xref: /titanic_51/usr/src/uts/i86pc/os/lgrpplat.c (revision 5abc75a2bc199bc6f7ce2438ccf4a7f14e6c6ff5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS
29  * ================================================================
30  * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access
31  * (NUMA).  A NUMA machine consists of one or more "nodes" that each consist of
32  * one or more CPUs and some local memory.  The CPUs in each node can access
33  * the memory in the other nodes but at a higher latency than accessing their
34  * local memory.  Typically, a system with only one node has Uniform Memory
35  * Access (UMA), but it may be possible to have a one node system that has
36  * some global memory outside of the node which is higher latency.
37  *
38  * Module Description
39  * ------------------
40  * This module provides a platform interface for determining which CPUs and
41  * which memory (and how much) are in a NUMA node and how far each node is from
42  * each other.  The interface is used by the Virtual Memory (VM) system and the
43  * common lgroup framework.  The VM system uses the plat_*() routines to fill
44  * in its memory node (memnode) array with the physical address range spanned
45  * by each NUMA node to know which memory belongs to which node, so it can
46  * build and manage a physical page free list for each NUMA node and allocate
47  * local memory from each node as needed.  The common lgroup framework uses the
48  * exported lgrp_plat_*() routines to figure out which CPUs and memory belong
49  * to each node (leaf lgroup) and how far each node is from each other, so it
50  * can build the latency (lgroup) topology for the machine in order to optimize
51  * for locality.  Also, an lgroup platform handle instead of lgroups are used
52  * in the interface with this module, so this module shouldn't need to know
53  * anything about lgroups.  Instead, it just needs to know which CPUs, memory,
54  * etc. are in each NUMA node, how far each node is from each other, and to use
55  * a unique lgroup platform handle to refer to each node through the interface.
56  *
57  * Determining NUMA Configuration
58  * ------------------------------
59  * By default, this module will try to determine the NUMA configuration of the
60  * machine by reading the ACPI System Resource Affinity Table (SRAT) and System
61  * Locality Information Table (SLIT).  The SRAT contains info to tell which
62  * CPUs and memory are local to a given proximity domain (NUMA node).  The SLIT
63  * is a matrix that gives the distance between each system locality (which is
64  * a NUMA node and should correspond to proximity domains in the SRAT).  For
65  * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer
66  * specification.
67  *
68  * If the SRAT doesn't exist on a system with AMD Opteron processors, we
69  * examine registers in PCI configuration space to determine how many nodes are
70  * in the system and which CPUs and memory are in each node.
71  * do while booting the kernel.
72  *
73  * NOTE: Using these PCI configuration space registers to determine this
74  *       locality info is not guaranteed to work or be compatible across all
75  *	 Opteron processor families.
76  *
77  * If the SLIT does not exist or look right, the kernel will probe to determine
78  * the distance between nodes as long as the NUMA CPU and memory configuration
79  * has been determined (see lgrp_plat_probe() for details).
80  *
81  * Data Structures
82  * ---------------
83  * The main data structures used by this code are the following:
84  *
85  * - lgrp_plat_cpu_node[]		CPU to node ID mapping table indexed by
86  *					CPU ID (only used for SRAT)
87  *
88  * - lgrp_plat_lat_stats.latencies[][]	Table of latencies between same and
89  *					different nodes indexed by node ID
90  *
91  * - lgrp_plat_node_cnt			Number of NUMA nodes in system
92  *
93  * - lgrp_plat_node_domain[]		Node ID to proximity domain ID mapping
94  *					table indexed by node ID (only used
95  *					for SRAT)
96  *
97  * - lgrp_plat_node_memory[]		Table with physical address range for
98  *					each node indexed by node ID
99  *
100  * The code is implemented to make the following always be true:
101  *
102  *	lgroup platform handle == node ID == memnode ID
103  *
104  * Moreover, it allows for the proximity domain ID to be equal to all of the
105  * above as long as the proximity domains IDs are numbered from 0 to <number of
106  * nodes - 1>.  This is done by hashing each proximity domain ID into the range
107  * from 0 to <number of nodes - 1>.  Then proximity ID N will hash into node ID
108  * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N]
109  * and be assigned node ID N.  If the proximity domain IDs aren't numbered
110  * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into
111  * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs
112  * to node IDs.  However, the proximity domain IDs may not map to the
113  * equivalent node ID since we want to keep the node IDs numbered from 0 to
114  * <number of nodes - 1> to minimize cost of searching and potentially space.
115  *
116  * The code below really tries to do the above.  However, the virtual memory
117  * system expects the memnodes which describe the physical address range for
118  * each NUMA node to be arranged in ascending order by physical address.  (:-(
119  * Otherwise, the kernel will panic in different semi-random places in the VM
120  * system (see CR#6816963).
121  *
122  * Consequently, this module has to try to sort the nodes in ascending order by
123  * each node's starting physical address to try to meet this "constraint" in
124  * the VM system (see lgrp_plat_node_sort()).  Also, the lowest numbered
125  * proximity domain ID in the system is deteremined and used to make the lowest
126  * numbered proximity domain map to node 0 in hopes that the proximity domains
127  * are sorted in ascending order by physical address already even if their IDs
128  * don't start at 0 (see NODE_DOMAIN_HASH() and lgrp_plat_srat_domains()).
129  * Finally, it is important to note that these workarounds may not be
130  * sufficient if/when memory hotplugging is supported and the VM system may
131  * ultimately need to be fixed to handle this....
132  */
133 
134 
135 #include <sys/archsystm.h>	/* for {in,out}{b,w,l}() */
136 #include <sys/bootconf.h>
137 #include <sys/cmn_err.h>
138 #include <sys/controlregs.h>
139 #include <sys/cpupart.h>
140 #include <sys/cpuvar.h>
141 #include <sys/lgrp.h>
142 #include <sys/machsystm.h>
143 #include <sys/memlist.h>
144 #include <sys/memnode.h>
145 #include <sys/mman.h>
146 #include <sys/pci_cfgspace.h>
147 #include <sys/pci_impl.h>
148 #include <sys/param.h>
149 #include <sys/pghw.h>
150 #include <sys/promif.h>		/* for prom_printf() */
151 #include <sys/sysmacros.h>
152 #include <sys/systm.h>
153 #include <sys/thread.h>
154 #include <sys/types.h>
155 #include <sys/var.h>
156 #include <sys/x86_archext.h>	/* for x86_feature and X86_AMD */
157 #include <vm/hat_i86.h>
158 #include <vm/seg_kmem.h>
159 #include <vm/vm_dep.h>
160 
161 #include "acpi_fw.h"		/* for SRAT and SLIT */
162 
163 
164 #define	MAX_NODES		8
165 #define	NLGRP			(MAX_NODES * (MAX_NODES - 1) + 1)
166 
167 /*
168  * Constants for configuring probing
169  */
170 #define	LGRP_PLAT_PROBE_NROUNDS		64	/* default laps for probing */
171 #define	LGRP_PLAT_PROBE_NSAMPLES	1	/* default samples to take */
172 #define	LGRP_PLAT_PROBE_NREADS		256	/* number of vendor ID reads */
173 
174 /*
175  * Flags for probing
176  */
177 #define	LGRP_PLAT_PROBE_ENABLE		0x1	/* enable probing */
178 #define	LGRP_PLAT_PROBE_PGCPY		0x2	/* probe using page copy */
179 #define	LGRP_PLAT_PROBE_VENDOR		0x4	/* probe vendor ID register */
180 
181 /*
182  * Hash proximity domain ID into node to domain mapping table "mod" number of
183  * nodes to minimize span of entries used and try to have lowest numbered
184  * proximity domain be node 0
185  */
186 #define	NODE_DOMAIN_HASH(domain, node_cnt) \
187 	((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \
188 	    ((domain) - lgrp_plat_prox_domain_min) % node_cnt)
189 
190 
191 /*
192  * CPU to node ID mapping structure (only used with SRAT)
193  */
194 typedef	struct cpu_node_map {
195 	int		exists;
196 	uint_t		node;
197 	uint32_t	apicid;
198 	uint32_t	prox_domain;
199 } cpu_node_map_t;
200 
201 /*
202  * Latency statistics
203  */
204 typedef struct lgrp_plat_latency_stats {
205 	hrtime_t	latencies[MAX_NODES][MAX_NODES];
206 	hrtime_t	latency_max;
207 	hrtime_t	latency_min;
208 } lgrp_plat_latency_stats_t;
209 
210 /*
211  * Memory configuration for probing
212  */
213 typedef struct lgrp_plat_probe_mem_config {
214 	size_t	probe_memsize;		/* how much memory to probe per node */
215 	caddr_t	probe_va[MAX_NODES];	/* where memory mapped for probing */
216 	pfn_t	probe_pfn[MAX_NODES];	/* physical pages to map for probing */
217 } lgrp_plat_probe_mem_config_t;
218 
219 /*
220  * Statistics kept for probing
221  */
222 typedef struct lgrp_plat_probe_stats {
223 	hrtime_t	flush_cost;
224 	hrtime_t	probe_cost;
225 	hrtime_t	probe_cost_total;
226 	hrtime_t	probe_error_code;
227 	hrtime_t	probe_errors[MAX_NODES][MAX_NODES];
228 	int		probe_suspect[MAX_NODES][MAX_NODES];
229 	hrtime_t	probe_max[MAX_NODES][MAX_NODES];
230 	hrtime_t	probe_min[MAX_NODES][MAX_NODES];
231 } lgrp_plat_probe_stats_t;
232 
233 /*
234  * Node to proximity domain ID mapping structure (only used with SRAT)
235  */
236 typedef	struct node_domain_map {
237 	int		exists;
238 	uint32_t	prox_domain;
239 } node_domain_map_t;
240 
241 /*
242  * Node ID and starting and ending page for physical memory in node
243  */
244 typedef	struct node_phys_addr_map {
245 	pfn_t		start;
246 	pfn_t		end;
247 	int		exists;
248 	uint32_t	prox_domain;
249 } node_phys_addr_map_t;
250 
251 /*
252  * Number of CPUs for which we got APIC IDs
253  */
254 static int				lgrp_plat_apic_ncpus = 0;
255 
256 /*
257  * CPU to node ID mapping table (only used for SRAT)
258  */
259 static cpu_node_map_t			lgrp_plat_cpu_node[NCPU];
260 
261 /*
262  * Latency statistics
263  */
264 lgrp_plat_latency_stats_t		lgrp_plat_lat_stats;
265 
266 /*
267  * Whether memory is interleaved across nodes causing MPO to be disabled
268  */
269 static int				lgrp_plat_mem_intrlv = 0;
270 
271 /*
272  * Node ID to proximity domain ID mapping table (only used for SRAT)
273  */
274 static node_domain_map_t		lgrp_plat_node_domain[MAX_NODES];
275 
276 /*
277  * Physical address range for memory in each node
278  */
279 static node_phys_addr_map_t		lgrp_plat_node_memory[MAX_NODES];
280 
281 /*
282  * Statistics gotten from probing
283  */
284 static lgrp_plat_probe_stats_t		lgrp_plat_probe_stats;
285 
286 /*
287  * Memory configuration for probing
288  */
289 static lgrp_plat_probe_mem_config_t	lgrp_plat_probe_mem_config;
290 
291 /*
292  * Lowest proximity domain ID seen in ACPI SRAT
293  */
294 static uint32_t				lgrp_plat_prox_domain_min = UINT32_MAX;
295 
296 /*
297  * Error code from processing ACPI SRAT
298  */
299 static int				lgrp_plat_srat_error = 0;
300 
301 /*
302  * Error code from processing ACPI SLIT
303  */
304 static int				lgrp_plat_slit_error = 0;
305 
306 /*
307  * Allocate lgroup array statically
308  */
309 static lgrp_t				lgrp_space[NLGRP];
310 static int				nlgrps_alloc;
311 
312 
313 /*
314  * Enable finding and using minimum proximity domain ID when hashing
315  */
316 int			lgrp_plat_domain_min_enable = 1;
317 
318 /*
319  * Number of nodes in system
320  */
321 uint_t			lgrp_plat_node_cnt = 1;
322 
323 /*
324  * Enable sorting nodes in ascending order by starting physical address
325  */
326 int			lgrp_plat_node_sort_enable = 1;
327 
328 /*
329  * Configuration Parameters for Probing
330  * - lgrp_plat_probe_flags	Flags to specify enabling probing, probe
331  *				operation, etc.
332  * - lgrp_plat_probe_nrounds	How many rounds of probing to do
333  * - lgrp_plat_probe_nsamples	Number of samples to take when probing each
334  *				node
335  * - lgrp_plat_probe_nreads	Number of times to read vendor ID from
336  *				Northbridge for each probe
337  */
338 uint_t			lgrp_plat_probe_flags = 0;
339 int			lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
340 int			lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
341 int			lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS;
342 
343 /*
344  * Enable use of ACPI System Resource Affinity Table (SRAT) and System
345  * Locality Information Table (SLIT)
346  */
347 int			lgrp_plat_srat_enable = 1;
348 int			lgrp_plat_slit_enable = 1;
349 
350 /*
351  * mnode_xwa: set to non-zero value to initiate workaround if large pages are
352  * found to be crossing memory node boundaries. The workaround will eliminate
353  * a base size page at the end of each memory node boundary to ensure that
354  * a large page with constituent pages that span more than 1 memory node
355  * can never be formed.
356  *
357  */
358 int	mnode_xwa = 1;
359 
360 /*
361  * Static array to hold lgroup statistics
362  */
363 struct lgrp_stats	lgrp_stats[NLGRP];
364 
365 
366 /*
367  * Forward declarations of platform interface routines
368  */
369 void		plat_build_mem_nodes(struct memlist *list);
370 
371 int		plat_lgrphand_to_mem_node(lgrp_handle_t hand);
372 
373 lgrp_handle_t	plat_mem_node_to_lgrphand(int mnode);
374 
375 int		plat_mnode_xcheck(pfn_t pfncnt);
376 
377 int		plat_pfn_to_mem_node(pfn_t pfn);
378 
379 /*
380  * Forward declarations of lgroup platform interface routines
381  */
382 lgrp_t		*lgrp_plat_alloc(lgrp_id_t lgrpid);
383 
384 void		lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg);
385 
386 lgrp_handle_t	lgrp_plat_cpu_to_hand(processorid_t id);
387 
388 void		lgrp_plat_init(void);
389 
390 int		lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to);
391 
392 void		lgrp_plat_main_init(void);
393 
394 int		lgrp_plat_max_lgrps(void);
395 
396 pgcnt_t		lgrp_plat_mem_size(lgrp_handle_t plathand,
397     lgrp_mem_query_t query);
398 
399 lgrp_handle_t	lgrp_plat_pfn_to_hand(pfn_t pfn);
400 
401 void		lgrp_plat_probe(void);
402 
403 lgrp_handle_t	lgrp_plat_root_hand(void);
404 
405 
406 /*
407  * Forward declarations of local routines
408  */
409 static int	is_opteron(void);
410 
411 static int	lgrp_plat_cpu_node_update(node_domain_map_t *node_domain,
412     int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid,
413     uint32_t domain);
414 
415 static int	lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node);
416 
417 static int	lgrp_plat_domain_to_node(node_domain_map_t *node_domain,
418     int node_cnt, uint32_t domain);
419 
420 static void	lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
421     lgrp_plat_latency_stats_t *lat_stats,
422     lgrp_plat_probe_stats_t *probe_stats);
423 
424 static int	lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
425     lgrp_plat_latency_stats_t *lat_stats);
426 
427 static pgcnt_t	lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t);
428 
429 static int	lgrp_plat_node_domain_update(node_domain_map_t *node_domain,
430     int node_cnt, uint32_t domain);
431 
432 static int	lgrp_plat_node_memory_update(node_domain_map_t *node_domain,
433     int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start,
434     uint64_t end, uint32_t domain);
435 
436 static void	lgrp_plat_node_sort(node_domain_map_t *node_domain,
437     int node_cnt, cpu_node_map_t *cpu_node, int cpu_count,
438     node_phys_addr_map_t *node_memory);
439 
440 static hrtime_t	lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
441     lgrp_plat_probe_mem_config_t *probe_mem_config,
442     lgrp_plat_latency_stats_t *lat_stats,
443     lgrp_plat_probe_stats_t *probe_stats);
444 
445 static int	lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node);
446 
447 static int	lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
448     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats);
449 
450 static int	lgrp_plat_process_srat(struct srat *tp,
451     uint32_t *prox_domain_min, node_domain_map_t *node_domain,
452     cpu_node_map_t *cpu_node, int cpu_count,
453     node_phys_addr_map_t *node_memory);
454 
455 static int	lgrp_plat_srat_domains(struct srat *tp,
456     uint32_t *prox_domain_min);
457 
458 static void	lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
459     lgrp_plat_latency_stats_t *lat_stats);
460 
461 static void	opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
462     node_phys_addr_map_t *node_memory);
463 
464 static hrtime_t	opt_probe_vendor(int dest_node, int nreads);
465 
466 
467 /*
468  * PLATFORM INTERFACE ROUTINES
469  */
470 
471 /*
472  * Configure memory nodes for machines with more than one node (ie NUMA)
473  */
474 void
475 plat_build_mem_nodes(struct memlist *list)
476 {
477 	pfn_t		cur_start;	/* start addr of subrange */
478 	pfn_t		cur_end;	/* end addr of subrange */
479 	pfn_t		start;		/* start addr of whole range */
480 	pfn_t		end;		/* end addr of whole range */
481 	pgcnt_t		endcnt;		/* pages to sacrifice */
482 
483 	/*
484 	 * Boot install lists are arranged <addr, len>, ...
485 	 */
486 	while (list) {
487 		int	node;
488 
489 		start = list->address >> PAGESHIFT;
490 		end = (list->address + list->size - 1) >> PAGESHIFT;
491 
492 		if (start > physmax) {
493 			list = list->next;
494 			continue;
495 		}
496 		if (end > physmax)
497 			end = physmax;
498 
499 		/*
500 		 * When there is only one memnode, just add memory to memnode
501 		 */
502 		if (max_mem_nodes == 1) {
503 			mem_node_add_slice(start, end);
504 			list = list->next;
505 			continue;
506 		}
507 
508 		/*
509 		 * mem_node_add_slice() expects to get a memory range that
510 		 * is within one memnode, so need to split any memory range
511 		 * that spans multiple memnodes into subranges that are each
512 		 * contained within one memnode when feeding them to
513 		 * mem_node_add_slice()
514 		 */
515 		cur_start = start;
516 		do {
517 			node = plat_pfn_to_mem_node(cur_start);
518 
519 			/*
520 			 * Panic if DRAM address map registers or SRAT say
521 			 * memory in node doesn't exist or address from
522 			 * boot installed memory list entry isn't in this node.
523 			 * This shouldn't happen and rest of code can't deal
524 			 * with this if it does.
525 			 */
526 			if (node < 0 || node >= lgrp_plat_node_cnt ||
527 			    !lgrp_plat_node_memory[node].exists ||
528 			    cur_start < lgrp_plat_node_memory[node].start ||
529 			    cur_start > lgrp_plat_node_memory[node].end) {
530 				cmn_err(CE_PANIC, "Don't know which memnode "
531 				    "to add installed memory address 0x%lx\n",
532 				    cur_start);
533 			}
534 
535 			/*
536 			 * End of current subrange should not span memnodes
537 			 */
538 			cur_end = end;
539 			endcnt = 0;
540 			if (lgrp_plat_node_memory[node].exists &&
541 			    cur_end > lgrp_plat_node_memory[node].end) {
542 				cur_end = lgrp_plat_node_memory[node].end;
543 				if (mnode_xwa > 1) {
544 					/*
545 					 * sacrifice the last page in each
546 					 * node to eliminate large pages
547 					 * that span more than 1 memory node.
548 					 */
549 					endcnt = 1;
550 				}
551 			}
552 
553 			mem_node_add_slice(cur_start, cur_end - endcnt);
554 
555 			/*
556 			 * Next subrange starts after end of current one
557 			 */
558 			cur_start = cur_end + 1;
559 		} while (cur_end < end);
560 
561 		list = list->next;
562 	}
563 	mem_node_physalign = 0;
564 	mem_node_pfn_shift = 0;
565 }
566 
567 
568 int
569 plat_lgrphand_to_mem_node(lgrp_handle_t hand)
570 {
571 	if (max_mem_nodes == 1)
572 		return (0);
573 
574 	return ((int)hand);
575 }
576 
577 
578 /*
579  * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt
580  * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if
581  * a crossing is found and returns 0 otherwise.
582  */
583 int
584 plat_mnode_xcheck(pfn_t pfncnt)
585 {
586 	int	node, prevnode = -1, basenode;
587 	pfn_t	ea, sa;
588 
589 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
590 
591 		if (lgrp_plat_node_memory[node].exists == 0)
592 			continue;
593 
594 		if (prevnode == -1) {
595 			prevnode = node;
596 			basenode = node;
597 			continue;
598 		}
599 
600 		/* assume x86 node pfn ranges are in increasing order */
601 		ASSERT(lgrp_plat_node_memory[node].start >
602 		    lgrp_plat_node_memory[prevnode].end);
603 
604 		/*
605 		 * continue if the starting address of node is not contiguous
606 		 * with the previous node.
607 		 */
608 
609 		if (lgrp_plat_node_memory[node].start !=
610 		    (lgrp_plat_node_memory[prevnode].end + 1)) {
611 			basenode = node;
612 			prevnode = node;
613 			continue;
614 		}
615 
616 		/* check if the starting address of node is pfncnt aligned */
617 		if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) {
618 
619 			/*
620 			 * at this point, node starts at an unaligned boundary
621 			 * and is contiguous with the previous node(s) to
622 			 * basenode. Check if there is an aligned contiguous
623 			 * range of length pfncnt that crosses this boundary.
624 			 */
625 
626 			sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end,
627 			    pfncnt);
628 			ea = P2ROUNDUP((lgrp_plat_node_memory[node].start),
629 			    pfncnt);
630 
631 			ASSERT((ea - sa) == pfncnt);
632 			if (sa >= lgrp_plat_node_memory[basenode].start &&
633 			    ea <= (lgrp_plat_node_memory[node].end + 1)) {
634 				/*
635 				 * large page found to cross mnode boundary.
636 				 * Return Failure if workaround not enabled.
637 				 */
638 				if (mnode_xwa == 0)
639 					return (1);
640 				mnode_xwa++;
641 			}
642 		}
643 		prevnode = node;
644 	}
645 	return (0);
646 }
647 
648 
649 lgrp_handle_t
650 plat_mem_node_to_lgrphand(int mnode)
651 {
652 	if (max_mem_nodes == 1)
653 		return (LGRP_DEFAULT_HANDLE);
654 
655 	return ((lgrp_handle_t)mnode);
656 }
657 
658 
659 int
660 plat_pfn_to_mem_node(pfn_t pfn)
661 {
662 	int	node;
663 
664 	if (max_mem_nodes == 1)
665 		return (0);
666 
667 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
668 		/*
669 		 * Skip nodes with no memory
670 		 */
671 		if (!lgrp_plat_node_memory[node].exists)
672 			continue;
673 
674 		if (pfn >= lgrp_plat_node_memory[node].start &&
675 		    pfn <= lgrp_plat_node_memory[node].end)
676 			return (node);
677 	}
678 
679 	/*
680 	 * Didn't find memnode where this PFN lives which should never happen
681 	 */
682 	ASSERT(node < lgrp_plat_node_cnt);
683 	return (-1);
684 }
685 
686 
687 /*
688  * LGROUP PLATFORM INTERFACE ROUTINES
689  */
690 
691 /*
692  * Allocate additional space for an lgroup.
693  */
694 /* ARGSUSED */
695 lgrp_t *
696 lgrp_plat_alloc(lgrp_id_t lgrpid)
697 {
698 	lgrp_t *lgrp;
699 
700 	lgrp = &lgrp_space[nlgrps_alloc++];
701 	if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
702 		return (NULL);
703 	return (lgrp);
704 }
705 
706 
707 /*
708  * Platform handling for (re)configuration changes
709  */
710 /* ARGSUSED */
711 void
712 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
713 {
714 }
715 
716 
717 /*
718  * Return the platform handle for the lgroup containing the given CPU
719  */
720 /* ARGSUSED */
721 lgrp_handle_t
722 lgrp_plat_cpu_to_hand(processorid_t id)
723 {
724 	lgrp_handle_t	hand;
725 
726 	if (lgrp_plat_node_cnt == 1)
727 		return (LGRP_DEFAULT_HANDLE);
728 
729 	hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id],
730 	    lgrp_plat_cpu_node);
731 
732 	ASSERT(hand != (lgrp_handle_t)-1);
733 	if (hand == (lgrp_handle_t)-1)
734 		return (LGRP_NULL_HANDLE);
735 
736 	return (hand);
737 }
738 
739 
740 /*
741  * Platform-specific initialization of lgroups
742  */
743 void
744 lgrp_plat_init(void)
745 {
746 #if defined(__xpv)
747 	/*
748 	 * XXPV	For now, the hypervisor treats all memory equally.
749 	 */
750 	lgrp_plat_node_cnt = max_mem_nodes = 1;
751 #else	/* __xpv */
752 	uint_t		probe_op;
753 	u_longlong_t	value;
754 
755 	/*
756 	 * Get boot property for lgroup topology height limit
757 	 */
758 	if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0)
759 		(void) lgrp_topo_ht_limit_set((int)value);
760 
761 	/*
762 	 * Get boot property for enabling/disabling SRAT
763 	 */
764 	if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0)
765 		lgrp_plat_srat_enable = (int)value;
766 
767 	/*
768 	 * Get boot property for enabling/disabling SLIT
769 	 */
770 	if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0)
771 		lgrp_plat_slit_enable = (int)value;
772 
773 	/*
774 	 * Initialize as a UMA machine
775 	 */
776 	if (lgrp_topo_ht_limit() == 1) {
777 		lgrp_plat_node_cnt = max_mem_nodes = 1;
778 		return;
779 	}
780 
781 	/*
782 	 * Read boot property with CPU to APIC ID mapping table/array and fill
783 	 * in CPU to node ID mapping table with APIC ID for each CPU
784 	 */
785 	lgrp_plat_apic_ncpus =
786 	    lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node);
787 
788 	/*
789 	 * Determine which CPUs and memory are local to each other and number
790 	 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT)
791 	 */
792 	if (lgrp_plat_apic_ncpus > 0) {
793 		int	retval;
794 
795 		retval = lgrp_plat_process_srat(srat_ptr,
796 		    &lgrp_plat_prox_domain_min,
797 		    lgrp_plat_node_domain, lgrp_plat_cpu_node,
798 		    lgrp_plat_apic_ncpus, lgrp_plat_node_memory);
799 		if (retval <= 0) {
800 			lgrp_plat_srat_error = retval;
801 			lgrp_plat_node_cnt = 1;
802 		} else {
803 			lgrp_plat_srat_error = 0;
804 			lgrp_plat_node_cnt = retval;
805 		}
806 	}
807 
808 	/*
809 	 * Try to use PCI config space registers on Opteron if there's an error
810 	 * processing CPU to APIC ID mapping or SRAT
811 	 */
812 	if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) &&
813 	    is_opteron())
814 		opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv,
815 		    lgrp_plat_node_memory);
816 
817 	/*
818 	 * Don't bother to setup system for multiple lgroups and only use one
819 	 * memory node when memory is interleaved between any nodes or there is
820 	 * only one NUMA node
821 	 *
822 	 * NOTE: May need to change this for Dynamic Reconfiguration (DR)
823 	 *	 when and if it happens for x86/x64
824 	 */
825 	if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) {
826 		lgrp_plat_node_cnt = max_mem_nodes = 1;
827 		(void) lgrp_topo_ht_limit_set(1);
828 		return;
829 	}
830 
831 	/*
832 	 * Leaf lgroups on x86/x64 architectures contain one physical
833 	 * processor chip. Tune lgrp_expand_proc_thresh and
834 	 * lgrp_expand_proc_diff so that lgrp_choose() will spread
835 	 * things out aggressively.
836 	 */
837 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
838 	lgrp_expand_proc_diff = 0;
839 
840 	/*
841 	 * There should be one memnode (physical page free list(s)) for
842 	 * each node
843 	 */
844 	max_mem_nodes = lgrp_plat_node_cnt;
845 
846 	/*
847 	 * Initialize min and max latency before reading SLIT or probing
848 	 */
849 	lgrp_plat_lat_stats.latency_min = -1;
850 	lgrp_plat_lat_stats.latency_max = 0;
851 
852 	/*
853 	 * Determine how far each NUMA node is from each other by
854 	 * reading ACPI System Locality Information Table (SLIT) if it
855 	 * exists
856 	 */
857 	lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr,
858 	    lgrp_plat_node_cnt, lgrp_plat_node_memory,
859 	    &lgrp_plat_lat_stats);
860 	if (lgrp_plat_slit_error == 0)
861 		return;
862 
863 	/*
864 	 * Probe to determine latency between NUMA nodes when SLIT
865 	 * doesn't exist or make sense
866 	 */
867 	lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE;
868 
869 	/*
870 	 * Specify whether to probe using vendor ID register or page copy
871 	 * if hasn't been specified already or is overspecified
872 	 */
873 	probe_op = lgrp_plat_probe_flags &
874 	    (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
875 
876 	if (probe_op == 0 ||
877 	    probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) {
878 		lgrp_plat_probe_flags &=
879 		    ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
880 		if (is_opteron())
881 			lgrp_plat_probe_flags |=
882 			    LGRP_PLAT_PROBE_VENDOR;
883 		else
884 			lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY;
885 	}
886 
887 	/*
888 	 * Probing errors can mess up the lgroup topology and
889 	 * force us fall back to a 2 level lgroup topology.
890 	 * Here we bound how tall the lgroup topology can grow
891 	 * in hopes of avoiding any anamolies in probing from
892 	 * messing up the lgroup topology by limiting the
893 	 * accuracy of the latency topology.
894 	 *
895 	 * Assume that nodes will at least be configured in a
896 	 * ring, so limit height of lgroup topology to be less
897 	 * than number of nodes on a system with 4 or more
898 	 * nodes
899 	 */
900 	if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() ==
901 	    lgrp_topo_ht_limit_default())
902 		(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
903 #endif	/* __xpv */
904 }
905 
906 
907 /*
908  * Return latency between "from" and "to" lgroups
909  *
910  * This latency number can only be used for relative comparison
911  * between lgroups on the running system, cannot be used across platforms,
912  * and may not reflect the actual latency.  It is platform and implementation
913  * specific, so platform gets to decide its value.  It would be nice if the
914  * number was at least proportional to make comparisons more meaningful though.
915  */
916 /* ARGSUSED */
917 int
918 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
919 {
920 	lgrp_handle_t	src, dest;
921 	int		node;
922 
923 	if (max_mem_nodes == 1)
924 		return (0);
925 
926 	/*
927 	 * Return max latency for root lgroup
928 	 */
929 	if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
930 		return (lgrp_plat_lat_stats.latency_max);
931 
932 	src = from;
933 	dest = to;
934 
935 	/*
936 	 * Return 0 for nodes (lgroup platform handles) out of range
937 	 */
938 	if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
939 		return (0);
940 
941 	/*
942 	 * Probe from current CPU if its lgroup latencies haven't been set yet
943 	 * and we are trying to get latency from current CPU to some node
944 	 */
945 	node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
946 	ASSERT(node >= 0 && node < lgrp_plat_node_cnt);
947 	if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src)
948 		lgrp_plat_probe();
949 
950 	return (lgrp_plat_lat_stats.latencies[src][dest]);
951 }
952 
953 
954 /*
955  * Platform-specific initialization
956  */
957 void
958 lgrp_plat_main_init(void)
959 {
960 	int	curnode;
961 	int	ht_limit;
962 	int	i;
963 
964 	/*
965 	 * Print a notice that MPO is disabled when memory is interleaved
966 	 * across nodes....Would do this when it is discovered, but can't
967 	 * because it happens way too early during boot....
968 	 */
969 	if (lgrp_plat_mem_intrlv)
970 		cmn_err(CE_NOTE,
971 		    "MPO disabled because memory is interleaved\n");
972 
973 	/*
974 	 * Don't bother to do any probing if it is disabled, there is only one
975 	 * node, or the height of the lgroup topology less than or equal to 2
976 	 */
977 	ht_limit = lgrp_topo_ht_limit();
978 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
979 	    max_mem_nodes == 1 || ht_limit <= 2) {
980 		/*
981 		 * Setup lgroup latencies for 2 level lgroup topology
982 		 * (ie. local and remote only) if they haven't been set yet
983 		 */
984 		if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 &&
985 		    lgrp_plat_lat_stats.latency_max == 0)
986 			lgrp_plat_2level_setup(lgrp_plat_node_memory,
987 			    &lgrp_plat_lat_stats);
988 		return;
989 	}
990 
991 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
992 		/*
993 		 * Should have been able to probe from CPU 0 when it was added
994 		 * to lgroup hierarchy, but may not have been able to then
995 		 * because it happens so early in boot that gethrtime() hasn't
996 		 * been initialized.  (:-(
997 		 */
998 		curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
999 		ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt);
1000 		if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0)
1001 			lgrp_plat_probe();
1002 
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * When probing memory, use one page for every sample to determine
1008 	 * lgroup topology and taking multiple samples
1009 	 */
1010 	if (lgrp_plat_probe_mem_config.probe_memsize == 0)
1011 		lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE *
1012 		    lgrp_plat_probe_nsamples;
1013 
1014 	/*
1015 	 * Map memory in each node needed for probing to determine latency
1016 	 * topology
1017 	 */
1018 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1019 		int	mnode;
1020 
1021 		/*
1022 		 * Skip this node and leave its probe page NULL
1023 		 * if it doesn't have any memory
1024 		 */
1025 		mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
1026 		if (!mem_node_config[mnode].exists) {
1027 			lgrp_plat_probe_mem_config.probe_va[i] = NULL;
1028 			continue;
1029 		}
1030 
1031 		/*
1032 		 * Allocate one kernel virtual page
1033 		 */
1034 		lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena,
1035 		    lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP);
1036 		if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) {
1037 			cmn_err(CE_WARN,
1038 			    "lgrp_plat_main_init: couldn't allocate memory");
1039 			return;
1040 		}
1041 
1042 		/*
1043 		 * Get PFN for first page in each node
1044 		 */
1045 		lgrp_plat_probe_mem_config.probe_pfn[i] =
1046 		    mem_node_config[mnode].physbase;
1047 
1048 		/*
1049 		 * Map virtual page to first page in node
1050 		 */
1051 		hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i],
1052 		    lgrp_plat_probe_mem_config.probe_memsize,
1053 		    lgrp_plat_probe_mem_config.probe_pfn[i],
1054 		    PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
1055 		    HAT_LOAD_NOCONSIST);
1056 	}
1057 
1058 	/*
1059 	 * Probe from current CPU
1060 	 */
1061 	lgrp_plat_probe();
1062 }
1063 
1064 
1065 /*
1066  * Return the maximum number of lgrps supported by the platform.
1067  * Before lgrp topology is known it returns an estimate based on the number of
1068  * nodes. Once topology is known it returns the actual maximim number of lgrps
1069  * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and
1070  * dynamic addition of new nodes, this number may not grow during system
1071  * lifetime (yet).
1072  */
1073 int
1074 lgrp_plat_max_lgrps(void)
1075 {
1076 	return (lgrp_topo_initialized ?
1077 	    lgrp_alloc_max + 1 :
1078 	    lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1079 }
1080 
1081 
1082 /*
1083  * Return the number of free pages in an lgroup.
1084  *
1085  * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
1086  * pages on freelists.  For query of LGRP_MEM_SIZE_AVAIL, return the
1087  * number of allocatable base pagesize pages corresponding to the
1088  * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
1089  * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
1090  * memory installed, regardless of whether or not it's usable.
1091  */
1092 pgcnt_t
1093 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
1094 {
1095 	int	mnode;
1096 	pgcnt_t npgs = (pgcnt_t)0;
1097 	extern struct memlist *phys_avail;
1098 	extern struct memlist *phys_install;
1099 
1100 
1101 	if (plathand == LGRP_DEFAULT_HANDLE)
1102 		return (lgrp_plat_mem_size_default(plathand, query));
1103 
1104 	if (plathand != LGRP_NULL_HANDLE) {
1105 		mnode = plat_lgrphand_to_mem_node(plathand);
1106 		if (mnode >= 0 && mem_node_config[mnode].exists) {
1107 			switch (query) {
1108 			case LGRP_MEM_SIZE_FREE:
1109 				npgs = MNODE_PGCNT(mnode);
1110 				break;
1111 			case LGRP_MEM_SIZE_AVAIL:
1112 				npgs = mem_node_memlist_pages(mnode,
1113 				    phys_avail);
1114 				break;
1115 			case LGRP_MEM_SIZE_INSTALL:
1116 				npgs = mem_node_memlist_pages(mnode,
1117 				    phys_install);
1118 				break;
1119 			default:
1120 				break;
1121 			}
1122 		}
1123 	}
1124 	return (npgs);
1125 }
1126 
1127 
1128 /*
1129  * Return the platform handle of the lgroup that contains the physical memory
1130  * corresponding to the given page frame number
1131  */
1132 /* ARGSUSED */
1133 lgrp_handle_t
1134 lgrp_plat_pfn_to_hand(pfn_t pfn)
1135 {
1136 	int	mnode;
1137 
1138 	if (max_mem_nodes == 1)
1139 		return (LGRP_DEFAULT_HANDLE);
1140 
1141 	if (pfn > physmax)
1142 		return (LGRP_NULL_HANDLE);
1143 
1144 	mnode = plat_pfn_to_mem_node(pfn);
1145 	if (mnode < 0)
1146 		return (LGRP_NULL_HANDLE);
1147 
1148 	return (MEM_NODE_2_LGRPHAND(mnode));
1149 }
1150 
1151 
1152 /*
1153  * Probe memory in each node from current CPU to determine latency topology
1154  *
1155  * The probing code will probe the vendor ID register on the Northbridge of
1156  * Opteron processors and probe memory for other processors by default.
1157  *
1158  * Since probing is inherently error prone, the code takes laps across all the
1159  * nodes probing from each node to each of the other nodes some number of
1160  * times.  Furthermore, each node is probed some number of times before moving
1161  * onto the next one during each lap.  The minimum latency gotten between nodes
1162  * is kept as the latency between the nodes.
1163  *
1164  * After all that,  the probe times are adjusted by normalizing values that are
1165  * close to each other and local latencies are made the same.  Lastly, the
1166  * latencies are verified to make sure that certain conditions are met (eg.
1167  * local < remote, latency(a, b) == latency(b, a), etc.).
1168  *
1169  * If any of the conditions aren't met, the code will export a NUMA
1170  * configuration with the local CPUs and memory given by the SRAT or PCI config
1171  * space registers and one remote memory latency since it can't tell exactly
1172  * how far each node is from each other.
1173  */
1174 void
1175 lgrp_plat_probe(void)
1176 {
1177 	int				from;
1178 	int				i;
1179 	lgrp_plat_latency_stats_t	*lat_stats;
1180 	hrtime_t			probe_time;
1181 	int				to;
1182 
1183 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
1184 	    max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
1185 		return;
1186 
1187 	/*
1188 	 * Determine ID of node containing current CPU
1189 	 */
1190 	from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
1191 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
1192 	if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error)
1193 		ASSERT(lgrp_plat_node_domain[from].exists);
1194 
1195 	/*
1196 	 * Don't need to probe if got times already
1197 	 */
1198 	lat_stats = &lgrp_plat_lat_stats;
1199 	if (lat_stats->latencies[from][from] != 0)
1200 		return;
1201 
1202 	/*
1203 	 * Read vendor ID in Northbridge or read and write page(s)
1204 	 * in each node from current CPU and remember how long it takes,
1205 	 * so we can build latency topology of machine later.
1206 	 * This should approximate the memory latency between each node.
1207 	 */
1208 	for (i = 0; i < lgrp_plat_probe_nrounds; i++) {
1209 		for (to = 0; to < lgrp_plat_node_cnt; to++) {
1210 			/*
1211 			 * Get probe time and bail out if can't get it yet
1212 			 */
1213 			probe_time = lgrp_plat_probe_time(to,
1214 			    lgrp_plat_cpu_node, &lgrp_plat_probe_mem_config,
1215 			    &lgrp_plat_lat_stats, &lgrp_plat_probe_stats);
1216 			if (probe_time == 0)
1217 				return;
1218 
1219 			/*
1220 			 * Keep lowest probe time as latency between nodes
1221 			 */
1222 			if (lat_stats->latencies[from][to] == 0 ||
1223 			    probe_time < lat_stats->latencies[from][to])
1224 				lat_stats->latencies[from][to] = probe_time;
1225 
1226 			/*
1227 			 * Update overall minimum and maximum probe times
1228 			 * across all nodes
1229 			 */
1230 			if (probe_time < lat_stats->latency_min ||
1231 			    lat_stats->latency_min == -1)
1232 				lat_stats->latency_min = probe_time;
1233 			if (probe_time > lat_stats->latency_max)
1234 				lat_stats->latency_max = probe_time;
1235 		}
1236 	}
1237 
1238 	/*
1239 	 * - Fix up latencies such that local latencies are same,
1240 	 *   latency(i, j) == latency(j, i), etc. (if possible)
1241 	 *
1242 	 * - Verify that latencies look ok
1243 	 *
1244 	 * - Fallback to just optimizing for local and remote if
1245 	 *   latencies didn't look right
1246 	 */
1247 	lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats,
1248 	    &lgrp_plat_probe_stats);
1249 	lgrp_plat_probe_stats.probe_error_code =
1250 	    lgrp_plat_latency_verify(lgrp_plat_node_memory,
1251 	    &lgrp_plat_lat_stats);
1252 	if (lgrp_plat_probe_stats.probe_error_code)
1253 		lgrp_plat_2level_setup(lgrp_plat_node_memory,
1254 		    &lgrp_plat_lat_stats);
1255 }
1256 
1257 
1258 /*
1259  * Return platform handle for root lgroup
1260  */
1261 lgrp_handle_t
1262 lgrp_plat_root_hand(void)
1263 {
1264 	return (LGRP_DEFAULT_HANDLE);
1265 }
1266 
1267 
1268 /*
1269  * INTERNAL ROUTINES
1270  */
1271 
1272 
1273 /*
1274  * Update CPU to node mapping for given CPU and proximity domain (and returns
1275  * negative numbers for errors and positive ones for success)
1276  */
1277 static int
1278 lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt,
1279     cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain)
1280 {
1281 	uint_t	i;
1282 	int	node;
1283 
1284 	/*
1285 	 * Get node number for proximity domain
1286 	 */
1287 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
1288 	if (node == -1) {
1289 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1290 		    domain);
1291 		if (node == -1)
1292 			return (-1);
1293 	}
1294 
1295 	/*
1296 	 * Search for entry with given APIC ID and fill in its node and
1297 	 * proximity domain IDs (if they haven't been set already)
1298 	 */
1299 	for (i = 0; i < nentries; i++) {
1300 		/*
1301 		 * Skip nonexistent entries and ones without matching APIC ID
1302 		 */
1303 		if (!cpu_node[i].exists || cpu_node[i].apicid != apicid)
1304 			continue;
1305 
1306 		/*
1307 		 * Just return if entry completely and correctly filled in
1308 		 * already
1309 		 */
1310 		if (cpu_node[i].prox_domain == domain &&
1311 		    cpu_node[i].node == node)
1312 			return (1);
1313 
1314 		/*
1315 		 * Fill in node and proximity domain IDs
1316 		 */
1317 		cpu_node[i].prox_domain = domain;
1318 		cpu_node[i].node = node;
1319 
1320 		return (0);
1321 	}
1322 
1323 	/*
1324 	 * Return error when entry for APIC ID wasn't found in table
1325 	 */
1326 	return (-2);
1327 }
1328 
1329 
1330 /*
1331  * Get node ID for given CPU
1332  */
1333 static int
1334 lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node)
1335 {
1336 	processorid_t	cpuid;
1337 
1338 	if (cp == NULL)
1339 		return (-1);
1340 
1341 	cpuid = cp->cpu_id;
1342 	if (cpuid < 0 || cpuid >= max_ncpus)
1343 		return (-1);
1344 
1345 	/*
1346 	 * SRAT doesn't exist, isn't enabled, or there was an error processing
1347 	 * it, so return chip ID for Opteron and -1 otherwise.
1348 	 */
1349 	if (srat_ptr == NULL || !lgrp_plat_srat_enable ||
1350 	    lgrp_plat_srat_error) {
1351 		if (is_opteron())
1352 			return (pg_plat_hw_instance_id(cp, PGHW_CHIP));
1353 		return (-1);
1354 	}
1355 
1356 	/*
1357 	 * Return -1 when CPU to node ID mapping entry doesn't exist for given
1358 	 * CPU
1359 	 */
1360 	if (!cpu_node[cpuid].exists)
1361 		return (-1);
1362 
1363 	return (cpu_node[cpuid].node);
1364 }
1365 
1366 
1367 /*
1368  * Return node number for given proximity domain/system locality
1369  */
1370 static int
1371 lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt,
1372     uint32_t domain)
1373 {
1374 	uint_t	node;
1375 	uint_t	start;
1376 
1377 	/*
1378 	 * Hash proximity domain ID into node to domain mapping table (array),
1379 	 * search for entry with matching proximity domain ID, and return index
1380 	 * of matching entry as node ID.
1381 	 */
1382 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
1383 	do {
1384 		if (node_domain[node].prox_domain == domain &&
1385 		    node_domain[node].exists)
1386 			return (node);
1387 		node = NODE_DOMAIN_HASH(node + 1, node_cnt);
1388 	} while (node != start);
1389 	return (-1);
1390 }
1391 
1392 
1393 /*
1394  * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
1395  * be considered same
1396  */
1397 #define	LGRP_LAT_TOLERANCE_SHIFT	4
1398 
1399 int	lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
1400 
1401 
1402 /*
1403  * Adjust latencies between nodes to be symmetric, normalize latencies between
1404  * any nodes that are within some tolerance to be same, and make local
1405  * latencies be same
1406  */
1407 static void
1408 lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
1409     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
1410 {
1411 	int				i;
1412 	int				j;
1413 	int				k;
1414 	int				l;
1415 	u_longlong_t			max;
1416 	u_longlong_t			min;
1417 	u_longlong_t			t;
1418 	u_longlong_t			t1;
1419 	u_longlong_t			t2;
1420 	const lgrp_config_flag_t	cflag = LGRP_CONFIG_LAT_CHANGE_ALL;
1421 	int				lat_corrected[MAX_NODES][MAX_NODES];
1422 
1423 	/*
1424 	 * Nothing to do when this is an UMA machine or don't have args needed
1425 	 */
1426 	if (max_mem_nodes == 1)
1427 		return;
1428 
1429 	ASSERT(node_memory != NULL && lat_stats != NULL &&
1430 	    probe_stats != NULL);
1431 
1432 	/*
1433 	 * Make sure that latencies are symmetric between any two nodes
1434 	 * (ie. latency(node0, node1) == latency(node1, node0))
1435 	 */
1436 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1437 		if (!node_memory[i].exists)
1438 			continue;
1439 
1440 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1441 			if (!node_memory[j].exists)
1442 				continue;
1443 
1444 			t1 = lat_stats->latencies[i][j];
1445 			t2 = lat_stats->latencies[j][i];
1446 
1447 			if (t1 == 0 || t2 == 0 || t1 == t2)
1448 				continue;
1449 
1450 			/*
1451 			 * Latencies should be same
1452 			 * - Use minimum of two latencies which should be same
1453 			 * - Track suspect probe times not within tolerance of
1454 			 *   min value
1455 			 * - Remember how much values are corrected by
1456 			 */
1457 			if (t1 > t2) {
1458 				t = t2;
1459 				probe_stats->probe_errors[i][j] += t1 - t2;
1460 				if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
1461 					probe_stats->probe_suspect[i][j]++;
1462 					probe_stats->probe_suspect[j][i]++;
1463 				}
1464 			} else if (t2 > t1) {
1465 				t = t1;
1466 				probe_stats->probe_errors[j][i] += t2 - t1;
1467 				if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
1468 					probe_stats->probe_suspect[i][j]++;
1469 					probe_stats->probe_suspect[j][i]++;
1470 				}
1471 			}
1472 
1473 			lat_stats->latencies[i][j] =
1474 			    lat_stats->latencies[j][i] = t;
1475 			lgrp_config(cflag, t1, t);
1476 			lgrp_config(cflag, t2, t);
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Keep track of which latencies get corrected
1482 	 */
1483 	for (i = 0; i < MAX_NODES; i++)
1484 		for (j = 0; j < MAX_NODES; j++)
1485 			lat_corrected[i][j] = 0;
1486 
1487 	/*
1488 	 * For every two nodes, see whether there is another pair of nodes which
1489 	 * are about the same distance apart and make the latencies be the same
1490 	 * if they are close enough together
1491 	 */
1492 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1493 		if (!node_memory[i].exists)
1494 			continue;
1495 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1496 			if (!node_memory[j].exists)
1497 				continue;
1498 			/*
1499 			 * Pick one pair of nodes (i, j)
1500 			 * and get latency between them
1501 			 */
1502 			t1 = lat_stats->latencies[i][j];
1503 
1504 			/*
1505 			 * Skip this pair of nodes if there isn't a latency
1506 			 * for it yet
1507 			 */
1508 			if (t1 == 0)
1509 				continue;
1510 
1511 			for (k = 0; k < lgrp_plat_node_cnt; k++) {
1512 				if (!node_memory[k].exists)
1513 					continue;
1514 				for (l = 0; l < lgrp_plat_node_cnt; l++) {
1515 					if (!node_memory[l].exists)
1516 						continue;
1517 					/*
1518 					 * Pick another pair of nodes (k, l)
1519 					 * not same as (i, j) and get latency
1520 					 * between them
1521 					 */
1522 					if (k == i && l == j)
1523 						continue;
1524 
1525 					t2 = lat_stats->latencies[k][l];
1526 
1527 					/*
1528 					 * Skip this pair of nodes if there
1529 					 * isn't a latency for it yet
1530 					 */
1531 
1532 					if (t2 == 0)
1533 						continue;
1534 
1535 					/*
1536 					 * Skip nodes (k, l) if they already
1537 					 * have same latency as (i, j) or
1538 					 * their latency isn't close enough to
1539 					 * be considered/made the same
1540 					 */
1541 					if (t1 == t2 || (t1 > t2 && t1 - t2 >
1542 					    t1 >> lgrp_plat_probe_lt_shift) ||
1543 					    (t2 > t1 && t2 - t1 >
1544 					    t2 >> lgrp_plat_probe_lt_shift))
1545 						continue;
1546 
1547 					/*
1548 					 * Make latency(i, j) same as
1549 					 * latency(k, l), try to use latency
1550 					 * that has been adjusted already to get
1551 					 * more consistency (if possible), and
1552 					 * remember which latencies were
1553 					 * adjusted for next time
1554 					 */
1555 					if (lat_corrected[i][j]) {
1556 						t = t1;
1557 						lgrp_config(cflag, t2, t);
1558 						t2 = t;
1559 					} else if (lat_corrected[k][l]) {
1560 						t = t2;
1561 						lgrp_config(cflag, t1, t);
1562 						t1 = t;
1563 					} else {
1564 						if (t1 > t2)
1565 							t = t2;
1566 						else
1567 							t = t1;
1568 						lgrp_config(cflag, t1, t);
1569 						lgrp_config(cflag, t2, t);
1570 						t1 = t2 = t;
1571 					}
1572 
1573 					lat_stats->latencies[i][j] =
1574 					    lat_stats->latencies[k][l] = t;
1575 
1576 					lat_corrected[i][j] =
1577 					    lat_corrected[k][l] = 1;
1578 				}
1579 			}
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Local latencies should be same
1585 	 * - Find min and max local latencies
1586 	 * - Make all local latencies be minimum
1587 	 */
1588 	min = -1;
1589 	max = 0;
1590 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1591 		if (!node_memory[i].exists)
1592 			continue;
1593 		t = lat_stats->latencies[i][i];
1594 		if (t == 0)
1595 			continue;
1596 		if (min == -1 || t < min)
1597 			min = t;
1598 		if (t > max)
1599 			max = t;
1600 	}
1601 	if (min != max) {
1602 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
1603 			int	local;
1604 
1605 			if (!node_memory[i].exists)
1606 				continue;
1607 
1608 			local = lat_stats->latencies[i][i];
1609 			if (local == 0)
1610 				continue;
1611 
1612 			/*
1613 			 * Track suspect probe times that aren't within
1614 			 * tolerance of minimum local latency and how much
1615 			 * probe times are corrected by
1616 			 */
1617 			if (local - min > min >> lgrp_plat_probe_lt_shift)
1618 				probe_stats->probe_suspect[i][i]++;
1619 
1620 			probe_stats->probe_errors[i][i] += local - min;
1621 
1622 			/*
1623 			 * Make local latencies be minimum
1624 			 */
1625 			lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min);
1626 			lat_stats->latencies[i][i] = min;
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Determine max probe time again since just adjusted latencies
1632 	 */
1633 	lat_stats->latency_max = 0;
1634 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1635 		if (!node_memory[i].exists)
1636 			continue;
1637 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1638 			if (!node_memory[j].exists)
1639 				continue;
1640 			t = lat_stats->latencies[i][j];
1641 			if (t > lat_stats->latency_max)
1642 				lat_stats->latency_max = t;
1643 		}
1644 	}
1645 }
1646 
1647 
1648 /*
1649  * Verify following about latencies between nodes:
1650  *
1651  * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
1652  * - Local latencies same
1653  * - Local < remote
1654  * - Number of latencies seen is reasonable
1655  * - Number of occurrences of a given latency should be more than 1
1656  *
1657  * Returns:
1658  *	0	Success
1659  *	-1	Not symmetric
1660  *	-2	Local latencies not same
1661  *	-3	Local >= remote
1662  */
1663 static int
1664 lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
1665     lgrp_plat_latency_stats_t *lat_stats)
1666 {
1667 	int				i;
1668 	int				j;
1669 	u_longlong_t			t1;
1670 	u_longlong_t			t2;
1671 
1672 	ASSERT(node_memory != NULL && lat_stats != NULL);
1673 
1674 	/*
1675 	 * Nothing to do when this is an UMA machine, lgroup topology is
1676 	 * limited to 2 levels, or there aren't any probe times yet
1677 	 */
1678 	if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
1679 	    lat_stats->latencies[0][0] == 0)
1680 		return (0);
1681 
1682 	/*
1683 	 * Make sure that latencies are symmetric between any two nodes
1684 	 * (ie. latency(node0, node1) == latency(node1, node0))
1685 	 */
1686 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1687 		if (!node_memory[i].exists)
1688 			continue;
1689 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1690 			if (!node_memory[j].exists)
1691 				continue;
1692 			t1 = lat_stats->latencies[i][j];
1693 			t2 = lat_stats->latencies[j][i];
1694 
1695 			if (t1 == 0 || t2 == 0 || t1 == t2)
1696 				continue;
1697 
1698 			return (-1);
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * Local latencies should be same
1704 	 */
1705 	t1 = lat_stats->latencies[0][0];
1706 	for (i = 1; i < lgrp_plat_node_cnt; i++) {
1707 		if (!node_memory[i].exists)
1708 			continue;
1709 
1710 		t2 = lat_stats->latencies[i][i];
1711 		if (t2 == 0)
1712 			continue;
1713 
1714 		if (t1 == 0) {
1715 			t1 = t2;
1716 			continue;
1717 		}
1718 
1719 		if (t1 != t2)
1720 			return (-2);
1721 	}
1722 
1723 	/*
1724 	 * Local latencies should be less than remote
1725 	 */
1726 	if (t1) {
1727 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
1728 			if (!node_memory[i].exists)
1729 				continue;
1730 			for (j = 0; j < lgrp_plat_node_cnt; j++) {
1731 				if (!node_memory[j].exists)
1732 					continue;
1733 				t2 = lat_stats->latencies[i][j];
1734 				if (i == j || t2 == 0)
1735 					continue;
1736 
1737 				if (t1 >= t2)
1738 					return (-3);
1739 			}
1740 		}
1741 	}
1742 
1743 	return (0);
1744 }
1745 
1746 
1747 /*
1748  * Return the number of free, allocatable, or installed
1749  * pages in an lgroup
1750  * This is a copy of the MAX_MEM_NODES == 1 version of the routine
1751  * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
1752  */
1753 /* ARGSUSED */
1754 static pgcnt_t
1755 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
1756 {
1757 	struct memlist *mlist;
1758 	pgcnt_t npgs = 0;
1759 	extern struct memlist *phys_avail;
1760 	extern struct memlist *phys_install;
1761 
1762 	switch (query) {
1763 	case LGRP_MEM_SIZE_FREE:
1764 		return ((pgcnt_t)freemem);
1765 	case LGRP_MEM_SIZE_AVAIL:
1766 		memlist_read_lock();
1767 		for (mlist = phys_avail; mlist; mlist = mlist->next)
1768 			npgs += btop(mlist->size);
1769 		memlist_read_unlock();
1770 		return (npgs);
1771 	case LGRP_MEM_SIZE_INSTALL:
1772 		memlist_read_lock();
1773 		for (mlist = phys_install; mlist; mlist = mlist->next)
1774 			npgs += btop(mlist->size);
1775 		memlist_read_unlock();
1776 		return (npgs);
1777 	default:
1778 		return ((pgcnt_t)0);
1779 	}
1780 }
1781 
1782 
1783 /*
1784  * Update node to proximity domain mappings for given domain and return node ID
1785  */
1786 static int
1787 lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt,
1788     uint32_t domain)
1789 {
1790 	uint_t	node;
1791 	uint_t	start;
1792 
1793 	/*
1794 	 * Hash proximity domain ID into node to domain mapping table (array)
1795 	 * and add entry for it into first non-existent or matching entry found
1796 	 */
1797 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
1798 	do {
1799 		/*
1800 		 * Entry doesn't exist yet, so create one for this proximity
1801 		 * domain and return node ID which is index into mapping table.
1802 		 */
1803 		if (!node_domain[node].exists) {
1804 			node_domain[node].exists = 1;
1805 			node_domain[node].prox_domain = domain;
1806 			return (node);
1807 		}
1808 
1809 		/*
1810 		 * Entry exists for this proximity domain already, so just
1811 		 * return node ID (index into table).
1812 		 */
1813 		if (node_domain[node].prox_domain == domain)
1814 			return (node);
1815 		node = NODE_DOMAIN_HASH(node + 1, node_cnt);
1816 	} while (node != start);
1817 
1818 	/*
1819 	 * Ran out of supported number of entries which shouldn't happen....
1820 	 */
1821 	ASSERT(node != start);
1822 	return (-1);
1823 }
1824 
1825 
1826 /*
1827  * Update node memory information for given proximity domain with specified
1828  * starting and ending physical address range (and return positive numbers for
1829  * success and negative ones for errors)
1830  */
1831 static int
1832 lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt,
1833     node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end,
1834     uint32_t domain)
1835 {
1836 	int	node;
1837 
1838 	/*
1839 	 * Get node number for proximity domain
1840 	 */
1841 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
1842 	if (node == -1) {
1843 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1844 		    domain);
1845 		if (node == -1)
1846 			return (-1);
1847 	}
1848 
1849 	/*
1850 	 * Create entry in table for node if it doesn't exist
1851 	 */
1852 	if (!node_memory[node].exists) {
1853 		node_memory[node].exists = 1;
1854 		node_memory[node].start = btop(start);
1855 		node_memory[node].end = btop(end);
1856 		node_memory[node].prox_domain = domain;
1857 		return (0);
1858 	}
1859 
1860 	/*
1861 	 * Entry already exists for this proximity domain
1862 	 *
1863 	 * There may be more than one SRAT memory entry for a domain, so we may
1864 	 * need to update existing start or end address for the node.
1865 	 */
1866 	if (node_memory[node].prox_domain == domain) {
1867 		if (btop(start) < node_memory[node].start)
1868 			node_memory[node].start = btop(start);
1869 		if (btop(end) > node_memory[node].end)
1870 			node_memory[node].end = btop(end);
1871 		return (1);
1872 	}
1873 	return (-2);
1874 }
1875 
1876 
1877 /*
1878  * Have to sort node by starting physical address because VM system (physical
1879  * page free list management) assumes and expects memnodes to be sorted in
1880  * ascending order by physical address.  If not, the kernel will panic in
1881  * potentially a number of different places.  (:-(
1882  * NOTE: This workaround will not be sufficient if/when hotplugging memory is
1883  *	 supported on x86/x64.
1884  */
1885 static void
1886 lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt,
1887     cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory)
1888 {
1889 	boolean_t	found;
1890 	int		i;
1891 	int		j;
1892 	int		n;
1893 	boolean_t	sorted;
1894 	boolean_t	swapped;
1895 
1896 	if (!lgrp_plat_node_sort_enable || node_cnt <= 1 ||
1897 	    node_domain == NULL || node_memory == NULL)
1898 		return;
1899 
1900 	/*
1901 	 * Sorted already?
1902 	 */
1903 	sorted = B_TRUE;
1904 	for (i = 0; i < node_cnt - 1; i++) {
1905 		/*
1906 		 * Skip entries that don't exist
1907 		 */
1908 		if (!node_memory[i].exists)
1909 			continue;
1910 
1911 		/*
1912 		 * Try to find next existing entry to compare against
1913 		 */
1914 		found = B_FALSE;
1915 		for (j = i + 1; j < node_cnt; j++) {
1916 			if (node_memory[j].exists) {
1917 				found = B_TRUE;
1918 				break;
1919 			}
1920 		}
1921 
1922 		/*
1923 		 * Done if no more existing entries to compare against
1924 		 */
1925 		if (found == B_FALSE)
1926 			break;
1927 
1928 		/*
1929 		 * Not sorted if starting address of current entry is bigger
1930 		 * than starting address of next existing entry
1931 		 */
1932 		if (node_memory[i].start > node_memory[j].start) {
1933 			sorted = B_FALSE;
1934 			break;
1935 		}
1936 	}
1937 
1938 	/*
1939 	 * Don't need to sort if sorted already
1940 	 */
1941 	if (sorted == B_TRUE)
1942 		return;
1943 
1944 	/*
1945 	 * Just use bubble sort since number of nodes is small
1946 	 */
1947 	n = node_cnt;
1948 	do {
1949 		swapped = B_FALSE;
1950 		n--;
1951 		for (i = 0; i < n; i++) {
1952 			/*
1953 			 * Skip entries that don't exist
1954 			 */
1955 			if (!node_memory[i].exists)
1956 				continue;
1957 
1958 			/*
1959 			 * Try to find next existing entry to compare against
1960 			 */
1961 			found = B_FALSE;
1962 			for (j = i + 1; j <= n; j++) {
1963 				if (node_memory[j].exists) {
1964 					found = B_TRUE;
1965 					break;
1966 				}
1967 			}
1968 
1969 			/*
1970 			 * Done if no more existing entries to compare against
1971 			 */
1972 			if (found == B_FALSE)
1973 				break;
1974 
1975 			if (node_memory[i].start > node_memory[j].start) {
1976 				node_phys_addr_map_t	save_addr;
1977 				node_domain_map_t	save_node;
1978 
1979 				/*
1980 				 * Swap node to proxmity domain ID assignments
1981 				 */
1982 				bcopy(&node_domain[i], &save_node,
1983 				    sizeof (node_domain_map_t));
1984 				bcopy(&node_domain[j], &node_domain[i],
1985 				    sizeof (node_domain_map_t));
1986 				bcopy(&save_node, &node_domain[j],
1987 				    sizeof (node_domain_map_t));
1988 
1989 				/*
1990 				 * Swap node to physical memory assignments
1991 				 */
1992 				bcopy(&node_memory[i], &save_addr,
1993 				    sizeof (node_phys_addr_map_t));
1994 				bcopy(&node_memory[j], &node_memory[i],
1995 				    sizeof (node_phys_addr_map_t));
1996 				bcopy(&save_addr, &node_memory[j],
1997 				    sizeof (node_phys_addr_map_t));
1998 				swapped = B_TRUE;
1999 			}
2000 		}
2001 	} while (swapped == B_TRUE);
2002 
2003 	/*
2004 	 * Check to make sure that CPUs assigned to correct node IDs now since
2005 	 * node to proximity domain ID assignments may have been changed above
2006 	 */
2007 	if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1)
2008 		return;
2009 	for (i = 0; i < cpu_count; i++) {
2010 		int		node;
2011 
2012 		node = lgrp_plat_domain_to_node(node_domain, node_cnt,
2013 		    cpu_node[i].prox_domain);
2014 		if (cpu_node[i].node != node)
2015 			cpu_node[i].node = node;
2016 	}
2017 
2018 }
2019 
2020 
2021 /*
2022  * Return time needed to probe from current CPU to memory in given node
2023  */
2024 static hrtime_t
2025 lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
2026     lgrp_plat_probe_mem_config_t *probe_mem_config,
2027     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
2028 {
2029 	caddr_t			buf;
2030 	hrtime_t		elapsed;
2031 	hrtime_t		end;
2032 	int			from;
2033 	int			i;
2034 	int			ipl;
2035 	hrtime_t		max;
2036 	hrtime_t		min;
2037 	hrtime_t		start;
2038 	extern int		use_sse_pagecopy;
2039 
2040 	/*
2041 	 * Determine ID of node containing current CPU
2042 	 */
2043 	from = lgrp_plat_cpu_to_node(CPU, cpu_node);
2044 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
2045 
2046 	/*
2047 	 * Do common work for probing main memory
2048 	 */
2049 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) {
2050 		/*
2051 		 * Skip probing any nodes without memory and
2052 		 * set probe time to 0
2053 		 */
2054 		if (probe_mem_config->probe_va[to] == NULL) {
2055 			lat_stats->latencies[from][to] = 0;
2056 			return (0);
2057 		}
2058 
2059 		/*
2060 		 * Invalidate caches once instead of once every sample
2061 		 * which should cut cost of probing by a lot
2062 		 */
2063 		probe_stats->flush_cost = gethrtime();
2064 		invalidate_cache();
2065 		probe_stats->flush_cost = gethrtime() -
2066 		    probe_stats->flush_cost;
2067 		probe_stats->probe_cost_total += probe_stats->flush_cost;
2068 	}
2069 
2070 	/*
2071 	 * Probe from current CPU to given memory using specified operation
2072 	 * and take specified number of samples
2073 	 */
2074 	max = 0;
2075 	min = -1;
2076 	for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
2077 		probe_stats->probe_cost = gethrtime();
2078 
2079 		/*
2080 		 * Can't measure probe time if gethrtime() isn't working yet
2081 		 */
2082 		if (probe_stats->probe_cost == 0 && gethrtime() == 0)
2083 			return (0);
2084 
2085 		if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
2086 			/*
2087 			 * Measure how long it takes to read vendor ID from
2088 			 * Northbridge
2089 			 */
2090 			elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads);
2091 		} else {
2092 			/*
2093 			 * Measure how long it takes to copy page
2094 			 * on top of itself
2095 			 */
2096 			buf = probe_mem_config->probe_va[to] + (i * PAGESIZE);
2097 
2098 			kpreempt_disable();
2099 			ipl = splhigh();
2100 			start = gethrtime();
2101 			if (use_sse_pagecopy)
2102 				hwblkpagecopy(buf, buf);
2103 			else
2104 				bcopy(buf, buf, PAGESIZE);
2105 			end = gethrtime();
2106 			elapsed = end - start;
2107 			splx(ipl);
2108 			kpreempt_enable();
2109 		}
2110 
2111 		probe_stats->probe_cost = gethrtime() -
2112 		    probe_stats->probe_cost;
2113 		probe_stats->probe_cost_total += probe_stats->probe_cost;
2114 
2115 		if (min == -1 || elapsed < min)
2116 			min = elapsed;
2117 		if (elapsed > max)
2118 			max = elapsed;
2119 	}
2120 
2121 	/*
2122 	 * Update minimum and maximum probe times between
2123 	 * these two nodes
2124 	 */
2125 	if (min < probe_stats->probe_min[from][to] ||
2126 	    probe_stats->probe_min[from][to] == 0)
2127 		probe_stats->probe_min[from][to] = min;
2128 
2129 	if (max > probe_stats->probe_max[from][to])
2130 		probe_stats->probe_max[from][to] = max;
2131 
2132 	return (min);
2133 }
2134 
2135 
2136 /*
2137  * Read boot property with CPU to APIC ID array, fill in CPU to node ID
2138  * mapping table with APIC ID for each CPU, and return number of CPU APIC IDs.
2139  *
2140  * NOTE: This code assumes that CPU IDs are assigned in order that they appear
2141  *       in in cpu_apicid_array boot property which is based on and follows
2142  *	 same ordering as processor list in ACPI MADT.  If the code in
2143  *	 usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns
2144  *	 CPU IDs ever changes, then this code will need to change too....
2145  */
2146 static int
2147 lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node)
2148 {
2149 	int	boot_prop_len;
2150 	char	*boot_prop_name = BP_CPU_APICID_ARRAY;
2151 	uint8_t	cpu_apicid_array[UINT8_MAX + 1];
2152 	int	i;
2153 	int	n;
2154 
2155 	/*
2156 	 * Nothing to do when no array to fill in or not enough CPUs
2157 	 */
2158 	if (cpu_node == NULL)
2159 		return (-1);
2160 
2161 	/*
2162 	 * Check length of property value
2163 	 */
2164 	boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name);
2165 	if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array))
2166 		return (-2);
2167 
2168 	/*
2169 	 * Calculate number of entries in array and return when there's just
2170 	 * one CPU since that's not very interesting for NUMA
2171 	 */
2172 	n = boot_prop_len / sizeof (uint8_t);
2173 	if (n == 1)
2174 		return (-3);
2175 
2176 	/*
2177 	 * Get CPU to APIC ID property value
2178 	 */
2179 	if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0)
2180 		return (-4);
2181 
2182 	/*
2183 	 * Fill in CPU to node ID mapping table with APIC ID for each CPU
2184 	 */
2185 	for (i = 0; i < n; i++) {
2186 		cpu_node[i].exists = 1;
2187 		cpu_node[i].apicid = cpu_apicid_array[i];
2188 	}
2189 
2190 	/*
2191 	 * Return number of CPUs based on number of APIC IDs
2192 	 */
2193 	return (n);
2194 }
2195 
2196 
2197 /*
2198  * Read ACPI System Locality Information Table (SLIT) to determine how far each
2199  * NUMA node is from each other
2200  */
2201 static int
2202 lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
2203     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats)
2204 {
2205 	int		i;
2206 	int		j;
2207 	int		localities;
2208 	hrtime_t	max;
2209 	hrtime_t	min;
2210 	int		retval;
2211 	uint8_t		*slit_entries;
2212 
2213 	if (tp == NULL || !lgrp_plat_slit_enable)
2214 		return (1);
2215 
2216 	if (lat_stats == NULL)
2217 		return (2);
2218 
2219 	localities = tp->number;
2220 	if (localities != node_cnt)
2221 		return (3);
2222 
2223 	min = lat_stats->latency_min;
2224 	max = lat_stats->latency_max;
2225 
2226 	/*
2227 	 * Fill in latency matrix based on SLIT entries
2228 	 */
2229 	slit_entries = tp->entry;
2230 	for (i = 0; i < localities; i++) {
2231 		for (j = 0; j < localities; j++) {
2232 			uint8_t	latency;
2233 
2234 			latency = slit_entries[(i * localities) + j];
2235 			lat_stats->latencies[i][j] = latency;
2236 			if (latency < min || min == -1)
2237 				min = latency;
2238 			if (latency > max)
2239 				max = latency;
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * Verify that latencies/distances given in SLIT look reasonable
2245 	 */
2246 	retval = lgrp_plat_latency_verify(node_memory, lat_stats);
2247 
2248 	if (retval) {
2249 		/*
2250 		 * Reinitialize (zero) latency table since SLIT doesn't look
2251 		 * right
2252 		 */
2253 		for (i = 0; i < localities; i++) {
2254 			for (j = 0; j < localities; j++)
2255 				lat_stats->latencies[i][j] = 0;
2256 		}
2257 	} else {
2258 		/*
2259 		 * Update min and max latencies seen since SLIT looks valid
2260 		 */
2261 		lat_stats->latency_min = min;
2262 		lat_stats->latency_max = max;
2263 	}
2264 
2265 	return (retval);
2266 }
2267 
2268 
2269 /*
2270  * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs
2271  * and memory are local to each other in the same NUMA node and return number
2272  * of nodes
2273  */
2274 static int
2275 lgrp_plat_process_srat(struct srat *tp, uint32_t *prox_domain_min,
2276     node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count,
2277     node_phys_addr_map_t *node_memory)
2278 {
2279 	struct srat_item	*srat_end;
2280 	int			i;
2281 	struct srat_item	*item;
2282 	int			node_cnt;
2283 	int			proc_entry_count;
2284 
2285 	/*
2286 	 * Nothing to do when no SRAT or disabled
2287 	 */
2288 	if (tp == NULL || !lgrp_plat_srat_enable)
2289 		return (-1);
2290 
2291 	/*
2292 	 * Determine number of nodes by counting number of proximity domains in
2293 	 * SRAT and return if number of nodes is 1 or less since don't need to
2294 	 * read SRAT then
2295 	 */
2296 	node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min);
2297 	if (node_cnt == 1)
2298 		return (1);
2299 	else if (node_cnt <= 0)
2300 		return (-2);
2301 
2302 	/*
2303 	 * Walk through SRAT, examining each CPU and memory entry to determine
2304 	 * which CPUs and memory belong to which node.
2305 	 */
2306 	item = tp->list;
2307 	srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2308 	proc_entry_count = 0;
2309 	while (item < srat_end) {
2310 		uint32_t	apic_id;
2311 		uint32_t	domain;
2312 		uint64_t	end;
2313 		uint64_t	length;
2314 		uint64_t	start;
2315 
2316 		switch (item->type) {
2317 		case SRAT_PROCESSOR:	/* CPU entry */
2318 			if (!(item->i.p.flags & SRAT_ENABLED) ||
2319 			    cpu_node == NULL)
2320 				break;
2321 
2322 			/*
2323 			 * Calculate domain (node) ID and fill in APIC ID to
2324 			 * domain/node mapping table
2325 			 */
2326 			domain = item->i.p.domain1;
2327 			for (i = 0; i < 3; i++) {
2328 				domain += item->i.p.domain2[i] <<
2329 				    ((i + 1) * 8);
2330 			}
2331 			apic_id = item->i.p.apic_id;
2332 
2333 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2334 			    cpu_node, cpu_count, apic_id, domain) < 0)
2335 				return (-3);
2336 
2337 			proc_entry_count++;
2338 			break;
2339 
2340 		case SRAT_MEMORY:	/* memory entry */
2341 			if (!(item->i.m.flags & SRAT_ENABLED) ||
2342 			    node_memory == NULL)
2343 				break;
2344 
2345 			/*
2346 			 * Get domain (node) ID and fill in domain/node
2347 			 * to memory mapping table
2348 			 */
2349 			domain = item->i.m.domain;
2350 			start = item->i.m.base_addr;
2351 			length = item->i.m.len;
2352 			end = start + length - 1;
2353 
2354 			if (lgrp_plat_node_memory_update(node_domain, node_cnt,
2355 			    node_memory, start, end, domain) < 0)
2356 				return (-4);
2357 			break;
2358 		case SRAT_X2APIC:	/* x2apic CPU entry */
2359 			if (!(item->i.xp.flags & SRAT_ENABLED) ||
2360 			    cpu_node == NULL)
2361 				break;
2362 
2363 			/*
2364 			 * Calculate domain (node) ID and fill in APIC ID to
2365 			 * domain/node mapping table
2366 			 */
2367 			domain = item->i.xp.domain;
2368 			apic_id = item->i.xp.x2apic_id;
2369 
2370 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2371 			    cpu_node, cpu_count, apic_id, domain) < 0)
2372 				return (-3);
2373 
2374 			proc_entry_count++;
2375 			break;
2376 
2377 		default:
2378 			break;
2379 		}
2380 
2381 		item = (struct srat_item *)((uintptr_t)item + item->len);
2382 	}
2383 
2384 	/*
2385 	 * Should have seen at least as many SRAT processor entries as CPUs
2386 	 */
2387 	if (proc_entry_count < cpu_count)
2388 		return (-5);
2389 
2390 	/*
2391 	 * Need to sort nodes by starting physical address since VM system
2392 	 * assumes and expects memnodes to be sorted in ascending order by
2393 	 * physical address
2394 	 */
2395 	lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count,
2396 	    node_memory);
2397 
2398 	return (node_cnt);
2399 }
2400 
2401 
2402 /*
2403  * Return number of proximity domains given in ACPI SRAT
2404  */
2405 static int
2406 lgrp_plat_srat_domains(struct srat *tp, uint32_t *prox_domain_min)
2407 {
2408 	int			domain_cnt;
2409 	uint32_t		domain_min;
2410 	struct srat_item	*end;
2411 	int			i;
2412 	struct srat_item	*item;
2413 	node_domain_map_t	node_domain[MAX_NODES];
2414 
2415 
2416 	if (tp == NULL || !lgrp_plat_srat_enable)
2417 		return (1);
2418 
2419 	/*
2420 	 * Walk through SRAT to find minimum proximity domain ID
2421 	 */
2422 	domain_min = UINT32_MAX;
2423 	item = tp->list;
2424 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2425 	while (item < end) {
2426 		uint32_t	domain;
2427 
2428 		switch (item->type) {
2429 		case SRAT_PROCESSOR:	/* CPU entry */
2430 			if (!(item->i.p.flags & SRAT_ENABLED)) {
2431 				item = (struct srat_item *)((uintptr_t)item +
2432 				    item->len);
2433 				continue;
2434 			}
2435 			domain = item->i.p.domain1;
2436 			for (i = 0; i < 3; i++) {
2437 				domain += item->i.p.domain2[i] <<
2438 				    ((i + 1) * 8);
2439 			}
2440 			break;
2441 
2442 		case SRAT_MEMORY:	/* memory entry */
2443 			if (!(item->i.m.flags & SRAT_ENABLED)) {
2444 				item = (struct srat_item *)((uintptr_t)item +
2445 				    item->len);
2446 				continue;
2447 			}
2448 			domain = item->i.m.domain;
2449 			break;
2450 
2451 		case SRAT_X2APIC:	/* x2apic CPU entry */
2452 			if (!(item->i.xp.flags & SRAT_ENABLED)) {
2453 				item = (struct srat_item *)((uintptr_t)item +
2454 				    item->len);
2455 				continue;
2456 			}
2457 			domain = item->i.xp.domain;
2458 			break;
2459 
2460 		default:
2461 			item = (struct srat_item *)((uintptr_t)item +
2462 			    item->len);
2463 			continue;
2464 		}
2465 
2466 		/*
2467 		 * Keep track of minimum proximity domain ID
2468 		 */
2469 		if (domain < domain_min)
2470 			domain_min = domain;
2471 
2472 		item = (struct srat_item *)((uintptr_t)item + item->len);
2473 	}
2474 	if (lgrp_plat_domain_min_enable && prox_domain_min != NULL)
2475 		*prox_domain_min = domain_min;
2476 
2477 	/*
2478 	 * Walk through SRAT, examining each CPU and memory entry to determine
2479 	 * proximity domain ID for each.
2480 	 */
2481 	domain_cnt = 0;
2482 	item = tp->list;
2483 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2484 	bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t));
2485 	while (item < end) {
2486 		uint32_t	domain;
2487 		boolean_t	overflow;
2488 		uint_t		start;
2489 
2490 		switch (item->type) {
2491 		case SRAT_PROCESSOR:	/* CPU entry */
2492 			if (!(item->i.p.flags & SRAT_ENABLED)) {
2493 				item = (struct srat_item *)((uintptr_t)item +
2494 				    item->len);
2495 				continue;
2496 			}
2497 			domain = item->i.p.domain1;
2498 			for (i = 0; i < 3; i++) {
2499 				domain += item->i.p.domain2[i] <<
2500 				    ((i + 1) * 8);
2501 			}
2502 			break;
2503 
2504 		case SRAT_MEMORY:	/* memory entry */
2505 			if (!(item->i.m.flags & SRAT_ENABLED)) {
2506 				item = (struct srat_item *)((uintptr_t)item +
2507 				    item->len);
2508 				continue;
2509 			}
2510 			domain = item->i.m.domain;
2511 			break;
2512 
2513 		case SRAT_X2APIC:	/* x2apic CPU entry */
2514 			if (!(item->i.xp.flags & SRAT_ENABLED)) {
2515 				item = (struct srat_item *)((uintptr_t)item +
2516 				    item->len);
2517 				continue;
2518 			}
2519 			domain = item->i.xp.domain;
2520 			break;
2521 
2522 		default:
2523 			item = (struct srat_item *)((uintptr_t)item +
2524 			    item->len);
2525 			continue;
2526 		}
2527 
2528 		/*
2529 		 * Count and keep track of which proximity domain IDs seen
2530 		 */
2531 		start = i = domain % MAX_NODES;
2532 		overflow = B_TRUE;
2533 		do {
2534 			/*
2535 			 * Create entry for proximity domain and increment
2536 			 * count when no entry exists where proximity domain
2537 			 * hashed
2538 			 */
2539 			if (!node_domain[i].exists) {
2540 				node_domain[i].exists = 1;
2541 				node_domain[i].prox_domain = domain;
2542 				domain_cnt++;
2543 				overflow = B_FALSE;
2544 				break;
2545 			}
2546 
2547 			/*
2548 			 * Nothing to do when proximity domain seen already
2549 			 * and its entry exists
2550 			 */
2551 			if (node_domain[i].prox_domain == domain) {
2552 				overflow = B_FALSE;
2553 				break;
2554 			}
2555 
2556 			/*
2557 			 * Entry exists where proximity domain hashed, but for
2558 			 * different proximity domain so keep search for empty
2559 			 * slot to put it or matching entry whichever comes
2560 			 * first.
2561 			 */
2562 			i = (i + 1) % MAX_NODES;
2563 		} while (i != start);
2564 
2565 		/*
2566 		 * Didn't find empty or matching entry which means have more
2567 		 * proximity domains than supported nodes (:-(
2568 		 */
2569 		ASSERT(overflow != B_TRUE);
2570 		if (overflow == B_TRUE)
2571 			return (-1);
2572 
2573 		item = (struct srat_item *)((uintptr_t)item + item->len);
2574 	}
2575 	return (domain_cnt);
2576 }
2577 
2578 
2579 /*
2580  * Set lgroup latencies for 2 level lgroup topology
2581  */
2582 static void
2583 lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
2584     lgrp_plat_latency_stats_t *lat_stats)
2585 {
2586 	int	i;
2587 
2588 	ASSERT(node_memory != NULL && lat_stats != NULL);
2589 
2590 	if (lgrp_plat_node_cnt >= 4)
2591 		cmn_err(CE_NOTE,
2592 		    "MPO only optimizing for local and remote\n");
2593 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
2594 		int	j;
2595 
2596 		if (!node_memory[i].exists)
2597 			continue;
2598 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
2599 			if (!node_memory[j].exists)
2600 				continue;
2601 			if (i == j)
2602 				lat_stats->latencies[i][j] = 2;
2603 			else
2604 				lat_stats->latencies[i][j] = 3;
2605 		}
2606 	}
2607 	lat_stats->latency_min = 2;
2608 	lat_stats->latency_max = 3;
2609 	lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
2610 }
2611 
2612 
2613 /*
2614  * The following Opteron specific constants, macros, types, and routines define
2615  * PCI configuration space registers and how to read them to determine the NUMA
2616  * configuration of *supported* Opteron processors.  They provide the same
2617  * information that may be gotten from the ACPI System Resource Affinity Table
2618  * (SRAT) if it exists on the machine of interest.
2619  *
2620  * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family
2621  * of interest describes all of these registers and their contents.  The main
2622  * registers used by this code to determine the NUMA configuration of the
2623  * machine are the node ID register for the number of NUMA nodes and the DRAM
2624  * address map registers for the physical address range of each node.
2625  *
2626  * NOTE: The format and how to determine the NUMA configuration using PCI
2627  *	 config space registers may change or may not be supported in future
2628  *	 Opteron processor families.
2629  */
2630 
2631 /*
2632  * How many bits to shift Opteron DRAM Address Map base and limit registers
2633  * to get actual value
2634  */
2635 #define	OPT_DRAMADDR_HI_LSHIFT_ADDR	40	/* shift left for address */
2636 #define	OPT_DRAMADDR_LO_LSHIFT_ADDR	8	/* shift left for address */
2637 
2638 #define	OPT_DRAMADDR_HI_MASK_ADDR	0x000000FF /* address bits 47-40 */
2639 #define	OPT_DRAMADDR_LO_MASK_ADDR	0xFFFF0000 /* address bits 39-24 */
2640 
2641 #define	OPT_DRAMADDR_LO_MASK_OFF	0xFFFFFF /* offset for address */
2642 
2643 /*
2644  * Macros to derive addresses from Opteron DRAM Address Map registers
2645  */
2646 #define	OPT_DRAMADDR_HI(reg) \
2647 	(((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \
2648 	    OPT_DRAMADDR_HI_LSHIFT_ADDR)
2649 
2650 #define	OPT_DRAMADDR_LO(reg) \
2651 	(((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \
2652 	    OPT_DRAMADDR_LO_LSHIFT_ADDR)
2653 
2654 #define	OPT_DRAMADDR(high, low) \
2655 	(OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low))
2656 
2657 /*
2658  * Bit masks defining what's in Opteron DRAM Address Map base register
2659  */
2660 #define	OPT_DRAMBASE_LO_MASK_RE		0x1	/* read enable */
2661 #define	OPT_DRAMBASE_LO_MASK_WE		0x2	/* write enable */
2662 #define	OPT_DRAMBASE_LO_MASK_INTRLVEN	0x700	/* interleave */
2663 
2664 /*
2665  * Bit masks defining what's in Opteron DRAM Address Map limit register
2666  */
2667 #define	OPT_DRAMLIMIT_LO_MASK_DSTNODE	0x7		/* destination node */
2668 #define	OPT_DRAMLIMIT_LO_MASK_INTRLVSEL	0x700		/* interleave select */
2669 
2670 
2671 /*
2672  * Opteron Node ID register in PCI configuration space contains
2673  * number of nodes in system, etc. for Opteron K8.  The following
2674  * constants and macros define its contents, structure, and access.
2675  */
2676 
2677 /*
2678  * Bit masks defining what's in Opteron Node ID register
2679  */
2680 #define	OPT_NODE_MASK_ID	0x7	/* node ID */
2681 #define	OPT_NODE_MASK_CNT	0x70	/* node count */
2682 #define	OPT_NODE_MASK_IONODE	0x700	/* Hypertransport I/O hub node ID */
2683 #define	OPT_NODE_MASK_LCKNODE	0x7000	/* lock controller node ID */
2684 #define	OPT_NODE_MASK_CPUCNT	0xF0000	/* CPUs in system (0 means 1 CPU)  */
2685 
2686 /*
2687  * How many bits in Opteron Node ID register to shift right to get actual value
2688  */
2689 #define	OPT_NODE_RSHIFT_CNT	0x4	/* shift right for node count value */
2690 
2691 /*
2692  * Macros to get values from Opteron Node ID register
2693  */
2694 #define	OPT_NODE_CNT(reg) \
2695 	((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
2696 
2697 /*
2698  * Macro to setup PCI Extended Configuration Space (ECS) address to give to
2699  * "in/out" instructions
2700  *
2701  * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any
2702  *	 other uses should just do MMIO to access PCI ECS.
2703  *	 Must enable special bit in Northbridge Configuration Register on
2704  *	 Greyhound for extended CF8 space access to be able to access PCI ECS
2705  *	 using "in/out" instructions and restore special bit after done
2706  *	 accessing PCI ECS.
2707  */
2708 #define	OPT_PCI_ECS_ADDR(bus, device, function, reg) \
2709 	(PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11)  | \
2710 	    (((function) & 0x7) << 8) | ((reg) & 0xfc) | \
2711 	    ((((reg) >> 8) & 0xf) << 24))
2712 
2713 /*
2714  * PCI configuration space registers accessed by specifying
2715  * a bus, device, function, and offset.  The following constants
2716  * define the values needed to access Opteron K8 configuration
2717  * info to determine its node topology
2718  */
2719 
2720 #define	OPT_PCS_BUS_CONFIG	0	/* Hypertransport config space bus */
2721 
2722 /*
2723  * Opteron PCI configuration space register function values
2724  */
2725 #define	OPT_PCS_FUNC_HT		0	/* Hypertransport configuration */
2726 #define	OPT_PCS_FUNC_ADDRMAP	1	/* Address map configuration */
2727 #define	OPT_PCS_FUNC_DRAM	2	/* DRAM configuration */
2728 #define	OPT_PCS_FUNC_MISC	3	/* Miscellaneous configuration */
2729 
2730 /*
2731  * PCI Configuration Space register offsets
2732  */
2733 #define	OPT_PCS_OFF_VENDOR	0x0	/* device/vendor ID register */
2734 #define	OPT_PCS_OFF_DRAMBASE_HI	0x140	/* DRAM Base register (node 0) */
2735 #define	OPT_PCS_OFF_DRAMBASE_LO	0x40	/* DRAM Base register (node 0) */
2736 #define	OPT_PCS_OFF_NODEID	0x60	/* Node ID register */
2737 
2738 /*
2739  * Opteron PCI Configuration Space device IDs for nodes
2740  */
2741 #define	OPT_PCS_DEV_NODE0		24	/* device number for node 0 */
2742 
2743 
2744 /*
2745  * Opteron DRAM address map gives base and limit for physical memory in a node
2746  */
2747 typedef	struct opt_dram_addr_map {
2748 	uint32_t	base_hi;
2749 	uint32_t	base_lo;
2750 	uint32_t	limit_hi;
2751 	uint32_t	limit_lo;
2752 } opt_dram_addr_map_t;
2753 
2754 
2755 /*
2756  * Supported AMD processor families
2757  */
2758 #define	AMD_FAMILY_HAMMER	15
2759 #define	AMD_FAMILY_GREYHOUND	16
2760 
2761 /*
2762  * Whether to have is_opteron() return 1 even when processor isn't supported
2763  */
2764 uint_t	is_opteron_override = 0;
2765 
2766 /*
2767  * AMD processor family for current CPU
2768  */
2769 uint_t	opt_family = 0;
2770 
2771 
2772 /*
2773  * Determine whether we're running on a supported AMD Opteron since reading
2774  * node count and DRAM address map registers may have different format or
2775  * may not be supported across processor families
2776  */
2777 static int
2778 is_opteron(void)
2779 {
2780 
2781 	if (x86_vendor != X86_VENDOR_AMD)
2782 		return (0);
2783 
2784 	opt_family = cpuid_getfamily(CPU);
2785 	if (opt_family == AMD_FAMILY_HAMMER ||
2786 	    opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override)
2787 		return (1);
2788 	else
2789 		return (0);
2790 }
2791 
2792 
2793 /*
2794  * Determine NUMA configuration for Opteron from registers that live in PCI
2795  * configuration space
2796  */
2797 static void
2798 opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
2799     node_phys_addr_map_t *node_memory)
2800 {
2801 	uint_t				bus;
2802 	uint_t				dev;
2803 	struct opt_dram_addr_map	dram_map[MAX_NODES];
2804 	uint_t				node;
2805 	uint_t				node_info[MAX_NODES];
2806 	uint_t				off_hi;
2807 	uint_t				off_lo;
2808 	uint64_t			nb_cfg_reg;
2809 
2810 	/*
2811 	 * Read configuration registers from PCI configuration space to
2812 	 * determine node information, which memory is in each node, etc.
2813 	 *
2814 	 * Write to PCI configuration space address register to specify
2815 	 * which configuration register to read and read/write PCI
2816 	 * configuration space data register to get/set contents
2817 	 */
2818 	bus = OPT_PCS_BUS_CONFIG;
2819 	dev = OPT_PCS_DEV_NODE0;
2820 	off_hi = OPT_PCS_OFF_DRAMBASE_HI;
2821 	off_lo = OPT_PCS_OFF_DRAMBASE_LO;
2822 
2823 	/*
2824 	 * Read node ID register for node 0 to get node count
2825 	 */
2826 	node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT,
2827 	    OPT_PCS_OFF_NODEID);
2828 	*node_cnt = OPT_NODE_CNT(node_info[0]) + 1;
2829 
2830 	/*
2831 	 * If number of nodes is more than maximum supported, then set node
2832 	 * count to 1 and treat system as UMA instead of NUMA.
2833 	 */
2834 	if (*node_cnt > MAX_NODES) {
2835 		*node_cnt = 1;
2836 		return;
2837 	}
2838 
2839 	/*
2840 	 * For Greyhound, PCI Extended Configuration Space must be enabled to
2841 	 * read high DRAM address map base and limit registers
2842 	 */
2843 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2844 		nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG);
2845 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2846 			wrmsr(MSR_AMD_NB_CFG,
2847 			    nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS);
2848 	}
2849 
2850 	for (node = 0; node < *node_cnt; node++) {
2851 		uint32_t	base_hi;
2852 		uint32_t	base_lo;
2853 		uint32_t	limit_hi;
2854 		uint32_t	limit_lo;
2855 
2856 		/*
2857 		 * Read node ID register (except for node 0 which we just read)
2858 		 */
2859 		if (node > 0) {
2860 			node_info[node] = pci_getl_func(bus, dev,
2861 			    OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID);
2862 		}
2863 
2864 		/*
2865 		 * Read DRAM base and limit registers which specify
2866 		 * physical memory range of each node
2867 		 */
2868 		if (opt_family != AMD_FAMILY_GREYHOUND)
2869 			base_hi = 0;
2870 		else {
2871 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2872 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
2873 			base_hi = dram_map[node].base_hi =
2874 			    inl(PCI_CONFDATA);
2875 		}
2876 		base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev,
2877 		    OPT_PCS_FUNC_ADDRMAP, off_lo);
2878 
2879 		if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) &&
2880 		    mem_intrlv)
2881 			*mem_intrlv = *mem_intrlv + 1;
2882 
2883 		off_hi += 4;	/* high limit register offset */
2884 		if (opt_family != AMD_FAMILY_GREYHOUND)
2885 			limit_hi = 0;
2886 		else {
2887 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2888 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
2889 			limit_hi = dram_map[node].limit_hi =
2890 			    inl(PCI_CONFDATA);
2891 		}
2892 
2893 		off_lo += 4;	/* low limit register offset */
2894 		limit_lo = dram_map[node].limit_lo = pci_getl_func(bus,
2895 		    dev, OPT_PCS_FUNC_ADDRMAP, off_lo);
2896 
2897 		/*
2898 		 * Increment device number to next node and register offsets
2899 		 * for DRAM base register of next node
2900 		 */
2901 		off_hi += 4;
2902 		off_lo += 4;
2903 		dev++;
2904 
2905 		/*
2906 		 * Both read and write enable bits must be enabled in DRAM
2907 		 * address map base register for physical memory to exist in
2908 		 * node
2909 		 */
2910 		if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 ||
2911 		    (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) {
2912 			/*
2913 			 * Mark node memory as non-existent and set start and
2914 			 * end addresses to be same in node_memory[]
2915 			 */
2916 			node_memory[node].exists = 0;
2917 			node_memory[node].start = node_memory[node].end =
2918 			    (pfn_t)-1;
2919 			continue;
2920 		}
2921 
2922 		/*
2923 		 * Mark node memory as existing and remember physical address
2924 		 * range of each node for use later
2925 		 */
2926 		node_memory[node].exists = 1;
2927 
2928 		node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo));
2929 
2930 		node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) |
2931 		    OPT_DRAMADDR_LO_MASK_OFF);
2932 	}
2933 
2934 	/*
2935 	 * Restore PCI Extended Configuration Space enable bit
2936 	 */
2937 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2938 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2939 			wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg);
2940 	}
2941 }
2942 
2943 
2944 /*
2945  * Return average amount of time to read vendor ID register on Northbridge
2946  * N times on specified destination node from current CPU
2947  */
2948 static hrtime_t
2949 opt_probe_vendor(int dest_node, int nreads)
2950 {
2951 	int		cnt;
2952 	uint_t		dev;
2953 	/* LINTED: set but not used in function */
2954 	volatile uint_t	dev_vendor;
2955 	hrtime_t	elapsed;
2956 	hrtime_t	end;
2957 	int		ipl;
2958 	hrtime_t	start;
2959 
2960 	dev = OPT_PCS_DEV_NODE0 + dest_node;
2961 	kpreempt_disable();
2962 	ipl = spl8();
2963 	outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM,
2964 	    OPT_PCS_OFF_VENDOR));
2965 	start = gethrtime();
2966 	for (cnt = 0; cnt < nreads; cnt++)
2967 		dev_vendor = inl(PCI_CONFDATA);
2968 	end = gethrtime();
2969 	elapsed = (end - start) / nreads;
2970 	splx(ipl);
2971 	kpreempt_enable();
2972 	return (elapsed);
2973 }
2974