void) 2085 { 2086 /* 2087 * Set the system wide, processor-specific flags to be passed 2088 * to userland via the aux vector for performance hints and 2089 * instruction set extensions. 2090 */ 2091 bind_hwcap(); 2092 2093 #ifdef __xpv 2094 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2095 #endif 2096 { 2097 /* 2098 * Load the System Management BIOS into the global ksmbios 2099 * handle, if an SMBIOS is present on this system. 2100 */ 2101 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2102 2103 #if defined(__xpv) 2104 xpv_panic_init(); 2105 #else 2106 /* 2107 * Startup the memory scrubber. 2108 * XXPV This should be running somewhere .. 2109 */ 2110 if (!xpv_is_hvm) 2111 memscrub_init(); 2112 #endif 2113 } 2114 2115 /* 2116 * Complete CPU module initialization 2117 */ 2118 cmi_post_startup(); 2119 2120 /* 2121 * Perform forceloading tasks for /etc/system. 2122 */ 2123 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2124 2125 /* 2126 * ON4.0: Force /proc module in until clock interrupt handle fixed 2127 * ON4.0: This must be fixed or restated in /etc/systems. 2128 */ 2129 (void) modload("fs", "procfs"); 2130 2131 (void) i_ddi_attach_hw_nodes("pit_beep"); 2132 2133 #if defined(__i386) 2134 /* 2135 * Check for required functional Floating Point hardware, 2136 * unless FP hardware explicitly disabled. 2137 */ 2138 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2139 halt("No working FP hardware found"); 2140 #endif 2141 2142 maxmem = freemem; 2143 2144 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2145 } 2146 2147 static int 2148 pp_in_ramdisk(page_t *pp) 2149 { 2150 extern uint64_t ramdisk_start, ramdisk_end; 2151 2152 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2153 (pp->p_pagenum < btopr(ramdisk_end))); 2154 } 2155 2156 void 2157 release_bootstrap(void) 2158 { 2159 int root_is_ramdisk; 2160 page_t *pp; 2161 extern void kobj_boot_unmountroot(void); 2162 extern dev_t rootdev; 2163 #if !defined(__xpv) 2164 pfn_t pfn; 2165 #endif 2166 2167 /* unmount boot ramdisk and release kmem usage */ 2168 kobj_boot_unmountroot(); 2169 2170 /* 2171 * We're finished using the boot loader so free its pages. 2172 */ 2173 PRM_POINT("Unmapping lower boot pages"); 2174 clear_boot_mappings(0, _userlimit); 2175 postbootkernelbase = kernelbase; 2176 2177 /* 2178 * If root isn't on ramdisk, destroy the hardcoded 2179 * ramdisk node now and release the memory. Else, 2180 * ramdisk memory is kept in rd_pages. 2181 */ 2182 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2183 if (!root_is_ramdisk) { 2184 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2185 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2186 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2187 (void) ddi_remove_child(dip, 0); 2188 } 2189 2190 PRM_POINT("Releasing boot pages"); 2191 while (bootpages) { 2192 pp = bootpages; 2193 bootpages = pp->p_next; 2194 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2195 pp->p_next = rd_pages; 2196 rd_pages = pp; 2197 continue; 2198 } 2199 pp->p_next = (struct page *)0; 2200 pp->p_prev = (struct page *)0; 2201 PP_CLRBOOTPAGES(pp); 2202 page_free(pp, 1); 2203 } 2204 PRM_POINT("Boot pages released"); 2205 2206 #if !defined(__xpv) 2207 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2208 /* 2209 * Find 1 page below 1 MB so that other processors can boot up or 2210 * so that any processor can resume. 2211 * Make sure it has a kernel VA as well as a 1:1 mapping. 2212 * We should have just free'd one up. 2213 */ 2214 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2215 if (page_numtopp_alloc(pfn) == NULL) 2216 continue; 2217 rm_platter_va = i86devmap(pfn, 1, 2218 PROT_READ | PROT_WRITE | PROT_EXEC); 2219 rm_platter_pa = ptob(pfn); 2220 hat_devload(kas.a_hat, 2221 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2222 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2223 HAT_LOAD_NOCONSIST); 2224 break; 2225 } 2226 if (pfn == btop(1*1024*1024) && use_mp) 2227 panic("No page below 1M available for starting " 2228 "other processors or for resuming from system-suspend"); 2229 #endif /* !__xpv */ 2230 } 2231 2232 /* 2233 * Initialize the platform-specific parts of a page_t. 2234 */ 2235 void 2236 add_physmem_cb(page_t *pp, pfn_t pnum) 2237 { 2238 pp->p_pagenum = pnum; 2239 pp->p_mapping = NULL; 2240 pp->p_embed = 0; 2241 pp->p_share = 0; 2242 pp->p_mlentry = 0; 2243 } 2244 2245 /* 2246 * kphysm_init() initializes physical memory. 2247 */ 2248 static pgcnt_t 2249 kphysm_init( 2250 page_t *pp, 2251 pgcnt_t npages) 2252 { 2253 struct memlist *pmem; 2254 struct memseg *cur_memseg; 2255 pfn_t base_pfn; 2256 pgcnt_t num; 2257 pgcnt_t pages_done = 0; 2258 uint64_t addr; 2259 uint64_t size; 2260 extern pfn_t ddiphysmin; 2261 2262 ASSERT(page_hash != NULL && page_hashsz != 0); 2263 2264 cur_memseg = memseg_base; 2265 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2266 /* 2267 * In a 32 bit kernel can't use higher memory if we're 2268 * not booting in PAE mode. This check takes care of that. 2269 */ 2270 addr = pmem->address; 2271 size = pmem->size; 2272 if (btop(addr) > physmax) 2273 continue; 2274 2275 /* 2276 * align addr and size - they may not be at page boundaries 2277 */ 2278 if ((addr & MMU_PAGEOFFSET) != 0) { 2279 addr += MMU_PAGEOFFSET; 2280 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2281 size -= addr - pmem->address; 2282 } 2283 2284 /* only process pages below or equal to physmax */ 2285 if ((btop(addr + size) - 1) > physmax) 2286 size = ptob(physmax - btop(addr) + 1); 2287 2288 num = btop(size); 2289 if (num == 0) 2290 continue; 2291 2292 if (num > npages) 2293 num = npages; 2294 2295 npages -= num; 2296 pages_done += num; 2297 base_pfn = btop(addr); 2298 2299 if (prom_debug) 2300 prom_printf("MEMSEG addr=0x%" PRIx64 2301 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2302 addr, num, base_pfn, base_pfn + num); 2303 2304 /* 2305 * Ignore pages below ddiphysmin to simplify ddi memory 2306 * allocation with non-zero addr_lo requests. 2307 */ 2308 if (base_pfn < ddiphysmin) { 2309 if (base_pfn + num <= ddiphysmin) 2310 continue; 2311 pp += (ddiphysmin - base_pfn); 2312 num -= (ddiphysmin - base_pfn); 2313 base_pfn = ddiphysmin; 2314 } 2315 2316 /* 2317 * Build the memsegs entry 2318 */ 2319 cur_memseg->pages = pp; 2320 cur_memseg->epages = pp + num; 2321 cur_memseg->pages_base = base_pfn; 2322 cur_memseg->pages_end = base_pfn + num; 2323 2324 /* 2325 * Insert into memseg list in decreasing pfn range order. 2326 * Low memory is typically more fragmented such that this 2327 * ordering keeps the larger ranges at the front of the list 2328 * for code that searches memseg. 2329 * This ASSERTS that the memsegs coming in from boot are in 2330 * increasing physical address order and not contiguous. 2331 */ 2332 if (memsegs != NULL) { 2333 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2334 cur_memseg->next = memsegs; 2335 } 2336 memsegs = cur_memseg; 2337 2338 /* 2339 * add_physmem() initializes the PSM part of the page 2340 * struct by calling the PSM back with add_physmem_cb(). 2341 * In addition it coalesces pages into larger pages as 2342 * it initializes them. 2343 */ 2344 add_physmem(pp, num, base_pfn); 2345 cur_memseg++; 2346 availrmem_initial += num; 2347 availrmem += num; 2348 2349 pp += num; 2350 } 2351 2352 PRM_DEBUG(availrmem_initial); 2353 PRM_DEBUG(availrmem); 2354 PRM_DEBUG(freemem); 2355 build_pfn_hash(); 2356 return (pages_done); 2357 } 2358 2359 /* 2360 * Kernel VM initialization. 2361 */ 2362 static void 2363 kvm_init(void) 2364 { 2365 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2366 2367 /* 2368 * Put the kernel segments in kernel address space. 2369 */ 2370 rw_enter(&kas.a_lock, RW_WRITER); 2371 as_avlinit(&kas); 2372 2373 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2374 (void) segkmem_create(&ktextseg); 2375 2376 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2377 (void) segkmem_create(&kvalloc); 2378 2379 (void) seg_attach(&kas, kernelheap, 2380 ekernelheap - kernelheap, &kvseg); 2381 (void) segkmem_create(&kvseg); 2382 2383 if (core_size > 0) { 2384 PRM_POINT("attaching kvseg_core"); 2385 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2386 &kvseg_core); 2387 (void) segkmem_create(&kvseg_core); 2388 } 2389 2390 if (segziosize > 0) { 2391 PRM_POINT("attaching segzio"); 2392 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2393 &kzioseg); 2394 (void) segkmem_zio_create(&kzioseg); 2395 2396 /* create zio area covering new segment */ 2397 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2398 } 2399 2400 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2401 (void) segkmem_create(&kdebugseg); 2402 2403 rw_exit(&kas.a_lock); 2404 2405 /* 2406 * Ensure that the red zone at kernelbase is never accessible. 2407 */ 2408 PRM_POINT("protecting redzone"); 2409 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2410 2411 /* 2412 * Make the text writable so that it can be hot patched by DTrace. 2413 */ 2414 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2415 PROT_READ | PROT_WRITE | PROT_EXEC); 2416 2417 /* 2418 * Make data writable until end. 2419 */ 2420 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2421 PROT_READ | PROT_WRITE | PROT_EXEC); 2422 } 2423 2424 #ifndef __xpv 2425 /* 2426 * Solaris adds an entry for Write Combining caching to the PAT 2427 */ 2428 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2429 2430 void 2431 pat_sync(void) 2432 { 2433 ulong_t cr0, cr0_orig, cr4; 2434 2435 if (!(x86_feature & X86_PAT)) 2436 return; 2437 cr0_orig = cr0 = getcr0(); 2438 cr4 = getcr4(); 2439 2440 /* disable caching and flush all caches and TLBs */ 2441 cr0 |= CR0_CD; 2442 cr0 &= ~CR0_NW; 2443 setcr0(cr0); 2444 invalidate_cache(); 2445 if (cr4 & CR4_PGE) { 2446 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2447 setcr4(cr4); 2448 } else { 2449 reload_cr3(); 2450 } 2451 2452 /* add our entry to the PAT */ 2453 wrmsr(REG_PAT, pat_attr_reg); 2454 2455 /* flush TLBs and cache again, then reenable cr0 caching */ 2456 if (cr4 & CR4_PGE) { 2457 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2458 setcr4(cr4); 2459 } else { 2460 reload_cr3(); 2461 } 2462 invalidate_cache(); 2463 setcr0(cr0_orig); 2464 } 2465 2466 #endif /* !__xpv */ 2467 2468 void 2469 get_system_configuration(void) 2470 { 2471 char prop[32]; 2472 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2473 2474 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2475 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2476 kobj_getvalue(prop, &nodes_ll) == -1 || 2477 nodes_ll > MAXNODES || 2478 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2479 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2480 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2481 system_hardware.hd_nodes = 1; 2482 system_hardware.hd_cpus_per_node = 0; 2483 } else { 2484 system_hardware.hd_nodes = (int)nodes_ll; 2485 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2486 } 2487 2488 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2489 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2490 kobj_getvalue(prop, &lvalue) == -1) 2491 eprom_kernelbase = NULL; 2492 else 2493 eprom_kernelbase = (uintptr_t)lvalue; 2494 2495 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2496 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2497 kobj_getvalue(prop, &lvalue) == -1) 2498 segmapsize = SEGMAPDEFAULT; 2499 else 2500 segmapsize = (uintptr_t)lvalue; 2501 2502 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2503 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2504 kobj_getvalue(prop, &lvalue) == -1) 2505 segmapfreelists = 0; /* use segmap driver default */ 2506 else 2507 segmapfreelists = (int)lvalue; 2508 2509 /* physmem used to be here, but moved much earlier to fakebop.c */ 2510 } 2511 2512 /* 2513 * Add to a memory list. 2514 * start = start of new memory segment 2515 * len = length of new memory segment in bytes 2516 * new = pointer to a new struct memlist 2517 * memlistp = memory list to which to add segment. 2518 */ 2519 void 2520 memlist_add( 2521 uint64_t start, 2522 uint64_t len, 2523 struct memlist *new, 2524 struct memlist **memlistp) 2525 { 2526 struct memlist *cur; 2527 uint64_t end = start + len; 2528 2529 new->address = start; 2530 new->size = len; 2531 2532 cur = *memlistp; 2533 2534 while (cur) { 2535 if (cur->address >= end) { 2536 new->next = cur; 2537 *memlistp = new; 2538 new->prev = cur->prev; 2539 cur->prev = new; 2540 return; 2541 } 2542 ASSERT(cur->address + cur->size <= start); 2543 if (cur->next == NULL) { 2544 cur->next = new; 2545 new->prev = cur; 2546 new->next = NULL; 2547 return; 2548 } 2549 memlistp = &cur->next; 2550 cur = cur->next; 2551 } 2552 } 2553 2554 void 2555 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2556 { 2557 size_t tsize = e_modtext - modtext; 2558 size_t dsize = e_moddata - moddata; 2559 2560 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2561 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2562 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2563 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2564 } 2565 2566 caddr_t 2567 kobj_text_alloc(vmem_t *arena, size_t size) 2568 { 2569 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2570 } 2571 2572 /*ARGSUSED*/ 2573 caddr_t 2574 kobj_texthole_alloc(caddr_t addr, size_t size) 2575 { 2576 panic("unexpected call to kobj_texthole_alloc()"); 2577 /*NOTREACHED*/ 2578 return (0); 2579 } 2580 2581 /*ARGSUSED*/ 2582 void 2583 kobj_texthole_free(caddr_t addr, size_t size) 2584 { 2585 panic("unexpected call to kobj_texthole_free()"); 2586 } 2587 2588 /* 2589 * This is called just after configure() in startup(). 2590 * 2591 * The ISALIST concept is a bit hopeless on Intel, because 2592 * there's no guarantee of an ever-more-capable processor 2593 * given that various parts of the instruction set may appear 2594 * and disappear between different implementations. 2595 * 2596 * While it would be possible to correct it and even enhance 2597 * it somewhat, the explicit hardware capability bitmask allows 2598 * more flexibility. 2599 * 2600 * So, we just leave this alone. 2601 */ 2602 void 2603 setx86isalist(void) 2604 { 2605 char *tp; 2606 size_t len; 2607 extern char *isa_list; 2608 2609 #define TBUFSIZE 1024 2610 2611 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2612 *tp = '\0'; 2613 2614 #if defined(__amd64) 2615 (void) strcpy(tp, "amd64 "); 2616 #endif 2617 2618 switch (x86_vendor) { 2619 case X86_VENDOR_Intel: 2620 case X86_VENDOR_AMD: 2621 case X86_VENDOR_TM: 2622 if (x86_feature & X86_CMOV) { 2623 /* 2624 * Pentium Pro or later 2625 */ 2626 (void) strcat(tp, "pentium_pro"); 2627 (void) strcat(tp, x86_feature & X86_MMX ? 2628 "+mmx pentium_pro " : " "); 2629 } 2630 /*FALLTHROUGH*/ 2631 case X86_VENDOR_Cyrix: 2632 /* 2633 * The Cyrix 6x86 does not have any Pentium features 2634 * accessible while not at privilege level 0. 2635 */ 2636 if (x86_feature & X86_CPUID) { 2637 (void) strcat(tp, "pentium"); 2638 (void) strcat(tp, x86_feature & X86_MMX ? 2639 "+mmx pentium " : " "); 2640 } 2641 break; 2642 default: 2643 break; 2644 } 2645 (void) strcat(tp, "i486 i386 i86"); 2646 len = strlen(tp) + 1; /* account for NULL at end of string */ 2647 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2648 kmem_free(tp, TBUFSIZE); 2649 2650 #undef TBUFSIZE 2651 } 2652 2653 2654 #ifdef __amd64 2655 2656 void * 2657 device_arena_alloc(size_t size, int vm_flag) 2658 { 2659 return (vmem_alloc(device_arena, size, vm_flag)); 2660 } 2661 2662 void 2663 device_arena_free(void *vaddr, size_t size) 2664 { 2665 vmem_free(device_arena, vaddr, size); 2666 } 2667 2668 #else /* __i386 */ 2669 2670 void * 2671 device_arena_alloc(size_t size, int vm_flag) 2672 { 2673 caddr_t vaddr; 2674 uintptr_t v; 2675 size_t start; 2676 size_t end; 2677 2678 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2679 if (vaddr == NULL) 2680 return (NULL); 2681 2682 v = (uintptr_t)vaddr; 2683 ASSERT(v >= kernelbase); 2684 ASSERT(v + size <= valloc_base); 2685 2686 start = btop(v - kernelbase); 2687 end = btop(v + size - 1 - kernelbase); 2688 ASSERT(start < toxic_bit_map_len); 2689 ASSERT(end < toxic_bit_map_len); 2690 2691 while (start <= end) { 2692 BT_ATOMIC_SET(toxic_bit_map, start); 2693 ++start; 2694 } 2695 return (vaddr); 2696 } 2697 2698 void 2699 device_arena_free(void *vaddr, size_t size) 2700 { 2701 uintptr_t v = (uintptr_t)vaddr; 2702 size_t start; 2703 size_t end; 2704 2705 ASSERT(v >= kernelbase); 2706 ASSERT(v + size <= valloc_base); 2707 2708 start = btop(v - kernelbase); 2709 end = btop(v + size - 1 - kernelbase); 2710 ASSERT(start < toxic_bit_map_len); 2711 ASSERT(end < toxic_bit_map_len); 2712 2713 while (start <= end) { 2714 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2715 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2716 ++start; 2717 } 2718 vmem_free(heap_arena, vaddr, size); 2719 } 2720 2721 /* 2722 * returns 1st address in range that is in device arena, or NULL 2723 * if len is not NULL it returns the length of the toxic range 2724 */ 2725 void * 2726 device_arena_contains(void *vaddr, size_t size, size_t *len) 2727 { 2728 uintptr_t v = (uintptr_t)vaddr; 2729 uintptr_t eaddr = v + size; 2730 size_t start; 2731 size_t end; 2732 2733 /* 2734 * if called very early by kmdb, just return NULL 2735 */ 2736 if (toxic_bit_map == NULL) 2737 return (NULL); 2738 2739 /* 2740 * First check if we're completely outside the bitmap range. 2741 */ 2742 if (v >= valloc_base || eaddr < kernelbase) 2743 return (NULL); 2744 2745 /* 2746 * Trim ends of search to look at only what the bitmap covers. 2747 */ 2748 if (v < kernelbase) 2749 v = kernelbase; 2750 start = btop(v - kernelbase); 2751 end = btop(eaddr - kernelbase); 2752 if (end >= toxic_bit_map_len) 2753 end = toxic_bit_map_len; 2754 2755 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2756 return (NULL); 2757 2758 v = kernelbase + ptob(start); 2759 if (len != NULL) 2760 *len = ptob(end - start); 2761 return ((void *)v); 2762 } 2763 2764 #endif /* __i386 */ 2765