1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 51 #include <sys/reboot.h> 52 #include <sys/uadmin.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 #include <sys/acct.h> 60 61 #include <sys/vfs.h> 62 #include <sys/dnlc.h> 63 #include <sys/var.h> 64 #include <sys/cmn_err.h> 65 #include <sys/utsname.h> 66 #include <sys/debug.h> 67 #include <sys/kdi.h> 68 69 #include <sys/dumphdr.h> 70 #include <sys/bootconf.h> 71 #include <sys/varargs.h> 72 #include <sys/promif.h> 73 #include <sys/prom_emul.h> /* for create_prom_prop */ 74 #include <sys/modctl.h> /* for "procfs" hack */ 75 76 #include <sys/consdev.h> 77 #include <sys/frame.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/sunndi.h> 81 #include <sys/ndi_impldefs.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/psw.h> 84 #include <sys/regset.h> 85 #include <sys/clock.h> 86 #include <sys/pte.h> 87 #include <sys/mmu.h> 88 #include <sys/tss.h> 89 #include <sys/stack.h> 90 #include <sys/trap.h> 91 #include <sys/pic.h> 92 #include <sys/fp.h> 93 #include <vm/anon.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/seg.h> 97 #include <vm/seg_dev.h> 98 #include <vm/seg_kmem.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_map.h> 101 #include <vm/seg_vn.h> 102 #include <vm/seg_kp.h> 103 #include <sys/memnode.h> 104 #include <vm/vm_dep.h> 105 #include <sys/swap.h> 106 #include <sys/thread.h> 107 #include <sys/sysconf.h> 108 #include <sys/vm_machparam.h> 109 #include <sys/archsystm.h> 110 #include <sys/machsystm.h> 111 #include <vm/hat.h> 112 #include <vm/hat_i86.h> 113 #include <sys/pmem.h> 114 #include <sys/instance.h> 115 #include <sys/smp_impldefs.h> 116 #include <sys/x86_archext.h> 117 #include <sys/segments.h> 118 #include <sys/clconf.h> 119 #include <sys/kobj.h> 120 #include <sys/kobj_lex.h> 121 #include <sys/prom_emul.h> 122 #include <sys/cpc_impl.h> 123 #include <sys/chip.h> 124 #include <sys/x86_archext.h> 125 #include <sys/cpu_module.h> 126 #include <sys/smbios.h> 127 128 extern void progressbar_init(void); 129 extern void progressbar_start(void); 130 131 /* 132 * XXX make declaration below "static" when drivers no longer use this 133 * interface. 134 */ 135 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 136 137 /* 138 * segkp 139 */ 140 extern int segkp_fromheap; 141 142 static void kvm_init(void); 143 static void startup_init(void); 144 static void startup_memlist(void); 145 static void startup_modules(void); 146 static void startup_bop_gone(void); 147 static void startup_vm(void); 148 static void startup_end(void); 149 150 /* 151 * Declare these as initialized data so we can patch them. 152 */ 153 #ifdef __i386 154 /* 155 * Due to virtual address space limitations running in 32 bit mode, restrict 156 * the amount of physical memory configured to a max of PHYSMEM32 pages (16g). 157 * 158 * If the physical max memory size of 64g were allowed to be configured, the 159 * size of user virtual address space will be less than 1g. A limited user 160 * address space greatly reduces the range of applications that can run. 161 * 162 * If more physical memory than PHYSMEM32 is required, users should preferably 163 * run in 64 bit mode which has no virtual address space limitation issues. 164 * 165 * If 64 bit mode is not available (as in IA32) and/or more physical memory 166 * than PHYSMEM32 is required in 32 bit mode, physmem can be set to the desired 167 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 168 * should also be carefully tuned to balance out the need of the user 169 * application while minimizing the risk of kernel heap exhaustion due to 170 * kernelbase being set too high. 171 */ 172 #define PHYSMEM32 0x400000 173 174 pgcnt_t physmem = PHYSMEM32; 175 #else 176 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 177 #endif 178 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 179 180 char *kobj_file_buf; 181 int kobj_file_bufsize; /* set in /etc/system */ 182 183 /* Global variables for MP support. Used in mp_startup */ 184 caddr_t rm_platter_va; 185 uint32_t rm_platter_pa; 186 187 int auto_lpg_disable = 1; 188 189 /* 190 * Some CPUs have holes in the middle of the 64-bit virtual address range. 191 */ 192 uintptr_t hole_start, hole_end; 193 194 /* 195 * kpm mapping window 196 */ 197 caddr_t kpm_vbase; 198 size_t kpm_size; 199 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 200 201 /* 202 * VA range that must be preserved for boot until we release all of its 203 * mappings. 204 */ 205 #if defined(__amd64) 206 static void *kmem_setaside; 207 #endif 208 209 /* 210 * Configuration parameters set at boot time. 211 */ 212 213 caddr_t econtig; /* end of first block of contiguous kernel */ 214 215 struct bootops *bootops = 0; /* passed in from boot */ 216 struct bootops **bootopsp; 217 struct boot_syscalls *sysp; /* passed in from boot */ 218 219 char bootblock_fstype[16]; 220 221 char kern_bootargs[OBP_MAXPATHLEN]; 222 223 /* 224 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 225 * depends on number of BOP_ALLOC calls made and requested size, memory size 226 * combination and whether boot.bin memory needs to be freed. 227 */ 228 #define POSS_NEW_FRAGMENTS 12 229 230 /* 231 * VM data structures 232 */ 233 long page_hashsz; /* Size of page hash table (power of two) */ 234 struct page *pp_base; /* Base of initial system page struct array */ 235 struct page **page_hash; /* Page hash table */ 236 struct seg ktextseg; /* Segment used for kernel executable image */ 237 struct seg kvalloc; /* Segment used for "valloc" mapping */ 238 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 239 struct seg kmapseg; /* Segment used for generic kernel mappings */ 240 struct seg kdebugseg; /* Segment used for the kernel debugger */ 241 242 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 243 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 244 245 #if defined(__amd64) 246 struct seg kvseg_core; /* Segment used for the core heap */ 247 struct seg kpmseg; /* Segment used for physical mapping */ 248 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 249 #else 250 struct seg *segkpm = NULL; /* Unused on IA32 */ 251 #endif 252 253 caddr_t segkp_base; /* Base address of segkp */ 254 #if defined(__amd64) 255 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 256 #else 257 pgcnt_t segkpsize = 0; 258 #endif 259 260 struct memseg *memseg_base; 261 struct vnode unused_pages_vp; 262 263 #define FOURGB 0x100000000LL 264 265 struct memlist *memlist; 266 267 caddr_t s_text; /* start of kernel text segment */ 268 caddr_t e_text; /* end of kernel text segment */ 269 caddr_t s_data; /* start of kernel data segment */ 270 caddr_t e_data; /* end of kernel data segment */ 271 caddr_t modtext; /* start of loadable module text reserved */ 272 caddr_t e_modtext; /* end of loadable module text reserved */ 273 caddr_t moddata; /* start of loadable module data reserved */ 274 caddr_t e_moddata; /* end of loadable module data reserved */ 275 276 struct memlist *phys_install; /* Total installed physical memory */ 277 struct memlist *phys_avail; /* Total available physical memory */ 278 279 static void memlist_add(uint64_t, uint64_t, struct memlist *, 280 struct memlist **); 281 282 /* 283 * kphysm_init returns the number of pages that were processed 284 */ 285 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 286 287 #define IO_PROP_SIZE 64 /* device property size */ 288 289 /* 290 * a couple useful roundup macros 291 */ 292 #define ROUND_UP_PAGE(x) \ 293 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 294 #define ROUND_UP_LPAGE(x) \ 295 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 296 #define ROUND_UP_4MEG(x) \ 297 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 298 #define ROUND_UP_TOPLEVEL(x) \ 299 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 300 301 /* 302 * 32-bit Kernel's Virtual memory layout. 303 * +-----------------------+ 304 * | psm 1-1 map | 305 * | exec args area | 306 * 0xFFC00000 -|-----------------------|- ARGSBASE 307 * | debugger | 308 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 309 * | Kernel Data | 310 * 0xFEC00000 -|-----------------------| 311 * | Kernel Text | 312 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 313 * | LUFS sinkhole | 314 * 0xFE000000 -|-----------------------|- lufs_addr 315 * --- -|-----------------------|- valloc_base + valloc_sz 316 * | early pp structures | 317 * | memsegs, memlists, | 318 * | page hash, etc. | 319 * --- -|-----------------------|- valloc_base (floating) 320 * | ptable_va | 321 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 322 * | | (segkp is an arena under the heap) 323 * | | 324 * | kvseg | 325 * | | 326 * | | 327 * --- -|-----------------------|- kernelheap (floating) 328 * | Segkmap | 329 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 330 * | Red Zone | 331 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 332 * | | || 333 * | Shared objects | \/ 334 * | | 335 * : : 336 * | user data | 337 * |-----------------------| 338 * | user text | 339 * 0x08048000 -|-----------------------| 340 * | user stack | 341 * : : 342 * | invalid | 343 * 0x00000000 +-----------------------+ 344 * 345 * 346 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 347 * +-----------------------+ 348 * | psm 1-1 map | 349 * | exec args area | 350 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 351 * | debugger (?) | 352 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 353 * | unused | 354 * +-----------------------+ 355 * | Kernel Data | 356 * 0xFFFFFFFF.FBC00000 |-----------------------| 357 * | Kernel Text | 358 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 359 * | LUFS sinkhole | 360 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 361 * --- |-----------------------|- valloc_base + valloc_sz 362 * | early pp structures | 363 * | memsegs, memlists, | 364 * | page hash, etc. | 365 * --- |-----------------------|- valloc_base 366 * | ptable_va | 367 * --- |-----------------------|- ptable_va 368 * | Core heap | (used for loadable modules) 369 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 370 * | Kernel | 371 * | heap | 372 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 373 * | segkmap | 374 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 375 * | device mappings | 376 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 377 * | segkp | 378 * --- |-----------------------|- segkp_base 379 * | segkpm | 380 * 0xFFFFFE00.00000000 |-----------------------| 381 * | Red Zone | 382 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 383 * | User stack |- User space memory 384 * | | 385 * | shared objects, etc | (grows downwards) 386 * : : 387 * | | 388 * 0xFFFF8000.00000000 |-----------------------| 389 * | | 390 * | VA Hole / unused | 391 * | | 392 * 0x00008000.00000000 |-----------------------| 393 * | | 394 * | | 395 * : : 396 * | user heap | (grows upwards) 397 * | | 398 * | user data | 399 * |-----------------------| 400 * | user text | 401 * 0x00000000.04000000 |-----------------------| 402 * | invalid | 403 * 0x00000000.00000000 +-----------------------+ 404 * 405 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 406 * kernel, except that userlimit is raised to 0xfe000000 407 * 408 * Floating values: 409 * 410 * valloc_base: start of the kernel's memory management/tracking data 411 * structures. This region contains page_t structures for the lowest 4GB 412 * of physical memory, memsegs, memlists, and the page hash. 413 * 414 * core_base: start of the kernel's "core" heap area on 64-bit systems. 415 * This area is intended to be used for global data as well as for module 416 * text/data that does not fit into the nucleus pages. The core heap is 417 * restricted to a 2GB range, allowing every address within it to be 418 * accessed using rip-relative addressing 419 * 420 * ekernelheap: end of kernelheap and start of segmap. 421 * 422 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 423 * above a red zone that separates the user's address space from the 424 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 425 * 426 * segkmap_start: start of segmap. The length of segmap can be modified 427 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 428 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 429 * 430 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 431 * decreased by 2X the size required for page_t. This allows the kernel 432 * heap to grow in size with physical memory. With sizeof(page_t) == 80 433 * bytes, the following shows the values of kernelbase and kernel heap 434 * sizes for different memory configurations (assuming default segmap and 435 * segkp sizes). 436 * 437 * mem size for kernelbase kernel heap 438 * size page_t's size 439 * ---- --------- ---------- ----------- 440 * 1gb 0x01400000 0xd1800000 684MB 441 * 2gb 0x02800000 0xcf000000 704MB 442 * 4gb 0x05000000 0xca000000 744MB 443 * 6gb 0x07800000 0xc5000000 784MB 444 * 8gb 0x0a000000 0xc0000000 824MB 445 * 16gb 0x14000000 0xac000000 984MB 446 * 32gb 0x28000000 0x84000000 1304MB 447 * 64gb 0x50000000 0x34000000 1944MB (*) 448 * 449 * kernelbase is less than the abi minimum of 0xc0000000 for memory 450 * configurations above 8gb. 451 * 452 * (*) support for memory configurations above 32gb will require manual tuning 453 * of kernelbase to balance out the need of user applications. 454 */ 455 456 /* real-time-clock initialization parameters */ 457 long gmt_lag; /* offset in seconds of gmt to local time */ 458 extern long process_rtc_config_file(void); 459 460 char *final_kernelheap; 461 char *boot_kernelheap; 462 uintptr_t kernelbase; 463 uintptr_t eprom_kernelbase; 464 size_t segmapsize; 465 static uintptr_t segmap_reserved; 466 uintptr_t segkmap_start; 467 int segmapfreelists; 468 pgcnt_t boot_npages; 469 pgcnt_t npages; 470 size_t core_size; /* size of "core" heap */ 471 uintptr_t core_base; /* base address of "core" heap */ 472 473 /* 474 * List of bootstrap pages. We mark these as allocated in startup. 475 * release_bootstrap() will free them when we're completely done with 476 * the bootstrap. 477 */ 478 static page_t *bootpages, *rd_pages; 479 480 struct system_hardware system_hardware; 481 482 /* 483 * Enable some debugging messages concerning memory usage... 484 * 485 * XX64 There should only be one print routine once memlist usage between 486 * vmx and the kernel is cleaned up and there is a single memlist structure 487 * shared between kernel and boot. 488 */ 489 static void 490 print_boot_memlist(char *title, struct memlist *mp) 491 { 492 prom_printf("MEMLIST: %s:\n", title); 493 while (mp != NULL) { 494 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 495 mp->address, mp->size); 496 mp = mp->next; 497 } 498 } 499 500 static void 501 print_kernel_memlist(char *title, struct memlist *mp) 502 { 503 prom_printf("MEMLIST: %s:\n", title); 504 while (mp != NULL) { 505 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 506 mp->address, mp->size); 507 mp = mp->next; 508 } 509 } 510 511 /* 512 * XX64 need a comment here.. are these just default values, surely 513 * we read the "cpuid" type information to figure this out. 514 */ 515 int l2cache_sz = 0x80000; 516 int l2cache_linesz = 0x40; 517 int l2cache_assoc = 1; 518 519 /* 520 * on 64 bit we use a predifined VA range for mapping devices in the kernel 521 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 522 */ 523 #ifdef __amd64 524 525 vmem_t *device_arena; 526 uintptr_t toxic_addr = (uintptr_t)NULL; 527 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 528 529 #else /* __i386 */ 530 531 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 532 size_t toxic_bit_map_len = 0; /* in bits */ 533 534 #endif /* __i386 */ 535 536 /* 537 * Simple boot time debug facilities 538 */ 539 static char *prm_dbg_str[] = { 540 "%s:%d: '%s' is 0x%x\n", 541 "%s:%d: '%s' is 0x%llx\n" 542 }; 543 544 int prom_debug; 545 546 #define PRM_DEBUG(q) if (prom_debug) \ 547 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 548 #define PRM_POINT(q) if (prom_debug) \ 549 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 550 551 /* 552 * This structure is used to keep track of the intial allocations 553 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 554 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 555 */ 556 #define NUM_ALLOCATIONS 7 557 int num_allocations = 0; 558 struct { 559 void **al_ptr; 560 size_t al_size; 561 } allocations[NUM_ALLOCATIONS]; 562 size_t valloc_sz = 0; 563 uintptr_t valloc_base; 564 extern uintptr_t ptable_va; 565 extern size_t ptable_sz; 566 567 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 568 size = ROUND_UP_PAGE(size); \ 569 if (num_allocations == NUM_ALLOCATIONS) \ 570 panic("too many ADD_TO_ALLOCATIONS()"); \ 571 allocations[num_allocations].al_ptr = (void**)&ptr; \ 572 allocations[num_allocations].al_size = size; \ 573 valloc_sz += size; \ 574 ++num_allocations; \ 575 } 576 577 static void 578 perform_allocations(void) 579 { 580 caddr_t mem; 581 int i; 582 583 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 584 if (mem != (caddr_t)valloc_base) 585 panic("BOP_ALLOC() failed"); 586 bzero(mem, valloc_sz); 587 for (i = 0; i < num_allocations; ++i) { 588 *allocations[i].al_ptr = (void *)mem; 589 mem += allocations[i].al_size; 590 } 591 } 592 593 /* 594 * Our world looks like this at startup time. 595 * 596 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 597 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 598 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 599 * addresses are fixed in the binary at link time. 600 * 601 * On the text page: 602 * unix/genunix/krtld/module text loads. 603 * 604 * On the data page: 605 * unix/genunix/krtld/module data loads and space for page_t's. 606 */ 607 /* 608 * Machine-dependent startup code 609 */ 610 void 611 startup(void) 612 { 613 extern void startup_bios_disk(); 614 /* 615 * Make sure that nobody tries to use sekpm until we have 616 * initialized it properly. 617 */ 618 #if defined(__amd64) 619 kpm_desired = kpm_enable; 620 #endif 621 kpm_enable = 0; 622 623 progressbar_init(); 624 startup_init(); 625 startup_memlist(); 626 startup_modules(); 627 startup_bios_disk(); 628 startup_bop_gone(); 629 startup_vm(); 630 startup_end(); 631 progressbar_start(); 632 } 633 634 static void 635 startup_init() 636 { 637 PRM_POINT("startup_init() starting..."); 638 639 /* 640 * Complete the extraction of cpuid data 641 */ 642 cpuid_pass2(CPU); 643 644 (void) check_boot_version(BOP_GETVERSION(bootops)); 645 646 /* 647 * Check for prom_debug in boot environment 648 */ 649 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 650 ++prom_debug; 651 PRM_POINT("prom_debug found in boot enviroment"); 652 } 653 654 /* 655 * Collect node, cpu and memory configuration information. 656 */ 657 get_system_configuration(); 658 659 /* 660 * Halt if this is an unsupported processor. 661 */ 662 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 663 printf("\n486 processor (\"%s\") detected.\n", 664 CPU->cpu_brandstr); 665 halt("This processor is not supported by this release " 666 "of Solaris."); 667 } 668 669 PRM_POINT("startup_init() done"); 670 } 671 672 /* 673 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 674 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 675 * also filters out physical page zero. There is some reliance on the 676 * boot loader allocating only a few contiguous physical memory chunks. 677 */ 678 static void 679 avail_filter(uint64_t *addr, uint64_t *size) 680 { 681 uintptr_t va; 682 uintptr_t next_va; 683 pfn_t pfn; 684 uint64_t pfn_addr; 685 uint64_t pfn_eaddr; 686 uint_t prot; 687 size_t len; 688 uint_t change; 689 690 if (prom_debug) 691 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 692 *addr, *size); 693 694 /* 695 * page zero is required for BIOS.. never make it available 696 */ 697 if (*addr == 0) { 698 *addr += MMU_PAGESIZE; 699 *size -= MMU_PAGESIZE; 700 } 701 702 /* 703 * First we trim from the front of the range. Since hat_boot_probe() 704 * walks ranges in virtual order, but addr/size are physical, we need 705 * to the list until no changes are seen. This deals with the case 706 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 707 * but w < v. 708 */ 709 do { 710 change = 0; 711 for (va = KERNEL_TEXT; 712 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 713 va = next_va) { 714 715 next_va = va + len; 716 pfn_addr = ptob((uint64_t)pfn); 717 pfn_eaddr = pfn_addr + len; 718 719 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 720 change = 1; 721 while (*size > 0 && len > 0) { 722 *addr += MMU_PAGESIZE; 723 *size -= MMU_PAGESIZE; 724 len -= MMU_PAGESIZE; 725 } 726 } 727 } 728 if (change && prom_debug) 729 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 730 *addr, *size); 731 } while (change); 732 733 /* 734 * Trim pages from the end of the range. 735 */ 736 for (va = KERNEL_TEXT; 737 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 738 va = next_va) { 739 740 next_va = va + len; 741 pfn_addr = ptob((uint64_t)pfn); 742 743 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 744 *size = pfn_addr - *addr; 745 } 746 747 if (prom_debug) 748 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 749 *addr, *size); 750 } 751 752 static void 753 kpm_init() 754 { 755 struct segkpm_crargs b; 756 uintptr_t start, end; 757 struct memlist *pmem; 758 759 /* 760 * These variables were all designed for sfmmu in which segkpm is 761 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 762 * might use 2+ page sizes on a single machine, so none of these 763 * variables have a single correct value. They are set up as if we 764 * always use a 4KB pagesize, which should do no harm. In the long 765 * run, we should get rid of KPM's assumption that only a single 766 * pagesize is used. 767 */ 768 kpm_pgshft = MMU_PAGESHIFT; 769 kpm_pgsz = MMU_PAGESIZE; 770 kpm_pgoff = MMU_PAGEOFFSET; 771 kpmp2pshft = 0; 772 kpmpnpgs = 1; 773 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 774 775 PRM_POINT("about to create segkpm"); 776 rw_enter(&kas.a_lock, RW_WRITER); 777 778 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 779 panic("cannot attach segkpm"); 780 781 b.prot = PROT_READ | PROT_WRITE; 782 b.nvcolors = 1; 783 784 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 785 panic("segkpm_create segkpm"); 786 787 rw_exit(&kas.a_lock); 788 789 /* 790 * Map each of the memsegs into the kpm segment, coalesing adjacent 791 * memsegs to allow mapping with the largest possible pages. 792 */ 793 pmem = phys_install; 794 start = pmem->address; 795 end = start + pmem->size; 796 for (;;) { 797 if (pmem == NULL || pmem->address > end) { 798 hat_devload(kas.a_hat, kpm_vbase + start, 799 end - start, mmu_btop(start), 800 PROT_READ | PROT_WRITE, 801 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 802 if (pmem == NULL) 803 break; 804 start = pmem->address; 805 } 806 end = pmem->address + pmem->size; 807 pmem = pmem->next; 808 } 809 } 810 811 /* 812 * The purpose of startup memlist is to get the system to the 813 * point where it can use kmem_alloc()'s that operate correctly 814 * relying on BOP_ALLOC(). This includes allocating page_ts, 815 * page hash table, vmem initialized, etc. 816 * 817 * Boot's versions of physinstalled and physavail are insufficient for 818 * the kernel's purposes. Specifically we don't know which pages that 819 * are not in physavail can be reclaimed after boot is gone. 820 * 821 * This code solves the problem by dividing the address space 822 * into 3 regions as it takes over the MMU from the booter. 823 * 824 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 825 * can not be used by the kernel. 826 * 827 * 2) Any free page that happens to be mapped below kernelbase 828 * is protected until the boot loader is released, but will then be reclaimed. 829 * 830 * 3) Boot shouldn't use any address in the remaining area between kernelbase 831 * and KERNEL_TEXT. 832 * 833 * In the case of multiple mappings to the same page, region 1 has precedence 834 * over region 2. 835 */ 836 static void 837 startup_memlist(void) 838 { 839 size_t memlist_sz; 840 size_t memseg_sz; 841 size_t pagehash_sz; 842 size_t pp_sz; 843 uintptr_t va; 844 size_t len; 845 uint_t prot; 846 pfn_t pfn; 847 int memblocks; 848 caddr_t pagecolor_mem; 849 size_t pagecolor_memsz; 850 caddr_t page_ctrs_mem; 851 size_t page_ctrs_size; 852 struct memlist *current; 853 pgcnt_t orig_npages = 0; 854 extern void startup_build_mem_nodes(struct memlist *); 855 856 /* XX64 fix these - they should be in include files */ 857 extern ulong_t cr4_value; 858 extern size_t page_coloring_init(uint_t, int, int); 859 extern void page_coloring_setup(caddr_t); 860 861 PRM_POINT("startup_memlist() starting..."); 862 863 /* 864 * Take the most current snapshot we can by calling mem-update. 865 * For this to work properly, we first have to ask boot for its 866 * end address. 867 */ 868 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 869 (void) BOP_GETPROP(bootops, "memory-update", NULL); 870 871 /* 872 * find if the kernel is mapped on a large page 873 */ 874 va = KERNEL_TEXT; 875 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 876 panic("Couldn't find kernel text boot mapping"); 877 878 /* 879 * Use leftover large page nucleus text/data space for loadable modules. 880 * Use at most MODTEXT/MODDATA. 881 */ 882 if (len > MMU_PAGESIZE) { 883 884 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 885 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 886 if (e_moddata - moddata > MODDATA) 887 e_moddata = moddata + MODDATA; 888 889 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 890 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 891 if (e_modtext - modtext > MODTEXT) 892 e_modtext = modtext + MODTEXT; 893 894 895 } else { 896 897 PRM_POINT("Kernel NOT loaded on Large Page!"); 898 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 899 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 900 901 } 902 econtig = e_moddata; 903 904 PRM_DEBUG(modtext); 905 PRM_DEBUG(e_modtext); 906 PRM_DEBUG(moddata); 907 PRM_DEBUG(e_moddata); 908 PRM_DEBUG(econtig); 909 910 /* 911 * For MP machines cr4_value must be set or the non-boot 912 * CPUs will not be able to start. 913 */ 914 if (x86_feature & X86_LARGEPAGE) 915 cr4_value = getcr4(); 916 PRM_DEBUG(cr4_value); 917 918 /* 919 * Examine the boot loaders physical memory map to find out: 920 * - total memory in system - physinstalled 921 * - the max physical address - physmax 922 * - the number of segments the intsalled memory comes in 923 */ 924 if (prom_debug) 925 print_boot_memlist("boot physinstalled", 926 bootops->boot_mem->physinstalled); 927 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 928 &physinstalled, &memblocks); 929 PRM_DEBUG(physmax); 930 PRM_DEBUG(physinstalled); 931 PRM_DEBUG(memblocks); 932 933 if (prom_debug) 934 print_boot_memlist("boot physavail", 935 bootops->boot_mem->physavail); 936 937 /* 938 * Initialize hat's mmu parameters. 939 * Check for enforce-prot-exec in boot environment. It's used to 940 * enable/disable support for the page table entry NX bit. 941 * The default is to enforce PROT_EXEC on processors that support NX. 942 * Boot seems to round up the "len", but 8 seems to be big enough. 943 */ 944 mmu_init(); 945 946 #ifdef __i386 947 /* 948 * physmax is lowered if there is more memory than can be 949 * physically addressed in 32 bit (PAE/non-PAE) modes. 950 */ 951 if (mmu.pae_hat) { 952 if (PFN_ABOVE64G(physmax)) { 953 physinstalled -= (physmax - (PFN_64G - 1)); 954 physmax = PFN_64G - 1; 955 } 956 } else { 957 if (PFN_ABOVE4G(physmax)) { 958 physinstalled -= (physmax - (PFN_4G - 1)); 959 physmax = PFN_4G - 1; 960 } 961 } 962 #endif 963 964 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 965 966 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 967 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 968 char value[8]; 969 970 if (len < 8) 971 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 972 else 973 (void) strcpy(value, ""); 974 if (strcmp(value, "off") == 0) 975 mmu.pt_nx = 0; 976 } 977 PRM_DEBUG(mmu.pt_nx); 978 979 /* 980 * We will need page_t's for every page in the system, except for 981 * memory mapped at or above above the start of the kernel text segment. 982 * 983 * pages above e_modtext are attributed to kernel debugger (obp_pages) 984 */ 985 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 986 obp_pages = 0; 987 va = KERNEL_TEXT; 988 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 989 npages -= len >> MMU_PAGESHIFT; 990 if (va >= (uintptr_t)e_moddata) 991 obp_pages += len >> MMU_PAGESHIFT; 992 va += len; 993 } 994 PRM_DEBUG(npages); 995 PRM_DEBUG(obp_pages); 996 997 /* 998 * If physmem is patched to be non-zero, use it instead of 999 * the computed value unless it is larger than the real 1000 * amount of memory on hand. 1001 */ 1002 if (physmem == 0 || physmem > npages) { 1003 physmem = npages; 1004 } else if (physmem < npages) { 1005 orig_npages = npages; 1006 npages = physmem; 1007 } 1008 PRM_DEBUG(physmem); 1009 1010 /* 1011 * We now compute the sizes of all the initial allocations for 1012 * structures the kernel needs in order do kmem_alloc(). These 1013 * include: 1014 * memsegs 1015 * memlists 1016 * page hash table 1017 * page_t's 1018 * page coloring data structs 1019 */ 1020 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1021 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1022 PRM_DEBUG(memseg_sz); 1023 1024 /* 1025 * Reserve space for phys_avail/phys_install memlists. 1026 * There's no real good way to know exactly how much room we'll need, 1027 * but this should be a good upper bound. 1028 */ 1029 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1030 (memblocks + POSS_NEW_FRAGMENTS)); 1031 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1032 PRM_DEBUG(memlist_sz); 1033 1034 /* 1035 * The page structure hash table size is a power of 2 1036 * such that the average hash chain length is PAGE_HASHAVELEN. 1037 */ 1038 page_hashsz = npages / PAGE_HASHAVELEN; 1039 page_hashsz = 1 << highbit(page_hashsz); 1040 pagehash_sz = sizeof (struct page *) * page_hashsz; 1041 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1042 PRM_DEBUG(pagehash_sz); 1043 1044 /* 1045 * Set aside room for the page structures themselves. Note: on 1046 * 64-bit systems we don't allocate page_t's for every page here. 1047 * We just allocate enough to map the lowest 4GB of physical 1048 * memory, minus those pages that are used for the "nucleus" kernel 1049 * text and data. The remaining pages are allocated once we can 1050 * map around boot. 1051 * 1052 * boot_npages is used to allocate an area big enough for our 1053 * initial page_t's. kphym_init may use less than that. 1054 */ 1055 boot_npages = npages; 1056 #if defined(__amd64) 1057 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1058 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1059 #endif 1060 PRM_DEBUG(boot_npages); 1061 pp_sz = sizeof (struct page) * boot_npages; 1062 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1063 PRM_DEBUG(pp_sz); 1064 1065 /* 1066 * determine l2 cache info and memory size for page coloring 1067 */ 1068 (void) getl2cacheinfo(CPU, 1069 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1070 pagecolor_memsz = 1071 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1072 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1073 PRM_DEBUG(pagecolor_memsz); 1074 1075 page_ctrs_size = page_ctrs_sz(); 1076 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1077 PRM_DEBUG(page_ctrs_size); 1078 1079 /* 1080 * valloc_base will be below kernel text 1081 * The extra pages are for the HAT and kmdb to map page tables. 1082 */ 1083 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1084 valloc_base = KERNEL_TEXT - valloc_sz; 1085 PRM_DEBUG(valloc_base); 1086 ptable_va = valloc_base - ptable_sz; 1087 1088 #if defined(__amd64) 1089 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1090 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1091 "systems."); 1092 kernelbase = (uintptr_t)KERNELBASE; 1093 core_base = (uintptr_t)COREHEAP_BASE; 1094 core_size = ptable_va - core_base; 1095 #else /* __i386 */ 1096 /* 1097 * We configure kernelbase based on: 1098 * 1099 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1100 * KERNELBASE_MAX. we large page align eprom_kernelbase 1101 * 1102 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1103 * On large memory systems we must lower kernelbase to allow 1104 * enough room for page_t's for all of memory. 1105 * 1106 * The value set here, might be changed a little later. 1107 */ 1108 if (eprom_kernelbase) { 1109 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1110 if (kernelbase > KERNELBASE_MAX) 1111 kernelbase = KERNELBASE_MAX; 1112 } else { 1113 kernelbase = (uintptr_t)KERNELBASE; 1114 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1115 } 1116 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1117 core_base = ptable_va; 1118 core_size = 0; 1119 #endif 1120 1121 PRM_DEBUG(kernelbase); 1122 PRM_DEBUG(core_base); 1123 PRM_DEBUG(core_size); 1124 1125 /* 1126 * At this point, we can only use a portion of the kernelheap that 1127 * will be available after we boot. Both 32-bit and 64-bit systems 1128 * have this limitation, although the reasons are completely 1129 * different. 1130 * 1131 * On 64-bit systems, the booter only supports allocations in the 1132 * upper 4GB of memory, so we have to work with a reduced kernel 1133 * heap until we take over all allocations. The booter also sits 1134 * in the lower portion of that 4GB range, so we have to raise the 1135 * bottom of the heap even further. 1136 * 1137 * On 32-bit systems we have to leave room to place segmap below 1138 * the heap. We don't yet know how large segmap will be, so we 1139 * have to be very conservative. 1140 */ 1141 #if defined(__amd64) 1142 /* 1143 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1144 * address range. In the long run, that should be fixed. It's 1145 * insane for a booter to need 2 2GB address ranges. 1146 */ 1147 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1148 segmap_reserved = 0; 1149 1150 #else /* __i386 */ 1151 segkp_fromheap = 1; 1152 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1153 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1154 segmap_reserved); 1155 #endif 1156 PRM_DEBUG(boot_kernelheap); 1157 kernelheap = boot_kernelheap; 1158 ekernelheap = (char *)core_base; 1159 1160 /* 1161 * If segmap is too large we can push the bottom of the kernel heap 1162 * higher than the base. Or worse, it could exceed the top of the 1163 * VA space entirely, causing it to wrap around. 1164 */ 1165 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1166 panic("too little memory available for kernelheap," 1167 " use a different kernelbase"); 1168 1169 /* 1170 * Now that we know the real value of kernelbase, 1171 * update variables that were initialized with a value of 1172 * KERNELBASE (in common/conf/param.c). 1173 * 1174 * XXX The problem with this sort of hackery is that the 1175 * compiler just may feel like putting the const declarations 1176 * (in param.c) into the .text section. Perhaps they should 1177 * just be declared as variables there? 1178 */ 1179 1180 #if defined(__amd64) 1181 ASSERT(_kernelbase == KERNELBASE); 1182 ASSERT(_userlimit == USERLIMIT); 1183 /* 1184 * As one final sanity check, verify that the "red zone" between 1185 * kernel and userspace is exactly the size we expected. 1186 */ 1187 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1188 #else 1189 *(uintptr_t *)&_kernelbase = kernelbase; 1190 *(uintptr_t *)&_userlimit = kernelbase; 1191 *(uintptr_t *)&_userlimit32 = _userlimit; 1192 #endif 1193 PRM_DEBUG(_kernelbase); 1194 PRM_DEBUG(_userlimit); 1195 PRM_DEBUG(_userlimit32); 1196 1197 /* 1198 * do all the initial allocations 1199 */ 1200 perform_allocations(); 1201 1202 /* 1203 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1204 */ 1205 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1206 (void *)core_base, (void *)ptable_va); 1207 1208 /* 1209 * Build phys_install and phys_avail in kernel memspace. 1210 * - phys_install should be all memory in the system. 1211 * - phys_avail is phys_install minus any memory mapped before this 1212 * point above KERNEL_TEXT. 1213 */ 1214 current = phys_install = memlist; 1215 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1216 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1217 panic("physinstalled was too big!"); 1218 if (prom_debug) 1219 print_kernel_memlist("phys_install", phys_install); 1220 1221 phys_avail = current; 1222 PRM_POINT("Building phys_avail:\n"); 1223 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1224 avail_filter); 1225 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1226 panic("physavail was too big!"); 1227 if (prom_debug) 1228 print_kernel_memlist("phys_avail", phys_avail); 1229 1230 /* 1231 * setup page coloring 1232 */ 1233 page_coloring_setup(pagecolor_mem); 1234 page_lock_init(); /* currently a no-op */ 1235 1236 /* 1237 * free page list counters 1238 */ 1239 (void) page_ctrs_alloc(page_ctrs_mem); 1240 1241 /* 1242 * Initialize the page structures from the memory lists. 1243 */ 1244 availrmem_initial = availrmem = freemem = 0; 1245 PRM_POINT("Calling kphysm_init()..."); 1246 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1247 PRM_POINT("kphysm_init() done"); 1248 PRM_DEBUG(boot_npages); 1249 1250 /* 1251 * Now that page_t's have been initialized, remove all the 1252 * initial allocation pages from the kernel free page lists. 1253 */ 1254 boot_mapin((caddr_t)valloc_base, valloc_sz); 1255 1256 /* 1257 * Initialize kernel memory allocator. 1258 */ 1259 kmem_init(); 1260 1261 /* 1262 * print this out early so that we know what's going on 1263 */ 1264 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1265 1266 /* 1267 * Initialize bp_mapin(). 1268 */ 1269 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1270 1271 /* 1272 * orig_npages is non-zero if physmem has been configured for less 1273 * than the available memory. 1274 */ 1275 if (orig_npages) { 1276 #ifdef __i386 1277 /* 1278 * use npages for physmem in case it has been temporarily 1279 * modified via /etc/system in kmem_init/mod_read_system_file. 1280 */ 1281 if (npages == PHYSMEM32) { 1282 cmn_err(CE_WARN, "!Due to 32 bit virtual" 1283 " address space limitations, limiting" 1284 " physmem to 0x%lx of 0x%lx available pages", 1285 npages, orig_npages); 1286 } else { 1287 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1288 " 0x%lx available pages", npages, orig_npages); 1289 } 1290 #else 1291 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1292 " 0x%lx available pages", npages, orig_npages); 1293 #endif 1294 } 1295 #if defined(__i386) 1296 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1297 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1298 "System using 0x%lx", 1299 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1300 #endif 1301 1302 #ifdef KERNELBASE_ABI_MIN 1303 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1304 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1305 "i386 ABI compliant.", (uintptr_t)kernelbase); 1306 } 1307 #endif 1308 1309 PRM_POINT("startup_memlist() done"); 1310 } 1311 1312 static void 1313 startup_modules(void) 1314 { 1315 unsigned int i; 1316 extern void prom_setup(void); 1317 1318 PRM_POINT("startup_modules() starting..."); 1319 /* 1320 * Initialize ten-micro second timer so that drivers will 1321 * not get short changed in their init phase. This was 1322 * not getting called until clkinit which, on fast cpu's 1323 * caused the drv_usecwait to be way too short. 1324 */ 1325 microfind(); 1326 1327 /* 1328 * Read the GMT lag from /etc/rtc_config. 1329 */ 1330 gmt_lag = process_rtc_config_file(); 1331 1332 /* 1333 * Calculate default settings of system parameters based upon 1334 * maxusers, yet allow to be overridden via the /etc/system file. 1335 */ 1336 param_calc(0); 1337 1338 mod_setup(); 1339 1340 /* 1341 * Initialize system parameters. 1342 */ 1343 param_init(); 1344 1345 /* 1346 * maxmem is the amount of physical memory we're playing with. 1347 */ 1348 maxmem = physmem; 1349 1350 /* 1351 * Initialize the hat layer. 1352 */ 1353 hat_init(); 1354 1355 /* 1356 * Initialize segment management stuff. 1357 */ 1358 seg_init(); 1359 1360 if (modload("fs", "specfs") == -1) 1361 halt("Can't load specfs"); 1362 1363 if (modload("fs", "devfs") == -1) 1364 halt("Can't load devfs"); 1365 1366 dispinit(); 1367 1368 /* 1369 * This is needed here to initialize hw_serial[] for cluster booting. 1370 */ 1371 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1372 (void) modunload(i); 1373 else 1374 cmn_err(CE_CONT, "sysinit load failed"); 1375 1376 /* Read cluster configuration data. */ 1377 clconf_init(); 1378 1379 /* 1380 * Create a kernel device tree. First, create rootnex and 1381 * then invoke bus specific code to probe devices. 1382 */ 1383 setup_ddi(); 1384 1385 /* 1386 * Set up the CPU module subsystem. Modifies the device tree, so it 1387 * must be done after setup_ddi(). 1388 */ 1389 cmi_init(); 1390 1391 /* 1392 * Initialize the MCA handlers 1393 */ 1394 if (x86_feature & X86_MCA) 1395 cmi_mca_init(); 1396 1397 /* 1398 * Fake a prom tree such that /dev/openprom continues to work 1399 */ 1400 prom_setup(); 1401 1402 /* 1403 * Load all platform specific modules 1404 */ 1405 psm_modload(); 1406 1407 PRM_POINT("startup_modules() done"); 1408 } 1409 1410 static void 1411 startup_bop_gone(void) 1412 { 1413 PRM_POINT("startup_bop_gone() starting..."); 1414 1415 /* 1416 * Do final allocations of HAT data structures that need to 1417 * be allocated before quiescing the boot loader. 1418 */ 1419 PRM_POINT("Calling hat_kern_alloc()..."); 1420 hat_kern_alloc(); 1421 PRM_POINT("hat_kern_alloc() done"); 1422 1423 /* 1424 * Setup MTRR (Memory type range registers) 1425 */ 1426 setup_mtrr(); 1427 PRM_POINT("startup_bop_gone() done"); 1428 } 1429 1430 /* 1431 * Walk through the pagetables looking for pages mapped in by boot. If the 1432 * setaside flag is set the pages are expected to be returned to the 1433 * kernel later in boot, so we add them to the bootpages list. 1434 */ 1435 static void 1436 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1437 { 1438 uintptr_t va = low; 1439 size_t len; 1440 uint_t prot; 1441 pfn_t pfn; 1442 page_t *pp; 1443 pgcnt_t boot_protect_cnt = 0; 1444 1445 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1446 if (va + len >= high) 1447 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1448 "legal range.", len, (void *)va); 1449 1450 while (len > 0) { 1451 pp = page_numtopp_alloc(pfn); 1452 if (pp != NULL) { 1453 if (setaside == 0) 1454 panic("Unexpected mapping by boot. " 1455 "addr=%p pfn=%lx\n", 1456 (void *)va, pfn); 1457 1458 pp->p_next = bootpages; 1459 bootpages = pp; 1460 ++boot_protect_cnt; 1461 } 1462 1463 ++pfn; 1464 len -= MMU_PAGESIZE; 1465 va += MMU_PAGESIZE; 1466 } 1467 } 1468 PRM_DEBUG(boot_protect_cnt); 1469 } 1470 1471 static void 1472 startup_vm(void) 1473 { 1474 struct segmap_crargs a; 1475 extern void hat_kern_setup(void); 1476 pgcnt_t pages_left; 1477 1478 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1479 extern pgcnt_t auto_lpg_min_physmem; 1480 1481 PRM_POINT("startup_vm() starting..."); 1482 1483 /* 1484 * The next two loops are done in distinct steps in order 1485 * to be sure that any page that is doubly mapped (both above 1486 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1487 * Note this may never happen, but it might someday. 1488 */ 1489 1490 bootpages = NULL; 1491 PRM_POINT("Protecting boot pages"); 1492 /* 1493 * Protect any pages mapped above KERNEL_TEXT that somehow have 1494 * page_t's. This can only happen if something weird allocated 1495 * in this range (like kadb/kmdb). 1496 */ 1497 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1498 1499 /* 1500 * Before we can take over memory allocation/mapping from the boot 1501 * loader we must remove from our free page lists any boot pages that 1502 * will stay mapped until release_bootstrap(). 1503 */ 1504 protect_boot_range(0, kernelbase, 1); 1505 #if defined(__amd64) 1506 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1507 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1508 #endif 1509 1510 /* 1511 * Copy in boot's page tables, set up extra page tables for the kernel, 1512 * and switch to the kernel's context. 1513 */ 1514 PRM_POINT("Calling hat_kern_setup()..."); 1515 hat_kern_setup(); 1516 1517 /* 1518 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1519 */ 1520 bootops->bsys_alloc = NULL; 1521 PRM_POINT("hat_kern_setup() done"); 1522 1523 hat_cpu_online(CPU); 1524 1525 /* 1526 * Before we call kvm_init(), we need to establish the final size 1527 * of the kernel's heap. So, we need to figure out how much space 1528 * to set aside for segkp, segkpm, and segmap. 1529 */ 1530 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1531 #if defined(__amd64) 1532 if (kpm_desired) { 1533 /* 1534 * Segkpm appears at the bottom of the kernel's address 1535 * range. To detect accidental overruns of the user 1536 * address space, we leave a "red zone" of unmapped memory 1537 * between kernelbase and the beginning of segkpm. 1538 */ 1539 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1540 kpm_size = mmu_ptob(physmax); 1541 PRM_DEBUG(kpm_vbase); 1542 PRM_DEBUG(kpm_size); 1543 final_kernelheap = 1544 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1545 } 1546 1547 if (!segkp_fromheap) { 1548 size_t sz = mmu_ptob(segkpsize); 1549 1550 /* 1551 * determine size of segkp and adjust the bottom of the 1552 * kernel's heap. 1553 */ 1554 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1555 sz = SEGKPDEFSIZE; 1556 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1557 "segkpsize has been reset to %ld pages", 1558 mmu_btop(sz)); 1559 } 1560 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1561 1562 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1563 segkp_base = final_kernelheap; 1564 PRM_DEBUG(segkpsize); 1565 PRM_DEBUG(segkp_base); 1566 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1567 PRM_DEBUG(final_kernelheap); 1568 } 1569 1570 /* 1571 * put the range of VA for device mappings next 1572 */ 1573 toxic_addr = (uintptr_t)final_kernelheap; 1574 PRM_DEBUG(toxic_addr); 1575 final_kernelheap = (char *)toxic_addr + toxic_size; 1576 #endif 1577 PRM_DEBUG(final_kernelheap); 1578 ASSERT(final_kernelheap < boot_kernelheap); 1579 1580 /* 1581 * Users can change segmapsize through eeprom or /etc/system. 1582 * If the variable is tuned through eeprom, there is no upper 1583 * bound on the size of segmap. If it is tuned through 1584 * /etc/system on 32-bit systems, it must be no larger than we 1585 * planned for in startup_memlist(). 1586 */ 1587 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1588 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1589 1590 #if defined(__i386) 1591 if (segmapsize > segmap_reserved) { 1592 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1593 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1594 segmapsize = segmap_reserved; 1595 } 1596 /* 1597 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1598 * the bottom of the kernel's address range. Set aside space for a 1599 * red zone just below the start of segmap. 1600 */ 1601 segkmap_start += KERNEL_REDZONE_SIZE; 1602 segmapsize -= KERNEL_REDZONE_SIZE; 1603 #endif 1604 final_kernelheap = (char *)(segkmap_start + segmapsize); 1605 1606 PRM_DEBUG(segkmap_start); 1607 PRM_DEBUG(segmapsize); 1608 PRM_DEBUG(final_kernelheap); 1609 1610 /* 1611 * Initialize VM system 1612 */ 1613 PRM_POINT("Calling kvm_init()..."); 1614 kvm_init(); 1615 PRM_POINT("kvm_init() done"); 1616 1617 /* 1618 * Tell kmdb that the VM system is now working 1619 */ 1620 if (boothowto & RB_DEBUG) 1621 kdi_dvec_vmready(); 1622 1623 /* 1624 * Mangle the brand string etc. 1625 */ 1626 cpuid_pass3(CPU); 1627 1628 PRM_DEBUG(final_kernelheap); 1629 1630 /* 1631 * Now that we can use memory outside the top 4GB (on 64-bit 1632 * systems) and we know the size of segmap, we can set the final 1633 * size of the kernel's heap. Note: on 64-bit systems we still 1634 * can't touch anything in the bottom half of the top 4GB range 1635 * because boot still has pages mapped there. 1636 */ 1637 if (final_kernelheap < boot_kernelheap) { 1638 kernelheap_extend(final_kernelheap, boot_kernelheap); 1639 #if defined(__amd64) 1640 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1641 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1642 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1643 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1644 PRM_DEBUG(kmem_setaside); 1645 if (kmem_setaside == NULL) 1646 panic("Could not protect boot's memory"); 1647 #endif 1648 } 1649 /* 1650 * Now that the kernel heap may have grown significantly, we need 1651 * to make all the remaining page_t's available to back that memory. 1652 * 1653 * XX64 this should probably wait till after release boot-strap too. 1654 */ 1655 pages_left = npages - boot_npages; 1656 if (pages_left > 0) { 1657 PRM_DEBUG(pages_left); 1658 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1659 } 1660 1661 #if defined(__amd64) 1662 1663 /* 1664 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1665 */ 1666 device_arena = vmem_create("device", (void *)toxic_addr, 1667 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1668 1669 #else /* __i386 */ 1670 1671 /* 1672 * allocate the bit map that tracks toxic pages 1673 */ 1674 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1675 PRM_DEBUG(toxic_bit_map_len); 1676 toxic_bit_map = 1677 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1678 ASSERT(toxic_bit_map != NULL); 1679 PRM_DEBUG(toxic_bit_map); 1680 1681 #endif /* __i386 */ 1682 1683 1684 /* 1685 * Now that we've got more VA, as well as the ability to allocate from 1686 * it, tell the debugger. 1687 */ 1688 if (boothowto & RB_DEBUG) 1689 kdi_dvec_memavail(); 1690 1691 /* 1692 * The following code installs a special page fault handler (#pf) 1693 * to work around a pentium bug. 1694 */ 1695 #if !defined(__amd64) 1696 if (x86_type == X86_TYPE_P5) { 1697 gate_desc_t *newidt; 1698 desctbr_t newidt_r; 1699 1700 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1701 panic("failed to install pentium_pftrap"); 1702 1703 bcopy(idt0, newidt, sizeof (idt0)); 1704 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1705 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1706 1707 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1708 PROT_READ|PROT_EXEC); 1709 1710 newidt_r.dtr_limit = sizeof (idt0) - 1; 1711 newidt_r.dtr_base = (uintptr_t)newidt; 1712 CPU->cpu_idt = newidt; 1713 wr_idtr(&newidt_r); 1714 } 1715 #endif /* !__amd64 */ 1716 1717 /* 1718 * Map page pfn=0 for drivers, such as kd, that need to pick up 1719 * parameters left there by controllers/BIOS. 1720 */ 1721 PRM_POINT("setup up p0_va"); 1722 p0_va = i86devmap(0, 1, PROT_READ); 1723 PRM_DEBUG(p0_va); 1724 1725 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1726 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1727 1728 /* 1729 * disable automatic large pages for small memory systems or 1730 * when the disable flag is set. 1731 */ 1732 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1733 exec_lpg_disable = 1; 1734 use_brk_lpg = 0; 1735 use_stk_lpg = 0; 1736 use_zmap_lpg = 0; 1737 } 1738 1739 PRM_POINT("Calling hat_init_finish()..."); 1740 hat_init_finish(); 1741 PRM_POINT("hat_init_finish() done"); 1742 1743 /* 1744 * Initialize the segkp segment type. 1745 */ 1746 rw_enter(&kas.a_lock, RW_WRITER); 1747 if (!segkp_fromheap) { 1748 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1749 segkp) < 0) { 1750 panic("startup: cannot attach segkp"); 1751 /*NOTREACHED*/ 1752 } 1753 } else { 1754 /* 1755 * For 32 bit x86 systems, we will have segkp under the heap. 1756 * There will not be a segkp segment. We do, however, need 1757 * to fill in the seg structure. 1758 */ 1759 segkp->s_as = &kas; 1760 } 1761 if (segkp_create(segkp) != 0) { 1762 panic("startup: segkp_create failed"); 1763 /*NOTREACHED*/ 1764 } 1765 PRM_DEBUG(segkp); 1766 rw_exit(&kas.a_lock); 1767 1768 /* 1769 * kpm segment 1770 */ 1771 segmap_kpm = 0; 1772 if (kpm_desired) { 1773 kpm_init(); 1774 kpm_enable = 1; 1775 } 1776 1777 /* 1778 * Now create segmap segment. 1779 */ 1780 rw_enter(&kas.a_lock, RW_WRITER); 1781 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1782 panic("cannot attach segkmap"); 1783 /*NOTREACHED*/ 1784 } 1785 PRM_DEBUG(segkmap); 1786 1787 /* 1788 * The 64 bit HAT permanently maps only segmap's page tables. 1789 * The 32 bit HAT maps the heap's page tables too. 1790 */ 1791 #if defined(__amd64) 1792 hat_kmap_init(segkmap_start, segmapsize); 1793 #else /* __i386 */ 1794 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1795 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1796 #endif /* __i386 */ 1797 1798 a.prot = PROT_READ | PROT_WRITE; 1799 a.shmsize = 0; 1800 a.nfreelist = segmapfreelists; 1801 1802 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1803 panic("segmap_create segkmap"); 1804 rw_exit(&kas.a_lock); 1805 1806 setup_vaddr_for_ppcopy(CPU); 1807 1808 segdev_init(); 1809 pmem_init(); 1810 PRM_POINT("startup_vm() done"); 1811 } 1812 1813 static void 1814 startup_end(void) 1815 { 1816 extern void setx86isalist(void); 1817 1818 PRM_POINT("startup_end() starting..."); 1819 1820 /* 1821 * Perform tasks that get done after most of the VM 1822 * initialization has been done but before the clock 1823 * and other devices get started. 1824 */ 1825 kern_setup1(); 1826 1827 /* 1828 * Perform CPC initialization for this CPU. 1829 */ 1830 kcpc_hw_init(CPU); 1831 1832 #if defined(__amd64) 1833 /* 1834 * Validate support for syscall/sysret 1835 * XX64 -- include SSE, SSE2, etc. here too? 1836 */ 1837 if ((x86_feature & X86_ASYSC) == 0) { 1838 cmn_err(CE_WARN, 1839 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1840 } 1841 #endif 1842 /* 1843 * Configure the system. 1844 */ 1845 PRM_POINT("Calling configure()..."); 1846 configure(); /* set up devices */ 1847 PRM_POINT("configure() done"); 1848 1849 /* 1850 * Set the isa_list string to the defined instruction sets we 1851 * support. 1852 */ 1853 setx86isalist(); 1854 cpu_intr_alloc(CPU, NINTR_THREADS); 1855 psm_install(); 1856 1857 /* 1858 * We're done with bootops. We don't unmap the bootstrap yet because 1859 * we're still using bootsvcs. 1860 */ 1861 PRM_POINT("zeroing out bootops"); 1862 *bootopsp = (struct bootops *)0; 1863 bootops = (struct bootops *)NULL; 1864 1865 PRM_POINT("Enabling interrupts"); 1866 (*picinitf)(); 1867 sti(); 1868 1869 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1870 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1871 1872 PRM_POINT("startup_end() done"); 1873 } 1874 1875 extern char hw_serial[]; 1876 char *_hs1107 = hw_serial; 1877 ulong_t _bdhs34; 1878 1879 void 1880 post_startup(void) 1881 { 1882 /* 1883 * Set the system wide, processor-specific flags to be passed 1884 * to userland via the aux vector for performance hints and 1885 * instruction set extensions. 1886 */ 1887 bind_hwcap(); 1888 1889 /* 1890 * Load the System Management BIOS into the global ksmbios handle, 1891 * if an SMBIOS is present on this system. 1892 */ 1893 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1894 1895 /* 1896 * Startup memory scrubber. 1897 */ 1898 memscrub_init(); 1899 1900 /* 1901 * Complete CPU module initialization 1902 */ 1903 cmi_post_init(); 1904 1905 /* 1906 * Perform forceloading tasks for /etc/system. 1907 */ 1908 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1909 1910 /* 1911 * ON4.0: Force /proc module in until clock interrupt handle fixed 1912 * ON4.0: This must be fixed or restated in /etc/systems. 1913 */ 1914 (void) modload("fs", "procfs"); 1915 1916 #if defined(__i386) 1917 /* 1918 * Check for required functional Floating Point hardware, 1919 * unless FP hardware explicitly disabled. 1920 */ 1921 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1922 halt("No working FP hardware found"); 1923 #endif 1924 1925 maxmem = freemem; 1926 1927 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1928 1929 /* 1930 * Perform the formal initialization of the boot chip, 1931 * and associate the boot cpu with it. 1932 * This must be done after the cpu node for CPU has been 1933 * added to the device tree, when the necessary probing to 1934 * know the chip type and chip "id" is performed. 1935 */ 1936 chip_cpu_init(CPU); 1937 chip_cpu_assign(CPU); 1938 } 1939 1940 static int 1941 pp_in_ramdisk(page_t *pp) 1942 { 1943 extern uint64_t ramdisk_start, ramdisk_end; 1944 1945 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1946 (pp->p_pagenum < btopr(ramdisk_end))); 1947 } 1948 1949 void 1950 release_bootstrap(void) 1951 { 1952 int root_is_ramdisk; 1953 pfn_t pfn; 1954 page_t *pp; 1955 extern void kobj_boot_unmountroot(void); 1956 extern dev_t rootdev; 1957 1958 /* unmount boot ramdisk and release kmem usage */ 1959 kobj_boot_unmountroot(); 1960 1961 /* 1962 * We're finished using the boot loader so free its pages. 1963 */ 1964 PRM_POINT("Unmapping lower boot pages"); 1965 clear_boot_mappings(0, kernelbase); 1966 #if defined(__amd64) 1967 PRM_POINT("Unmapping upper boot pages"); 1968 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1969 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1970 #endif 1971 1972 /* 1973 * If root isn't on ramdisk, destroy the hardcoded 1974 * ramdisk node now and release the memory. Else, 1975 * ramdisk memory is kept in rd_pages. 1976 */ 1977 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1978 if (!root_is_ramdisk) { 1979 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1980 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1981 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1982 (void) ddi_remove_child(dip, 0); 1983 } 1984 1985 PRM_POINT("Releasing boot pages"); 1986 while (bootpages) { 1987 pp = bootpages; 1988 bootpages = pp->p_next; 1989 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1990 pp->p_next = rd_pages; 1991 rd_pages = pp; 1992 continue; 1993 } 1994 pp->p_next = (struct page *)0; 1995 page_free(pp, 1); 1996 } 1997 1998 /* 1999 * Find 1 page below 1 MB so that other processors can boot up. 2000 * Make sure it has a kernel VA as well as a 1:1 mapping. 2001 * We should have just free'd one up. 2002 */ 2003 if (use_mp) { 2004 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2005 if (page_numtopp_alloc(pfn) == NULL) 2006 continue; 2007 rm_platter_va = i86devmap(pfn, 1, 2008 PROT_READ | PROT_WRITE | PROT_EXEC); 2009 rm_platter_pa = ptob(pfn); 2010 hat_devload(kas.a_hat, 2011 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2012 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2013 HAT_LOAD_NOCONSIST); 2014 break; 2015 } 2016 if (pfn == btop(1*1024*1024)) 2017 panic("No page available for starting " 2018 "other processors"); 2019 } 2020 2021 #if defined(__amd64) 2022 PRM_POINT("Returning boot's VA space to kernel heap"); 2023 if (kmem_setaside != NULL) 2024 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2025 #endif 2026 } 2027 2028 /* 2029 * Initialize the platform-specific parts of a page_t. 2030 */ 2031 void 2032 add_physmem_cb(page_t *pp, pfn_t pnum) 2033 { 2034 pp->p_pagenum = pnum; 2035 pp->p_mapping = NULL; 2036 pp->p_embed = 0; 2037 pp->p_share = 0; 2038 pp->p_mlentry = 0; 2039 } 2040 2041 /* 2042 * kphysm_init() initializes physical memory. 2043 */ 2044 static pgcnt_t 2045 kphysm_init( 2046 page_t *inpp, 2047 struct memseg *memsegp, 2048 pgcnt_t start, 2049 pgcnt_t npages) 2050 { 2051 struct memlist *pmem; 2052 struct memseg *cur_memseg; 2053 struct memseg **memsegpp; 2054 pfn_t base_pfn; 2055 pgcnt_t num; 2056 pgcnt_t total_skipped = 0; 2057 pgcnt_t skipping = 0; 2058 pgcnt_t pages_done = 0; 2059 pgcnt_t largepgcnt; 2060 uint64_t addr; 2061 uint64_t size; 2062 page_t *pp = inpp; 2063 int dobreak = 0; 2064 extern pfn_t ddiphysmin; 2065 2066 ASSERT(page_hash != NULL && page_hashsz != 0); 2067 2068 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2069 ASSERT(cur_memseg == memsegp || start > 0); 2070 2071 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2072 /* 2073 * In a 32 bit kernel can't use higher memory if we're 2074 * not booting in PAE mode. This check takes care of that. 2075 */ 2076 addr = pmem->address; 2077 size = pmem->size; 2078 if (btop(addr) > physmax) 2079 continue; 2080 2081 /* 2082 * align addr and size - they may not be at page boundaries 2083 */ 2084 if ((addr & MMU_PAGEOFFSET) != 0) { 2085 addr += MMU_PAGEOFFSET; 2086 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2087 size -= addr - pmem->address; 2088 } 2089 2090 /* only process pages below or equal to physmax */ 2091 if ((btop(addr + size) - 1) > physmax) 2092 size = ptob(physmax - btop(addr) + 1); 2093 2094 num = btop(size); 2095 if (num == 0) 2096 continue; 2097 2098 if (total_skipped < start) { 2099 if (start - total_skipped > num) { 2100 total_skipped += num; 2101 continue; 2102 } 2103 skipping = start - total_skipped; 2104 num -= skipping; 2105 addr += (MMU_PAGESIZE * skipping); 2106 total_skipped = start; 2107 } 2108 if (num == 0) 2109 continue; 2110 2111 if (num > npages) 2112 num = npages; 2113 2114 npages -= num; 2115 pages_done += num; 2116 base_pfn = btop(addr); 2117 2118 /* 2119 * If the caller didn't provide space for the page 2120 * structures, carve them out of the memseg they will 2121 * represent. 2122 */ 2123 if (pp == NULL) { 2124 pgcnt_t pp_pgs; 2125 2126 if (num <= 1) 2127 continue; 2128 2129 /* 2130 * Compute how many of the pages we need to use for 2131 * page_ts 2132 */ 2133 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2134 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2135 num - pp_pgs + 1) 2136 --pp_pgs; 2137 PRM_DEBUG(pp_pgs); 2138 2139 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2140 VM_NOSLEEP); 2141 if (pp == NULL) { 2142 cmn_err(CE_WARN, "Unable to add %ld pages to " 2143 "the system.", num); 2144 continue; 2145 } 2146 2147 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2148 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2149 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2150 bzero(pp, mmu_ptob(pp_pgs)); 2151 num -= pp_pgs; 2152 base_pfn += pp_pgs; 2153 } 2154 2155 if (prom_debug) 2156 prom_printf("MEMSEG addr=0x%" PRIx64 2157 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2158 addr, num, base_pfn, base_pfn + num); 2159 2160 /* 2161 * drop pages below ddiphysmin to simplify ddi memory 2162 * allocation with non-zero addr_lo requests. 2163 */ 2164 if (base_pfn < ddiphysmin) { 2165 if (base_pfn + num <= ddiphysmin) { 2166 /* drop entire range below ddiphysmin */ 2167 continue; 2168 } 2169 /* adjust range to ddiphysmin */ 2170 pp += (ddiphysmin - base_pfn); 2171 num -= (ddiphysmin - base_pfn); 2172 base_pfn = ddiphysmin; 2173 } 2174 /* 2175 * Build the memsegs entry 2176 */ 2177 cur_memseg->pages = pp; 2178 cur_memseg->epages = pp + num; 2179 cur_memseg->pages_base = base_pfn; 2180 cur_memseg->pages_end = base_pfn + num; 2181 2182 /* 2183 * insert in memseg list in decreasing pfn range order. 2184 * Low memory is typically more fragmented such that this 2185 * ordering keeps the larger ranges at the front of the list 2186 * for code that searches memseg. 2187 */ 2188 memsegpp = &memsegs; 2189 for (;;) { 2190 if (*memsegpp == NULL) { 2191 /* empty memsegs */ 2192 memsegs = cur_memseg; 2193 break; 2194 } 2195 /* check for continuity with start of memsegpp */ 2196 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2197 if (cur_memseg->epages == (*memsegpp)->pages) { 2198 /* 2199 * contiguous pfn and page_t's. Merge 2200 * cur_memseg into *memsegpp. Drop 2201 * cur_memseg 2202 */ 2203 (*memsegpp)->pages_base = 2204 cur_memseg->pages_base; 2205 (*memsegpp)->pages = 2206 cur_memseg->pages; 2207 /* 2208 * check if contiguous with the end of 2209 * the next memseg. 2210 */ 2211 if ((*memsegpp)->next && 2212 ((*memsegpp)->pages_base == 2213 (*memsegpp)->next->pages_end)) { 2214 cur_memseg = *memsegpp; 2215 memsegpp = &((*memsegpp)->next); 2216 dobreak = 1; 2217 } else { 2218 break; 2219 } 2220 } else { 2221 /* 2222 * contiguous pfn but not page_t's. 2223 * drop last pfn/page_t in cur_memseg 2224 * to prevent creation of large pages 2225 * with noncontiguous page_t's if not 2226 * aligned to largest page boundary. 2227 */ 2228 largepgcnt = page_get_pagecnt( 2229 page_num_pagesizes() - 1); 2230 2231 if (cur_memseg->pages_end & 2232 (largepgcnt - 1)) { 2233 num--; 2234 cur_memseg->epages--; 2235 cur_memseg->pages_end--; 2236 } 2237 } 2238 } 2239 2240 /* check for continuity with end of memsegpp */ 2241 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2242 if (cur_memseg->pages == (*memsegpp)->epages) { 2243 /* 2244 * contiguous pfn and page_t's. Merge 2245 * cur_memseg into *memsegpp. Drop 2246 * cur_memseg. 2247 */ 2248 if (dobreak) { 2249 /* merge previously done */ 2250 cur_memseg->pages = 2251 (*memsegpp)->pages; 2252 cur_memseg->pages_base = 2253 (*memsegpp)->pages_base; 2254 cur_memseg->next = 2255 (*memsegpp)->next; 2256 } else { 2257 (*memsegpp)->pages_end = 2258 cur_memseg->pages_end; 2259 (*memsegpp)->epages = 2260 cur_memseg->epages; 2261 } 2262 break; 2263 } 2264 /* 2265 * contiguous pfn but not page_t's. 2266 * drop first pfn/page_t in cur_memseg 2267 * to prevent creation of large pages 2268 * with noncontiguous page_t's if not 2269 * aligned to largest page boundary. 2270 */ 2271 largepgcnt = page_get_pagecnt( 2272 page_num_pagesizes() - 1); 2273 if (base_pfn & (largepgcnt - 1)) { 2274 num--; 2275 base_pfn++; 2276 cur_memseg->pages++; 2277 cur_memseg->pages_base++; 2278 pp = cur_memseg->pages; 2279 } 2280 if (dobreak) 2281 break; 2282 } 2283 2284 if (cur_memseg->pages_base >= 2285 (*memsegpp)->pages_end) { 2286 cur_memseg->next = *memsegpp; 2287 *memsegpp = cur_memseg; 2288 break; 2289 } 2290 if ((*memsegpp)->next == NULL) { 2291 cur_memseg->next = NULL; 2292 (*memsegpp)->next = cur_memseg; 2293 break; 2294 } 2295 memsegpp = &((*memsegpp)->next); 2296 ASSERT(*memsegpp != NULL); 2297 } 2298 2299 /* 2300 * add_physmem() initializes the PSM part of the page 2301 * struct by calling the PSM back with add_physmem_cb(). 2302 * In addition it coalesces pages into larger pages as 2303 * it initializes them. 2304 */ 2305 add_physmem(pp, num, base_pfn); 2306 cur_memseg++; 2307 availrmem_initial += num; 2308 availrmem += num; 2309 2310 /* 2311 * If the caller provided the page frames to us, then 2312 * advance in that list. Otherwise, prepare to allocate 2313 * our own page frames for the next memseg. 2314 */ 2315 pp = (inpp == NULL) ? NULL : pp + num; 2316 } 2317 2318 PRM_DEBUG(availrmem_initial); 2319 PRM_DEBUG(availrmem); 2320 PRM_DEBUG(freemem); 2321 build_pfn_hash(); 2322 return (pages_done); 2323 } 2324 2325 /* 2326 * Kernel VM initialization. 2327 */ 2328 static void 2329 kvm_init(void) 2330 { 2331 #ifdef DEBUG 2332 extern void _start(); 2333 2334 ASSERT((caddr_t)_start == s_text); 2335 #endif 2336 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2337 2338 /* 2339 * Put the kernel segments in kernel address space. 2340 */ 2341 rw_enter(&kas.a_lock, RW_WRITER); 2342 as_avlinit(&kas); 2343 2344 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2345 (void) segkmem_create(&ktextseg); 2346 2347 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2348 (void) segkmem_create(&kvalloc); 2349 2350 /* 2351 * We're about to map out /boot. This is the beginning of the 2352 * system resource management transition. We can no longer 2353 * call into /boot for I/O or memory allocations. 2354 * 2355 * XX64 - Is this still correct with kernelheap_extend() being called 2356 * later than this???? 2357 */ 2358 (void) seg_attach(&kas, final_kernelheap, 2359 ekernelheap - final_kernelheap, &kvseg); 2360 (void) segkmem_create(&kvseg); 2361 2362 #if defined(__amd64) 2363 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2364 (void) segkmem_create(&kvseg_core); 2365 #endif 2366 2367 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2368 &kdebugseg); 2369 (void) segkmem_create(&kdebugseg); 2370 2371 rw_exit(&kas.a_lock); 2372 2373 /* 2374 * Ensure that the red zone at kernelbase is never accessible. 2375 */ 2376 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2377 2378 /* 2379 * Make the text writable so that it can be hot patched by DTrace. 2380 */ 2381 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2382 PROT_READ | PROT_WRITE | PROT_EXEC); 2383 2384 /* 2385 * Make data writable until end. 2386 */ 2387 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2388 PROT_READ | PROT_WRITE | PROT_EXEC); 2389 } 2390 2391 /* 2392 * These are MTTR registers supported by P6 2393 */ 2394 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2395 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2396 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2397 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2398 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2399 uint64_t mtrrdef, pat_attr_reg; 2400 2401 /* 2402 * Disable reprogramming of MTRRs by default. 2403 */ 2404 int enable_relaxed_mtrr = 0; 2405 2406 void 2407 setup_mtrr() 2408 { 2409 int i, ecx; 2410 int vcnt; 2411 struct mtrrvar *mtrrphys; 2412 2413 if (!(x86_feature & X86_MTRR)) 2414 return; 2415 2416 mtrrcap = rdmsr(REG_MTRRCAP); 2417 mtrrdef = rdmsr(REG_MTRRDEF); 2418 if (mtrrcap & MTRRCAP_FIX) { 2419 mtrr64k = rdmsr(REG_MTRR64K); 2420 mtrr16k1 = rdmsr(REG_MTRR16K1); 2421 mtrr16k2 = rdmsr(REG_MTRR16K2); 2422 mtrr4k1 = rdmsr(REG_MTRR4K1); 2423 mtrr4k2 = rdmsr(REG_MTRR4K2); 2424 mtrr4k3 = rdmsr(REG_MTRR4K3); 2425 mtrr4k4 = rdmsr(REG_MTRR4K4); 2426 mtrr4k5 = rdmsr(REG_MTRR4K5); 2427 mtrr4k6 = rdmsr(REG_MTRR4K6); 2428 mtrr4k7 = rdmsr(REG_MTRR4K7); 2429 mtrr4k8 = rdmsr(REG_MTRR4K8); 2430 } 2431 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2432 vcnt = MAX_MTRRVAR; 2433 2434 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2435 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2436 mtrrphys->mtrrphys_base = rdmsr(ecx); 2437 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2438 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2439 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2440 } 2441 } 2442 if (x86_feature & X86_PAT) { 2443 if (enable_relaxed_mtrr) 2444 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2445 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2446 } 2447 2448 mtrr_sync(); 2449 } 2450 2451 /* 2452 * Sync current cpu mtrr with the incore copy of mtrr. 2453 * This function has to be invoked with interrupts disabled 2454 * Currently we do not capture other cpu's. This is invoked on cpu0 2455 * just after reading /etc/system. 2456 * On other cpu's its invoked from mp_startup(). 2457 */ 2458 void 2459 mtrr_sync() 2460 { 2461 uint_t crvalue, cr0_orig; 2462 int vcnt, i, ecx; 2463 struct mtrrvar *mtrrphys; 2464 2465 cr0_orig = crvalue = getcr0(); 2466 crvalue |= CR0_CD; 2467 crvalue &= ~CR0_NW; 2468 setcr0(crvalue); 2469 invalidate_cache(); 2470 setcr3(getcr3()); 2471 2472 if (x86_feature & X86_PAT) 2473 wrmsr(REG_MTRRPAT, pat_attr_reg); 2474 2475 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2476 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2477 2478 if (mtrrcap & MTRRCAP_FIX) { 2479 wrmsr(REG_MTRR64K, mtrr64k); 2480 wrmsr(REG_MTRR16K1, mtrr16k1); 2481 wrmsr(REG_MTRR16K2, mtrr16k2); 2482 wrmsr(REG_MTRR4K1, mtrr4k1); 2483 wrmsr(REG_MTRR4K2, mtrr4k2); 2484 wrmsr(REG_MTRR4K3, mtrr4k3); 2485 wrmsr(REG_MTRR4K4, mtrr4k4); 2486 wrmsr(REG_MTRR4K5, mtrr4k5); 2487 wrmsr(REG_MTRR4K6, mtrr4k6); 2488 wrmsr(REG_MTRR4K7, mtrr4k7); 2489 wrmsr(REG_MTRR4K8, mtrr4k8); 2490 } 2491 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2492 vcnt = MAX_MTRRVAR; 2493 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2494 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2495 wrmsr(ecx, mtrrphys->mtrrphys_base); 2496 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2497 } 2498 wrmsr(REG_MTRRDEF, mtrrdef); 2499 setcr3(getcr3()); 2500 invalidate_cache(); 2501 setcr0(cr0_orig); 2502 } 2503 2504 /* 2505 * resync mtrr so that BIOS is happy. Called from mdboot 2506 */ 2507 void 2508 mtrr_resync() 2509 { 2510 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2511 /* 2512 * We could have changed the default mtrr definition. 2513 * Put it back to uncached which is what it is at power on 2514 */ 2515 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2516 mtrr_sync(); 2517 } 2518 } 2519 2520 void 2521 get_system_configuration() 2522 { 2523 char prop[32]; 2524 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2525 2526 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2527 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2528 (kobj_getvalue(prop, &nodes_ll) == -1) || 2529 (nodes_ll > MAXNODES)) || 2530 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2531 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2532 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2533 2534 system_hardware.hd_nodes = 1; 2535 system_hardware.hd_cpus_per_node = 0; 2536 } else { 2537 system_hardware.hd_nodes = (int)nodes_ll; 2538 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2539 } 2540 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2541 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2542 (kobj_getvalue(prop, &lvalue) == -1)) 2543 eprom_kernelbase = NULL; 2544 else 2545 eprom_kernelbase = (uintptr_t)lvalue; 2546 2547 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2548 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2549 (kobj_getvalue(prop, &lvalue) == -1)) { 2550 segmapsize = SEGMAPDEFAULT; 2551 } else { 2552 segmapsize = (uintptr_t)lvalue; 2553 } 2554 2555 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2556 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2557 (kobj_getvalue(prop, &lvalue) == -1)) { 2558 segmapfreelists = 0; /* use segmap driver default */ 2559 } else { 2560 segmapfreelists = (int)lvalue; 2561 } 2562 2563 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2564 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2565 (kobj_getvalue(prop, &lvalue) != -1)) { 2566 physmem = (uintptr_t)lvalue; 2567 } 2568 } 2569 2570 /* 2571 * Add to a memory list. 2572 * start = start of new memory segment 2573 * len = length of new memory segment in bytes 2574 * new = pointer to a new struct memlist 2575 * memlistp = memory list to which to add segment. 2576 */ 2577 static void 2578 memlist_add( 2579 uint64_t start, 2580 uint64_t len, 2581 struct memlist *new, 2582 struct memlist **memlistp) 2583 { 2584 struct memlist *cur; 2585 uint64_t end = start + len; 2586 2587 new->address = start; 2588 new->size = len; 2589 2590 cur = *memlistp; 2591 2592 while (cur) { 2593 if (cur->address >= end) { 2594 new->next = cur; 2595 *memlistp = new; 2596 new->prev = cur->prev; 2597 cur->prev = new; 2598 return; 2599 } 2600 ASSERT(cur->address + cur->size <= start); 2601 if (cur->next == NULL) { 2602 cur->next = new; 2603 new->prev = cur; 2604 new->next = NULL; 2605 return; 2606 } 2607 memlistp = &cur->next; 2608 cur = cur->next; 2609 } 2610 } 2611 2612 void 2613 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2614 { 2615 size_t tsize = e_modtext - modtext; 2616 size_t dsize = e_moddata - moddata; 2617 2618 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2619 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2620 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2621 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2622 } 2623 2624 caddr_t 2625 kobj_text_alloc(vmem_t *arena, size_t size) 2626 { 2627 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2628 } 2629 2630 /*ARGSUSED*/ 2631 caddr_t 2632 kobj_texthole_alloc(caddr_t addr, size_t size) 2633 { 2634 panic("unexpected call to kobj_texthole_alloc()"); 2635 /*NOTREACHED*/ 2636 return (0); 2637 } 2638 2639 /*ARGSUSED*/ 2640 void 2641 kobj_texthole_free(caddr_t addr, size_t size) 2642 { 2643 panic("unexpected call to kobj_texthole_free()"); 2644 } 2645 2646 /* 2647 * This is called just after configure() in startup(). 2648 * 2649 * The ISALIST concept is a bit hopeless on Intel, because 2650 * there's no guarantee of an ever-more-capable processor 2651 * given that various parts of the instruction set may appear 2652 * and disappear between different implementations. 2653 * 2654 * While it would be possible to correct it and even enhance 2655 * it somewhat, the explicit hardware capability bitmask allows 2656 * more flexibility. 2657 * 2658 * So, we just leave this alone. 2659 */ 2660 void 2661 setx86isalist(void) 2662 { 2663 char *tp; 2664 size_t len; 2665 extern char *isa_list; 2666 2667 #define TBUFSIZE 1024 2668 2669 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2670 *tp = '\0'; 2671 2672 #if defined(__amd64) 2673 (void) strcpy(tp, "amd64 "); 2674 #endif 2675 2676 switch (x86_vendor) { 2677 case X86_VENDOR_Intel: 2678 case X86_VENDOR_AMD: 2679 case X86_VENDOR_TM: 2680 if (x86_feature & X86_CMOV) { 2681 /* 2682 * Pentium Pro or later 2683 */ 2684 (void) strcat(tp, "pentium_pro"); 2685 (void) strcat(tp, x86_feature & X86_MMX ? 2686 "+mmx pentium_pro " : " "); 2687 } 2688 /*FALLTHROUGH*/ 2689 case X86_VENDOR_Cyrix: 2690 /* 2691 * The Cyrix 6x86 does not have any Pentium features 2692 * accessible while not at privilege level 0. 2693 */ 2694 if (x86_feature & X86_CPUID) { 2695 (void) strcat(tp, "pentium"); 2696 (void) strcat(tp, x86_feature & X86_MMX ? 2697 "+mmx pentium " : " "); 2698 } 2699 break; 2700 default: 2701 break; 2702 } 2703 (void) strcat(tp, "i486 i386 i86"); 2704 len = strlen(tp) + 1; /* account for NULL at end of string */ 2705 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2706 kmem_free(tp, TBUFSIZE); 2707 2708 #undef TBUFSIZE 2709 } 2710 2711 2712 #ifdef __amd64 2713 2714 void * 2715 device_arena_alloc(size_t size, int vm_flag) 2716 { 2717 return (vmem_alloc(device_arena, size, vm_flag)); 2718 } 2719 2720 void 2721 device_arena_free(void *vaddr, size_t size) 2722 { 2723 vmem_free(device_arena, vaddr, size); 2724 } 2725 2726 #else 2727 2728 void * 2729 device_arena_alloc(size_t size, int vm_flag) 2730 { 2731 caddr_t vaddr; 2732 uintptr_t v; 2733 size_t start; 2734 size_t end; 2735 2736 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2737 if (vaddr == NULL) 2738 return (NULL); 2739 2740 v = (uintptr_t)vaddr; 2741 ASSERT(v >= kernelbase); 2742 ASSERT(v + size <= ptable_va); 2743 2744 start = btop(v - kernelbase); 2745 end = btop(v + size - 1 - kernelbase); 2746 ASSERT(start < toxic_bit_map_len); 2747 ASSERT(end < toxic_bit_map_len); 2748 2749 while (start <= end) { 2750 BT_ATOMIC_SET(toxic_bit_map, start); 2751 ++start; 2752 } 2753 return (vaddr); 2754 } 2755 2756 void 2757 device_arena_free(void *vaddr, size_t size) 2758 { 2759 uintptr_t v = (uintptr_t)vaddr; 2760 size_t start; 2761 size_t end; 2762 2763 ASSERT(v >= kernelbase); 2764 ASSERT(v + size <= ptable_va); 2765 2766 start = btop(v - kernelbase); 2767 end = btop(v + size - 1 - kernelbase); 2768 ASSERT(start < toxic_bit_map_len); 2769 ASSERT(end < toxic_bit_map_len); 2770 2771 while (start <= end) { 2772 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2773 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2774 ++start; 2775 } 2776 vmem_free(heap_arena, vaddr, size); 2777 } 2778 2779 /* 2780 * returns 1st address in range that is in device arena, or NULL 2781 * if len is not NULL it returns the length of the toxic range 2782 */ 2783 void * 2784 device_arena_contains(void *vaddr, size_t size, size_t *len) 2785 { 2786 uintptr_t v = (uintptr_t)vaddr; 2787 uintptr_t eaddr = v + size; 2788 size_t start; 2789 size_t end; 2790 2791 /* 2792 * if called very early by kmdb, just return NULL 2793 */ 2794 if (toxic_bit_map == NULL) 2795 return (NULL); 2796 2797 /* 2798 * First check if we're completely outside the bitmap range. 2799 */ 2800 if (v >= ptable_va || eaddr < kernelbase) 2801 return (NULL); 2802 2803 /* 2804 * Trim ends of search to look at only what the bitmap covers. 2805 */ 2806 if (v < kernelbase) 2807 v = kernelbase; 2808 start = btop(v - kernelbase); 2809 end = btop(eaddr - kernelbase); 2810 if (end >= toxic_bit_map_len) 2811 end = toxic_bit_map_len; 2812 2813 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2814 return (NULL); 2815 2816 v = kernelbase + ptob(start); 2817 if (len != NULL) 2818 *len = ptob(end - start); 2819 return ((void *)v); 2820 } 2821 2822 #endif 2823