xref: /titanic_51/usr/src/uts/i86pc/os/mp_startup.c (revision 12ef07e9fce5f59ad851a4e70cb765f3c56c11a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/proc.h>
34 #include <sys/disp.h>
35 #include <sys/mmu.h>
36 #include <sys/class.h>
37 #include <sys/cmn_err.h>
38 #include <sys/debug.h>
39 #include <sys/asm_linkage.h>
40 #include <sys/x_call.h>
41 #include <sys/systm.h>
42 #include <sys/var.h>
43 #include <sys/vtrace.h>
44 #include <vm/hat.h>
45 #include <sys/mmu.h>
46 #include <vm/as.h>
47 #include <vm/seg_kmem.h>
48 #include <sys/segments.h>
49 #include <sys/kmem.h>
50 #include <sys/stack.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/x86_archext.h>
53 #include <sys/machsystm.h>
54 #include <sys/traptrace.h>
55 #include <sys/clock.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/chip.h>
58 #include <sys/dtrace.h>
59 #include <sys/archsystm.h>
60 #include <sys/fp.h>
61 #include <sys/reboot.h>
62 #include <sys/kdi.h>
63 #include <vm/hat_i86.h>
64 #include <sys/memnode.h>
65 #include <sys/pci_cfgspace.h>
66 #include <sys/cpu_module.h>
67 
68 struct cpu	cpus[1];			/* CPU data */
69 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
70 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
71 
72 /*
73  * Useful for disabling MP bring-up for an MP capable kernel
74  * (a kernel that was built with MP defined)
75  */
76 int use_mp = 1;
77 
78 int mp_cpus = 0x1;	/* to be set by platform specific module	*/
79 
80 /*
81  * This variable is used by the hat layer to decide whether or not
82  * critical sections are needed to prevent race conditions.  For sun4m,
83  * this variable is set once enough MP initialization has been done in
84  * order to allow cross calls.
85  */
86 int flushes_require_xcalls = 0;
87 ulong_t	cpu_ready_set = 1;
88 
89 extern	void	real_mode_start(void);
90 extern	void	real_mode_end(void);
91 static 	void	mp_startup(void);
92 
93 static void cpu_sep_enable(void);
94 static void cpu_sep_disable(void);
95 static void cpu_asysc_enable(void);
96 static void cpu_asysc_disable(void);
97 
98 extern int tsc_gethrtime_enable;
99 
100 /*
101  * Init CPU info - get CPU type info for processor_info system call.
102  */
103 void
104 init_cpu_info(struct cpu *cp)
105 {
106 	processor_info_t *pi = &cp->cpu_type_info;
107 	char buf[CPU_IDSTRLEN];
108 
109 	/*
110 	 * Get clock-frequency property for the CPU.
111 	 */
112 	pi->pi_clock = cpu_freq;
113 
114 	(void) strcpy(pi->pi_processor_type, "i386");
115 	if (fpu_exists)
116 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
117 
118 	(void) cpuid_getidstr(cp, buf, sizeof (buf));
119 
120 	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
121 	(void) strcpy(cp->cpu_idstr, buf);
122 
123 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
124 
125 	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
126 	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
127 	(void) strcpy(cp->cpu_brandstr, buf);
128 
129 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
130 }
131 
132 /*
133  * Configure syscall support on this CPU.
134  */
135 /*ARGSUSED*/
136 static void
137 init_cpu_syscall(struct cpu *cp)
138 {
139 	kpreempt_disable();
140 
141 #if defined(__amd64)
142 	if (x86_feature & X86_ASYSC) {
143 
144 #if !defined(__lint)
145 		/*
146 		 * The syscall instruction imposes a certain ordering on
147 		 * segment selectors, so we double-check that ordering
148 		 * here.
149 		 */
150 		ASSERT(KDS_SEL == KCS_SEL + 8);
151 		ASSERT(UDS_SEL == U32CS_SEL + 8);
152 		ASSERT(UCS_SEL == U32CS_SEL + 16);
153 #endif
154 		/*
155 		 * Turn syscall/sysret extensions on.
156 		 */
157 		cpu_asysc_enable();
158 
159 		/*
160 		 * Program the magic registers ..
161 		 */
162 		wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) <<
163 		    32);
164 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
165 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
166 
167 		/*
168 		 * This list of flags is masked off the incoming
169 		 * %rfl when we enter the kernel.
170 		 */
171 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
172 	}
173 #endif
174 
175 	/*
176 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
177 	 * hard to use syscall/sysret, and it is more portable anyway.
178 	 *
179 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
180 	 * variant isn't available to 32-bit applications, but sysenter is.
181 	 */
182 	if (x86_feature & X86_SEP) {
183 
184 #if !defined(__lint)
185 		/*
186 		 * The sysenter instruction imposes a certain ordering on
187 		 * segment selectors, so we double-check that ordering
188 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
189 		 * Intel Architecture Software Developer's Manual Volume 2:
190 		 * Instruction Set Reference"
191 		 */
192 		ASSERT(KDS_SEL == KCS_SEL + 8);
193 
194 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
195 		ASSERT32(UDS_SEL == UCS_SEL + 8);
196 
197 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
198 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
199 #endif
200 
201 		cpu_sep_enable();
202 
203 		/*
204 		 * resume() sets this value to the base of the threads stack
205 		 * via a context handler.
206 		 */
207 		wrmsr(MSR_INTC_SEP_ESP, 0ULL);
208 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
209 	}
210 
211 	kpreempt_enable();
212 }
213 
214 /*
215  * Multiprocessor initialization.
216  *
217  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
218  * startup and idle threads for the specified CPU.
219  */
220 static void
221 mp_startup_init(int cpun)
222 {
223 #if defined(__amd64)
224 extern void *long_mode_64(void);
225 #endif	/* __amd64 */
226 
227 	struct cpu *cp;
228 	struct tss *ntss;
229 	kthread_id_t tp;
230 	caddr_t	sp;
231 	int size;
232 	proc_t *procp;
233 	extern void idle();
234 
235 	struct cpu_tables *tablesp;
236 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
237 
238 #ifdef TRAPTRACE
239 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
240 #endif
241 
242 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
243 
244 	if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) {
245 		panic("mp_startup_init: cpu%d: "
246 		    "no memory for cpu structure", cpun);
247 		/*NOTREACHED*/
248 	}
249 	procp = curthread->t_procp;
250 
251 	mutex_enter(&cpu_lock);
252 	/*
253 	 * Initialize the dispatcher first.
254 	 */
255 	disp_cpu_init(cp);
256 	mutex_exit(&cpu_lock);
257 
258 	cpu_vm_data_init(cp);
259 
260 	/*
261 	 * Allocate and initialize the startup thread for this CPU.
262 	 * Interrupt and process switch stacks get allocated later
263 	 * when the CPU starts running.
264 	 */
265 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
266 	    TS_STOPPED, maxclsyspri);
267 
268 	/*
269 	 * Set state to TS_ONPROC since this thread will start running
270 	 * as soon as the CPU comes online.
271 	 *
272 	 * All the other fields of the thread structure are setup by
273 	 * thread_create().
274 	 */
275 	THREAD_ONPROC(tp, cp);
276 	tp->t_preempt = 1;
277 	tp->t_bound_cpu = cp;
278 	tp->t_affinitycnt = 1;
279 	tp->t_cpu = cp;
280 	tp->t_disp_queue = cp->cpu_disp;
281 
282 	/*
283 	 * Setup thread to start in mp_startup.
284 	 */
285 	sp = tp->t_stk;
286 	tp->t_pc = (uintptr_t)mp_startup;
287 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
288 
289 	cp->cpu_id = cpun;
290 	cp->cpu_self = cp;
291 	cp->cpu_mask = 1 << cpun;
292 	cp->cpu_thread = tp;
293 	cp->cpu_lwp = NULL;
294 	cp->cpu_dispthread = tp;
295 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
296 
297 	/*
298 	 * cpu_base_spl must be set explicitly here to prevent any blocking
299 	 * operations in mp_startup from causing the spl of the cpu to drop
300 	 * to 0 (allowing device interrupts before we're ready) in resume().
301 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
302 	 * As an extra bit of security on DEBUG kernels, this is enforced with
303 	 * an assertion in mp_startup() -- before cpu_base_spl is set to its
304 	 * proper value.
305 	 */
306 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
307 
308 	/*
309 	 * Now, initialize per-CPU idle thread for this CPU.
310 	 */
311 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
312 
313 	cp->cpu_idle_thread = tp;
314 
315 	tp->t_preempt = 1;
316 	tp->t_bound_cpu = cp;
317 	tp->t_affinitycnt = 1;
318 	tp->t_cpu = cp;
319 	tp->t_disp_queue = cp->cpu_disp;
320 
321 	/*
322 	 * Bootstrap the CPU for CMT aware scheduling
323 	 * The rest of the initialization will happen from
324 	 * mp_startup()
325 	 */
326 	chip_bootstrap_cpu(cp);
327 
328 	/*
329 	 * Perform CPC intialization on the new CPU.
330 	 */
331 	kcpc_hw_init(cp);
332 
333 	/*
334 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
335 	 * for each CPU.
336 	 */
337 
338 	setup_vaddr_for_ppcopy(cp);
339 
340 	/*
341 	 * Allocate space for page directory, stack, tss, gdt and idt.
342 	 * This assumes that kmem_alloc will return memory which is aligned
343 	 * to the next higher power of 2 or a page(if size > MAXABIG)
344 	 * If this assumption goes wrong at any time due to change in
345 	 * kmem alloc, things may not work as the page directory has to be
346 	 * page aligned
347 	 */
348 	if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL)
349 		panic("mp_startup_init: cpu%d cannot allocate tables", cpun);
350 
351 	if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) {
352 		kmem_free(tablesp, sizeof (struct cpu_tables));
353 		size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE;
354 		tablesp = kmem_zalloc(size, KM_NOSLEEP);
355 		tablesp = (struct cpu_tables *)
356 		    (((uintptr_t)tablesp + MMU_STD_PAGESIZE) &
357 		    MMU_STD_PAGEMASK);
358 	}
359 
360 	ntss = cp->cpu_tss = &tablesp->ct_tss;
361 	cp->cpu_gdt = tablesp->ct_gdt;
362 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t)));
363 
364 #if defined(__amd64)
365 
366 	/*
367 	 * #DF (double fault).
368 	 */
369 	ntss->tss_ist1 =
370 	    (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
371 
372 #elif defined(__i386)
373 
374 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
375 	    (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
376 
377 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
378 
379 	ntss->tss_eip = (uint32_t)mp_startup;
380 
381 	ntss->tss_cs = KCS_SEL;
382 	ntss->tss_fs = KFS_SEL;
383 	ntss->tss_gs = KGS_SEL;
384 
385 	/*
386 	 * setup kernel %gs.
387 	 */
388 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
389 	    SEL_KPL, 0, 1);
390 
391 #endif	/* __i386 */
392 
393 	/*
394 	 * Set I/O bit map offset equal to size of TSS segment limit
395 	 * for no I/O permission map. This will cause all user I/O
396 	 * instructions to generate #gp fault.
397 	 */
398 	ntss->tss_bitmapbase = sizeof (*ntss);
399 
400 	/*
401 	 * setup kernel tss.
402 	 */
403 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
404 	    sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL);
405 
406 	/*
407 	 * If we have more than one node, each cpu gets a copy of IDT
408 	 * local to its node. If this is a Pentium box, we use cpu 0's
409 	 * IDT. cpu 0's IDT has been made read-only to workaround the
410 	 * cmpxchgl register bug
411 	 */
412 	cp->cpu_idt = CPU->cpu_idt;
413 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
414 		cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
415 		bcopy(idt0, cp->cpu_idt, sizeof (idt0));
416 	}
417 
418 	/*
419 	 * Get interrupt priority data from cpu 0
420 	 */
421 	cp->cpu_pri_data = CPU->cpu_pri_data;
422 
423 	hat_cpu_online(cp);
424 
425 	/* Should remove all entries for the current process/thread here */
426 
427 	/*
428 	 * Fill up the real mode platter to make it easy for real mode code to
429 	 * kick it off. This area should really be one passed by boot to kernel
430 	 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
431 	 * have identical physical and virtual address in paged mode.
432 	 */
433 	real_mode_platter->rm_idt_base = cp->cpu_idt;
434 	real_mode_platter->rm_idt_lim = sizeof (idt0) - 1;
435 	real_mode_platter->rm_gdt_base = cp->cpu_gdt;
436 	real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1;
437 	real_mode_platter->rm_pdbr = getcr3();
438 	real_mode_platter->rm_cpu = cpun;
439 	real_mode_platter->rm_x86feature = x86_feature;
440 	real_mode_platter->rm_cr4 = cr4_value;
441 
442 #if defined(__amd64)
443 	if (getcr3() > 0xffffffffUL)
444 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
445 			"located above 4G in physical memory (@ 0x%llx).",
446 			(unsigned long long)getcr3());
447 
448 	/*
449 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
450 	 * by code in real_mode_start():
451 	 *
452 	 * GDT[0]:  NULL selector
453 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
454 	 *
455 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
456 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
457 	 * a course of action as any other, though it may cause the entire
458 	 * platform to reset in some cases...
459 	 */
460 	real_mode_platter->rm_temp_gdt[0] = 0ULL;
461 	real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
462 
463 	real_mode_platter->rm_temp_gdt_lim = (ushort_t)
464 	    (sizeof (real_mode_platter->rm_temp_gdt) - 1);
465 	real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
466 	    (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
467 
468 	real_mode_platter->rm_temp_idt_lim = 0;
469 	real_mode_platter->rm_temp_idt_base = 0;
470 
471 	/*
472 	 * Since the CPU needs to jump to protected mode using an identity
473 	 * mapped address, we need to calculate it here.
474 	 */
475 	real_mode_platter->rm_longmode64_addr = rm_platter_pa +
476 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start);
477 #endif	/* __amd64 */
478 
479 #ifdef TRAPTRACE
480 	/*
481 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this
482 	 * CPU.
483 	 */
484 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
485 	ttc->ttc_next = ttc->ttc_first;
486 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
487 #endif
488 
489 	/*
490 	 * Record that we have another CPU.
491 	 */
492 	mutex_enter(&cpu_lock);
493 	/*
494 	 * Initialize the interrupt threads for this CPU
495 	 */
496 	cpu_intr_alloc(cp, NINTR_THREADS);
497 	/*
498 	 * Add CPU to list of available CPUs.  It'll be on the active list
499 	 * after mp_startup().
500 	 */
501 	cpu_add_unit(cp);
502 	mutex_exit(&cpu_lock);
503 }
504 
505 /*
506  * Apply workarounds for known errata, and warn about those that are absent.
507  *
508  * System vendors occasionally create configurations which contain different
509  * revisions of the CPUs that are almost but not exactly the same.  At the
510  * time of writing, this meant that their clock rates were the same, their
511  * feature sets were the same, but the required workaround were -not-
512  * necessarily the same.  So, this routine is invoked on -every- CPU soon
513  * after starting to make sure that the resulting system contains the most
514  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
515  * system.
516  *
517  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
518  * mp_startup() for all slave CPUs. Slaves process workaround_errata prior
519  * to acknowledging their readiness to the master, so this routine will
520  * never be executed by multiple CPUs in parallel, thus making updates to
521  * global data safe.
522  *
523  * These workarounds are based on Rev 3.57 of the Revision Guide for
524  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
525  */
526 
527 #if defined(OPTERON_ERRATUM_91)
528 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
529 #endif
530 
531 #if defined(OPTERON_ERRATUM_93)
532 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
533 #endif
534 
535 #if defined(OPTERON_ERRATUM_100)
536 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
537 #endif
538 
539 #if defined(OPTERON_ERRATUM_109)
540 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
541 #endif
542 
543 #if defined(OPTERON_ERRATUM_121)
544 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
545 #endif
546 
547 #if defined(OPTERON_ERRATUM_122)
548 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
549 #endif
550 
551 #if defined(OPTERON_ERRATUM_123)
552 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
553 #endif
554 
555 #if defined(OPTERON_ERRATUM_131)
556 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
557 #endif
558 
559 #if defined(OPTERON_WORKAROUND_6336786)
560 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
561 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
562 #endif
563 
564 #define	WARNING(cpu, n)						\
565 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d",	\
566 	    (cpu)->cpu_id, (n))
567 
568 uint_t
569 workaround_errata(struct cpu *cpu)
570 {
571 	uint_t missing = 0;
572 
573 	ASSERT(cpu == CPU);
574 
575 	/*LINTED*/
576 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
577 		/*
578 		 * SWAPGS May Fail To Read Correct GS Base
579 		 */
580 #if defined(OPTERON_ERRATUM_88)
581 		/*
582 		 * The workaround is an mfence in the relevant assembler code
583 		 */
584 #else
585 		WARNING(cpu, 88);
586 		missing++;
587 #endif
588 	}
589 
590 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
591 		/*
592 		 * Software Prefetches May Report A Page Fault
593 		 */
594 #if defined(OPTERON_ERRATUM_91)
595 		/*
596 		 * fix is in trap.c
597 		 */
598 		opteron_erratum_91++;
599 #else
600 		WARNING(cpu, 91);
601 		missing++;
602 #endif
603 	}
604 
605 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
606 		/*
607 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
608 		 */
609 #if defined(OPTERON_ERRATUM_93)
610 		/*
611 		 * fix is in trap.c
612 		 */
613 		opteron_erratum_93++;
614 #else
615 		WARNING(cpu, 93);
616 		missing++;
617 #endif
618 	}
619 
620 	/*LINTED*/
621 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
622 		/*
623 		 * RET Instruction May Return to Incorrect EIP
624 		 */
625 #if defined(OPTERON_ERRATUM_95)
626 #if defined(_LP64)
627 		/*
628 		 * Workaround this by ensuring that 32-bit user code and
629 		 * 64-bit kernel code never occupy the same address
630 		 * range mod 4G.
631 		 */
632 		if (_userlimit32 > 0xc0000000ul)
633 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
634 
635 		/*LINTED*/
636 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
637 #endif	/* _LP64 */
638 #else
639 		WARNING(cpu, 95);
640 		missing++;
641 #endif	/* OPTERON_ERRATUM_95 */
642 	}
643 
644 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
645 		/*
646 		 * Compatibility Mode Branches Transfer to Illegal Address
647 		 */
648 #if defined(OPTERON_ERRATUM_100)
649 		/*
650 		 * fix is in trap.c
651 		 */
652 		opteron_erratum_100++;
653 #else
654 		WARNING(cpu, 100);
655 		missing++;
656 #endif
657 	}
658 
659 	/*LINTED*/
660 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
661 		/*
662 		 * CPUID Instruction May Return Incorrect Model Number In
663 		 * Some Processors
664 		 */
665 #if defined(OPTERON_ERRATUM_108)
666 		/*
667 		 * (Our cpuid-handling code corrects the model number on
668 		 * those processors)
669 		 */
670 #else
671 		WARNING(cpu, 108);
672 		missing++;
673 #endif
674 	}
675 
676 	/*LINTED*/
677 	if (cpuid_opteron_erratum(cpu, 109) > 0) {
678 		/*
679 		 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour
680 		 */
681 #if defined(OPTERON_ERRATUM_109)
682 
683 		/* workaround is to print a warning to upgrade BIOS */
684 		if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
685 			opteron_erratum_109++;
686 #else
687 		WARNING(cpu, 109);
688 		missing++;
689 #endif
690 	}
691 	/*LINTED*/
692 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
693 		/*
694 		 * Sequential Execution Across Non_Canonical Boundary Caused
695 		 * Processor Hang
696 		 */
697 #if defined(OPTERON_ERRATUM_121)
698 		static int	lma;
699 
700 		if (opteron_erratum_121)
701 			opteron_erratum_121++;
702 
703 		/*
704 		 * Erratum 121 is only present in long (64 bit) mode.
705 		 * Workaround is to include the page immediately before the
706 		 * va hole to eliminate the possibility of system hangs due to
707 		 * sequential execution across the va hole boundary.
708 		 */
709 		if (lma == 0) {
710 			/*
711 			 * check LMA once: assume all cpus are in long mode
712 			 * or not.
713 			 */
714 			lma = 1;
715 
716 			if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) {
717 				if (hole_start) {
718 					hole_start -= PAGESIZE;
719 				} else {
720 					/*
721 					 * hole_start not yet initialized by
722 					 * mmu_init. Initialize hole_start
723 					 * with value to be subtracted.
724 					 */
725 					hole_start = PAGESIZE;
726 				}
727 				opteron_erratum_121++;
728 			}
729 		}
730 #else
731 		WARNING(cpu, 121);
732 		missing++;
733 #endif
734 	}
735 
736 	/*LINTED*/
737 	if (cpuid_opteron_erratum(cpu, 122) > 0) {
738 		/*
739 		 * TLB Flush Filter May Cause Cohenrency Problem in
740 		 * Multiprocessor Systems
741 		 */
742 #if defined(OPTERON_ERRATUM_122)
743 		/*
744 		 * Erratum 122 is only present in MP configurations (multi-core
745 		 * or multi-processor).
746 		 */
747 
748 		if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 ||
749 		    cpuid_get_ncpu_per_chip(cpu) > 1) {
750 			/* disable TLB Flush Filter */
751 			wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) |
752 			    (uint64_t)(uintptr_t)AMD_HWCR_FFDIS);
753 			opteron_erratum_122++;
754 		}
755 
756 #else
757 		WARNING(cpu, 122);
758 		missing++;
759 #endif
760 	}
761 
762 #if defined(OPTERON_ERRATUM_123)
763 	/*LINTED*/
764 	if (cpuid_opteron_erratum(cpu, 123) > 0) {
765 		/*
766 		 * Bypassed Reads May Cause Data Corruption of System Hang in
767 		 * Dual Core Processors
768 		 */
769 		/*
770 		 * Erratum 123 applies only to multi-core cpus.
771 		 */
772 
773 		if (cpuid_get_ncpu_per_chip(cpu) > 1) {
774 			/* workaround is to print a warning to upgrade BIOS */
775 			if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
776 				opteron_erratum_123++;
777 		}
778 	}
779 #endif
780 
781 #if defined(OPTERON_ERRATUM_131)
782 	/*LINTED*/
783 	if (cpuid_opteron_erratum(cpu, 131) > 0) {
784 		/*
785 		 * Multiprocessor Systems with Four or More Cores May Deadlock
786 		 * Waiting for a Probe Response
787 		 */
788 		/*
789 		 * Erratum 131 applies to any system with four or more cores.
790 		 */
791 		if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt *
792 		    cpuid_get_ncpu_per_chip(cpu)) >= 4)) {
793 			/*
794 			 * Workaround is to print a warning to upgrade
795 			 * the BIOS
796 			 */
797 			if (!(rdmsr(MSR_AMD_NB_CFG) & AMD_NB_CFG_SRQ_HEARTBEAT))
798 				opteron_erratum_131++;
799 		}
800 	}
801 #endif
802 
803 #if defined(OPTERON_WORKAROUND_6336786)
804 	/*
805 	 * This isn't really erratum, but for convenience the
806 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
807 	 */
808 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
809 		int	node;
810 		uint8_t data;
811 
812 		/*
813 		 * Disable C1-Clock ramping on multi-core/multi-processor
814 		 * K8 platforms to guard against TSC drift.
815 		 */
816 		if (opteron_workaround_6336786) {
817 			opteron_workaround_6336786++;
818 		} else if ((lgrp_plat_node_cnt *
819 		    cpuid_get_ncpu_per_chip(cpu) >= 2) ||
820 		    opteron_workaround_6336786_UP) {
821 			for (node = 0; node < lgrp_plat_node_cnt; node++) {
822 				/*
823 				 * Clear PMM7[1:0] (function 3, offset 0x87)
824 				 * Northbridge device is the node id + 24.
825 				 */
826 				data = pci_getb_func(0, node + 24, 3, 0x87);
827 				data &= 0xFC;
828 				pci_putb_func(0, node + 24, 3, 0x87, data);
829 			}
830 			opteron_workaround_6336786++;
831 		}
832 	}
833 #endif
834 	return (missing);
835 }
836 
837 void
838 workaround_errata_end()
839 {
840 #if defined(OPTERON_ERRATUM_109)
841 	if (opteron_erratum_109) {
842 		cmn_err(CE_WARN,
843 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
844 		    " processor\nerratum 109 was not detected; updating your"
845 		    " system's BIOS to a version\ncontaining this"
846 		    " microcode patch is HIGHLY recommended or erroneous"
847 		    " system\noperation may occur.\n");
848 	}
849 #endif	/* OPTERON_ERRATUM_109 */
850 #if defined(OPTERON_ERRATUM_123)
851 	if (opteron_erratum_123) {
852 		cmn_err(CE_WARN,
853 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
854 		    " processor\nerratum 123 was not detected; updating your"
855 		    " system's BIOS to a version\ncontaining this"
856 		    " microcode patch is HIGHLY recommended or erroneous"
857 		    " system\noperation may occur.\n");
858 	}
859 #endif	/* OPTERON_ERRATUM_123 */
860 #if defined(OPTERON_ERRATUM_131)
861 	if (opteron_erratum_131) {
862 		cmn_err(CE_WARN,
863 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
864 		    " processor\nerratum 131 was not detected; updating your"
865 		    " system's BIOS to a version\ncontaining this"
866 		    " microcode patch is HIGHLY recommended or erroneous"
867 		    " system\noperation may occur.\n");
868 	}
869 #endif	/* OPTERON_ERRATUM_131 */
870 }
871 
872 static ushort_t *mp_map_warm_reset_vector();
873 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector);
874 
875 /*ARGSUSED*/
876 void
877 start_other_cpus(int cprboot)
878 {
879 	unsigned who;
880 	int cpuid = 0;
881 	int delays = 0;
882 	int started_cpu;
883 	ushort_t *warm_reset_vector = NULL;
884 	extern int procset;
885 
886 	/*
887 	 * Initialize our own cpu_info.
888 	 */
889 	init_cpu_info(CPU);
890 
891 	/*
892 	 * Initialize our syscall handlers
893 	 */
894 	init_cpu_syscall(CPU);
895 
896 	/*
897 	 * if only 1 cpu or not using MP, skip the rest of this
898 	 */
899 	if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) {
900 		if (use_mp == 0)
901 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
902 		goto done;
903 	}
904 
905 	/*
906 	 * perform such initialization as is needed
907 	 * to be able to take CPUs on- and off-line.
908 	 */
909 	cpu_pause_init();
910 
911 	xc_init();		/* initialize processor crosscalls */
912 
913 	/*
914 	 * Copy the real mode code at "real_mode_start" to the
915 	 * page at rm_platter_va.
916 	 */
917 	warm_reset_vector = mp_map_warm_reset_vector();
918 	if (warm_reset_vector == NULL)
919 		goto done;
920 
921 	bcopy((caddr_t)real_mode_start,
922 	    (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code,
923 	    (size_t)real_mode_end - (size_t)real_mode_start);
924 
925 	flushes_require_xcalls = 1;
926 
927 	affinity_set(CPU_CURRENT);
928 
929 	for (who = 0; who < NCPU; who++) {
930 		if (who == cpuid)
931 			continue;
932 
933 		if ((mp_cpus & (1 << who)) == 0)
934 			continue;
935 
936 		mp_startup_init(who);
937 		started_cpu = 1;
938 		(*cpu_startf)(who, rm_platter_pa);
939 
940 		while ((procset & (1 << who)) == 0) {
941 
942 			delay(1);
943 			if (++delays > (20 * hz)) {
944 
945 				cmn_err(CE_WARN,
946 				    "cpu%d failed to start", who);
947 
948 				mutex_enter(&cpu_lock);
949 				cpu[who]->cpu_flags = 0;
950 				cpu_vm_data_destroy(cpu[who]);
951 				cpu_del_unit(who);
952 				mutex_exit(&cpu_lock);
953 
954 				started_cpu = 0;
955 				break;
956 			}
957 		}
958 		if (!started_cpu)
959 			continue;
960 		if (tsc_gethrtime_enable)
961 			tsc_sync_master(who);
962 
963 
964 		if (dtrace_cpu_init != NULL) {
965 			/*
966 			 * DTrace CPU initialization expects cpu_lock
967 			 * to be held.
968 			 */
969 			mutex_enter(&cpu_lock);
970 			(*dtrace_cpu_init)(who);
971 			mutex_exit(&cpu_lock);
972 		}
973 	}
974 
975 	affinity_clear();
976 
977 	for (who = 0; who < NCPU; who++) {
978 		if (who == cpuid)
979 			continue;
980 
981 		if (!(procset & (1 << who)))
982 			continue;
983 
984 		while (!(cpu_ready_set & (1 << who)))
985 			delay(1);
986 	}
987 
988 done:
989 	workaround_errata_end();
990 
991 	if (warm_reset_vector != NULL)
992 		mp_unmap_warm_reset_vector(warm_reset_vector);
993 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
994 	    HAT_UNLOAD);
995 }
996 
997 /*
998  * Dummy functions - no i86pc platforms support dynamic cpu allocation.
999  */
1000 /*ARGSUSED*/
1001 int
1002 mp_cpu_configure(int cpuid)
1003 {
1004 	return (ENOTSUP);		/* not supported */
1005 }
1006 
1007 /*ARGSUSED*/
1008 int
1009 mp_cpu_unconfigure(int cpuid)
1010 {
1011 	return (ENOTSUP);		/* not supported */
1012 }
1013 
1014 /*
1015  * Startup function for 'other' CPUs (besides boot cpu).
1016  * Called from real_mode_start (after *ap_mlsetup).
1017  *
1018  * WARNING: until CPU_READY is set, mp_startup and routines called by
1019  * mp_startup should not call routines (e.g. kmem_free) that could call
1020  * hat_unload which requires CPU_READY to be set.
1021  */
1022 void
1023 mp_startup(void)
1024 {
1025 	struct cpu *cp = CPU;
1026 	extern int procset;
1027 	uint_t new_x86_feature;
1028 
1029 	new_x86_feature = cpuid_pass1(cp);
1030 
1031 	/*
1032 	 * We need to Sync MTRR with cpu0's MTRR. We have to do
1033 	 * this with interrupts disabled.
1034 	 */
1035 	if (x86_feature & X86_MTRR)
1036 		mtrr_sync();
1037 
1038 	/*
1039 	 * Initialize this CPU's syscall handlers
1040 	 */
1041 	init_cpu_syscall(cp);
1042 
1043 	/*
1044 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1045 	 * highest level at which a routine is permitted to block on
1046 	 * an adaptive mutex (allows for cpu poke interrupt in case
1047 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1048 	 * device interrupts that may end up in the hat layer issuing cross
1049 	 * calls before CPU_READY is set.
1050 	 */
1051 	(void) splx(ipltospl(LOCK_LEVEL));
1052 
1053 	/*
1054 	 * Do a sanity check to make sure this new CPU is a sane thing
1055 	 * to add to the collection of processors running this system.
1056 	 *
1057 	 * XXX	Clearly this needs to get more sophisticated, if x86
1058 	 * systems start to get built out of heterogenous CPUs; as is
1059 	 * likely to happen once the number of processors in a configuration
1060 	 * gets large enough.
1061 	 */
1062 	if ((x86_feature & new_x86_feature) != x86_feature) {
1063 		cmn_err(CE_CONT, "?cpu%d: %b\n",
1064 		    cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
1065 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1066 	}
1067 
1068 	/*
1069 	 * We could be more sophisticated here, and just mark the CPU
1070 	 * as "faulted" but at this point we'll opt for the easier
1071 	 * answer of dieing horribly.  Provided the boot cpu is ok,
1072 	 * the system can be recovered by booting with use_mp set to zero.
1073 	 */
1074 	if (workaround_errata(cp) != 0)
1075 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1076 
1077 	cpuid_pass2(cp);
1078 	cpuid_pass3(cp);
1079 	(void) cpuid_pass4(cp);
1080 
1081 	init_cpu_info(cp);
1082 
1083 	mutex_enter(&cpu_lock);
1084 	procset |= 1 << cp->cpu_id;
1085 	mutex_exit(&cpu_lock);
1086 
1087 	if (tsc_gethrtime_enable)
1088 		tsc_sync_slave();
1089 
1090 	mutex_enter(&cpu_lock);
1091 	/*
1092 	 * It's unfortunate that chip_cpu_init() has to be called here.
1093 	 * It really belongs in cpu_add_unit(), but unfortunately it is
1094 	 * dependent on the cpuid probing, which must be done in the
1095 	 * context of the current CPU. Care must be taken on x86 to ensure
1096 	 * that mp_startup can safely block even though chip_cpu_init() and
1097 	 * cpu_add_active() have not yet been called.
1098 	 */
1099 	chip_cpu_init(cp);
1100 	chip_cpu_startup(cp);
1101 
1102 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
1103 	cpu_add_active(cp);
1104 	mutex_exit(&cpu_lock);
1105 
1106 	add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
1107 
1108 	/* The base spl should still be at LOCK LEVEL here */
1109 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1110 	set_base_spl();		/* Restore the spl to its proper value */
1111 
1112 	(void) spl0();				/* enable interrupts */
1113 
1114 	/*
1115 	 * Set up the CPU module for this CPU.  This can't be done before
1116 	 * this CPU is made CPU_READY, because we may (in heterogeneous systems)
1117 	 * need to go load another CPU module.  The act of attempting to load
1118 	 * a module may trigger a cross-call, which will ASSERT unless this
1119 	 * cpu is CPU_READY.
1120 	 */
1121 	cmi_init();
1122 
1123 	if (x86_feature & X86_MCA)
1124 		cmi_mca_init();
1125 
1126 	if (boothowto & RB_DEBUG)
1127 		kdi_dvec_cpu_init(cp);
1128 
1129 	/*
1130 	 * Setting the bit in cpu_ready_set must be the last operation in
1131 	 * processor initialization; the boot CPU will continue to boot once
1132 	 * it sees this bit set for all active CPUs.
1133 	 */
1134 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1135 
1136 	/*
1137 	 * Because mp_startup() gets fired off after init() starts, we
1138 	 * can't use the '?' trick to do 'boot -v' printing - so we
1139 	 * always direct the 'cpu .. online' messages to the log.
1140 	 */
1141 	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1142 	    cp->cpu_id);
1143 
1144 	/*
1145 	 * Now we are done with the startup thread, so free it up.
1146 	 */
1147 	thread_exit();
1148 	panic("mp_startup: cannot return");
1149 	/*NOTREACHED*/
1150 }
1151 
1152 
1153 /*
1154  * Start CPU on user request.
1155  */
1156 /* ARGSUSED */
1157 int
1158 mp_cpu_start(struct cpu *cp)
1159 {
1160 	ASSERT(MUTEX_HELD(&cpu_lock));
1161 	return (0);
1162 }
1163 
1164 /*
1165  * Stop CPU on user request.
1166  */
1167 /* ARGSUSED */
1168 int
1169 mp_cpu_stop(struct cpu *cp)
1170 {
1171 	extern int cbe_psm_timer_mode;
1172 	ASSERT(MUTEX_HELD(&cpu_lock));
1173 
1174 	/*
1175 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1176 	 * can't stop it.  (This is true only for machines with no TSC.)
1177 	 */
1178 
1179 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1180 		return (1);
1181 
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Power on CPU.
1187  */
1188 /* ARGSUSED */
1189 int
1190 mp_cpu_poweron(struct cpu *cp)
1191 {
1192 	ASSERT(MUTEX_HELD(&cpu_lock));
1193 	return (ENOTSUP);		/* not supported */
1194 }
1195 
1196 /*
1197  * Power off CPU.
1198  */
1199 /* ARGSUSED */
1200 int
1201 mp_cpu_poweroff(struct cpu *cp)
1202 {
1203 	ASSERT(MUTEX_HELD(&cpu_lock));
1204 	return (ENOTSUP);		/* not supported */
1205 }
1206 
1207 
1208 /*
1209  * Take the specified CPU out of participation in interrupts.
1210  */
1211 int
1212 cpu_disable_intr(struct cpu *cp)
1213 {
1214 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1215 		return (EBUSY);
1216 
1217 	cp->cpu_flags &= ~CPU_ENABLE;
1218 	return (0);
1219 }
1220 
1221 /*
1222  * Allow the specified CPU to participate in interrupts.
1223  */
1224 void
1225 cpu_enable_intr(struct cpu *cp)
1226 {
1227 	ASSERT(MUTEX_HELD(&cpu_lock));
1228 	cp->cpu_flags |= CPU_ENABLE;
1229 	psm_enable_intr(cp->cpu_id);
1230 }
1231 
1232 
1233 
1234 static ushort_t *
1235 mp_map_warm_reset_vector()
1236 {
1237 	ushort_t *warm_reset_vector;
1238 
1239 	if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
1240 	    sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
1241 		return (NULL);
1242 
1243 	/*
1244 	 * setup secondary cpu bios boot up vector
1245 	 */
1246 	*warm_reset_vector = (ushort_t)((caddr_t)
1247 		((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
1248 		+ ((ulong_t)rm_platter_va & 0xf));
1249 	warm_reset_vector++;
1250 	*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
1251 
1252 	--warm_reset_vector;
1253 	return (warm_reset_vector);
1254 }
1255 
1256 static void
1257 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector)
1258 {
1259 	psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
1260 }
1261 
1262 void
1263 mp_cpu_faulted_enter(struct cpu *cp)
1264 {
1265 	cmi_faulted_enter(cp);
1266 }
1267 
1268 void
1269 mp_cpu_faulted_exit(struct cpu *cp)
1270 {
1271 	cmi_faulted_exit(cp);
1272 }
1273 
1274 /*
1275  * The following two routines are used as context operators on threads belonging
1276  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1277  * processes, these routines are currently written for best code readability and
1278  * organization rather than speed.  We could avoid checking x86_feature at every
1279  * context switch by installing different context ops, depending on the
1280  * x86_feature flags, at LDT creation time -- one for each combination of fast
1281  * syscall feature flags.
1282  */
1283 
1284 /*ARGSUSED*/
1285 void
1286 cpu_fast_syscall_disable(void *arg)
1287 {
1288 	if (x86_feature & X86_SEP)
1289 		cpu_sep_disable();
1290 	if (x86_feature & X86_ASYSC)
1291 		cpu_asysc_disable();
1292 }
1293 
1294 /*ARGSUSED*/
1295 void
1296 cpu_fast_syscall_enable(void *arg)
1297 {
1298 	if (x86_feature & X86_SEP)
1299 		cpu_sep_enable();
1300 	if (x86_feature & X86_ASYSC)
1301 		cpu_asysc_enable();
1302 }
1303 
1304 static void
1305 cpu_sep_enable(void)
1306 {
1307 	ASSERT(x86_feature & X86_SEP);
1308 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1309 
1310 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
1311 }
1312 
1313 static void
1314 cpu_sep_disable(void)
1315 {
1316 	ASSERT(x86_feature & X86_SEP);
1317 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1318 
1319 	/*
1320 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1321 	 * the sysenter or sysexit instruction to trigger a #gp fault.
1322 	 */
1323 	wrmsr(MSR_INTC_SEP_CS, 0ULL);
1324 }
1325 
1326 static void
1327 cpu_asysc_enable(void)
1328 {
1329 	ASSERT(x86_feature & X86_ASYSC);
1330 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1331 
1332 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
1333 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
1334 }
1335 
1336 static void
1337 cpu_asysc_disable(void)
1338 {
1339 	ASSERT(x86_feature & X86_ASYSC);
1340 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1341 
1342 	/*
1343 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1344 	 * executing syscall or sysret with this bit off will incur a #ud trap.
1345 	 */
1346 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
1347 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
1348 }
1349