1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/segments.h> 33 #include <sys/sysmacros.h> 34 #include <sys/signal.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/mman.h> 38 #include <sys/vm.h> 39 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/kmem.h> 46 47 #include <sys/reboot.h> 48 #include <sys/uadmin.h> 49 #include <sys/callb.h> 50 51 #include <sys/cred.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 55 #include <sys/procfs.h> 56 #include <sys/acct.h> 57 58 #include <sys/vfs.h> 59 #include <sys/dnlc.h> 60 #include <sys/var.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <vm/hat.h> 86 #include <vm/anon.h> 87 #include <vm/as.h> 88 #include <vm/page.h> 89 #include <vm/seg.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <vm/hat_i86.h> 95 #include <sys/swap.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <sys/machlock.h> 102 #include <sys/x_call.h> 103 #include <sys/instance.h> 104 105 #include <sys/time.h> 106 #include <sys/smp_impldefs.h> 107 #include <sys/psm_types.h> 108 #include <sys/atomic.h> 109 #include <sys/panic.h> 110 #include <sys/cpuvar.h> 111 #include <sys/dtrace.h> 112 #include <sys/bl.h> 113 #include <sys/nvpair.h> 114 #include <sys/x86_archext.h> 115 #include <sys/pool_pset.h> 116 #include <sys/autoconf.h> 117 #include <sys/mem.h> 118 #include <sys/dumphdr.h> 119 #include <sys/compress.h> 120 #if defined(__xpv) 121 #include <sys/hypervisor.h> 122 #include <sys/xpv_panic.h> 123 #endif 124 125 #ifdef TRAPTRACE 126 #include <sys/traptrace.h> 127 #endif /* TRAPTRACE */ 128 129 #ifdef C2_AUDIT 130 extern void audit_enterprom(int); 131 extern void audit_exitprom(int); 132 #endif 133 134 /* 135 * The panicbuf array is used to record messages and state: 136 */ 137 char panicbuf[PANICBUFSIZE]; 138 139 /* 140 * maxphys - used during physio 141 * klustsize - used for klustering by swapfs and specfs 142 */ 143 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 144 int klustsize = 56 * 1024; 145 146 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 147 148 /* 149 * defined here, though unused on x86, 150 * to make kstat_fr.c happy. 151 */ 152 int vac; 153 154 void stop_other_cpus(); 155 void debug_enter(char *); 156 157 extern void pm_cfb_check_and_powerup(void); 158 extern void pm_cfb_rele(void); 159 extern void consconfig_teardown(); 160 161 /* 162 * Machine dependent code to reboot. 163 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 164 * to a string to be used as the argument string when rebooting. 165 * 166 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 167 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 168 * we are in a normal shutdown sequence (interrupts are not blocked, the 169 * system is not panic'ing or being suspended). 170 */ 171 /*ARGSUSED*/ 172 void 173 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 174 { 175 if (!panicstr) { 176 kpreempt_disable(); 177 affinity_set(CPU_CURRENT); 178 } 179 180 /* 181 * Print the reboot message now, before pausing other cpus. 182 * There is a race condition in the printing support that 183 * can deadlock multiprocessor machines. 184 */ 185 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 186 prom_printf("rebooting...\n"); 187 188 if (IN_XPV_PANIC()) 189 reset(); 190 191 /* 192 * We can't bring up the console from above lock level, so do it now 193 */ 194 pm_cfb_check_and_powerup(); 195 196 /* make sure there are no more changes to the device tree */ 197 devtree_freeze(); 198 199 if (invoke_cb) 200 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 201 202 /* 203 * Clear any unresolved UEs from memory. 204 */ 205 page_retire_mdboot(); 206 207 #if defined(__xpv) 208 /* 209 * XXPV Should probably think some more about how we deal 210 * with panicing before it's really safe to panic. 211 * On hypervisors, we reboot very quickly.. Perhaps panic 212 * should only attempt to recover by rebooting if, 213 * say, we were able to mount the root filesystem, 214 * or if we successfully launched init(1m). 215 */ 216 if (panicstr && proc_init == NULL) 217 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 218 #endif 219 220 /* 221 * stop other cpus and raise our priority. since there is only 222 * one active cpu after this, and our priority will be too high 223 * for us to be preempted, we're essentially single threaded 224 * from here on out. 225 */ 226 (void) spl6(); 227 if (!panicstr) { 228 mutex_enter(&cpu_lock); 229 pause_cpus(NULL); 230 mutex_exit(&cpu_lock); 231 } 232 233 consconfig_teardown(); 234 235 /* 236 * try and reset leaf devices. reset_leaves() should only 237 * be called when there are no other threads that could be 238 * accessing devices 239 */ 240 reset_leaves(); 241 242 (void) spl8(); 243 (*psm_shutdownf)(cmd, fcn); 244 245 if (fcn == AD_HALT || fcn == AD_POWEROFF) 246 halt((char *)NULL); 247 else 248 prom_reboot(""); 249 /*NOTREACHED*/ 250 } 251 252 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 253 /*ARGSUSED*/ 254 void 255 mdpreboot(int cmd, int fcn, char *mdep) 256 { 257 (*psm_preshutdownf)(cmd, fcn); 258 } 259 260 void 261 idle_other_cpus() 262 { 263 int cpuid = CPU->cpu_id; 264 cpuset_t xcset; 265 266 ASSERT(cpuid < NCPU); 267 CPUSET_ALL_BUT(xcset, cpuid); 268 xc_capture_cpus(xcset); 269 } 270 271 void 272 resume_other_cpus() 273 { 274 ASSERT(CPU->cpu_id < NCPU); 275 276 xc_release_cpus(); 277 } 278 279 void 280 stop_other_cpus() 281 { 282 int cpuid = CPU->cpu_id; 283 cpuset_t xcset; 284 285 ASSERT(cpuid < NCPU); 286 287 /* 288 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 289 * and will return immediately regardless of whether or not it was 290 * able to make them do it. 291 */ 292 CPUSET_ALL_BUT(xcset, cpuid); 293 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 294 } 295 296 /* 297 * Machine dependent abort sequence handling 298 */ 299 void 300 abort_sequence_enter(char *msg) 301 { 302 if (abort_enable == 0) { 303 #ifdef C2_AUDIT 304 if (audit_active) 305 audit_enterprom(0); 306 #endif /* C2_AUDIT */ 307 return; 308 } 309 #ifdef C2_AUDIT 310 if (audit_active) 311 audit_enterprom(1); 312 #endif /* C2_AUDIT */ 313 debug_enter(msg); 314 #ifdef C2_AUDIT 315 if (audit_active) 316 audit_exitprom(1); 317 #endif /* C2_AUDIT */ 318 } 319 320 /* 321 * Enter debugger. Called when the user types ctrl-alt-d or whenever 322 * code wants to enter the debugger and possibly resume later. 323 */ 324 void 325 debug_enter( 326 char *msg) /* message to print, possibly NULL */ 327 { 328 if (dtrace_debugger_init != NULL) 329 (*dtrace_debugger_init)(); 330 331 if (msg) 332 prom_printf("%s\n", msg); 333 334 if (boothowto & RB_DEBUG) 335 kmdb_enter(); 336 337 if (dtrace_debugger_fini != NULL) 338 (*dtrace_debugger_fini)(); 339 } 340 341 void 342 reset(void) 343 { 344 #if !defined(__xpv) 345 ushort_t *bios_memchk; 346 347 /* 348 * Can't use psm_map_phys before the hat is initialized. 349 */ 350 if (khat_running) { 351 bios_memchk = (ushort_t *)psm_map_phys(0x472, 352 sizeof (ushort_t), PROT_READ | PROT_WRITE); 353 if (bios_memchk) 354 *bios_memchk = 0x1234; /* bios memory check disable */ 355 } 356 357 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 358 efi_reset(); 359 pc_reset(); 360 #else 361 if (IN_XPV_PANIC()) 362 pc_reset(); 363 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 364 panic("HYPERVISOR_shutdown() failed"); 365 #endif 366 /*NOTREACHED*/ 367 } 368 369 /* 370 * Halt the machine and return to the monitor 371 */ 372 void 373 halt(char *s) 374 { 375 stop_other_cpus(); /* send stop signal to other CPUs */ 376 if (s) 377 prom_printf("(%s) \n", s); 378 prom_exit_to_mon(); 379 /*NOTREACHED*/ 380 } 381 382 /* 383 * Initiate interrupt redistribution. 384 */ 385 void 386 i_ddi_intr_redist_all_cpus() 387 { 388 } 389 390 /* 391 * XXX These probably ought to live somewhere else 392 * XXX They are called from mem.c 393 */ 394 395 /* 396 * Convert page frame number to an OBMEM page frame number 397 * (i.e. put in the type bits -- zero for this implementation) 398 */ 399 pfn_t 400 impl_obmem_pfnum(pfn_t pf) 401 { 402 return (pf); 403 } 404 405 #ifdef NM_DEBUG 406 int nmi_test = 0; /* checked in intentry.s during clock int */ 407 int nmtest = -1; 408 nmfunc1(arg, rp) 409 int arg; 410 struct regs *rp; 411 { 412 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 413 nmtest += 50; 414 if (arg == nmtest) { 415 printf("ip = %x\n", rp->r_pc); 416 return (1); 417 } 418 return (0); 419 } 420 421 #endif 422 423 #include <sys/bootsvcs.h> 424 425 /* Hacked up initialization for initial kernel check out is HERE. */ 426 /* The basic steps are: */ 427 /* kernel bootfuncs definition/initialization for KADB */ 428 /* kadb bootfuncs pointer initialization */ 429 /* putchar/getchar (interrupts disabled) */ 430 431 /* kadb bootfuncs pointer initialization */ 432 433 int 434 sysp_getchar() 435 { 436 int i; 437 ulong_t s; 438 439 if (cons_polledio == NULL) { 440 /* Uh oh */ 441 prom_printf("getchar called with no console\n"); 442 for (;;) 443 /* LOOP FOREVER */; 444 } 445 446 s = clear_int_flag(); 447 i = cons_polledio->cons_polledio_getchar( 448 cons_polledio->cons_polledio_argument); 449 restore_int_flag(s); 450 return (i); 451 } 452 453 void 454 sysp_putchar(int c) 455 { 456 ulong_t s; 457 458 /* 459 * We have no alternative but to drop the output on the floor. 460 */ 461 if (cons_polledio == NULL || 462 cons_polledio->cons_polledio_putchar == NULL) 463 return; 464 465 s = clear_int_flag(); 466 cons_polledio->cons_polledio_putchar( 467 cons_polledio->cons_polledio_argument, c); 468 restore_int_flag(s); 469 } 470 471 int 472 sysp_ischar() 473 { 474 int i; 475 ulong_t s; 476 477 if (cons_polledio == NULL || 478 cons_polledio->cons_polledio_ischar == NULL) 479 return (0); 480 481 s = clear_int_flag(); 482 i = cons_polledio->cons_polledio_ischar( 483 cons_polledio->cons_polledio_argument); 484 restore_int_flag(s); 485 return (i); 486 } 487 488 int 489 goany(void) 490 { 491 prom_printf("Type any key to continue "); 492 (void) prom_getchar(); 493 prom_printf("\n"); 494 return (1); 495 } 496 497 static struct boot_syscalls kern_sysp = { 498 sysp_getchar, /* unchar (*getchar)(); 7 */ 499 sysp_putchar, /* int (*putchar)(); 8 */ 500 sysp_ischar, /* int (*ischar)(); 9 */ 501 }; 502 503 #if defined(__xpv) 504 int using_kern_polledio; 505 #endif 506 507 void 508 kadb_uses_kernel() 509 { 510 /* 511 * This routine is now totally misnamed, since it does not in fact 512 * control kadb's I/O; it only controls the kernel's prom_* I/O. 513 */ 514 sysp = &kern_sysp; 515 #if defined(__xpv) 516 using_kern_polledio = 1; 517 #endif 518 } 519 520 /* 521 * the interface to the outside world 522 */ 523 524 /* 525 * poll_port -- wait for a register to achieve a 526 * specific state. Arguments are a mask of bits we care about, 527 * and two sub-masks. To return normally, all the bits in the 528 * first sub-mask must be ON, all the bits in the second sub- 529 * mask must be OFF. If about seconds pass without the register 530 * achieving the desired bit configuration, we return 1, else 531 * 0. 532 */ 533 int 534 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 535 { 536 int i; 537 ushort_t maskval; 538 539 for (i = 500000; i; i--) { 540 maskval = inb(port) & mask; 541 if (((maskval & onbits) == onbits) && 542 ((maskval & offbits) == 0)) 543 return (0); 544 drv_usecwait(10); 545 } 546 return (1); 547 } 548 549 /* 550 * set_idle_cpu is called from idle() when a CPU becomes idle. 551 */ 552 /*LINTED: static unused */ 553 static uint_t last_idle_cpu; 554 555 /*ARGSUSED*/ 556 void 557 set_idle_cpu(int cpun) 558 { 559 last_idle_cpu = cpun; 560 (*psm_set_idle_cpuf)(cpun); 561 } 562 563 /* 564 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 565 */ 566 /*ARGSUSED*/ 567 void 568 unset_idle_cpu(int cpun) 569 { 570 (*psm_unset_idle_cpuf)(cpun); 571 } 572 573 /* 574 * This routine is almost correct now, but not quite. It still needs the 575 * equivalent concept of "hres_last_tick", just like on the sparc side. 576 * The idea is to take a snapshot of the hi-res timer while doing the 577 * hrestime_adj updates under hres_lock in locore, so that the small 578 * interval between interrupt assertion and interrupt processing is 579 * accounted for correctly. Once we have this, the code below should 580 * be modified to subtract off hres_last_tick rather than hrtime_base. 581 * 582 * I'd have done this myself, but I don't have source to all of the 583 * vendor-specific hi-res timer routines (grrr...). The generic hook I 584 * need is something like "gethrtime_unlocked()", which would be just like 585 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 586 * This is what the GET_HRTIME() macro is for on sparc (although it also 587 * serves the function of making time available without a function call 588 * so you don't take a register window overflow while traps are disabled). 589 */ 590 void 591 pc_gethrestime(timestruc_t *tp) 592 { 593 int lock_prev; 594 timestruc_t now; 595 int nslt; /* nsec since last tick */ 596 int adj; /* amount of adjustment to apply */ 597 598 loop: 599 lock_prev = hres_lock; 600 now = hrestime; 601 nslt = (int)(gethrtime() - hres_last_tick); 602 if (nslt < 0) { 603 /* 604 * nslt < 0 means a tick came between sampling 605 * gethrtime() and hres_last_tick; restart the loop 606 */ 607 608 goto loop; 609 } 610 now.tv_nsec += nslt; 611 if (hrestime_adj != 0) { 612 if (hrestime_adj > 0) { 613 adj = (nslt >> ADJ_SHIFT); 614 if (adj > hrestime_adj) 615 adj = (int)hrestime_adj; 616 } else { 617 adj = -(nslt >> ADJ_SHIFT); 618 if (adj < hrestime_adj) 619 adj = (int)hrestime_adj; 620 } 621 now.tv_nsec += adj; 622 } 623 while ((unsigned long)now.tv_nsec >= NANOSEC) { 624 625 /* 626 * We might have a large adjustment or have been in the 627 * debugger for a long time; take care of (at most) four 628 * of those missed seconds (tv_nsec is 32 bits, so 629 * anything >4s will be wrapping around). However, 630 * anything more than 2 seconds out of sync will trigger 631 * timedelta from clock() to go correct the time anyway, 632 * so do what we can, and let the big crowbar do the 633 * rest. A similar correction while loop exists inside 634 * hres_tick(); in all cases we'd like tv_nsec to 635 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 636 * user processes, but if tv_sec's a little behind for a 637 * little while, that's OK; time still monotonically 638 * increases. 639 */ 640 641 now.tv_nsec -= NANOSEC; 642 now.tv_sec++; 643 } 644 if ((hres_lock & ~1) != lock_prev) 645 goto loop; 646 647 *tp = now; 648 } 649 650 void 651 gethrestime_lasttick(timespec_t *tp) 652 { 653 int s; 654 655 s = hr_clock_lock(); 656 *tp = hrestime; 657 hr_clock_unlock(s); 658 } 659 660 time_t 661 gethrestime_sec(void) 662 { 663 timestruc_t now; 664 665 gethrestime(&now); 666 return (now.tv_sec); 667 } 668 669 /* 670 * Initialize a kernel thread's stack 671 */ 672 673 caddr_t 674 thread_stk_init(caddr_t stk) 675 { 676 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 677 return (stk - SA(MINFRAME)); 678 } 679 680 /* 681 * Initialize lwp's kernel stack. 682 */ 683 684 #ifdef TRAPTRACE 685 /* 686 * There's a tricky interdependency here between use of sysenter and 687 * TRAPTRACE which needs recording to avoid future confusion (this is 688 * about the third time I've re-figured this out ..) 689 * 690 * Here's how debugging lcall works with TRAPTRACE. 691 * 692 * 1 We're in userland with a breakpoint on the lcall instruction. 693 * 2 We execute the instruction - the instruction pushes the userland 694 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 695 * via the call gate. 696 * 3 The hardware raises a debug trap in kernel mode, the hardware 697 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 698 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 699 * 5 cmntrap finishes building a trap frame 700 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 701 * off the stack into the traptrace buffer. 702 * 703 * This means that the traptrace buffer contains the wrong values in 704 * %esp and %ss, but everything else in there is correct. 705 * 706 * Here's how debugging sysenter works with TRAPTRACE. 707 * 708 * a We're in userland with a breakpoint on the sysenter instruction. 709 * b We execute the instruction - the instruction pushes -nothing- 710 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 711 * values to take us to sys_sysenter, at the top of the lwp's 712 * stack. 713 * c goto 3 714 * 715 * At this point, because we got into the kernel without the requisite 716 * five pushes on the stack, if we didn't make extra room, we'd 717 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 718 * values from negative (unmapped) stack addresses -- which really bites. 719 * That's why we do the '-= 8' below. 720 * 721 * XXX Note that reading "up" lwp0's stack works because t0 is declared 722 * right next to t0stack in locore.s 723 */ 724 #endif 725 726 caddr_t 727 lwp_stk_init(klwp_t *lwp, caddr_t stk) 728 { 729 caddr_t oldstk; 730 struct pcb *pcb = &lwp->lwp_pcb; 731 732 oldstk = stk; 733 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 734 #ifdef TRAPTRACE 735 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 736 #endif 737 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 738 bzero(stk, oldstk - stk); 739 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 740 741 /* 742 * Arrange that the virtualized %fs and %gs GDT descriptors 743 * have a well-defined initial state (present, ring 3 744 * and of type data). 745 */ 746 #if defined(__amd64) 747 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 748 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 749 else 750 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 751 #elif defined(__i386) 752 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 753 #endif /* __i386 */ 754 lwp_installctx(lwp); 755 return (stk); 756 } 757 758 /*ARGSUSED*/ 759 void 760 lwp_stk_fini(klwp_t *lwp) 761 {} 762 763 /* 764 * If we're not the panic CPU, we wait in panic_idle for reboot. 765 */ 766 static void 767 panic_idle(void) 768 { 769 splx(ipltospl(CLOCK_LEVEL)); 770 (void) setjmp(&curthread->t_pcb); 771 772 for (;;) 773 ; 774 } 775 776 /* 777 * Stop the other CPUs by cross-calling them and forcing them to enter 778 * the panic_idle() loop above. 779 */ 780 /*ARGSUSED*/ 781 void 782 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 783 { 784 processorid_t i; 785 cpuset_t xcset; 786 787 /* 788 * In the case of a Xen panic, the hypervisor has already stopped 789 * all of the CPUs. 790 */ 791 if (!IN_XPV_PANIC()) { 792 (void) splzs(); 793 794 CPUSET_ALL_BUT(xcset, cp->cpu_id); 795 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 796 } 797 798 for (i = 0; i < NCPU; i++) { 799 if (i != cp->cpu_id && cpu[i] != NULL && 800 (cpu[i]->cpu_flags & CPU_EXISTS)) 801 cpu[i]->cpu_flags |= CPU_QUIESCED; 802 } 803 } 804 805 /* 806 * Platform callback following each entry to panicsys(). 807 */ 808 /*ARGSUSED*/ 809 void 810 panic_enter_hw(int spl) 811 { 812 /* Nothing to do here */ 813 } 814 815 /* 816 * Platform-specific code to execute after panicstr is set: we invoke 817 * the PSM entry point to indicate that a panic has occurred. 818 */ 819 /*ARGSUSED*/ 820 void 821 panic_quiesce_hw(panic_data_t *pdp) 822 { 823 psm_notifyf(PSM_PANIC_ENTER); 824 825 #ifdef TRAPTRACE 826 /* 827 * Turn off TRAPTRACE 828 */ 829 TRAPTRACE_FREEZE; 830 #endif /* TRAPTRACE */ 831 } 832 833 /* 834 * Platform callback prior to writing crash dump. 835 */ 836 /*ARGSUSED*/ 837 void 838 panic_dump_hw(int spl) 839 { 840 /* Nothing to do here */ 841 } 842 843 void * 844 plat_traceback(void *fpreg) 845 { 846 #ifdef __xpv 847 if (IN_XPV_PANIC()) 848 return (xpv_traceback(fpreg)); 849 #endif 850 return (fpreg); 851 } 852 853 /*ARGSUSED*/ 854 void 855 plat_tod_fault(enum tod_fault_type tod_bad) 856 {} 857 858 /*ARGSUSED*/ 859 int 860 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 861 { 862 return (ENOTSUP); 863 } 864 865 /* 866 * The underlying console output routines are protected by raising IPL in case 867 * we are still calling into the early boot services. Once we start calling 868 * the kernel console emulator, it will disable interrupts completely during 869 * character rendering (see sysp_putchar, for example). Refer to the comments 870 * and code in common/os/console.c for more information on these callbacks. 871 */ 872 /*ARGSUSED*/ 873 int 874 console_enter(int busy) 875 { 876 return (splzs()); 877 } 878 879 /*ARGSUSED*/ 880 void 881 console_exit(int busy, int spl) 882 { 883 splx(spl); 884 } 885 886 /* 887 * Allocate a region of virtual address space, unmapped. 888 * Stubbed out except on sparc, at least for now. 889 */ 890 /*ARGSUSED*/ 891 void * 892 boot_virt_alloc(void *addr, size_t size) 893 { 894 return (addr); 895 } 896 897 volatile unsigned long tenmicrodata; 898 899 void 900 tenmicrosec(void) 901 { 902 extern int gethrtime_hires; 903 904 if (gethrtime_hires) { 905 hrtime_t start, end; 906 start = end = gethrtime(); 907 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 908 SMT_PAUSE(); 909 end = gethrtime(); 910 } 911 } else { 912 #if defined(__xpv) 913 hrtime_t newtime; 914 915 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 916 while (xpv_gethrtime() < newtime) 917 SMT_PAUSE(); 918 #else /* __xpv */ 919 int i; 920 921 /* 922 * Artificial loop to induce delay. 923 */ 924 for (i = 0; i < microdata; i++) 925 tenmicrodata = microdata; 926 #endif /* __xpv */ 927 } 928 } 929 930 /* 931 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 932 * long, and it fills in the array with the time spent on cpu in 933 * each of the mstates, where time is returned in nsec. 934 * 935 * No guarantee is made that the returned values in times[] will 936 * monotonically increase on sequential calls, although this will 937 * be true in the long run. Any such guarantee must be handled by 938 * the caller, if needed. This can happen if we fail to account 939 * for elapsed time due to a generation counter conflict, yet we 940 * did account for it on a prior call (see below). 941 * 942 * The complication is that the cpu in question may be updating 943 * its microstate at the same time that we are reading it. 944 * Because the microstate is only updated when the CPU's state 945 * changes, the values in cpu_intracct[] can be indefinitely out 946 * of date. To determine true current values, it is necessary to 947 * compare the current time with cpu_mstate_start, and add the 948 * difference to times[cpu_mstate]. 949 * 950 * This can be a problem if those values are changing out from 951 * under us. Because the code path in new_cpu_mstate() is 952 * performance critical, we have not added a lock to it. Instead, 953 * we have added a generation counter. Before beginning 954 * modifications, the counter is set to 0. After modifications, 955 * it is set to the old value plus one. 956 * 957 * get_cpu_mstate() will not consider the values of cpu_mstate 958 * and cpu_mstate_start to be usable unless the value of 959 * cpu_mstate_gen is both non-zero and unchanged, both before and 960 * after reading the mstate information. Note that we must 961 * protect against out-of-order loads around accesses to the 962 * generation counter. Also, this is a best effort approach in 963 * that we do not retry should the counter be found to have 964 * changed. 965 * 966 * cpu_intracct[] is used to identify time spent in each CPU 967 * mstate while handling interrupts. Such time should be reported 968 * against system time, and so is subtracted out from its 969 * corresponding cpu_acct[] time and added to 970 * cpu_acct[CMS_SYSTEM]. 971 */ 972 973 void 974 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 975 { 976 int i; 977 hrtime_t now, start; 978 uint16_t gen; 979 uint16_t state; 980 hrtime_t intracct[NCMSTATES]; 981 982 /* 983 * Load all volatile state under the protection of membar. 984 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 985 * of (now - cpu_mstate_start) by a change in CPU mstate that 986 * arrives after we make our last check of cpu_mstate_gen. 987 */ 988 989 now = gethrtime_unscaled(); 990 gen = cpu->cpu_mstate_gen; 991 992 membar_consumer(); /* guarantee load ordering */ 993 start = cpu->cpu_mstate_start; 994 state = cpu->cpu_mstate; 995 for (i = 0; i < NCMSTATES; i++) { 996 intracct[i] = cpu->cpu_intracct[i]; 997 times[i] = cpu->cpu_acct[i]; 998 } 999 membar_consumer(); /* guarantee load ordering */ 1000 1001 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1002 times[state] += now - start; 1003 1004 for (i = 0; i < NCMSTATES; i++) { 1005 if (i == CMS_SYSTEM) 1006 continue; 1007 times[i] -= intracct[i]; 1008 if (times[i] < 0) { 1009 intracct[i] += times[i]; 1010 times[i] = 0; 1011 } 1012 times[CMS_SYSTEM] += intracct[i]; 1013 scalehrtime(×[i]); 1014 } 1015 scalehrtime(×[CMS_SYSTEM]); 1016 } 1017 1018 1019 /* 1020 * This is a version of the rdmsr instruction that allows 1021 * an error code to be returned in the case of failure. 1022 */ 1023 int 1024 checked_rdmsr(uint_t msr, uint64_t *value) 1025 { 1026 if ((x86_feature & X86_MSR) == 0) 1027 return (ENOTSUP); 1028 *value = rdmsr(msr); 1029 return (0); 1030 } 1031 1032 /* 1033 * This is a version of the wrmsr instruction that allows 1034 * an error code to be returned in the case of failure. 1035 */ 1036 int 1037 checked_wrmsr(uint_t msr, uint64_t value) 1038 { 1039 if ((x86_feature & X86_MSR) == 0) 1040 return (ENOTSUP); 1041 wrmsr(msr, value); 1042 return (0); 1043 } 1044 1045 /* 1046 * The mem driver's usual method of using hat_devload() to establish a 1047 * temporary mapping will not work for foreign pages mapped into this 1048 * domain or for the special hypervisor-provided pages. For the foreign 1049 * pages, we often don't know which domain owns them, so we can't ask the 1050 * hypervisor to set up a new mapping. For the other pages, we don't have 1051 * a pfn, so we can't create a new PTE. For these special cases, we do a 1052 * direct uiomove() from the existing kernel virtual address. 1053 */ 1054 /*ARGSUSED*/ 1055 int 1056 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1057 { 1058 #if defined(__xpv) 1059 void *va = (void *)(uintptr_t)uio->uio_loffset; 1060 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1061 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1062 (size_t)uio->uio_iov->iov_len); 1063 1064 if ((rw == UIO_READ && 1065 (va == HYPERVISOR_shared_info || va == xen_info)) || 1066 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1067 return (uiomove(va, nbytes, rw, uio)); 1068 #endif 1069 return (ENOTSUP); 1070 } 1071 1072 pgcnt_t 1073 num_phys_pages() 1074 { 1075 pgcnt_t npages = 0; 1076 struct memlist *mp; 1077 1078 #if defined(__xpv) 1079 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1080 xen_sysctl_t op; 1081 1082 op.cmd = XEN_SYSCTL_physinfo; 1083 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1084 if (HYPERVISOR_sysctl(&op) != 0) 1085 panic("physinfo op refused"); 1086 1087 return ((pgcnt_t)op.u.physinfo.total_pages); 1088 } 1089 #endif /* __xpv */ 1090 1091 for (mp = phys_install; mp != NULL; mp = mp->next) 1092 npages += mp->size >> PAGESHIFT; 1093 1094 return (npages); 1095 } 1096 1097 int 1098 dump_plat_addr() 1099 { 1100 #ifdef __xpv 1101 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1102 mem_vtop_t mem_vtop; 1103 int cnt; 1104 1105 /* 1106 * On the hypervisor, we want to dump the page with shared_info on it. 1107 */ 1108 if (!IN_XPV_PANIC()) { 1109 mem_vtop.m_as = &kas; 1110 mem_vtop.m_va = HYPERVISOR_shared_info; 1111 mem_vtop.m_pfn = pfn; 1112 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1113 cnt = 1; 1114 } else { 1115 cnt = dump_xpv_addr(); 1116 } 1117 return (cnt); 1118 #else 1119 return (0); 1120 #endif 1121 } 1122 1123 void 1124 dump_plat_pfn() 1125 { 1126 #ifdef __xpv 1127 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1128 1129 if (!IN_XPV_PANIC()) 1130 dumpvp_write(&pfn, sizeof (pfn)); 1131 else 1132 dump_xpv_pfn(); 1133 #endif 1134 } 1135 1136 /*ARGSUSED*/ 1137 int 1138 dump_plat_data(void *dump_cbuf) 1139 { 1140 #ifdef __xpv 1141 uint32_t csize; 1142 int cnt; 1143 1144 if (!IN_XPV_PANIC()) { 1145 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1146 PAGESIZE); 1147 dumpvp_write(&csize, sizeof (uint32_t)); 1148 dumpvp_write(dump_cbuf, csize); 1149 cnt = 1; 1150 } else { 1151 cnt = dump_xpv_data(dump_cbuf); 1152 } 1153 return (cnt); 1154 #else 1155 return (0); 1156 #endif 1157 } 1158 1159 /* 1160 * Calculates a linear address, given the CS selector and PC values 1161 * by looking up the %cs selector process's LDT or the CPU's GDT. 1162 * proc->p_ldtlock must be held across this call. 1163 */ 1164 int 1165 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1166 { 1167 user_desc_t *descrp; 1168 caddr_t baseaddr; 1169 uint16_t idx = SELTOIDX(rp->r_cs); 1170 1171 ASSERT(rp->r_cs <= 0xFFFF); 1172 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1173 1174 if (SELISLDT(rp->r_cs)) { 1175 /* 1176 * Currently 64 bit processes cannot have private LDTs. 1177 */ 1178 ASSERT(p->p_model != DATAMODEL_LP64); 1179 1180 if (p->p_ldt == NULL) 1181 return (-1); 1182 1183 descrp = &p->p_ldt[idx]; 1184 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1185 1186 /* 1187 * Calculate the linear address (wraparound is not only ok, 1188 * it's expected behavior). The cast to uint32_t is because 1189 * LDT selectors are only allowed in 32-bit processes. 1190 */ 1191 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1192 rp->r_pc); 1193 } else { 1194 #ifdef DEBUG 1195 descrp = &CPU->cpu_gdt[idx]; 1196 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1197 /* GDT-based descriptors' base addresses should always be 0 */ 1198 ASSERT(baseaddr == 0); 1199 #endif 1200 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1201 } 1202 1203 return (0); 1204 } 1205 1206 /* 1207 * The implementation of dtrace_linear_pc is similar to the that of 1208 * linear_pc, above, but here we acquire p_ldtlock before accessing 1209 * p_ldt. This implementation is used by the pid provider; we prefix 1210 * it with "dtrace_" to avoid inducing spurious tracing events. 1211 */ 1212 int 1213 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1214 { 1215 user_desc_t *descrp; 1216 caddr_t baseaddr; 1217 uint16_t idx = SELTOIDX(rp->r_cs); 1218 1219 ASSERT(rp->r_cs <= 0xFFFF); 1220 1221 if (SELISLDT(rp->r_cs)) { 1222 /* 1223 * Currently 64 bit processes cannot have private LDTs. 1224 */ 1225 ASSERT(p->p_model != DATAMODEL_LP64); 1226 1227 mutex_enter(&p->p_ldtlock); 1228 if (p->p_ldt == NULL) { 1229 mutex_exit(&p->p_ldtlock); 1230 return (-1); 1231 } 1232 descrp = &p->p_ldt[idx]; 1233 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1234 mutex_exit(&p->p_ldtlock); 1235 1236 /* 1237 * Calculate the linear address (wraparound is not only ok, 1238 * it's expected behavior). The cast to uint32_t is because 1239 * LDT selectors are only allowed in 32-bit processes. 1240 */ 1241 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1242 rp->r_pc); 1243 } else { 1244 #ifdef DEBUG 1245 descrp = &CPU->cpu_gdt[idx]; 1246 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1247 /* GDT-based descriptors' base addresses should always be 0 */ 1248 ASSERT(baseaddr == 0); 1249 #endif 1250 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1251 } 1252 1253 return (0); 1254 } 1255