xref: /titanic_51/usr/src/uts/i86pc/os/startup.c (revision 0917b783fd655a0c943e0b8fb848db2301774947)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/kstat.h>
50 
51 #include <sys/reboot.h>
52 #include <sys/uadmin.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 #include <sys/acct.h>
60 
61 #include <sys/vfs.h>
62 #include <sys/dnlc.h>
63 #include <sys/var.h>
64 #include <sys/cmn_err.h>
65 #include <sys/utsname.h>
66 #include <sys/debug.h>
67 #include <sys/kdi.h>
68 
69 #include <sys/dumphdr.h>
70 #include <sys/bootconf.h>
71 #include <sys/varargs.h>
72 #include <sys/promif.h>
73 #include <sys/prom_emul.h>	/* for create_prom_prop */
74 #include <sys/modctl.h>		/* for "procfs" hack */
75 
76 #include <sys/consdev.h>
77 #include <sys/frame.h>
78 
79 #include <sys/sunddi.h>
80 #include <sys/sunndi.h>
81 #include <sys/ndi_impldefs.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/psw.h>
84 #include <sys/regset.h>
85 #include <sys/clock.h>
86 #include <sys/pte.h>
87 #include <sys/mmu.h>
88 #include <sys/tss.h>
89 #include <sys/stack.h>
90 #include <sys/trap.h>
91 #include <sys/pic.h>
92 #include <sys/fp.h>
93 #include <vm/anon.h>
94 #include <vm/as.h>
95 #include <vm/page.h>
96 #include <vm/seg.h>
97 #include <vm/seg_dev.h>
98 #include <vm/seg_kmem.h>
99 #include <vm/seg_kpm.h>
100 #include <vm/seg_map.h>
101 #include <vm/seg_vn.h>
102 #include <vm/seg_kp.h>
103 #include <sys/memnode.h>
104 #include <vm/vm_dep.h>
105 #include <sys/swap.h>
106 #include <sys/thread.h>
107 #include <sys/sysconf.h>
108 #include <sys/vm_machparam.h>
109 #include <sys/archsystm.h>
110 #include <sys/machsystm.h>
111 #include <vm/hat.h>
112 #include <vm/hat_i86.h>
113 #include <sys/pmem.h>
114 #include <sys/instance.h>
115 #include <sys/smp_impldefs.h>
116 #include <sys/x86_archext.h>
117 #include <sys/segments.h>
118 #include <sys/clconf.h>
119 #include <sys/kobj.h>
120 #include <sys/kobj_lex.h>
121 #include <sys/prom_emul.h>
122 #include <sys/cpc_impl.h>
123 #include <sys/chip.h>
124 #include <sys/x86_archext.h>
125 #include <sys/cpu_module.h>
126 #include <sys/smbios.h>
127 
128 extern void progressbar_init(void);
129 extern void progressbar_start(void);
130 
131 /*
132  * XXX make declaration below "static" when drivers no longer use this
133  * interface.
134  */
135 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
136 
137 /*
138  * segkp
139  */
140 extern int segkp_fromheap;
141 
142 static void kvm_init(void);
143 static void startup_init(void);
144 static void startup_memlist(void);
145 static void startup_modules(void);
146 static void startup_bop_gone(void);
147 static void startup_vm(void);
148 static void startup_end(void);
149 
150 /*
151  * Declare these as initialized data so we can patch them.
152  */
153 #ifdef __i386
154 /*
155  * Due to virtual address space limitations running in 32 bit mode, restrict
156  * the amount of physical memory configured to a max of PHYSMEM32 pages (16g).
157  *
158  * If the physical max memory size of 64g were allowed to be configured, the
159  * size of user virtual address space will be less than 1g. A limited user
160  * address space greatly reduces the range of applications that can run.
161  *
162  * If more physical memory than PHYSMEM32 is required, users should preferably
163  * run in 64 bit mode which has no virtual address space limitation issues.
164  *
165  * If 64 bit mode is not available (as in IA32) and/or more physical memory
166  * than PHYSMEM32 is required in 32 bit mode, physmem can be set to the desired
167  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
168  * should also be carefully tuned to balance out the need of the user
169  * application while minimizing the risk of kernel heap exhaustion due to
170  * kernelbase being set too high.
171  */
172 #define	PHYSMEM32	0x400000
173 
174 pgcnt_t physmem = PHYSMEM32;
175 #else
176 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
177 #endif
178 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
179 
180 char *kobj_file_buf;
181 int kobj_file_bufsize;	/* set in /etc/system */
182 
183 /* Global variables for MP support. Used in mp_startup */
184 caddr_t	rm_platter_va;
185 uint32_t rm_platter_pa;
186 
187 int	auto_lpg_disable = 1;
188 
189 /*
190  * Some CPUs have holes in the middle of the 64-bit virtual address range.
191  */
192 uintptr_t hole_start, hole_end;
193 
194 /*
195  * kpm mapping window
196  */
197 caddr_t kpm_vbase;
198 size_t  kpm_size;
199 static int kpm_desired = 0;		/* Do we want to try to use segkpm? */
200 
201 /*
202  * VA range that must be preserved for boot until we release all of its
203  * mappings.
204  */
205 #if defined(__amd64)
206 static void *kmem_setaside;
207 #endif
208 
209 /*
210  * Configuration parameters set at boot time.
211  */
212 
213 caddr_t econtig;		/* end of first block of contiguous kernel */
214 
215 struct bootops		*bootops = 0;	/* passed in from boot */
216 struct bootops		**bootopsp;
217 struct boot_syscalls	*sysp;		/* passed in from boot */
218 
219 char bootblock_fstype[16];
220 
221 char kern_bootargs[OBP_MAXPATHLEN];
222 
223 /*
224  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
225  * depends on number of BOP_ALLOC calls made and requested size, memory size
226  * combination and whether boot.bin memory needs to be freed.
227  */
228 #define	POSS_NEW_FRAGMENTS	12
229 
230 /*
231  * VM data structures
232  */
233 long page_hashsz;		/* Size of page hash table (power of two) */
234 struct page *pp_base;		/* Base of initial system page struct array */
235 struct page **page_hash;	/* Page hash table */
236 struct seg ktextseg;		/* Segment used for kernel executable image */
237 struct seg kvalloc;		/* Segment used for "valloc" mapping */
238 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
239 struct seg kmapseg;		/* Segment used for generic kernel mappings */
240 struct seg kdebugseg;		/* Segment used for the kernel debugger */
241 
242 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
243 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
244 
245 #if defined(__amd64)
246 struct seg kvseg_core;		/* Segment used for the core heap */
247 struct seg kpmseg;		/* Segment used for physical mapping */
248 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
249 #else
250 struct seg *segkpm = NULL;	/* Unused on IA32 */
251 #endif
252 
253 caddr_t segkp_base;		/* Base address of segkp */
254 #if defined(__amd64)
255 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
256 #else
257 pgcnt_t segkpsize = 0;
258 #endif
259 
260 struct memseg *memseg_base;
261 struct vnode unused_pages_vp;
262 
263 #define	FOURGB	0x100000000LL
264 
265 struct memlist *memlist;
266 
267 caddr_t s_text;		/* start of kernel text segment */
268 caddr_t e_text;		/* end of kernel text segment */
269 caddr_t s_data;		/* start of kernel data segment */
270 caddr_t e_data;		/* end of kernel data segment */
271 caddr_t modtext;	/* start of loadable module text reserved */
272 caddr_t e_modtext;	/* end of loadable module text reserved */
273 caddr_t moddata;	/* start of loadable module data reserved */
274 caddr_t e_moddata;	/* end of loadable module data reserved */
275 
276 struct memlist *phys_install;	/* Total installed physical memory */
277 struct memlist *phys_avail;	/* Total available physical memory */
278 
279 static void memlist_add(uint64_t, uint64_t, struct memlist *,
280 	struct memlist **);
281 
282 /*
283  * kphysm_init returns the number of pages that were processed
284  */
285 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t);
286 
287 #define	IO_PROP_SIZE	64	/* device property size */
288 
289 /*
290  * a couple useful roundup macros
291  */
292 #define	ROUND_UP_PAGE(x)	\
293 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
294 #define	ROUND_UP_LPAGE(x)	\
295 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
296 #define	ROUND_UP_4MEG(x)	\
297 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE))
298 #define	ROUND_UP_TOPLEVEL(x)	\
299 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
300 
301 /*
302  *	32-bit Kernel's Virtual memory layout.
303  *		+-----------------------+
304  *		|	psm 1-1 map	|
305  *		|	exec args area	|
306  * 0xFFC00000  -|-----------------------|- ARGSBASE
307  *		|	debugger	|
308  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
309  *		|      Kernel Data	|
310  * 0xFEC00000  -|-----------------------|
311  *              |      Kernel Text	|
312  * 0xFE800000  -|-----------------------|- KERNEL_TEXT
313  * 		|     LUFS sinkhole	|
314  * 0xFE000000  -|-----------------------|- lufs_addr
315  * ---         -|-----------------------|- valloc_base + valloc_sz
316  * 		|   early pp structures	|
317  * 		|   memsegs, memlists, 	|
318  * 		|   page hash, etc.	|
319  * ---	       -|-----------------------|- valloc_base (floating)
320  * 		|     ptable_va    	|
321  * 0xFDFFE000  -|-----------------------|- ekernelheap, ptable_va
322  *		|			|  (segkp is an arena under the heap)
323  *		|			|
324  *		|	kvseg		|
325  *		|			|
326  *		|			|
327  * ---         -|-----------------------|- kernelheap (floating)
328  * 		|        Segkmap	|
329  * 0xC3002000  -|-----------------------|- segkmap_start (floating)
330  *		|	Red Zone	|
331  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
332  *		|			|			||
333  *		|     Shared objects	|			\/
334  *		|			|
335  *		:			:
336  *		|	user data	|
337  *		|-----------------------|
338  *		|	user text	|
339  * 0x08048000  -|-----------------------|
340  *		|	user stack	|
341  *		:			:
342  *		|	invalid		|
343  * 0x00000000	+-----------------------+
344  *
345  *
346  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
347  *			+-----------------------+
348  *			|	psm 1-1 map	|
349  *			|	exec args area	|
350  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
351  *			|	debugger (?)	|
352  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
353  *			|      unused    	|
354  *			+-----------------------+
355  *			|      Kernel Data	|
356  * 0xFFFFFFFF.FBC00000  |-----------------------|
357  *			|      Kernel Text	|
358  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
359  * 			|     LUFS sinkhole	|
360  * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr
361  * ---                  |-----------------------|- valloc_base + valloc_sz
362  * 			|   early pp structures	|
363  * 			|   memsegs, memlists, 	|
364  * 			|   page hash, etc.	|
365  * ---                  |-----------------------|- valloc_base
366  * 			|     ptable_va    	|
367  * ---                  |-----------------------|- ptable_va
368  * 			|      Core heap	| (used for loadable modules)
369  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
370  *			|	 Kernel		|
371  *			|	  heap		|
372  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
373  *			|	 segkmap	|
374  * 0xFFFFFXXX.XXX00000  |-----------------------|- segkmap_start (floating)
375  *			|    device mappings	|
376  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
377  *			|	  segkp		|
378  * ---                  |-----------------------|- segkp_base
379  *			|	 segkpm		|
380  * 0xFFFFFE00.00000000  |-----------------------|
381  *			|	Red Zone	|
382  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE
383  *			|     User stack	|- User space memory
384  * 			|			|
385  * 			| shared objects, etc	|	(grows downwards)
386  *			:			:
387  * 			|			|
388  * 0xFFFF8000.00000000  |-----------------------|
389  * 			|			|
390  * 			| VA Hole / unused	|
391  * 			|			|
392  * 0x00008000.00000000  |-----------------------|
393  *			|			|
394  *			|			|
395  *			:			:
396  *			|	user heap	|	(grows upwards)
397  *			|			|
398  *			|	user data	|
399  *			|-----------------------|
400  *			|	user text	|
401  * 0x00000000.04000000  |-----------------------|
402  *			|	invalid		|
403  * 0x00000000.00000000	+-----------------------+
404  *
405  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
406  * kernel, except that userlimit is raised to 0xfe000000
407  *
408  * Floating values:
409  *
410  * valloc_base: start of the kernel's memory management/tracking data
411  * structures.  This region contains page_t structures for the lowest 4GB
412  * of physical memory, memsegs, memlists, and the page hash.
413  *
414  * core_base: start of the kernel's "core" heap area on 64-bit systems.
415  * This area is intended to be used for global data as well as for module
416  * text/data that does not fit into the nucleus pages.  The core heap is
417  * restricted to a 2GB range, allowing every address within it to be
418  * accessed using rip-relative addressing
419  *
420  * ekernelheap: end of kernelheap and start of segmap.
421  *
422  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
423  * above a red zone that separates the user's address space from the
424  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
425  *
426  * segkmap_start: start of segmap. The length of segmap can be modified
427  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
428  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
429  *
430  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
431  * decreased by 2X the size required for page_t.  This allows the kernel
432  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
433  * bytes, the following shows the values of kernelbase and kernel heap
434  * sizes for different memory configurations (assuming default segmap and
435  * segkp sizes).
436  *
437  *	mem	size for	kernelbase	kernel heap
438  *	size	page_t's			size
439  *	----	---------	----------	-----------
440  *	1gb	0x01400000	0xd1800000	684MB
441  *	2gb	0x02800000	0xcf000000	704MB
442  *	4gb	0x05000000	0xca000000	744MB
443  *	6gb	0x07800000	0xc5000000	784MB
444  *	8gb	0x0a000000	0xc0000000	824MB
445  *	16gb	0x14000000	0xac000000	984MB
446  *	32gb	0x28000000	0x84000000	1304MB
447  *	64gb	0x50000000	0x34000000	1944MB (*)
448  *
449  * kernelbase is less than the abi minimum of 0xc0000000 for memory
450  * configurations above 8gb.
451  *
452  * (*) support for memory configurations above 32gb will require manual tuning
453  * of kernelbase to balance out the need of user applications.
454  */
455 
456 /* real-time-clock initialization parameters */
457 long gmt_lag;		/* offset in seconds of gmt to local time */
458 extern long process_rtc_config_file(void);
459 
460 char		*final_kernelheap;
461 char		*boot_kernelheap;
462 uintptr_t	kernelbase;
463 uintptr_t	eprom_kernelbase;
464 size_t		segmapsize;
465 static uintptr_t segmap_reserved;
466 uintptr_t	segkmap_start;
467 int		segmapfreelists;
468 pgcnt_t		boot_npages;
469 pgcnt_t		npages;
470 size_t		core_size;		/* size of "core" heap */
471 uintptr_t	core_base;		/* base address of "core" heap */
472 
473 /*
474  * List of bootstrap pages. We mark these as allocated in startup.
475  * release_bootstrap() will free them when we're completely done with
476  * the bootstrap.
477  */
478 static page_t *bootpages, *rd_pages;
479 
480 struct system_hardware system_hardware;
481 
482 /*
483  * Enable some debugging messages concerning memory usage...
484  *
485  * XX64 There should only be one print routine once memlist usage between
486  * vmx and the kernel is cleaned up and there is a single memlist structure
487  * shared between kernel and boot.
488  */
489 static void
490 print_boot_memlist(char *title, struct memlist *mp)
491 {
492 	prom_printf("MEMLIST: %s:\n", title);
493 	while (mp != NULL)  {
494 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
495 		    mp->address, mp->size);
496 		mp = mp->next;
497 	}
498 }
499 
500 static void
501 print_kernel_memlist(char *title, struct memlist *mp)
502 {
503 	prom_printf("MEMLIST: %s:\n", title);
504 	while (mp != NULL)  {
505 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
506 		    mp->address, mp->size);
507 		mp = mp->next;
508 	}
509 }
510 
511 /*
512  * XX64 need a comment here.. are these just default values, surely
513  * we read the "cpuid" type information to figure this out.
514  */
515 int	l2cache_sz = 0x80000;
516 int	l2cache_linesz = 0x40;
517 int	l2cache_assoc = 1;
518 
519 /*
520  * on 64 bit we use a predifined VA range for mapping devices in the kernel
521  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
522  */
523 #ifdef __amd64
524 
525 vmem_t		*device_arena;
526 uintptr_t	toxic_addr = (uintptr_t)NULL;
527 size_t		toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
528 
529 #else	/* __i386 */
530 
531 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
532 size_t		toxic_bit_map_len = 0;	/* in bits */
533 
534 #endif	/* __i386 */
535 
536 /*
537  * Simple boot time debug facilities
538  */
539 static char *prm_dbg_str[] = {
540 	"%s:%d: '%s' is 0x%x\n",
541 	"%s:%d: '%s' is 0x%llx\n"
542 };
543 
544 int prom_debug;
545 
546 #define	PRM_DEBUG(q)	if (prom_debug) 	\
547 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
548 #define	PRM_POINT(q)	if (prom_debug) 	\
549 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
550 
551 /*
552  * This structure is used to keep track of the intial allocations
553  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
554  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
555  */
556 #define	NUM_ALLOCATIONS 7
557 int num_allocations = 0;
558 struct {
559 	void **al_ptr;
560 	size_t al_size;
561 } allocations[NUM_ALLOCATIONS];
562 size_t valloc_sz = 0;
563 uintptr_t valloc_base;
564 extern uintptr_t ptable_va;
565 extern size_t ptable_sz;
566 
567 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
568 		size = ROUND_UP_PAGE(size);		 		\
569 		if (num_allocations == NUM_ALLOCATIONS)			\
570 			panic("too many ADD_TO_ALLOCATIONS()");		\
571 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
572 		allocations[num_allocations].al_size = size;		\
573 		valloc_sz += size;					\
574 		++num_allocations;				 	\
575 	}
576 
577 static void
578 perform_allocations(void)
579 {
580 	caddr_t mem;
581 	int i;
582 
583 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN);
584 	if (mem != (caddr_t)valloc_base)
585 		panic("BOP_ALLOC() failed");
586 	bzero(mem, valloc_sz);
587 	for (i = 0; i < num_allocations; ++i) {
588 		*allocations[i].al_ptr = (void *)mem;
589 		mem += allocations[i].al_size;
590 	}
591 }
592 
593 /*
594  * Our world looks like this at startup time.
595  *
596  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
597  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
598  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
599  * addresses are fixed in the binary at link time.
600  *
601  * On the text page:
602  * unix/genunix/krtld/module text loads.
603  *
604  * On the data page:
605  * unix/genunix/krtld/module data loads and space for page_t's.
606  */
607 /*
608  * Machine-dependent startup code
609  */
610 void
611 startup(void)
612 {
613 	extern void startup_bios_disk(void);
614 	extern void startup_pci_bios(void);
615 	/*
616 	 * Make sure that nobody tries to use sekpm until we have
617 	 * initialized it properly.
618 	 */
619 #if defined(__amd64)
620 	kpm_desired = kpm_enable;
621 #endif
622 	kpm_enable = 0;
623 
624 	progressbar_init();
625 	startup_init();
626 	startup_memlist();
627 	startup_pci_bios();
628 	startup_modules();
629 	startup_bios_disk();
630 	startup_bop_gone();
631 	startup_vm();
632 	startup_end();
633 	progressbar_start();
634 }
635 
636 static void
637 startup_init()
638 {
639 	PRM_POINT("startup_init() starting...");
640 
641 	/*
642 	 * Complete the extraction of cpuid data
643 	 */
644 	cpuid_pass2(CPU);
645 
646 	(void) check_boot_version(BOP_GETVERSION(bootops));
647 
648 	/*
649 	 * Check for prom_debug in boot environment
650 	 */
651 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
652 		++prom_debug;
653 		PRM_POINT("prom_debug found in boot enviroment");
654 	}
655 
656 	/*
657 	 * Collect node, cpu and memory configuration information.
658 	 */
659 	get_system_configuration();
660 
661 	/*
662 	 * Halt if this is an unsupported processor.
663 	 */
664 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
665 		printf("\n486 processor (\"%s\") detected.\n",
666 		    CPU->cpu_brandstr);
667 		halt("This processor is not supported by this release "
668 		    "of Solaris.");
669 	}
670 
671 	PRM_POINT("startup_init() done");
672 }
673 
674 /*
675  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
676  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
677  * also filters out physical page zero.  There is some reliance on the
678  * boot loader allocating only a few contiguous physical memory chunks.
679  */
680 static void
681 avail_filter(uint64_t *addr, uint64_t *size)
682 {
683 	uintptr_t va;
684 	uintptr_t next_va;
685 	pfn_t pfn;
686 	uint64_t pfn_addr;
687 	uint64_t pfn_eaddr;
688 	uint_t prot;
689 	size_t len;
690 	uint_t change;
691 
692 	if (prom_debug)
693 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
694 		    *addr, *size);
695 
696 	/*
697 	 * page zero is required for BIOS.. never make it available
698 	 */
699 	if (*addr == 0) {
700 		*addr += MMU_PAGESIZE;
701 		*size -= MMU_PAGESIZE;
702 	}
703 
704 	/*
705 	 * First we trim from the front of the range. Since hat_boot_probe()
706 	 * walks ranges in virtual order, but addr/size are physical, we need
707 	 * to the list until no changes are seen.  This deals with the case
708 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
709 	 * but w < v.
710 	 */
711 	do {
712 		change = 0;
713 		for (va = KERNEL_TEXT;
714 		    *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
715 		    va = next_va) {
716 
717 			next_va = va + len;
718 			pfn_addr = ptob((uint64_t)pfn);
719 			pfn_eaddr = pfn_addr + len;
720 
721 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
722 				change = 1;
723 				while (*size > 0 && len > 0) {
724 					*addr += MMU_PAGESIZE;
725 					*size -= MMU_PAGESIZE;
726 					len -= MMU_PAGESIZE;
727 				}
728 			}
729 		}
730 		if (change && prom_debug)
731 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
732 			    *addr, *size);
733 	} while (change);
734 
735 	/*
736 	 * Trim pages from the end of the range.
737 	 */
738 	for (va = KERNEL_TEXT;
739 	    *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
740 	    va = next_va) {
741 
742 		next_va = va + len;
743 		pfn_addr = ptob((uint64_t)pfn);
744 
745 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
746 			*size = pfn_addr - *addr;
747 	}
748 
749 	if (prom_debug)
750 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
751 		    *addr, *size);
752 }
753 
754 static void
755 kpm_init()
756 {
757 	struct segkpm_crargs b;
758 	uintptr_t start, end;
759 	struct memlist	*pmem;
760 
761 	/*
762 	 * These variables were all designed for sfmmu in which segkpm is
763 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
764 	 * might use 2+ page sizes on a single machine, so none of these
765 	 * variables have a single correct value.  They are set up as if we
766 	 * always use a 4KB pagesize, which should do no harm.  In the long
767 	 * run, we should get rid of KPM's assumption that only a single
768 	 * pagesize is used.
769 	 */
770 	kpm_pgshft = MMU_PAGESHIFT;
771 	kpm_pgsz =  MMU_PAGESIZE;
772 	kpm_pgoff = MMU_PAGEOFFSET;
773 	kpmp2pshft = 0;
774 	kpmpnpgs = 1;
775 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
776 
777 	PRM_POINT("about to create segkpm");
778 	rw_enter(&kas.a_lock, RW_WRITER);
779 
780 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
781 		panic("cannot attach segkpm");
782 
783 	b.prot = PROT_READ | PROT_WRITE;
784 	b.nvcolors = 1;
785 
786 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
787 		panic("segkpm_create segkpm");
788 
789 	rw_exit(&kas.a_lock);
790 
791 	/*
792 	 * Map each of the memsegs into the kpm segment, coalesing adjacent
793 	 * memsegs to allow mapping with the largest possible pages.
794 	 */
795 	pmem = phys_install;
796 	start = pmem->address;
797 	end = start + pmem->size;
798 	for (;;) {
799 		if (pmem == NULL || pmem->address > end) {
800 			hat_devload(kas.a_hat, kpm_vbase + start,
801 			    end - start, mmu_btop(start),
802 			    PROT_READ | PROT_WRITE,
803 			    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
804 			if (pmem == NULL)
805 				break;
806 			start = pmem->address;
807 		}
808 		end = pmem->address + pmem->size;
809 		pmem = pmem->next;
810 	}
811 }
812 
813 /*
814  * The purpose of startup memlist is to get the system to the
815  * point where it can use kmem_alloc()'s that operate correctly
816  * relying on BOP_ALLOC(). This includes allocating page_ts,
817  * page hash table, vmem initialized, etc.
818  *
819  * Boot's versions of physinstalled and physavail are insufficient for
820  * the kernel's purposes. Specifically we don't know which pages that
821  * are not in physavail can be reclaimed after boot is gone.
822  *
823  * This code solves the problem by dividing the address space
824  * into 3 regions as it takes over the MMU from the booter.
825  *
826  * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT
827  * can not be used by the kernel.
828  *
829  * 2) Any free page that happens to be mapped below kernelbase
830  * is protected until the boot loader is released, but will then be reclaimed.
831  *
832  * 3) Boot shouldn't use any address in the remaining area between kernelbase
833  * and KERNEL_TEXT.
834  *
835  * In the case of multiple mappings to the same page, region 1 has precedence
836  * over region 2.
837  */
838 static void
839 startup_memlist(void)
840 {
841 	size_t memlist_sz;
842 	size_t memseg_sz;
843 	size_t pagehash_sz;
844 	size_t pp_sz;
845 	uintptr_t va;
846 	size_t len;
847 	uint_t prot;
848 	pfn_t pfn;
849 	int memblocks;
850 	caddr_t pagecolor_mem;
851 	size_t pagecolor_memsz;
852 	caddr_t page_ctrs_mem;
853 	size_t page_ctrs_size;
854 	struct memlist *current;
855 	pgcnt_t orig_npages = 0;
856 	extern void startup_build_mem_nodes(struct memlist *);
857 
858 	/* XX64 fix these - they should be in include files */
859 	extern ulong_t cr4_value;
860 	extern size_t page_coloring_init(uint_t, int, int);
861 	extern void page_coloring_setup(caddr_t);
862 
863 	PRM_POINT("startup_memlist() starting...");
864 
865 	/*
866 	 * Take the most current snapshot we can by calling mem-update.
867 	 * For this to work properly, we first have to ask boot for its
868 	 * end address.
869 	 */
870 	if (BOP_GETPROPLEN(bootops, "memory-update") == 0)
871 		(void) BOP_GETPROP(bootops, "memory-update", NULL);
872 
873 	/*
874 	 * find if the kernel is mapped on a large page
875 	 */
876 	va = KERNEL_TEXT;
877 	if (hat_boot_probe(&va, &len, &pfn, &prot) == 0)
878 		panic("Couldn't find kernel text boot mapping");
879 
880 	/*
881 	 * Use leftover large page nucleus text/data space for loadable modules.
882 	 * Use at most MODTEXT/MODDATA.
883 	 */
884 	if (len > MMU_PAGESIZE) {
885 
886 		moddata = (caddr_t)ROUND_UP_PAGE(e_data);
887 		e_moddata = (caddr_t)ROUND_UP_4MEG(e_data);
888 		if (e_moddata - moddata > MODDATA)
889 			e_moddata = moddata + MODDATA;
890 
891 		modtext = (caddr_t)ROUND_UP_PAGE(e_text);
892 		e_modtext = (caddr_t)ROUND_UP_4MEG(e_text);
893 		if (e_modtext - modtext > MODTEXT)
894 			e_modtext = modtext + MODTEXT;
895 
896 
897 	} else {
898 
899 		PRM_POINT("Kernel NOT loaded on Large Page!");
900 		e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data);
901 		e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text);
902 
903 	}
904 	econtig = e_moddata;
905 
906 	PRM_DEBUG(modtext);
907 	PRM_DEBUG(e_modtext);
908 	PRM_DEBUG(moddata);
909 	PRM_DEBUG(e_moddata);
910 	PRM_DEBUG(econtig);
911 
912 	/*
913 	 * For MP machines cr4_value must be set or the non-boot
914 	 * CPUs will not be able to start.
915 	 */
916 	if (x86_feature & X86_LARGEPAGE)
917 		cr4_value = getcr4();
918 	PRM_DEBUG(cr4_value);
919 
920 	/*
921 	 * Examine the boot loaders physical memory map to find out:
922 	 * - total memory in system - physinstalled
923 	 * - the max physical address - physmax
924 	 * - the number of segments the intsalled memory comes in
925 	 */
926 	if (prom_debug)
927 		print_boot_memlist("boot physinstalled",
928 		    bootops->boot_mem->physinstalled);
929 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
930 	    &physinstalled, &memblocks);
931 	PRM_DEBUG(physmax);
932 	PRM_DEBUG(physinstalled);
933 	PRM_DEBUG(memblocks);
934 
935 	if (prom_debug)
936 		print_boot_memlist("boot physavail",
937 		    bootops->boot_mem->physavail);
938 
939 	/*
940 	 * Initialize hat's mmu parameters.
941 	 * Check for enforce-prot-exec in boot environment. It's used to
942 	 * enable/disable support for the page table entry NX bit.
943 	 * The default is to enforce PROT_EXEC on processors that support NX.
944 	 * Boot seems to round up the "len", but 8 seems to be big enough.
945 	 */
946 	mmu_init();
947 
948 #ifdef	__i386
949 	/*
950 	 * physmax is lowered if there is more memory than can be
951 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
952 	 */
953 	if (mmu.pae_hat) {
954 		if (PFN_ABOVE64G(physmax)) {
955 			physinstalled -= (physmax - (PFN_64G - 1));
956 			physmax = PFN_64G - 1;
957 		}
958 	} else {
959 		if (PFN_ABOVE4G(physmax)) {
960 			physinstalled -= (physmax - (PFN_4G - 1));
961 			physmax = PFN_4G - 1;
962 		}
963 	}
964 #endif
965 
966 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
967 
968 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
969 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
970 		char value[8];
971 
972 		if (len < 8)
973 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
974 		else
975 			(void) strcpy(value, "");
976 		if (strcmp(value, "off") == 0)
977 			mmu.pt_nx = 0;
978 	}
979 	PRM_DEBUG(mmu.pt_nx);
980 
981 	/*
982 	 * We will need page_t's for every page in the system, except for
983 	 * memory mapped at or above above the start of the kernel text segment.
984 	 *
985 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
986 	 */
987 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
988 	obp_pages = 0;
989 	va = KERNEL_TEXT;
990 	while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) {
991 		npages -= len >> MMU_PAGESHIFT;
992 		if (va >= (uintptr_t)e_moddata)
993 			obp_pages += len >> MMU_PAGESHIFT;
994 		va += len;
995 	}
996 	PRM_DEBUG(npages);
997 	PRM_DEBUG(obp_pages);
998 
999 	/*
1000 	 * If physmem is patched to be non-zero, use it instead of
1001 	 * the computed value unless it is larger than the real
1002 	 * amount of memory on hand.
1003 	 */
1004 	if (physmem == 0 || physmem > npages) {
1005 		physmem = npages;
1006 	} else if (physmem < npages) {
1007 		orig_npages = npages;
1008 		npages = physmem;
1009 	}
1010 	PRM_DEBUG(physmem);
1011 
1012 	/*
1013 	 * We now compute the sizes of all the  initial allocations for
1014 	 * structures the kernel needs in order do kmem_alloc(). These
1015 	 * include:
1016 	 *	memsegs
1017 	 *	memlists
1018 	 *	page hash table
1019 	 *	page_t's
1020 	 *	page coloring data structs
1021 	 */
1022 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1023 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1024 	PRM_DEBUG(memseg_sz);
1025 
1026 	/*
1027 	 * Reserve space for phys_avail/phys_install memlists.
1028 	 * There's no real good way to know exactly how much room we'll need,
1029 	 * but this should be a good upper bound.
1030 	 */
1031 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1032 	    (memblocks + POSS_NEW_FRAGMENTS));
1033 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1034 	PRM_DEBUG(memlist_sz);
1035 
1036 	/*
1037 	 * The page structure hash table size is a power of 2
1038 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1039 	 */
1040 	page_hashsz = npages / PAGE_HASHAVELEN;
1041 	page_hashsz = 1 << highbit(page_hashsz);
1042 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1043 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1044 	PRM_DEBUG(pagehash_sz);
1045 
1046 	/*
1047 	 * Set aside room for the page structures themselves.  Note: on
1048 	 * 64-bit systems we don't allocate page_t's for every page here.
1049 	 * We just allocate enough to map the lowest 4GB of physical
1050 	 * memory, minus those pages that are used for the "nucleus" kernel
1051 	 * text and data.  The remaining pages are allocated once we can
1052 	 * map around boot.
1053 	 *
1054 	 * boot_npages is used to allocate an area big enough for our
1055 	 * initial page_t's. kphym_init may use less than that.
1056 	 */
1057 	boot_npages = npages;
1058 #if defined(__amd64)
1059 	if (npages > mmu_btop(FOURGB - (econtig - s_text)))
1060 		boot_npages = mmu_btop(FOURGB - (econtig - s_text));
1061 #endif
1062 	PRM_DEBUG(boot_npages);
1063 	pp_sz = sizeof (struct page) * boot_npages;
1064 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1065 	PRM_DEBUG(pp_sz);
1066 
1067 	/*
1068 	 * determine l2 cache info and memory size for page coloring
1069 	 */
1070 	(void) getl2cacheinfo(CPU,
1071 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1072 	pagecolor_memsz =
1073 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1074 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1075 	PRM_DEBUG(pagecolor_memsz);
1076 
1077 	page_ctrs_size = page_ctrs_sz();
1078 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1079 	PRM_DEBUG(page_ctrs_size);
1080 
1081 	/*
1082 	 * valloc_base will be below kernel text
1083 	 * The extra pages are for the HAT and kmdb to map page tables.
1084 	 */
1085 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1086 	valloc_base = KERNEL_TEXT - valloc_sz;
1087 	PRM_DEBUG(valloc_base);
1088 	ptable_va = valloc_base - ptable_sz;
1089 
1090 #if defined(__amd64)
1091 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1092 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1093 		    "systems.");
1094 	kernelbase = (uintptr_t)KERNELBASE;
1095 	core_base = (uintptr_t)COREHEAP_BASE;
1096 	core_size = ptable_va - core_base;
1097 #else	/* __i386 */
1098 	/*
1099 	 * We configure kernelbase based on:
1100 	 *
1101 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1102 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1103 	 *
1104 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1105 	 *    On large memory systems we must lower kernelbase to allow
1106 	 *    enough room for page_t's for all of memory.
1107 	 *
1108 	 * The value set here, might be changed a little later.
1109 	 */
1110 	if (eprom_kernelbase) {
1111 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1112 		if (kernelbase > KERNELBASE_MAX)
1113 			kernelbase = KERNELBASE_MAX;
1114 	} else {
1115 		kernelbase = (uintptr_t)KERNELBASE;
1116 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1117 	}
1118 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1119 	core_base = ptable_va;
1120 	core_size = 0;
1121 #endif
1122 
1123 	PRM_DEBUG(kernelbase);
1124 	PRM_DEBUG(core_base);
1125 	PRM_DEBUG(core_size);
1126 
1127 	/*
1128 	 * At this point, we can only use a portion of the kernelheap that
1129 	 * will be available after we boot.  Both 32-bit and 64-bit systems
1130 	 * have this limitation, although the reasons are completely
1131 	 * different.
1132 	 *
1133 	 * On 64-bit systems, the booter only supports allocations in the
1134 	 * upper 4GB of memory, so we have to work with a reduced kernel
1135 	 * heap until we take over all allocations.  The booter also sits
1136 	 * in the lower portion of that 4GB range, so we have to raise the
1137 	 * bottom of the heap even further.
1138 	 *
1139 	 * On 32-bit systems we have to leave room to place segmap below
1140 	 * the heap.  We don't yet know how large segmap will be, so we
1141 	 * have to be very conservative.
1142 	 */
1143 #if defined(__amd64)
1144 	/*
1145 	 * XX64: For now, we let boot have the lower 2GB of the top 4GB
1146 	 * address range.  In the long run, that should be fixed.  It's
1147 	 * insane for a booter to need 2 2GB address ranges.
1148 	 */
1149 	boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
1150 	segmap_reserved = 0;
1151 
1152 #else	/* __i386 */
1153 	segkp_fromheap = 1;
1154 	segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX));
1155 	boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) +
1156 	    segmap_reserved);
1157 #endif
1158 	PRM_DEBUG(boot_kernelheap);
1159 	kernelheap = boot_kernelheap;
1160 	ekernelheap = (char *)core_base;
1161 
1162 	/*
1163 	 * If segmap is too large we can push the bottom of the kernel heap
1164 	 * higher than the base.  Or worse, it could exceed the top of the
1165 	 * VA space entirely, causing it to wrap around.
1166 	 */
1167 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1168 		panic("too little memory available for kernelheap,"
1169 			    " use a different kernelbase");
1170 
1171 	/*
1172 	 * Now that we know the real value of kernelbase,
1173 	 * update variables that were initialized with a value of
1174 	 * KERNELBASE (in common/conf/param.c).
1175 	 *
1176 	 * XXX	The problem with this sort of hackery is that the
1177 	 *	compiler just may feel like putting the const declarations
1178 	 *	(in param.c) into the .text section.  Perhaps they should
1179 	 *	just be declared as variables there?
1180 	 */
1181 
1182 #if defined(__amd64)
1183 	ASSERT(_kernelbase == KERNELBASE);
1184 	ASSERT(_userlimit == USERLIMIT);
1185 	/*
1186 	 * As one final sanity check, verify that the "red zone" between
1187 	 * kernel and userspace is exactly the size we expected.
1188 	 */
1189 	ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024)));
1190 #else
1191 	*(uintptr_t *)&_kernelbase = kernelbase;
1192 	*(uintptr_t *)&_userlimit = kernelbase;
1193 	*(uintptr_t *)&_userlimit32 = _userlimit;
1194 #endif
1195 	PRM_DEBUG(_kernelbase);
1196 	PRM_DEBUG(_userlimit);
1197 	PRM_DEBUG(_userlimit32);
1198 
1199 	/*
1200 	 * do all the initial allocations
1201 	 */
1202 	perform_allocations();
1203 
1204 	/*
1205 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1206 	 */
1207 	kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE,
1208 	    (void *)core_base, (void *)ptable_va);
1209 
1210 	/*
1211 	 * Build phys_install and phys_avail in kernel memspace.
1212 	 * - phys_install should be all memory in the system.
1213 	 * - phys_avail is phys_install minus any memory mapped before this
1214 	 *    point above KERNEL_TEXT.
1215 	 */
1216 	current = phys_install = memlist;
1217 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1218 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1219 		panic("physinstalled was too big!");
1220 	if (prom_debug)
1221 		print_kernel_memlist("phys_install", phys_install);
1222 
1223 	phys_avail = current;
1224 	PRM_POINT("Building phys_avail:\n");
1225 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1226 	    avail_filter);
1227 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1228 		panic("physavail was too big!");
1229 	if (prom_debug)
1230 		print_kernel_memlist("phys_avail", phys_avail);
1231 
1232 	/*
1233 	 * setup page coloring
1234 	 */
1235 	page_coloring_setup(pagecolor_mem);
1236 	page_lock_init();	/* currently a no-op */
1237 
1238 	/*
1239 	 * free page list counters
1240 	 */
1241 	(void) page_ctrs_alloc(page_ctrs_mem);
1242 
1243 	/*
1244 	 * Initialize the page structures from the memory lists.
1245 	 */
1246 	availrmem_initial = availrmem = freemem = 0;
1247 	PRM_POINT("Calling kphysm_init()...");
1248 	boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages);
1249 	PRM_POINT("kphysm_init() done");
1250 	PRM_DEBUG(boot_npages);
1251 
1252 	/*
1253 	 * Now that page_t's have been initialized, remove all the
1254 	 * initial allocation pages from the kernel free page lists.
1255 	 */
1256 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1257 
1258 	/*
1259 	 * Initialize kernel memory allocator.
1260 	 */
1261 	kmem_init();
1262 
1263 	/*
1264 	 * print this out early so that we know what's going on
1265 	 */
1266 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1267 
1268 	/*
1269 	 * Initialize bp_mapin().
1270 	 */
1271 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1272 
1273 	/*
1274 	 * orig_npages is non-zero if physmem has been configured for less
1275 	 * than the available memory.
1276 	 */
1277 	if (orig_npages) {
1278 #ifdef __i386
1279 		/*
1280 		 * use npages for physmem in case it has been temporarily
1281 		 * modified via /etc/system in kmem_init/mod_read_system_file.
1282 		 */
1283 		if (npages == PHYSMEM32) {
1284 			cmn_err(CE_WARN, "!Due to 32 bit virtual"
1285 			    " address space limitations, limiting"
1286 			    " physmem to 0x%lx of 0x%lx available pages",
1287 			    npages, orig_npages);
1288 		} else {
1289 			cmn_err(CE_WARN, "!limiting physmem to 0x%lx of"
1290 			    " 0x%lx available pages", npages, orig_npages);
1291 		}
1292 #else
1293 		cmn_err(CE_WARN, "!limiting physmem to 0x%lx of"
1294 		    " 0x%lx available pages", npages, orig_npages);
1295 #endif
1296 	}
1297 #if defined(__i386)
1298 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1299 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1300 		    "System using 0x%lx",
1301 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1302 #endif
1303 
1304 #ifdef	KERNELBASE_ABI_MIN
1305 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1306 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1307 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1308 	}
1309 #endif
1310 
1311 	PRM_POINT("startup_memlist() done");
1312 }
1313 
1314 static void
1315 startup_modules(void)
1316 {
1317 	unsigned int i;
1318 	extern void prom_setup(void);
1319 
1320 	PRM_POINT("startup_modules() starting...");
1321 	/*
1322 	 * Initialize ten-micro second timer so that drivers will
1323 	 * not get short changed in their init phase. This was
1324 	 * not getting called until clkinit which, on fast cpu's
1325 	 * caused the drv_usecwait to be way too short.
1326 	 */
1327 	microfind();
1328 
1329 	/*
1330 	 * Read the GMT lag from /etc/rtc_config.
1331 	 */
1332 	gmt_lag = process_rtc_config_file();
1333 
1334 	/*
1335 	 * Calculate default settings of system parameters based upon
1336 	 * maxusers, yet allow to be overridden via the /etc/system file.
1337 	 */
1338 	param_calc(0);
1339 
1340 	mod_setup();
1341 
1342 	/*
1343 	 * Initialize system parameters.
1344 	 */
1345 	param_init();
1346 
1347 	/*
1348 	 * maxmem is the amount of physical memory we're playing with.
1349 	 */
1350 	maxmem = physmem;
1351 
1352 	/*
1353 	 * Initialize the hat layer.
1354 	 */
1355 	hat_init();
1356 
1357 	/*
1358 	 * Initialize segment management stuff.
1359 	 */
1360 	seg_init();
1361 
1362 	if (modload("fs", "specfs") == -1)
1363 		halt("Can't load specfs");
1364 
1365 	if (modload("fs", "devfs") == -1)
1366 		halt("Can't load devfs");
1367 
1368 	dispinit();
1369 
1370 	/*
1371 	 * This is needed here to initialize hw_serial[] for cluster booting.
1372 	 */
1373 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1374 		(void) modunload(i);
1375 	else
1376 		cmn_err(CE_CONT, "sysinit load failed");
1377 
1378 	/* Read cluster configuration data. */
1379 	clconf_init();
1380 
1381 	/*
1382 	 * Create a kernel device tree. First, create rootnex and
1383 	 * then invoke bus specific code to probe devices.
1384 	 */
1385 	setup_ddi();
1386 
1387 	/*
1388 	 * Set up the CPU module subsystem.  Modifies the device tree, so it
1389 	 * must be done after setup_ddi().
1390 	 */
1391 	cmi_init();
1392 
1393 	/*
1394 	 * Initialize the MCA handlers
1395 	 */
1396 	if (x86_feature & X86_MCA)
1397 		cmi_mca_init();
1398 
1399 	/*
1400 	 * Fake a prom tree such that /dev/openprom continues to work
1401 	 */
1402 	prom_setup();
1403 
1404 	/*
1405 	 * Load all platform specific modules
1406 	 */
1407 	psm_modload();
1408 
1409 	PRM_POINT("startup_modules() done");
1410 }
1411 
1412 static void
1413 startup_bop_gone(void)
1414 {
1415 	PRM_POINT("startup_bop_gone() starting...");
1416 
1417 	/*
1418 	 * Do final allocations of HAT data structures that need to
1419 	 * be allocated before quiescing the boot loader.
1420 	 */
1421 	PRM_POINT("Calling hat_kern_alloc()...");
1422 	hat_kern_alloc();
1423 	PRM_POINT("hat_kern_alloc() done");
1424 
1425 	/*
1426 	 * Setup MTRR (Memory type range registers)
1427 	 */
1428 	setup_mtrr();
1429 	PRM_POINT("startup_bop_gone() done");
1430 }
1431 
1432 /*
1433  * Walk through the pagetables looking for pages mapped in by boot.  If the
1434  * setaside flag is set the pages are expected to be returned to the
1435  * kernel later in boot, so we add them to the bootpages list.
1436  */
1437 static void
1438 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1439 {
1440 	uintptr_t va = low;
1441 	size_t len;
1442 	uint_t prot;
1443 	pfn_t pfn;
1444 	page_t *pp;
1445 	pgcnt_t boot_protect_cnt = 0;
1446 
1447 	while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1448 		if (va + len >= high)
1449 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1450 			    "legal range.", len, (void *)va);
1451 
1452 		while (len > 0) {
1453 			pp = page_numtopp_alloc(pfn);
1454 			if (pp != NULL) {
1455 				if (setaside == 0)
1456 					panic("Unexpected mapping by boot.  "
1457 					    "addr=%p pfn=%lx\n",
1458 					    (void *)va, pfn);
1459 
1460 				pp->p_next = bootpages;
1461 				bootpages = pp;
1462 				++boot_protect_cnt;
1463 			}
1464 
1465 			++pfn;
1466 			len -= MMU_PAGESIZE;
1467 			va += MMU_PAGESIZE;
1468 		}
1469 	}
1470 	PRM_DEBUG(boot_protect_cnt);
1471 }
1472 
1473 static void
1474 startup_vm(void)
1475 {
1476 	struct segmap_crargs a;
1477 	extern void hat_kern_setup(void);
1478 	pgcnt_t pages_left;
1479 
1480 	extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg;
1481 	extern pgcnt_t auto_lpg_min_physmem;
1482 
1483 	PRM_POINT("startup_vm() starting...");
1484 
1485 	/*
1486 	 * The next two loops are done in distinct steps in order
1487 	 * to be sure that any page that is doubly mapped (both above
1488 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1489 	 * Note this may never happen, but it might someday.
1490 	 */
1491 
1492 	bootpages = NULL;
1493 	PRM_POINT("Protecting boot pages");
1494 	/*
1495 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1496 	 * page_t's. This can only happen if something weird allocated
1497 	 * in this range (like kadb/kmdb).
1498 	 */
1499 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1500 
1501 	/*
1502 	 * Before we can take over memory allocation/mapping from the boot
1503 	 * loader we must remove from our free page lists any boot pages that
1504 	 * will stay mapped until release_bootstrap().
1505 	 */
1506 	protect_boot_range(0, kernelbase, 1);
1507 #if defined(__amd64)
1508 	protect_boot_range(BOOT_DOUBLEMAP_BASE,
1509 	    BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0);
1510 #endif
1511 
1512 	/*
1513 	 * Copy in boot's page tables, set up extra page tables for the kernel,
1514 	 * and switch to the kernel's context.
1515 	 */
1516 	PRM_POINT("Calling hat_kern_setup()...");
1517 	hat_kern_setup();
1518 
1519 	/*
1520 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1521 	 */
1522 	bootops->bsys_alloc = NULL;
1523 	PRM_POINT("hat_kern_setup() done");
1524 
1525 	hat_cpu_online(CPU);
1526 
1527 	/*
1528 	 * Before we call kvm_init(), we need to establish the final size
1529 	 * of the kernel's heap.  So, we need to figure out how much space
1530 	 * to set aside for segkp, segkpm, and segmap.
1531 	 */
1532 	final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase);
1533 #if defined(__amd64)
1534 	if (kpm_desired) {
1535 		/*
1536 		 * Segkpm appears at the bottom of the kernel's address
1537 		 * range.  To detect accidental overruns of the user
1538 		 * address space, we leave a "red zone" of unmapped memory
1539 		 * between kernelbase and the beginning of segkpm.
1540 		 */
1541 		kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE;
1542 		kpm_size = mmu_ptob(physmax);
1543 		PRM_DEBUG(kpm_vbase);
1544 		PRM_DEBUG(kpm_size);
1545 		final_kernelheap =
1546 		    (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size);
1547 	}
1548 
1549 	if (!segkp_fromheap) {
1550 		size_t sz = mmu_ptob(segkpsize);
1551 
1552 		/*
1553 		 * determine size of segkp and adjust the bottom of the
1554 		 * kernel's heap.
1555 		 */
1556 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1557 			sz = SEGKPDEFSIZE;
1558 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1559 			    "segkpsize has been reset to %ld pages",
1560 			    mmu_btop(sz));
1561 		}
1562 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1563 
1564 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1565 		segkp_base = final_kernelheap;
1566 		PRM_DEBUG(segkpsize);
1567 		PRM_DEBUG(segkp_base);
1568 		final_kernelheap = segkp_base + mmu_ptob(segkpsize);
1569 		PRM_DEBUG(final_kernelheap);
1570 	}
1571 
1572 	/*
1573 	 * put the range of VA for device mappings next
1574 	 */
1575 	toxic_addr = (uintptr_t)final_kernelheap;
1576 	PRM_DEBUG(toxic_addr);
1577 	final_kernelheap = (char *)toxic_addr + toxic_size;
1578 #endif
1579 	PRM_DEBUG(final_kernelheap);
1580 	ASSERT(final_kernelheap < boot_kernelheap);
1581 
1582 	/*
1583 	 * Users can change segmapsize through eeprom or /etc/system.
1584 	 * If the variable is tuned through eeprom, there is no upper
1585 	 * bound on the size of segmap.  If it is tuned through
1586 	 * /etc/system on 32-bit systems, it must be no larger than we
1587 	 * planned for in startup_memlist().
1588 	 */
1589 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1590 	segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap);
1591 
1592 #if defined(__i386)
1593 	if (segmapsize > segmap_reserved) {
1594 		cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in "
1595 		    "/etc/system.  Use eeprom.", (long)SEGMAPMAX);
1596 		segmapsize = segmap_reserved;
1597 	}
1598 	/*
1599 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1600 	 * the bottom of the kernel's address range.  Set aside space for a
1601 	 * red zone just below the start of segmap.
1602 	 */
1603 	segkmap_start += KERNEL_REDZONE_SIZE;
1604 	segmapsize -= KERNEL_REDZONE_SIZE;
1605 #endif
1606 	final_kernelheap = (char *)(segkmap_start + segmapsize);
1607 
1608 	PRM_DEBUG(segkmap_start);
1609 	PRM_DEBUG(segmapsize);
1610 	PRM_DEBUG(final_kernelheap);
1611 
1612 	/*
1613 	 * Initialize VM system
1614 	 */
1615 	PRM_POINT("Calling kvm_init()...");
1616 	kvm_init();
1617 	PRM_POINT("kvm_init() done");
1618 
1619 	/*
1620 	 * Tell kmdb that the VM system is now working
1621 	 */
1622 	if (boothowto & RB_DEBUG)
1623 		kdi_dvec_vmready();
1624 
1625 	/*
1626 	 * Mangle the brand string etc.
1627 	 */
1628 	cpuid_pass3(CPU);
1629 
1630 	PRM_DEBUG(final_kernelheap);
1631 
1632 	/*
1633 	 * Now that we can use memory outside the top 4GB (on 64-bit
1634 	 * systems) and we know the size of segmap, we can set the final
1635 	 * size of the kernel's heap.  Note: on 64-bit systems we still
1636 	 * can't touch anything in the bottom half of the top 4GB range
1637 	 * because boot still has pages mapped there.
1638 	 */
1639 	if (final_kernelheap < boot_kernelheap) {
1640 		kernelheap_extend(final_kernelheap, boot_kernelheap);
1641 #if defined(__amd64)
1642 		kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE,
1643 		    MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE),
1644 		    (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE),
1645 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1646 		PRM_DEBUG(kmem_setaside);
1647 		if (kmem_setaside == NULL)
1648 			panic("Could not protect boot's memory");
1649 #endif
1650 	}
1651 	/*
1652 	 * Now that the kernel heap may have grown significantly, we need
1653 	 * to make all the remaining page_t's available to back that memory.
1654 	 *
1655 	 * XX64 this should probably wait till after release boot-strap too.
1656 	 */
1657 	pages_left = npages - boot_npages;
1658 	if (pages_left > 0) {
1659 		PRM_DEBUG(pages_left);
1660 		(void) kphysm_init(NULL, memseg_base, boot_npages, pages_left);
1661 	}
1662 
1663 #if defined(__amd64)
1664 
1665 	/*
1666 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1667 	 */
1668 	device_arena = vmem_create("device", (void *)toxic_addr,
1669 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1670 
1671 #else	/* __i386 */
1672 
1673 	/*
1674 	 * allocate the bit map that tracks toxic pages
1675 	 */
1676 	toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase));
1677 	PRM_DEBUG(toxic_bit_map_len);
1678 	toxic_bit_map =
1679 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1680 	ASSERT(toxic_bit_map != NULL);
1681 	PRM_DEBUG(toxic_bit_map);
1682 
1683 #endif	/* __i386 */
1684 
1685 
1686 	/*
1687 	 * Now that we've got more VA, as well as the ability to allocate from
1688 	 * it, tell the debugger.
1689 	 */
1690 	if (boothowto & RB_DEBUG)
1691 		kdi_dvec_memavail();
1692 
1693 	/*
1694 	 * The following code installs a special page fault handler (#pf)
1695 	 * to work around a pentium bug.
1696 	 */
1697 #if !defined(__amd64)
1698 	if (x86_type == X86_TYPE_P5) {
1699 		gate_desc_t *newidt;
1700 		desctbr_t    newidt_r;
1701 
1702 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1703 			panic("failed to install pentium_pftrap");
1704 
1705 		bcopy(idt0, newidt, sizeof (idt0));
1706 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1707 		    KCS_SEL, 0, SDT_SYSIGT, SEL_KPL);
1708 
1709 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1710 		    PROT_READ|PROT_EXEC);
1711 
1712 		newidt_r.dtr_limit = sizeof (idt0) - 1;
1713 		newidt_r.dtr_base = (uintptr_t)newidt;
1714 		CPU->cpu_idt = newidt;
1715 		wr_idtr(&newidt_r);
1716 	}
1717 #endif	/* !__amd64 */
1718 
1719 	/*
1720 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1721 	 * parameters left there by controllers/BIOS.
1722 	 */
1723 	PRM_POINT("setup up p0_va");
1724 	p0_va = i86devmap(0, 1, PROT_READ);
1725 	PRM_DEBUG(p0_va);
1726 
1727 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1728 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1729 
1730 	/*
1731 	 * disable automatic large pages for small memory systems or
1732 	 * when the disable flag is set.
1733 	 */
1734 	if (physmem < auto_lpg_min_physmem || auto_lpg_disable) {
1735 		exec_lpg_disable = 1;
1736 		use_brk_lpg = 0;
1737 		use_stk_lpg = 0;
1738 		use_zmap_lpg = 0;
1739 	}
1740 
1741 	PRM_POINT("Calling hat_init_finish()...");
1742 	hat_init_finish();
1743 	PRM_POINT("hat_init_finish() done");
1744 
1745 	/*
1746 	 * Initialize the segkp segment type.
1747 	 */
1748 	rw_enter(&kas.a_lock, RW_WRITER);
1749 	if (!segkp_fromheap) {
1750 		if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1751 		    segkp) < 0) {
1752 			panic("startup: cannot attach segkp");
1753 			/*NOTREACHED*/
1754 		}
1755 	} else {
1756 		/*
1757 		 * For 32 bit x86 systems, we will have segkp under the heap.
1758 		 * There will not be a segkp segment.  We do, however, need
1759 		 * to fill in the seg structure.
1760 		 */
1761 		segkp->s_as = &kas;
1762 	}
1763 	if (segkp_create(segkp) != 0) {
1764 		panic("startup: segkp_create failed");
1765 		/*NOTREACHED*/
1766 	}
1767 	PRM_DEBUG(segkp);
1768 	rw_exit(&kas.a_lock);
1769 
1770 	/*
1771 	 * kpm segment
1772 	 */
1773 	segmap_kpm = 0;
1774 	if (kpm_desired) {
1775 		kpm_init();
1776 		kpm_enable = 1;
1777 	}
1778 
1779 	/*
1780 	 * Now create segmap segment.
1781 	 */
1782 	rw_enter(&kas.a_lock, RW_WRITER);
1783 	if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) {
1784 		panic("cannot attach segkmap");
1785 		/*NOTREACHED*/
1786 	}
1787 	PRM_DEBUG(segkmap);
1788 
1789 	/*
1790 	 * The 64 bit HAT permanently maps only segmap's page tables.
1791 	 * The 32 bit HAT maps the heap's page tables too.
1792 	 */
1793 #if defined(__amd64)
1794 	hat_kmap_init(segkmap_start, segmapsize);
1795 #else /* __i386 */
1796 	ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap);
1797 	hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start);
1798 #endif /* __i386 */
1799 
1800 	a.prot = PROT_READ | PROT_WRITE;
1801 	a.shmsize = 0;
1802 	a.nfreelist = segmapfreelists;
1803 
1804 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
1805 		panic("segmap_create segkmap");
1806 	rw_exit(&kas.a_lock);
1807 
1808 	setup_vaddr_for_ppcopy(CPU);
1809 
1810 	segdev_init();
1811 	pmem_init();
1812 	PRM_POINT("startup_vm() done");
1813 }
1814 
1815 static void
1816 startup_end(void)
1817 {
1818 	extern void setx86isalist(void);
1819 
1820 	PRM_POINT("startup_end() starting...");
1821 
1822 	/*
1823 	 * Perform tasks that get done after most of the VM
1824 	 * initialization has been done but before the clock
1825 	 * and other devices get started.
1826 	 */
1827 	kern_setup1();
1828 
1829 	/*
1830 	 * Perform CPC initialization for this CPU.
1831 	 */
1832 	kcpc_hw_init(CPU);
1833 
1834 #if defined(__amd64)
1835 	/*
1836 	 * Validate support for syscall/sysret
1837 	 * XX64 -- include SSE, SSE2, etc. here too?
1838 	 */
1839 	if ((x86_feature & X86_ASYSC) == 0) {
1840 		cmn_err(CE_WARN,
1841 		    "cpu%d does not support syscall/sysret", CPU->cpu_id);
1842 	}
1843 #endif
1844 
1845 #if defined(OPTERON_WORKAROUND_6323525)
1846 	if (opteron_workaround_6323525)
1847 		patch_workaround_6323525();
1848 #endif
1849 	/*
1850 	 * Configure the system.
1851 	 */
1852 	PRM_POINT("Calling configure()...");
1853 	configure();		/* set up devices */
1854 	PRM_POINT("configure() done");
1855 
1856 	/*
1857 	 * Set the isa_list string to the defined instruction sets we
1858 	 * support.
1859 	 */
1860 	setx86isalist();
1861 	cpu_intr_alloc(CPU, NINTR_THREADS);
1862 	psm_install();
1863 
1864 	/*
1865 	 * We're done with bootops.  We don't unmap the bootstrap yet because
1866 	 * we're still using bootsvcs.
1867 	 */
1868 	PRM_POINT("zeroing out bootops");
1869 	*bootopsp = (struct bootops *)0;
1870 	bootops = (struct bootops *)NULL;
1871 
1872 	PRM_POINT("Enabling interrupts");
1873 	(*picinitf)();
1874 	sti();
1875 
1876 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
1877 		"softlevel1", NULL, NULL); /* XXX to be moved later */
1878 
1879 	PRM_POINT("startup_end() done");
1880 }
1881 
1882 extern char hw_serial[];
1883 char *_hs1107 = hw_serial;
1884 ulong_t  _bdhs34;
1885 
1886 void
1887 post_startup(void)
1888 {
1889 	/*
1890 	 * Set the system wide, processor-specific flags to be passed
1891 	 * to userland via the aux vector for performance hints and
1892 	 * instruction set extensions.
1893 	 */
1894 	bind_hwcap();
1895 
1896 	/*
1897 	 * Load the System Management BIOS into the global ksmbios handle,
1898 	 * if an SMBIOS is present on this system.
1899 	 */
1900 	ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1901 
1902 	/*
1903 	 * Startup memory scrubber.
1904 	 */
1905 	memscrub_init();
1906 
1907 	/*
1908 	 * Complete CPU module initialization
1909 	 */
1910 	cmi_post_init();
1911 
1912 	/*
1913 	 * Perform forceloading tasks for /etc/system.
1914 	 */
1915 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
1916 
1917 	/*
1918 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
1919 	 * ON4.0: This must be fixed or restated in /etc/systems.
1920 	 */
1921 	(void) modload("fs", "procfs");
1922 
1923 #if defined(__i386)
1924 	/*
1925 	 * Check for required functional Floating Point hardware,
1926 	 * unless FP hardware explicitly disabled.
1927 	 */
1928 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
1929 		halt("No working FP hardware found");
1930 #endif
1931 
1932 	maxmem = freemem;
1933 
1934 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
1935 
1936 	/*
1937 	 * Perform the formal initialization of the boot chip,
1938 	 * and associate the boot cpu with it.
1939 	 * This must be done after the cpu node for CPU has been
1940 	 * added to the device tree, when the necessary probing to
1941 	 * know the chip type and chip "id" is performed.
1942 	 */
1943 	chip_cpu_init(CPU);
1944 	chip_cpu_assign(CPU);
1945 }
1946 
1947 static int
1948 pp_in_ramdisk(page_t *pp)
1949 {
1950 	extern uint64_t ramdisk_start, ramdisk_end;
1951 
1952 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
1953 	    (pp->p_pagenum < btopr(ramdisk_end)));
1954 }
1955 
1956 void
1957 release_bootstrap(void)
1958 {
1959 	int root_is_ramdisk;
1960 	pfn_t pfn;
1961 	page_t *pp;
1962 	extern void kobj_boot_unmountroot(void);
1963 	extern dev_t rootdev;
1964 
1965 	/* unmount boot ramdisk and release kmem usage */
1966 	kobj_boot_unmountroot();
1967 
1968 	/*
1969 	 * We're finished using the boot loader so free its pages.
1970 	 */
1971 	PRM_POINT("Unmapping lower boot pages");
1972 	clear_boot_mappings(0, kernelbase);
1973 #if defined(__amd64)
1974 	PRM_POINT("Unmapping upper boot pages");
1975 	clear_boot_mappings(BOOT_DOUBLEMAP_BASE,
1976 	    BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
1977 #endif
1978 
1979 	/*
1980 	 * If root isn't on ramdisk, destroy the hardcoded
1981 	 * ramdisk node now and release the memory. Else,
1982 	 * ramdisk memory is kept in rd_pages.
1983 	 */
1984 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
1985 	if (!root_is_ramdisk) {
1986 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
1987 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
1988 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
1989 		(void) ddi_remove_child(dip, 0);
1990 	}
1991 
1992 	PRM_POINT("Releasing boot pages");
1993 	while (bootpages) {
1994 		pp = bootpages;
1995 		bootpages = pp->p_next;
1996 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
1997 			pp->p_next = rd_pages;
1998 			rd_pages = pp;
1999 			continue;
2000 		}
2001 		pp->p_next = (struct page *)0;
2002 		page_free(pp, 1);
2003 	}
2004 
2005 	/*
2006 	 * Find 1 page below 1 MB so that other processors can boot up.
2007 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2008 	 * We should have just free'd one up.
2009 	 */
2010 	if (use_mp) {
2011 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
2012 			if (page_numtopp_alloc(pfn) == NULL)
2013 				continue;
2014 			rm_platter_va = i86devmap(pfn, 1,
2015 			    PROT_READ | PROT_WRITE | PROT_EXEC);
2016 			rm_platter_pa = ptob(pfn);
2017 			hat_devload(kas.a_hat,
2018 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2019 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2020 			    HAT_LOAD_NOCONSIST);
2021 			break;
2022 		}
2023 		if (pfn == btop(1*1024*1024))
2024 			panic("No page available for starting "
2025 			    "other processors");
2026 	}
2027 
2028 #if defined(__amd64)
2029 	PRM_POINT("Returning boot's VA space to kernel heap");
2030 	if (kmem_setaside != NULL)
2031 		vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE);
2032 #endif
2033 }
2034 
2035 /*
2036  * Initialize the platform-specific parts of a page_t.
2037  */
2038 void
2039 add_physmem_cb(page_t *pp, pfn_t pnum)
2040 {
2041 	pp->p_pagenum = pnum;
2042 	pp->p_mapping = NULL;
2043 	pp->p_embed = 0;
2044 	pp->p_share = 0;
2045 	pp->p_mlentry = 0;
2046 }
2047 
2048 /*
2049  * kphysm_init() initializes physical memory.
2050  */
2051 static pgcnt_t
2052 kphysm_init(
2053 	page_t *inpp,
2054 	struct memseg *memsegp,
2055 	pgcnt_t start,
2056 	pgcnt_t npages)
2057 {
2058 	struct memlist	*pmem;
2059 	struct memseg	*cur_memseg;
2060 	struct memseg	**memsegpp;
2061 	pfn_t		base_pfn;
2062 	pgcnt_t		num;
2063 	pgcnt_t		total_skipped = 0;
2064 	pgcnt_t		skipping = 0;
2065 	pgcnt_t		pages_done = 0;
2066 	pgcnt_t		largepgcnt;
2067 	uint64_t	addr;
2068 	uint64_t	size;
2069 	page_t		*pp = inpp;
2070 	int		dobreak = 0;
2071 	extern pfn_t	ddiphysmin;
2072 
2073 	ASSERT(page_hash != NULL && page_hashsz != 0);
2074 
2075 	for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++);
2076 	ASSERT(cur_memseg == memsegp || start > 0);
2077 
2078 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2079 		/*
2080 		 * In a 32 bit kernel can't use higher memory if we're
2081 		 * not booting in PAE mode. This check takes care of that.
2082 		 */
2083 		addr = pmem->address;
2084 		size = pmem->size;
2085 		if (btop(addr) > physmax)
2086 			continue;
2087 
2088 		/*
2089 		 * align addr and size - they may not be at page boundaries
2090 		 */
2091 		if ((addr & MMU_PAGEOFFSET) != 0) {
2092 			addr += MMU_PAGEOFFSET;
2093 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2094 			size -= addr - pmem->address;
2095 		}
2096 
2097 		/* only process pages below or equal to physmax */
2098 		if ((btop(addr + size) - 1) > physmax)
2099 			size = ptob(physmax - btop(addr) + 1);
2100 
2101 		num = btop(size);
2102 		if (num == 0)
2103 			continue;
2104 
2105 		if (total_skipped < start) {
2106 			if (start - total_skipped > num) {
2107 				total_skipped += num;
2108 				continue;
2109 			}
2110 			skipping = start - total_skipped;
2111 			num -= skipping;
2112 			addr += (MMU_PAGESIZE * skipping);
2113 			total_skipped = start;
2114 		}
2115 		if (num == 0)
2116 			continue;
2117 
2118 		if (num > npages)
2119 			num = npages;
2120 
2121 		npages -= num;
2122 		pages_done += num;
2123 		base_pfn = btop(addr);
2124 
2125 		/*
2126 		 * If the caller didn't provide space for the page
2127 		 * structures, carve them out of the memseg they will
2128 		 * represent.
2129 		 */
2130 		if (pp == NULL) {
2131 			pgcnt_t pp_pgs;
2132 
2133 			if (num <= 1)
2134 				continue;
2135 
2136 			/*
2137 			 * Compute how many of the pages we need to use for
2138 			 * page_ts
2139 			 */
2140 			pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1;
2141 			while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >=
2142 			    num - pp_pgs + 1)
2143 				--pp_pgs;
2144 			PRM_DEBUG(pp_pgs);
2145 
2146 			pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs),
2147 			    VM_NOSLEEP);
2148 			if (pp == NULL) {
2149 				cmn_err(CE_WARN, "Unable to add %ld pages to "
2150 				    "the system.", num);
2151 				continue;
2152 			}
2153 
2154 			hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs),
2155 			    base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK,
2156 			    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
2157 			bzero(pp, mmu_ptob(pp_pgs));
2158 			num -= pp_pgs;
2159 			base_pfn += pp_pgs;
2160 		}
2161 
2162 		if (prom_debug)
2163 			prom_printf("MEMSEG addr=0x%" PRIx64
2164 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2165 			    addr, num, base_pfn, base_pfn + num);
2166 
2167 		/*
2168 		 * drop pages below ddiphysmin to simplify ddi memory
2169 		 * allocation with non-zero addr_lo requests.
2170 		 */
2171 		if (base_pfn < ddiphysmin) {
2172 			if (base_pfn + num <= ddiphysmin) {
2173 				/* drop entire range below ddiphysmin */
2174 				continue;
2175 			}
2176 			/* adjust range to ddiphysmin */
2177 			pp += (ddiphysmin - base_pfn);
2178 			num -= (ddiphysmin - base_pfn);
2179 			base_pfn = ddiphysmin;
2180 		}
2181 		/*
2182 		 * Build the memsegs entry
2183 		 */
2184 		cur_memseg->pages = pp;
2185 		cur_memseg->epages = pp + num;
2186 		cur_memseg->pages_base = base_pfn;
2187 		cur_memseg->pages_end = base_pfn + num;
2188 
2189 		/*
2190 		 * insert in memseg list in decreasing pfn range order.
2191 		 * Low memory is typically more fragmented such that this
2192 		 * ordering keeps the larger ranges at the front of the list
2193 		 * for code that searches memseg.
2194 		 */
2195 		memsegpp = &memsegs;
2196 		for (;;) {
2197 			if (*memsegpp == NULL) {
2198 				/* empty memsegs */
2199 				memsegs = cur_memseg;
2200 				break;
2201 			}
2202 			/* check for continuity with start of memsegpp */
2203 			if (cur_memseg->pages_end == (*memsegpp)->pages_base) {
2204 				if (cur_memseg->epages == (*memsegpp)->pages) {
2205 					/*
2206 					 * contiguous pfn and page_t's. Merge
2207 					 * cur_memseg into *memsegpp. Drop
2208 					 * cur_memseg
2209 					 */
2210 					(*memsegpp)->pages_base =
2211 					    cur_memseg->pages_base;
2212 					(*memsegpp)->pages =
2213 					    cur_memseg->pages;
2214 					/*
2215 					 * check if contiguous with the end of
2216 					 * the next memseg.
2217 					 */
2218 					if ((*memsegpp)->next &&
2219 					    ((*memsegpp)->pages_base ==
2220 					    (*memsegpp)->next->pages_end)) {
2221 						cur_memseg = *memsegpp;
2222 						memsegpp = &((*memsegpp)->next);
2223 						dobreak = 1;
2224 					} else {
2225 						break;
2226 					}
2227 				} else {
2228 					/*
2229 					 * contiguous pfn but not page_t's.
2230 					 * drop last pfn/page_t in cur_memseg
2231 					 * to prevent creation of large pages
2232 					 * with noncontiguous page_t's if not
2233 					 * aligned to largest page boundary.
2234 					 */
2235 					largepgcnt = page_get_pagecnt(
2236 					    page_num_pagesizes() - 1);
2237 
2238 					if (cur_memseg->pages_end &
2239 					    (largepgcnt - 1)) {
2240 						num--;
2241 						cur_memseg->epages--;
2242 						cur_memseg->pages_end--;
2243 					}
2244 				}
2245 			}
2246 
2247 			/* check for continuity with end of memsegpp */
2248 			if (cur_memseg->pages_base == (*memsegpp)->pages_end) {
2249 				if (cur_memseg->pages == (*memsegpp)->epages) {
2250 					/*
2251 					 * contiguous pfn and page_t's. Merge
2252 					 * cur_memseg into *memsegpp. Drop
2253 					 * cur_memseg.
2254 					 */
2255 					if (dobreak) {
2256 						/* merge previously done */
2257 						cur_memseg->pages =
2258 						    (*memsegpp)->pages;
2259 						cur_memseg->pages_base =
2260 						    (*memsegpp)->pages_base;
2261 						cur_memseg->next =
2262 						    (*memsegpp)->next;
2263 					} else {
2264 						(*memsegpp)->pages_end =
2265 						    cur_memseg->pages_end;
2266 						(*memsegpp)->epages =
2267 						    cur_memseg->epages;
2268 					}
2269 					break;
2270 				}
2271 				/*
2272 				 * contiguous pfn but not page_t's.
2273 				 * drop first pfn/page_t in cur_memseg
2274 				 * to prevent creation of large pages
2275 				 * with noncontiguous page_t's if not
2276 				 * aligned to largest page boundary.
2277 				 */
2278 				largepgcnt = page_get_pagecnt(
2279 				    page_num_pagesizes() - 1);
2280 				if (base_pfn & (largepgcnt - 1)) {
2281 					num--;
2282 					base_pfn++;
2283 					cur_memseg->pages++;
2284 					cur_memseg->pages_base++;
2285 					pp = cur_memseg->pages;
2286 				}
2287 				if (dobreak)
2288 					break;
2289 			}
2290 
2291 			if (cur_memseg->pages_base >=
2292 			    (*memsegpp)->pages_end) {
2293 				cur_memseg->next = *memsegpp;
2294 				*memsegpp = cur_memseg;
2295 				break;
2296 			}
2297 			if ((*memsegpp)->next == NULL) {
2298 				cur_memseg->next = NULL;
2299 				(*memsegpp)->next = cur_memseg;
2300 				break;
2301 			}
2302 			memsegpp = &((*memsegpp)->next);
2303 			ASSERT(*memsegpp != NULL);
2304 		}
2305 
2306 		/*
2307 		 * add_physmem() initializes the PSM part of the page
2308 		 * struct by calling the PSM back with add_physmem_cb().
2309 		 * In addition it coalesces pages into larger pages as
2310 		 * it initializes them.
2311 		 */
2312 		add_physmem(pp, num, base_pfn);
2313 		cur_memseg++;
2314 		availrmem_initial += num;
2315 		availrmem += num;
2316 
2317 		/*
2318 		 * If the caller provided the page frames to us, then
2319 		 * advance in that list.  Otherwise, prepare to allocate
2320 		 * our own page frames for the next memseg.
2321 		 */
2322 		pp = (inpp == NULL) ? NULL : pp + num;
2323 	}
2324 
2325 	PRM_DEBUG(availrmem_initial);
2326 	PRM_DEBUG(availrmem);
2327 	PRM_DEBUG(freemem);
2328 	build_pfn_hash();
2329 	return (pages_done);
2330 }
2331 
2332 /*
2333  * Kernel VM initialization.
2334  */
2335 static void
2336 kvm_init(void)
2337 {
2338 #ifdef DEBUG
2339 	extern void _start();
2340 
2341 	ASSERT((caddr_t)_start == s_text);
2342 #endif
2343 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2344 
2345 	/*
2346 	 * Put the kernel segments in kernel address space.
2347 	 */
2348 	rw_enter(&kas.a_lock, RW_WRITER);
2349 	as_avlinit(&kas);
2350 
2351 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2352 	(void) segkmem_create(&ktextseg);
2353 
2354 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2355 	(void) segkmem_create(&kvalloc);
2356 
2357 	/*
2358 	 * We're about to map out /boot.  This is the beginning of the
2359 	 * system resource management transition. We can no longer
2360 	 * call into /boot for I/O or memory allocations.
2361 	 *
2362 	 * XX64 - Is this still correct with kernelheap_extend() being called
2363 	 * later than this????
2364 	 */
2365 	(void) seg_attach(&kas, final_kernelheap,
2366 	    ekernelheap - final_kernelheap, &kvseg);
2367 	(void) segkmem_create(&kvseg);
2368 
2369 #if defined(__amd64)
2370 	(void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core);
2371 	(void) segkmem_create(&kvseg_core);
2372 #endif
2373 
2374 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2375 	    &kdebugseg);
2376 	(void) segkmem_create(&kdebugseg);
2377 
2378 	rw_exit(&kas.a_lock);
2379 
2380 	/*
2381 	 * Ensure that the red zone at kernelbase is never accessible.
2382 	 */
2383 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2384 
2385 	/*
2386 	 * Make the text writable so that it can be hot patched by DTrace.
2387 	 */
2388 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2389 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2390 
2391 	/*
2392 	 * Make data writable until end.
2393 	 */
2394 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2395 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2396 }
2397 
2398 /*
2399  * These are MTTR registers supported by P6
2400  */
2401 static struct	mtrrvar	mtrrphys_arr[MAX_MTRRVAR];
2402 static uint64_t mtrr64k, mtrr16k1, mtrr16k2;
2403 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3;
2404 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6;
2405 static uint64_t mtrr4k7, mtrr4k8, mtrrcap;
2406 uint64_t mtrrdef, pat_attr_reg;
2407 
2408 /*
2409  * Disable reprogramming of MTRRs by default.
2410  */
2411 int	enable_relaxed_mtrr = 0;
2412 
2413 void
2414 setup_mtrr()
2415 {
2416 	int i, ecx;
2417 	int vcnt;
2418 	struct	mtrrvar	*mtrrphys;
2419 
2420 	if (!(x86_feature & X86_MTRR))
2421 		return;
2422 
2423 	mtrrcap = rdmsr(REG_MTRRCAP);
2424 	mtrrdef = rdmsr(REG_MTRRDEF);
2425 	if (mtrrcap & MTRRCAP_FIX) {
2426 		mtrr64k = rdmsr(REG_MTRR64K);
2427 		mtrr16k1 = rdmsr(REG_MTRR16K1);
2428 		mtrr16k2 = rdmsr(REG_MTRR16K2);
2429 		mtrr4k1 = rdmsr(REG_MTRR4K1);
2430 		mtrr4k2 = rdmsr(REG_MTRR4K2);
2431 		mtrr4k3 = rdmsr(REG_MTRR4K3);
2432 		mtrr4k4 = rdmsr(REG_MTRR4K4);
2433 		mtrr4k5 = rdmsr(REG_MTRR4K5);
2434 		mtrr4k6 = rdmsr(REG_MTRR4K6);
2435 		mtrr4k7 = rdmsr(REG_MTRR4K7);
2436 		mtrr4k8 = rdmsr(REG_MTRR4K8);
2437 	}
2438 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2439 		vcnt = MAX_MTRRVAR;
2440 
2441 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2442 		i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2443 		mtrrphys->mtrrphys_base = rdmsr(ecx);
2444 		mtrrphys->mtrrphys_mask = rdmsr(ecx + 1);
2445 		if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
2446 			mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V;
2447 		}
2448 	}
2449 	if (x86_feature & X86_PAT) {
2450 		if (enable_relaxed_mtrr)
2451 			mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E;
2452 		pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2453 	}
2454 
2455 	mtrr_sync();
2456 }
2457 
2458 /*
2459  * Sync current cpu mtrr with the incore copy of mtrr.
2460  * This function has to be invoked with interrupts disabled
2461  * Currently we do not capture other cpu's. This is invoked on cpu0
2462  * just after reading /etc/system.
2463  * On other cpu's its invoked from mp_startup().
2464  */
2465 void
2466 mtrr_sync()
2467 {
2468 	uint_t	crvalue, cr0_orig;
2469 	int	vcnt, i, ecx;
2470 	struct	mtrrvar	*mtrrphys;
2471 
2472 	cr0_orig = crvalue = getcr0();
2473 	crvalue |= CR0_CD;
2474 	crvalue &= ~CR0_NW;
2475 	setcr0(crvalue);
2476 	invalidate_cache();
2477 	setcr3(getcr3());
2478 
2479 	if (x86_feature & X86_PAT)
2480 		wrmsr(REG_MTRRPAT, pat_attr_reg);
2481 
2482 	wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) &
2483 	    ~((uint64_t)(uintptr_t)MTRRDEF_E));
2484 
2485 	if (mtrrcap & MTRRCAP_FIX) {
2486 		wrmsr(REG_MTRR64K, mtrr64k);
2487 		wrmsr(REG_MTRR16K1, mtrr16k1);
2488 		wrmsr(REG_MTRR16K2, mtrr16k2);
2489 		wrmsr(REG_MTRR4K1, mtrr4k1);
2490 		wrmsr(REG_MTRR4K2, mtrr4k2);
2491 		wrmsr(REG_MTRR4K3, mtrr4k3);
2492 		wrmsr(REG_MTRR4K4, mtrr4k4);
2493 		wrmsr(REG_MTRR4K5, mtrr4k5);
2494 		wrmsr(REG_MTRR4K6, mtrr4k6);
2495 		wrmsr(REG_MTRR4K7, mtrr4k7);
2496 		wrmsr(REG_MTRR4K8, mtrr4k8);
2497 	}
2498 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2499 		vcnt = MAX_MTRRVAR;
2500 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2501 	    i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2502 		wrmsr(ecx, mtrrphys->mtrrphys_base);
2503 		wrmsr(ecx + 1, mtrrphys->mtrrphys_mask);
2504 	}
2505 	wrmsr(REG_MTRRDEF, mtrrdef);
2506 	setcr3(getcr3());
2507 	invalidate_cache();
2508 	setcr0(cr0_orig);
2509 }
2510 
2511 /*
2512  * resync mtrr so that BIOS is happy. Called from mdboot
2513  */
2514 void
2515 mtrr_resync()
2516 {
2517 	if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
2518 		/*
2519 		 * We could have changed the default mtrr definition.
2520 		 * Put it back to uncached which is what it is at power on
2521 		 */
2522 		mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E;
2523 		mtrr_sync();
2524 	}
2525 }
2526 
2527 void
2528 get_system_configuration()
2529 {
2530 	char	prop[32];
2531 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2532 
2533 	if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) ||
2534 		(BOP_GETPROP(bootops, "nodes", prop) < 0) 	||
2535 		(kobj_getvalue(prop, &nodes_ll) == -1) ||
2536 		(nodes_ll > MAXNODES))			   ||
2537 	    ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) ||
2538 		(BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) ||
2539 		(kobj_getvalue(prop, &cpus_pernode_ll) == -1))) {
2540 
2541 		system_hardware.hd_nodes = 1;
2542 		system_hardware.hd_cpus_per_node = 0;
2543 	} else {
2544 		system_hardware.hd_nodes = (int)nodes_ll;
2545 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2546 	}
2547 	if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) ||
2548 		(BOP_GETPROP(bootops, "kernelbase", prop) < 0) 	||
2549 		(kobj_getvalue(prop, &lvalue) == -1))
2550 			eprom_kernelbase = NULL;
2551 	else
2552 			eprom_kernelbase = (uintptr_t)lvalue;
2553 
2554 	if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) ||
2555 	    (BOP_GETPROP(bootops, "segmapsize", prop) < 0) ||
2556 	    (kobj_getvalue(prop, &lvalue) == -1)) {
2557 		segmapsize = SEGMAPDEFAULT;
2558 	} else {
2559 		segmapsize = (uintptr_t)lvalue;
2560 	}
2561 
2562 	if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) ||
2563 	    (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) ||
2564 	    (kobj_getvalue(prop, &lvalue) == -1)) {
2565 		segmapfreelists = 0;	/* use segmap driver default */
2566 	} else {
2567 		segmapfreelists = (int)lvalue;
2568 	}
2569 
2570 	if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) &&
2571 	    (BOP_GETPROP(bootops, "physmem", prop) >= 0) &&
2572 	    (kobj_getvalue(prop, &lvalue) != -1)) {
2573 		physmem = (uintptr_t)lvalue;
2574 	}
2575 }
2576 
2577 /*
2578  * Add to a memory list.
2579  * start = start of new memory segment
2580  * len = length of new memory segment in bytes
2581  * new = pointer to a new struct memlist
2582  * memlistp = memory list to which to add segment.
2583  */
2584 static void
2585 memlist_add(
2586 	uint64_t start,
2587 	uint64_t len,
2588 	struct memlist *new,
2589 	struct memlist **memlistp)
2590 {
2591 	struct memlist *cur;
2592 	uint64_t end = start + len;
2593 
2594 	new->address = start;
2595 	new->size = len;
2596 
2597 	cur = *memlistp;
2598 
2599 	while (cur) {
2600 		if (cur->address >= end) {
2601 			new->next = cur;
2602 			*memlistp = new;
2603 			new->prev = cur->prev;
2604 			cur->prev = new;
2605 			return;
2606 		}
2607 		ASSERT(cur->address + cur->size <= start);
2608 		if (cur->next == NULL) {
2609 			cur->next = new;
2610 			new->prev = cur;
2611 			new->next = NULL;
2612 			return;
2613 		}
2614 		memlistp = &cur->next;
2615 		cur = cur->next;
2616 	}
2617 }
2618 
2619 void
2620 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2621 {
2622 	size_t tsize = e_modtext - modtext;
2623 	size_t dsize = e_moddata - moddata;
2624 
2625 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2626 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2627 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2628 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2629 }
2630 
2631 caddr_t
2632 kobj_text_alloc(vmem_t *arena, size_t size)
2633 {
2634 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2635 }
2636 
2637 /*ARGSUSED*/
2638 caddr_t
2639 kobj_texthole_alloc(caddr_t addr, size_t size)
2640 {
2641 	panic("unexpected call to kobj_texthole_alloc()");
2642 	/*NOTREACHED*/
2643 	return (0);
2644 }
2645 
2646 /*ARGSUSED*/
2647 void
2648 kobj_texthole_free(caddr_t addr, size_t size)
2649 {
2650 	panic("unexpected call to kobj_texthole_free()");
2651 }
2652 
2653 /*
2654  * This is called just after configure() in startup().
2655  *
2656  * The ISALIST concept is a bit hopeless on Intel, because
2657  * there's no guarantee of an ever-more-capable processor
2658  * given that various parts of the instruction set may appear
2659  * and disappear between different implementations.
2660  *
2661  * While it would be possible to correct it and even enhance
2662  * it somewhat, the explicit hardware capability bitmask allows
2663  * more flexibility.
2664  *
2665  * So, we just leave this alone.
2666  */
2667 void
2668 setx86isalist(void)
2669 {
2670 	char *tp;
2671 	size_t len;
2672 	extern char *isa_list;
2673 
2674 #define	TBUFSIZE	1024
2675 
2676 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2677 	*tp = '\0';
2678 
2679 #if defined(__amd64)
2680 	(void) strcpy(tp, "amd64 ");
2681 #endif
2682 
2683 	switch (x86_vendor) {
2684 	case X86_VENDOR_Intel:
2685 	case X86_VENDOR_AMD:
2686 	case X86_VENDOR_TM:
2687 		if (x86_feature & X86_CMOV) {
2688 			/*
2689 			 * Pentium Pro or later
2690 			 */
2691 			(void) strcat(tp, "pentium_pro");
2692 			(void) strcat(tp, x86_feature & X86_MMX ?
2693 			    "+mmx pentium_pro " : " ");
2694 		}
2695 		/*FALLTHROUGH*/
2696 	case X86_VENDOR_Cyrix:
2697 		/*
2698 		 * The Cyrix 6x86 does not have any Pentium features
2699 		 * accessible while not at privilege level 0.
2700 		 */
2701 		if (x86_feature & X86_CPUID) {
2702 			(void) strcat(tp, "pentium");
2703 			(void) strcat(tp, x86_feature & X86_MMX ?
2704 			    "+mmx pentium " : " ");
2705 		}
2706 		break;
2707 	default:
2708 		break;
2709 	}
2710 	(void) strcat(tp, "i486 i386 i86");
2711 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2712 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2713 	kmem_free(tp, TBUFSIZE);
2714 
2715 #undef TBUFSIZE
2716 }
2717 
2718 
2719 #ifdef __amd64
2720 
2721 void *
2722 device_arena_alloc(size_t size, int vm_flag)
2723 {
2724 	return (vmem_alloc(device_arena, size, vm_flag));
2725 }
2726 
2727 void
2728 device_arena_free(void *vaddr, size_t size)
2729 {
2730 	vmem_free(device_arena, vaddr, size);
2731 }
2732 
2733 #else
2734 
2735 void *
2736 device_arena_alloc(size_t size, int vm_flag)
2737 {
2738 	caddr_t	vaddr;
2739 	uintptr_t v;
2740 	size_t	start;
2741 	size_t	end;
2742 
2743 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2744 	if (vaddr == NULL)
2745 		return (NULL);
2746 
2747 	v = (uintptr_t)vaddr;
2748 	ASSERT(v >= kernelbase);
2749 	ASSERT(v + size <= ptable_va);
2750 
2751 	start = btop(v - kernelbase);
2752 	end = btop(v + size - 1 - kernelbase);
2753 	ASSERT(start < toxic_bit_map_len);
2754 	ASSERT(end < toxic_bit_map_len);
2755 
2756 	while (start <= end) {
2757 		BT_ATOMIC_SET(toxic_bit_map, start);
2758 		++start;
2759 	}
2760 	return (vaddr);
2761 }
2762 
2763 void
2764 device_arena_free(void *vaddr, size_t size)
2765 {
2766 	uintptr_t v = (uintptr_t)vaddr;
2767 	size_t	start;
2768 	size_t	end;
2769 
2770 	ASSERT(v >= kernelbase);
2771 	ASSERT(v + size <= ptable_va);
2772 
2773 	start = btop(v - kernelbase);
2774 	end = btop(v + size - 1 - kernelbase);
2775 	ASSERT(start < toxic_bit_map_len);
2776 	ASSERT(end < toxic_bit_map_len);
2777 
2778 	while (start <= end) {
2779 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2780 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2781 		++start;
2782 	}
2783 	vmem_free(heap_arena, vaddr, size);
2784 }
2785 
2786 /*
2787  * returns 1st address in range that is in device arena, or NULL
2788  * if len is not NULL it returns the length of the toxic range
2789  */
2790 void *
2791 device_arena_contains(void *vaddr, size_t size, size_t *len)
2792 {
2793 	uintptr_t v = (uintptr_t)vaddr;
2794 	uintptr_t eaddr = v + size;
2795 	size_t start;
2796 	size_t end;
2797 
2798 	/*
2799 	 * if called very early by kmdb, just return NULL
2800 	 */
2801 	if (toxic_bit_map == NULL)
2802 		return (NULL);
2803 
2804 	/*
2805 	 * First check if we're completely outside the bitmap range.
2806 	 */
2807 	if (v >= ptable_va || eaddr < kernelbase)
2808 		return (NULL);
2809 
2810 	/*
2811 	 * Trim ends of search to look at only what the bitmap covers.
2812 	 */
2813 	if (v < kernelbase)
2814 		v = kernelbase;
2815 	start = btop(v - kernelbase);
2816 	end = btop(eaddr - kernelbase);
2817 	if (end >= toxic_bit_map_len)
2818 		end = toxic_bit_map_len;
2819 
2820 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2821 		return (NULL);
2822 
2823 	v = kernelbase + ptob(start);
2824 	if (len != NULL)
2825 		*len = ptob(end - start);
2826 	return ((void *)v);
2827 }
2828 
2829 #endif
2830