1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * PC specific DDI implementation 30 */ 31 #include <sys/types.h> 32 #include <sys/autoconf.h> 33 #include <sys/avintr.h> 34 #include <sys/bootconf.h> 35 #include <sys/conf.h> 36 #include <sys/cpuvar.h> 37 #include <sys/ddi_impldefs.h> 38 #include <sys/ddi_subrdefs.h> 39 #include <sys/ethernet.h> 40 #include <sys/fp.h> 41 #include <sys/instance.h> 42 #include <sys/kmem.h> 43 #include <sys/machsystm.h> 44 #include <sys/modctl.h> 45 #include <sys/promif.h> 46 #include <sys/prom_plat.h> 47 #include <sys/sunndi.h> 48 #include <sys/ndi_impldefs.h> 49 #include <sys/ddi_impldefs.h> 50 #include <sys/sysmacros.h> 51 #include <sys/systeminfo.h> 52 #include <sys/utsname.h> 53 #include <sys/atomic.h> 54 #include <sys/spl.h> 55 #include <sys/archsystm.h> 56 #include <vm/seg_kmem.h> 57 #include <sys/ontrap.h> 58 #include <sys/fm/protocol.h> 59 #include <sys/ramdisk.h> 60 #include <sys/sunndi.h> 61 #include <sys/vmem.h> 62 #include <sys/pci_impl.h> 63 #include <sys/mach_intr.h> 64 65 /* 66 * DDI Boot Configuration 67 */ 68 69 /* 70 * No platform drivers on this platform 71 */ 72 char *platform_module_list[] = { 73 (char *)0 74 }; 75 76 /* pci bus resource maps */ 77 struct pci_bus_resource *pci_bus_res; 78 79 extern int root_is_svm; 80 uint64_t ramdisk_start, ramdisk_end; 81 82 /* 83 * Forward declarations 84 */ 85 static int getlongprop_buf(); 86 static void get_boot_properties(void); 87 static void impl_bus_initialprobe(void); 88 static void impl_bus_reprobe(void); 89 90 static int poke_mem(peekpoke_ctlops_t *in_args); 91 static int peek_mem(peekpoke_ctlops_t *in_args); 92 93 #define CTGENTRIES 15 94 95 static struct ctgas { 96 struct ctgas *ctg_next; 97 int ctg_index; 98 void *ctg_addr[CTGENTRIES]; 99 size_t ctg_size[CTGENTRIES]; 100 } ctglist; 101 102 static kmutex_t ctgmutex; 103 #define CTGLOCK() mutex_enter(&ctgmutex) 104 #define CTGUNLOCK() mutex_exit(&ctgmutex) 105 106 /* 107 * Minimum pfn value of page_t's put on the free list. This is to simplify 108 * support of ddi dma memory requests which specify small, non-zero addr_lo 109 * values. 110 * 111 * The default value of 2, which corresponds to the only known non-zero addr_lo 112 * value used, means a single page will be sacrificed (pfn typically starts 113 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 114 * otherwise mp startup panics. 115 */ 116 pfn_t ddiphysmin = 2; 117 118 static void 119 check_driver_disable(void) 120 { 121 int proplen = 128; 122 char *prop_name; 123 char *drv_name, *propval; 124 major_t major; 125 126 prop_name = kmem_alloc(proplen, KM_SLEEP); 127 for (major = 0; major < devcnt; major++) { 128 drv_name = ddi_major_to_name(major); 129 if (drv_name == NULL) 130 continue; 131 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 132 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 133 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 134 if (strcmp(propval, "true") == 0) { 135 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 136 cmn_err(CE_NOTE, "driver %s disabled", 137 drv_name); 138 } 139 ddi_prop_free(propval); 140 } 141 } 142 kmem_free(prop_name, proplen); 143 } 144 145 146 /* 147 * Configure the hardware on the system. 148 * Called before the rootfs is mounted 149 */ 150 void 151 configure(void) 152 { 153 extern void i_ddi_init_root(); 154 155 #if defined(__i386) 156 extern int fpu_pentium_fdivbug; 157 #endif /* __i386 */ 158 extern int fpu_ignored; 159 160 /* 161 * Determine if an FPU is attached 162 */ 163 164 fpu_probe(); 165 166 #if defined(__i386) 167 if (fpu_pentium_fdivbug) { 168 printf("\ 169 FP hardware exhibits Pentium floating point divide problem\n"); 170 } 171 #endif /* __i386 */ 172 173 if (fpu_ignored) { 174 printf("FP hardware will not be used\n"); 175 } else if (!fpu_exists) { 176 printf("No FPU in configuration\n"); 177 } 178 179 /* 180 * Initialize devices on the machine. 181 * Uses configuration tree built by the PROMs to determine what 182 * is present, and builds a tree of prototype dev_info nodes 183 * corresponding to the hardware which identified itself. 184 */ 185 #if !defined(SAS) && !defined(MPSAS) 186 /* 187 * Check for disabled drivers and initialize root node. 188 */ 189 check_driver_disable(); 190 i_ddi_init_root(); 191 192 /* 193 * attach the isa nexus to get ACPI resource usage 194 * isa is "kind of" a pseudo node 195 */ 196 (void) i_ddi_attach_pseudo_node("isa"); 197 198 /* reprogram devices not set up by firmware (BIOS) */ 199 impl_bus_reprobe(); 200 #endif /* !SAS && !MPSAS */ 201 } 202 203 /* 204 * The "status" property indicates the operational status of a device. 205 * If this property is present, the value is a string indicating the 206 * status of the device as follows: 207 * 208 * "okay" operational. 209 * "disabled" not operational, but might become operational. 210 * "fail" not operational because a fault has been detected, 211 * and it is unlikely that the device will become 212 * operational without repair. no additional details 213 * are available. 214 * "fail-xxx" not operational because a fault has been detected, 215 * and it is unlikely that the device will become 216 * operational without repair. "xxx" is additional 217 * human-readable information about the particular 218 * fault condition that was detected. 219 * 220 * The absence of this property means that the operational status is 221 * unknown or okay. 222 * 223 * This routine checks the status property of the specified device node 224 * and returns 0 if the operational status indicates failure, and 1 otherwise. 225 * 226 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 227 * And, in that case, the property may not even be a string. So we carefully 228 * check for the value "fail", in the beginning of the string, noting 229 * the property length. 230 */ 231 int 232 status_okay(int id, char *buf, int buflen) 233 { 234 char status_buf[OBP_MAXPROPNAME]; 235 char *bufp = buf; 236 int len = buflen; 237 int proplen; 238 static const char *status = "status"; 239 static const char *fail = "fail"; 240 int fail_len = (int)strlen(fail); 241 242 /* 243 * Get the proplen ... if it's smaller than "fail", 244 * or doesn't exist ... then we don't care, since 245 * the value can't begin with the char string "fail". 246 * 247 * NB: proplen, if it's a string, includes the NULL in the 248 * the size of the property, and fail_len does not. 249 */ 250 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 251 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 252 return (1); 253 254 /* 255 * if a buffer was provided, use it 256 */ 257 if ((buf == (char *)NULL) || (buflen <= 0)) { 258 bufp = status_buf; 259 len = sizeof (status_buf); 260 } 261 *bufp = (char)0; 262 263 /* 264 * Get the property into the buffer, to the extent of the buffer, 265 * and in case the buffer is smaller than the property size, 266 * NULL terminate the buffer. (This handles the case where 267 * a buffer was passed in and the caller wants to print the 268 * value, but the buffer was too small). 269 */ 270 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 271 (caddr_t)bufp, len); 272 *(bufp + len - 1) = (char)0; 273 274 /* 275 * If the value begins with the char string "fail", 276 * then it means the node is failed. We don't care 277 * about any other values. We assume the node is ok 278 * although it might be 'disabled'. 279 */ 280 if (strncmp(bufp, fail, fail_len) == 0) 281 return (0); 282 283 return (1); 284 } 285 286 /* 287 * Check the status of the device node passed as an argument. 288 * 289 * if ((status is OKAY) || (status is DISABLED)) 290 * return DDI_SUCCESS 291 * else 292 * print a warning and return DDI_FAILURE 293 */ 294 /*ARGSUSED1*/ 295 int 296 check_status(int id, char *name, dev_info_t *parent) 297 { 298 char status_buf[64]; 299 char devtype_buf[OBP_MAXPROPNAME]; 300 int retval = DDI_FAILURE; 301 302 /* 303 * is the status okay? 304 */ 305 if (status_okay(id, status_buf, sizeof (status_buf))) 306 return (DDI_SUCCESS); 307 308 /* 309 * a status property indicating bad memory will be associated 310 * with a node which has a "device_type" property with a value of 311 * "memory-controller". in this situation, return DDI_SUCCESS 312 */ 313 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 314 sizeof (devtype_buf)) > 0) { 315 if (strcmp(devtype_buf, "memory-controller") == 0) 316 retval = DDI_SUCCESS; 317 } 318 319 /* 320 * print the status property information 321 */ 322 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 323 return (retval); 324 } 325 326 /*ARGSUSED*/ 327 uint_t 328 softlevel1(caddr_t arg1, caddr_t arg2) 329 { 330 softint(); 331 return (1); 332 } 333 334 /* 335 * Allow for implementation specific correction of PROM property values. 336 */ 337 338 /*ARGSUSED*/ 339 void 340 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 341 caddr_t buffer) 342 { 343 /* 344 * There are no adjustments needed in this implementation. 345 */ 346 } 347 348 static int 349 getlongprop_buf(int id, char *name, char *buf, int maxlen) 350 { 351 int size; 352 353 size = prom_getproplen((pnode_t)id, name); 354 if (size <= 0 || (size > maxlen - 1)) 355 return (-1); 356 357 if (-1 == prom_getprop((pnode_t)id, name, buf)) 358 return (-1); 359 360 if (strcmp("name", name) == 0) { 361 if (buf[size - 1] != '\0') { 362 buf[size] = '\0'; 363 size += 1; 364 } 365 } 366 367 return (size); 368 } 369 370 static int 371 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 372 { 373 int ret; 374 375 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 376 DDI_PROP_DONTPASS, pname, pval, plen)) 377 == DDI_PROP_SUCCESS) { 378 *plen = (*plen) * (sizeof (int)); 379 } 380 return (ret); 381 } 382 383 384 /* 385 * Node Configuration 386 */ 387 388 struct prop_ispec { 389 uint_t pri, vec; 390 }; 391 392 /* 393 * For the x86, we're prepared to claim that the interrupt string 394 * is in the form of a list of <ipl,vec> specifications. 395 */ 396 397 #define VEC_MIN 1 398 #define VEC_MAX 255 399 400 static int 401 impl_xlate_intrs(dev_info_t *child, int *in, 402 struct ddi_parent_private_data *pdptr) 403 { 404 size_t size; 405 int n; 406 struct intrspec *new; 407 caddr_t got_prop; 408 int *inpri; 409 int got_len; 410 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 411 412 static char bad_intr_fmt[] = 413 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 414 415 /* 416 * determine if the driver is expecting the new style "interrupts" 417 * property which just contains the IRQ, or the old style which 418 * contains pairs of <IPL,IRQ>. if it is the new style, we always 419 * assign IPL 5 unless an "interrupt-priorities" property exists. 420 * in that case, the "interrupt-priorities" property contains the 421 * IPL values that match, one for one, the IRQ values in the 422 * "interrupts" property. 423 */ 424 inpri = NULL; 425 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 426 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 427 /* the old style "interrupts" property... */ 428 429 /* 430 * The list consists of <ipl,vec> elements 431 */ 432 if ((n = (*in++ >> 1)) < 1) 433 return (DDI_FAILURE); 434 435 pdptr->par_nintr = n; 436 size = n * sizeof (struct intrspec); 437 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 438 439 while (n--) { 440 int level = *in++; 441 int vec = *in++; 442 443 if (level < 1 || level > MAXIPL || 444 vec < VEC_MIN || vec > VEC_MAX) { 445 cmn_err(CE_CONT, bad_intr_fmt, 446 DEVI(child)->devi_name, 447 DEVI(child)->devi_instance, level, vec); 448 goto broken; 449 } 450 new->intrspec_pri = level; 451 if (vec != 2) 452 new->intrspec_vec = vec; 453 else 454 /* 455 * irq 2 on the PC bus is tied to irq 9 456 * on ISA, EISA and MicroChannel 457 */ 458 new->intrspec_vec = 9; 459 new++; 460 } 461 462 return (DDI_SUCCESS); 463 } else { 464 /* the new style "interrupts" property... */ 465 466 /* 467 * The list consists of <vec> elements 468 */ 469 if ((n = (*in++)) < 1) 470 return (DDI_FAILURE); 471 472 pdptr->par_nintr = n; 473 size = n * sizeof (struct intrspec); 474 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 475 476 /* XXX check for "interrupt-priorities" property... */ 477 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 478 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 479 == DDI_PROP_SUCCESS) { 480 if (n != (got_len / sizeof (int))) { 481 cmn_err(CE_CONT, 482 "bad interrupt-priorities length" 483 " from %s%d: expected %d, got %d\n", 484 DEVI(child)->devi_name, 485 DEVI(child)->devi_instance, n, 486 (int)(got_len / sizeof (int))); 487 goto broken; 488 } 489 inpri = (int *)got_prop; 490 } 491 492 while (n--) { 493 int level; 494 int vec = *in++; 495 496 if (inpri == NULL) 497 level = 5; 498 else 499 level = *inpri++; 500 501 if (level < 1 || level > MAXIPL || 502 vec < VEC_MIN || vec > VEC_MAX) { 503 cmn_err(CE_CONT, bad_intr_fmt, 504 DEVI(child)->devi_name, 505 DEVI(child)->devi_instance, level, vec); 506 goto broken; 507 } 508 new->intrspec_pri = level; 509 if (vec != 2) 510 new->intrspec_vec = vec; 511 else 512 /* 513 * irq 2 on the PC bus is tied to irq 9 514 * on ISA, EISA and MicroChannel 515 */ 516 new->intrspec_vec = 9; 517 new++; 518 } 519 520 if (inpri != NULL) 521 kmem_free(got_prop, got_len); 522 return (DDI_SUCCESS); 523 } 524 525 broken: 526 kmem_free(pdptr->par_intr, size); 527 pdptr->par_intr = NULL; 528 pdptr->par_nintr = 0; 529 if (inpri != NULL) 530 kmem_free(got_prop, got_len); 531 532 return (DDI_FAILURE); 533 } 534 535 /* 536 * Create a ddi_parent_private_data structure from the ddi properties of 537 * the dev_info node. 538 * 539 * The "reg" and either an "intr" or "interrupts" properties are required 540 * if the driver wishes to create mappings or field interrupts on behalf 541 * of the device. 542 * 543 * The "reg" property is assumed to be a list of at least one triple 544 * 545 * <bustype, address, size>*1 546 * 547 * The "intr" property is assumed to be a list of at least one duple 548 * 549 * <SPARC ipl, vector#>*1 550 * 551 * The "interrupts" property is assumed to be a list of at least one 552 * n-tuples that describes the interrupt capabilities of the bus the device 553 * is connected to. For SBus, this looks like 554 * 555 * <SBus-level>*1 556 * 557 * (This property obsoletes the 'intr' property). 558 * 559 * The "ranges" property is optional. 560 */ 561 void 562 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 563 { 564 struct ddi_parent_private_data *pdptr; 565 int n; 566 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 567 uint_t reg_len, rng_len, intr_len, irupts_len; 568 569 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 570 571 /* 572 * Handle the 'reg' property. 573 */ 574 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 575 DDI_PROP_SUCCESS) && (reg_len != 0)) { 576 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 577 pdptr->par_reg = (struct regspec *)reg_prop; 578 } 579 580 /* 581 * See if I have a range (adding one where needed - this 582 * means to add one for sbus node in sun4c, when romvec > 0, 583 * if no range is already defined in the PROM node. 584 * (Currently no sun4c PROMS define range properties, 585 * but they should and may in the future.) For the SBus 586 * node, the range is defined by the SBus reg property. 587 */ 588 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 589 == DDI_PROP_SUCCESS) { 590 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 591 pdptr->par_rng = (struct rangespec *)rng_prop; 592 } 593 594 /* 595 * Handle the 'intr' and 'interrupts' properties 596 */ 597 598 /* 599 * For backwards compatibility 600 * we first look for the 'intr' property for the device. 601 */ 602 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 603 != DDI_PROP_SUCCESS) { 604 intr_len = 0; 605 } 606 607 /* 608 * If we're to support bus adapters and future platforms cleanly, 609 * we need to support the generalized 'interrupts' property. 610 */ 611 if (get_prop_int_array(child, "interrupts", &irupts_prop, 612 &irupts_len) != DDI_PROP_SUCCESS) { 613 irupts_len = 0; 614 } else if (intr_len != 0) { 615 /* 616 * If both 'intr' and 'interrupts' are defined, 617 * then 'interrupts' wins and we toss the 'intr' away. 618 */ 619 ddi_prop_free((void *)intr_prop); 620 intr_len = 0; 621 } 622 623 if (intr_len != 0) { 624 625 /* 626 * Translate the 'intr' property into an array 627 * an array of struct intrspec's. There's not really 628 * very much to do here except copy what's out there. 629 */ 630 631 struct intrspec *new; 632 struct prop_ispec *l; 633 634 n = pdptr->par_nintr = 635 intr_len / sizeof (struct prop_ispec); 636 l = (struct prop_ispec *)intr_prop; 637 pdptr->par_intr = 638 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 639 while (n--) { 640 new->intrspec_pri = l->pri; 641 new->intrspec_vec = l->vec; 642 new++; 643 l++; 644 } 645 ddi_prop_free((void *)intr_prop); 646 647 } else if ((n = irupts_len) != 0) { 648 size_t size; 649 int *out; 650 651 /* 652 * Translate the 'interrupts' property into an array 653 * of intrspecs for the rest of the DDI framework to 654 * toy with. Only our ancestors really know how to 655 * do this, so ask 'em. We massage the 'interrupts' 656 * property so that it is pre-pended by a count of 657 * the number of integers in the argument. 658 */ 659 size = sizeof (int) + n; 660 out = kmem_alloc(size, KM_SLEEP); 661 *out = n / sizeof (int); 662 bcopy(irupts_prop, out + 1, (size_t)n); 663 ddi_prop_free((void *)irupts_prop); 664 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 665 cmn_err(CE_CONT, 666 "Unable to translate 'interrupts' for %s%d\n", 667 DEVI(child)->devi_binding_name, 668 DEVI(child)->devi_instance); 669 } 670 kmem_free(out, size); 671 } 672 } 673 674 /* 675 * Name a child 676 */ 677 static int 678 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 679 { 680 /* 681 * Fill in parent-private data and this function returns to us 682 * an indication if it used "registers" to fill in the data. 683 */ 684 if (ddi_get_parent_data(child) == NULL) { 685 struct ddi_parent_private_data *pdptr; 686 make_ddi_ppd(child, &pdptr); 687 ddi_set_parent_data(child, pdptr); 688 } 689 690 name[0] = '\0'; 691 if (sparc_pd_getnreg(child) > 0) { 692 (void) snprintf(name, namelen, "%x,%x", 693 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 694 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 695 } 696 697 return (DDI_SUCCESS); 698 } 699 700 /* 701 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 702 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 703 * the children of sun busses based on the reg spec. 704 * 705 * Handles the following properties (in make_ddi_ppd): 706 * Property value 707 * Name type 708 * reg register spec 709 * intr old-form interrupt spec 710 * interrupts new (bus-oriented) interrupt spec 711 * ranges range spec 712 */ 713 int 714 impl_ddi_sunbus_initchild(dev_info_t *child) 715 { 716 char name[MAXNAMELEN]; 717 void impl_ddi_sunbus_removechild(dev_info_t *); 718 719 /* 720 * Name the child, also makes parent private data 721 */ 722 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 723 ddi_set_name_addr(child, name); 724 725 /* 726 * Attempt to merge a .conf node; if successful, remove the 727 * .conf node. 728 */ 729 if ((ndi_dev_is_persistent_node(child) == 0) && 730 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 731 /* 732 * Return failure to remove node 733 */ 734 impl_ddi_sunbus_removechild(child); 735 return (DDI_FAILURE); 736 } 737 return (DDI_SUCCESS); 738 } 739 740 void 741 impl_free_ddi_ppd(dev_info_t *dip) 742 { 743 struct ddi_parent_private_data *pdptr; 744 size_t n; 745 746 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 747 return; 748 749 if ((n = (size_t)pdptr->par_nintr) != 0) 750 /* 751 * Note that kmem_free is used here (instead of 752 * ddi_prop_free) because the contents of the 753 * property were placed into a separate buffer and 754 * mucked with a bit before being stored in par_intr. 755 * The actual return value from the prop lookup 756 * was freed with ddi_prop_free previously. 757 */ 758 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 759 760 if ((n = (size_t)pdptr->par_nrng) != 0) 761 ddi_prop_free((void *)pdptr->par_rng); 762 763 if ((n = pdptr->par_nreg) != 0) 764 ddi_prop_free((void *)pdptr->par_reg); 765 766 kmem_free(pdptr, sizeof (*pdptr)); 767 ddi_set_parent_data(dip, NULL); 768 } 769 770 void 771 impl_ddi_sunbus_removechild(dev_info_t *dip) 772 { 773 impl_free_ddi_ppd(dip); 774 ddi_set_name_addr(dip, NULL); 775 /* 776 * Strip the node to properly convert it back to prototype form 777 */ 778 impl_rem_dev_props(dip); 779 } 780 781 /* 782 * DDI Interrupt 783 */ 784 785 /* 786 * turn this on to force isa, eisa, and mca device to ignore the new 787 * hardware nodes in the device tree (normally turned on only for 788 * drivers that need it by setting the property "ignore-hardware-nodes" 789 * in their driver.conf file). 790 * 791 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 792 * as safety valve. 793 */ 794 int ignore_hardware_nodes = 0; 795 796 /* 797 * Local data 798 */ 799 static struct impl_bus_promops *impl_busp; 800 801 802 /* 803 * New DDI interrupt framework 804 */ 805 806 /* 807 * i_ddi_intr_ops: 808 * 809 * This is the interrupt operator function wrapper for the bus function 810 * bus_intr_op. 811 */ 812 int 813 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 814 ddi_intr_handle_impl_t *hdlp, void * result) 815 { 816 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 817 int ret = DDI_FAILURE; 818 819 /* request parent to process this interrupt op */ 820 if (NEXUS_HAS_INTR_OP(pdip)) 821 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 822 pdip, rdip, op, hdlp, result); 823 else 824 cmn_err(CE_WARN, "Failed to process interrupt " 825 "for %s%d due to down-rev nexus driver %s%d", 826 ddi_get_name(rdip), ddi_get_instance(rdip), 827 ddi_get_name(pdip), ddi_get_instance(pdip)); 828 return (ret); 829 } 830 831 /* 832 * i_ddi_add_softint - allocate and add a soft interrupt to the system 833 */ 834 int 835 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 836 { 837 int ret; 838 839 /* add soft interrupt handler */ 840 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 841 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 842 return (ret ? DDI_SUCCESS : DDI_FAILURE); 843 } 844 845 846 void 847 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 848 { 849 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 850 } 851 852 853 extern void (*setsoftint)(int, struct av_softinfo *); 854 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 855 856 int 857 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 858 { 859 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 860 return (DDI_EPENDING); 861 862 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 863 864 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 865 return (DDI_SUCCESS); 866 } 867 868 /* 869 * i_ddi_set_softint_pri: 870 * 871 * The way this works is that it first tries to add a softint vector 872 * at the new priority in hdlp. If that succeeds; then it removes the 873 * existing softint vector at the old priority. 874 */ 875 int 876 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 877 { 878 int ret; 879 880 /* 881 * If a softint is pending at the old priority then fail the request. 882 */ 883 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 884 return (DDI_FAILURE); 885 886 ret = av_softint_movepri((void *)hdlp, old_pri); 887 return (ret ? DDI_SUCCESS : DDI_FAILURE); 888 } 889 890 void 891 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 892 { 893 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 894 } 895 896 void 897 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 898 { 899 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 900 hdlp->ih_private = NULL; 901 } 902 903 /* 904 * DDI Memory/DMA 905 */ 906 907 /* 908 * Support for allocating DMAable memory to implement 909 * ddi_dma_mem_alloc(9F) interface. 910 */ 911 912 #define KA_ALIGN_SHIFT 7 913 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 914 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 915 916 /* 917 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 918 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 919 */ 920 921 static ddi_dma_attr_t kmem_io_attr = { 922 DMA_ATTR_V0, 923 0x0000000000000000ULL, /* dma_attr_addr_lo */ 924 0x0000000000000000ULL, /* dma_attr_addr_hi */ 925 0x00ffffff, 926 0x1000, /* dma_attr_align */ 927 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 928 }; 929 930 /* kmem io memory ranges and indices */ 931 enum { 932 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 933 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 934 }; 935 936 static struct { 937 vmem_t *kmem_io_arena; 938 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 939 ddi_dma_attr_t kmem_io_attr; 940 } kmem_io[MAX_MEM_RANGES]; 941 942 static int kmem_io_idx; /* index of first populated kmem_io[] */ 943 944 static page_t * 945 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 946 { 947 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 948 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 949 950 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 951 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 952 } 953 954 static void * 955 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 956 { 957 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 958 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 959 } 960 961 static void * 962 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 963 { 964 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 965 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 966 } 967 968 static void * 969 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 970 { 971 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 972 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 973 } 974 975 static void * 976 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 977 { 978 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 979 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 980 } 981 982 static void * 983 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 984 { 985 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 986 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 987 } 988 989 static void * 990 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 991 { 992 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 993 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 994 } 995 996 static void * 997 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 998 { 999 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1000 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1001 } 1002 1003 static void * 1004 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1005 { 1006 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1007 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1008 } 1009 1010 static void * 1011 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1012 { 1013 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1014 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1015 } 1016 1017 static void * 1018 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1019 { 1020 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1021 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1022 } 1023 1024 static void * 1025 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1026 { 1027 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1028 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1029 } 1030 1031 struct { 1032 uint64_t io_limit; 1033 char *io_name; 1034 void *(*io_alloc)(vmem_t *, size_t, int); 1035 int io_initial; /* kmem_io_init during startup */ 1036 } io_arena_params[MAX_MEM_RANGES] = { 1037 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1038 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1039 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1040 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1041 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1042 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1043 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1044 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1045 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1046 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1047 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1048 }; 1049 1050 void 1051 kmem_io_init(int a) 1052 { 1053 int c; 1054 char name[40]; 1055 1056 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1057 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1058 segkmem_free, heap_arena, 0, VM_SLEEP); 1059 for (c = 0; c < KA_NCACHE; c++) { 1060 size_t size = KA_ALIGN << c; 1061 (void) sprintf(name, "%s_%lu", 1062 io_arena_params[a].io_name, size); 1063 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1064 size, size, NULL, NULL, NULL, NULL, 1065 kmem_io[a].kmem_io_arena, 0); 1066 } 1067 } 1068 1069 /* 1070 * Return the index of the highest memory range for addr. 1071 */ 1072 static int 1073 kmem_io_index(uint64_t addr) 1074 { 1075 int n; 1076 1077 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1078 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1079 if (kmem_io[n].kmem_io_arena == NULL) 1080 kmem_io_init(n); 1081 return (n); 1082 } 1083 } 1084 panic("kmem_io_index: invalid addr - must be at least 16m"); 1085 1086 /*NOTREACHED*/ 1087 } 1088 1089 /* 1090 * Return the index of the next kmem_io populated memory range 1091 * after curindex. 1092 */ 1093 static int 1094 kmem_io_index_next(int curindex) 1095 { 1096 int n; 1097 1098 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1099 if (kmem_io[n].kmem_io_arena) 1100 return (n); 1101 } 1102 return (-1); 1103 } 1104 1105 void 1106 ka_init(void) 1107 { 1108 int a; 1109 extern pfn_t physmax; 1110 uint64_t maxphysaddr = mmu_ptob((uint64_t)physmax + 1) - 1; 1111 1112 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1113 1114 for (a = 0; a < MAX_MEM_RANGES; a++) { 1115 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1116 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1117 io_arena_params[a].io_limit = maxphysaddr; 1118 else 1119 a++; 1120 break; 1121 } 1122 } 1123 kmem_io_idx = a; 1124 1125 for (; a < MAX_MEM_RANGES; a++) { 1126 kmem_io[a].kmem_io_attr = kmem_io_attr; 1127 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1128 io_arena_params[a].io_limit; 1129 /* 1130 * initialize kmem_io[] arena/cache corresponding to 1131 * maxphysaddr and to the "common" io memory ranges that 1132 * have io_initial set to a non-zero value. 1133 */ 1134 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1135 kmem_io_init(a); 1136 } 1137 } 1138 1139 /* 1140 * put contig address/size 1141 */ 1142 static void * 1143 putctgas(void *addr, size_t size) 1144 { 1145 struct ctgas *ctgp = &ctglist; 1146 int i; 1147 1148 CTGLOCK(); 1149 do { 1150 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1151 ctgp->ctg_addr[i] = addr; 1152 ctgp->ctg_size[i] = size; 1153 ctgp->ctg_index++; 1154 break; 1155 } 1156 if (!ctgp->ctg_next) 1157 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1158 KM_NOSLEEP); 1159 ctgp = ctgp->ctg_next; 1160 } while (ctgp); 1161 1162 CTGUNLOCK(); 1163 return (ctgp); 1164 } 1165 1166 /* 1167 * get contig size by addr 1168 */ 1169 static size_t 1170 getctgsz(void *addr) 1171 { 1172 struct ctgas *ctgp = &ctglist; 1173 int i, j; 1174 size_t sz; 1175 1176 ASSERT(addr); 1177 CTGLOCK(); 1178 1179 while (ctgp) { 1180 for (i = 0; i < ctgp->ctg_index; i++) { 1181 if (addr != ctgp->ctg_addr[i]) 1182 continue; 1183 1184 sz = ctgp->ctg_size[i]; 1185 j = --ctgp->ctg_index; 1186 if (i != j) { 1187 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1188 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1189 } 1190 CTGUNLOCK(); 1191 return (sz); 1192 } 1193 ctgp = ctgp->ctg_next; 1194 } 1195 1196 CTGUNLOCK(); 1197 return (0); 1198 } 1199 1200 /* 1201 * contig_alloc: 1202 * 1203 * allocates contiguous memory to satisfy the 'size' and dma attributes 1204 * specified in 'attr'. 1205 * 1206 * Not all of memory need to be physically contiguous if the 1207 * scatter-gather list length is greater than 1. 1208 */ 1209 1210 /*ARGSUSED*/ 1211 void * 1212 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1213 { 1214 pgcnt_t pgcnt = btopr(size); 1215 size_t asize = pgcnt * PAGESIZE; 1216 page_t *ppl; 1217 int pflag; 1218 void *addr; 1219 1220 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1221 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1222 1223 /* segkmem_xalloc */ 1224 1225 if (align <= PAGESIZE) 1226 addr = vmem_alloc(heap_arena, asize, 1227 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1228 else 1229 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1230 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1231 if (addr) { 1232 ASSERT(!((uintptr_t)addr & (align - 1))); 1233 1234 if (page_resv(pgcnt, 1235 (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1236 1237 vmem_free(heap_arena, addr, asize); 1238 return (NULL); 1239 } 1240 pflag = PG_EXCL; 1241 1242 if (cansleep) 1243 pflag |= PG_WAIT; 1244 1245 /* 4k req gets from freelists rather than pfn search */ 1246 if (pgcnt > 1 || align > PAGESIZE) 1247 pflag |= PG_PHYSCONTIG; 1248 1249 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1250 asize, pflag, &kas, (caddr_t)addr, attr); 1251 1252 if (!ppl) { 1253 vmem_free(heap_arena, addr, asize); 1254 page_unresv(pgcnt); 1255 return (NULL); 1256 } 1257 1258 while (ppl != NULL) { 1259 page_t *pp = ppl; 1260 page_sub(&ppl, pp); 1261 ASSERT(page_iolock_assert(pp)); 1262 page_io_unlock(pp); 1263 page_downgrade(pp); 1264 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1265 pp, (PROT_ALL & ~PROT_USER) | 1266 HAT_NOSYNC, HAT_LOAD_LOCK); 1267 } 1268 } 1269 return (addr); 1270 } 1271 1272 static void 1273 contig_free(void *addr, size_t size) 1274 { 1275 pgcnt_t pgcnt = btopr(size); 1276 size_t asize = pgcnt * PAGESIZE; 1277 caddr_t a, ea; 1278 page_t *pp; 1279 1280 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1281 1282 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1283 pp = page_find(&kvp, 1284 (u_offset_t)(uintptr_t)a); 1285 if (!pp) 1286 panic("contig_free: contig pp not found"); 1287 1288 if (!page_tryupgrade(pp)) { 1289 page_unlock(pp); 1290 pp = page_lookup(&kvp, 1291 (u_offset_t)(uintptr_t)a, SE_EXCL); 1292 if (pp == NULL) 1293 panic("contig_free: page freed"); 1294 } 1295 page_destroy(pp, 0); 1296 } 1297 1298 page_unresv(pgcnt); 1299 vmem_free(heap_arena, addr, asize); 1300 } 1301 1302 /* 1303 * Allocate from the system, aligned on a specific boundary. 1304 * The alignment, if non-zero, must be a power of 2. 1305 */ 1306 static void * 1307 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1308 ddi_dma_attr_t *attr) 1309 { 1310 size_t *addr, *raddr, rsize; 1311 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1312 int a, i, c; 1313 vmem_t *vmp; 1314 kmem_cache_t *cp = NULL; 1315 1316 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1317 return (NULL); 1318 1319 align = MAX(align, hdrsize); 1320 ASSERT((align & (align - 1)) == 0); 1321 1322 /* 1323 * All of our allocators guarantee 16-byte alignment, so we don't 1324 * need to reserve additional space for the header. 1325 * To simplify picking the correct kmem_io_cache, we round up to 1326 * a multiple of KA_ALIGN. 1327 */ 1328 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1329 1330 if (physcontig && rsize > PAGESIZE) { 1331 if (addr = contig_alloc(size, attr, align, cansleep)) { 1332 if (!putctgas(addr, size)) 1333 contig_free(addr, size); 1334 else 1335 return (addr); 1336 } 1337 return (NULL); 1338 } 1339 1340 a = kmem_io_index(attr->dma_attr_addr_hi); 1341 1342 if (rsize > PAGESIZE) { 1343 vmp = kmem_io[a].kmem_io_arena; 1344 raddr = vmem_alloc(vmp, rsize, 1345 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1346 } else { 1347 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1348 cp = kmem_io[a].kmem_io_cache[c]; 1349 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1350 KM_NOSLEEP); 1351 } 1352 1353 if (raddr == NULL) { 1354 int na; 1355 1356 ASSERT(cansleep == 0); 1357 if (rsize > PAGESIZE) 1358 return (NULL); 1359 /* 1360 * System does not have memory in the requested range. 1361 * Try smaller kmem io ranges and larger cache sizes 1362 * to see if there might be memory available in 1363 * these other caches. 1364 */ 1365 1366 for (na = kmem_io_index_next(a); na >= 0; 1367 na = kmem_io_index_next(na)) { 1368 ASSERT(kmem_io[na].kmem_io_arena); 1369 cp = kmem_io[na].kmem_io_cache[c]; 1370 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1371 if (raddr) 1372 goto kallocdone; 1373 } 1374 /* now try the larger kmem io cache sizes */ 1375 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1376 for (i = c + 1; i < KA_NCACHE; i++) { 1377 cp = kmem_io[na].kmem_io_cache[i]; 1378 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1379 if (raddr) 1380 goto kallocdone; 1381 } 1382 } 1383 return (NULL); 1384 } 1385 1386 kallocdone: 1387 ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1, 1388 PAGESIZE) || rsize > PAGESIZE); 1389 1390 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1391 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1392 1393 addr[-4] = (size_t)cp; 1394 addr[-3] = (size_t)vmp; 1395 addr[-2] = (size_t)raddr; 1396 addr[-1] = rsize; 1397 1398 return (addr); 1399 } 1400 1401 static void 1402 kfreea(void *addr) 1403 { 1404 size_t size; 1405 1406 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1407 contig_free(addr, size); 1408 } else { 1409 size_t *saddr = addr; 1410 if (saddr[-4] == 0) 1411 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1412 saddr[-1]); 1413 else 1414 kmem_cache_free((kmem_cache_t *)saddr[-4], 1415 (void *)saddr[-2]); 1416 } 1417 } 1418 1419 /* 1420 * This should actually be called i_ddi_dma_mem_alloc. There should 1421 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1422 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1423 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1424 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1425 * so far which is used for both, DMA and PIO, we have to use the DMA 1426 * ctl ops to make everybody happy. 1427 */ 1428 /*ARGSUSED*/ 1429 int 1430 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1431 size_t length, int cansleep, int streaming, 1432 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1433 size_t *real_length, ddi_acc_hdl_t *ap) 1434 { 1435 caddr_t a; 1436 int iomin; 1437 ddi_acc_impl_t *iap; 1438 int physcontig = 0; 1439 pgcnt_t npages; 1440 pgcnt_t minctg; 1441 1442 /* 1443 * Check legality of arguments 1444 */ 1445 if (length == 0 || kaddrp == NULL || attr == NULL) { 1446 return (DDI_FAILURE); 1447 } 1448 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1449 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1450 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1451 return (DDI_FAILURE); 1452 } 1453 1454 /* 1455 * figure out most restrictive alignment requirement 1456 */ 1457 iomin = attr->dma_attr_minxfer; 1458 iomin = maxbit(iomin, attr->dma_attr_align); 1459 if (iomin == 0) 1460 return (DDI_FAILURE); 1461 1462 ASSERT((iomin & (iomin - 1)) == 0); 1463 1464 1465 /* 1466 * Determine if we need to satisfy the request for physically 1467 * contiguous memory or alignments larger than pagesize. 1468 */ 1469 npages = btopr(length + attr->dma_attr_align); 1470 minctg = howmany(npages, attr->dma_attr_sgllen); 1471 1472 if (minctg > 1) { 1473 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1474 /* 1475 * verify that the minimum contig requirement for the 1476 * actual length does not cross segment boundary. 1477 */ 1478 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1479 size_t); 1480 npages = btopr(length); 1481 minctg = howmany(npages, attr->dma_attr_sgllen); 1482 if (minctg > pfnseg + 1) 1483 return (DDI_FAILURE); 1484 physcontig = 1; 1485 } else { 1486 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1487 } 1488 1489 /* 1490 * Allocate the requested amount from the system. 1491 */ 1492 a = kalloca(length, iomin, cansleep, physcontig, attr); 1493 1494 if ((*kaddrp = a) == NULL) 1495 return (DDI_FAILURE); 1496 1497 if (real_length) { 1498 *real_length = length; 1499 } 1500 if (ap) { 1501 /* 1502 * initialize access handle 1503 */ 1504 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1505 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1506 impl_acc_hdl_init(ap); 1507 } 1508 return (DDI_SUCCESS); 1509 } 1510 1511 /* 1512 * covert old DMA limits structure to DMA attribute structure 1513 * and continue 1514 */ 1515 int 1516 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1517 size_t length, int cansleep, int streaming, 1518 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1519 uint_t *real_length, ddi_acc_hdl_t *ap) 1520 { 1521 ddi_dma_attr_t dma_attr, *attrp; 1522 size_t rlen; 1523 int ret; 1524 1525 if (limits == NULL) { 1526 return (DDI_FAILURE); 1527 } 1528 1529 /* 1530 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1531 */ 1532 attrp = &dma_attr; 1533 attrp->dma_attr_version = DMA_ATTR_V0; 1534 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1535 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1536 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1537 attrp->dma_attr_align = 1; 1538 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1539 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1540 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1541 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1542 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1543 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1544 attrp->dma_attr_flags = 0; 1545 1546 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1547 accattrp, kaddrp, &rlen, ap); 1548 if (ret == DDI_SUCCESS) { 1549 if (real_length) 1550 *real_length = (uint_t)rlen; 1551 } 1552 return (ret); 1553 } 1554 1555 /* ARGSUSED */ 1556 void 1557 i_ddi_mem_free(caddr_t kaddr, int stream) 1558 { 1559 kfreea(kaddr); 1560 } 1561 1562 /* 1563 * Access Barriers 1564 * 1565 */ 1566 /*ARGSUSED*/ 1567 int 1568 i_ddi_ontrap(ddi_acc_handle_t hp) 1569 { 1570 return (DDI_FAILURE); 1571 } 1572 1573 /*ARGSUSED*/ 1574 void 1575 i_ddi_notrap(ddi_acc_handle_t hp) 1576 { 1577 } 1578 1579 1580 /* 1581 * Misc Functions 1582 */ 1583 1584 /* 1585 * Implementation instance override functions 1586 * 1587 * No override on i86pc 1588 */ 1589 /*ARGSUSED*/ 1590 uint_t 1591 impl_assign_instance(dev_info_t *dip) 1592 { 1593 return ((uint_t)-1); 1594 } 1595 1596 /*ARGSUSED*/ 1597 int 1598 impl_keep_instance(dev_info_t *dip) 1599 { 1600 return (DDI_FAILURE); 1601 } 1602 1603 /*ARGSUSED*/ 1604 int 1605 impl_free_instance(dev_info_t *dip) 1606 { 1607 return (DDI_FAILURE); 1608 } 1609 1610 /*ARGSUSED*/ 1611 int 1612 impl_check_cpu(dev_info_t *devi) 1613 { 1614 return (DDI_SUCCESS); 1615 } 1616 1617 /* 1618 * Referenced in common/cpr_driver.c: Power off machine. 1619 * Don't know how to power off i86pc. 1620 */ 1621 void 1622 arch_power_down() 1623 {} 1624 1625 /* 1626 * Copy name to property_name, since name 1627 * is in the low address range below kernelbase. 1628 */ 1629 static void 1630 copy_boot_str(const char *boot_str, char *kern_str, int len) 1631 { 1632 int i = 0; 1633 1634 while (i < len - 1 && boot_str[i] != '\0') { 1635 kern_str[i] = boot_str[i]; 1636 i++; 1637 } 1638 1639 kern_str[i] = 0; /* null terminate */ 1640 if (boot_str[i] != '\0') 1641 cmn_err(CE_WARN, 1642 "boot property string is truncated to %s", kern_str); 1643 } 1644 1645 static void 1646 get_boot_properties(void) 1647 { 1648 extern char hw_provider[]; 1649 dev_info_t *devi; 1650 char *name; 1651 int length; 1652 char property_name[50], property_val[50]; 1653 void *bop_staging_area; 1654 1655 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1656 1657 /* 1658 * Import "root" properties from the boot. 1659 * 1660 * We do this by invoking BOP_NEXTPROP until the list 1661 * is completely copied in. 1662 */ 1663 1664 devi = ddi_root_node(); 1665 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1666 name; /* NULL => DONE */ 1667 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1668 1669 /* copy string to memory above kernelbase */ 1670 copy_boot_str(name, property_name, 50); 1671 1672 /* 1673 * Skip vga properties. They will be picked up later 1674 * by get_vga_properties. 1675 */ 1676 if (strcmp(property_name, "display-edif-block") == 0 || 1677 strcmp(property_name, "display-edif-id") == 0) { 1678 continue; 1679 } 1680 1681 length = BOP_GETPROPLEN(bootops, property_name); 1682 if (length == 0) 1683 continue; 1684 if (length > MMU_PAGESIZE) { 1685 cmn_err(CE_NOTE, 1686 "boot property %s longer than 0x%x, ignored\n", 1687 property_name, MMU_PAGESIZE); 1688 continue; 1689 } 1690 BOP_GETPROP(bootops, property_name, bop_staging_area); 1691 1692 /* 1693 * special properties: 1694 * si-machine, si-hw-provider 1695 * goes to kernel data structures. 1696 * bios-boot-device and stdout 1697 * goes to hardware property list so it may show up 1698 * in the prtconf -vp output. This is needed by 1699 * Install/Upgrade. Once we fix install upgrade, 1700 * this can be taken out. 1701 */ 1702 if (strcmp(name, "si-machine") == 0) { 1703 (void) strncpy(utsname.machine, bop_staging_area, 1704 SYS_NMLN); 1705 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1706 } else if (strcmp(name, "si-hw-provider") == 0) { 1707 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1708 hw_provider[SYS_NMLN - 1] = (char)NULL; 1709 } else if (strcmp(name, "bios-boot-device") == 0) { 1710 copy_boot_str(bop_staging_area, property_val, 50); 1711 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1712 property_name, property_val); 1713 } else if (strcmp(name, "stdout") == 0) { 1714 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1715 property_name, *((int *)bop_staging_area)); 1716 } else { 1717 /* Property type unknown, use old prop interface */ 1718 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1719 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1720 length); 1721 } 1722 } 1723 1724 kmem_free(bop_staging_area, MMU_PAGESIZE); 1725 } 1726 1727 static void 1728 get_vga_properties(void) 1729 { 1730 dev_info_t *devi; 1731 major_t major; 1732 char *name; 1733 int length; 1734 char property_val[50]; 1735 void *bop_staging_area; 1736 1737 major = ddi_name_to_major("vgatext"); 1738 if (major == (major_t)-1) 1739 return; 1740 devi = devnamesp[major].dn_head; 1741 if (devi == NULL) 1742 return; 1743 1744 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1745 1746 /* 1747 * Import "vga" properties from the boot. 1748 */ 1749 name = "display-edif-block"; 1750 length = BOP_GETPROPLEN(bootops, name); 1751 if (length > 0 && length < MMU_PAGESIZE) { 1752 BOP_GETPROP(bootops, name, bop_staging_area); 1753 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1754 devi, name, bop_staging_area, length); 1755 } 1756 1757 /* 1758 * kdmconfig is also looking for display-type and 1759 * video-adapter-type. We default to color and svga. 1760 * 1761 * Could it be "monochrome", "vga"? 1762 * Nah, you've got to come to the 21st century... 1763 * And you can set monitor type manually in kdmconfig 1764 * if you are really an old junky. 1765 */ 1766 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1767 devi, "display-type", "color"); 1768 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1769 devi, "video-adapter-type", "svga"); 1770 1771 name = "display-edif-id"; 1772 length = BOP_GETPROPLEN(bootops, name); 1773 if (length > 0 && length < MMU_PAGESIZE) { 1774 BOP_GETPROP(bootops, name, bop_staging_area); 1775 copy_boot_str(bop_staging_area, property_val, length); 1776 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1777 devi, name, property_val); 1778 } 1779 1780 kmem_free(bop_staging_area, MMU_PAGESIZE); 1781 } 1782 1783 1784 /* 1785 * This is temporary, but absolutely necessary. If we are being 1786 * booted with a device tree created by the DevConf project's bootconf 1787 * program, then we have device information nodes that reflect 1788 * reality. At this point in time in the Solaris release schedule, the 1789 * kernel drivers aren't prepared for reality. They still depend on their 1790 * own ad-hoc interpretations of the properties created when their .conf 1791 * files were interpreted. These drivers use an "ignore-hardware-nodes" 1792 * property to prevent them from using the nodes passed up from the bootconf 1793 * device tree. 1794 * 1795 * Trying to assemble root file system drivers as we are booting from 1796 * devconf will fail if the kernel driver is basing its name_addr's on the 1797 * psuedo-node device info while the bootpath passed up from bootconf is using 1798 * reality-based name_addrs. We help the boot along in this case by 1799 * looking at the pre-bootconf bootpath and determining if we would have 1800 * successfully matched if that had been the bootpath we had chosen. 1801 * 1802 * Note that we only even perform this extra check if we've booted 1803 * using bootconf's 1275 compliant bootpath, this is the boot device, and 1804 * we're trying to match the name_addr specified in the 1275 bootpath. 1805 */ 1806 1807 #define MAXCOMPONENTLEN 32 1808 1809 int 1810 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 1811 { 1812 /* 1813 * There are multiple criteria to be met before we can even 1814 * consider allowing a name_addr match here. 1815 * 1816 * 1) We must have been booted such that the bootconf program 1817 * created device tree nodes and properties. This can be 1818 * determined by examining the 'bootpath' property. This 1819 * property will be a non-null string iff bootconf was 1820 * involved in the boot. 1821 * 1822 * 2) The module that we want to match must be the boot device. 1823 * 1824 * 3) The instance of the module we are thinking of letting be 1825 * our match must be ignoring hardware nodes. 1826 * 1827 * 4) The name_addr we want to match must be the name_addr 1828 * specified in the 1275 bootpath. 1829 */ 1830 static char bootdev_module[MAXCOMPONENTLEN]; 1831 static char bootdev_oldmod[MAXCOMPONENTLEN]; 1832 static char bootdev_newaddr[MAXCOMPONENTLEN]; 1833 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 1834 static int quickexit; 1835 1836 char *daddr; 1837 int dlen; 1838 1839 char *lkupname; 1840 int rv = DDI_FAILURE; 1841 1842 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 1843 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 1844 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 1845 "ignore-hardware-nodes", -1) != -1)) { 1846 if (strcmp(daddr, caddr) == 0) { 1847 return (DDI_SUCCESS); 1848 } 1849 } 1850 1851 if (quickexit) 1852 return (rv); 1853 1854 if (bootdev_module[0] == '\0') { 1855 char *addrp, *eoaddrp; 1856 char *busp, *modp, *atp; 1857 char *bp1275, *bp; 1858 int bp1275len, bplen; 1859 1860 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 1861 1862 if (ddi_getlongprop(DDI_DEV_T_ANY, 1863 ddi_root_node(), 0, "bootpath", 1864 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 1865 bp1275len <= 1) { 1866 /* 1867 * We didn't boot from bootconf so we never need to 1868 * do any special matches. 1869 */ 1870 quickexit = 1; 1871 if (bp1275) 1872 kmem_free(bp1275, bp1275len); 1873 return (rv); 1874 } 1875 1876 if (ddi_getlongprop(DDI_DEV_T_ANY, 1877 ddi_root_node(), 0, "boot-path", 1878 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 1879 /* 1880 * No fallback position for matching. This is 1881 * certainly unexpected, but we'll handle it 1882 * just in case. 1883 */ 1884 quickexit = 1; 1885 kmem_free(bp1275, bp1275len); 1886 if (bp) 1887 kmem_free(bp, bplen); 1888 return (rv); 1889 } 1890 1891 /* 1892 * Determine boot device module and 1275 name_addr 1893 * 1894 * bootpath assumed to be of the form /bus/module@name_addr 1895 */ 1896 if (busp = strchr(bp1275, '/')) { 1897 if (modp = strchr(busp + 1, '/')) { 1898 if (atp = strchr(modp + 1, '@')) { 1899 *atp = '\0'; 1900 addrp = atp + 1; 1901 if (eoaddrp = strchr(addrp, '/')) 1902 *eoaddrp = '\0'; 1903 } 1904 } 1905 } 1906 1907 if (modp && addrp) { 1908 (void) strncpy(bootdev_module, modp + 1, 1909 MAXCOMPONENTLEN); 1910 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 1911 1912 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 1913 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 1914 } else { 1915 quickexit = 1; 1916 kmem_free(bp1275, bp1275len); 1917 kmem_free(bp, bplen); 1918 return (rv); 1919 } 1920 1921 /* 1922 * Determine fallback name_addr 1923 * 1924 * 10/3/96 - Also save fallback module name because it 1925 * might actually be different than the current module 1926 * name. E.G., ISA pnp drivers have new names. 1927 * 1928 * bootpath assumed to be of the form /bus/module@name_addr 1929 */ 1930 addrp = NULL; 1931 if (busp = strchr(bp, '/')) { 1932 if (modp = strchr(busp + 1, '/')) { 1933 if (atp = strchr(modp + 1, '@')) { 1934 *atp = '\0'; 1935 addrp = atp + 1; 1936 if (eoaddrp = strchr(addrp, '/')) 1937 *eoaddrp = '\0'; 1938 } 1939 } 1940 } 1941 1942 if (modp && addrp) { 1943 (void) strncpy(bootdev_oldmod, modp + 1, 1944 MAXCOMPONENTLEN); 1945 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 1946 1947 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 1948 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 1949 } 1950 1951 /* Free up the bootpath storage now that we're done with it. */ 1952 kmem_free(bp1275, bp1275len); 1953 kmem_free(bp, bplen); 1954 1955 if (bootdev_oldaddr[0] == '\0') { 1956 quickexit = 1; 1957 return (rv); 1958 } 1959 } 1960 1961 if (((lkupname = ddi_get_name(cdip)) != NULL) && 1962 (strcmp(bootdev_module, lkupname) == 0 || 1963 strcmp(bootdev_oldmod, lkupname) == 0) && 1964 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 1965 "ignore-hardware-nodes", -1) != -1) || 1966 ignore_hardware_nodes) && 1967 strcmp(bootdev_newaddr, caddr) == 0 && 1968 strcmp(bootdev_oldaddr, naddr) == 0) { 1969 rv = DDI_SUCCESS; 1970 } 1971 1972 return (rv); 1973 } 1974 1975 /* 1976 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1977 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1978 */ 1979 /*ARGSUSED*/ 1980 int 1981 e_ddi_copyfromdev(dev_info_t *devi, 1982 off_t off, const void *devaddr, void *kaddr, size_t len) 1983 { 1984 bcopy(devaddr, kaddr, len); 1985 return (0); 1986 } 1987 1988 /* 1989 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1990 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1991 */ 1992 /*ARGSUSED*/ 1993 int 1994 e_ddi_copytodev(dev_info_t *devi, 1995 off_t off, const void *kaddr, void *devaddr, size_t len) 1996 { 1997 bcopy(kaddr, devaddr, len); 1998 return (0); 1999 } 2000 2001 2002 static int 2003 poke_mem(peekpoke_ctlops_t *in_args) 2004 { 2005 int err = DDI_SUCCESS; 2006 on_trap_data_t otd; 2007 2008 /* Set up protected environment. */ 2009 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2010 switch (in_args->size) { 2011 case sizeof (uint8_t): 2012 *(uint8_t *)(in_args->dev_addr) = 2013 *(uint8_t *)in_args->host_addr; 2014 break; 2015 2016 case sizeof (uint16_t): 2017 *(uint16_t *)(in_args->dev_addr) = 2018 *(uint16_t *)in_args->host_addr; 2019 break; 2020 2021 case sizeof (uint32_t): 2022 *(uint32_t *)(in_args->dev_addr) = 2023 *(uint32_t *)in_args->host_addr; 2024 break; 2025 2026 case sizeof (uint64_t): 2027 *(uint64_t *)(in_args->dev_addr) = 2028 *(uint64_t *)in_args->host_addr; 2029 break; 2030 2031 default: 2032 err = DDI_FAILURE; 2033 break; 2034 } 2035 } else 2036 err = DDI_FAILURE; 2037 2038 /* Take down protected environment. */ 2039 no_trap(); 2040 2041 return (err); 2042 } 2043 2044 2045 static int 2046 peek_mem(peekpoke_ctlops_t *in_args) 2047 { 2048 int err = DDI_SUCCESS; 2049 on_trap_data_t otd; 2050 2051 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2052 switch (in_args->size) { 2053 case sizeof (uint8_t): 2054 *(uint8_t *)in_args->host_addr = 2055 *(uint8_t *)in_args->dev_addr; 2056 break; 2057 2058 case sizeof (uint16_t): 2059 *(uint16_t *)in_args->host_addr = 2060 *(uint16_t *)in_args->dev_addr; 2061 break; 2062 2063 case sizeof (uint32_t): 2064 *(uint32_t *)in_args->host_addr = 2065 *(uint32_t *)in_args->dev_addr; 2066 break; 2067 2068 case sizeof (uint64_t): 2069 *(uint64_t *)in_args->host_addr = 2070 *(uint64_t *)in_args->dev_addr; 2071 break; 2072 2073 default: 2074 err = DDI_FAILURE; 2075 break; 2076 } 2077 } else 2078 err = DDI_FAILURE; 2079 2080 no_trap(); 2081 return (err); 2082 } 2083 2084 2085 /* 2086 * This is called only to process peek/poke when the DIP is NULL. 2087 * Assume that this is for memory, as nexi take care of device safe accesses. 2088 */ 2089 int 2090 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2091 { 2092 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2093 } 2094 2095 /* 2096 * we've just done a cautious put/get. Check if it was successful by 2097 * calling pci_ereport_post() on all puts and for any gets that return -1 2098 */ 2099 static int 2100 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop) 2101 { 2102 int rval = DDI_SUCCESS; 2103 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2104 ddi_fm_error_t de; 2105 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2106 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2107 int check_err = 0; 2108 int repcount = in_args->repcount; 2109 2110 if (ctlop == DDI_CTLOPS_PEEK && 2111 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2112 for (; repcount; repcount--) { 2113 switch (in_args->size) { 2114 case sizeof (uint8_t): 2115 if (*(uint8_t *)in_args->host_addr == 0xff) 2116 check_err = 1; 2117 break; 2118 case sizeof (uint16_t): 2119 if (*(uint16_t *)in_args->host_addr == 0xffff) 2120 check_err = 1; 2121 break; 2122 case sizeof (uint32_t): 2123 if (*(uint32_t *)in_args->host_addr == 2124 0xffffffff) 2125 check_err = 1; 2126 break; 2127 case sizeof (uint64_t): 2128 if (*(uint64_t *)in_args->host_addr == 2129 0xffffffffffffffff) 2130 check_err = 1; 2131 break; 2132 } 2133 } 2134 if (check_err == 0) 2135 return (DDI_SUCCESS); 2136 } 2137 /* 2138 * for a cautious put or get or a non-cautious get that returned -1 call 2139 * io framework to see if there really was an error 2140 */ 2141 bzero(&de, sizeof (ddi_fm_error_t)); 2142 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2143 de.fme_bus_specific = (void *)in_args->dev_addr; 2144 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2145 de.fme_flag = DDI_FM_ERR_EXPECTED; 2146 de.fme_acc_handle = in_args->handle; 2147 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2148 /* 2149 * We only get here with DDI_DEFAULT_ACC for config space gets. 2150 * Non-hardened drivers may be probing the hardware and 2151 * expecting -1 returned. So need to treat errors on 2152 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2153 */ 2154 de.fme_flag = DDI_FM_ERR_EXPECTED; 2155 de.fme_acc_handle = in_args->handle; 2156 } else { 2157 /* 2158 * Hardened driver doing protected accesses shouldn't 2159 * get errors unless there's a hardware problem. Treat 2160 * as nonfatal if there's an error, but set UNEXPECTED 2161 * so we raise ereports on any errors and potentially 2162 * fault the device 2163 */ 2164 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2165 } 2166 pci_ereport_post(dip, &de, NULL); 2167 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2168 de.fme_status != DDI_FM_OK) { 2169 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2170 rval = DDI_FAILURE; 2171 errp->err_ena = de.fme_ena; 2172 errp->err_expected = de.fme_flag; 2173 errp->err_status = DDI_FM_NONFATAL; 2174 } 2175 return (rval); 2176 } 2177 2178 /* 2179 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2180 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2181 * recurse, so assume all puts are OK and gets have failed if they return -1 2182 */ 2183 static int 2184 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2185 { 2186 int rval = DDI_SUCCESS; 2187 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2188 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2189 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2190 int repcount = in_args->repcount; 2191 2192 if (ctlop == DDI_CTLOPS_POKE) 2193 return (rval); 2194 2195 for (; repcount; repcount--) { 2196 switch (in_args->size) { 2197 case sizeof (uint8_t): 2198 if (*(uint8_t *)in_args->host_addr == 0xff) 2199 rval = DDI_FAILURE; 2200 break; 2201 case sizeof (uint16_t): 2202 if (*(uint16_t *)in_args->host_addr == 0xffff) 2203 rval = DDI_FAILURE; 2204 break; 2205 case sizeof (uint32_t): 2206 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2207 rval = DDI_FAILURE; 2208 break; 2209 case sizeof (uint64_t): 2210 if (*(uint64_t *)in_args->host_addr == 2211 0xffffffffffffffff) 2212 rval = DDI_FAILURE; 2213 break; 2214 } 2215 } 2216 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2217 rval == DDI_FAILURE) { 2218 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2219 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2220 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2221 errp->err_status = DDI_FM_NONFATAL; 2222 } 2223 return (rval); 2224 } 2225 2226 int 2227 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2228 ddi_ctl_enum_t ctlop, void *arg, void *result, 2229 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2230 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp) 2231 { 2232 int rval; 2233 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2234 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2235 2236 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2237 if (!mutex_tryenter(err_mutexp)) { 2238 /* 2239 * As this may be a recursive call from within 2240 * pci_ereport_post() we can't wait for the mutexes. 2241 * Fortunately we know someone is already calling 2242 * pci_ereport_post() which will handle the error bits 2243 * for us, and as this is a config space access we can 2244 * just do the access and check return value for -1 2245 * using pci_peekpoke_check_nofma(). 2246 */ 2247 rval = handler(dip, rdip, ctlop, arg, result); 2248 if (rval == DDI_SUCCESS) 2249 rval = pci_peekpoke_check_nofma(arg, ctlop); 2250 return (rval); 2251 } 2252 /* 2253 * This can't be a recursive call. Drop the err_mutex and get 2254 * both mutexes in the right order. If an error hasn't already 2255 * been detected by the ontrap code, use pci_peekpoke_check_fma 2256 * which will call pci_ereport_post() to check error status. 2257 */ 2258 mutex_exit(err_mutexp); 2259 } 2260 mutex_enter(peek_poke_mutexp); 2261 rval = handler(dip, rdip, ctlop, arg, result); 2262 if (rval == DDI_SUCCESS) { 2263 mutex_enter(err_mutexp); 2264 rval = pci_peekpoke_check_fma(dip, arg, ctlop); 2265 mutex_exit(err_mutexp); 2266 } 2267 mutex_exit(peek_poke_mutexp); 2268 return (rval); 2269 } 2270 2271 void 2272 impl_setup_ddi(void) 2273 { 2274 dev_info_t *xdip, *isa_dip; 2275 rd_existing_t rd_mem_prop; 2276 int err; 2277 2278 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2279 (pnode_t)DEVI_SID_NODEID, &xdip); 2280 2281 (void) BOP_GETPROP(bootops, 2282 "ramdisk_start", (void *)&ramdisk_start); 2283 (void) BOP_GETPROP(bootops, 2284 "ramdisk_end", (void *)&ramdisk_end); 2285 2286 rd_mem_prop.phys = ramdisk_start; 2287 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2288 2289 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2290 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2291 sizeof (rd_mem_prop)); 2292 err = ndi_devi_bind_driver(xdip, 0); 2293 ASSERT(err == 0); 2294 2295 /* isa node */ 2296 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2297 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2298 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2299 "device_type", "isa"); 2300 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2301 "bus-type", "isa"); 2302 (void) ndi_devi_bind_driver(isa_dip, 0); 2303 2304 /* 2305 * Read in the properties from the boot. 2306 */ 2307 get_boot_properties(); 2308 2309 /* do bus dependent probes. */ 2310 impl_bus_initialprobe(); 2311 2312 /* not framebuffer should be enumerated, if present */ 2313 get_vga_properties(); 2314 } 2315 2316 dev_t 2317 getrootdev(void) 2318 { 2319 /* 2320 * Precedence given to rootdev if set in /etc/system 2321 */ 2322 if (root_is_svm) { 2323 return (ddi_pathname_to_dev_t(svm_bootpath)); 2324 } 2325 2326 /* 2327 * Usually rootfs.bo_name is initialized by the 2328 * the bootpath property from bootenv.rc, but 2329 * defaults to "/ramdisk:a" otherwise. 2330 */ 2331 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2332 } 2333 2334 static struct bus_probe { 2335 struct bus_probe *next; 2336 void (*probe)(int); 2337 } *bus_probes; 2338 2339 void 2340 impl_bus_add_probe(void (*func)(int)) 2341 { 2342 struct bus_probe *probe; 2343 2344 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2345 probe->next = bus_probes; 2346 probe->probe = func; 2347 bus_probes = probe; 2348 } 2349 2350 /*ARGSUSED*/ 2351 void 2352 impl_bus_delete_probe(void (*func)(int)) 2353 { 2354 struct bus_probe *prev = NULL; 2355 struct bus_probe *probe = bus_probes; 2356 2357 while (probe) { 2358 if (probe->probe == func) 2359 break; 2360 prev = probe; 2361 probe = probe->next; 2362 } 2363 2364 if (probe == NULL) 2365 return; 2366 2367 if (prev) 2368 prev->next = probe->next; 2369 else 2370 bus_probes = probe->next; 2371 2372 kmem_free(probe, sizeof (struct bus_probe)); 2373 } 2374 2375 /* 2376 * impl_bus_initialprobe 2377 * Modload the prom simulator, then let it probe to verify existence 2378 * and type of PCI support. 2379 */ 2380 static void 2381 impl_bus_initialprobe(void) 2382 { 2383 struct bus_probe *probe; 2384 2385 /* load modules to install bus probes */ 2386 if (modload("misc", "pci_autoconfig") < 0) { 2387 cmn_err(CE_PANIC, "failed to load misc/pci_autoconfig"); 2388 } 2389 2390 probe = bus_probes; 2391 while (probe) { 2392 /* run the probe function */ 2393 (*probe->probe)(0); 2394 probe = probe->next; 2395 } 2396 } 2397 2398 /* 2399 * impl_bus_reprobe 2400 * Reprogram devices not set up by firmware. 2401 */ 2402 static void 2403 impl_bus_reprobe(void) 2404 { 2405 struct bus_probe *probe; 2406 2407 probe = bus_probes; 2408 while (probe) { 2409 /* run the probe function */ 2410 (*probe->probe)(1); 2411 probe = probe->next; 2412 } 2413 } 2414 2415 2416 /* 2417 * The following functions ready a cautious request to go up to the nexus 2418 * driver. It is up to the nexus driver to decide how to process the request. 2419 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2420 * differently. 2421 */ 2422 2423 static void 2424 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2425 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2426 ddi_ctl_enum_t cmd) 2427 { 2428 peekpoke_ctlops_t cautacc_ctlops_arg; 2429 2430 cautacc_ctlops_arg.size = size; 2431 cautacc_ctlops_arg.dev_addr = dev_addr; 2432 cautacc_ctlops_arg.host_addr = host_addr; 2433 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2434 cautacc_ctlops_arg.repcount = repcount; 2435 cautacc_ctlops_arg.flags = flags; 2436 2437 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2438 &cautacc_ctlops_arg, NULL); 2439 } 2440 2441 uint8_t 2442 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2443 { 2444 uint8_t value; 2445 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2446 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2447 2448 return (value); 2449 } 2450 2451 uint16_t 2452 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2453 { 2454 uint16_t value; 2455 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2456 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2457 2458 return (value); 2459 } 2460 2461 uint32_t 2462 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2463 { 2464 uint32_t value; 2465 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2466 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2467 2468 return (value); 2469 } 2470 2471 uint64_t 2472 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2473 { 2474 uint64_t value; 2475 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2476 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2477 2478 return (value); 2479 } 2480 2481 void 2482 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2483 { 2484 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2485 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2486 } 2487 2488 void 2489 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2490 { 2491 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2492 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2493 } 2494 2495 void 2496 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2497 { 2498 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2499 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2500 } 2501 2502 void 2503 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2504 { 2505 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2506 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2507 } 2508 2509 void 2510 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2511 size_t repcount, uint_t flags) 2512 { 2513 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2514 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2515 } 2516 2517 void 2518 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2519 uint16_t *dev_addr, size_t repcount, uint_t flags) 2520 { 2521 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2522 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2523 } 2524 2525 void 2526 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2527 uint32_t *dev_addr, size_t repcount, uint_t flags) 2528 { 2529 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2530 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2531 } 2532 2533 void 2534 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2535 uint64_t *dev_addr, size_t repcount, uint_t flags) 2536 { 2537 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2538 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2539 } 2540 2541 void 2542 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2543 size_t repcount, uint_t flags) 2544 { 2545 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2546 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2547 } 2548 2549 void 2550 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2551 uint16_t *dev_addr, size_t repcount, uint_t flags) 2552 { 2553 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2554 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2555 } 2556 2557 void 2558 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2559 uint32_t *dev_addr, size_t repcount, uint_t flags) 2560 { 2561 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2562 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2563 } 2564 2565 void 2566 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2567 uint64_t *dev_addr, size_t repcount, uint_t flags) 2568 { 2569 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2570 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2571 } 2572