1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 140 extern int size_pse_array(pgcnt_t, int); 141 142 #if defined(_SOFT_HOSTID) 143 144 #include <sys/rtc.h> 145 146 static int32_t set_soft_hostid(void); 147 extern char hw_serial[]; 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 153 /* 154 * XXX make declaration below "static" when drivers no longer use this 155 * interface. 156 */ 157 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 158 159 /* 160 * segkp 161 */ 162 extern int segkp_fromheap; 163 164 static void kvm_init(void); 165 static void startup_init(void); 166 static void startup_memlist(void); 167 static void startup_kmem(void); 168 static void startup_modules(void); 169 static void startup_vm(void); 170 static void startup_end(void); 171 static void layout_kernel_va(void); 172 173 /* 174 * Declare these as initialized data so we can patch them. 175 */ 176 #ifdef __i386 177 178 /* 179 * Due to virtual address space limitations running in 32 bit mode, restrict 180 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 181 * 182 * If the physical max memory size of 64g were allowed to be configured, the 183 * size of user virtual address space will be less than 1g. A limited user 184 * address space greatly reduces the range of applications that can run. 185 * 186 * If more physical memory than PHYSMEM is required, users should preferably 187 * run in 64 bit mode which has far looser virtual address space limitations. 188 * 189 * If 64 bit mode is not available (as in IA32) and/or more physical memory 190 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 191 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 192 * should also be carefully tuned to balance out the need of the user 193 * application while minimizing the risk of kernel heap exhaustion due to 194 * kernelbase being set too high. 195 */ 196 #define PHYSMEM 0x400000 197 198 #else /* __amd64 */ 199 200 /* 201 * For now we can handle memory with physical addresses up to about 202 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 203 * half the VA space for seg_kpm. When systems get bigger than 64TB this 204 * code will need revisiting. There is an implicit assumption that there 205 * are no *huge* holes in the physical address space too. 206 */ 207 #define TERABYTE (1ul << 40) 208 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 209 #define PHYSMEM PHYSMEM_MAX64 210 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 211 212 #endif /* __amd64 */ 213 214 pgcnt_t physmem = PHYSMEM; 215 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 216 217 char *kobj_file_buf; 218 int kobj_file_bufsize; /* set in /etc/system */ 219 220 /* Global variables for MP support. Used in mp_startup */ 221 caddr_t rm_platter_va = 0; 222 uint32_t rm_platter_pa; 223 224 int auto_lpg_disable = 1; 225 226 /* 227 * Some CPUs have holes in the middle of the 64-bit virtual address range. 228 */ 229 uintptr_t hole_start, hole_end; 230 231 /* 232 * kpm mapping window 233 */ 234 caddr_t kpm_vbase; 235 size_t kpm_size; 236 static int kpm_desired; 237 #ifdef __amd64 238 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 239 #endif 240 241 /* 242 * Configuration parameters set at boot time. 243 */ 244 245 caddr_t econtig; /* end of first block of contiguous kernel */ 246 247 struct bootops *bootops = 0; /* passed in from boot */ 248 struct bootops **bootopsp; 249 struct boot_syscalls *sysp; /* passed in from boot */ 250 251 char bootblock_fstype[16]; 252 253 char kern_bootargs[OBP_MAXPATHLEN]; 254 char kern_bootfile[OBP_MAXPATHLEN]; 255 256 /* 257 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 258 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 259 * zio buffers from their own segment, otherwise they are allocated from the 260 * heap. The optimization of allocating zio buffers from their own segment is 261 * only valid on 64-bit kernels. 262 */ 263 #if defined(__amd64) 264 int segzio_fromheap = 0; 265 #else 266 int segzio_fromheap = 1; 267 #endif 268 269 /* 270 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 271 * depends on number of BOP_ALLOC calls made and requested size, memory size 272 * combination and whether boot.bin memory needs to be freed. 273 */ 274 #define POSS_NEW_FRAGMENTS 12 275 276 /* 277 * VM data structures 278 */ 279 long page_hashsz; /* Size of page hash table (power of two) */ 280 struct page *pp_base; /* Base of initial system page struct array */ 281 struct page **page_hash; /* Page hash table */ 282 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 283 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 284 int pse_shift; /* log2(pse_table_size) */ 285 struct seg ktextseg; /* Segment used for kernel executable image */ 286 struct seg kvalloc; /* Segment used for "valloc" mapping */ 287 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 288 struct seg kmapseg; /* Segment used for generic kernel mappings */ 289 struct seg kdebugseg; /* Segment used for the kernel debugger */ 290 291 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 292 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 293 294 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 295 296 #if defined(__amd64) 297 struct seg kvseg_core; /* Segment used for the core heap */ 298 struct seg kpmseg; /* Segment used for physical mapping */ 299 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 300 #else 301 struct seg *segkpm = NULL; /* Unused on IA32 */ 302 #endif 303 304 caddr_t segkp_base; /* Base address of segkp */ 305 caddr_t segzio_base; /* Base address of segzio */ 306 #if defined(__amd64) 307 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 308 #else 309 pgcnt_t segkpsize = 0; 310 #endif 311 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 312 313 /* 314 * VA range available to the debugger 315 */ 316 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 317 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 318 319 struct memseg *memseg_base; 320 struct vnode unused_pages_vp; 321 322 #define FOURGB 0x100000000LL 323 324 struct memlist *memlist; 325 326 caddr_t s_text; /* start of kernel text segment */ 327 caddr_t e_text; /* end of kernel text segment */ 328 caddr_t s_data; /* start of kernel data segment */ 329 caddr_t e_data; /* end of kernel data segment */ 330 caddr_t modtext; /* start of loadable module text reserved */ 331 caddr_t e_modtext; /* end of loadable module text reserved */ 332 caddr_t moddata; /* start of loadable module data reserved */ 333 caddr_t e_moddata; /* end of loadable module data reserved */ 334 335 struct memlist *phys_install; /* Total installed physical memory */ 336 struct memlist *phys_avail; /* Total available physical memory */ 337 338 /* 339 * kphysm_init returns the number of pages that were processed 340 */ 341 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 342 343 #define IO_PROP_SIZE 64 /* device property size */ 344 345 /* 346 * a couple useful roundup macros 347 */ 348 #define ROUND_UP_PAGE(x) \ 349 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 350 #define ROUND_UP_LPAGE(x) \ 351 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 352 #define ROUND_UP_4MEG(x) \ 353 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 354 #define ROUND_UP_TOPLEVEL(x) \ 355 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 356 357 /* 358 * 32-bit Kernel's Virtual memory layout. 359 * +-----------------------+ 360 * | | 361 * 0xFFC00000 -|-----------------------|- ARGSBASE 362 * | debugger | 363 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 364 * | Kernel Data | 365 * 0xFEC00000 -|-----------------------| 366 * | Kernel Text | 367 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 368 * |--- GDT ---|- GDT page (GDT_VA) 369 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 370 * | | 371 * | page_t structures | 372 * | memsegs, memlists, | 373 * | page hash, etc. | 374 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 375 * | | (segkp is just an arena in the heap) 376 * | | 377 * | kvseg | 378 * | | 379 * | | 380 * --- -|-----------------------|- kernelheap (floating) 381 * | Segkmap | 382 * 0xC3002000 -|-----------------------|- segmap_start (floating) 383 * | Red Zone | 384 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 385 * | | || 386 * | Shared objects | \/ 387 * | | 388 * : : 389 * | user data | 390 * |-----------------------| 391 * | user text | 392 * 0x08048000 -|-----------------------| 393 * | user stack | 394 * : : 395 * | invalid | 396 * 0x00000000 +-----------------------+ 397 * 398 * 399 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 400 * +-----------------------+ 401 * | | 402 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 403 * | debugger (?) | 404 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 405 * | unused | 406 * +-----------------------+ 407 * | Kernel Data | 408 * 0xFFFFFFFF.FBC00000 |-----------------------| 409 * | Kernel Text | 410 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 411 * |--- GDT ---|- GDT page (GDT_VA) 412 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 413 * | | 414 * | Core heap | (used for loadable modules) 415 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 416 * | Kernel | 417 * | heap | 418 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 419 * | segmap | 420 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 421 * | device mappings | 422 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 423 * | segzio | 424 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 425 * | segkp | 426 * --- |-----------------------|- segkp_base (floating) 427 * | page_t structures | valloc_base + valloc_sz 428 * | memsegs, memlists, | 429 * | page hash, etc. | 430 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 431 * | segkpm | 432 * 0xFFFFFE00.00000000 |-----------------------| 433 * | Red Zone | 434 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 435 * | User stack |- User space memory 436 * | | 437 * | shared objects, etc | (grows downwards) 438 * : : 439 * | | 440 * 0xFFFF8000.00000000 |-----------------------| 441 * | | 442 * | VA Hole / unused | 443 * | | 444 * 0x00008000.00000000 |-----------------------| 445 * | | 446 * | | 447 * : : 448 * | user heap | (grows upwards) 449 * | | 450 * | user data | 451 * |-----------------------| 452 * | user text | 453 * 0x00000000.04000000 |-----------------------| 454 * | invalid | 455 * 0x00000000.00000000 +-----------------------+ 456 * 457 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 458 * kernel, except that userlimit is raised to 0xfe000000 459 * 460 * Floating values: 461 * 462 * valloc_base: start of the kernel's memory management/tracking data 463 * structures. This region contains page_t structures for 464 * physical memory, memsegs, memlists, and the page hash. 465 * 466 * core_base: start of the kernel's "core" heap area on 64-bit systems. 467 * This area is intended to be used for global data as well as for module 468 * text/data that does not fit into the nucleus pages. The core heap is 469 * restricted to a 2GB range, allowing every address within it to be 470 * accessed using rip-relative addressing 471 * 472 * ekernelheap: end of kernelheap and start of segmap. 473 * 474 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 475 * above a red zone that separates the user's address space from the 476 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 477 * 478 * segmap_start: start of segmap. The length of segmap can be modified 479 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 480 * on 64-bit systems. 481 * 482 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 483 * decreased by 2X the size required for page_t. This allows the kernel 484 * heap to grow in size with physical memory. With sizeof(page_t) == 80 485 * bytes, the following shows the values of kernelbase and kernel heap 486 * sizes for different memory configurations (assuming default segmap and 487 * segkp sizes). 488 * 489 * mem size for kernelbase kernel heap 490 * size page_t's size 491 * ---- --------- ---------- ----------- 492 * 1gb 0x01400000 0xd1800000 684MB 493 * 2gb 0x02800000 0xcf000000 704MB 494 * 4gb 0x05000000 0xca000000 744MB 495 * 6gb 0x07800000 0xc5000000 784MB 496 * 8gb 0x0a000000 0xc0000000 824MB 497 * 16gb 0x14000000 0xac000000 984MB 498 * 32gb 0x28000000 0x84000000 1304MB 499 * 64gb 0x50000000 0x34000000 1944MB (*) 500 * 501 * kernelbase is less than the abi minimum of 0xc0000000 for memory 502 * configurations above 8gb. 503 * 504 * (*) support for memory configurations above 32gb will require manual tuning 505 * of kernelbase to balance out the need of user applications. 506 */ 507 508 /* real-time-clock initialization parameters */ 509 extern time_t process_rtc_config_file(void); 510 511 uintptr_t kernelbase; 512 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 513 uintptr_t eprom_kernelbase; 514 size_t segmapsize; 515 uintptr_t segmap_start; 516 int segmapfreelists; 517 pgcnt_t npages; 518 pgcnt_t orig_npages; 519 size_t core_size; /* size of "core" heap */ 520 uintptr_t core_base; /* base address of "core" heap */ 521 522 /* 523 * List of bootstrap pages. We mark these as allocated in startup. 524 * release_bootstrap() will free them when we're completely done with 525 * the bootstrap. 526 */ 527 static page_t *bootpages; 528 529 /* 530 * boot time pages that have a vnode from the ramdisk will keep that forever. 531 */ 532 static page_t *rd_pages; 533 534 /* 535 * Lower 64K 536 */ 537 static page_t *lower_pages = NULL; 538 static int lower_pages_count = 0; 539 540 struct system_hardware system_hardware; 541 542 /* 543 * Is this Solaris instance running in a fully virtualized xVM domain? 544 */ 545 int xpv_is_hvm = 0; 546 547 /* 548 * Enable some debugging messages concerning memory usage... 549 */ 550 static void 551 print_memlist(char *title, struct memlist *mp) 552 { 553 prom_printf("MEMLIST: %s:\n", title); 554 while (mp != NULL) { 555 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 556 mp->address, mp->size); 557 mp = mp->next; 558 } 559 } 560 561 /* 562 * XX64 need a comment here.. are these just default values, surely 563 * we read the "cpuid" type information to figure this out. 564 */ 565 int l2cache_sz = 0x80000; 566 int l2cache_linesz = 0x40; 567 int l2cache_assoc = 1; 568 569 static size_t textrepl_min_gb = 10; 570 571 /* 572 * on 64 bit we use a predifined VA range for mapping devices in the kernel 573 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 574 */ 575 #ifdef __amd64 576 577 vmem_t *device_arena; 578 uintptr_t toxic_addr = (uintptr_t)NULL; 579 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 580 581 #else /* __i386 */ 582 583 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 584 size_t toxic_bit_map_len = 0; /* in bits */ 585 586 #endif /* __i386 */ 587 588 /* 589 * Simple boot time debug facilities 590 */ 591 static char *prm_dbg_str[] = { 592 "%s:%d: '%s' is 0x%x\n", 593 "%s:%d: '%s' is 0x%llx\n" 594 }; 595 596 int prom_debug; 597 598 #define PRM_DEBUG(q) if (prom_debug) \ 599 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 600 #define PRM_POINT(q) if (prom_debug) \ 601 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 602 603 /* 604 * This structure is used to keep track of the intial allocations 605 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 606 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 607 */ 608 #define NUM_ALLOCATIONS 7 609 int num_allocations = 0; 610 struct { 611 void **al_ptr; 612 size_t al_size; 613 } allocations[NUM_ALLOCATIONS]; 614 size_t valloc_sz = 0; 615 uintptr_t valloc_base; 616 617 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 618 size = ROUND_UP_PAGE(size); \ 619 if (num_allocations == NUM_ALLOCATIONS) \ 620 panic("too many ADD_TO_ALLOCATIONS()"); \ 621 allocations[num_allocations].al_ptr = (void**)&ptr; \ 622 allocations[num_allocations].al_size = size; \ 623 valloc_sz += size; \ 624 ++num_allocations; \ 625 } 626 627 /* 628 * Allocate all the initial memory needed by the page allocator. 629 */ 630 static void 631 perform_allocations(void) 632 { 633 caddr_t mem; 634 int i; 635 int valloc_align; 636 637 PRM_DEBUG(valloc_base); 638 PRM_DEBUG(valloc_sz); 639 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 640 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 641 if (mem != (caddr_t)valloc_base) 642 panic("BOP_ALLOC() failed"); 643 bzero(mem, valloc_sz); 644 for (i = 0; i < num_allocations; ++i) { 645 *allocations[i].al_ptr = (void *)mem; 646 mem += allocations[i].al_size; 647 } 648 } 649 650 /* 651 * Our world looks like this at startup time. 652 * 653 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 654 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 655 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 656 * addresses are fixed in the binary at link time. 657 * 658 * On the text page: 659 * unix/genunix/krtld/module text loads. 660 * 661 * On the data page: 662 * unix/genunix/krtld/module data loads. 663 * 664 * Machine-dependent startup code 665 */ 666 void 667 startup(void) 668 { 669 #if !defined(__xpv) 670 extern void startup_bios_disk(void); 671 extern void startup_pci_bios(void); 672 extern int post_fastreboot; 673 #endif 674 extern cpuset_t cpu_ready_set; 675 676 /* 677 * Make sure that nobody tries to use sekpm until we have 678 * initialized it properly. 679 */ 680 #if defined(__amd64) 681 kpm_desired = 1; 682 #endif 683 kpm_enable = 0; 684 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 685 686 #if defined(__xpv) /* XXPV fix me! */ 687 { 688 extern int segvn_use_regions; 689 segvn_use_regions = 0; 690 } 691 #endif 692 progressbar_init(); 693 startup_init(); 694 #if defined(__xpv) 695 startup_xen_version(); 696 #endif 697 startup_memlist(); 698 startup_kmem(); 699 startup_vm(); 700 #if !defined(__xpv) 701 if (!post_fastreboot) 702 startup_pci_bios(); 703 #endif 704 #if defined(__xpv) 705 startup_xen_mca(); 706 #endif 707 startup_modules(); 708 #if !defined(__xpv) 709 if (!post_fastreboot) 710 startup_bios_disk(); 711 #endif 712 startup_end(); 713 progressbar_start(); 714 } 715 716 static void 717 startup_init() 718 { 719 PRM_POINT("startup_init() starting..."); 720 721 /* 722 * Complete the extraction of cpuid data 723 */ 724 cpuid_pass2(CPU); 725 726 (void) check_boot_version(BOP_GETVERSION(bootops)); 727 728 /* 729 * Check for prom_debug in boot environment 730 */ 731 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 732 ++prom_debug; 733 PRM_POINT("prom_debug found in boot enviroment"); 734 } 735 736 /* 737 * Collect node, cpu and memory configuration information. 738 */ 739 get_system_configuration(); 740 741 /* 742 * Halt if this is an unsupported processor. 743 */ 744 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 745 printf("\n486 processor (\"%s\") detected.\n", 746 CPU->cpu_brandstr); 747 halt("This processor is not supported by this release " 748 "of Solaris."); 749 } 750 751 PRM_POINT("startup_init() done"); 752 } 753 754 /* 755 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 756 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 757 * also filters out physical page zero. There is some reliance on the 758 * boot loader allocating only a few contiguous physical memory chunks. 759 */ 760 static void 761 avail_filter(uint64_t *addr, uint64_t *size) 762 { 763 uintptr_t va; 764 uintptr_t next_va; 765 pfn_t pfn; 766 uint64_t pfn_addr; 767 uint64_t pfn_eaddr; 768 uint_t prot; 769 size_t len; 770 uint_t change; 771 772 if (prom_debug) 773 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 774 *addr, *size); 775 776 /* 777 * page zero is required for BIOS.. never make it available 778 */ 779 if (*addr == 0) { 780 *addr += MMU_PAGESIZE; 781 *size -= MMU_PAGESIZE; 782 } 783 784 /* 785 * First we trim from the front of the range. Since kbm_probe() 786 * walks ranges in virtual order, but addr/size are physical, we need 787 * to the list until no changes are seen. This deals with the case 788 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 789 * but w < v. 790 */ 791 do { 792 change = 0; 793 for (va = KERNEL_TEXT; 794 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 795 va = next_va) { 796 797 next_va = va + len; 798 pfn_addr = pfn_to_pa(pfn); 799 pfn_eaddr = pfn_addr + len; 800 801 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 802 change = 1; 803 while (*size > 0 && len > 0) { 804 *addr += MMU_PAGESIZE; 805 *size -= MMU_PAGESIZE; 806 len -= MMU_PAGESIZE; 807 } 808 } 809 } 810 if (change && prom_debug) 811 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 812 *addr, *size); 813 } while (change); 814 815 /* 816 * Trim pages from the end of the range. 817 */ 818 for (va = KERNEL_TEXT; 819 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 820 va = next_va) { 821 822 next_va = va + len; 823 pfn_addr = pfn_to_pa(pfn); 824 825 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 826 *size = pfn_addr - *addr; 827 } 828 829 if (prom_debug) 830 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 831 *addr, *size); 832 } 833 834 static void 835 kpm_init() 836 { 837 struct segkpm_crargs b; 838 839 /* 840 * These variables were all designed for sfmmu in which segkpm is 841 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 842 * might use 2+ page sizes on a single machine, so none of these 843 * variables have a single correct value. They are set up as if we 844 * always use a 4KB pagesize, which should do no harm. In the long 845 * run, we should get rid of KPM's assumption that only a single 846 * pagesize is used. 847 */ 848 kpm_pgshft = MMU_PAGESHIFT; 849 kpm_pgsz = MMU_PAGESIZE; 850 kpm_pgoff = MMU_PAGEOFFSET; 851 kpmp2pshft = 0; 852 kpmpnpgs = 1; 853 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 854 855 PRM_POINT("about to create segkpm"); 856 rw_enter(&kas.a_lock, RW_WRITER); 857 858 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 859 panic("cannot attach segkpm"); 860 861 b.prot = PROT_READ | PROT_WRITE; 862 b.nvcolors = 1; 863 864 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 865 panic("segkpm_create segkpm"); 866 867 rw_exit(&kas.a_lock); 868 } 869 870 /* 871 * The debug info page provides enough information to allow external 872 * inspectors (e.g. when running under a hypervisor) to bootstrap 873 * themselves into allowing full-blown kernel debugging. 874 */ 875 static void 876 init_debug_info(void) 877 { 878 caddr_t mem; 879 debug_info_t *di; 880 881 #ifndef __lint 882 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 883 #endif 884 885 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 886 MMU_PAGESIZE); 887 888 if (mem != (caddr_t)DEBUG_INFO_VA) 889 panic("BOP_ALLOC() failed"); 890 bzero(mem, MMU_PAGESIZE); 891 892 di = (debug_info_t *)mem; 893 894 di->di_magic = DEBUG_INFO_MAGIC; 895 di->di_version = DEBUG_INFO_VERSION; 896 di->di_modules = (uintptr_t)&modules; 897 di->di_s_text = (uintptr_t)s_text; 898 di->di_e_text = (uintptr_t)e_text; 899 di->di_s_data = (uintptr_t)s_data; 900 di->di_e_data = (uintptr_t)e_data; 901 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 902 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 903 } 904 905 /* 906 * Build the memlists and other kernel essential memory system data structures. 907 * This is everything at valloc_base. 908 */ 909 static void 910 startup_memlist(void) 911 { 912 size_t memlist_sz; 913 size_t memseg_sz; 914 size_t pagehash_sz; 915 size_t pp_sz; 916 uintptr_t va; 917 size_t len; 918 uint_t prot; 919 pfn_t pfn; 920 int memblocks; 921 caddr_t pagecolor_mem; 922 size_t pagecolor_memsz; 923 caddr_t page_ctrs_mem; 924 size_t page_ctrs_size; 925 size_t pse_table_alloc_size; 926 struct memlist *current; 927 extern void startup_build_mem_nodes(struct memlist *); 928 929 /* XX64 fix these - they should be in include files */ 930 extern size_t page_coloring_init(uint_t, int, int); 931 extern void page_coloring_setup(caddr_t); 932 933 PRM_POINT("startup_memlist() starting..."); 934 935 /* 936 * Use leftover large page nucleus text/data space for loadable modules. 937 * Use at most MODTEXT/MODDATA. 938 */ 939 len = kbm_nucleus_size; 940 ASSERT(len > MMU_PAGESIZE); 941 942 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 943 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 944 if (e_moddata - moddata > MODDATA) 945 e_moddata = moddata + MODDATA; 946 947 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 948 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 949 if (e_modtext - modtext > MODTEXT) 950 e_modtext = modtext + MODTEXT; 951 952 econtig = e_moddata; 953 954 PRM_DEBUG(modtext); 955 PRM_DEBUG(e_modtext); 956 PRM_DEBUG(moddata); 957 PRM_DEBUG(e_moddata); 958 PRM_DEBUG(econtig); 959 960 /* 961 * Examine the boot loader physical memory map to find out: 962 * - total memory in system - physinstalled 963 * - the max physical address - physmax 964 * - the number of discontiguous segments of memory. 965 */ 966 if (prom_debug) 967 print_memlist("boot physinstalled", 968 bootops->boot_mem->physinstalled); 969 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 970 &physinstalled, &memblocks); 971 PRM_DEBUG(physmax); 972 PRM_DEBUG(physinstalled); 973 PRM_DEBUG(memblocks); 974 975 /* 976 * Initialize hat's mmu parameters. 977 * Check for enforce-prot-exec in boot environment. It's used to 978 * enable/disable support for the page table entry NX bit. 979 * The default is to enforce PROT_EXEC on processors that support NX. 980 * Boot seems to round up the "len", but 8 seems to be big enough. 981 */ 982 mmu_init(); 983 984 #ifdef __i386 985 /* 986 * physmax is lowered if there is more memory than can be 987 * physically addressed in 32 bit (PAE/non-PAE) modes. 988 */ 989 if (mmu.pae_hat) { 990 if (PFN_ABOVE64G(physmax)) { 991 physinstalled -= (physmax - (PFN_64G - 1)); 992 physmax = PFN_64G - 1; 993 } 994 } else { 995 if (PFN_ABOVE4G(physmax)) { 996 physinstalled -= (physmax - (PFN_4G - 1)); 997 physmax = PFN_4G - 1; 998 } 999 } 1000 #endif 1001 1002 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1003 1004 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1005 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1006 char value[8]; 1007 1008 if (len < 8) 1009 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1010 else 1011 (void) strcpy(value, ""); 1012 if (strcmp(value, "off") == 0) 1013 mmu.pt_nx = 0; 1014 } 1015 PRM_DEBUG(mmu.pt_nx); 1016 1017 /* 1018 * We will need page_t's for every page in the system, except for 1019 * memory mapped at or above above the start of the kernel text segment. 1020 * 1021 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1022 */ 1023 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1024 obp_pages = 0; 1025 va = KERNEL_TEXT; 1026 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1027 npages -= len >> MMU_PAGESHIFT; 1028 if (va >= (uintptr_t)e_moddata) 1029 obp_pages += len >> MMU_PAGESHIFT; 1030 va += len; 1031 } 1032 PRM_DEBUG(npages); 1033 PRM_DEBUG(obp_pages); 1034 1035 /* 1036 * If physmem is patched to be non-zero, use it instead of the computed 1037 * value unless it is larger than the actual amount of memory on hand. 1038 */ 1039 if (physmem == 0 || physmem > npages) { 1040 physmem = npages; 1041 } else if (physmem < npages) { 1042 orig_npages = npages; 1043 npages = physmem; 1044 } 1045 PRM_DEBUG(physmem); 1046 1047 /* 1048 * We now compute the sizes of all the initial allocations for 1049 * structures the kernel needs in order do kmem_alloc(). These 1050 * include: 1051 * memsegs 1052 * memlists 1053 * page hash table 1054 * page_t's 1055 * page coloring data structs 1056 */ 1057 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1058 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1059 PRM_DEBUG(memseg_sz); 1060 1061 /* 1062 * Reserve space for memlists. There's no real good way to know exactly 1063 * how much room we'll need, but this should be a good upper bound. 1064 */ 1065 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1066 (memblocks + POSS_NEW_FRAGMENTS)); 1067 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1068 PRM_DEBUG(memlist_sz); 1069 1070 /* 1071 * The page structure hash table size is a power of 2 1072 * such that the average hash chain length is PAGE_HASHAVELEN. 1073 */ 1074 page_hashsz = npages / PAGE_HASHAVELEN; 1075 page_hashsz = 1 << highbit(page_hashsz); 1076 pagehash_sz = sizeof (struct page *) * page_hashsz; 1077 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1078 PRM_DEBUG(pagehash_sz); 1079 1080 /* 1081 * Set aside room for the page structures themselves. 1082 */ 1083 PRM_DEBUG(npages); 1084 pp_sz = sizeof (struct page) * npages; 1085 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1086 PRM_DEBUG(pp_sz); 1087 1088 /* 1089 * determine l2 cache info and memory size for page coloring 1090 */ 1091 (void) getl2cacheinfo(CPU, 1092 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1093 pagecolor_memsz = 1094 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1095 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1096 PRM_DEBUG(pagecolor_memsz); 1097 1098 page_ctrs_size = page_ctrs_sz(); 1099 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1100 PRM_DEBUG(page_ctrs_size); 1101 1102 /* 1103 * Allocate the array that protects pp->p_selock. 1104 */ 1105 pse_shift = size_pse_array(physmem, max_ncpus); 1106 pse_table_size = 1 << pse_shift; 1107 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1108 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1109 1110 #if defined(__amd64) 1111 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1112 valloc_base = VALLOC_BASE; 1113 1114 /* 1115 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1116 * for values of physmax up to 1 Terabyte. They need adjusting when 1117 * memory is at addresses above 1 TB. 1118 */ 1119 if (physmax + 1 > mmu_btop(TERABYTE)) { 1120 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1121 1122 /* Round to largest possible pagesize for now */ 1123 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1124 1125 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1126 1127 /* make sure we leave some space for user apps above hole */ 1128 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1129 if (segkpm_base > SEGKPM_BASE) 1130 segkpm_base = SEGKPM_BASE; 1131 PRM_DEBUG(segkpm_base); 1132 1133 valloc_base = segkpm_base + kpm_resv_amount; 1134 PRM_DEBUG(valloc_base); 1135 } 1136 #else /* __i386 */ 1137 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1138 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1139 PRM_DEBUG(valloc_base); 1140 #endif /* __i386 */ 1141 1142 /* 1143 * do all the initial allocations 1144 */ 1145 perform_allocations(); 1146 1147 /* 1148 * Build phys_install and phys_avail in kernel memspace. 1149 * - phys_install should be all memory in the system. 1150 * - phys_avail is phys_install minus any memory mapped before this 1151 * point above KERNEL_TEXT. 1152 */ 1153 current = phys_install = memlist; 1154 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1155 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1156 panic("physinstalled was too big!"); 1157 if (prom_debug) 1158 print_memlist("phys_install", phys_install); 1159 1160 phys_avail = current; 1161 PRM_POINT("Building phys_avail:\n"); 1162 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1163 avail_filter); 1164 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1165 panic("physavail was too big!"); 1166 if (prom_debug) 1167 print_memlist("phys_avail", phys_avail); 1168 1169 /* 1170 * setup page coloring 1171 */ 1172 page_coloring_setup(pagecolor_mem); 1173 page_lock_init(); /* currently a no-op */ 1174 1175 /* 1176 * free page list counters 1177 */ 1178 (void) page_ctrs_alloc(page_ctrs_mem); 1179 1180 /* 1181 * Size the pcf array based on the number of cpus in the box at 1182 * boot time. 1183 */ 1184 1185 pcf_init(); 1186 1187 /* 1188 * Initialize the page structures from the memory lists. 1189 */ 1190 availrmem_initial = availrmem = freemem = 0; 1191 PRM_POINT("Calling kphysm_init()..."); 1192 npages = kphysm_init(pp_base, npages); 1193 PRM_POINT("kphysm_init() done"); 1194 PRM_DEBUG(npages); 1195 1196 init_debug_info(); 1197 1198 /* 1199 * Now that page_t's have been initialized, remove all the 1200 * initial allocation pages from the kernel free page lists. 1201 */ 1202 boot_mapin((caddr_t)valloc_base, valloc_sz); 1203 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1204 PRM_POINT("startup_memlist() done"); 1205 1206 PRM_DEBUG(valloc_sz); 1207 1208 #if defined(__amd64) 1209 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1210 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1211 extern size_t textrepl_size_thresh; 1212 textrepl_size_thresh = (16 << 20) - 1; 1213 } 1214 #endif 1215 } 1216 1217 /* 1218 * Layout the kernel's part of address space and initialize kmem allocator. 1219 */ 1220 static void 1221 startup_kmem(void) 1222 { 1223 extern void page_set_colorequiv_arr(void); 1224 1225 PRM_POINT("startup_kmem() starting..."); 1226 1227 #if defined(__amd64) 1228 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1229 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1230 "systems."); 1231 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1232 core_base = (uintptr_t)COREHEAP_BASE; 1233 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1234 #else /* __i386 */ 1235 /* 1236 * We configure kernelbase based on: 1237 * 1238 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1239 * KERNELBASE_MAX. we large page align eprom_kernelbase 1240 * 1241 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1242 * On large memory systems we must lower kernelbase to allow 1243 * enough room for page_t's for all of memory. 1244 * 1245 * The value set here, might be changed a little later. 1246 */ 1247 if (eprom_kernelbase) { 1248 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1249 if (kernelbase > KERNELBASE_MAX) 1250 kernelbase = KERNELBASE_MAX; 1251 } else { 1252 kernelbase = (uintptr_t)KERNELBASE; 1253 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1254 } 1255 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1256 core_base = valloc_base; 1257 core_size = 0; 1258 #endif /* __i386 */ 1259 1260 PRM_DEBUG(core_base); 1261 PRM_DEBUG(core_size); 1262 PRM_DEBUG(kernelbase); 1263 1264 #if defined(__i386) 1265 segkp_fromheap = 1; 1266 #endif /* __i386 */ 1267 1268 ekernelheap = (char *)core_base; 1269 PRM_DEBUG(ekernelheap); 1270 1271 /* 1272 * Now that we know the real value of kernelbase, 1273 * update variables that were initialized with a value of 1274 * KERNELBASE (in common/conf/param.c). 1275 * 1276 * XXX The problem with this sort of hackery is that the 1277 * compiler just may feel like putting the const declarations 1278 * (in param.c) into the .text section. Perhaps they should 1279 * just be declared as variables there? 1280 */ 1281 1282 *(uintptr_t *)&_kernelbase = kernelbase; 1283 *(uintptr_t *)&_userlimit = kernelbase; 1284 #if defined(__amd64) 1285 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1286 #else 1287 *(uintptr_t *)&_userlimit32 = _userlimit; 1288 #endif 1289 PRM_DEBUG(_kernelbase); 1290 PRM_DEBUG(_userlimit); 1291 PRM_DEBUG(_userlimit32); 1292 1293 layout_kernel_va(); 1294 1295 #if defined(__i386) 1296 /* 1297 * If segmap is too large we can push the bottom of the kernel heap 1298 * higher than the base. Or worse, it could exceed the top of the 1299 * VA space entirely, causing it to wrap around. 1300 */ 1301 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1302 panic("too little address space available for kernelheap," 1303 " use eeprom for lower kernelbase or smaller segmapsize"); 1304 #endif /* __i386 */ 1305 1306 /* 1307 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1308 */ 1309 kernelheap_init(kernelheap, ekernelheap, 1310 kernelheap + MMU_PAGESIZE, 1311 (void *)core_base, (void *)(core_base + core_size)); 1312 1313 #if defined(__xpv) 1314 /* 1315 * Link pending events struct into cpu struct 1316 */ 1317 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1318 #endif 1319 /* 1320 * Initialize kernel memory allocator. 1321 */ 1322 kmem_init(); 1323 1324 /* 1325 * Factor in colorequiv to check additional 'equivalent' bins 1326 */ 1327 page_set_colorequiv_arr(); 1328 1329 /* 1330 * print this out early so that we know what's going on 1331 */ 1332 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1333 1334 /* 1335 * Initialize bp_mapin(). 1336 */ 1337 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1338 1339 /* 1340 * orig_npages is non-zero if physmem has been configured for less 1341 * than the available memory. 1342 */ 1343 if (orig_npages) { 1344 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1345 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1346 npages, orig_npages); 1347 } 1348 #if defined(__i386) 1349 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1350 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1351 "System using 0x%lx", 1352 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1353 #endif 1354 1355 #ifdef KERNELBASE_ABI_MIN 1356 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1357 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1358 "i386 ABI compliant.", (uintptr_t)kernelbase); 1359 } 1360 #endif 1361 1362 #ifdef __xpv 1363 /* 1364 * Some of the xen start information has to be relocated up 1365 * into the kernel's permanent address space. 1366 */ 1367 PRM_POINT("calling xen_relocate_start_info()"); 1368 xen_relocate_start_info(); 1369 PRM_POINT("xen_relocate_start_info() done"); 1370 1371 /* 1372 * (Update the vcpu pointer in our cpu structure to point into 1373 * the relocated shared info.) 1374 */ 1375 CPU->cpu_m.mcpu_vcpu_info = 1376 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1377 #endif 1378 1379 PRM_POINT("startup_kmem() done"); 1380 } 1381 1382 #ifndef __xpv 1383 /* 1384 * If we have detected that we are running in an HVM environment, we need 1385 * to prepend the PV driver directory to the module search path. 1386 */ 1387 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1388 static void 1389 update_default_path() 1390 { 1391 char *current, *newpath; 1392 int newlen; 1393 1394 /* 1395 * We are about to resync with krtld. krtld will reset its 1396 * internal module search path iff Solaris has set default_path. 1397 * We want to be sure we're prepending this new directory to the 1398 * right search path. 1399 */ 1400 current = (default_path == NULL) ? kobj_module_path : default_path; 1401 1402 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1403 newpath = kmem_alloc(newlen, KM_SLEEP); 1404 (void) strcpy(newpath, HVM_MOD_DIR); 1405 (void) strcat(newpath, " "); 1406 (void) strcat(newpath, current); 1407 1408 default_path = newpath; 1409 } 1410 #endif 1411 1412 static void 1413 startup_modules(void) 1414 { 1415 int cnt; 1416 extern void prom_setup(void); 1417 int32_t v, h; 1418 char d[11]; 1419 char *cp; 1420 cmi_hdl_t hdl; 1421 1422 PRM_POINT("startup_modules() starting..."); 1423 1424 #ifndef __xpv 1425 /* 1426 * Initialize ten-micro second timer so that drivers will 1427 * not get short changed in their init phase. This was 1428 * not getting called until clkinit which, on fast cpu's 1429 * caused the drv_usecwait to be way too short. 1430 */ 1431 microfind(); 1432 1433 if (xpv_is_hvm) 1434 update_default_path(); 1435 #endif 1436 1437 /* 1438 * Read the GMT lag from /etc/rtc_config. 1439 */ 1440 sgmtl(process_rtc_config_file()); 1441 1442 /* 1443 * Calculate default settings of system parameters based upon 1444 * maxusers, yet allow to be overridden via the /etc/system file. 1445 */ 1446 param_calc(0); 1447 1448 mod_setup(); 1449 1450 /* 1451 * Initialize system parameters. 1452 */ 1453 param_init(); 1454 1455 /* 1456 * Initialize the default brands 1457 */ 1458 brand_init(); 1459 1460 /* 1461 * maxmem is the amount of physical memory we're playing with. 1462 */ 1463 maxmem = physmem; 1464 1465 /* 1466 * Initialize segment management stuff. 1467 */ 1468 seg_init(); 1469 1470 if (modload("fs", "specfs") == -1) 1471 halt("Can't load specfs"); 1472 1473 if (modload("fs", "devfs") == -1) 1474 halt("Can't load devfs"); 1475 1476 if (modload("fs", "dev") == -1) 1477 halt("Can't load dev"); 1478 1479 (void) modloadonly("sys", "lbl_edition"); 1480 1481 dispinit(); 1482 1483 /* 1484 * This is needed here to initialize hw_serial[] for cluster booting. 1485 */ 1486 if ((h = set_soft_hostid()) == -1) 1487 cmn_err(CE_WARN, "Unable to set hostid"); 1488 else { 1489 for (v = h, cnt = 0; cnt < 10; cnt++) { 1490 d[cnt] = v % 10; 1491 v /= 10; 1492 if (v == 0) 1493 break; 1494 } 1495 for (cp = hw_serial; cnt >= 0; cnt--) 1496 *cp++ = d[cnt] + '0'; 1497 *cp = 0; 1498 } 1499 1500 /* Read cluster configuration data. */ 1501 clconf_init(); 1502 1503 #if defined(__xpv) 1504 ec_init(); 1505 gnttab_init(); 1506 (void) xs_early_init(); 1507 #endif /* __xpv */ 1508 1509 /* 1510 * Create a kernel device tree. First, create rootnex and 1511 * then invoke bus specific code to probe devices. 1512 */ 1513 setup_ddi(); 1514 1515 /* 1516 * Set up the CPU module subsystem for the boot cpu in the native 1517 * case, and all physical cpu resource in the xpv dom0 case. 1518 * Modifies the device tree, so this must be done after 1519 * setup_ddi(). 1520 */ 1521 #ifdef __xpv 1522 /* 1523 * If paravirtualized and on dom0 then we initialize all physical 1524 * cpu handles now; if paravirtualized on a domU then do not 1525 * initialize. 1526 */ 1527 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1528 xen_mc_lcpu_cookie_t cpi; 1529 1530 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1531 cpi = xen_physcpu_next(cpi)) { 1532 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1533 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1534 xen_physcpu_strandid(cpi))) != NULL && 1535 (x86_feature & X86_MCA)) 1536 cmi_mca_init(hdl); 1537 } 1538 } 1539 #else 1540 /* 1541 * Initialize a handle for the boot cpu - others will initialize 1542 * as they startup. Do not do this if we know we are in an HVM domU. 1543 */ 1544 if (!xpv_is_hvm && 1545 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1546 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1547 (x86_feature & X86_MCA)) 1548 cmi_mca_init(hdl); 1549 #endif /* __xpv */ 1550 1551 /* 1552 * Fake a prom tree such that /dev/openprom continues to work 1553 */ 1554 PRM_POINT("startup_modules: calling prom_setup..."); 1555 prom_setup(); 1556 PRM_POINT("startup_modules: done"); 1557 1558 /* 1559 * Load all platform specific modules 1560 */ 1561 PRM_POINT("startup_modules: calling psm_modload..."); 1562 psm_modload(); 1563 1564 PRM_POINT("startup_modules() done"); 1565 } 1566 1567 /* 1568 * claim a "setaside" boot page for use in the kernel 1569 */ 1570 page_t * 1571 boot_claim_page(pfn_t pfn) 1572 { 1573 page_t *pp; 1574 1575 pp = page_numtopp_nolock(pfn); 1576 ASSERT(pp != NULL); 1577 1578 if (PP_ISBOOTPAGES(pp)) { 1579 if (pp->p_next != NULL) 1580 pp->p_next->p_prev = pp->p_prev; 1581 if (pp->p_prev == NULL) 1582 bootpages = pp->p_next; 1583 else 1584 pp->p_prev->p_next = pp->p_next; 1585 } else { 1586 /* 1587 * htable_attach() expects a base pagesize page 1588 */ 1589 if (pp->p_szc != 0) 1590 page_boot_demote(pp); 1591 pp = page_numtopp(pfn, SE_EXCL); 1592 } 1593 return (pp); 1594 } 1595 1596 /* 1597 * Walk through the pagetables looking for pages mapped in by boot. If the 1598 * setaside flag is set the pages are expected to be returned to the 1599 * kernel later in boot, so we add them to the bootpages list. 1600 */ 1601 static void 1602 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1603 { 1604 uintptr_t va = low; 1605 size_t len; 1606 uint_t prot; 1607 pfn_t pfn; 1608 page_t *pp; 1609 pgcnt_t boot_protect_cnt = 0; 1610 1611 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1612 if (va + len >= high) 1613 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1614 "legal range.", len, (void *)va); 1615 1616 while (len > 0) { 1617 pp = page_numtopp_alloc(pfn); 1618 if (pp != NULL) { 1619 if (setaside == 0) 1620 panic("Unexpected mapping by boot. " 1621 "addr=%p pfn=%lx\n", 1622 (void *)va, pfn); 1623 1624 pp->p_next = bootpages; 1625 pp->p_prev = NULL; 1626 PP_SETBOOTPAGES(pp); 1627 if (bootpages != NULL) { 1628 bootpages->p_prev = pp; 1629 } 1630 bootpages = pp; 1631 ++boot_protect_cnt; 1632 } 1633 1634 ++pfn; 1635 len -= MMU_PAGESIZE; 1636 va += MMU_PAGESIZE; 1637 } 1638 } 1639 PRM_DEBUG(boot_protect_cnt); 1640 } 1641 1642 /* 1643 * 1644 */ 1645 static void 1646 layout_kernel_va(void) 1647 { 1648 PRM_POINT("layout_kernel_va() starting..."); 1649 /* 1650 * Establish the final size of the kernel's heap, size of segmap, 1651 * segkp, etc. 1652 */ 1653 1654 #if defined(__amd64) 1655 1656 kpm_vbase = (caddr_t)segkpm_base; 1657 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1658 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1659 panic("not enough room for kpm!"); 1660 PRM_DEBUG(kpm_size); 1661 PRM_DEBUG(kpm_vbase); 1662 1663 /* 1664 * By default we create a seg_kp in 64 bit kernels, it's a little 1665 * faster to access than embedding it in the heap. 1666 */ 1667 segkp_base = (caddr_t)valloc_base + valloc_sz; 1668 if (!segkp_fromheap) { 1669 size_t sz = mmu_ptob(segkpsize); 1670 1671 /* 1672 * determine size of segkp 1673 */ 1674 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1675 sz = SEGKPDEFSIZE; 1676 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1677 "segkpsize has been reset to %ld pages", 1678 mmu_btop(sz)); 1679 } 1680 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1681 1682 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1683 } 1684 PRM_DEBUG(segkp_base); 1685 PRM_DEBUG(segkpsize); 1686 1687 /* 1688 * segzio is used for ZFS cached data. It uses a distinct VA 1689 * segment (from kernel heap) so that we can easily tell not to 1690 * include it in kernel crash dumps on 64 bit kernels. The trick is 1691 * to give it lots of VA, but not constrain the kernel heap. 1692 * We scale the size of segzio linearly with physmem up to 1693 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1694 */ 1695 segzio_base = segkp_base + mmu_ptob(segkpsize); 1696 if (segzio_fromheap) { 1697 segziosize = 0; 1698 } else { 1699 size_t physmem_size = mmu_ptob(physmem); 1700 size_t size = (segziosize == 0) ? 1701 physmem_size : mmu_ptob(segziosize); 1702 1703 if (size < SEGZIOMINSIZE) 1704 size = SEGZIOMINSIZE; 1705 if (size > SEGZIOMAXSIZE) { 1706 size = SEGZIOMAXSIZE; 1707 if (physmem_size > size) 1708 size += (physmem_size - size) / 2; 1709 } 1710 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1711 } 1712 PRM_DEBUG(segziosize); 1713 PRM_DEBUG(segzio_base); 1714 1715 /* 1716 * Put the range of VA for device mappings next, kmdb knows to not 1717 * grep in this range of addresses. 1718 */ 1719 toxic_addr = 1720 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1721 PRM_DEBUG(toxic_addr); 1722 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1723 #else /* __i386 */ 1724 segmap_start = ROUND_UP_LPAGE(kernelbase); 1725 #endif /* __i386 */ 1726 PRM_DEBUG(segmap_start); 1727 1728 /* 1729 * Users can change segmapsize through eeprom. If the variable 1730 * is tuned through eeprom, there is no upper bound on the 1731 * size of segmap. 1732 */ 1733 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1734 1735 #if defined(__i386) 1736 /* 1737 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1738 * the bottom of the kernel's address range. Set aside space for a 1739 * small red zone just below the start of segmap. 1740 */ 1741 segmap_start += KERNEL_REDZONE_SIZE; 1742 segmapsize -= KERNEL_REDZONE_SIZE; 1743 #endif 1744 1745 PRM_DEBUG(segmap_start); 1746 PRM_DEBUG(segmapsize); 1747 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1748 PRM_DEBUG(kernelheap); 1749 PRM_POINT("layout_kernel_va() done..."); 1750 } 1751 1752 /* 1753 * Finish initializing the VM system, now that we are no longer 1754 * relying on the boot time memory allocators. 1755 */ 1756 static void 1757 startup_vm(void) 1758 { 1759 struct segmap_crargs a; 1760 1761 extern int use_brk_lpg, use_stk_lpg; 1762 1763 PRM_POINT("startup_vm() starting..."); 1764 1765 /* 1766 * Initialize the hat layer. 1767 */ 1768 hat_init(); 1769 1770 /* 1771 * Do final allocations of HAT data structures that need to 1772 * be allocated before quiescing the boot loader. 1773 */ 1774 PRM_POINT("Calling hat_kern_alloc()..."); 1775 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1776 PRM_POINT("hat_kern_alloc() done"); 1777 1778 #ifndef __xpv 1779 /* 1780 * Setup Page Attribute Table 1781 */ 1782 pat_sync(); 1783 #endif 1784 1785 /* 1786 * The next two loops are done in distinct steps in order 1787 * to be sure that any page that is doubly mapped (both above 1788 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1789 * Note this may never happen, but it might someday. 1790 */ 1791 bootpages = NULL; 1792 PRM_POINT("Protecting boot pages"); 1793 1794 /* 1795 * Protect any pages mapped above KERNEL_TEXT that somehow have 1796 * page_t's. This can only happen if something weird allocated 1797 * in this range (like kadb/kmdb). 1798 */ 1799 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1800 1801 /* 1802 * Before we can take over memory allocation/mapping from the boot 1803 * loader we must remove from our free page lists any boot allocated 1804 * pages that stay mapped until release_bootstrap(). 1805 */ 1806 protect_boot_range(0, kernelbase, 1); 1807 1808 1809 /* 1810 * Switch to running on regular HAT (not boot_mmu) 1811 */ 1812 PRM_POINT("Calling hat_kern_setup()..."); 1813 hat_kern_setup(); 1814 1815 /* 1816 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1817 */ 1818 bop_no_more_mem(); 1819 1820 PRM_POINT("hat_kern_setup() done"); 1821 1822 hat_cpu_online(CPU); 1823 1824 /* 1825 * Initialize VM system 1826 */ 1827 PRM_POINT("Calling kvm_init()..."); 1828 kvm_init(); 1829 PRM_POINT("kvm_init() done"); 1830 1831 /* 1832 * Tell kmdb that the VM system is now working 1833 */ 1834 if (boothowto & RB_DEBUG) 1835 kdi_dvec_vmready(); 1836 1837 #if defined(__xpv) 1838 /* 1839 * Populate the I/O pool on domain 0 1840 */ 1841 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1842 extern long populate_io_pool(void); 1843 long init_io_pool_cnt; 1844 1845 PRM_POINT("Populating reserve I/O page pool"); 1846 init_io_pool_cnt = populate_io_pool(); 1847 PRM_DEBUG(init_io_pool_cnt); 1848 } 1849 #endif 1850 /* 1851 * Mangle the brand string etc. 1852 */ 1853 cpuid_pass3(CPU); 1854 1855 #if defined(__amd64) 1856 1857 /* 1858 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1859 */ 1860 device_arena = vmem_create("device", (void *)toxic_addr, 1861 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1862 1863 #else /* __i386 */ 1864 1865 /* 1866 * allocate the bit map that tracks toxic pages 1867 */ 1868 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1869 PRM_DEBUG(toxic_bit_map_len); 1870 toxic_bit_map = 1871 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1872 ASSERT(toxic_bit_map != NULL); 1873 PRM_DEBUG(toxic_bit_map); 1874 1875 #endif /* __i386 */ 1876 1877 1878 /* 1879 * Now that we've got more VA, as well as the ability to allocate from 1880 * it, tell the debugger. 1881 */ 1882 if (boothowto & RB_DEBUG) 1883 kdi_dvec_memavail(); 1884 1885 /* 1886 * The following code installs a special page fault handler (#pf) 1887 * to work around a pentium bug. 1888 */ 1889 #if !defined(__amd64) && !defined(__xpv) 1890 if (x86_type == X86_TYPE_P5) { 1891 desctbr_t idtr; 1892 gate_desc_t *newidt; 1893 1894 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1895 panic("failed to install pentium_pftrap"); 1896 1897 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1898 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1899 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1900 1901 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1902 PROT_READ | PROT_EXEC); 1903 1904 CPU->cpu_idt = newidt; 1905 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1906 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1907 wr_idtr(&idtr); 1908 } 1909 #endif /* !__amd64 */ 1910 1911 #if !defined(__xpv) 1912 /* 1913 * Map page pfn=0 for drivers, such as kd, that need to pick up 1914 * parameters left there by controllers/BIOS. 1915 */ 1916 PRM_POINT("setup up p0_va"); 1917 p0_va = i86devmap(0, 1, PROT_READ); 1918 PRM_DEBUG(p0_va); 1919 #endif 1920 1921 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1922 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1923 1924 /* 1925 * disable automatic large pages for small memory systems or 1926 * when the disable flag is set. 1927 * 1928 * Do not yet consider page sizes larger than 2m/4m. 1929 */ 1930 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1931 max_uheap_lpsize = LEVEL_SIZE(1); 1932 max_ustack_lpsize = LEVEL_SIZE(1); 1933 max_privmap_lpsize = LEVEL_SIZE(1); 1934 max_uidata_lpsize = LEVEL_SIZE(1); 1935 max_utext_lpsize = LEVEL_SIZE(1); 1936 max_shm_lpsize = LEVEL_SIZE(1); 1937 } 1938 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1939 auto_lpg_disable) { 1940 use_brk_lpg = 0; 1941 use_stk_lpg = 0; 1942 } 1943 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1944 1945 PRM_POINT("Calling hat_init_finish()..."); 1946 hat_init_finish(); 1947 PRM_POINT("hat_init_finish() done"); 1948 1949 /* 1950 * Initialize the segkp segment type. 1951 */ 1952 rw_enter(&kas.a_lock, RW_WRITER); 1953 PRM_POINT("Attaching segkp"); 1954 if (segkp_fromheap) { 1955 segkp->s_as = &kas; 1956 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1957 segkp) < 0) { 1958 panic("startup: cannot attach segkp"); 1959 /*NOTREACHED*/ 1960 } 1961 PRM_POINT("Doing segkp_create()"); 1962 if (segkp_create(segkp) != 0) { 1963 panic("startup: segkp_create failed"); 1964 /*NOTREACHED*/ 1965 } 1966 PRM_DEBUG(segkp); 1967 rw_exit(&kas.a_lock); 1968 1969 /* 1970 * kpm segment 1971 */ 1972 segmap_kpm = 0; 1973 if (kpm_desired) { 1974 kpm_init(); 1975 kpm_enable = 1; 1976 vpm_enable = 1; 1977 } 1978 1979 /* 1980 * Now create segmap segment. 1981 */ 1982 rw_enter(&kas.a_lock, RW_WRITER); 1983 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1984 panic("cannot attach segmap"); 1985 /*NOTREACHED*/ 1986 } 1987 PRM_DEBUG(segmap); 1988 1989 a.prot = PROT_READ | PROT_WRITE; 1990 a.shmsize = 0; 1991 a.nfreelist = segmapfreelists; 1992 1993 if (segmap_create(segmap, (caddr_t)&a) != 0) 1994 panic("segmap_create segmap"); 1995 rw_exit(&kas.a_lock); 1996 1997 setup_vaddr_for_ppcopy(CPU); 1998 1999 segdev_init(); 2000 #if defined(__xpv) 2001 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2002 #endif 2003 pmem_init(); 2004 2005 PRM_POINT("startup_vm() done"); 2006 } 2007 2008 /* 2009 * Load a tod module for the non-standard tod part found on this system. 2010 */ 2011 static void 2012 load_tod_module(char *todmod) 2013 { 2014 if (modload("tod", todmod) == -1) 2015 halt("Can't load TOD module"); 2016 } 2017 2018 static void 2019 startup_end(void) 2020 { 2021 int i; 2022 extern void setx86isalist(void); 2023 2024 PRM_POINT("startup_end() starting..."); 2025 2026 /* 2027 * Perform tasks that get done after most of the VM 2028 * initialization has been done but before the clock 2029 * and other devices get started. 2030 */ 2031 kern_setup1(); 2032 2033 /* 2034 * Perform CPC initialization for this CPU. 2035 */ 2036 kcpc_hw_init(CPU); 2037 2038 #if defined(OPTERON_WORKAROUND_6323525) 2039 if (opteron_workaround_6323525) 2040 patch_workaround_6323525(); 2041 #endif 2042 /* 2043 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2044 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2045 */ 2046 if (tod_module_name != NULL) { 2047 PRM_POINT("load_tod_module()"); 2048 load_tod_module(tod_module_name); 2049 } 2050 2051 #if defined(__xpv) 2052 /* 2053 * Forceload interposing TOD module for the hypervisor. 2054 */ 2055 PRM_POINT("load_tod_module()"); 2056 load_tod_module("xpvtod"); 2057 #endif 2058 2059 /* 2060 * Configure the system. 2061 */ 2062 PRM_POINT("Calling configure()..."); 2063 configure(); /* set up devices */ 2064 PRM_POINT("configure() done"); 2065 2066 /* 2067 * Set the isa_list string to the defined instruction sets we 2068 * support. 2069 */ 2070 setx86isalist(); 2071 cpu_intr_alloc(CPU, NINTR_THREADS); 2072 psm_install(); 2073 2074 /* 2075 * We're done with bootops. We don't unmap the bootstrap yet because 2076 * we're still using bootsvcs. 2077 */ 2078 PRM_POINT("NULLing out bootops"); 2079 *bootopsp = (struct bootops *)NULL; 2080 bootops = (struct bootops *)NULL; 2081 2082 #if defined(__xpv) 2083 ec_init_debug_irq(); 2084 xs_domu_init(); 2085 #endif 2086 PRM_POINT("Enabling interrupts"); 2087 (*picinitf)(); 2088 sti(); 2089 #if defined(__xpv) 2090 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2091 xen_late_startup(); 2092 #endif 2093 2094 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2095 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2096 2097 /* 2098 * Register these software interrupts for ddi timer. 2099 * Software interrupts up to the level 10 are supported. 2100 */ 2101 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2102 char name[sizeof ("timer_softintr") + 2]; 2103 (void) sprintf(name, "timer_softintr%02d", i); 2104 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2105 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2106 } 2107 2108 PRM_POINT("startup_end() done"); 2109 } 2110 2111 extern char hw_serial[]; 2112 char *_hs1107 = hw_serial; 2113 ulong_t _bdhs34; 2114 2115 void 2116 post_startup(void) 2117 { 2118 /* 2119 * Set the system wide, processor-specific flags to be passed 2120 * to userland via the aux vector for performance hints and 2121 * instruction set extensions. 2122 */ 2123 bind_hwcap(); 2124 2125 #ifdef __xpv 2126 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2127 #endif 2128 { 2129 /* 2130 * Load the System Management BIOS into the global ksmbios 2131 * handle, if an SMBIOS is present on this system. 2132 */ 2133 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2134 2135 #if defined(__xpv) 2136 xpv_panic_init(); 2137 #else 2138 /* 2139 * Startup the memory scrubber. 2140 * XXPV This should be running somewhere .. 2141 */ 2142 if (!xpv_is_hvm) 2143 memscrub_init(); 2144 #endif 2145 } 2146 2147 /* 2148 * Complete CPU module initialization 2149 */ 2150 cmi_post_startup(); 2151 2152 /* 2153 * Perform forceloading tasks for /etc/system. 2154 */ 2155 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2156 2157 /* 2158 * ON4.0: Force /proc module in until clock interrupt handle fixed 2159 * ON4.0: This must be fixed or restated in /etc/systems. 2160 */ 2161 (void) modload("fs", "procfs"); 2162 2163 (void) i_ddi_attach_hw_nodes("pit_beep"); 2164 2165 #if defined(__i386) 2166 /* 2167 * Check for required functional Floating Point hardware, 2168 * unless FP hardware explicitly disabled. 2169 */ 2170 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2171 halt("No working FP hardware found"); 2172 #endif 2173 2174 maxmem = freemem; 2175 2176 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2177 } 2178 2179 static int 2180 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2181 { 2182 return ((pp->p_pagenum >= btop(low_addr)) && 2183 (pp->p_pagenum < btopr(high_addr))); 2184 } 2185 2186 void 2187 release_bootstrap(void) 2188 { 2189 int root_is_ramdisk; 2190 page_t *pp; 2191 extern void kobj_boot_unmountroot(void); 2192 extern dev_t rootdev; 2193 #if !defined(__xpv) 2194 pfn_t pfn; 2195 #endif 2196 2197 /* unmount boot ramdisk and release kmem usage */ 2198 kobj_boot_unmountroot(); 2199 2200 /* 2201 * We're finished using the boot loader so free its pages. 2202 */ 2203 PRM_POINT("Unmapping lower boot pages"); 2204 2205 clear_boot_mappings(0, _userlimit); 2206 2207 postbootkernelbase = kernelbase; 2208 2209 /* 2210 * If root isn't on ramdisk, destroy the hardcoded 2211 * ramdisk node now and release the memory. Else, 2212 * ramdisk memory is kept in rd_pages. 2213 */ 2214 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2215 if (!root_is_ramdisk) { 2216 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2217 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2218 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2219 (void) ddi_remove_child(dip, 0); 2220 } 2221 2222 PRM_POINT("Releasing boot pages"); 2223 while (bootpages) { 2224 extern uint64_t ramdisk_start, ramdisk_end; 2225 pp = bootpages; 2226 bootpages = pp->p_next; 2227 2228 2229 /* Keep pages for the lower 64K */ 2230 if (pp_in_range(pp, 0, 0x40000)) { 2231 pp->p_next = lower_pages; 2232 lower_pages = pp; 2233 lower_pages_count++; 2234 continue; 2235 } 2236 2237 2238 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2239 ramdisk_end)) { 2240 pp->p_next = rd_pages; 2241 rd_pages = pp; 2242 continue; 2243 } 2244 pp->p_next = (struct page *)0; 2245 pp->p_prev = (struct page *)0; 2246 PP_CLRBOOTPAGES(pp); 2247 page_free(pp, 1); 2248 } 2249 PRM_POINT("Boot pages released"); 2250 2251 #if !defined(__xpv) 2252 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2253 /* 2254 * Find 1 page below 1 MB so that other processors can boot up or 2255 * so that any processor can resume. 2256 * Make sure it has a kernel VA as well as a 1:1 mapping. 2257 * We should have just free'd one up. 2258 */ 2259 2260 /* 2261 * 0x10 pages is 64K. Leave the bottom 64K alone 2262 * for BIOS. 2263 */ 2264 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2265 if (page_numtopp_alloc(pfn) == NULL) 2266 continue; 2267 rm_platter_va = i86devmap(pfn, 1, 2268 PROT_READ | PROT_WRITE | PROT_EXEC); 2269 rm_platter_pa = ptob(pfn); 2270 hat_devload(kas.a_hat, 2271 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2272 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2273 HAT_LOAD_NOCONSIST); 2274 break; 2275 } 2276 if (pfn == btop(1*1024*1024) && use_mp) 2277 panic("No page below 1M available for starting " 2278 "other processors or for resuming from system-suspend"); 2279 #endif /* !__xpv */ 2280 } 2281 2282 /* 2283 * Initialize the platform-specific parts of a page_t. 2284 */ 2285 void 2286 add_physmem_cb(page_t *pp, pfn_t pnum) 2287 { 2288 pp->p_pagenum = pnum; 2289 pp->p_mapping = NULL; 2290 pp->p_embed = 0; 2291 pp->p_share = 0; 2292 pp->p_mlentry = 0; 2293 } 2294 2295 /* 2296 * kphysm_init() initializes physical memory. 2297 */ 2298 static pgcnt_t 2299 kphysm_init( 2300 page_t *pp, 2301 pgcnt_t npages) 2302 { 2303 struct memlist *pmem; 2304 struct memseg *cur_memseg; 2305 pfn_t base_pfn; 2306 pgcnt_t num; 2307 pgcnt_t pages_done = 0; 2308 uint64_t addr; 2309 uint64_t size; 2310 extern pfn_t ddiphysmin; 2311 2312 ASSERT(page_hash != NULL && page_hashsz != 0); 2313 2314 cur_memseg = memseg_base; 2315 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2316 /* 2317 * In a 32 bit kernel can't use higher memory if we're 2318 * not booting in PAE mode. This check takes care of that. 2319 */ 2320 addr = pmem->address; 2321 size = pmem->size; 2322 if (btop(addr) > physmax) 2323 continue; 2324 2325 /* 2326 * align addr and size - they may not be at page boundaries 2327 */ 2328 if ((addr & MMU_PAGEOFFSET) != 0) { 2329 addr += MMU_PAGEOFFSET; 2330 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2331 size -= addr - pmem->address; 2332 } 2333 2334 /* only process pages below or equal to physmax */ 2335 if ((btop(addr + size) - 1) > physmax) 2336 size = ptob(physmax - btop(addr) + 1); 2337 2338 num = btop(size); 2339 if (num == 0) 2340 continue; 2341 2342 if (num > npages) 2343 num = npages; 2344 2345 npages -= num; 2346 pages_done += num; 2347 base_pfn = btop(addr); 2348 2349 if (prom_debug) 2350 prom_printf("MEMSEG addr=0x%" PRIx64 2351 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2352 addr, num, base_pfn, base_pfn + num); 2353 2354 /* 2355 * Ignore pages below ddiphysmin to simplify ddi memory 2356 * allocation with non-zero addr_lo requests. 2357 */ 2358 if (base_pfn < ddiphysmin) { 2359 if (base_pfn + num <= ddiphysmin) 2360 continue; 2361 pp += (ddiphysmin - base_pfn); 2362 num -= (ddiphysmin - base_pfn); 2363 base_pfn = ddiphysmin; 2364 } 2365 2366 /* 2367 * Build the memsegs entry 2368 */ 2369 cur_memseg->pages = pp; 2370 cur_memseg->epages = pp + num; 2371 cur_memseg->pages_base = base_pfn; 2372 cur_memseg->pages_end = base_pfn + num; 2373 2374 /* 2375 * Insert into memseg list in decreasing pfn range order. 2376 * Low memory is typically more fragmented such that this 2377 * ordering keeps the larger ranges at the front of the list 2378 * for code that searches memseg. 2379 * This ASSERTS that the memsegs coming in from boot are in 2380 * increasing physical address order and not contiguous. 2381 */ 2382 if (memsegs != NULL) { 2383 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2384 cur_memseg->next = memsegs; 2385 } 2386 memsegs = cur_memseg; 2387 2388 /* 2389 * add_physmem() initializes the PSM part of the page 2390 * struct by calling the PSM back with add_physmem_cb(). 2391 * In addition it coalesces pages into larger pages as 2392 * it initializes them. 2393 */ 2394 add_physmem(pp, num, base_pfn); 2395 cur_memseg++; 2396 availrmem_initial += num; 2397 availrmem += num; 2398 2399 pp += num; 2400 } 2401 2402 PRM_DEBUG(availrmem_initial); 2403 PRM_DEBUG(availrmem); 2404 PRM_DEBUG(freemem); 2405 build_pfn_hash(); 2406 return (pages_done); 2407 } 2408 2409 /* 2410 * Kernel VM initialization. 2411 */ 2412 static void 2413 kvm_init(void) 2414 { 2415 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2416 2417 /* 2418 * Put the kernel segments in kernel address space. 2419 */ 2420 rw_enter(&kas.a_lock, RW_WRITER); 2421 as_avlinit(&kas); 2422 2423 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2424 (void) segkmem_create(&ktextseg); 2425 2426 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2427 (void) segkmem_create(&kvalloc); 2428 2429 (void) seg_attach(&kas, kernelheap, 2430 ekernelheap - kernelheap, &kvseg); 2431 (void) segkmem_create(&kvseg); 2432 2433 if (core_size > 0) { 2434 PRM_POINT("attaching kvseg_core"); 2435 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2436 &kvseg_core); 2437 (void) segkmem_create(&kvseg_core); 2438 } 2439 2440 if (segziosize > 0) { 2441 PRM_POINT("attaching segzio"); 2442 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2443 &kzioseg); 2444 (void) segkmem_zio_create(&kzioseg); 2445 2446 /* create zio area covering new segment */ 2447 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2448 } 2449 2450 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2451 (void) segkmem_create(&kdebugseg); 2452 2453 rw_exit(&kas.a_lock); 2454 2455 /* 2456 * Ensure that the red zone at kernelbase is never accessible. 2457 */ 2458 PRM_POINT("protecting redzone"); 2459 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2460 2461 /* 2462 * Make the text writable so that it can be hot patched by DTrace. 2463 */ 2464 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2465 PROT_READ | PROT_WRITE | PROT_EXEC); 2466 2467 /* 2468 * Make data writable until end. 2469 */ 2470 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2471 PROT_READ | PROT_WRITE | PROT_EXEC); 2472 } 2473 2474 #ifndef __xpv 2475 /* 2476 * Solaris adds an entry for Write Combining caching to the PAT 2477 */ 2478 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2479 2480 void 2481 pat_sync(void) 2482 { 2483 ulong_t cr0, cr0_orig, cr4; 2484 2485 if (!(x86_feature & X86_PAT)) 2486 return; 2487 cr0_orig = cr0 = getcr0(); 2488 cr4 = getcr4(); 2489 2490 /* disable caching and flush all caches and TLBs */ 2491 cr0 |= CR0_CD; 2492 cr0 &= ~CR0_NW; 2493 setcr0(cr0); 2494 invalidate_cache(); 2495 if (cr4 & CR4_PGE) { 2496 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2497 setcr4(cr4); 2498 } else { 2499 reload_cr3(); 2500 } 2501 2502 /* add our entry to the PAT */ 2503 wrmsr(REG_PAT, pat_attr_reg); 2504 2505 /* flush TLBs and cache again, then reenable cr0 caching */ 2506 if (cr4 & CR4_PGE) { 2507 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2508 setcr4(cr4); 2509 } else { 2510 reload_cr3(); 2511 } 2512 invalidate_cache(); 2513 setcr0(cr0_orig); 2514 } 2515 2516 #endif /* !__xpv */ 2517 2518 #if defined(_SOFT_HOSTID) 2519 /* 2520 * On platforms that do not have a hardware serial number, attempt 2521 * to set one based on the contents of /etc/hostid. If this file does 2522 * not exist, assume that we are to generate a new hostid and set 2523 * it in the kernel, for subsequent saving by a userland process 2524 * once the system is up and the root filesystem is mounted r/w. 2525 * 2526 * In an attempt to make the hostid less prone to abuse 2527 * (for license circumvention, etc), we store it in /etc/hostid 2528 * in rot47 format. 2529 */ 2530 extern volatile unsigned long tenmicrodata; 2531 2532 static int32_t 2533 set_soft_hostid(void) 2534 { 2535 struct _buf *file; 2536 char tokbuf[MAXNAMELEN]; 2537 token_t token; 2538 int done = 0; 2539 u_longlong_t tmp; 2540 int32_t hostid = -1; 2541 unsigned char *c; 2542 hrtime_t tsc; 2543 2544 /* 2545 * If /etc/hostid file not found, we'd like to get a pseudo 2546 * random number to use at the hostid. A nice way to do this 2547 * is to read the real time clock. To remain xen-compatible, 2548 * we can't poke the real hardware, so we use tsc_read() to 2549 * read the real time clock. However, there is an ominous 2550 * warning in tsc_read that says it can return zero, so we 2551 * deal with that possibility by falling back to using the 2552 * (hopefully random enough) value in tenmicrodata. 2553 */ 2554 2555 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2556 /* hostid file not found */ 2557 tsc = tsc_read(); 2558 if (tsc == 0) /* tsc_read can return zero sometimes */ 2559 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2560 else 2561 hostid = (int32_t)tsc & 0x0CFFFFF; 2562 } else { 2563 /* hostid file found */ 2564 while (!done) { 2565 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2566 2567 switch (token) { 2568 case POUND: 2569 /* 2570 * skip comments 2571 */ 2572 kobj_find_eol(file); 2573 break; 2574 case STRING: 2575 /* 2576 * un-rot47 - obviously this 2577 * nonsense is ascii-specific 2578 */ 2579 for (c = (unsigned char *)tokbuf; 2580 *c != '\0'; c++) { 2581 *c += 47; 2582 if (*c > '~') 2583 *c -= 94; 2584 else if (*c < '!') 2585 *c += 94; 2586 } 2587 /* 2588 * now we should have a real number 2589 */ 2590 2591 if (kobj_getvalue(tokbuf, &tmp) != 0) 2592 kobj_file_err(CE_WARN, file, 2593 "Bad value %s for hostid", 2594 tokbuf); 2595 else 2596 hostid = (int32_t)tmp; 2597 2598 break; 2599 case EOF: 2600 done = 1; 2601 /* FALLTHROUGH */ 2602 case NEWLINE: 2603 kobj_newline(file); 2604 break; 2605 default: 2606 break; 2607 2608 } 2609 } 2610 if (hostid == -1) /* didn't find a hostid string */ 2611 kobj_file_err(CE_WARN, file, 2612 "hostid missing or corrupt"); 2613 2614 kobj_close_file(file); 2615 } 2616 /* 2617 * hostid is now the value read from /etc/hostid, or the 2618 * new hostid we generated in this routine or -1 if not set. 2619 */ 2620 return (hostid); 2621 } 2622 #endif /* _SOFT_HOSTID */ 2623 2624 void 2625 get_system_configuration(void) 2626 { 2627 char prop[32]; 2628 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2629 2630 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2631 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2632 kobj_getvalue(prop, &nodes_ll) == -1 || 2633 nodes_ll > MAXNODES || 2634 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2635 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2636 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2637 system_hardware.hd_nodes = 1; 2638 system_hardware.hd_cpus_per_node = 0; 2639 } else { 2640 system_hardware.hd_nodes = (int)nodes_ll; 2641 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2642 } 2643 2644 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2645 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2646 kobj_getvalue(prop, &lvalue) == -1) 2647 eprom_kernelbase = NULL; 2648 else 2649 eprom_kernelbase = (uintptr_t)lvalue; 2650 2651 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2652 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2653 kobj_getvalue(prop, &lvalue) == -1) 2654 segmapsize = SEGMAPDEFAULT; 2655 else 2656 segmapsize = (uintptr_t)lvalue; 2657 2658 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2659 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2660 kobj_getvalue(prop, &lvalue) == -1) 2661 segmapfreelists = 0; /* use segmap driver default */ 2662 else 2663 segmapfreelists = (int)lvalue; 2664 2665 /* physmem used to be here, but moved much earlier to fakebop.c */ 2666 } 2667 2668 /* 2669 * Add to a memory list. 2670 * start = start of new memory segment 2671 * len = length of new memory segment in bytes 2672 * new = pointer to a new struct memlist 2673 * memlistp = memory list to which to add segment. 2674 */ 2675 void 2676 memlist_add( 2677 uint64_t start, 2678 uint64_t len, 2679 struct memlist *new, 2680 struct memlist **memlistp) 2681 { 2682 struct memlist *cur; 2683 uint64_t end = start + len; 2684 2685 new->address = start; 2686 new->size = len; 2687 2688 cur = *memlistp; 2689 2690 while (cur) { 2691 if (cur->address >= end) { 2692 new->next = cur; 2693 *memlistp = new; 2694 new->prev = cur->prev; 2695 cur->prev = new; 2696 return; 2697 } 2698 ASSERT(cur->address + cur->size <= start); 2699 if (cur->next == NULL) { 2700 cur->next = new; 2701 new->prev = cur; 2702 new->next = NULL; 2703 return; 2704 } 2705 memlistp = &cur->next; 2706 cur = cur->next; 2707 } 2708 } 2709 2710 void 2711 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2712 { 2713 size_t tsize = e_modtext - modtext; 2714 size_t dsize = e_moddata - moddata; 2715 2716 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2717 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2718 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2719 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2720 } 2721 2722 caddr_t 2723 kobj_text_alloc(vmem_t *arena, size_t size) 2724 { 2725 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2726 } 2727 2728 /*ARGSUSED*/ 2729 caddr_t 2730 kobj_texthole_alloc(caddr_t addr, size_t size) 2731 { 2732 panic("unexpected call to kobj_texthole_alloc()"); 2733 /*NOTREACHED*/ 2734 return (0); 2735 } 2736 2737 /*ARGSUSED*/ 2738 void 2739 kobj_texthole_free(caddr_t addr, size_t size) 2740 { 2741 panic("unexpected call to kobj_texthole_free()"); 2742 } 2743 2744 /* 2745 * This is called just after configure() in startup(). 2746 * 2747 * The ISALIST concept is a bit hopeless on Intel, because 2748 * there's no guarantee of an ever-more-capable processor 2749 * given that various parts of the instruction set may appear 2750 * and disappear between different implementations. 2751 * 2752 * While it would be possible to correct it and even enhance 2753 * it somewhat, the explicit hardware capability bitmask allows 2754 * more flexibility. 2755 * 2756 * So, we just leave this alone. 2757 */ 2758 void 2759 setx86isalist(void) 2760 { 2761 char *tp; 2762 size_t len; 2763 extern char *isa_list; 2764 2765 #define TBUFSIZE 1024 2766 2767 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2768 *tp = '\0'; 2769 2770 #if defined(__amd64) 2771 (void) strcpy(tp, "amd64 "); 2772 #endif 2773 2774 switch (x86_vendor) { 2775 case X86_VENDOR_Intel: 2776 case X86_VENDOR_AMD: 2777 case X86_VENDOR_TM: 2778 if (x86_feature & X86_CMOV) { 2779 /* 2780 * Pentium Pro or later 2781 */ 2782 (void) strcat(tp, "pentium_pro"); 2783 (void) strcat(tp, x86_feature & X86_MMX ? 2784 "+mmx pentium_pro " : " "); 2785 } 2786 /*FALLTHROUGH*/ 2787 case X86_VENDOR_Cyrix: 2788 /* 2789 * The Cyrix 6x86 does not have any Pentium features 2790 * accessible while not at privilege level 0. 2791 */ 2792 if (x86_feature & X86_CPUID) { 2793 (void) strcat(tp, "pentium"); 2794 (void) strcat(tp, x86_feature & X86_MMX ? 2795 "+mmx pentium " : " "); 2796 } 2797 break; 2798 default: 2799 break; 2800 } 2801 (void) strcat(tp, "i486 i386 i86"); 2802 len = strlen(tp) + 1; /* account for NULL at end of string */ 2803 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2804 kmem_free(tp, TBUFSIZE); 2805 2806 #undef TBUFSIZE 2807 } 2808 2809 2810 #ifdef __amd64 2811 2812 void * 2813 device_arena_alloc(size_t size, int vm_flag) 2814 { 2815 return (vmem_alloc(device_arena, size, vm_flag)); 2816 } 2817 2818 void 2819 device_arena_free(void *vaddr, size_t size) 2820 { 2821 vmem_free(device_arena, vaddr, size); 2822 } 2823 2824 #else /* __i386 */ 2825 2826 void * 2827 device_arena_alloc(size_t size, int vm_flag) 2828 { 2829 caddr_t vaddr; 2830 uintptr_t v; 2831 size_t start; 2832 size_t end; 2833 2834 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2835 if (vaddr == NULL) 2836 return (NULL); 2837 2838 v = (uintptr_t)vaddr; 2839 ASSERT(v >= kernelbase); 2840 ASSERT(v + size <= valloc_base); 2841 2842 start = btop(v - kernelbase); 2843 end = btop(v + size - 1 - kernelbase); 2844 ASSERT(start < toxic_bit_map_len); 2845 ASSERT(end < toxic_bit_map_len); 2846 2847 while (start <= end) { 2848 BT_ATOMIC_SET(toxic_bit_map, start); 2849 ++start; 2850 } 2851 return (vaddr); 2852 } 2853 2854 void 2855 device_arena_free(void *vaddr, size_t size) 2856 { 2857 uintptr_t v = (uintptr_t)vaddr; 2858 size_t start; 2859 size_t end; 2860 2861 ASSERT(v >= kernelbase); 2862 ASSERT(v + size <= valloc_base); 2863 2864 start = btop(v - kernelbase); 2865 end = btop(v + size - 1 - kernelbase); 2866 ASSERT(start < toxic_bit_map_len); 2867 ASSERT(end < toxic_bit_map_len); 2868 2869 while (start <= end) { 2870 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2871 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2872 ++start; 2873 } 2874 vmem_free(heap_arena, vaddr, size); 2875 } 2876 2877 /* 2878 * returns 1st address in range that is in device arena, or NULL 2879 * if len is not NULL it returns the length of the toxic range 2880 */ 2881 void * 2882 device_arena_contains(void *vaddr, size_t size, size_t *len) 2883 { 2884 uintptr_t v = (uintptr_t)vaddr; 2885 uintptr_t eaddr = v + size; 2886 size_t start; 2887 size_t end; 2888 2889 /* 2890 * if called very early by kmdb, just return NULL 2891 */ 2892 if (toxic_bit_map == NULL) 2893 return (NULL); 2894 2895 /* 2896 * First check if we're completely outside the bitmap range. 2897 */ 2898 if (v >= valloc_base || eaddr < kernelbase) 2899 return (NULL); 2900 2901 /* 2902 * Trim ends of search to look at only what the bitmap covers. 2903 */ 2904 if (v < kernelbase) 2905 v = kernelbase; 2906 start = btop(v - kernelbase); 2907 end = btop(eaddr - kernelbase); 2908 if (end >= toxic_bit_map_len) 2909 end = toxic_bit_map_len; 2910 2911 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2912 return (NULL); 2913 2914 v = kernelbase + ptob(start); 2915 if (len != NULL) 2916 *len = ptob(end - start); 2917 return ((void *)v); 2918 } 2919 2920 #endif /* __i386 */ 2921