1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PC specific DDI implementation 29 */ 30 #include <sys/types.h> 31 #include <sys/autoconf.h> 32 #include <sys/avintr.h> 33 #include <sys/bootconf.h> 34 #include <sys/conf.h> 35 #include <sys/cpuvar.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/ddi_subrdefs.h> 38 #include <sys/ethernet.h> 39 #include <sys/fp.h> 40 #include <sys/instance.h> 41 #include <sys/kmem.h> 42 #include <sys/machsystm.h> 43 #include <sys/modctl.h> 44 #include <sys/promif.h> 45 #include <sys/prom_plat.h> 46 #include <sys/sunndi.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/sysmacros.h> 50 #include <sys/systeminfo.h> 51 #include <sys/utsname.h> 52 #include <sys/atomic.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <vm/seg_kmem.h> 56 #include <sys/ontrap.h> 57 #include <sys/fm/protocol.h> 58 #include <sys/ramdisk.h> 59 #include <sys/sunndi.h> 60 #include <sys/vmem.h> 61 #include <sys/pci_impl.h> 62 #if defined(__xpv) 63 #include <sys/hypervisor.h> 64 #endif 65 #include <sys/mach_intr.h> 66 #include <vm/hat_i86.h> 67 #include <sys/x86_archext.h> 68 69 /* 70 * DDI Boot Configuration 71 */ 72 73 /* 74 * Platform drivers on this platform 75 */ 76 char *platform_module_list[] = { 77 "acpippm", 78 "ppm", 79 (char *)0 80 }; 81 82 /* pci bus resource maps */ 83 struct pci_bus_resource *pci_bus_res; 84 85 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 86 87 uint64_t ramdisk_start, ramdisk_end; 88 89 /* 90 * Forward declarations 91 */ 92 static int getlongprop_buf(); 93 static void get_boot_properties(void); 94 static void impl_bus_initialprobe(void); 95 static void impl_bus_reprobe(void); 96 97 static int poke_mem(peekpoke_ctlops_t *in_args); 98 static int peek_mem(peekpoke_ctlops_t *in_args); 99 100 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 101 102 #define CTGENTRIES 15 103 104 static struct ctgas { 105 struct ctgas *ctg_next; 106 int ctg_index; 107 void *ctg_addr[CTGENTRIES]; 108 size_t ctg_size[CTGENTRIES]; 109 } ctglist; 110 111 static kmutex_t ctgmutex; 112 #define CTGLOCK() mutex_enter(&ctgmutex) 113 #define CTGUNLOCK() mutex_exit(&ctgmutex) 114 115 /* 116 * Minimum pfn value of page_t's put on the free list. This is to simplify 117 * support of ddi dma memory requests which specify small, non-zero addr_lo 118 * values. 119 * 120 * The default value of 2, which corresponds to the only known non-zero addr_lo 121 * value used, means a single page will be sacrificed (pfn typically starts 122 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 123 * otherwise mp startup panics. 124 */ 125 pfn_t ddiphysmin = 2; 126 127 static void 128 check_driver_disable(void) 129 { 130 int proplen = 128; 131 char *prop_name; 132 char *drv_name, *propval; 133 major_t major; 134 135 prop_name = kmem_alloc(proplen, KM_SLEEP); 136 for (major = 0; major < devcnt; major++) { 137 drv_name = ddi_major_to_name(major); 138 if (drv_name == NULL) 139 continue; 140 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 141 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 142 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 143 if (strcmp(propval, "true") == 0) { 144 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 145 cmn_err(CE_NOTE, "driver %s disabled", 146 drv_name); 147 } 148 ddi_prop_free(propval); 149 } 150 } 151 kmem_free(prop_name, proplen); 152 } 153 154 155 /* 156 * Configure the hardware on the system. 157 * Called before the rootfs is mounted 158 */ 159 void 160 configure(void) 161 { 162 extern void i_ddi_init_root(); 163 164 #if defined(__i386) 165 extern int fpu_pentium_fdivbug; 166 #endif /* __i386 */ 167 extern int fpu_ignored; 168 169 /* 170 * Determine if an FPU is attached 171 */ 172 173 fpu_probe(); 174 175 #if defined(__i386) 176 if (fpu_pentium_fdivbug) { 177 printf("\ 178 FP hardware exhibits Pentium floating point divide problem\n"); 179 } 180 #endif /* __i386 */ 181 182 if (fpu_ignored) { 183 printf("FP hardware will not be used\n"); 184 } else if (!fpu_exists) { 185 printf("No FPU in configuration\n"); 186 } 187 188 /* 189 * Initialize devices on the machine. 190 * Uses configuration tree built by the PROMs to determine what 191 * is present, and builds a tree of prototype dev_info nodes 192 * corresponding to the hardware which identified itself. 193 */ 194 #if !defined(SAS) && !defined(MPSAS) 195 /* 196 * Check for disabled drivers and initialize root node. 197 */ 198 check_driver_disable(); 199 i_ddi_init_root(); 200 201 /* 202 * attach the isa nexus to get ACPI resource usage 203 * isa is "kind of" a pseudo node 204 */ 205 #if defined(__xpv) 206 if (DOMAIN_IS_INITDOMAIN(xen_info)) 207 (void) i_ddi_attach_pseudo_node("isa"); 208 #else 209 (void) i_ddi_attach_pseudo_node("isa"); 210 #endif 211 212 /* reprogram devices not set up by firmware (BIOS) */ 213 impl_bus_reprobe(); 214 #endif /* !SAS && !MPSAS */ 215 } 216 217 /* 218 * The "status" property indicates the operational status of a device. 219 * If this property is present, the value is a string indicating the 220 * status of the device as follows: 221 * 222 * "okay" operational. 223 * "disabled" not operational, but might become operational. 224 * "fail" not operational because a fault has been detected, 225 * and it is unlikely that the device will become 226 * operational without repair. no additional details 227 * are available. 228 * "fail-xxx" not operational because a fault has been detected, 229 * and it is unlikely that the device will become 230 * operational without repair. "xxx" is additional 231 * human-readable information about the particular 232 * fault condition that was detected. 233 * 234 * The absence of this property means that the operational status is 235 * unknown or okay. 236 * 237 * This routine checks the status property of the specified device node 238 * and returns 0 if the operational status indicates failure, and 1 otherwise. 239 * 240 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 241 * And, in that case, the property may not even be a string. So we carefully 242 * check for the value "fail", in the beginning of the string, noting 243 * the property length. 244 */ 245 int 246 status_okay(int id, char *buf, int buflen) 247 { 248 char status_buf[OBP_MAXPROPNAME]; 249 char *bufp = buf; 250 int len = buflen; 251 int proplen; 252 static const char *status = "status"; 253 static const char *fail = "fail"; 254 int fail_len = (int)strlen(fail); 255 256 /* 257 * Get the proplen ... if it's smaller than "fail", 258 * or doesn't exist ... then we don't care, since 259 * the value can't begin with the char string "fail". 260 * 261 * NB: proplen, if it's a string, includes the NULL in the 262 * the size of the property, and fail_len does not. 263 */ 264 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 265 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 266 return (1); 267 268 /* 269 * if a buffer was provided, use it 270 */ 271 if ((buf == (char *)NULL) || (buflen <= 0)) { 272 bufp = status_buf; 273 len = sizeof (status_buf); 274 } 275 *bufp = (char)0; 276 277 /* 278 * Get the property into the buffer, to the extent of the buffer, 279 * and in case the buffer is smaller than the property size, 280 * NULL terminate the buffer. (This handles the case where 281 * a buffer was passed in and the caller wants to print the 282 * value, but the buffer was too small). 283 */ 284 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 285 (caddr_t)bufp, len); 286 *(bufp + len - 1) = (char)0; 287 288 /* 289 * If the value begins with the char string "fail", 290 * then it means the node is failed. We don't care 291 * about any other values. We assume the node is ok 292 * although it might be 'disabled'. 293 */ 294 if (strncmp(bufp, fail, fail_len) == 0) 295 return (0); 296 297 return (1); 298 } 299 300 /* 301 * Check the status of the device node passed as an argument. 302 * 303 * if ((status is OKAY) || (status is DISABLED)) 304 * return DDI_SUCCESS 305 * else 306 * print a warning and return DDI_FAILURE 307 */ 308 /*ARGSUSED1*/ 309 int 310 check_status(int id, char *name, dev_info_t *parent) 311 { 312 char status_buf[64]; 313 char devtype_buf[OBP_MAXPROPNAME]; 314 int retval = DDI_FAILURE; 315 316 /* 317 * is the status okay? 318 */ 319 if (status_okay(id, status_buf, sizeof (status_buf))) 320 return (DDI_SUCCESS); 321 322 /* 323 * a status property indicating bad memory will be associated 324 * with a node which has a "device_type" property with a value of 325 * "memory-controller". in this situation, return DDI_SUCCESS 326 */ 327 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 328 sizeof (devtype_buf)) > 0) { 329 if (strcmp(devtype_buf, "memory-controller") == 0) 330 retval = DDI_SUCCESS; 331 } 332 333 /* 334 * print the status property information 335 */ 336 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 337 return (retval); 338 } 339 340 /*ARGSUSED*/ 341 uint_t 342 softlevel1(caddr_t arg1, caddr_t arg2) 343 { 344 softint(); 345 return (1); 346 } 347 348 /* 349 * Allow for implementation specific correction of PROM property values. 350 */ 351 352 /*ARGSUSED*/ 353 void 354 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 355 caddr_t buffer) 356 { 357 /* 358 * There are no adjustments needed in this implementation. 359 */ 360 } 361 362 static int 363 getlongprop_buf(int id, char *name, char *buf, int maxlen) 364 { 365 int size; 366 367 size = prom_getproplen((pnode_t)id, name); 368 if (size <= 0 || (size > maxlen - 1)) 369 return (-1); 370 371 if (-1 == prom_getprop((pnode_t)id, name, buf)) 372 return (-1); 373 374 if (strcmp("name", name) == 0) { 375 if (buf[size - 1] != '\0') { 376 buf[size] = '\0'; 377 size += 1; 378 } 379 } 380 381 return (size); 382 } 383 384 static int 385 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 386 { 387 int ret; 388 389 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 390 DDI_PROP_DONTPASS, pname, pval, plen)) 391 == DDI_PROP_SUCCESS) { 392 *plen = (*plen) * (sizeof (int)); 393 } 394 return (ret); 395 } 396 397 398 /* 399 * Node Configuration 400 */ 401 402 struct prop_ispec { 403 uint_t pri, vec; 404 }; 405 406 /* 407 * For the x86, we're prepared to claim that the interrupt string 408 * is in the form of a list of <ipl,vec> specifications. 409 */ 410 411 #define VEC_MIN 1 412 #define VEC_MAX 255 413 414 static int 415 impl_xlate_intrs(dev_info_t *child, int *in, 416 struct ddi_parent_private_data *pdptr) 417 { 418 size_t size; 419 int n; 420 struct intrspec *new; 421 caddr_t got_prop; 422 int *inpri; 423 int got_len; 424 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 425 426 static char bad_intr_fmt[] = 427 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 428 429 /* 430 * determine if the driver is expecting the new style "interrupts" 431 * property which just contains the IRQ, or the old style which 432 * contains pairs of <IPL,IRQ>. if it is the new style, we always 433 * assign IPL 5 unless an "interrupt-priorities" property exists. 434 * in that case, the "interrupt-priorities" property contains the 435 * IPL values that match, one for one, the IRQ values in the 436 * "interrupts" property. 437 */ 438 inpri = NULL; 439 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 440 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 441 /* the old style "interrupts" property... */ 442 443 /* 444 * The list consists of <ipl,vec> elements 445 */ 446 if ((n = (*in++ >> 1)) < 1) 447 return (DDI_FAILURE); 448 449 pdptr->par_nintr = n; 450 size = n * sizeof (struct intrspec); 451 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 452 453 while (n--) { 454 int level = *in++; 455 int vec = *in++; 456 457 if (level < 1 || level > MAXIPL || 458 vec < VEC_MIN || vec > VEC_MAX) { 459 cmn_err(CE_CONT, bad_intr_fmt, 460 DEVI(child)->devi_name, 461 DEVI(child)->devi_instance, level, vec); 462 goto broken; 463 } 464 new->intrspec_pri = level; 465 if (vec != 2) 466 new->intrspec_vec = vec; 467 else 468 /* 469 * irq 2 on the PC bus is tied to irq 9 470 * on ISA, EISA and MicroChannel 471 */ 472 new->intrspec_vec = 9; 473 new++; 474 } 475 476 return (DDI_SUCCESS); 477 } else { 478 /* the new style "interrupts" property... */ 479 480 /* 481 * The list consists of <vec> elements 482 */ 483 if ((n = (*in++)) < 1) 484 return (DDI_FAILURE); 485 486 pdptr->par_nintr = n; 487 size = n * sizeof (struct intrspec); 488 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 489 490 /* XXX check for "interrupt-priorities" property... */ 491 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 492 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 493 == DDI_PROP_SUCCESS) { 494 if (n != (got_len / sizeof (int))) { 495 cmn_err(CE_CONT, 496 "bad interrupt-priorities length" 497 " from %s%d: expected %d, got %d\n", 498 DEVI(child)->devi_name, 499 DEVI(child)->devi_instance, n, 500 (int)(got_len / sizeof (int))); 501 goto broken; 502 } 503 inpri = (int *)got_prop; 504 } 505 506 while (n--) { 507 int level; 508 int vec = *in++; 509 510 if (inpri == NULL) 511 level = 5; 512 else 513 level = *inpri++; 514 515 if (level < 1 || level > MAXIPL || 516 vec < VEC_MIN || vec > VEC_MAX) { 517 cmn_err(CE_CONT, bad_intr_fmt, 518 DEVI(child)->devi_name, 519 DEVI(child)->devi_instance, level, vec); 520 goto broken; 521 } 522 new->intrspec_pri = level; 523 if (vec != 2) 524 new->intrspec_vec = vec; 525 else 526 /* 527 * irq 2 on the PC bus is tied to irq 9 528 * on ISA, EISA and MicroChannel 529 */ 530 new->intrspec_vec = 9; 531 new++; 532 } 533 534 if (inpri != NULL) 535 kmem_free(got_prop, got_len); 536 return (DDI_SUCCESS); 537 } 538 539 broken: 540 kmem_free(pdptr->par_intr, size); 541 pdptr->par_intr = NULL; 542 pdptr->par_nintr = 0; 543 if (inpri != NULL) 544 kmem_free(got_prop, got_len); 545 546 return (DDI_FAILURE); 547 } 548 549 /* 550 * Create a ddi_parent_private_data structure from the ddi properties of 551 * the dev_info node. 552 * 553 * The "reg" and either an "intr" or "interrupts" properties are required 554 * if the driver wishes to create mappings or field interrupts on behalf 555 * of the device. 556 * 557 * The "reg" property is assumed to be a list of at least one triple 558 * 559 * <bustype, address, size>*1 560 * 561 * The "intr" property is assumed to be a list of at least one duple 562 * 563 * <SPARC ipl, vector#>*1 564 * 565 * The "interrupts" property is assumed to be a list of at least one 566 * n-tuples that describes the interrupt capabilities of the bus the device 567 * is connected to. For SBus, this looks like 568 * 569 * <SBus-level>*1 570 * 571 * (This property obsoletes the 'intr' property). 572 * 573 * The "ranges" property is optional. 574 */ 575 void 576 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 577 { 578 struct ddi_parent_private_data *pdptr; 579 int n; 580 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 581 uint_t reg_len, rng_len, intr_len, irupts_len; 582 583 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 584 585 /* 586 * Handle the 'reg' property. 587 */ 588 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 589 DDI_PROP_SUCCESS) && (reg_len != 0)) { 590 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 591 pdptr->par_reg = (struct regspec *)reg_prop; 592 } 593 594 /* 595 * See if I have a range (adding one where needed - this 596 * means to add one for sbus node in sun4c, when romvec > 0, 597 * if no range is already defined in the PROM node. 598 * (Currently no sun4c PROMS define range properties, 599 * but they should and may in the future.) For the SBus 600 * node, the range is defined by the SBus reg property. 601 */ 602 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 603 == DDI_PROP_SUCCESS) { 604 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 605 pdptr->par_rng = (struct rangespec *)rng_prop; 606 } 607 608 /* 609 * Handle the 'intr' and 'interrupts' properties 610 */ 611 612 /* 613 * For backwards compatibility 614 * we first look for the 'intr' property for the device. 615 */ 616 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 617 != DDI_PROP_SUCCESS) { 618 intr_len = 0; 619 } 620 621 /* 622 * If we're to support bus adapters and future platforms cleanly, 623 * we need to support the generalized 'interrupts' property. 624 */ 625 if (get_prop_int_array(child, "interrupts", &irupts_prop, 626 &irupts_len) != DDI_PROP_SUCCESS) { 627 irupts_len = 0; 628 } else if (intr_len != 0) { 629 /* 630 * If both 'intr' and 'interrupts' are defined, 631 * then 'interrupts' wins and we toss the 'intr' away. 632 */ 633 ddi_prop_free((void *)intr_prop); 634 intr_len = 0; 635 } 636 637 if (intr_len != 0) { 638 639 /* 640 * Translate the 'intr' property into an array 641 * an array of struct intrspec's. There's not really 642 * very much to do here except copy what's out there. 643 */ 644 645 struct intrspec *new; 646 struct prop_ispec *l; 647 648 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 649 l = (struct prop_ispec *)intr_prop; 650 pdptr->par_intr = 651 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 652 while (n--) { 653 new->intrspec_pri = l->pri; 654 new->intrspec_vec = l->vec; 655 new++; 656 l++; 657 } 658 ddi_prop_free((void *)intr_prop); 659 660 } else if ((n = irupts_len) != 0) { 661 size_t size; 662 int *out; 663 664 /* 665 * Translate the 'interrupts' property into an array 666 * of intrspecs for the rest of the DDI framework to 667 * toy with. Only our ancestors really know how to 668 * do this, so ask 'em. We massage the 'interrupts' 669 * property so that it is pre-pended by a count of 670 * the number of integers in the argument. 671 */ 672 size = sizeof (int) + n; 673 out = kmem_alloc(size, KM_SLEEP); 674 *out = n / sizeof (int); 675 bcopy(irupts_prop, out + 1, (size_t)n); 676 ddi_prop_free((void *)irupts_prop); 677 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 678 cmn_err(CE_CONT, 679 "Unable to translate 'interrupts' for %s%d\n", 680 DEVI(child)->devi_binding_name, 681 DEVI(child)->devi_instance); 682 } 683 kmem_free(out, size); 684 } 685 } 686 687 /* 688 * Name a child 689 */ 690 static int 691 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 692 { 693 /* 694 * Fill in parent-private data and this function returns to us 695 * an indication if it used "registers" to fill in the data. 696 */ 697 if (ddi_get_parent_data(child) == NULL) { 698 struct ddi_parent_private_data *pdptr; 699 make_ddi_ppd(child, &pdptr); 700 ddi_set_parent_data(child, pdptr); 701 } 702 703 name[0] = '\0'; 704 if (sparc_pd_getnreg(child) > 0) { 705 (void) snprintf(name, namelen, "%x,%x", 706 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 707 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 708 } 709 710 return (DDI_SUCCESS); 711 } 712 713 /* 714 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 715 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 716 * the children of sun busses based on the reg spec. 717 * 718 * Handles the following properties (in make_ddi_ppd): 719 * Property value 720 * Name type 721 * reg register spec 722 * intr old-form interrupt spec 723 * interrupts new (bus-oriented) interrupt spec 724 * ranges range spec 725 */ 726 int 727 impl_ddi_sunbus_initchild(dev_info_t *child) 728 { 729 char name[MAXNAMELEN]; 730 void impl_ddi_sunbus_removechild(dev_info_t *); 731 732 /* 733 * Name the child, also makes parent private data 734 */ 735 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 736 ddi_set_name_addr(child, name); 737 738 /* 739 * Attempt to merge a .conf node; if successful, remove the 740 * .conf node. 741 */ 742 if ((ndi_dev_is_persistent_node(child) == 0) && 743 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 744 /* 745 * Return failure to remove node 746 */ 747 impl_ddi_sunbus_removechild(child); 748 return (DDI_FAILURE); 749 } 750 return (DDI_SUCCESS); 751 } 752 753 void 754 impl_free_ddi_ppd(dev_info_t *dip) 755 { 756 struct ddi_parent_private_data *pdptr; 757 size_t n; 758 759 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 760 return; 761 762 if ((n = (size_t)pdptr->par_nintr) != 0) 763 /* 764 * Note that kmem_free is used here (instead of 765 * ddi_prop_free) because the contents of the 766 * property were placed into a separate buffer and 767 * mucked with a bit before being stored in par_intr. 768 * The actual return value from the prop lookup 769 * was freed with ddi_prop_free previously. 770 */ 771 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 772 773 if ((n = (size_t)pdptr->par_nrng) != 0) 774 ddi_prop_free((void *)pdptr->par_rng); 775 776 if ((n = pdptr->par_nreg) != 0) 777 ddi_prop_free((void *)pdptr->par_reg); 778 779 kmem_free(pdptr, sizeof (*pdptr)); 780 ddi_set_parent_data(dip, NULL); 781 } 782 783 void 784 impl_ddi_sunbus_removechild(dev_info_t *dip) 785 { 786 impl_free_ddi_ppd(dip); 787 ddi_set_name_addr(dip, NULL); 788 /* 789 * Strip the node to properly convert it back to prototype form 790 */ 791 impl_rem_dev_props(dip); 792 } 793 794 /* 795 * DDI Interrupt 796 */ 797 798 /* 799 * turn this on to force isa, eisa, and mca device to ignore the new 800 * hardware nodes in the device tree (normally turned on only for 801 * drivers that need it by setting the property "ignore-hardware-nodes" 802 * in their driver.conf file). 803 * 804 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 805 * as safety valve. 806 */ 807 int ignore_hardware_nodes = 0; 808 809 /* 810 * Local data 811 */ 812 static struct impl_bus_promops *impl_busp; 813 814 815 /* 816 * New DDI interrupt framework 817 */ 818 819 /* 820 * i_ddi_intr_ops: 821 * 822 * This is the interrupt operator function wrapper for the bus function 823 * bus_intr_op. 824 */ 825 int 826 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 827 ddi_intr_handle_impl_t *hdlp, void * result) 828 { 829 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 830 int ret = DDI_FAILURE; 831 832 /* request parent to process this interrupt op */ 833 if (NEXUS_HAS_INTR_OP(pdip)) 834 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 835 pdip, rdip, op, hdlp, result); 836 else 837 cmn_err(CE_WARN, "Failed to process interrupt " 838 "for %s%d due to down-rev nexus driver %s%d", 839 ddi_get_name(rdip), ddi_get_instance(rdip), 840 ddi_get_name(pdip), ddi_get_instance(pdip)); 841 return (ret); 842 } 843 844 /* 845 * i_ddi_add_softint - allocate and add a soft interrupt to the system 846 */ 847 int 848 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 849 { 850 int ret; 851 852 /* add soft interrupt handler */ 853 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 854 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 855 return (ret ? DDI_SUCCESS : DDI_FAILURE); 856 } 857 858 859 void 860 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 861 { 862 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 863 } 864 865 866 extern void (*setsoftint)(int, struct av_softinfo *); 867 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 868 869 int 870 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 871 { 872 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 873 return (DDI_EPENDING); 874 875 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 876 877 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 878 return (DDI_SUCCESS); 879 } 880 881 /* 882 * i_ddi_set_softint_pri: 883 * 884 * The way this works is that it first tries to add a softint vector 885 * at the new priority in hdlp. If that succeeds; then it removes the 886 * existing softint vector at the old priority. 887 */ 888 int 889 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 890 { 891 int ret; 892 893 /* 894 * If a softint is pending at the old priority then fail the request. 895 */ 896 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 897 return (DDI_FAILURE); 898 899 ret = av_softint_movepri((void *)hdlp, old_pri); 900 return (ret ? DDI_SUCCESS : DDI_FAILURE); 901 } 902 903 void 904 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 905 { 906 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 907 } 908 909 void 910 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 911 { 912 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 913 hdlp->ih_private = NULL; 914 } 915 916 int 917 i_ddi_get_intx_nintrs(dev_info_t *dip) 918 { 919 struct ddi_parent_private_data *pdp; 920 921 if ((pdp = ddi_get_parent_data(dip)) == NULL) 922 return (0); 923 924 return (pdp->par_nintr); 925 } 926 927 /* 928 * DDI Memory/DMA 929 */ 930 931 /* 932 * Support for allocating DMAable memory to implement 933 * ddi_dma_mem_alloc(9F) interface. 934 */ 935 936 #define KA_ALIGN_SHIFT 7 937 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 938 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 939 940 /* 941 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 942 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 943 */ 944 945 static ddi_dma_attr_t kmem_io_attr = { 946 DMA_ATTR_V0, 947 0x0000000000000000ULL, /* dma_attr_addr_lo */ 948 0x0000000000000000ULL, /* dma_attr_addr_hi */ 949 0x00ffffff, 950 0x1000, /* dma_attr_align */ 951 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 952 }; 953 954 /* kmem io memory ranges and indices */ 955 enum { 956 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 957 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 958 }; 959 960 static struct { 961 vmem_t *kmem_io_arena; 962 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 963 ddi_dma_attr_t kmem_io_attr; 964 } kmem_io[MAX_MEM_RANGES]; 965 966 static int kmem_io_idx; /* index of first populated kmem_io[] */ 967 968 static page_t * 969 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 970 { 971 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 972 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 973 974 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 975 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 976 } 977 978 #ifdef __xpv 979 static void 980 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 981 { 982 extern void page_destroy_io(page_t *); 983 segkmem_xfree(vmp, ptr, size, page_destroy_io); 984 } 985 #endif 986 987 static void * 988 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 989 { 990 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 991 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 992 } 993 994 static void * 995 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 996 { 997 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 998 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 999 } 1000 1001 static void * 1002 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1003 { 1004 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1005 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1006 } 1007 1008 static void * 1009 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1010 { 1011 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1012 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1013 } 1014 1015 static void * 1016 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1017 { 1018 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1019 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1020 } 1021 1022 static void * 1023 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1024 { 1025 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1026 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1027 } 1028 1029 static void * 1030 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1031 { 1032 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1033 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1034 } 1035 1036 static void * 1037 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1038 { 1039 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1040 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1041 } 1042 1043 static void * 1044 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1045 { 1046 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1047 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1048 } 1049 1050 static void * 1051 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1052 { 1053 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1054 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1055 } 1056 1057 static void * 1058 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1059 { 1060 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1061 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1062 } 1063 1064 struct { 1065 uint64_t io_limit; 1066 char *io_name; 1067 void *(*io_alloc)(vmem_t *, size_t, int); 1068 int io_initial; /* kmem_io_init during startup */ 1069 } io_arena_params[MAX_MEM_RANGES] = { 1070 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1071 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1072 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1073 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1074 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1075 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1076 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1077 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1078 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1079 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1080 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1081 }; 1082 1083 void 1084 kmem_io_init(int a) 1085 { 1086 int c; 1087 char name[40]; 1088 1089 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1090 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1091 #ifdef __xpv 1092 segkmem_free_io, 1093 #else 1094 segkmem_free, 1095 #endif 1096 heap_arena, 0, VM_SLEEP); 1097 1098 for (c = 0; c < KA_NCACHE; c++) { 1099 size_t size = KA_ALIGN << c; 1100 (void) sprintf(name, "%s_%lu", 1101 io_arena_params[a].io_name, size); 1102 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1103 size, size, NULL, NULL, NULL, NULL, 1104 kmem_io[a].kmem_io_arena, 0); 1105 } 1106 } 1107 1108 /* 1109 * Return the index of the highest memory range for addr. 1110 */ 1111 static int 1112 kmem_io_index(uint64_t addr) 1113 { 1114 int n; 1115 1116 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1117 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1118 if (kmem_io[n].kmem_io_arena == NULL) 1119 kmem_io_init(n); 1120 return (n); 1121 } 1122 } 1123 panic("kmem_io_index: invalid addr - must be at least 16m"); 1124 1125 /*NOTREACHED*/ 1126 } 1127 1128 /* 1129 * Return the index of the next kmem_io populated memory range 1130 * after curindex. 1131 */ 1132 static int 1133 kmem_io_index_next(int curindex) 1134 { 1135 int n; 1136 1137 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1138 if (kmem_io[n].kmem_io_arena) 1139 return (n); 1140 } 1141 return (-1); 1142 } 1143 1144 /* 1145 * allow kmem to be mapped in with different PTE cache attribute settings. 1146 * Used by i_ddi_mem_alloc() 1147 */ 1148 int 1149 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1150 { 1151 uint_t hat_flags; 1152 caddr_t kva_end; 1153 uint_t hat_attr; 1154 pfn_t pfn; 1155 1156 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1157 return (-1); 1158 } 1159 1160 hat_attr &= ~HAT_ORDER_MASK; 1161 hat_attr |= order | HAT_NOSYNC; 1162 hat_flags = HAT_LOAD_LOCK; 1163 1164 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1165 (uintptr_t)PAGEMASK); 1166 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1167 1168 while (kva < kva_end) { 1169 pfn = hat_getpfnum(kas.a_hat, kva); 1170 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1171 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1172 kva += MMU_PAGESIZE; 1173 } 1174 1175 return (0); 1176 } 1177 1178 void 1179 ka_init(void) 1180 { 1181 int a; 1182 paddr_t maxphysaddr; 1183 #if !defined(__xpv) 1184 extern pfn_t physmax; 1185 1186 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1187 #else 1188 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1189 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1190 #endif 1191 1192 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1193 1194 for (a = 0; a < MAX_MEM_RANGES; a++) { 1195 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1196 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1197 io_arena_params[a].io_limit = maxphysaddr; 1198 else 1199 a++; 1200 break; 1201 } 1202 } 1203 kmem_io_idx = a; 1204 1205 for (; a < MAX_MEM_RANGES; a++) { 1206 kmem_io[a].kmem_io_attr = kmem_io_attr; 1207 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1208 io_arena_params[a].io_limit; 1209 /* 1210 * initialize kmem_io[] arena/cache corresponding to 1211 * maxphysaddr and to the "common" io memory ranges that 1212 * have io_initial set to a non-zero value. 1213 */ 1214 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1215 kmem_io_init(a); 1216 } 1217 } 1218 1219 /* 1220 * put contig address/size 1221 */ 1222 static void * 1223 putctgas(void *addr, size_t size) 1224 { 1225 struct ctgas *ctgp = &ctglist; 1226 int i; 1227 1228 CTGLOCK(); 1229 do { 1230 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1231 ctgp->ctg_addr[i] = addr; 1232 ctgp->ctg_size[i] = size; 1233 ctgp->ctg_index++; 1234 break; 1235 } 1236 if (!ctgp->ctg_next) 1237 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1238 KM_NOSLEEP); 1239 ctgp = ctgp->ctg_next; 1240 } while (ctgp); 1241 1242 CTGUNLOCK(); 1243 return (ctgp); 1244 } 1245 1246 /* 1247 * get contig size by addr 1248 */ 1249 static size_t 1250 getctgsz(void *addr) 1251 { 1252 struct ctgas *ctgp = &ctglist; 1253 int i, j; 1254 size_t sz; 1255 1256 ASSERT(addr); 1257 CTGLOCK(); 1258 1259 while (ctgp) { 1260 for (i = 0; i < ctgp->ctg_index; i++) { 1261 if (addr != ctgp->ctg_addr[i]) 1262 continue; 1263 1264 sz = ctgp->ctg_size[i]; 1265 j = --ctgp->ctg_index; 1266 if (i != j) { 1267 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1268 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1269 } 1270 CTGUNLOCK(); 1271 return (sz); 1272 } 1273 ctgp = ctgp->ctg_next; 1274 } 1275 1276 CTGUNLOCK(); 1277 return (0); 1278 } 1279 1280 /* 1281 * contig_alloc: 1282 * 1283 * allocates contiguous memory to satisfy the 'size' and dma attributes 1284 * specified in 'attr'. 1285 * 1286 * Not all of memory need to be physically contiguous if the 1287 * scatter-gather list length is greater than 1. 1288 */ 1289 1290 /*ARGSUSED*/ 1291 void * 1292 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1293 { 1294 pgcnt_t pgcnt = btopr(size); 1295 size_t asize = pgcnt * PAGESIZE; 1296 page_t *ppl; 1297 int pflag; 1298 void *addr; 1299 1300 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1301 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1302 1303 /* segkmem_xalloc */ 1304 1305 if (align <= PAGESIZE) 1306 addr = vmem_alloc(heap_arena, asize, 1307 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1308 else 1309 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1310 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1311 if (addr) { 1312 ASSERT(!((uintptr_t)addr & (align - 1))); 1313 1314 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1315 vmem_free(heap_arena, addr, asize); 1316 return (NULL); 1317 } 1318 pflag = PG_EXCL; 1319 1320 if (cansleep) 1321 pflag |= PG_WAIT; 1322 1323 /* 4k req gets from freelists rather than pfn search */ 1324 if (pgcnt > 1 || align > PAGESIZE) 1325 pflag |= PG_PHYSCONTIG; 1326 1327 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1328 asize, pflag, &kas, (caddr_t)addr, attr); 1329 1330 if (!ppl) { 1331 vmem_free(heap_arena, addr, asize); 1332 page_unresv(pgcnt); 1333 return (NULL); 1334 } 1335 1336 while (ppl != NULL) { 1337 page_t *pp = ppl; 1338 page_sub(&ppl, pp); 1339 ASSERT(page_iolock_assert(pp)); 1340 page_io_unlock(pp); 1341 page_downgrade(pp); 1342 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1343 pp, (PROT_ALL & ~PROT_USER) | 1344 HAT_NOSYNC, HAT_LOAD_LOCK); 1345 } 1346 } 1347 return (addr); 1348 } 1349 1350 void 1351 contig_free(void *addr, size_t size) 1352 { 1353 pgcnt_t pgcnt = btopr(size); 1354 size_t asize = pgcnt * PAGESIZE; 1355 caddr_t a, ea; 1356 page_t *pp; 1357 1358 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1359 1360 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1361 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1362 if (!pp) 1363 panic("contig_free: contig pp not found"); 1364 1365 if (!page_tryupgrade(pp)) { 1366 page_unlock(pp); 1367 pp = page_lookup(&kvp, 1368 (u_offset_t)(uintptr_t)a, SE_EXCL); 1369 if (pp == NULL) 1370 panic("contig_free: page freed"); 1371 } 1372 page_destroy(pp, 0); 1373 } 1374 1375 page_unresv(pgcnt); 1376 vmem_free(heap_arena, addr, asize); 1377 } 1378 1379 /* 1380 * Allocate from the system, aligned on a specific boundary. 1381 * The alignment, if non-zero, must be a power of 2. 1382 */ 1383 static void * 1384 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1385 ddi_dma_attr_t *attr) 1386 { 1387 size_t *addr, *raddr, rsize; 1388 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1389 int a, i, c; 1390 vmem_t *vmp; 1391 kmem_cache_t *cp = NULL; 1392 1393 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1394 return (NULL); 1395 1396 align = MAX(align, hdrsize); 1397 ASSERT((align & (align - 1)) == 0); 1398 1399 /* 1400 * All of our allocators guarantee 16-byte alignment, so we don't 1401 * need to reserve additional space for the header. 1402 * To simplify picking the correct kmem_io_cache, we round up to 1403 * a multiple of KA_ALIGN. 1404 */ 1405 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1406 1407 if (physcontig && rsize > PAGESIZE) { 1408 if (addr = contig_alloc(size, attr, align, cansleep)) { 1409 if (!putctgas(addr, size)) 1410 contig_free(addr, size); 1411 else 1412 return (addr); 1413 } 1414 return (NULL); 1415 } 1416 1417 a = kmem_io_index(attr->dma_attr_addr_hi); 1418 1419 if (rsize > PAGESIZE) { 1420 vmp = kmem_io[a].kmem_io_arena; 1421 raddr = vmem_alloc(vmp, rsize, 1422 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1423 } else { 1424 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1425 cp = kmem_io[a].kmem_io_cache[c]; 1426 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1427 KM_NOSLEEP); 1428 } 1429 1430 if (raddr == NULL) { 1431 int na; 1432 1433 ASSERT(cansleep == 0); 1434 if (rsize > PAGESIZE) 1435 return (NULL); 1436 /* 1437 * System does not have memory in the requested range. 1438 * Try smaller kmem io ranges and larger cache sizes 1439 * to see if there might be memory available in 1440 * these other caches. 1441 */ 1442 1443 for (na = kmem_io_index_next(a); na >= 0; 1444 na = kmem_io_index_next(na)) { 1445 ASSERT(kmem_io[na].kmem_io_arena); 1446 cp = kmem_io[na].kmem_io_cache[c]; 1447 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1448 if (raddr) 1449 goto kallocdone; 1450 } 1451 /* now try the larger kmem io cache sizes */ 1452 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1453 for (i = c + 1; i < KA_NCACHE; i++) { 1454 cp = kmem_io[na].kmem_io_cache[i]; 1455 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1456 if (raddr) 1457 goto kallocdone; 1458 } 1459 } 1460 return (NULL); 1461 } 1462 1463 kallocdone: 1464 ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1, 1465 PAGESIZE) || rsize > PAGESIZE); 1466 1467 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1468 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1469 1470 addr[-4] = (size_t)cp; 1471 addr[-3] = (size_t)vmp; 1472 addr[-2] = (size_t)raddr; 1473 addr[-1] = rsize; 1474 1475 return (addr); 1476 } 1477 1478 static void 1479 kfreea(void *addr) 1480 { 1481 size_t size; 1482 1483 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1484 contig_free(addr, size); 1485 } else { 1486 size_t *saddr = addr; 1487 if (saddr[-4] == 0) 1488 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1489 saddr[-1]); 1490 else 1491 kmem_cache_free((kmem_cache_t *)saddr[-4], 1492 (void *)saddr[-2]); 1493 } 1494 } 1495 1496 /*ARGSUSED*/ 1497 void 1498 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1499 { 1500 } 1501 1502 /* 1503 * Check if the specified cache attribute is supported on the platform. 1504 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1505 */ 1506 boolean_t 1507 i_ddi_check_cache_attr(uint_t flags) 1508 { 1509 /* 1510 * The cache attributes are mutually exclusive. Any combination of 1511 * the attributes leads to a failure. 1512 */ 1513 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1514 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1515 return (B_FALSE); 1516 1517 /* All cache attributes are supported on X86/X64 */ 1518 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1519 IOMEM_DATA_UC_WR_COMBINE)) 1520 return (B_TRUE); 1521 1522 /* undefined attributes */ 1523 return (B_FALSE); 1524 } 1525 1526 /* set HAT cache attributes from the cache attributes */ 1527 void 1528 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1529 { 1530 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1531 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1532 1533 /* 1534 * If write-combining is not supported, then it falls back 1535 * to uncacheable. 1536 */ 1537 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT)) 1538 cache_attr = IOMEM_DATA_UNCACHED; 1539 1540 /* 1541 * set HAT attrs according to the cache attrs. 1542 */ 1543 switch (cache_attr) { 1544 case IOMEM_DATA_UNCACHED: 1545 *hataccp &= ~HAT_ORDER_MASK; 1546 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1547 break; 1548 case IOMEM_DATA_UC_WR_COMBINE: 1549 *hataccp &= ~HAT_ORDER_MASK; 1550 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1551 break; 1552 case IOMEM_DATA_CACHED: 1553 *hataccp &= ~HAT_ORDER_MASK; 1554 *hataccp |= HAT_UNORDERED_OK; 1555 break; 1556 /* 1557 * This case must not occur because the cache attribute is scrutinized 1558 * before this function is called. 1559 */ 1560 default: 1561 /* 1562 * set cacheable to hat attrs. 1563 */ 1564 *hataccp &= ~HAT_ORDER_MASK; 1565 *hataccp |= HAT_UNORDERED_OK; 1566 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1567 fname, cache_attr); 1568 } 1569 } 1570 1571 /* 1572 * This should actually be called i_ddi_dma_mem_alloc. There should 1573 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1574 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1575 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1576 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1577 * so far which is used for both, DMA and PIO, we have to use the DMA 1578 * ctl ops to make everybody happy. 1579 */ 1580 /*ARGSUSED*/ 1581 int 1582 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1583 size_t length, int cansleep, int flags, 1584 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1585 size_t *real_length, ddi_acc_hdl_t *ap) 1586 { 1587 caddr_t a; 1588 int iomin; 1589 ddi_acc_impl_t *iap; 1590 int physcontig = 0; 1591 pgcnt_t npages; 1592 pgcnt_t minctg; 1593 uint_t order; 1594 int e; 1595 1596 /* 1597 * Check legality of arguments 1598 */ 1599 if (length == 0 || kaddrp == NULL || attr == NULL) { 1600 return (DDI_FAILURE); 1601 } 1602 1603 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1604 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1605 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1606 return (DDI_FAILURE); 1607 } 1608 1609 /* 1610 * figure out most restrictive alignment requirement 1611 */ 1612 iomin = attr->dma_attr_minxfer; 1613 iomin = maxbit(iomin, attr->dma_attr_align); 1614 if (iomin == 0) 1615 return (DDI_FAILURE); 1616 1617 ASSERT((iomin & (iomin - 1)) == 0); 1618 1619 /* 1620 * if we allocate memory with IOMEM_DATA_UNCACHED or 1621 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1622 * memory that ends on a page boundry. 1623 * Don't want to have to different cache mappings to the same 1624 * physical page. 1625 */ 1626 if (OVERRIDE_CACHE_ATTR(flags)) { 1627 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1628 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1629 } 1630 1631 /* 1632 * Determine if we need to satisfy the request for physically 1633 * contiguous memory or alignments larger than pagesize. 1634 */ 1635 npages = btopr(length + attr->dma_attr_align); 1636 minctg = howmany(npages, attr->dma_attr_sgllen); 1637 1638 if (minctg > 1) { 1639 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1640 /* 1641 * verify that the minimum contig requirement for the 1642 * actual length does not cross segment boundary. 1643 */ 1644 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1645 size_t); 1646 npages = btopr(length); 1647 minctg = howmany(npages, attr->dma_attr_sgllen); 1648 if (minctg > pfnseg + 1) 1649 return (DDI_FAILURE); 1650 physcontig = 1; 1651 } else { 1652 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1653 } 1654 1655 /* 1656 * Allocate the requested amount from the system. 1657 */ 1658 a = kalloca(length, iomin, cansleep, physcontig, attr); 1659 1660 if ((*kaddrp = a) == NULL) 1661 return (DDI_FAILURE); 1662 1663 /* 1664 * if we to modify the cache attributes, go back and muck with the 1665 * mappings. 1666 */ 1667 if (OVERRIDE_CACHE_ATTR(flags)) { 1668 order = 0; 1669 i_ddi_cacheattr_to_hatacc(flags, &order); 1670 e = kmem_override_cache_attrs(a, length, order); 1671 if (e != 0) { 1672 kfreea(a); 1673 return (DDI_FAILURE); 1674 } 1675 } 1676 1677 if (real_length) { 1678 *real_length = length; 1679 } 1680 if (ap) { 1681 /* 1682 * initialize access handle 1683 */ 1684 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1685 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1686 impl_acc_hdl_init(ap); 1687 } 1688 1689 return (DDI_SUCCESS); 1690 } 1691 1692 /* 1693 * covert old DMA limits structure to DMA attribute structure 1694 * and continue 1695 */ 1696 int 1697 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1698 size_t length, int cansleep, int streaming, 1699 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1700 uint_t *real_length, ddi_acc_hdl_t *ap) 1701 { 1702 ddi_dma_attr_t dma_attr, *attrp; 1703 size_t rlen; 1704 int ret; 1705 1706 if (limits == NULL) { 1707 return (DDI_FAILURE); 1708 } 1709 1710 /* 1711 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1712 */ 1713 attrp = &dma_attr; 1714 attrp->dma_attr_version = DMA_ATTR_V0; 1715 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1716 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1717 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1718 attrp->dma_attr_align = 1; 1719 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1720 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1721 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1722 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1723 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1724 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1725 attrp->dma_attr_flags = 0; 1726 1727 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1728 accattrp, kaddrp, &rlen, ap); 1729 if (ret == DDI_SUCCESS) { 1730 if (real_length) 1731 *real_length = (uint_t)rlen; 1732 } 1733 return (ret); 1734 } 1735 1736 /* ARGSUSED */ 1737 void 1738 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1739 { 1740 if (ap != NULL) { 1741 /* 1742 * if we modified the cache attributes on alloc, go back and 1743 * fix them since this memory could be returned to the 1744 * general pool. 1745 */ 1746 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1747 uint_t order = 0; 1748 int e; 1749 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1750 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1751 if (e != 0) { 1752 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1753 "override cache attrs, memory leaked\n"); 1754 return; 1755 } 1756 } 1757 } 1758 kfreea(kaddr); 1759 } 1760 1761 /* 1762 * Access Barriers 1763 * 1764 */ 1765 /*ARGSUSED*/ 1766 int 1767 i_ddi_ontrap(ddi_acc_handle_t hp) 1768 { 1769 return (DDI_FAILURE); 1770 } 1771 1772 /*ARGSUSED*/ 1773 void 1774 i_ddi_notrap(ddi_acc_handle_t hp) 1775 { 1776 } 1777 1778 1779 /* 1780 * Misc Functions 1781 */ 1782 1783 /* 1784 * Implementation instance override functions 1785 * 1786 * No override on i86pc 1787 */ 1788 /*ARGSUSED*/ 1789 uint_t 1790 impl_assign_instance(dev_info_t *dip) 1791 { 1792 return ((uint_t)-1); 1793 } 1794 1795 /*ARGSUSED*/ 1796 int 1797 impl_keep_instance(dev_info_t *dip) 1798 { 1799 1800 #if defined(__xpv) 1801 /* 1802 * Do not persist instance numbers assigned to devices in dom0 1803 */ 1804 dev_info_t *pdip; 1805 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1806 if (((pdip = ddi_get_parent(dip)) != NULL) && 1807 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1808 return (DDI_SUCCESS); 1809 } 1810 #endif 1811 return (DDI_FAILURE); 1812 } 1813 1814 /*ARGSUSED*/ 1815 int 1816 impl_free_instance(dev_info_t *dip) 1817 { 1818 return (DDI_FAILURE); 1819 } 1820 1821 /*ARGSUSED*/ 1822 int 1823 impl_check_cpu(dev_info_t *devi) 1824 { 1825 return (DDI_SUCCESS); 1826 } 1827 1828 /* 1829 * Referenced in common/cpr_driver.c: Power off machine. 1830 * Don't know how to power off i86pc. 1831 */ 1832 void 1833 arch_power_down() 1834 {} 1835 1836 /* 1837 * Copy name to property_name, since name 1838 * is in the low address range below kernelbase. 1839 */ 1840 static void 1841 copy_boot_str(const char *boot_str, char *kern_str, int len) 1842 { 1843 int i = 0; 1844 1845 while (i < len - 1 && boot_str[i] != '\0') { 1846 kern_str[i] = boot_str[i]; 1847 i++; 1848 } 1849 1850 kern_str[i] = 0; /* null terminate */ 1851 if (boot_str[i] != '\0') 1852 cmn_err(CE_WARN, 1853 "boot property string is truncated to %s", kern_str); 1854 } 1855 1856 static void 1857 get_boot_properties(void) 1858 { 1859 extern char hw_provider[]; 1860 dev_info_t *devi; 1861 char *name; 1862 int length; 1863 char property_name[50], property_val[50]; 1864 void *bop_staging_area; 1865 1866 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1867 1868 /* 1869 * Import "root" properties from the boot. 1870 * 1871 * We do this by invoking BOP_NEXTPROP until the list 1872 * is completely copied in. 1873 */ 1874 1875 devi = ddi_root_node(); 1876 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1877 name; /* NULL => DONE */ 1878 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1879 1880 /* copy string to memory above kernelbase */ 1881 copy_boot_str(name, property_name, 50); 1882 1883 /* 1884 * Skip vga properties. They will be picked up later 1885 * by get_vga_properties. 1886 */ 1887 if (strcmp(property_name, "display-edif-block") == 0 || 1888 strcmp(property_name, "display-edif-id") == 0) { 1889 continue; 1890 } 1891 1892 length = BOP_GETPROPLEN(bootops, property_name); 1893 if (length == 0) 1894 continue; 1895 if (length > MMU_PAGESIZE) { 1896 cmn_err(CE_NOTE, 1897 "boot property %s longer than 0x%x, ignored\n", 1898 property_name, MMU_PAGESIZE); 1899 continue; 1900 } 1901 BOP_GETPROP(bootops, property_name, bop_staging_area); 1902 1903 /* 1904 * special properties: 1905 * si-machine, si-hw-provider 1906 * goes to kernel data structures. 1907 * bios-boot-device and stdout 1908 * goes to hardware property list so it may show up 1909 * in the prtconf -vp output. This is needed by 1910 * Install/Upgrade. Once we fix install upgrade, 1911 * this can be taken out. 1912 */ 1913 if (strcmp(name, "si-machine") == 0) { 1914 (void) strncpy(utsname.machine, bop_staging_area, 1915 SYS_NMLN); 1916 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1917 } else if (strcmp(name, "si-hw-provider") == 0) { 1918 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1919 hw_provider[SYS_NMLN - 1] = (char)NULL; 1920 } else if (strcmp(name, "bios-boot-device") == 0) { 1921 copy_boot_str(bop_staging_area, property_val, 50); 1922 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1923 property_name, property_val); 1924 } else if (strcmp(name, "stdout") == 0) { 1925 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1926 property_name, *((int *)bop_staging_area)); 1927 } else { 1928 /* Property type unknown, use old prop interface */ 1929 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1930 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1931 length); 1932 } 1933 } 1934 1935 kmem_free(bop_staging_area, MMU_PAGESIZE); 1936 } 1937 1938 static void 1939 get_vga_properties(void) 1940 { 1941 dev_info_t *devi; 1942 major_t major; 1943 char *name; 1944 int length; 1945 char property_val[50]; 1946 void *bop_staging_area; 1947 1948 /* 1949 * XXXX Hack Allert! 1950 * There really needs to be a better way for identifying various 1951 * console framebuffers and their related issues. Till then, 1952 * check for this one as a replacement to vgatext. 1953 */ 1954 major = ddi_name_to_major("ragexl"); 1955 if (major == (major_t)-1) { 1956 major = ddi_name_to_major("vgatext"); 1957 if (major == (major_t)-1) 1958 return; 1959 } 1960 devi = devnamesp[major].dn_head; 1961 if (devi == NULL) 1962 return; 1963 1964 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1965 1966 /* 1967 * Import "vga" properties from the boot. 1968 */ 1969 name = "display-edif-block"; 1970 length = BOP_GETPROPLEN(bootops, name); 1971 if (length > 0 && length < MMU_PAGESIZE) { 1972 BOP_GETPROP(bootops, name, bop_staging_area); 1973 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1974 devi, name, bop_staging_area, length); 1975 } 1976 1977 /* 1978 * kdmconfig is also looking for display-type and 1979 * video-adapter-type. We default to color and svga. 1980 * 1981 * Could it be "monochrome", "vga"? 1982 * Nah, you've got to come to the 21st century... 1983 * And you can set monitor type manually in kdmconfig 1984 * if you are really an old junky. 1985 */ 1986 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1987 devi, "display-type", "color"); 1988 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1989 devi, "video-adapter-type", "svga"); 1990 1991 name = "display-edif-id"; 1992 length = BOP_GETPROPLEN(bootops, name); 1993 if (length > 0 && length < MMU_PAGESIZE) { 1994 BOP_GETPROP(bootops, name, bop_staging_area); 1995 copy_boot_str(bop_staging_area, property_val, length); 1996 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1997 devi, name, property_val); 1998 } 1999 2000 kmem_free(bop_staging_area, MMU_PAGESIZE); 2001 } 2002 2003 2004 /* 2005 * This is temporary, but absolutely necessary. If we are being 2006 * booted with a device tree created by the DevConf project's bootconf 2007 * program, then we have device information nodes that reflect 2008 * reality. At this point in time in the Solaris release schedule, the 2009 * kernel drivers aren't prepared for reality. They still depend on their 2010 * own ad-hoc interpretations of the properties created when their .conf 2011 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2012 * property to prevent them from using the nodes passed up from the bootconf 2013 * device tree. 2014 * 2015 * Trying to assemble root file system drivers as we are booting from 2016 * devconf will fail if the kernel driver is basing its name_addr's on the 2017 * psuedo-node device info while the bootpath passed up from bootconf is using 2018 * reality-based name_addrs. We help the boot along in this case by 2019 * looking at the pre-bootconf bootpath and determining if we would have 2020 * successfully matched if that had been the bootpath we had chosen. 2021 * 2022 * Note that we only even perform this extra check if we've booted 2023 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2024 * we're trying to match the name_addr specified in the 1275 bootpath. 2025 */ 2026 2027 #define MAXCOMPONENTLEN 32 2028 2029 int 2030 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2031 { 2032 /* 2033 * There are multiple criteria to be met before we can even 2034 * consider allowing a name_addr match here. 2035 * 2036 * 1) We must have been booted such that the bootconf program 2037 * created device tree nodes and properties. This can be 2038 * determined by examining the 'bootpath' property. This 2039 * property will be a non-null string iff bootconf was 2040 * involved in the boot. 2041 * 2042 * 2) The module that we want to match must be the boot device. 2043 * 2044 * 3) The instance of the module we are thinking of letting be 2045 * our match must be ignoring hardware nodes. 2046 * 2047 * 4) The name_addr we want to match must be the name_addr 2048 * specified in the 1275 bootpath. 2049 */ 2050 static char bootdev_module[MAXCOMPONENTLEN]; 2051 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2052 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2053 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2054 static int quickexit; 2055 2056 char *daddr; 2057 int dlen; 2058 2059 char *lkupname; 2060 int rv = DDI_FAILURE; 2061 2062 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2063 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2064 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2065 "ignore-hardware-nodes", -1) != -1)) { 2066 if (strcmp(daddr, caddr) == 0) { 2067 return (DDI_SUCCESS); 2068 } 2069 } 2070 2071 if (quickexit) 2072 return (rv); 2073 2074 if (bootdev_module[0] == '\0') { 2075 char *addrp, *eoaddrp; 2076 char *busp, *modp, *atp; 2077 char *bp1275, *bp; 2078 int bp1275len, bplen; 2079 2080 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2081 2082 if (ddi_getlongprop(DDI_DEV_T_ANY, 2083 ddi_root_node(), 0, "bootpath", 2084 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2085 bp1275len <= 1) { 2086 /* 2087 * We didn't boot from bootconf so we never need to 2088 * do any special matches. 2089 */ 2090 quickexit = 1; 2091 if (bp1275) 2092 kmem_free(bp1275, bp1275len); 2093 return (rv); 2094 } 2095 2096 if (ddi_getlongprop(DDI_DEV_T_ANY, 2097 ddi_root_node(), 0, "boot-path", 2098 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2099 /* 2100 * No fallback position for matching. This is 2101 * certainly unexpected, but we'll handle it 2102 * just in case. 2103 */ 2104 quickexit = 1; 2105 kmem_free(bp1275, bp1275len); 2106 if (bp) 2107 kmem_free(bp, bplen); 2108 return (rv); 2109 } 2110 2111 /* 2112 * Determine boot device module and 1275 name_addr 2113 * 2114 * bootpath assumed to be of the form /bus/module@name_addr 2115 */ 2116 if (busp = strchr(bp1275, '/')) { 2117 if (modp = strchr(busp + 1, '/')) { 2118 if (atp = strchr(modp + 1, '@')) { 2119 *atp = '\0'; 2120 addrp = atp + 1; 2121 if (eoaddrp = strchr(addrp, '/')) 2122 *eoaddrp = '\0'; 2123 } 2124 } 2125 } 2126 2127 if (modp && addrp) { 2128 (void) strncpy(bootdev_module, modp + 1, 2129 MAXCOMPONENTLEN); 2130 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2131 2132 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2133 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2134 } else { 2135 quickexit = 1; 2136 kmem_free(bp1275, bp1275len); 2137 kmem_free(bp, bplen); 2138 return (rv); 2139 } 2140 2141 /* 2142 * Determine fallback name_addr 2143 * 2144 * 10/3/96 - Also save fallback module name because it 2145 * might actually be different than the current module 2146 * name. E.G., ISA pnp drivers have new names. 2147 * 2148 * bootpath assumed to be of the form /bus/module@name_addr 2149 */ 2150 addrp = NULL; 2151 if (busp = strchr(bp, '/')) { 2152 if (modp = strchr(busp + 1, '/')) { 2153 if (atp = strchr(modp + 1, '@')) { 2154 *atp = '\0'; 2155 addrp = atp + 1; 2156 if (eoaddrp = strchr(addrp, '/')) 2157 *eoaddrp = '\0'; 2158 } 2159 } 2160 } 2161 2162 if (modp && addrp) { 2163 (void) strncpy(bootdev_oldmod, modp + 1, 2164 MAXCOMPONENTLEN); 2165 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2166 2167 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2168 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2169 } 2170 2171 /* Free up the bootpath storage now that we're done with it. */ 2172 kmem_free(bp1275, bp1275len); 2173 kmem_free(bp, bplen); 2174 2175 if (bootdev_oldaddr[0] == '\0') { 2176 quickexit = 1; 2177 return (rv); 2178 } 2179 } 2180 2181 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2182 (strcmp(bootdev_module, lkupname) == 0 || 2183 strcmp(bootdev_oldmod, lkupname) == 0) && 2184 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2185 "ignore-hardware-nodes", -1) != -1) || 2186 ignore_hardware_nodes) && 2187 strcmp(bootdev_newaddr, caddr) == 0 && 2188 strcmp(bootdev_oldaddr, naddr) == 0) { 2189 rv = DDI_SUCCESS; 2190 } 2191 2192 return (rv); 2193 } 2194 2195 /* 2196 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2197 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2198 */ 2199 /*ARGSUSED*/ 2200 int 2201 e_ddi_copyfromdev(dev_info_t *devi, 2202 off_t off, const void *devaddr, void *kaddr, size_t len) 2203 { 2204 bcopy(devaddr, kaddr, len); 2205 return (0); 2206 } 2207 2208 /* 2209 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2210 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2211 */ 2212 /*ARGSUSED*/ 2213 int 2214 e_ddi_copytodev(dev_info_t *devi, 2215 off_t off, const void *kaddr, void *devaddr, size_t len) 2216 { 2217 bcopy(kaddr, devaddr, len); 2218 return (0); 2219 } 2220 2221 2222 static int 2223 poke_mem(peekpoke_ctlops_t *in_args) 2224 { 2225 int err = DDI_SUCCESS; 2226 on_trap_data_t otd; 2227 2228 /* Set up protected environment. */ 2229 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2230 switch (in_args->size) { 2231 case sizeof (uint8_t): 2232 *(uint8_t *)(in_args->dev_addr) = 2233 *(uint8_t *)in_args->host_addr; 2234 break; 2235 2236 case sizeof (uint16_t): 2237 *(uint16_t *)(in_args->dev_addr) = 2238 *(uint16_t *)in_args->host_addr; 2239 break; 2240 2241 case sizeof (uint32_t): 2242 *(uint32_t *)(in_args->dev_addr) = 2243 *(uint32_t *)in_args->host_addr; 2244 break; 2245 2246 case sizeof (uint64_t): 2247 *(uint64_t *)(in_args->dev_addr) = 2248 *(uint64_t *)in_args->host_addr; 2249 break; 2250 2251 default: 2252 err = DDI_FAILURE; 2253 break; 2254 } 2255 } else 2256 err = DDI_FAILURE; 2257 2258 /* Take down protected environment. */ 2259 no_trap(); 2260 2261 return (err); 2262 } 2263 2264 2265 static int 2266 peek_mem(peekpoke_ctlops_t *in_args) 2267 { 2268 int err = DDI_SUCCESS; 2269 on_trap_data_t otd; 2270 2271 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2272 switch (in_args->size) { 2273 case sizeof (uint8_t): 2274 *(uint8_t *)in_args->host_addr = 2275 *(uint8_t *)in_args->dev_addr; 2276 break; 2277 2278 case sizeof (uint16_t): 2279 *(uint16_t *)in_args->host_addr = 2280 *(uint16_t *)in_args->dev_addr; 2281 break; 2282 2283 case sizeof (uint32_t): 2284 *(uint32_t *)in_args->host_addr = 2285 *(uint32_t *)in_args->dev_addr; 2286 break; 2287 2288 case sizeof (uint64_t): 2289 *(uint64_t *)in_args->host_addr = 2290 *(uint64_t *)in_args->dev_addr; 2291 break; 2292 2293 default: 2294 err = DDI_FAILURE; 2295 break; 2296 } 2297 } else 2298 err = DDI_FAILURE; 2299 2300 no_trap(); 2301 return (err); 2302 } 2303 2304 2305 /* 2306 * This is called only to process peek/poke when the DIP is NULL. 2307 * Assume that this is for memory, as nexi take care of device safe accesses. 2308 */ 2309 int 2310 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2311 { 2312 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2313 } 2314 2315 /* 2316 * we've just done a cautious put/get. Check if it was successful by 2317 * calling pci_ereport_post() on all puts and for any gets that return -1 2318 */ 2319 static int 2320 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2321 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2322 { 2323 int rval = DDI_SUCCESS; 2324 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2325 ddi_fm_error_t de; 2326 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2327 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2328 int check_err = 0; 2329 int repcount = in_args->repcount; 2330 2331 if (ctlop == DDI_CTLOPS_POKE && 2332 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2333 return (DDI_SUCCESS); 2334 2335 if (ctlop == DDI_CTLOPS_PEEK && 2336 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2337 for (; repcount; repcount--) { 2338 switch (in_args->size) { 2339 case sizeof (uint8_t): 2340 if (*(uint8_t *)in_args->host_addr == 0xff) 2341 check_err = 1; 2342 break; 2343 case sizeof (uint16_t): 2344 if (*(uint16_t *)in_args->host_addr == 0xffff) 2345 check_err = 1; 2346 break; 2347 case sizeof (uint32_t): 2348 if (*(uint32_t *)in_args->host_addr == 2349 0xffffffff) 2350 check_err = 1; 2351 break; 2352 case sizeof (uint64_t): 2353 if (*(uint64_t *)in_args->host_addr == 2354 0xffffffffffffffff) 2355 check_err = 1; 2356 break; 2357 } 2358 } 2359 if (check_err == 0) 2360 return (DDI_SUCCESS); 2361 } 2362 /* 2363 * for a cautious put or get or a non-cautious get that returned -1 call 2364 * io framework to see if there really was an error 2365 */ 2366 bzero(&de, sizeof (ddi_fm_error_t)); 2367 de.fme_version = DDI_FME_VERSION; 2368 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2369 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2370 de.fme_flag = DDI_FM_ERR_EXPECTED; 2371 de.fme_acc_handle = in_args->handle; 2372 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2373 /* 2374 * We only get here with DDI_DEFAULT_ACC for config space gets. 2375 * Non-hardened drivers may be probing the hardware and 2376 * expecting -1 returned. So need to treat errors on 2377 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2378 */ 2379 de.fme_flag = DDI_FM_ERR_EXPECTED; 2380 de.fme_acc_handle = in_args->handle; 2381 } else { 2382 /* 2383 * Hardened driver doing protected accesses shouldn't 2384 * get errors unless there's a hardware problem. Treat 2385 * as nonfatal if there's an error, but set UNEXPECTED 2386 * so we raise ereports on any errors and potentially 2387 * fault the device 2388 */ 2389 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2390 } 2391 (void) scan(dip, &de); 2392 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2393 de.fme_status != DDI_FM_OK) { 2394 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2395 rval = DDI_FAILURE; 2396 errp->err_ena = de.fme_ena; 2397 errp->err_expected = de.fme_flag; 2398 errp->err_status = DDI_FM_NONFATAL; 2399 } 2400 return (rval); 2401 } 2402 2403 /* 2404 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2405 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2406 * recurse, so assume all puts are OK and gets have failed if they return -1 2407 */ 2408 static int 2409 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2410 { 2411 int rval = DDI_SUCCESS; 2412 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2413 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2414 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2415 int repcount = in_args->repcount; 2416 2417 if (ctlop == DDI_CTLOPS_POKE) 2418 return (rval); 2419 2420 for (; repcount; repcount--) { 2421 switch (in_args->size) { 2422 case sizeof (uint8_t): 2423 if (*(uint8_t *)in_args->host_addr == 0xff) 2424 rval = DDI_FAILURE; 2425 break; 2426 case sizeof (uint16_t): 2427 if (*(uint16_t *)in_args->host_addr == 0xffff) 2428 rval = DDI_FAILURE; 2429 break; 2430 case sizeof (uint32_t): 2431 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2432 rval = DDI_FAILURE; 2433 break; 2434 case sizeof (uint64_t): 2435 if (*(uint64_t *)in_args->host_addr == 2436 0xffffffffffffffff) 2437 rval = DDI_FAILURE; 2438 break; 2439 } 2440 } 2441 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2442 rval == DDI_FAILURE) { 2443 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2444 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2445 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2446 errp->err_status = DDI_FM_NONFATAL; 2447 } 2448 return (rval); 2449 } 2450 2451 int 2452 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2453 ddi_ctl_enum_t ctlop, void *arg, void *result, 2454 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2455 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2456 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2457 { 2458 int rval; 2459 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2460 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2461 2462 /* 2463 * this function only supports cautious accesses, not peeks/pokes 2464 * which don't have a handle 2465 */ 2466 if (hp == NULL) 2467 return (DDI_FAILURE); 2468 2469 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2470 if (!mutex_tryenter(err_mutexp)) { 2471 /* 2472 * As this may be a recursive call from within 2473 * pci_ereport_post() we can't wait for the mutexes. 2474 * Fortunately we know someone is already calling 2475 * pci_ereport_post() which will handle the error bits 2476 * for us, and as this is a config space access we can 2477 * just do the access and check return value for -1 2478 * using pci_peekpoke_check_nofma(). 2479 */ 2480 rval = handler(dip, rdip, ctlop, arg, result); 2481 if (rval == DDI_SUCCESS) 2482 rval = pci_peekpoke_check_nofma(arg, ctlop); 2483 return (rval); 2484 } 2485 /* 2486 * This can't be a recursive call. Drop the err_mutex and get 2487 * both mutexes in the right order. If an error hasn't already 2488 * been detected by the ontrap code, use pci_peekpoke_check_fma 2489 * which will call pci_ereport_post() to check error status. 2490 */ 2491 mutex_exit(err_mutexp); 2492 } 2493 mutex_enter(peek_poke_mutexp); 2494 rval = handler(dip, rdip, ctlop, arg, result); 2495 if (rval == DDI_SUCCESS) { 2496 mutex_enter(err_mutexp); 2497 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2498 mutex_exit(err_mutexp); 2499 } 2500 mutex_exit(peek_poke_mutexp); 2501 return (rval); 2502 } 2503 2504 void 2505 impl_setup_ddi(void) 2506 { 2507 dev_info_t *xdip, *isa_dip; 2508 rd_existing_t rd_mem_prop; 2509 int err; 2510 2511 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2512 (pnode_t)DEVI_SID_NODEID, &xdip); 2513 2514 (void) BOP_GETPROP(bootops, 2515 "ramdisk_start", (void *)&ramdisk_start); 2516 (void) BOP_GETPROP(bootops, 2517 "ramdisk_end", (void *)&ramdisk_end); 2518 2519 #ifdef __xpv 2520 ramdisk_start -= ONE_GIG; 2521 ramdisk_end -= ONE_GIG; 2522 #endif 2523 rd_mem_prop.phys = ramdisk_start; 2524 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2525 2526 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2527 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2528 sizeof (rd_mem_prop)); 2529 err = ndi_devi_bind_driver(xdip, 0); 2530 ASSERT(err == 0); 2531 2532 /* isa node */ 2533 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2534 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2535 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2536 "device_type", "isa"); 2537 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2538 "bus-type", "isa"); 2539 (void) ndi_devi_bind_driver(isa_dip, 0); 2540 2541 /* 2542 * Read in the properties from the boot. 2543 */ 2544 get_boot_properties(); 2545 2546 /* do bus dependent probes. */ 2547 impl_bus_initialprobe(); 2548 2549 /* not framebuffer should be enumerated, if present */ 2550 get_vga_properties(); 2551 } 2552 2553 dev_t 2554 getrootdev(void) 2555 { 2556 /* 2557 * Precedence given to rootdev if set in /etc/system 2558 */ 2559 if (root_is_svm == B_TRUE) { 2560 return (ddi_pathname_to_dev_t(svm_bootpath)); 2561 } 2562 2563 /* 2564 * Usually rootfs.bo_name is initialized by the 2565 * the bootpath property from bootenv.rc, but 2566 * defaults to "/ramdisk:a" otherwise. 2567 */ 2568 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2569 } 2570 2571 static struct bus_probe { 2572 struct bus_probe *next; 2573 void (*probe)(int); 2574 } *bus_probes; 2575 2576 void 2577 impl_bus_add_probe(void (*func)(int)) 2578 { 2579 struct bus_probe *probe; 2580 2581 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2582 probe->next = bus_probes; 2583 probe->probe = func; 2584 bus_probes = probe; 2585 } 2586 2587 /*ARGSUSED*/ 2588 void 2589 impl_bus_delete_probe(void (*func)(int)) 2590 { 2591 struct bus_probe *prev = NULL; 2592 struct bus_probe *probe = bus_probes; 2593 2594 while (probe) { 2595 if (probe->probe == func) 2596 break; 2597 prev = probe; 2598 probe = probe->next; 2599 } 2600 2601 if (probe == NULL) 2602 return; 2603 2604 if (prev) 2605 prev->next = probe->next; 2606 else 2607 bus_probes = probe->next; 2608 2609 kmem_free(probe, sizeof (struct bus_probe)); 2610 } 2611 2612 /* 2613 * impl_bus_initialprobe 2614 * Modload the prom simulator, then let it probe to verify existence 2615 * and type of PCI support. 2616 */ 2617 static void 2618 impl_bus_initialprobe(void) 2619 { 2620 struct bus_probe *probe; 2621 2622 /* load modules to install bus probes */ 2623 #if defined(__xpv) 2624 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2625 if (modload("misc", "pci_autoconfig") < 0) { 2626 panic("failed to load misc/pci_autoconfig"); 2627 } 2628 } 2629 (void) modload("misc", "xpv_autoconfig"); 2630 #else 2631 if (modload("misc", "pci_autoconfig") < 0) { 2632 panic("failed to load misc/pci_autoconfig"); 2633 } 2634 #endif 2635 2636 probe = bus_probes; 2637 while (probe) { 2638 /* run the probe functions */ 2639 (*probe->probe)(0); 2640 probe = probe->next; 2641 } 2642 } 2643 2644 /* 2645 * impl_bus_reprobe 2646 * Reprogram devices not set up by firmware. 2647 */ 2648 static void 2649 impl_bus_reprobe(void) 2650 { 2651 struct bus_probe *probe; 2652 2653 probe = bus_probes; 2654 while (probe) { 2655 /* run the probe function */ 2656 (*probe->probe)(1); 2657 probe = probe->next; 2658 } 2659 } 2660 2661 2662 /* 2663 * The following functions ready a cautious request to go up to the nexus 2664 * driver. It is up to the nexus driver to decide how to process the request. 2665 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2666 * differently. 2667 */ 2668 2669 static void 2670 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2671 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2672 ddi_ctl_enum_t cmd) 2673 { 2674 peekpoke_ctlops_t cautacc_ctlops_arg; 2675 2676 cautacc_ctlops_arg.size = size; 2677 cautacc_ctlops_arg.dev_addr = dev_addr; 2678 cautacc_ctlops_arg.host_addr = host_addr; 2679 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2680 cautacc_ctlops_arg.repcount = repcount; 2681 cautacc_ctlops_arg.flags = flags; 2682 2683 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2684 &cautacc_ctlops_arg, NULL); 2685 } 2686 2687 uint8_t 2688 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2689 { 2690 uint8_t value; 2691 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2692 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2693 2694 return (value); 2695 } 2696 2697 uint16_t 2698 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2699 { 2700 uint16_t value; 2701 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2702 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2703 2704 return (value); 2705 } 2706 2707 uint32_t 2708 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2709 { 2710 uint32_t value; 2711 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2712 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2713 2714 return (value); 2715 } 2716 2717 uint64_t 2718 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2719 { 2720 uint64_t value; 2721 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2722 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2723 2724 return (value); 2725 } 2726 2727 void 2728 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2729 { 2730 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2731 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2732 } 2733 2734 void 2735 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2736 { 2737 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2738 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2739 } 2740 2741 void 2742 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2743 { 2744 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2745 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2746 } 2747 2748 void 2749 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2750 { 2751 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2752 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2753 } 2754 2755 void 2756 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2757 size_t repcount, uint_t flags) 2758 { 2759 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2760 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2761 } 2762 2763 void 2764 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2765 uint16_t *dev_addr, size_t repcount, uint_t flags) 2766 { 2767 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2768 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2769 } 2770 2771 void 2772 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2773 uint32_t *dev_addr, size_t repcount, uint_t flags) 2774 { 2775 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2776 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2777 } 2778 2779 void 2780 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2781 uint64_t *dev_addr, size_t repcount, uint_t flags) 2782 { 2783 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2784 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2785 } 2786 2787 void 2788 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2789 size_t repcount, uint_t flags) 2790 { 2791 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2792 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2793 } 2794 2795 void 2796 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2797 uint16_t *dev_addr, size_t repcount, uint_t flags) 2798 { 2799 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2800 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2801 } 2802 2803 void 2804 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2805 uint32_t *dev_addr, size_t repcount, uint_t flags) 2806 { 2807 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2808 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2809 } 2810 2811 void 2812 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2813 uint64_t *dev_addr, size_t repcount, uint_t flags) 2814 { 2815 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2816 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2817 } 2818 2819 boolean_t 2820 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2821 { 2822 uint64_t hi_pa; 2823 2824 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2825 if (attrp->dma_attr_addr_hi < hi_pa) { 2826 return (B_TRUE); 2827 } 2828 2829 return (B_FALSE); 2830 } 2831 2832 size_t 2833 i_ddi_copybuf_size() 2834 { 2835 return (dma_max_copybuf_size); 2836 } 2837 2838 /* 2839 * i_ddi_dma_max() 2840 * returns the maximum DMA size which can be performed in a single DMA 2841 * window taking into account the devices DMA contraints (attrp), the 2842 * maximum copy buffer size (if applicable), and the worse case buffer 2843 * fragmentation. 2844 */ 2845 /*ARGSUSED*/ 2846 uint32_t 2847 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2848 { 2849 uint64_t maxxfer; 2850 2851 2852 /* 2853 * take the min of maxxfer and the the worse case fragementation 2854 * (e.g. every cookie <= 1 page) 2855 */ 2856 maxxfer = MIN(attrp->dma_attr_maxxfer, 2857 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2858 2859 /* 2860 * If the DMA engine can't reach all off memory, we also need to take 2861 * the max size of the copybuf into consideration. 2862 */ 2863 if (i_ddi_copybuf_required(attrp)) { 2864 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2865 } 2866 2867 /* 2868 * we only return a 32-bit value. Make sure it's not -1. Round to a 2869 * page so it won't be mistaken for an error value during debug. 2870 */ 2871 if (maxxfer >= 0xFFFFFFFF) { 2872 maxxfer = 0xFFFFF000; 2873 } 2874 2875 /* 2876 * make sure the value we return is a whole multiple of the 2877 * granlarity. 2878 */ 2879 if (attrp->dma_attr_granular > 1) { 2880 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2881 } 2882 2883 return ((uint32_t)maxxfer); 2884 } 2885