xref: /titanic_51/usr/src/uts/i86pc/os/mp_machdep.c (revision fb9f9b975cb9214fec5dab37d461199adab9b964)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #define	PSMI_1_5
30 #include <sys/smp_impldefs.h>
31 #include <sys/psm.h>
32 #include <sys/psm_modctl.h>
33 #include <sys/pit.h>
34 #include <sys/cmn_err.h>
35 #include <sys/strlog.h>
36 #include <sys/clock.h>
37 #include <sys/debug.h>
38 #include <sys/rtc.h>
39 #include <sys/x86_archext.h>
40 #include <sys/cpupart.h>
41 #include <sys/cpuvar.h>
42 #include <sys/chip.h>
43 #include <sys/disp.h>
44 #include <sys/cpu.h>
45 #include <sys/archsystm.h>
46 #include <sys/mach_intr.h>
47 
48 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
49 
50 /*
51  *	Local function prototypes
52  */
53 static int mp_disable_intr(processorid_t cpun);
54 static void mp_enable_intr(processorid_t cpun);
55 static void mach_init();
56 static void mach_picinit();
57 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
58 static int machhztomhz(uint64_t cpu_freq_hz);
59 static uint64_t mach_getcpufreq(void);
60 static void mach_fixcpufreq(void);
61 static int mach_clkinit(int, int *);
62 static void mach_smpinit(void);
63 static void mach_set_softintr(int ipl, struct av_softinfo *);
64 static void mach_cpu_start(int cpun);
65 static int mach_softlvl_to_vect(int ipl);
66 static void mach_get_platform(int owner);
67 static void mach_construct_info();
68 static int mach_translate_irq(dev_info_t *dip, int irqno);
69 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
70     psm_intr_op_t, int *);
71 static timestruc_t mach_tod_get(void);
72 static void mach_tod_set(timestruc_t ts);
73 static void mach_notify_error(int level, char *errmsg);
74 static hrtime_t dummy_hrtime(void);
75 static void dummy_scalehrtime(hrtime_t *);
76 static void cpu_halt(void);
77 static void cpu_wakeup(cpu_t *, int);
78 /*
79  *	External reference functions
80  */
81 extern void return_instr();
82 extern timestruc_t (*todgetf)(void);
83 extern void (*todsetf)(timestruc_t);
84 extern long gmt_lag;
85 extern uint64_t freq_tsc(uint32_t *);
86 #if defined(__i386)
87 extern uint64_t freq_notsc(uint32_t *);
88 #endif
89 extern void pc_gethrestime(timestruc_t *);
90 
91 /*
92  *	PSM functions initialization
93  */
94 void (*psm_shutdownf)(int, int)	= return_instr;
95 void (*psm_preshutdownf)(int, int) = return_instr;
96 void (*psm_notifyf)(int)	= return_instr;
97 void (*psm_set_idle_cpuf)(int)	= return_instr;
98 void (*psm_unset_idle_cpuf)(int) = return_instr;
99 void (*psminitf)()		= mach_init;
100 void (*picinitf)() 		= return_instr;
101 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
102 void (*cpu_startf)() 		= return_instr;
103 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
104 void (*send_dirintf)() 		= return_instr;
105 void (*setspl)(int)		= return_instr;
106 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
107 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
108 void (*setsoftint)(int, struct av_softinfo *)=
109 	(void (*)(int, struct av_softinfo *))return_instr;
110 int (*slvltovect)(int)		= (int (*)(int))return_instr;
111 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
112 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
113 int (*psm_disable_intr)(int)	= mp_disable_intr;
114 void (*psm_enable_intr)(int)	= mp_enable_intr;
115 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
116 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
117 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
118 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
119 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
120 int (*psm_todgetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
121 int (*psm_todsetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
122 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
123 int (*psm_get_clockirq)(int) = NULL;
124 int (*psm_get_ipivect)(int, int) = NULL;
125 
126 int (*psm_clkinit)(int) = NULL;
127 void (*psm_timer_reprogram)(hrtime_t) = NULL;
128 void (*psm_timer_enable)(void) = NULL;
129 void (*psm_timer_disable)(void) = NULL;
130 void (*psm_post_cyclic_setup)(void *arg) = NULL;
131 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
132     int *) = mach_intr_ops;
133 
134 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
135 void (*hrtime_tick)(void)	= return_instr;
136 
137 int tsc_gethrtime_enable = 1;
138 int tsc_gethrtime_initted = 0;
139 
140 /*
141  * Local Static Data
142  */
143 static struct psm_ops mach_ops;
144 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
145 static ushort_t mach_ver[4] = {0, 0, 0, 0};
146 
147 /*
148  * If non-zero, idle cpus will "halted" when there's
149  * no work to do.
150  */
151 int	halt_idle_cpus = 1;
152 
153 #if defined(__amd64)
154 /*
155  * If non-zero, will use cr8 for interrupt priority masking
156  * We declare this here since install_spl is called from here
157  * (where this is checked).
158  */
159 int	intpri_use_cr8 = 0;
160 #endif	/* __amd64 */
161 
162 #ifdef	_SIMULATOR_SUPPORT
163 
164 int simulator_run = 0;	/* patch to non-zero if running under simics */
165 
166 #endif	/* _SIMULATOR_SUPPORT */
167 
168 /* ARGSUSED */
169 void
170 chip_plat_define_chip(cpu_t *cp, chip_def_t *cd)
171 {
172 	if (x86_feature & (X86_HTT|X86_CMP))
173 		/*
174 		 * Hyperthreading is SMT
175 		 */
176 		cd->chipd_type = CHIP_SMT;
177 	else
178 		cd->chipd_type = CHIP_DEFAULT;
179 
180 	cd->chipd_rechoose_adj = 0;
181 }
182 
183 /*
184  * Routine to ensure initial callers to hrtime gets 0 as return
185  */
186 static hrtime_t
187 dummy_hrtime(void)
188 {
189 	return (0);
190 }
191 
192 /* ARGSUSED */
193 static void
194 dummy_scalehrtime(hrtime_t *ticks)
195 {}
196 
197 /*
198  * Halt the present CPU until awoken via an interrupt
199  */
200 static void
201 cpu_halt(void)
202 {
203 	cpu_t		*cpup = CPU;
204 	processorid_t	cpun = cpup->cpu_id;
205 	cpupart_t	*cp = cpup->cpu_part;
206 	int		hset_update = 1;
207 
208 	/*
209 	 * If this CPU is online, and there's multiple CPUs
210 	 * in the system, then we should notate our halting
211 	 * by adding ourselves to the partition's halted CPU
212 	 * bitmap. This allows other CPUs to find/awaken us when
213 	 * work becomes available.
214 	 */
215 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
216 		hset_update = 0;
217 
218 	/*
219 	 * Add ourselves to the partition's halted CPUs bitmask
220 	 * and set our HALTED flag, if necessary.
221 	 *
222 	 * When a thread becomes runnable, it is placed on the queue
223 	 * and then the halted cpuset is checked to determine who
224 	 * (if anyone) should be awoken. We therefore need to first
225 	 * add ourselves to the halted cpuset, and and then check if there
226 	 * is any work available.
227 	 *
228 	 * Note that memory barriers after updating the HALTED flag
229 	 * are not necessary since an atomic operation (updating the bitmap)
230 	 * immediately follows. On x86 the atomic operation acts as a
231 	 * memory barrier for the update of cpu_disp_flags.
232 	 */
233 	if (hset_update) {
234 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
235 		CPUSET_ATOMIC_ADD(cp->cp_haltset, cpun);
236 	}
237 
238 	/*
239 	 * Check to make sure there's really nothing to do.
240 	 * Work destined for this CPU may become available after
241 	 * this check. We'll be notified through the clearing of our
242 	 * bit in the halted CPU bitmask, and a poke.
243 	 */
244 	if (disp_anywork()) {
245 		if (hset_update) {
246 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
247 			CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
248 		}
249 		return;
250 	}
251 
252 	/*
253 	 * We're on our way to being halted.
254 	 *
255 	 * Disable interrupts now, so that we'll awaken immediately
256 	 * after halting if someone tries to poke us between now and
257 	 * the time we actually halt.
258 	 *
259 	 * We check for the presence of our bit after disabling interrupts.
260 	 * If it's cleared, we'll return. If the bit is cleared after
261 	 * we check then the poke will pop us out of the halted state.
262 	 *
263 	 * This means that the ordering of the poke and the clearing
264 	 * of the bit by cpu_wakeup is important.
265 	 * cpu_wakeup() must clear, then poke.
266 	 * cpu_halt() must disable interrupts, then check for the bit.
267 	 */
268 	cli();
269 
270 	if (hset_update && !CPU_IN_SET(cp->cp_haltset, cpun)) {
271 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
272 		sti();
273 		return;
274 	}
275 
276 	/*
277 	 * The check for anything locally runnable is here for performance
278 	 * and isn't needed for correctness. disp_nrunnable ought to be
279 	 * in our cache still, so it's inexpensive to check, and if there
280 	 * is anything runnable we won't have to wait for the poke.
281 	 */
282 	if (cpup->cpu_disp->disp_nrunnable != 0) {
283 		if (hset_update) {
284 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
285 			CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
286 		}
287 		sti();
288 		return;
289 	}
290 
291 	/*
292 	 * Call the halt sequence:
293 	 * sti
294 	 * hlt
295 	 */
296 	i86_halt();
297 
298 	/*
299 	 * We're no longer halted
300 	 */
301 	if (hset_update) {
302 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
303 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
304 	}
305 }
306 
307 
308 /*
309  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
310  * Otherwise, see if other CPUs in the cpu partition are halted and need to
311  * be woken up so that they can steal the thread we placed on this CPU.
312  * This function is only used on MP systems.
313  */
314 static void
315 cpu_wakeup(cpu_t *cpu, int bound)
316 {
317 	uint_t		cpu_found;
318 	int		result;
319 	cpupart_t	*cp;
320 
321 	cp = cpu->cpu_part;
322 	if (CPU_IN_SET(cp->cp_haltset, cpu->cpu_id)) {
323 		/*
324 		 * Clear the halted bit for that CPU since it will be
325 		 * poked in a moment.
326 		 */
327 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpu->cpu_id);
328 		/*
329 		 * We may find the current CPU present in the halted cpuset
330 		 * if we're in the context of an interrupt that occurred
331 		 * before we had a chance to clear our bit in cpu_halt().
332 		 * Poking ourself is obviously unnecessary, since if
333 		 * we're here, we're not halted.
334 		 */
335 		if (cpu != CPU)
336 			poke_cpu(cpu->cpu_id);
337 		return;
338 	} else {
339 		/*
340 		 * This cpu isn't halted, but it's idle or undergoing a
341 		 * context switch. No need to awaken anyone else.
342 		 */
343 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
344 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
345 			return;
346 	}
347 
348 	/*
349 	 * No need to wake up other CPUs if the thread we just enqueued
350 	 * is bound.
351 	 */
352 	if (bound)
353 		return;
354 
355 
356 	/*
357 	 * See if there's any other halted CPUs. If there are, then
358 	 * select one, and awaken it.
359 	 * It's possible that after we find a CPU, somebody else
360 	 * will awaken it before we get the chance.
361 	 * In that case, look again.
362 	 */
363 	do {
364 		CPUSET_FIND(cp->cp_haltset, cpu_found);
365 		if (cpu_found == CPUSET_NOTINSET)
366 			return;
367 
368 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
369 		CPUSET_ATOMIC_XDEL(cp->cp_haltset, cpu_found, result);
370 	} while (result < 0);
371 
372 	if (cpu_found != CPU->cpu_id)
373 		poke_cpu(cpu_found);
374 }
375 
376 static int
377 mp_disable_intr(int cpun)
378 {
379 	/*
380 	 * switch to the offline cpu
381 	 */
382 	affinity_set(cpun);
383 	/*
384 	 * raise ipl to just below cross call
385 	 */
386 	splx(XC_MED_PIL-1);
387 	/*
388 	 *	set base spl to prevent the next swtch to idle from
389 	 *	lowering back to ipl 0
390 	 */
391 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
392 	set_base_spl();
393 	affinity_clear();
394 	return (DDI_SUCCESS);
395 }
396 
397 static void
398 mp_enable_intr(int cpun)
399 {
400 	/*
401 	 * switch to the online cpu
402 	 */
403 	affinity_set(cpun);
404 	/*
405 	 * clear the interrupt active mask
406 	 */
407 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
408 	set_base_spl();
409 	(void) spl0();
410 	affinity_clear();
411 }
412 
413 static void
414 mach_get_platform(int owner)
415 {
416 	void		**srv_opsp;
417 	void		**clt_opsp;
418 	int		i;
419 	int		total_ops;
420 
421 	/* fix up psm ops */
422 	srv_opsp = (void **)mach_set[0];
423 	clt_opsp = (void **)mach_set[owner];
424 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
425 		total_ops = sizeof (struct psm_ops_ver01) /
426 				sizeof (void (*)(void));
427 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
428 		/* no psm_notify_func */
429 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
430 		    sizeof (void (*)(void));
431 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
432 		/* no psm_timer funcs */
433 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
434 		    sizeof (void (*)(void));
435 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
436 		/* no psm_preshutdown function */
437 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
438 		    sizeof (void (*)(void));
439 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
440 		/* no psm_preshutdown function */
441 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
442 		    sizeof (void (*)(void));
443 	else
444 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
445 
446 	/*
447 	 * Save the version of the PSM module, in case we need to
448 	 * bahave differently based on version.
449 	 */
450 	mach_ver[0] = mach_ver[owner];
451 
452 	for (i = 0; i < total_ops; i++)
453 		if (clt_opsp[i] != NULL)
454 			srv_opsp[i] = clt_opsp[i];
455 }
456 
457 static void
458 mach_construct_info()
459 {
460 	register struct psm_sw *swp;
461 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
462 	int	conflict_owner = 0;
463 
464 	if (psmsw->psw_forw == psmsw)
465 		panic("No valid PSM modules found");
466 	mutex_enter(&psmsw_lock);
467 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
468 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
469 			continue;
470 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
471 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
472 		mach_cnt[swp->psw_infop->p_owner]++;
473 	}
474 	mutex_exit(&psmsw_lock);
475 
476 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
477 
478 	/* check to see are there any conflicts */
479 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
480 		conflict_owner = PSM_OWN_EXCLUSIVE;
481 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
482 		conflict_owner = PSM_OWN_OVERRIDE;
483 	if (conflict_owner) {
484 		/* remove all psm modules except uppc */
485 		cmn_err(CE_WARN,
486 			"Conflicts detected on the following PSM modules:");
487 		mutex_enter(&psmsw_lock);
488 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
489 			if (swp->psw_infop->p_owner == conflict_owner)
490 				cmn_err(CE_WARN, "%s ",
491 					swp->psw_infop->p_mach_idstring);
492 		}
493 		mutex_exit(&psmsw_lock);
494 		cmn_err(CE_WARN,
495 			"Setting the system back to SINGLE processor mode!");
496 		cmn_err(CE_WARN,
497 		    "Please edit /etc/mach to remove the invalid PSM module.");
498 		return;
499 	}
500 
501 	if (mach_set[PSM_OWN_EXCLUSIVE])
502 		mach_get_platform(PSM_OWN_EXCLUSIVE);
503 
504 	if (mach_set[PSM_OWN_OVERRIDE])
505 		mach_get_platform(PSM_OWN_OVERRIDE);
506 }
507 
508 static void
509 mach_init()
510 {
511 	register struct psm_ops  *pops;
512 
513 	mach_construct_info();
514 
515 	pops = mach_set[0];
516 
517 	/* register the interrupt and clock initialization rotuines */
518 	picinitf = mach_picinit;
519 	clkinitf = mach_clkinit;
520 	psm_get_clockirq = pops->psm_get_clockirq;
521 
522 	/* register the interrupt setup code */
523 	slvltovect = mach_softlvl_to_vect;
524 	addspl	= pops->psm_addspl;
525 	delspl	= pops->psm_delspl;
526 
527 	if (pops->psm_translate_irq)
528 		psm_translate_irq = pops->psm_translate_irq;
529 	if (pops->psm_intr_ops)
530 		psm_intr_ops = pops->psm_intr_ops;
531 	if (pops->psm_tod_get) {
532 		todgetf = mach_tod_get;
533 		psm_todgetf = pops->psm_tod_get;
534 	}
535 	if (pops->psm_tod_set) {
536 		todsetf = mach_tod_set;
537 		psm_todsetf = pops->psm_tod_set;
538 	}
539 	if (pops->psm_notify_error) {
540 		psm_notify_error = mach_notify_error;
541 		notify_error = pops->psm_notify_error;
542 	}
543 
544 	(*pops->psm_softinit)();
545 
546 	/*
547 	 * Initialize the dispatcher's function hooks
548 	 * to enable CPU halting when idle
549 	 */
550 #if defined(_SIMULATOR_SUPPORT)
551 	if (halt_idle_cpus && !simulator_run)
552 		idle_cpu = cpu_halt;
553 #else
554 	if (halt_idle_cpus)
555 		idle_cpu = cpu_halt;
556 #endif	/* _SIMULATOR_SUPPORT */
557 
558 	mach_smpinit();
559 }
560 
561 static void
562 mach_smpinit(void)
563 {
564 	register struct psm_ops  *pops;
565 	register processorid_t cpu_id;
566 	int	 cnt;
567 	int	 cpumask;
568 
569 	pops = mach_set[0];
570 
571 	cpu_id = -1;
572 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
573 	for (cnt = 0, cpumask = 0; cpu_id != -1; cnt++) {
574 		cpumask |= 1 << cpu_id;
575 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
576 	}
577 
578 	mp_cpus = cpumask;
579 
580 	/* MP related routines */
581 	cpu_startf = mach_cpu_start;
582 	ap_mlsetup = pops->psm_post_cpu_start;
583 	send_dirintf = pops->psm_send_ipi;
584 
585 	/* optional MP related routines */
586 	if (pops->psm_shutdown)
587 		psm_shutdownf = pops->psm_shutdown;
588 	if (pops->psm_preshutdown)
589 		psm_preshutdownf = pops->psm_preshutdown;
590 	if (pops->psm_notify_func)
591 		psm_notifyf = pops->psm_notify_func;
592 	if (pops->psm_set_idlecpu)
593 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
594 	if (pops->psm_unset_idlecpu)
595 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
596 
597 	psm_clkinit = pops->psm_clkinit;
598 
599 	if (pops->psm_timer_reprogram)
600 		psm_timer_reprogram = pops->psm_timer_reprogram;
601 
602 	if (pops->psm_timer_enable)
603 		psm_timer_enable = pops->psm_timer_enable;
604 
605 	if (pops->psm_timer_disable)
606 		psm_timer_disable = pops->psm_timer_disable;
607 
608 	if (pops->psm_post_cyclic_setup)
609 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
610 
611 	/* check for multiple cpu's */
612 	if (cnt < 2)
613 		return;
614 
615 	/* check for MP platforms */
616 	if (pops->psm_cpu_start == NULL)
617 		return;
618 
619 	/*
620 	 * Set the dispatcher hook to enable cpu "wake up"
621 	 * when a thread becomes runnable.
622 	 */
623 #if defined(_SIMULATOR_SUPPORT)
624 	if (halt_idle_cpus && !simulator_run) {
625 		disp_enq_thread = cpu_wakeup;
626 	}
627 #else
628 	if (halt_idle_cpus) {
629 		disp_enq_thread = cpu_wakeup;
630 	}
631 #endif	/* _SIMULATOR_SUPPORT */
632 
633 	if (pops->psm_disable_intr)
634 		psm_disable_intr = pops->psm_disable_intr;
635 	if (pops->psm_enable_intr)
636 		psm_enable_intr  = pops->psm_enable_intr;
637 
638 	psm_get_ipivect = pops->psm_get_ipivect;
639 
640 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
641 		(*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
642 		(caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
643 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
644 		(*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
645 		(caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
646 
647 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
648 }
649 
650 static void
651 mach_picinit()
652 {
653 	register struct psm_ops  *pops;
654 	extern void install_spl(void);	/* XXX: belongs in a header file */
655 #if defined(__amd64) && defined(DEBUG)
656 	extern void *spl_patch, *slow_spl, *setsplhi_patch, *slow_setsplhi;
657 #endif
658 
659 	pops = mach_set[0];
660 
661 	/* register the interrupt handlers */
662 	setlvl = pops->psm_intr_enter;
663 	setlvlx = pops->psm_intr_exit;
664 
665 	/* initialize the interrupt hardware */
666 	(*pops->psm_picinit)();
667 
668 	/* set interrupt mask for current ipl */
669 	setspl = pops->psm_setspl;
670 	setspl(CPU->cpu_pri);
671 
672 	/* Install proper spl routine now that we can Program the PIC   */
673 #if defined(__amd64)
674 	/*
675 	 * It would be better if we could check this at compile time
676 	 */
677 	ASSERT(((uintptr_t)&slow_setsplhi - (uintptr_t)&setsplhi_patch < 128) &&
678 		((uintptr_t)&slow_spl - (uintptr_t)&spl_patch < 128));
679 #endif
680 	install_spl();
681 }
682 
683 uint_t	cpu_freq;	/* MHz */
684 uint64_t cpu_freq_hz;	/* measured (in hertz) */
685 
686 #define	MEGA_HZ		1000000
687 
688 static uint64_t
689 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
690 {
691 	uint64_t cpu_hz;
692 
693 	if ((pit_counter == 0) || (*processor_clks == 0) ||
694 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
695 		return (0);
696 
697 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
698 
699 	return (cpu_hz);
700 }
701 
702 static uint64_t
703 mach_getcpufreq(void)
704 {
705 	uint32_t pit_counter;
706 	uint64_t processor_clks;
707 
708 	if (x86_feature & X86_TSC) {
709 		/*
710 		 * We have a TSC. freq_tsc() knows how to measure the number
711 		 * of clock cycles sampled against the PIT.
712 		 */
713 		processor_clks = freq_tsc(&pit_counter);
714 		return (mach_calchz(pit_counter, &processor_clks));
715 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
716 #if defined(__amd64)
717 		panic("mach_getcpufreq: no TSC!");
718 #elif defined(__i386)
719 		/*
720 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
721 		 * for which freq_notsc() knows how to measure the number of
722 		 * elapsed clock cycles sampled against the PIT
723 		 */
724 		processor_clks = freq_notsc(&pit_counter);
725 		return (mach_calchz(pit_counter, &processor_clks));
726 #endif	/* __i386 */
727 	}
728 
729 	/* We do not know how to calculate cpu frequency for this cpu. */
730 	return (0);
731 }
732 
733 /*
734  * If the clock speed of a cpu is found to be reported incorrectly, do not add
735  * to this array, instead improve the accuracy of the algorithm that determines
736  * the clock speed of the processor or extend the implementation to support the
737  * vendor as appropriate. This is here only to support adjusting the speed on
738  * older slower processors that mach_fixcpufreq() would not be able to account
739  * for otherwise.
740  */
741 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
742 
743 /*
744  * On fast processors the clock frequency that is measured may be off by
745  * a few MHz from the value printed on the part. This is a combination of
746  * the factors that for such fast parts being off by this much is within
747  * the tolerances for manufacture and because of the difficulties in the
748  * measurement that can lead to small error. This function uses some
749  * heuristics in order to tweak the value that was measured to match what
750  * is most likely printed on the part.
751  *
752  * Some examples:
753  * 	AMD Athlon 1000 mhz measured as 998 mhz
754  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
755  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
756  *
757  * If in the future this function is no longer sufficient to correct
758  * for the error in the measurement, then the algorithm used to perform
759  * the measurement will have to be improved in order to increase accuracy
760  * rather than adding horrible and questionable kludges here.
761  *
762  * This is called after the cyclics subsystem because of the potential
763  * that the heuristics within may give a worse estimate of the clock
764  * frequency than the value that was measured.
765  */
766 static void
767 mach_fixcpufreq(void)
768 {
769 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
770 
771 	freq = (uint32_t)cpu_freq;
772 
773 	/*
774 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
775 	 * measured speed taking into account that the 667 MHz parts were
776 	 * the first to round-up.
777 	 */
778 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
779 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
780 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
781 
782 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
783 	mul = (freq + 25) / 50;
784 	near50 = mul * 50;
785 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
786 
787 	/* Find the closer of the two */
788 	if (delta66 < delta50) {
789 		fixed = near66;
790 		delta = delta66;
791 	} else {
792 		fixed = near50;
793 		delta = delta50;
794 	}
795 
796 	if (fixed > INT_MAX)
797 		return;
798 
799 	/*
800 	 * Some older parts have a core clock frequency that is not an
801 	 * integral multiple of 50 or 66 MHz. Check if one of the old
802 	 * clock frequencies is closer to the measured value than any
803 	 * of the integral multiples of 50 an 66, and if so set fixed
804 	 * and delta appropriately to represent the closest value.
805 	 */
806 	i = sizeof (x86_cpu_freq) / sizeof (int);
807 	while (i > 0) {
808 		i--;
809 
810 		if (x86_cpu_freq[i] <= freq) {
811 			mul = freq - x86_cpu_freq[i];
812 
813 			if (mul < delta) {
814 				fixed = x86_cpu_freq[i];
815 				delta = mul;
816 			}
817 
818 			break;
819 		}
820 
821 		mul = x86_cpu_freq[i] - freq;
822 
823 		if (mul < delta) {
824 			fixed = x86_cpu_freq[i];
825 			delta = mul;
826 		}
827 	}
828 
829 	/*
830 	 * Set a reasonable maximum for how much to correct the measured
831 	 * result by. This check is here to prevent the adjustment made
832 	 * by this function from being more harm than good. It is entirely
833 	 * possible that in the future parts will be made that are not
834 	 * integral multiples of 66 or 50 in clock frequency or that
835 	 * someone may overclock a part to some odd frequency. If the
836 	 * measured value is farther from the corrected value than
837 	 * allowed, then assume the corrected value is in error and use
838 	 * the measured value.
839 	 */
840 	if (6 < delta)
841 		return;
842 
843 	cpu_freq = (int)fixed;
844 }
845 
846 
847 static int
848 machhztomhz(uint64_t cpu_freq_hz)
849 {
850 	uint64_t cpu_mhz;
851 
852 	/* Round to nearest MHZ */
853 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
854 
855 	if (cpu_mhz > INT_MAX)
856 		return (0);
857 
858 	return ((int)cpu_mhz);
859 
860 }
861 
862 
863 static int
864 mach_clkinit(int preferred_mode, int *set_mode)
865 {
866 	register struct psm_ops  *pops;
867 	int resolution;
868 
869 	pops = mach_set[0];
870 
871 #ifdef	_SIMULATOR_SUPPORT
872 	if (!simulator_run)
873 		cpu_freq_hz = mach_getcpufreq();
874 	else
875 		cpu_freq_hz = 40000000; /* use 40 Mhz (hack for simulator) */
876 #else
877 	cpu_freq_hz = mach_getcpufreq();
878 #endif	/* _SIMULATOR_SUPPORT */
879 
880 	cpu_freq = machhztomhz(cpu_freq_hz);
881 
882 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
883 		tsc_gethrtime_enable = 0;
884 
885 	if (tsc_gethrtime_enable) {
886 		tsc_hrtimeinit(cpu_freq_hz);
887 		gethrtimef = tsc_gethrtime;
888 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
889 		scalehrtimef = tsc_scalehrtime;
890 		hrtime_tick = tsc_tick;
891 		tsc_gethrtime_initted = 1;
892 	} else {
893 		if (pops->psm_hrtimeinit)
894 			(*pops->psm_hrtimeinit)();
895 		gethrtimef = pops->psm_gethrtime;
896 		gethrtimeunscaledf = gethrtimef;
897 		/* scalehrtimef will remain dummy */
898 	}
899 
900 	mach_fixcpufreq();
901 
902 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
903 		if ((preferred_mode == TIMER_ONESHOT) &&
904 		    (tsc_gethrtime_enable)) {
905 
906 			resolution = (*pops->psm_clkinit)(0);
907 			if (resolution != 0)  {
908 				*set_mode = TIMER_ONESHOT;
909 				return (resolution);
910 			}
911 
912 		}
913 
914 		/*
915 		 * either periodic mode was requested or could not set to
916 		 * one-shot mode
917 		 */
918 		resolution = (*pops->psm_clkinit)(hz);
919 		/*
920 		 * psm should be able to do periodic, so we do not check
921 		 * for return value of psm_clkinit here.
922 		 */
923 		*set_mode = TIMER_PERIODIC;
924 		return (resolution);
925 	} else {
926 		/*
927 		 * PSMI interface prior to PSMI_3 does not define a return
928 		 * value for psm_clkinit, so the return value is ignored.
929 		 */
930 		(void) (*pops->psm_clkinit)(hz);
931 		*set_mode = TIMER_PERIODIC;
932 		return (nsec_per_tick);
933 	}
934 }
935 
936 /*ARGSUSED*/
937 static void
938 mach_psm_set_softintr(int ipl, struct av_softinfo *pending)
939 {
940 	register struct psm_ops  *pops;
941 
942 	/* invoke hardware interrupt					*/
943 	pops = mach_set[0];
944 	(*pops->psm_set_softintr)(ipl);
945 }
946 
947 static int
948 mach_softlvl_to_vect(register int ipl)
949 {
950 	register int softvect;
951 	register struct psm_ops  *pops;
952 
953 	pops = mach_set[0];
954 
955 	/* check for null handler for set soft interrupt call		*/
956 	if (pops->psm_set_softintr == NULL) {
957 		setsoftint = av_set_softint_pending;
958 		return (PSM_SV_SOFTWARE);
959 	}
960 
961 	softvect = (*pops->psm_softlvl_to_irq)(ipl);
962 	/* check for hardware scheme					*/
963 	if (softvect > PSM_SV_SOFTWARE) {
964 		setsoftint = mach_psm_set_softintr;
965 		return (softvect);
966 	}
967 
968 	if (softvect == PSM_SV_SOFTWARE)
969 		setsoftint = av_set_softint_pending;
970 	else	/* hardware and software mixed scheme			*/
971 		setsoftint = mach_set_softintr;
972 
973 	return (PSM_SV_SOFTWARE);
974 }
975 
976 static void
977 mach_set_softintr(register int ipl, struct av_softinfo *pending)
978 {
979 	register struct psm_ops  *pops;
980 
981 	/* set software pending bits					*/
982 	av_set_softint_pending(ipl, pending);
983 
984 	/*	check if dosoftint will be called at the end of intr	*/
985 	if (CPU_ON_INTR(CPU) || (curthread->t_intr))
986 		return;
987 
988 	/* invoke hardware interrupt					*/
989 	pops = mach_set[0];
990 	(*pops->psm_set_softintr)(ipl);
991 }
992 
993 static void
994 mach_cpu_start(register int cpun)
995 {
996 	register struct psm_ops  *pops;
997 	int	i;
998 
999 	pops = mach_set[0];
1000 
1001 	(*pops->psm_cpu_start)(cpun, rm_platter_va);
1002 
1003 	/* wait for the auxillary cpu to be ready			*/
1004 	for (i = 20000; i; i--) {
1005 		if (cpu[cpun]->cpu_flags & CPU_READY)
1006 			return;
1007 		drv_usecwait(100);
1008 	}
1009 }
1010 
1011 /*ARGSUSED*/
1012 static int
1013 mach_translate_irq(dev_info_t *dip, int irqno)
1014 {
1015 	return (irqno);	/* default to NO translation */
1016 }
1017 
1018 static timestruc_t
1019 mach_tod_get(void)
1020 {
1021 	timestruc_t ts;
1022 	todinfo_t tod;
1023 	static int mach_range_warn = 1;	/* warn only once */
1024 
1025 	ASSERT(MUTEX_HELD(&tod_lock));
1026 
1027 	/* The year returned from is the last 2 digit only */
1028 	if ((*psm_todgetf)(&tod)) {
1029 		ts.tv_sec = 0;
1030 		ts.tv_nsec = 0;
1031 		tod_fault_reset();
1032 		return (ts);
1033 	}
1034 
1035 	/* assume that we wrap the rtc year back to zero at 2000 */
1036 	if (tod.tod_year < 69) {
1037 		if (mach_range_warn && tod.tod_year > 38) {
1038 			cmn_err(CE_WARN, "hardware real-time clock is out "
1039 				"of range -- time needs to be reset");
1040 			mach_range_warn = 0;
1041 		}
1042 		tod.tod_year += 100;
1043 	}
1044 
1045 	/* tod_to_utc uses 1900 as base for the year */
1046 	ts.tv_sec = tod_to_utc(tod) + gmt_lag;
1047 	ts.tv_nsec = 0;
1048 
1049 	return (ts);
1050 }
1051 
1052 static void
1053 mach_tod_set(timestruc_t ts)
1054 {
1055 	todinfo_t tod = utc_to_tod(ts.tv_sec - gmt_lag);
1056 
1057 	ASSERT(MUTEX_HELD(&tod_lock));
1058 
1059 	if (tod.tod_year >= 100)
1060 		tod.tod_year -= 100;
1061 
1062 	(*psm_todsetf)(&tod);
1063 }
1064 
1065 static void
1066 mach_notify_error(int level, char *errmsg)
1067 {
1068 	/*
1069 	 * SL_FATAL is pass in once panicstr is set, deliver it
1070 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1071 	 * codes for the psmi handler
1072 	 */
1073 	if (level & SL_FATAL)
1074 		(*notify_error)(CE_PANIC, errmsg);
1075 	else if (level & SL_WARN)
1076 		(*notify_error)(CE_WARN, errmsg);
1077 	else if (level & SL_NOTE)
1078 		(*notify_error)(CE_NOTE, errmsg);
1079 	else if (level & SL_CONSOLE)
1080 		(*notify_error)(CE_CONT, errmsg);
1081 }
1082 
1083 /*
1084  * It provides the default basic intr_ops interface for the new DDI
1085  * interrupt framework if the PSM doesn't have one.
1086  *
1087  * Input:
1088  * dip     - pointer to the dev_info structure of the requested device
1089  * hdlp    - pointer to the internal interrupt handle structure for the
1090  *	     requested interrupt
1091  * intr_op - opcode for this call
1092  * result  - pointer to the integer that will hold the result to be
1093  *	     passed back if return value is PSM_SUCCESS
1094  *
1095  * Output:
1096  * return value is either PSM_SUCCESS or PSM_FAILURE
1097  */
1098 static int
1099 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1100     psm_intr_op_t intr_op, int *result)
1101 {
1102 	struct intrspec *ispec;
1103 
1104 	switch (intr_op) {
1105 	case PSM_INTR_OP_CHECK_MSI:
1106 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1107 			    DDI_INTR_TYPE_MSIX);
1108 		break;
1109 	case PSM_INTR_OP_ALLOC_VECTORS:
1110 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1111 			*result = 1;
1112 		else
1113 			*result = 0;
1114 		break;
1115 	case PSM_INTR_OP_FREE_VECTORS:
1116 		break;
1117 	case PSM_INTR_OP_NAVAIL_VECTORS:
1118 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1119 			*result = 1;
1120 		else
1121 			*result = 0;
1122 		break;
1123 	case PSM_INTR_OP_XLATE_VECTOR:
1124 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1125 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1126 		break;
1127 	case PSM_INTR_OP_GET_CAP:
1128 		*result = 0;
1129 		break;
1130 	case PSM_INTR_OP_GET_PENDING:
1131 	case PSM_INTR_OP_CLEAR_MASK:
1132 	case PSM_INTR_OP_SET_MASK:
1133 	case PSM_INTR_OP_GET_SHARED:
1134 	case PSM_INTR_OP_SET_PRI:
1135 	case PSM_INTR_OP_SET_CAP:
1136 	case PSM_INTR_OP_SET_CPU:
1137 	case PSM_INTR_OP_GET_INTR:
1138 	default:
1139 		return (PSM_FAILURE);
1140 	}
1141 	return (PSM_SUCCESS);
1142 }
1143