xref: /titanic_51/usr/src/uts/i86pc/os/cpuid.c (revision fc80c0dfb0c877aee828d778ea32b77fcf7b1ef4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/sysmacros.h>
44 #include <sys/pg.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 uint_t pentiumpro_bug4046376;
108 uint_t pentiumpro_bug4064495;
109 
110 uint_t enable486;
111 
112 /*
113  * This set of strings are for processors rumored to support the cpuid
114  * instruction, and is used by locore.s to figure out how to set x86_vendor
115  */
116 const char CyrixInstead[] = "CyrixInstead";
117 
118 /*
119  * monitor/mwait info.
120  *
121  * size_actual and buf_actual are the real address and size allocated to get
122  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
123  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
124  * processor cache-line alignment, but this is not guarantied in the furture.
125  */
126 struct mwait_info {
127 	size_t		mon_min;	/* min size to avoid missed wakeups */
128 	size_t		mon_max;	/* size to avoid false wakeups */
129 	size_t		size_actual;	/* size actually allocated */
130 	void		*buf_actual;	/* memory actually allocated */
131 	uint32_t	support;	/* processor support of monitor/mwait */
132 };
133 
134 /*
135  * These constants determine how many of the elements of the
136  * cpuid we cache in the cpuid_info data structure; the
137  * remaining elements are accessible via the cpuid instruction.
138  */
139 
140 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
141 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
142 
143 struct cpuid_info {
144 	uint_t cpi_pass;		/* last pass completed */
145 	/*
146 	 * standard function information
147 	 */
148 	uint_t cpi_maxeax;		/* fn 0: %eax */
149 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
150 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
151 
152 	uint_t cpi_family;		/* fn 1: extended family */
153 	uint_t cpi_model;		/* fn 1: extended model */
154 	uint_t cpi_step;		/* fn 1: stepping */
155 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
156 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
157 	int cpi_clogid;			/* fn 1: %ebx: thread # */
158 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
159 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
160 	uint_t cpi_ncache;		/* fn 2: number of elements */
161 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
162 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
163 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
164 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
165 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
166 	/*
167 	 * extended function information
168 	 */
169 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
170 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
171 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
172 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
173 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
174 	id_t cpi_coreid;
175 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
176 					/* Intel: fn 4: %eax[31-26] */
177 	/*
178 	 * supported feature information
179 	 */
180 	uint32_t cpi_support[5];
181 #define	STD_EDX_FEATURES	0
182 #define	AMD_EDX_FEATURES	1
183 #define	TM_EDX_FEATURES		2
184 #define	STD_ECX_FEATURES	3
185 #define	AMD_ECX_FEATURES	4
186 	/*
187 	 * Synthesized information, where known.
188 	 */
189 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
190 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
191 	uint32_t cpi_socket;		/* Chip package/socket type */
192 
193 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
194 };
195 
196 
197 static struct cpuid_info cpuid_info0;
198 
199 /*
200  * These bit fields are defined by the Intel Application Note AP-485
201  * "Intel Processor Identification and the CPUID Instruction"
202  */
203 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
204 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
205 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
206 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
207 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
208 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
209 
210 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
211 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
212 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
213 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
214 
215 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
216 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
217 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
218 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
219 
220 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
221 #define	CPI_XMAXEAX_MAX		0x80000100
222 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 
235 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
236 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
237 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
238 
239 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
240 
241 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
242 
243 
244 /*
245  * A couple of shorthand macros to identify "later" P6-family chips
246  * like the Pentium M and Core.  First, the "older" P6-based stuff
247  * (loosely defined as "pre-Pentium-4"):
248  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
249  */
250 
251 #define	IS_LEGACY_P6(cpi) (			\
252 	cpi->cpi_family == 6 && 		\
253 		(cpi->cpi_model == 1 ||		\
254 		cpi->cpi_model == 3 ||		\
255 		cpi->cpi_model == 5 ||		\
256 		cpi->cpi_model == 6 ||		\
257 		cpi->cpi_model == 7 ||		\
258 		cpi->cpi_model == 8 ||		\
259 		cpi->cpi_model == 0xA ||	\
260 		cpi->cpi_model == 0xB)		\
261 )
262 
263 /* A "new F6" is everything with family 6 that's not the above */
264 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
265 
266 /* Extended family/model support */
267 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
268 	cpi->cpi_family >= 0xf)
269 
270 /*
271  * AMD family 0xf socket types.
272  * First index is 0 for revs B thru E, 1 for F and G.
273  * Second index by (model & 0x3)
274  */
275 static uint32_t amd_skts[2][4] = {
276 	{
277 		X86_SOCKET_754,		/* 0b00 */
278 		X86_SOCKET_940,		/* 0b01 */
279 		X86_SOCKET_754,		/* 0b10 */
280 		X86_SOCKET_939		/* 0b11 */
281 	},
282 	{
283 		X86_SOCKET_S1g1,	/* 0b00 */
284 		X86_SOCKET_F1207,	/* 0b01 */
285 		X86_SOCKET_UNKNOWN,	/* 0b10 */
286 		X86_SOCKET_AM2		/* 0b11 */
287 	}
288 };
289 
290 /*
291  * Table for mapping AMD Family 0xf model/stepping combination to
292  * chip "revision" and socket type.  Only rm_family 0xf is used at the
293  * moment, but AMD family 0x10 will extend the exsiting revision names
294  * so will likely also use this table.
295  *
296  * The first member of this array that matches a given family, extended model
297  * plus model range, and stepping range will be considered a match.
298  */
299 static const struct amd_rev_mapent {
300 	uint_t rm_family;
301 	uint_t rm_modello;
302 	uint_t rm_modelhi;
303 	uint_t rm_steplo;
304 	uint_t rm_stephi;
305 	uint32_t rm_chiprev;
306 	const char *rm_chiprevstr;
307 	int rm_sktidx;
308 } amd_revmap[] = {
309 	/*
310 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
311 	 */
312 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
313 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
314 	/*
315 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
316 	 */
317 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
318 	/*
319 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
320 	 * but the rev B and C0 combinations covered above.
321 	 */
322 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
323 	/*
324 	 * Rev D has extended model 0x1.
325 	 */
326 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
327 	/*
328 	 * Rev E has extended model 0x2.
329 	 * Extended model 0x3 is unused but available to grow into.
330 	 */
331 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
332 	/*
333 	 * Rev F has extended models 0x4 and 0x5.
334 	 */
335 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
336 	/*
337 	 * Rev G has extended model 0x6.
338 	 */
339 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
340 };
341 
342 /*
343  * Info for monitor/mwait idle loop.
344  *
345  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
346  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
347  * 2006.
348  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
349  * Documentation Updates" #33633, Rev 2.05, December 2006.
350  */
351 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
352 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
353 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
354 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
355 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
356 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
357 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
358 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
359 /*
360  * Number of sub-cstates for a given c-state.
361  */
362 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
363 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
364 
365 static void intel_cpuid_4_cache_info(void *, struct cpuid_info *);
366 
367 static void
368 synth_amd_info(struct cpuid_info *cpi)
369 {
370 	const struct amd_rev_mapent *rmp;
371 	uint_t family, model, step;
372 	int i;
373 
374 	/*
375 	 * Currently only AMD family 0xf uses these fields.
376 	 */
377 	if (cpi->cpi_family != 0xf)
378 		return;
379 
380 	family = cpi->cpi_family;
381 	model = cpi->cpi_model;
382 	step = cpi->cpi_step;
383 
384 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
385 	    i++, rmp++) {
386 		if (family == rmp->rm_family &&
387 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
388 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
389 			cpi->cpi_chiprev = rmp->rm_chiprev;
390 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
391 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
392 			return;
393 		}
394 	}
395 }
396 
397 static void
398 synth_info(struct cpuid_info *cpi)
399 {
400 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
401 	cpi->cpi_chiprevstr = "Unknown";
402 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
403 
404 	switch (cpi->cpi_vendor) {
405 	case X86_VENDOR_AMD:
406 		synth_amd_info(cpi);
407 		break;
408 
409 	default:
410 		break;
411 
412 	}
413 }
414 
415 /*
416  * Apply up various platform-dependent restrictions where the
417  * underlying platform restrictions mean the CPU can be marked
418  * as less capable than its cpuid instruction would imply.
419  */
420 #if defined(__xpv)
421 static void
422 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
423 {
424 	switch (eax) {
425 	case 1:
426 		cp->cp_edx &=
427 		    ~(CPUID_INTC_EDX_PSE |
428 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
429 		    CPUID_INTC_EDX_MCA |	/* XXPV true on dom0? */
430 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
431 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
432 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
433 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
434 		break;
435 
436 	case 0x80000001:
437 		cp->cp_edx &=
438 		    ~(CPUID_AMD_EDX_PSE |
439 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
440 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
441 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
442 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
443 		    CPUID_AMD_EDX_TSCP);
444 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	switch (vendor) {
451 	case X86_VENDOR_Intel:
452 		switch (eax) {
453 		case 4:
454 			/*
455 			 * Zero out the (ncores-per-chip - 1) field
456 			 */
457 			cp->cp_eax &= 0x03fffffff;
458 			break;
459 		default:
460 			break;
461 		}
462 		break;
463 	case X86_VENDOR_AMD:
464 		switch (eax) {
465 		case 0x80000008:
466 			/*
467 			 * Zero out the (ncores-per-chip - 1) field
468 			 */
469 			cp->cp_ecx &= 0xffffff00;
470 			break;
471 		default:
472 			break;
473 		}
474 		break;
475 	default:
476 		break;
477 	}
478 }
479 #else
480 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
481 #endif
482 
483 /*
484  *  Some undocumented ways of patching the results of the cpuid
485  *  instruction to permit running Solaris 10 on future cpus that
486  *  we don't currently support.  Could be set to non-zero values
487  *  via settings in eeprom.
488  */
489 
490 uint32_t cpuid_feature_ecx_include;
491 uint32_t cpuid_feature_ecx_exclude;
492 uint32_t cpuid_feature_edx_include;
493 uint32_t cpuid_feature_edx_exclude;
494 
495 void
496 cpuid_alloc_space(cpu_t *cpu)
497 {
498 	/*
499 	 * By convention, cpu0 is the boot cpu, which is set up
500 	 * before memory allocation is available.  All other cpus get
501 	 * their cpuid_info struct allocated here.
502 	 */
503 	ASSERT(cpu->cpu_id != 0);
504 	cpu->cpu_m.mcpu_cpi =
505 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
506 }
507 
508 void
509 cpuid_free_space(cpu_t *cpu)
510 {
511 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
512 	int i;
513 
514 	ASSERT(cpu->cpu_id != 0);
515 
516 	/*
517 	 * Free up any function 4 related dynamic storage
518 	 */
519 	for (i = 1; i < cpi->cpi_std_4_size; i++)
520 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
521 	if (cpi->cpi_std_4_size > 0)
522 		kmem_free(cpi->cpi_std_4,
523 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
524 
525 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
526 }
527 
528 uint_t
529 cpuid_pass1(cpu_t *cpu)
530 {
531 	uint32_t mask_ecx, mask_edx;
532 	uint_t feature = X86_CPUID;
533 	struct cpuid_info *cpi;
534 	struct cpuid_regs *cp;
535 	int xcpuid;
536 #if !defined(__xpv)
537 	extern int idle_cpu_prefer_mwait;
538 #endif
539 
540 	/*
541 	 * Space statically allocated for cpu0, ensure pointer is set
542 	 */
543 	if (cpu->cpu_id == 0)
544 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
545 	cpi = cpu->cpu_m.mcpu_cpi;
546 	ASSERT(cpi != NULL);
547 	cp = &cpi->cpi_std[0];
548 	cp->cp_eax = 0;
549 	cpi->cpi_maxeax = __cpuid_insn(cp);
550 	{
551 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
552 		*iptr++ = cp->cp_ebx;
553 		*iptr++ = cp->cp_edx;
554 		*iptr++ = cp->cp_ecx;
555 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
556 	}
557 
558 	/*
559 	 * Map the vendor string to a type code
560 	 */
561 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
562 		cpi->cpi_vendor = X86_VENDOR_Intel;
563 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
564 		cpi->cpi_vendor = X86_VENDOR_AMD;
565 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
566 		cpi->cpi_vendor = X86_VENDOR_TM;
567 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
568 		/*
569 		 * CyrixInstead is a variable used by the Cyrix detection code
570 		 * in locore.
571 		 */
572 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
573 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
574 		cpi->cpi_vendor = X86_VENDOR_UMC;
575 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
576 		cpi->cpi_vendor = X86_VENDOR_NexGen;
577 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
578 		cpi->cpi_vendor = X86_VENDOR_Centaur;
579 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
580 		cpi->cpi_vendor = X86_VENDOR_Rise;
581 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
582 		cpi->cpi_vendor = X86_VENDOR_SiS;
583 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
584 		cpi->cpi_vendor = X86_VENDOR_NSC;
585 	else
586 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
587 
588 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
589 
590 	/*
591 	 * Limit the range in case of weird hardware
592 	 */
593 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
594 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
595 	if (cpi->cpi_maxeax < 1)
596 		goto pass1_done;
597 
598 	cp = &cpi->cpi_std[1];
599 	cp->cp_eax = 1;
600 	(void) __cpuid_insn(cp);
601 
602 	/*
603 	 * Extract identifying constants for easy access.
604 	 */
605 	cpi->cpi_model = CPI_MODEL(cpi);
606 	cpi->cpi_family = CPI_FAMILY(cpi);
607 
608 	if (cpi->cpi_family == 0xf)
609 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
610 
611 	/*
612 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
613 	 * Intel, and presumably everyone else, uses model == 0xf, as
614 	 * one would expect (max value means possible overflow).  Sigh.
615 	 */
616 
617 	switch (cpi->cpi_vendor) {
618 	case X86_VENDOR_Intel:
619 		if (IS_EXTENDED_MODEL_INTEL(cpi))
620 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
621 		break;
622 	case X86_VENDOR_AMD:
623 		if (CPI_FAMILY(cpi) == 0xf)
624 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
625 		break;
626 	default:
627 		if (cpi->cpi_model == 0xf)
628 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
629 		break;
630 	}
631 
632 	cpi->cpi_step = CPI_STEP(cpi);
633 	cpi->cpi_brandid = CPI_BRANDID(cpi);
634 
635 	/*
636 	 * *default* assumptions:
637 	 * - believe %edx feature word
638 	 * - ignore %ecx feature word
639 	 * - 32-bit virtual and physical addressing
640 	 */
641 	mask_edx = 0xffffffff;
642 	mask_ecx = 0;
643 
644 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
645 
646 	switch (cpi->cpi_vendor) {
647 	case X86_VENDOR_Intel:
648 		if (cpi->cpi_family == 5)
649 			x86_type = X86_TYPE_P5;
650 		else if (IS_LEGACY_P6(cpi)) {
651 			x86_type = X86_TYPE_P6;
652 			pentiumpro_bug4046376 = 1;
653 			pentiumpro_bug4064495 = 1;
654 			/*
655 			 * Clear the SEP bit when it was set erroneously
656 			 */
657 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
658 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
659 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
660 			x86_type = X86_TYPE_P4;
661 			/*
662 			 * We don't currently depend on any of the %ecx
663 			 * features until Prescott, so we'll only check
664 			 * this from P4 onwards.  We might want to revisit
665 			 * that idea later.
666 			 */
667 			mask_ecx = 0xffffffff;
668 		} else if (cpi->cpi_family > 0xf)
669 			mask_ecx = 0xffffffff;
670 		/*
671 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
672 		 * to obtain the monitor linesize.
673 		 */
674 		if (cpi->cpi_maxeax < 5)
675 			mask_ecx &= ~CPUID_INTC_ECX_MON;
676 		break;
677 	case X86_VENDOR_IntelClone:
678 	default:
679 		break;
680 	case X86_VENDOR_AMD:
681 #if defined(OPTERON_ERRATUM_108)
682 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
683 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
684 			cpi->cpi_model = 0xc;
685 		} else
686 #endif
687 		if (cpi->cpi_family == 5) {
688 			/*
689 			 * AMD K5 and K6
690 			 *
691 			 * These CPUs have an incomplete implementation
692 			 * of MCA/MCE which we mask away.
693 			 */
694 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
695 
696 			/*
697 			 * Model 0 uses the wrong (APIC) bit
698 			 * to indicate PGE.  Fix it here.
699 			 */
700 			if (cpi->cpi_model == 0) {
701 				if (cp->cp_edx & 0x200) {
702 					cp->cp_edx &= ~0x200;
703 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
704 				}
705 			}
706 
707 			/*
708 			 * Early models had problems w/ MMX; disable.
709 			 */
710 			if (cpi->cpi_model < 6)
711 				mask_edx &= ~CPUID_INTC_EDX_MMX;
712 		}
713 
714 		/*
715 		 * For newer families, SSE3 and CX16, at least, are valid;
716 		 * enable all
717 		 */
718 		if (cpi->cpi_family >= 0xf)
719 			mask_ecx = 0xffffffff;
720 		/*
721 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
722 		 * to obtain the monitor linesize.
723 		 */
724 		if (cpi->cpi_maxeax < 5)
725 			mask_ecx &= ~CPUID_INTC_ECX_MON;
726 
727 #if !defined(__xpv)
728 		/*
729 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
730 		 * processors.  AMD does not intend MWAIT to be used in the cpu
731 		 * idle loop on current and future processors.  10h and future
732 		 * AMD processors use more power in MWAIT than HLT.
733 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
734 		 */
735 		idle_cpu_prefer_mwait = 0;
736 #endif
737 
738 		break;
739 	case X86_VENDOR_TM:
740 		/*
741 		 * workaround the NT workaround in CMS 4.1
742 		 */
743 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
744 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
745 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
746 		break;
747 	case X86_VENDOR_Centaur:
748 		/*
749 		 * workaround the NT workarounds again
750 		 */
751 		if (cpi->cpi_family == 6)
752 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
753 		break;
754 	case X86_VENDOR_Cyrix:
755 		/*
756 		 * We rely heavily on the probing in locore
757 		 * to actually figure out what parts, if any,
758 		 * of the Cyrix cpuid instruction to believe.
759 		 */
760 		switch (x86_type) {
761 		case X86_TYPE_CYRIX_486:
762 			mask_edx = 0;
763 			break;
764 		case X86_TYPE_CYRIX_6x86:
765 			mask_edx = 0;
766 			break;
767 		case X86_TYPE_CYRIX_6x86L:
768 			mask_edx =
769 			    CPUID_INTC_EDX_DE |
770 			    CPUID_INTC_EDX_CX8;
771 			break;
772 		case X86_TYPE_CYRIX_6x86MX:
773 			mask_edx =
774 			    CPUID_INTC_EDX_DE |
775 			    CPUID_INTC_EDX_MSR |
776 			    CPUID_INTC_EDX_CX8 |
777 			    CPUID_INTC_EDX_PGE |
778 			    CPUID_INTC_EDX_CMOV |
779 			    CPUID_INTC_EDX_MMX;
780 			break;
781 		case X86_TYPE_CYRIX_GXm:
782 			mask_edx =
783 			    CPUID_INTC_EDX_MSR |
784 			    CPUID_INTC_EDX_CX8 |
785 			    CPUID_INTC_EDX_CMOV |
786 			    CPUID_INTC_EDX_MMX;
787 			break;
788 		case X86_TYPE_CYRIX_MediaGX:
789 			break;
790 		case X86_TYPE_CYRIX_MII:
791 		case X86_TYPE_VIA_CYRIX_III:
792 			mask_edx =
793 			    CPUID_INTC_EDX_DE |
794 			    CPUID_INTC_EDX_TSC |
795 			    CPUID_INTC_EDX_MSR |
796 			    CPUID_INTC_EDX_CX8 |
797 			    CPUID_INTC_EDX_PGE |
798 			    CPUID_INTC_EDX_CMOV |
799 			    CPUID_INTC_EDX_MMX;
800 			break;
801 		default:
802 			break;
803 		}
804 		break;
805 	}
806 
807 #if defined(__xpv)
808 	/*
809 	 * Do not support MONITOR/MWAIT under a hypervisor
810 	 */
811 	mask_ecx &= ~CPUID_INTC_ECX_MON;
812 #endif	/* __xpv */
813 
814 	/*
815 	 * Now we've figured out the masks that determine
816 	 * which bits we choose to believe, apply the masks
817 	 * to the feature words, then map the kernel's view
818 	 * of these feature words into its feature word.
819 	 */
820 	cp->cp_edx &= mask_edx;
821 	cp->cp_ecx &= mask_ecx;
822 
823 	/*
824 	 * apply any platform restrictions (we don't call this
825 	 * immediately after __cpuid_insn here, because we need the
826 	 * workarounds applied above first)
827 	 */
828 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
829 
830 	/*
831 	 * fold in overrides from the "eeprom" mechanism
832 	 */
833 	cp->cp_edx |= cpuid_feature_edx_include;
834 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
835 
836 	cp->cp_ecx |= cpuid_feature_ecx_include;
837 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
838 
839 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
840 		feature |= X86_LARGEPAGE;
841 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
842 		feature |= X86_TSC;
843 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
844 		feature |= X86_MSR;
845 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
846 		feature |= X86_MTRR;
847 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
848 		feature |= X86_PGE;
849 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
850 		feature |= X86_CMOV;
851 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
852 		feature |= X86_MMX;
853 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
854 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
855 		feature |= X86_MCA;
856 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
857 		feature |= X86_PAE;
858 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
859 		feature |= X86_CX8;
860 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
861 		feature |= X86_CX16;
862 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
863 		feature |= X86_PAT;
864 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
865 		feature |= X86_SEP;
866 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
867 		/*
868 		 * In our implementation, fxsave/fxrstor
869 		 * are prerequisites before we'll even
870 		 * try and do SSE things.
871 		 */
872 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
873 			feature |= X86_SSE;
874 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
875 			feature |= X86_SSE2;
876 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
877 			feature |= X86_SSE3;
878 	}
879 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
880 		feature |= X86_DE;
881 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
882 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
883 		feature |= X86_MWAIT;
884 	}
885 
886 	if (feature & X86_PAE)
887 		cpi->cpi_pabits = 36;
888 
889 	/*
890 	 * Hyperthreading configuration is slightly tricky on Intel
891 	 * and pure clones, and even trickier on AMD.
892 	 *
893 	 * (AMD chose to set the HTT bit on their CMP processors,
894 	 * even though they're not actually hyperthreaded.  Thus it
895 	 * takes a bit more work to figure out what's really going
896 	 * on ... see the handling of the CMP_LGCY bit below)
897 	 */
898 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
899 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
900 		if (cpi->cpi_ncpu_per_chip > 1)
901 			feature |= X86_HTT;
902 	} else {
903 		cpi->cpi_ncpu_per_chip = 1;
904 	}
905 
906 	/*
907 	 * Work on the "extended" feature information, doing
908 	 * some basic initialization for cpuid_pass2()
909 	 */
910 	xcpuid = 0;
911 	switch (cpi->cpi_vendor) {
912 	case X86_VENDOR_Intel:
913 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
914 			xcpuid++;
915 		break;
916 	case X86_VENDOR_AMD:
917 		if (cpi->cpi_family > 5 ||
918 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
919 			xcpuid++;
920 		break;
921 	case X86_VENDOR_Cyrix:
922 		/*
923 		 * Only these Cyrix CPUs are -known- to support
924 		 * extended cpuid operations.
925 		 */
926 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
927 		    x86_type == X86_TYPE_CYRIX_GXm)
928 			xcpuid++;
929 		break;
930 	case X86_VENDOR_Centaur:
931 	case X86_VENDOR_TM:
932 	default:
933 		xcpuid++;
934 		break;
935 	}
936 
937 	if (xcpuid) {
938 		cp = &cpi->cpi_extd[0];
939 		cp->cp_eax = 0x80000000;
940 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
941 	}
942 
943 	if (cpi->cpi_xmaxeax & 0x80000000) {
944 
945 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
946 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
947 
948 		switch (cpi->cpi_vendor) {
949 		case X86_VENDOR_Intel:
950 		case X86_VENDOR_AMD:
951 			if (cpi->cpi_xmaxeax < 0x80000001)
952 				break;
953 			cp = &cpi->cpi_extd[1];
954 			cp->cp_eax = 0x80000001;
955 			(void) __cpuid_insn(cp);
956 
957 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
958 			    cpi->cpi_family == 5 &&
959 			    cpi->cpi_model == 6 &&
960 			    cpi->cpi_step == 6) {
961 				/*
962 				 * K6 model 6 uses bit 10 to indicate SYSC
963 				 * Later models use bit 11. Fix it here.
964 				 */
965 				if (cp->cp_edx & 0x400) {
966 					cp->cp_edx &= ~0x400;
967 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
968 				}
969 			}
970 
971 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
972 
973 			/*
974 			 * Compute the additions to the kernel's feature word.
975 			 */
976 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
977 				feature |= X86_NX;
978 
979 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
980 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
981 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
982 				feature |= X86_SSE4A;
983 
984 			/*
985 			 * If both the HTT and CMP_LGCY bits are set,
986 			 * then we're not actually HyperThreaded.  Read
987 			 * "AMD CPUID Specification" for more details.
988 			 */
989 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
990 			    (feature & X86_HTT) &&
991 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
992 				feature &= ~X86_HTT;
993 				feature |= X86_CMP;
994 			}
995 #if defined(__amd64)
996 			/*
997 			 * It's really tricky to support syscall/sysret in
998 			 * the i386 kernel; we rely on sysenter/sysexit
999 			 * instead.  In the amd64 kernel, things are -way-
1000 			 * better.
1001 			 */
1002 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
1003 				feature |= X86_ASYSC;
1004 
1005 			/*
1006 			 * While we're thinking about system calls, note
1007 			 * that AMD processors don't support sysenter
1008 			 * in long mode at all, so don't try to program them.
1009 			 */
1010 			if (x86_vendor == X86_VENDOR_AMD)
1011 				feature &= ~X86_SEP;
1012 #endif
1013 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
1014 				feature |= X86_TSCP;
1015 			break;
1016 		default:
1017 			break;
1018 		}
1019 
1020 		/*
1021 		 * Get CPUID data about processor cores and hyperthreads.
1022 		 */
1023 		switch (cpi->cpi_vendor) {
1024 		case X86_VENDOR_Intel:
1025 			if (cpi->cpi_maxeax >= 4) {
1026 				cp = &cpi->cpi_std[4];
1027 				cp->cp_eax = 4;
1028 				cp->cp_ecx = 0;
1029 				(void) __cpuid_insn(cp);
1030 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1031 			}
1032 			/*FALLTHROUGH*/
1033 		case X86_VENDOR_AMD:
1034 			if (cpi->cpi_xmaxeax < 0x80000008)
1035 				break;
1036 			cp = &cpi->cpi_extd[8];
1037 			cp->cp_eax = 0x80000008;
1038 			(void) __cpuid_insn(cp);
1039 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1040 
1041 			/*
1042 			 * Virtual and physical address limits from
1043 			 * cpuid override previously guessed values.
1044 			 */
1045 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1046 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1047 			break;
1048 		default:
1049 			break;
1050 		}
1051 
1052 		/*
1053 		 * Derive the number of cores per chip
1054 		 */
1055 		switch (cpi->cpi_vendor) {
1056 		case X86_VENDOR_Intel:
1057 			if (cpi->cpi_maxeax < 4) {
1058 				cpi->cpi_ncore_per_chip = 1;
1059 				break;
1060 			} else {
1061 				cpi->cpi_ncore_per_chip =
1062 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1063 			}
1064 			break;
1065 		case X86_VENDOR_AMD:
1066 			if (cpi->cpi_xmaxeax < 0x80000008) {
1067 				cpi->cpi_ncore_per_chip = 1;
1068 				break;
1069 			} else {
1070 				cpi->cpi_ncore_per_chip =
1071 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1072 			}
1073 			break;
1074 		default:
1075 			cpi->cpi_ncore_per_chip = 1;
1076 			break;
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * If more than one core, then this processor is CMP.
1082 	 */
1083 	if (cpi->cpi_ncore_per_chip > 1)
1084 		feature |= X86_CMP;
1085 
1086 	/*
1087 	 * If the number of cores is the same as the number
1088 	 * of CPUs, then we cannot have HyperThreading.
1089 	 */
1090 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1091 		feature &= ~X86_HTT;
1092 
1093 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1094 		/*
1095 		 * Single-core single-threaded processors.
1096 		 */
1097 		cpi->cpi_chipid = -1;
1098 		cpi->cpi_clogid = 0;
1099 		cpi->cpi_coreid = cpu->cpu_id;
1100 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1101 		uint_t i;
1102 		uint_t chipid_shift = 0;
1103 		uint_t coreid_shift = 0;
1104 		uint_t apic_id = CPI_APIC_ID(cpi);
1105 
1106 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1107 			chipid_shift++;
1108 		cpi->cpi_chipid = apic_id >> chipid_shift;
1109 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1110 
1111 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1112 			if (feature & X86_CMP) {
1113 				/*
1114 				 * Multi-core (and possibly multi-threaded)
1115 				 * processors.
1116 				 */
1117 				uint_t ncpu_per_core;
1118 				if (cpi->cpi_ncore_per_chip == 1)
1119 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1120 				else if (cpi->cpi_ncore_per_chip > 1)
1121 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1122 					    cpi->cpi_ncore_per_chip;
1123 				/*
1124 				 * 8bit APIC IDs on dual core Pentiums
1125 				 * look like this:
1126 				 *
1127 				 * +-----------------------+------+------+
1128 				 * | Physical Package ID   |  MC  |  HT  |
1129 				 * +-----------------------+------+------+
1130 				 * <------- chipid -------->
1131 				 * <------- coreid --------------->
1132 				 *			   <--- clogid -->
1133 				 *
1134 				 * Where the number of bits necessary to
1135 				 * represent MC and HT fields together equals
1136 				 * to the minimum number of bits necessary to
1137 				 * store the value of cpi->cpi_ncpu_per_chip.
1138 				 * Of those bits, the MC part uses the number
1139 				 * of bits necessary to store the value of
1140 				 * cpi->cpi_ncore_per_chip.
1141 				 */
1142 				for (i = 1; i < ncpu_per_core; i <<= 1)
1143 					coreid_shift++;
1144 				cpi->cpi_coreid = apic_id >> coreid_shift;
1145 			} else if (feature & X86_HTT) {
1146 				/*
1147 				 * Single-core multi-threaded processors.
1148 				 */
1149 				cpi->cpi_coreid = cpi->cpi_chipid;
1150 			}
1151 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1152 			/*
1153 			 * AMD currently only has dual-core processors with
1154 			 * single-threaded cores.  If they ever release
1155 			 * multi-threaded processors, then this code
1156 			 * will have to be updated.
1157 			 */
1158 			cpi->cpi_coreid = cpu->cpu_id;
1159 		} else {
1160 			/*
1161 			 * All other processors are currently
1162 			 * assumed to have single cores.
1163 			 */
1164 			cpi->cpi_coreid = cpi->cpi_chipid;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Synthesize chip "revision" and socket type
1170 	 */
1171 	synth_info(cpi);
1172 
1173 pass1_done:
1174 	cpi->cpi_pass = 1;
1175 	return (feature);
1176 }
1177 
1178 /*
1179  * Make copies of the cpuid table entries we depend on, in
1180  * part for ease of parsing now, in part so that we have only
1181  * one place to correct any of it, in part for ease of
1182  * later export to userland, and in part so we can look at
1183  * this stuff in a crash dump.
1184  */
1185 
1186 /*ARGSUSED*/
1187 void
1188 cpuid_pass2(cpu_t *cpu)
1189 {
1190 	uint_t n, nmax;
1191 	int i;
1192 	struct cpuid_regs *cp;
1193 	uint8_t *dp;
1194 	uint32_t *iptr;
1195 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1196 
1197 	ASSERT(cpi->cpi_pass == 1);
1198 
1199 	if (cpi->cpi_maxeax < 1)
1200 		goto pass2_done;
1201 
1202 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1203 		nmax = NMAX_CPI_STD;
1204 	/*
1205 	 * (We already handled n == 0 and n == 1 in pass 1)
1206 	 */
1207 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1208 		cp->cp_eax = n;
1209 
1210 		/*
1211 		 * CPUID function 4 expects %ecx to be initialized
1212 		 * with an index which indicates which cache to return
1213 		 * information about. The OS is expected to call function 4
1214 		 * with %ecx set to 0, 1, 2, ... until it returns with
1215 		 * EAX[4:0] set to 0, which indicates there are no more
1216 		 * caches.
1217 		 *
1218 		 * Here, populate cpi_std[4] with the information returned by
1219 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1220 		 * when dynamic memory allocation becomes available.
1221 		 *
1222 		 * Note: we need to explicitly initialize %ecx here, since
1223 		 * function 4 may have been previously invoked.
1224 		 */
1225 		if (n == 4)
1226 			cp->cp_ecx = 0;
1227 
1228 		(void) __cpuid_insn(cp);
1229 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1230 		switch (n) {
1231 		case 2:
1232 			/*
1233 			 * "the lower 8 bits of the %eax register
1234 			 * contain a value that identifies the number
1235 			 * of times the cpuid [instruction] has to be
1236 			 * executed to obtain a complete image of the
1237 			 * processor's caching systems."
1238 			 *
1239 			 * How *do* they make this stuff up?
1240 			 */
1241 			cpi->cpi_ncache = sizeof (*cp) *
1242 			    BITX(cp->cp_eax, 7, 0);
1243 			if (cpi->cpi_ncache == 0)
1244 				break;
1245 			cpi->cpi_ncache--;	/* skip count byte */
1246 
1247 			/*
1248 			 * Well, for now, rather than attempt to implement
1249 			 * this slightly dubious algorithm, we just look
1250 			 * at the first 15 ..
1251 			 */
1252 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1253 				cpi->cpi_ncache = sizeof (*cp) - 1;
1254 
1255 			dp = cpi->cpi_cacheinfo;
1256 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1257 				uint8_t *p = (void *)&cp->cp_eax;
1258 				for (i = 1; i < 3; i++)
1259 					if (p[i] != 0)
1260 						*dp++ = p[i];
1261 			}
1262 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1263 				uint8_t *p = (void *)&cp->cp_ebx;
1264 				for (i = 0; i < 4; i++)
1265 					if (p[i] != 0)
1266 						*dp++ = p[i];
1267 			}
1268 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1269 				uint8_t *p = (void *)&cp->cp_ecx;
1270 				for (i = 0; i < 4; i++)
1271 					if (p[i] != 0)
1272 						*dp++ = p[i];
1273 			}
1274 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1275 				uint8_t *p = (void *)&cp->cp_edx;
1276 				for (i = 0; i < 4; i++)
1277 					if (p[i] != 0)
1278 						*dp++ = p[i];
1279 			}
1280 			break;
1281 
1282 		case 3:	/* Processor serial number, if PSN supported */
1283 			break;
1284 
1285 		case 4:	/* Deterministic cache parameters */
1286 			break;
1287 
1288 		case 5:	/* Monitor/Mwait parameters */
1289 		{
1290 			size_t mwait_size;
1291 
1292 			/*
1293 			 * check cpi_mwait.support which was set in cpuid_pass1
1294 			 */
1295 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1296 				break;
1297 
1298 			/*
1299 			 * Protect ourself from insane mwait line size.
1300 			 * Workaround for incomplete hardware emulator(s).
1301 			 */
1302 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1303 			if (mwait_size < sizeof (uint32_t) ||
1304 			    !ISP2(mwait_size)) {
1305 #if DEBUG
1306 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1307 				    "size %ld",
1308 				    cpu->cpu_id, (long)mwait_size);
1309 #endif
1310 				break;
1311 			}
1312 
1313 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1314 			cpi->cpi_mwait.mon_max = mwait_size;
1315 			if (MWAIT_EXTENSION(cpi)) {
1316 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1317 				if (MWAIT_INT_ENABLE(cpi))
1318 					cpi->cpi_mwait.support |=
1319 					    MWAIT_ECX_INT_ENABLE;
1320 			}
1321 			break;
1322 		}
1323 		default:
1324 			break;
1325 		}
1326 	}
1327 
1328 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1329 		goto pass2_done;
1330 
1331 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1332 		nmax = NMAX_CPI_EXTD;
1333 	/*
1334 	 * Copy the extended properties, fixing them as we go.
1335 	 * (We already handled n == 0 and n == 1 in pass 1)
1336 	 */
1337 	iptr = (void *)cpi->cpi_brandstr;
1338 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1339 		cp->cp_eax = 0x80000000 + n;
1340 		(void) __cpuid_insn(cp);
1341 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1342 		switch (n) {
1343 		case 2:
1344 		case 3:
1345 		case 4:
1346 			/*
1347 			 * Extract the brand string
1348 			 */
1349 			*iptr++ = cp->cp_eax;
1350 			*iptr++ = cp->cp_ebx;
1351 			*iptr++ = cp->cp_ecx;
1352 			*iptr++ = cp->cp_edx;
1353 			break;
1354 		case 5:
1355 			switch (cpi->cpi_vendor) {
1356 			case X86_VENDOR_AMD:
1357 				/*
1358 				 * The Athlon and Duron were the first
1359 				 * parts to report the sizes of the
1360 				 * TLB for large pages. Before then,
1361 				 * we don't trust the data.
1362 				 */
1363 				if (cpi->cpi_family < 6 ||
1364 				    (cpi->cpi_family == 6 &&
1365 				    cpi->cpi_model < 1))
1366 					cp->cp_eax = 0;
1367 				break;
1368 			default:
1369 				break;
1370 			}
1371 			break;
1372 		case 6:
1373 			switch (cpi->cpi_vendor) {
1374 			case X86_VENDOR_AMD:
1375 				/*
1376 				 * The Athlon and Duron were the first
1377 				 * AMD parts with L2 TLB's.
1378 				 * Before then, don't trust the data.
1379 				 */
1380 				if (cpi->cpi_family < 6 ||
1381 				    cpi->cpi_family == 6 &&
1382 				    cpi->cpi_model < 1)
1383 					cp->cp_eax = cp->cp_ebx = 0;
1384 				/*
1385 				 * AMD Duron rev A0 reports L2
1386 				 * cache size incorrectly as 1K
1387 				 * when it is really 64K
1388 				 */
1389 				if (cpi->cpi_family == 6 &&
1390 				    cpi->cpi_model == 3 &&
1391 				    cpi->cpi_step == 0) {
1392 					cp->cp_ecx &= 0xffff;
1393 					cp->cp_ecx |= 0x400000;
1394 				}
1395 				break;
1396 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1397 				/*
1398 				 * VIA C3 processors are a bit messed
1399 				 * up w.r.t. encoding cache sizes in %ecx
1400 				 */
1401 				if (cpi->cpi_family != 6)
1402 					break;
1403 				/*
1404 				 * model 7 and 8 were incorrectly encoded
1405 				 *
1406 				 * xxx is model 8 really broken?
1407 				 */
1408 				if (cpi->cpi_model == 7 ||
1409 				    cpi->cpi_model == 8)
1410 					cp->cp_ecx =
1411 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1412 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1413 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1414 					    BITX(cp->cp_ecx, 7, 0);
1415 				/*
1416 				 * model 9 stepping 1 has wrong associativity
1417 				 */
1418 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1419 					cp->cp_ecx |= 8 << 12;
1420 				break;
1421 			case X86_VENDOR_Intel:
1422 				/*
1423 				 * Extended L2 Cache features function.
1424 				 * First appeared on Prescott.
1425 				 */
1426 			default:
1427 				break;
1428 			}
1429 			break;
1430 		default:
1431 			break;
1432 		}
1433 	}
1434 
1435 pass2_done:
1436 	cpi->cpi_pass = 2;
1437 }
1438 
1439 static const char *
1440 intel_cpubrand(const struct cpuid_info *cpi)
1441 {
1442 	int i;
1443 
1444 	if ((x86_feature & X86_CPUID) == 0 ||
1445 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1446 		return ("i486");
1447 
1448 	switch (cpi->cpi_family) {
1449 	case 5:
1450 		return ("Intel Pentium(r)");
1451 	case 6:
1452 		switch (cpi->cpi_model) {
1453 			uint_t celeron, xeon;
1454 			const struct cpuid_regs *cp;
1455 		case 0:
1456 		case 1:
1457 		case 2:
1458 			return ("Intel Pentium(r) Pro");
1459 		case 3:
1460 		case 4:
1461 			return ("Intel Pentium(r) II");
1462 		case 6:
1463 			return ("Intel Celeron(r)");
1464 		case 5:
1465 		case 7:
1466 			celeron = xeon = 0;
1467 			cp = &cpi->cpi_std[2];	/* cache info */
1468 
1469 			for (i = 1; i < 3; i++) {
1470 				uint_t tmp;
1471 
1472 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1473 				if (tmp == 0x40)
1474 					celeron++;
1475 				if (tmp >= 0x44 && tmp <= 0x45)
1476 					xeon++;
1477 			}
1478 
1479 			for (i = 0; i < 2; i++) {
1480 				uint_t tmp;
1481 
1482 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1483 				if (tmp == 0x40)
1484 					celeron++;
1485 				else if (tmp >= 0x44 && tmp <= 0x45)
1486 					xeon++;
1487 			}
1488 
1489 			for (i = 0; i < 4; i++) {
1490 				uint_t tmp;
1491 
1492 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1493 				if (tmp == 0x40)
1494 					celeron++;
1495 				else if (tmp >= 0x44 && tmp <= 0x45)
1496 					xeon++;
1497 			}
1498 
1499 			for (i = 0; i < 4; i++) {
1500 				uint_t tmp;
1501 
1502 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1503 				if (tmp == 0x40)
1504 					celeron++;
1505 				else if (tmp >= 0x44 && tmp <= 0x45)
1506 					xeon++;
1507 			}
1508 
1509 			if (celeron)
1510 				return ("Intel Celeron(r)");
1511 			if (xeon)
1512 				return (cpi->cpi_model == 5 ?
1513 				    "Intel Pentium(r) II Xeon(tm)" :
1514 				    "Intel Pentium(r) III Xeon(tm)");
1515 			return (cpi->cpi_model == 5 ?
1516 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1517 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1518 		default:
1519 			break;
1520 		}
1521 	default:
1522 		break;
1523 	}
1524 
1525 	/* BrandID is present if the field is nonzero */
1526 	if (cpi->cpi_brandid != 0) {
1527 		static const struct {
1528 			uint_t bt_bid;
1529 			const char *bt_str;
1530 		} brand_tbl[] = {
1531 			{ 0x1,	"Intel(r) Celeron(r)" },
1532 			{ 0x2,	"Intel(r) Pentium(r) III" },
1533 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1534 			{ 0x4,	"Intel(r) Pentium(r) III" },
1535 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1536 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1537 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1538 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1539 			{ 0xa,	"Intel(r) Celeron(r)" },
1540 			{ 0xb,	"Intel(r) Xeon(tm)" },
1541 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1542 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1543 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1544 			{ 0x11, "Mobile Genuine Intel(r)" },
1545 			{ 0x12, "Intel(r) Celeron(r) M" },
1546 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1547 			{ 0x14, "Intel(r) Celeron(r)" },
1548 			{ 0x15, "Mobile Genuine Intel(r)" },
1549 			{ 0x16,	"Intel(r) Pentium(r) M" },
1550 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1551 		};
1552 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1553 		uint_t sgn;
1554 
1555 		sgn = (cpi->cpi_family << 8) |
1556 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1557 
1558 		for (i = 0; i < btblmax; i++)
1559 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1560 				break;
1561 		if (i < btblmax) {
1562 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1563 				return ("Intel(r) Celeron(r)");
1564 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1565 				return ("Intel(r) Xeon(tm) MP");
1566 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1567 				return ("Intel(r) Xeon(tm)");
1568 			return (brand_tbl[i].bt_str);
1569 		}
1570 	}
1571 
1572 	return (NULL);
1573 }
1574 
1575 static const char *
1576 amd_cpubrand(const struct cpuid_info *cpi)
1577 {
1578 	if ((x86_feature & X86_CPUID) == 0 ||
1579 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1580 		return ("i486 compatible");
1581 
1582 	switch (cpi->cpi_family) {
1583 	case 5:
1584 		switch (cpi->cpi_model) {
1585 		case 0:
1586 		case 1:
1587 		case 2:
1588 		case 3:
1589 		case 4:
1590 		case 5:
1591 			return ("AMD-K5(r)");
1592 		case 6:
1593 		case 7:
1594 			return ("AMD-K6(r)");
1595 		case 8:
1596 			return ("AMD-K6(r)-2");
1597 		case 9:
1598 			return ("AMD-K6(r)-III");
1599 		default:
1600 			return ("AMD (family 5)");
1601 		}
1602 	case 6:
1603 		switch (cpi->cpi_model) {
1604 		case 1:
1605 			return ("AMD-K7(tm)");
1606 		case 0:
1607 		case 2:
1608 		case 4:
1609 			return ("AMD Athlon(tm)");
1610 		case 3:
1611 		case 7:
1612 			return ("AMD Duron(tm)");
1613 		case 6:
1614 		case 8:
1615 		case 10:
1616 			/*
1617 			 * Use the L2 cache size to distinguish
1618 			 */
1619 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1620 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1621 		default:
1622 			return ("AMD (family 6)");
1623 		}
1624 	default:
1625 		break;
1626 	}
1627 
1628 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1629 	    cpi->cpi_brandid != 0) {
1630 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1631 		case 3:
1632 			return ("AMD Opteron(tm) UP 1xx");
1633 		case 4:
1634 			return ("AMD Opteron(tm) DP 2xx");
1635 		case 5:
1636 			return ("AMD Opteron(tm) MP 8xx");
1637 		default:
1638 			return ("AMD Opteron(tm)");
1639 		}
1640 	}
1641 
1642 	return (NULL);
1643 }
1644 
1645 static const char *
1646 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1647 {
1648 	if ((x86_feature & X86_CPUID) == 0 ||
1649 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1650 	    type == X86_TYPE_CYRIX_486)
1651 		return ("i486 compatible");
1652 
1653 	switch (type) {
1654 	case X86_TYPE_CYRIX_6x86:
1655 		return ("Cyrix 6x86");
1656 	case X86_TYPE_CYRIX_6x86L:
1657 		return ("Cyrix 6x86L");
1658 	case X86_TYPE_CYRIX_6x86MX:
1659 		return ("Cyrix 6x86MX");
1660 	case X86_TYPE_CYRIX_GXm:
1661 		return ("Cyrix GXm");
1662 	case X86_TYPE_CYRIX_MediaGX:
1663 		return ("Cyrix MediaGX");
1664 	case X86_TYPE_CYRIX_MII:
1665 		return ("Cyrix M2");
1666 	case X86_TYPE_VIA_CYRIX_III:
1667 		return ("VIA Cyrix M3");
1668 	default:
1669 		/*
1670 		 * Have another wild guess ..
1671 		 */
1672 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1673 			return ("Cyrix 5x86");
1674 		else if (cpi->cpi_family == 5) {
1675 			switch (cpi->cpi_model) {
1676 			case 2:
1677 				return ("Cyrix 6x86");	/* Cyrix M1 */
1678 			case 4:
1679 				return ("Cyrix MediaGX");
1680 			default:
1681 				break;
1682 			}
1683 		} else if (cpi->cpi_family == 6) {
1684 			switch (cpi->cpi_model) {
1685 			case 0:
1686 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1687 			case 5:
1688 			case 6:
1689 			case 7:
1690 			case 8:
1691 			case 9:
1692 				return ("VIA C3");
1693 			default:
1694 				break;
1695 			}
1696 		}
1697 		break;
1698 	}
1699 	return (NULL);
1700 }
1701 
1702 /*
1703  * This only gets called in the case that the CPU extended
1704  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1705  * aren't available, or contain null bytes for some reason.
1706  */
1707 static void
1708 fabricate_brandstr(struct cpuid_info *cpi)
1709 {
1710 	const char *brand = NULL;
1711 
1712 	switch (cpi->cpi_vendor) {
1713 	case X86_VENDOR_Intel:
1714 		brand = intel_cpubrand(cpi);
1715 		break;
1716 	case X86_VENDOR_AMD:
1717 		brand = amd_cpubrand(cpi);
1718 		break;
1719 	case X86_VENDOR_Cyrix:
1720 		brand = cyrix_cpubrand(cpi, x86_type);
1721 		break;
1722 	case X86_VENDOR_NexGen:
1723 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1724 			brand = "NexGen Nx586";
1725 		break;
1726 	case X86_VENDOR_Centaur:
1727 		if (cpi->cpi_family == 5)
1728 			switch (cpi->cpi_model) {
1729 			case 4:
1730 				brand = "Centaur C6";
1731 				break;
1732 			case 8:
1733 				brand = "Centaur C2";
1734 				break;
1735 			case 9:
1736 				brand = "Centaur C3";
1737 				break;
1738 			default:
1739 				break;
1740 			}
1741 		break;
1742 	case X86_VENDOR_Rise:
1743 		if (cpi->cpi_family == 5 &&
1744 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1745 			brand = "Rise mP6";
1746 		break;
1747 	case X86_VENDOR_SiS:
1748 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1749 			brand = "SiS 55x";
1750 		break;
1751 	case X86_VENDOR_TM:
1752 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1753 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1754 		break;
1755 	case X86_VENDOR_NSC:
1756 	case X86_VENDOR_UMC:
1757 	default:
1758 		break;
1759 	}
1760 	if (brand) {
1761 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1762 		return;
1763 	}
1764 
1765 	/*
1766 	 * If all else fails ...
1767 	 */
1768 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1769 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1770 	    cpi->cpi_model, cpi->cpi_step);
1771 }
1772 
1773 /*
1774  * This routine is called just after kernel memory allocation
1775  * becomes available on cpu0, and as part of mp_startup() on
1776  * the other cpus.
1777  *
1778  * Fixup the brand string, and collect any information from cpuid
1779  * that requires dynamicically allocated storage to represent.
1780  */
1781 /*ARGSUSED*/
1782 void
1783 cpuid_pass3(cpu_t *cpu)
1784 {
1785 	int	i, max, shft, level, size;
1786 	struct cpuid_regs regs;
1787 	struct cpuid_regs *cp;
1788 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1789 
1790 	ASSERT(cpi->cpi_pass == 2);
1791 
1792 	/*
1793 	 * Function 4: Deterministic cache parameters
1794 	 *
1795 	 * Take this opportunity to detect the number of threads
1796 	 * sharing the last level cache, and construct a corresponding
1797 	 * cache id. The respective cpuid_info members are initialized
1798 	 * to the default case of "no last level cache sharing".
1799 	 */
1800 	cpi->cpi_ncpu_shr_last_cache = 1;
1801 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1802 
1803 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1804 
1805 		/*
1806 		 * Find the # of elements (size) returned by fn 4, and along
1807 		 * the way detect last level cache sharing details.
1808 		 */
1809 		bzero(&regs, sizeof (regs));
1810 		cp = &regs;
1811 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1812 			cp->cp_eax = 4;
1813 			cp->cp_ecx = i;
1814 
1815 			(void) __cpuid_insn(cp);
1816 
1817 			if (CPI_CACHE_TYPE(cp) == 0)
1818 				break;
1819 			level = CPI_CACHE_LVL(cp);
1820 			if (level > max) {
1821 				max = level;
1822 				cpi->cpi_ncpu_shr_last_cache =
1823 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1824 			}
1825 		}
1826 		cpi->cpi_std_4_size = size = i;
1827 
1828 		/*
1829 		 * Allocate the cpi_std_4 array. The first element
1830 		 * references the regs for fn 4, %ecx == 0, which
1831 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1832 		 */
1833 		if (size > 0) {
1834 			cpi->cpi_std_4 =
1835 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1836 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1837 
1838 			/*
1839 			 * Allocate storage to hold the additional regs
1840 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1841 			 *
1842 			 * The regs for fn 4, %ecx == 0 has already
1843 			 * been allocated as indicated above.
1844 			 */
1845 			for (i = 1; i < size; i++) {
1846 				cp = cpi->cpi_std_4[i] =
1847 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1848 				cp->cp_eax = 4;
1849 				cp->cp_ecx = i;
1850 
1851 				(void) __cpuid_insn(cp);
1852 			}
1853 		}
1854 		/*
1855 		 * Determine the number of bits needed to represent
1856 		 * the number of CPUs sharing the last level cache.
1857 		 *
1858 		 * Shift off that number of bits from the APIC id to
1859 		 * derive the cache id.
1860 		 */
1861 		shft = 0;
1862 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1863 			shft++;
1864 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1865 	}
1866 
1867 	/*
1868 	 * Now fixup the brand string
1869 	 */
1870 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1871 		fabricate_brandstr(cpi);
1872 	} else {
1873 
1874 		/*
1875 		 * If we successfully extracted a brand string from the cpuid
1876 		 * instruction, clean it up by removing leading spaces and
1877 		 * similar junk.
1878 		 */
1879 		if (cpi->cpi_brandstr[0]) {
1880 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1881 			char *src, *dst;
1882 
1883 			dst = src = (char *)cpi->cpi_brandstr;
1884 			src[maxlen - 1] = '\0';
1885 			/*
1886 			 * strip leading spaces
1887 			 */
1888 			while (*src == ' ')
1889 				src++;
1890 			/*
1891 			 * Remove any 'Genuine' or "Authentic" prefixes
1892 			 */
1893 			if (strncmp(src, "Genuine ", 8) == 0)
1894 				src += 8;
1895 			if (strncmp(src, "Authentic ", 10) == 0)
1896 				src += 10;
1897 
1898 			/*
1899 			 * Now do an in-place copy.
1900 			 * Map (R) to (r) and (TM) to (tm).
1901 			 * The era of teletypes is long gone, and there's
1902 			 * -really- no need to shout.
1903 			 */
1904 			while (*src != '\0') {
1905 				if (src[0] == '(') {
1906 					if (strncmp(src + 1, "R)", 2) == 0) {
1907 						(void) strncpy(dst, "(r)", 3);
1908 						src += 3;
1909 						dst += 3;
1910 						continue;
1911 					}
1912 					if (strncmp(src + 1, "TM)", 3) == 0) {
1913 						(void) strncpy(dst, "(tm)", 4);
1914 						src += 4;
1915 						dst += 4;
1916 						continue;
1917 					}
1918 				}
1919 				*dst++ = *src++;
1920 			}
1921 			*dst = '\0';
1922 
1923 			/*
1924 			 * Finally, remove any trailing spaces
1925 			 */
1926 			while (--dst > cpi->cpi_brandstr)
1927 				if (*dst == ' ')
1928 					*dst = '\0';
1929 				else
1930 					break;
1931 		} else
1932 			fabricate_brandstr(cpi);
1933 	}
1934 	cpi->cpi_pass = 3;
1935 }
1936 
1937 /*
1938  * This routine is called out of bind_hwcap() much later in the life
1939  * of the kernel (post_startup()).  The job of this routine is to resolve
1940  * the hardware feature support and kernel support for those features into
1941  * what we're actually going to tell applications via the aux vector.
1942  */
1943 uint_t
1944 cpuid_pass4(cpu_t *cpu)
1945 {
1946 	struct cpuid_info *cpi;
1947 	uint_t hwcap_flags = 0;
1948 
1949 	if (cpu == NULL)
1950 		cpu = CPU;
1951 	cpi = cpu->cpu_m.mcpu_cpi;
1952 
1953 	ASSERT(cpi->cpi_pass == 3);
1954 
1955 	if (cpi->cpi_maxeax >= 1) {
1956 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1957 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1958 
1959 		*edx = CPI_FEATURES_EDX(cpi);
1960 		*ecx = CPI_FEATURES_ECX(cpi);
1961 
1962 		/*
1963 		 * [these require explicit kernel support]
1964 		 */
1965 		if ((x86_feature & X86_SEP) == 0)
1966 			*edx &= ~CPUID_INTC_EDX_SEP;
1967 
1968 		if ((x86_feature & X86_SSE) == 0)
1969 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1970 		if ((x86_feature & X86_SSE2) == 0)
1971 			*edx &= ~CPUID_INTC_EDX_SSE2;
1972 
1973 		if ((x86_feature & X86_HTT) == 0)
1974 			*edx &= ~CPUID_INTC_EDX_HTT;
1975 
1976 		if ((x86_feature & X86_SSE3) == 0)
1977 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1978 
1979 		/*
1980 		 * [no explicit support required beyond x87 fp context]
1981 		 */
1982 		if (!fpu_exists)
1983 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1984 
1985 		/*
1986 		 * Now map the supported feature vector to things that we
1987 		 * think userland will care about.
1988 		 */
1989 		if (*edx & CPUID_INTC_EDX_SEP)
1990 			hwcap_flags |= AV_386_SEP;
1991 		if (*edx & CPUID_INTC_EDX_SSE)
1992 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1993 		if (*edx & CPUID_INTC_EDX_SSE2)
1994 			hwcap_flags |= AV_386_SSE2;
1995 		if (*ecx & CPUID_INTC_ECX_SSE3)
1996 			hwcap_flags |= AV_386_SSE3;
1997 		if (*ecx & CPUID_INTC_ECX_POPCNT)
1998 			hwcap_flags |= AV_386_POPCNT;
1999 		if (*edx & CPUID_INTC_EDX_FPU)
2000 			hwcap_flags |= AV_386_FPU;
2001 		if (*edx & CPUID_INTC_EDX_MMX)
2002 			hwcap_flags |= AV_386_MMX;
2003 
2004 		if (*edx & CPUID_INTC_EDX_TSC)
2005 			hwcap_flags |= AV_386_TSC;
2006 		if (*edx & CPUID_INTC_EDX_CX8)
2007 			hwcap_flags |= AV_386_CX8;
2008 		if (*edx & CPUID_INTC_EDX_CMOV)
2009 			hwcap_flags |= AV_386_CMOV;
2010 		if (*ecx & CPUID_INTC_ECX_MON)
2011 			hwcap_flags |= AV_386_MON;
2012 		if (*ecx & CPUID_INTC_ECX_CX16)
2013 			hwcap_flags |= AV_386_CX16;
2014 	}
2015 
2016 	if (x86_feature & X86_HTT)
2017 		hwcap_flags |= AV_386_PAUSE;
2018 
2019 	if (cpi->cpi_xmaxeax < 0x80000001)
2020 		goto pass4_done;
2021 
2022 	switch (cpi->cpi_vendor) {
2023 		struct cpuid_regs cp;
2024 		uint32_t *edx, *ecx;
2025 
2026 	case X86_VENDOR_Intel:
2027 		/*
2028 		 * Seems like Intel duplicated what we necessary
2029 		 * here to make the initial crop of 64-bit OS's work.
2030 		 * Hopefully, those are the only "extended" bits
2031 		 * they'll add.
2032 		 */
2033 		/*FALLTHROUGH*/
2034 
2035 	case X86_VENDOR_AMD:
2036 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2037 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2038 
2039 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2040 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2041 
2042 		/*
2043 		 * [these features require explicit kernel support]
2044 		 */
2045 		switch (cpi->cpi_vendor) {
2046 		case X86_VENDOR_Intel:
2047 			break;
2048 
2049 		case X86_VENDOR_AMD:
2050 			if ((x86_feature & X86_TSCP) == 0)
2051 				*edx &= ~CPUID_AMD_EDX_TSCP;
2052 			if ((x86_feature & X86_SSE4A) == 0)
2053 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2054 			break;
2055 
2056 		default:
2057 			break;
2058 		}
2059 
2060 		/*
2061 		 * [no explicit support required beyond
2062 		 * x87 fp context and exception handlers]
2063 		 */
2064 		if (!fpu_exists)
2065 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2066 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2067 
2068 		if ((x86_feature & X86_NX) == 0)
2069 			*edx &= ~CPUID_AMD_EDX_NX;
2070 #if !defined(__amd64)
2071 		*edx &= ~CPUID_AMD_EDX_LM;
2072 #endif
2073 		/*
2074 		 * Now map the supported feature vector to
2075 		 * things that we think userland will care about.
2076 		 */
2077 #if defined(__amd64)
2078 		if (*edx & CPUID_AMD_EDX_SYSC)
2079 			hwcap_flags |= AV_386_AMD_SYSC;
2080 #endif
2081 		if (*edx & CPUID_AMD_EDX_MMXamd)
2082 			hwcap_flags |= AV_386_AMD_MMX;
2083 		if (*edx & CPUID_AMD_EDX_3DNow)
2084 			hwcap_flags |= AV_386_AMD_3DNow;
2085 		if (*edx & CPUID_AMD_EDX_3DNowx)
2086 			hwcap_flags |= AV_386_AMD_3DNowx;
2087 
2088 		switch (cpi->cpi_vendor) {
2089 		case X86_VENDOR_AMD:
2090 			if (*edx & CPUID_AMD_EDX_TSCP)
2091 				hwcap_flags |= AV_386_TSCP;
2092 			if (*ecx & CPUID_AMD_ECX_AHF64)
2093 				hwcap_flags |= AV_386_AHF;
2094 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2095 				hwcap_flags |= AV_386_AMD_SSE4A;
2096 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2097 				hwcap_flags |= AV_386_AMD_LZCNT;
2098 			break;
2099 
2100 		case X86_VENDOR_Intel:
2101 			/*
2102 			 * Aarrgh.
2103 			 * Intel uses a different bit in the same word.
2104 			 */
2105 			if (*ecx & CPUID_INTC_ECX_AHF64)
2106 				hwcap_flags |= AV_386_AHF;
2107 			break;
2108 
2109 		default:
2110 			break;
2111 		}
2112 		break;
2113 
2114 	case X86_VENDOR_TM:
2115 		cp.cp_eax = 0x80860001;
2116 		(void) __cpuid_insn(&cp);
2117 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2118 		break;
2119 
2120 	default:
2121 		break;
2122 	}
2123 
2124 pass4_done:
2125 	cpi->cpi_pass = 4;
2126 	return (hwcap_flags);
2127 }
2128 
2129 
2130 /*
2131  * Simulate the cpuid instruction using the data we previously
2132  * captured about this CPU.  We try our best to return the truth
2133  * about the hardware, independently of kernel support.
2134  */
2135 uint32_t
2136 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2137 {
2138 	struct cpuid_info *cpi;
2139 	struct cpuid_regs *xcp;
2140 
2141 	if (cpu == NULL)
2142 		cpu = CPU;
2143 	cpi = cpu->cpu_m.mcpu_cpi;
2144 
2145 	ASSERT(cpuid_checkpass(cpu, 3));
2146 
2147 	/*
2148 	 * CPUID data is cached in two separate places: cpi_std for standard
2149 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2150 	 */
2151 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2152 		xcp = &cpi->cpi_std[cp->cp_eax];
2153 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2154 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2155 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2156 	else
2157 		/*
2158 		 * The caller is asking for data from an input parameter which
2159 		 * the kernel has not cached.  In this case we go fetch from
2160 		 * the hardware and return the data directly to the user.
2161 		 */
2162 		return (__cpuid_insn(cp));
2163 
2164 	cp->cp_eax = xcp->cp_eax;
2165 	cp->cp_ebx = xcp->cp_ebx;
2166 	cp->cp_ecx = xcp->cp_ecx;
2167 	cp->cp_edx = xcp->cp_edx;
2168 	return (cp->cp_eax);
2169 }
2170 
2171 int
2172 cpuid_checkpass(cpu_t *cpu, int pass)
2173 {
2174 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2175 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2176 }
2177 
2178 int
2179 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2180 {
2181 	ASSERT(cpuid_checkpass(cpu, 3));
2182 
2183 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2184 }
2185 
2186 int
2187 cpuid_is_cmt(cpu_t *cpu)
2188 {
2189 	if (cpu == NULL)
2190 		cpu = CPU;
2191 
2192 	ASSERT(cpuid_checkpass(cpu, 1));
2193 
2194 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2195 }
2196 
2197 /*
2198  * AMD and Intel both implement the 64-bit variant of the syscall
2199  * instruction (syscallq), so if there's -any- support for syscall,
2200  * cpuid currently says "yes, we support this".
2201  *
2202  * However, Intel decided to -not- implement the 32-bit variant of the
2203  * syscall instruction, so we provide a predicate to allow our caller
2204  * to test that subtlety here.
2205  *
2206  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2207  *	even in the case where the hardware would in fact support it.
2208  */
2209 /*ARGSUSED*/
2210 int
2211 cpuid_syscall32_insn(cpu_t *cpu)
2212 {
2213 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2214 
2215 #if !defined(__xpv)
2216 	if (cpu == NULL)
2217 		cpu = CPU;
2218 
2219 	/*CSTYLED*/
2220 	{
2221 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2222 
2223 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2224 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2225 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2226 			return (1);
2227 	}
2228 #endif
2229 	return (0);
2230 }
2231 
2232 int
2233 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2234 {
2235 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2236 
2237 	static const char fmt[] =
2238 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2239 	static const char fmt_ht[] =
2240 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2241 
2242 	ASSERT(cpuid_checkpass(cpu, 1));
2243 
2244 	if (cpuid_is_cmt(cpu))
2245 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2246 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2247 		    cpi->cpi_family, cpi->cpi_model,
2248 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2249 	return (snprintf(s, n, fmt,
2250 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2251 	    cpi->cpi_family, cpi->cpi_model,
2252 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2253 }
2254 
2255 const char *
2256 cpuid_getvendorstr(cpu_t *cpu)
2257 {
2258 	ASSERT(cpuid_checkpass(cpu, 1));
2259 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2260 }
2261 
2262 uint_t
2263 cpuid_getvendor(cpu_t *cpu)
2264 {
2265 	ASSERT(cpuid_checkpass(cpu, 1));
2266 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2267 }
2268 
2269 uint_t
2270 cpuid_getfamily(cpu_t *cpu)
2271 {
2272 	ASSERT(cpuid_checkpass(cpu, 1));
2273 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2274 }
2275 
2276 uint_t
2277 cpuid_getmodel(cpu_t *cpu)
2278 {
2279 	ASSERT(cpuid_checkpass(cpu, 1));
2280 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2281 }
2282 
2283 uint_t
2284 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2285 {
2286 	ASSERT(cpuid_checkpass(cpu, 1));
2287 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2288 }
2289 
2290 uint_t
2291 cpuid_get_ncore_per_chip(cpu_t *cpu)
2292 {
2293 	ASSERT(cpuid_checkpass(cpu, 1));
2294 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2295 }
2296 
2297 uint_t
2298 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2299 {
2300 	ASSERT(cpuid_checkpass(cpu, 2));
2301 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2302 }
2303 
2304 id_t
2305 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2306 {
2307 	ASSERT(cpuid_checkpass(cpu, 2));
2308 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2309 }
2310 
2311 uint_t
2312 cpuid_getstep(cpu_t *cpu)
2313 {
2314 	ASSERT(cpuid_checkpass(cpu, 1));
2315 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2316 }
2317 
2318 uint_t
2319 cpuid_getsig(struct cpu *cpu)
2320 {
2321 	ASSERT(cpuid_checkpass(cpu, 1));
2322 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2323 }
2324 
2325 uint32_t
2326 cpuid_getchiprev(struct cpu *cpu)
2327 {
2328 	ASSERT(cpuid_checkpass(cpu, 1));
2329 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2330 }
2331 
2332 const char *
2333 cpuid_getchiprevstr(struct cpu *cpu)
2334 {
2335 	ASSERT(cpuid_checkpass(cpu, 1));
2336 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2337 }
2338 
2339 uint32_t
2340 cpuid_getsockettype(struct cpu *cpu)
2341 {
2342 	ASSERT(cpuid_checkpass(cpu, 1));
2343 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2344 }
2345 
2346 int
2347 cpuid_get_chipid(cpu_t *cpu)
2348 {
2349 	ASSERT(cpuid_checkpass(cpu, 1));
2350 
2351 	if (cpuid_is_cmt(cpu))
2352 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2353 	return (cpu->cpu_id);
2354 }
2355 
2356 id_t
2357 cpuid_get_coreid(cpu_t *cpu)
2358 {
2359 	ASSERT(cpuid_checkpass(cpu, 1));
2360 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2361 }
2362 
2363 int
2364 cpuid_get_clogid(cpu_t *cpu)
2365 {
2366 	ASSERT(cpuid_checkpass(cpu, 1));
2367 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2368 }
2369 
2370 void
2371 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2372 {
2373 	struct cpuid_info *cpi;
2374 
2375 	if (cpu == NULL)
2376 		cpu = CPU;
2377 	cpi = cpu->cpu_m.mcpu_cpi;
2378 
2379 	ASSERT(cpuid_checkpass(cpu, 1));
2380 
2381 	if (pabits)
2382 		*pabits = cpi->cpi_pabits;
2383 	if (vabits)
2384 		*vabits = cpi->cpi_vabits;
2385 }
2386 
2387 /*
2388  * Returns the number of data TLB entries for a corresponding
2389  * pagesize.  If it can't be computed, or isn't known, the
2390  * routine returns zero.  If you ask about an architecturally
2391  * impossible pagesize, the routine will panic (so that the
2392  * hat implementor knows that things are inconsistent.)
2393  */
2394 uint_t
2395 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2396 {
2397 	struct cpuid_info *cpi;
2398 	uint_t dtlb_nent = 0;
2399 
2400 	if (cpu == NULL)
2401 		cpu = CPU;
2402 	cpi = cpu->cpu_m.mcpu_cpi;
2403 
2404 	ASSERT(cpuid_checkpass(cpu, 1));
2405 
2406 	/*
2407 	 * Check the L2 TLB info
2408 	 */
2409 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2410 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2411 
2412 		switch (pagesize) {
2413 
2414 		case 4 * 1024:
2415 			/*
2416 			 * All zero in the top 16 bits of the register
2417 			 * indicates a unified TLB. Size is in low 16 bits.
2418 			 */
2419 			if ((cp->cp_ebx & 0xffff0000) == 0)
2420 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2421 			else
2422 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2423 			break;
2424 
2425 		case 2 * 1024 * 1024:
2426 			if ((cp->cp_eax & 0xffff0000) == 0)
2427 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2428 			else
2429 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2430 			break;
2431 
2432 		default:
2433 			panic("unknown L2 pagesize");
2434 			/*NOTREACHED*/
2435 		}
2436 	}
2437 
2438 	if (dtlb_nent != 0)
2439 		return (dtlb_nent);
2440 
2441 	/*
2442 	 * No L2 TLB support for this size, try L1.
2443 	 */
2444 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2445 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2446 
2447 		switch (pagesize) {
2448 		case 4 * 1024:
2449 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2450 			break;
2451 		case 2 * 1024 * 1024:
2452 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2453 			break;
2454 		default:
2455 			panic("unknown L1 d-TLB pagesize");
2456 			/*NOTREACHED*/
2457 		}
2458 	}
2459 
2460 	return (dtlb_nent);
2461 }
2462 
2463 /*
2464  * Return 0 if the erratum is not present or not applicable, positive
2465  * if it is, and negative if the status of the erratum is unknown.
2466  *
2467  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2468  * Processors" #25759, Rev 3.57, August 2005
2469  */
2470 int
2471 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2472 {
2473 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2474 	uint_t eax;
2475 
2476 	/*
2477 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2478 	 * a legacy (32-bit) AMD CPU.
2479 	 */
2480 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2481 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2482 	    cpi->cpi_family == 6)
2483 
2484 		return (0);
2485 
2486 	eax = cpi->cpi_std[1].cp_eax;
2487 
2488 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2489 #define	SH_B3(eax) 	(eax == 0xf51)
2490 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2491 
2492 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2493 
2494 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2495 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2496 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2497 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2498 
2499 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2500 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2501 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2502 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2503 
2504 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2505 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2506 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2507 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2508 #define	BH_E4(eax)	(eax == 0x20fb1)
2509 #define	SH_E5(eax)	(eax == 0x20f42)
2510 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2511 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2512 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2513 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2514 			    DH_E6(eax) || JH_E6(eax))
2515 
2516 	switch (erratum) {
2517 	case 1:
2518 		return (cpi->cpi_family < 0x10);
2519 	case 51:	/* what does the asterisk mean? */
2520 		return (B(eax) || SH_C0(eax) || CG(eax));
2521 	case 52:
2522 		return (B(eax));
2523 	case 57:
2524 		return (cpi->cpi_family <= 0x10);
2525 	case 58:
2526 		return (B(eax));
2527 	case 60:
2528 		return (cpi->cpi_family <= 0x10);
2529 	case 61:
2530 	case 62:
2531 	case 63:
2532 	case 64:
2533 	case 65:
2534 	case 66:
2535 	case 68:
2536 	case 69:
2537 	case 70:
2538 	case 71:
2539 		return (B(eax));
2540 	case 72:
2541 		return (SH_B0(eax));
2542 	case 74:
2543 		return (B(eax));
2544 	case 75:
2545 		return (cpi->cpi_family < 0x10);
2546 	case 76:
2547 		return (B(eax));
2548 	case 77:
2549 		return (cpi->cpi_family <= 0x10);
2550 	case 78:
2551 		return (B(eax) || SH_C0(eax));
2552 	case 79:
2553 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2554 	case 80:
2555 	case 81:
2556 	case 82:
2557 		return (B(eax));
2558 	case 83:
2559 		return (B(eax) || SH_C0(eax) || CG(eax));
2560 	case 85:
2561 		return (cpi->cpi_family < 0x10);
2562 	case 86:
2563 		return (SH_C0(eax) || CG(eax));
2564 	case 88:
2565 #if !defined(__amd64)
2566 		return (0);
2567 #else
2568 		return (B(eax) || SH_C0(eax));
2569 #endif
2570 	case 89:
2571 		return (cpi->cpi_family < 0x10);
2572 	case 90:
2573 		return (B(eax) || SH_C0(eax) || CG(eax));
2574 	case 91:
2575 	case 92:
2576 		return (B(eax) || SH_C0(eax));
2577 	case 93:
2578 		return (SH_C0(eax));
2579 	case 94:
2580 		return (B(eax) || SH_C0(eax) || CG(eax));
2581 	case 95:
2582 #if !defined(__amd64)
2583 		return (0);
2584 #else
2585 		return (B(eax) || SH_C0(eax));
2586 #endif
2587 	case 96:
2588 		return (B(eax) || SH_C0(eax) || CG(eax));
2589 	case 97:
2590 	case 98:
2591 		return (SH_C0(eax) || CG(eax));
2592 	case 99:
2593 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2594 	case 100:
2595 		return (B(eax) || SH_C0(eax));
2596 	case 101:
2597 	case 103:
2598 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2599 	case 104:
2600 		return (SH_C0(eax) || CG(eax) || D0(eax));
2601 	case 105:
2602 	case 106:
2603 	case 107:
2604 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2605 	case 108:
2606 		return (DH_CG(eax));
2607 	case 109:
2608 		return (SH_C0(eax) || CG(eax) || D0(eax));
2609 	case 110:
2610 		return (D0(eax) || EX(eax));
2611 	case 111:
2612 		return (CG(eax));
2613 	case 112:
2614 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2615 	case 113:
2616 		return (eax == 0x20fc0);
2617 	case 114:
2618 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2619 	case 115:
2620 		return (SH_E0(eax) || JH_E1(eax));
2621 	case 116:
2622 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2623 	case 117:
2624 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2625 	case 118:
2626 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2627 		    JH_E6(eax));
2628 	case 121:
2629 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2630 	case 122:
2631 		return (cpi->cpi_family < 0x10);
2632 	case 123:
2633 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2634 	case 131:
2635 		return (cpi->cpi_family < 0x10);
2636 	case 6336786:
2637 		/*
2638 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2639 		 * if this is a K8 family or newer processor
2640 		 */
2641 		if (CPI_FAMILY(cpi) == 0xf) {
2642 			struct cpuid_regs regs;
2643 			regs.cp_eax = 0x80000007;
2644 			(void) __cpuid_insn(&regs);
2645 			return (!(regs.cp_edx & 0x100));
2646 		}
2647 		return (0);
2648 	case 6323525:
2649 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2650 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2651 
2652 	default:
2653 		return (-1);
2654 	}
2655 }
2656 
2657 static const char assoc_str[] = "associativity";
2658 static const char line_str[] = "line-size";
2659 static const char size_str[] = "size";
2660 
2661 static void
2662 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2663     uint32_t val)
2664 {
2665 	char buf[128];
2666 
2667 	/*
2668 	 * ndi_prop_update_int() is used because it is desirable for
2669 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2670 	 */
2671 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2672 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2673 }
2674 
2675 /*
2676  * Intel-style cache/tlb description
2677  *
2678  * Standard cpuid level 2 gives a randomly ordered
2679  * selection of tags that index into a table that describes
2680  * cache and tlb properties.
2681  */
2682 
2683 static const char l1_icache_str[] = "l1-icache";
2684 static const char l1_dcache_str[] = "l1-dcache";
2685 static const char l2_cache_str[] = "l2-cache";
2686 static const char l3_cache_str[] = "l3-cache";
2687 static const char itlb4k_str[] = "itlb-4K";
2688 static const char dtlb4k_str[] = "dtlb-4K";
2689 static const char itlb4M_str[] = "itlb-4M";
2690 static const char dtlb4M_str[] = "dtlb-4M";
2691 static const char itlb424_str[] = "itlb-4K-2M-4M";
2692 static const char dtlb44_str[] = "dtlb-4K-4M";
2693 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2694 static const char sl2_cache_str[] = "sectored-l2-cache";
2695 static const char itrace_str[] = "itrace-cache";
2696 static const char sl3_cache_str[] = "sectored-l3-cache";
2697 
2698 static const struct cachetab {
2699 	uint8_t 	ct_code;
2700 	uint8_t		ct_assoc;
2701 	uint16_t 	ct_line_size;
2702 	size_t		ct_size;
2703 	const char	*ct_label;
2704 } intel_ctab[] = {
2705 	/* maintain descending order! */
2706 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2707 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2708 	{ 0xb0, 4, 0, 128, itlb4k_str },
2709 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2710 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2711 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2712 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2713 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2714 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2715 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2716 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2717 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2718 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2719 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2720 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2721 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2722 	{ 0x73, 8, 0, 64*1024, itrace_str},
2723 	{ 0x72, 8, 0, 32*1024, itrace_str},
2724 	{ 0x71, 8, 0, 16*1024, itrace_str},
2725 	{ 0x70, 8, 0, 12*1024, itrace_str},
2726 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2727 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2728 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2729 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2730 	{ 0x5d, 0, 0, 256, dtlb44_str},
2731 	{ 0x5c, 0, 0, 128, dtlb44_str},
2732 	{ 0x5b, 0, 0, 64, dtlb44_str},
2733 	{ 0x52, 0, 0, 256, itlb424_str},
2734 	{ 0x51, 0, 0, 128, itlb424_str},
2735 	{ 0x50, 0, 0, 64, itlb424_str},
2736 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2737 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2738 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2739 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2740 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2741 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2742 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2743 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2744 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2745 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2746 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2747 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2748 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2749 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2750 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2751 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2752 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2753 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2754 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2755 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2756 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2757 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2758 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2759 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2760 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2761 	{ 0x0b, 4, 0, 4, itlb4M_str},
2762 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2763 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2764 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2765 	{ 0x04, 4, 0, 8, dtlb4M_str},
2766 	{ 0x03, 4, 0, 64, dtlb4k_str},
2767 	{ 0x02, 4, 0, 2, itlb4M_str},
2768 	{ 0x01, 4, 0, 32, itlb4k_str},
2769 	{ 0 }
2770 };
2771 
2772 static const struct cachetab cyrix_ctab[] = {
2773 	{ 0x70, 4, 0, 32, "tlb-4K" },
2774 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2775 	{ 0 }
2776 };
2777 
2778 /*
2779  * Search a cache table for a matching entry
2780  */
2781 static const struct cachetab *
2782 find_cacheent(const struct cachetab *ct, uint_t code)
2783 {
2784 	if (code != 0) {
2785 		for (; ct->ct_code != 0; ct++)
2786 			if (ct->ct_code <= code)
2787 				break;
2788 		if (ct->ct_code == code)
2789 			return (ct);
2790 	}
2791 	return (NULL);
2792 }
2793 
2794 /*
2795  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2796  * The walk is terminated if the walker returns non-zero.
2797  */
2798 static void
2799 intel_walk_cacheinfo(struct cpuid_info *cpi,
2800     void *arg, int (*func)(void *, const struct cachetab *))
2801 {
2802 	const struct cachetab *ct;
2803 	uint8_t *dp;
2804 	int i;
2805 
2806 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2807 		return;
2808 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2809 		/*
2810 		 * For overloaded descriptor 0x49 we use cpuid function 4
2811 		 * if supported by the current processor, to update
2812 		 * cache information.
2813 		 */
2814 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4) {
2815 			intel_cpuid_4_cache_info(arg, cpi);
2816 			continue;
2817 		}
2818 
2819 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2820 			if (func(arg, ct) != 0)
2821 				break;
2822 		}
2823 	}
2824 }
2825 
2826 /*
2827  * (Like the Intel one, except for Cyrix CPUs)
2828  */
2829 static void
2830 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2831     void *arg, int (*func)(void *, const struct cachetab *))
2832 {
2833 	const struct cachetab *ct;
2834 	uint8_t *dp;
2835 	int i;
2836 
2837 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2838 		return;
2839 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2840 		/*
2841 		 * Search Cyrix-specific descriptor table first ..
2842 		 */
2843 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2844 			if (func(arg, ct) != 0)
2845 				break;
2846 			continue;
2847 		}
2848 		/*
2849 		 * .. else fall back to the Intel one
2850 		 */
2851 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2852 			if (func(arg, ct) != 0)
2853 				break;
2854 			continue;
2855 		}
2856 	}
2857 }
2858 
2859 /*
2860  * A cacheinfo walker that adds associativity, line-size, and size properties
2861  * to the devinfo node it is passed as an argument.
2862  */
2863 static int
2864 add_cacheent_props(void *arg, const struct cachetab *ct)
2865 {
2866 	dev_info_t *devi = arg;
2867 
2868 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2869 	if (ct->ct_line_size != 0)
2870 		add_cache_prop(devi, ct->ct_label, line_str,
2871 		    ct->ct_line_size);
2872 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2873 	return (0);
2874 }
2875 
2876 /*
2877  * Add L2 or L3 cache-information using cpuid function 4. This
2878  * function is called from intel_walk_cacheinfo() when descriptor
2879  * 0x49 is encountered.
2880  */
2881 static void
2882 intel_cpuid_4_cache_info(void *arg, struct cpuid_info *cpi)
2883 {
2884 	uint32_t level, i;
2885 
2886 	struct cachetab ct;
2887 
2888 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2889 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2890 
2891 		if (level == 2 || level == 3) {
2892 			ct.ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2893 			ct.ct_line_size =
2894 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2895 			ct.ct_size = ct.ct_assoc *
2896 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2897 			    ct.ct_line_size *
2898 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2899 
2900 			if (level == 2) {
2901 				ct.ct_label = l2_cache_str;
2902 			} else if (level == 3) {
2903 				ct.ct_label = l3_cache_str;
2904 			}
2905 
2906 			(void) add_cacheent_props(arg,
2907 			    (const struct cachetab *) (&ct));
2908 		}
2909 	}
2910 }
2911 
2912 static const char fully_assoc[] = "fully-associative?";
2913 
2914 /*
2915  * AMD style cache/tlb description
2916  *
2917  * Extended functions 5 and 6 directly describe properties of
2918  * tlbs and various cache levels.
2919  */
2920 static void
2921 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2922 {
2923 	switch (assoc) {
2924 	case 0:	/* reserved; ignore */
2925 		break;
2926 	default:
2927 		add_cache_prop(devi, label, assoc_str, assoc);
2928 		break;
2929 	case 0xff:
2930 		add_cache_prop(devi, label, fully_assoc, 1);
2931 		break;
2932 	}
2933 }
2934 
2935 static void
2936 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2937 {
2938 	if (size == 0)
2939 		return;
2940 	add_cache_prop(devi, label, size_str, size);
2941 	add_amd_assoc(devi, label, assoc);
2942 }
2943 
2944 static void
2945 add_amd_cache(dev_info_t *devi, const char *label,
2946     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2947 {
2948 	if (size == 0 || line_size == 0)
2949 		return;
2950 	add_amd_assoc(devi, label, assoc);
2951 	/*
2952 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2953 	 * associated with each tag. A sector consists of all cache lines
2954 	 * associated with a tag. For example, the AMD K6-III has a sector
2955 	 * size of 2 cache lines per tag.
2956 	 */
2957 	if (lines_per_tag != 0)
2958 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2959 	add_cache_prop(devi, label, line_str, line_size);
2960 	add_cache_prop(devi, label, size_str, size * 1024);
2961 }
2962 
2963 static void
2964 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2965 {
2966 	switch (assoc) {
2967 	case 0:	/* off */
2968 		break;
2969 	case 1:
2970 	case 2:
2971 	case 4:
2972 		add_cache_prop(devi, label, assoc_str, assoc);
2973 		break;
2974 	case 6:
2975 		add_cache_prop(devi, label, assoc_str, 8);
2976 		break;
2977 	case 8:
2978 		add_cache_prop(devi, label, assoc_str, 16);
2979 		break;
2980 	case 0xf:
2981 		add_cache_prop(devi, label, fully_assoc, 1);
2982 		break;
2983 	default: /* reserved; ignore */
2984 		break;
2985 	}
2986 }
2987 
2988 static void
2989 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2990 {
2991 	if (size == 0 || assoc == 0)
2992 		return;
2993 	add_amd_l2_assoc(devi, label, assoc);
2994 	add_cache_prop(devi, label, size_str, size);
2995 }
2996 
2997 static void
2998 add_amd_l2_cache(dev_info_t *devi, const char *label,
2999     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3000 {
3001 	if (size == 0 || assoc == 0 || line_size == 0)
3002 		return;
3003 	add_amd_l2_assoc(devi, label, assoc);
3004 	if (lines_per_tag != 0)
3005 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3006 	add_cache_prop(devi, label, line_str, line_size);
3007 	add_cache_prop(devi, label, size_str, size * 1024);
3008 }
3009 
3010 static void
3011 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3012 {
3013 	struct cpuid_regs *cp;
3014 
3015 	if (cpi->cpi_xmaxeax < 0x80000005)
3016 		return;
3017 	cp = &cpi->cpi_extd[5];
3018 
3019 	/*
3020 	 * 4M/2M L1 TLB configuration
3021 	 *
3022 	 * We report the size for 2M pages because AMD uses two
3023 	 * TLB entries for one 4M page.
3024 	 */
3025 	add_amd_tlb(devi, "dtlb-2M",
3026 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3027 	add_amd_tlb(devi, "itlb-2M",
3028 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3029 
3030 	/*
3031 	 * 4K L1 TLB configuration
3032 	 */
3033 
3034 	switch (cpi->cpi_vendor) {
3035 		uint_t nentries;
3036 	case X86_VENDOR_TM:
3037 		if (cpi->cpi_family >= 5) {
3038 			/*
3039 			 * Crusoe processors have 256 TLB entries, but
3040 			 * cpuid data format constrains them to only
3041 			 * reporting 255 of them.
3042 			 */
3043 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3044 				nentries = 256;
3045 			/*
3046 			 * Crusoe processors also have a unified TLB
3047 			 */
3048 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3049 			    nentries);
3050 			break;
3051 		}
3052 		/*FALLTHROUGH*/
3053 	default:
3054 		add_amd_tlb(devi, itlb4k_str,
3055 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3056 		add_amd_tlb(devi, dtlb4k_str,
3057 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3058 		break;
3059 	}
3060 
3061 	/*
3062 	 * data L1 cache configuration
3063 	 */
3064 
3065 	add_amd_cache(devi, l1_dcache_str,
3066 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3067 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3068 
3069 	/*
3070 	 * code L1 cache configuration
3071 	 */
3072 
3073 	add_amd_cache(devi, l1_icache_str,
3074 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3075 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3076 
3077 	if (cpi->cpi_xmaxeax < 0x80000006)
3078 		return;
3079 	cp = &cpi->cpi_extd[6];
3080 
3081 	/* Check for a unified L2 TLB for large pages */
3082 
3083 	if (BITX(cp->cp_eax, 31, 16) == 0)
3084 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3085 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3086 	else {
3087 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3088 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3089 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3090 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3091 	}
3092 
3093 	/* Check for a unified L2 TLB for 4K pages */
3094 
3095 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3096 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3097 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3098 	} else {
3099 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3100 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3101 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3102 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3103 	}
3104 
3105 	add_amd_l2_cache(devi, l2_cache_str,
3106 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3107 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3108 }
3109 
3110 /*
3111  * There are two basic ways that the x86 world describes it cache
3112  * and tlb architecture - Intel's way and AMD's way.
3113  *
3114  * Return which flavor of cache architecture we should use
3115  */
3116 static int
3117 x86_which_cacheinfo(struct cpuid_info *cpi)
3118 {
3119 	switch (cpi->cpi_vendor) {
3120 	case X86_VENDOR_Intel:
3121 		if (cpi->cpi_maxeax >= 2)
3122 			return (X86_VENDOR_Intel);
3123 		break;
3124 	case X86_VENDOR_AMD:
3125 		/*
3126 		 * The K5 model 1 was the first part from AMD that reported
3127 		 * cache sizes via extended cpuid functions.
3128 		 */
3129 		if (cpi->cpi_family > 5 ||
3130 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3131 			return (X86_VENDOR_AMD);
3132 		break;
3133 	case X86_VENDOR_TM:
3134 		if (cpi->cpi_family >= 5)
3135 			return (X86_VENDOR_AMD);
3136 		/*FALLTHROUGH*/
3137 	default:
3138 		/*
3139 		 * If they have extended CPU data for 0x80000005
3140 		 * then we assume they have AMD-format cache
3141 		 * information.
3142 		 *
3143 		 * If not, and the vendor happens to be Cyrix,
3144 		 * then try our-Cyrix specific handler.
3145 		 *
3146 		 * If we're not Cyrix, then assume we're using Intel's
3147 		 * table-driven format instead.
3148 		 */
3149 		if (cpi->cpi_xmaxeax >= 0x80000005)
3150 			return (X86_VENDOR_AMD);
3151 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3152 			return (X86_VENDOR_Cyrix);
3153 		else if (cpi->cpi_maxeax >= 2)
3154 			return (X86_VENDOR_Intel);
3155 		break;
3156 	}
3157 	return (-1);
3158 }
3159 
3160 /*
3161  * create a node for the given cpu under the prom root node.
3162  * Also, create a cpu node in the device tree.
3163  */
3164 static dev_info_t *cpu_nex_devi = NULL;
3165 static kmutex_t cpu_node_lock;
3166 
3167 /*
3168  * Called from post_startup() and mp_startup()
3169  */
3170 void
3171 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3172 {
3173 	dev_info_t *cpu_devi;
3174 	int create;
3175 
3176 	mutex_enter(&cpu_node_lock);
3177 
3178 	/*
3179 	 * create a nexus node for all cpus identified as 'cpu_id' under
3180 	 * the root node.
3181 	 */
3182 	if (cpu_nex_devi == NULL) {
3183 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3184 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3185 			mutex_exit(&cpu_node_lock);
3186 			return;
3187 		}
3188 		(void) ndi_devi_online(cpu_nex_devi, 0);
3189 	}
3190 
3191 	/*
3192 	 * create a child node for cpu identified as 'cpu_id'
3193 	 */
3194 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3195 	    cpu_id);
3196 	if (cpu_devi == NULL) {
3197 		mutex_exit(&cpu_node_lock);
3198 		return;
3199 	}
3200 
3201 	/* device_type */
3202 
3203 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3204 	    "device_type", "cpu");
3205 
3206 	/* reg */
3207 
3208 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3209 	    "reg", cpu_id);
3210 
3211 	/* cpu-mhz, and clock-frequency */
3212 
3213 	if (cpu_freq > 0) {
3214 		long long mul;
3215 
3216 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3217 		    "cpu-mhz", cpu_freq);
3218 
3219 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3220 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3221 			    "clock-frequency", (int)mul);
3222 	}
3223 
3224 	(void) ndi_devi_online(cpu_devi, 0);
3225 
3226 	if ((x86_feature & X86_CPUID) == 0) {
3227 		mutex_exit(&cpu_node_lock);
3228 		return;
3229 	}
3230 
3231 	/* vendor-id */
3232 
3233 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3234 	    "vendor-id", cpi->cpi_vendorstr);
3235 
3236 	if (cpi->cpi_maxeax == 0) {
3237 		mutex_exit(&cpu_node_lock);
3238 		return;
3239 	}
3240 
3241 	/*
3242 	 * family, model, and step
3243 	 */
3244 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3245 	    "family", CPI_FAMILY(cpi));
3246 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3247 	    "cpu-model", CPI_MODEL(cpi));
3248 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3249 	    "stepping-id", CPI_STEP(cpi));
3250 
3251 	/* type */
3252 
3253 	switch (cpi->cpi_vendor) {
3254 	case X86_VENDOR_Intel:
3255 		create = 1;
3256 		break;
3257 	default:
3258 		create = 0;
3259 		break;
3260 	}
3261 	if (create)
3262 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3263 		    "type", CPI_TYPE(cpi));
3264 
3265 	/* ext-family */
3266 
3267 	switch (cpi->cpi_vendor) {
3268 	case X86_VENDOR_Intel:
3269 	case X86_VENDOR_AMD:
3270 		create = cpi->cpi_family >= 0xf;
3271 		break;
3272 	default:
3273 		create = 0;
3274 		break;
3275 	}
3276 	if (create)
3277 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3278 		    "ext-family", CPI_FAMILY_XTD(cpi));
3279 
3280 	/* ext-model */
3281 
3282 	switch (cpi->cpi_vendor) {
3283 	case X86_VENDOR_Intel:
3284 		create = CPI_MODEL(cpi) == 0xf;
3285 		break;
3286 	case X86_VENDOR_AMD:
3287 		create = CPI_FAMILY(cpi) == 0xf;
3288 		break;
3289 	default:
3290 		create = 0;
3291 		break;
3292 	}
3293 	if (create)
3294 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3295 		    "ext-model", CPI_MODEL_XTD(cpi));
3296 
3297 	/* generation */
3298 
3299 	switch (cpi->cpi_vendor) {
3300 	case X86_VENDOR_AMD:
3301 		/*
3302 		 * AMD K5 model 1 was the first part to support this
3303 		 */
3304 		create = cpi->cpi_xmaxeax >= 0x80000001;
3305 		break;
3306 	default:
3307 		create = 0;
3308 		break;
3309 	}
3310 	if (create)
3311 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3312 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3313 
3314 	/* brand-id */
3315 
3316 	switch (cpi->cpi_vendor) {
3317 	case X86_VENDOR_Intel:
3318 		/*
3319 		 * brand id first appeared on Pentium III Xeon model 8,
3320 		 * and Celeron model 8 processors and Opteron
3321 		 */
3322 		create = cpi->cpi_family > 6 ||
3323 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3324 		break;
3325 	case X86_VENDOR_AMD:
3326 		create = cpi->cpi_family >= 0xf;
3327 		break;
3328 	default:
3329 		create = 0;
3330 		break;
3331 	}
3332 	if (create && cpi->cpi_brandid != 0) {
3333 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3334 		    "brand-id", cpi->cpi_brandid);
3335 	}
3336 
3337 	/* chunks, and apic-id */
3338 
3339 	switch (cpi->cpi_vendor) {
3340 		/*
3341 		 * first available on Pentium IV and Opteron (K8)
3342 		 */
3343 	case X86_VENDOR_Intel:
3344 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3345 		break;
3346 	case X86_VENDOR_AMD:
3347 		create = cpi->cpi_family >= 0xf;
3348 		break;
3349 	default:
3350 		create = 0;
3351 		break;
3352 	}
3353 	if (create) {
3354 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3355 		    "chunks", CPI_CHUNKS(cpi));
3356 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3357 		    "apic-id", CPI_APIC_ID(cpi));
3358 		if (cpi->cpi_chipid >= 0) {
3359 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3360 			    "chip#", cpi->cpi_chipid);
3361 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3362 			    "clog#", cpi->cpi_clogid);
3363 		}
3364 	}
3365 
3366 	/* cpuid-features */
3367 
3368 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3369 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3370 
3371 
3372 	/* cpuid-features-ecx */
3373 
3374 	switch (cpi->cpi_vendor) {
3375 	case X86_VENDOR_Intel:
3376 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3377 		break;
3378 	default:
3379 		create = 0;
3380 		break;
3381 	}
3382 	if (create)
3383 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3384 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3385 
3386 	/* ext-cpuid-features */
3387 
3388 	switch (cpi->cpi_vendor) {
3389 	case X86_VENDOR_Intel:
3390 	case X86_VENDOR_AMD:
3391 	case X86_VENDOR_Cyrix:
3392 	case X86_VENDOR_TM:
3393 	case X86_VENDOR_Centaur:
3394 		create = cpi->cpi_xmaxeax >= 0x80000001;
3395 		break;
3396 	default:
3397 		create = 0;
3398 		break;
3399 	}
3400 	if (create) {
3401 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3402 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3403 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3404 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3405 	}
3406 
3407 	/*
3408 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3409 	 * model 1, and Cyrix GXm.  On earlier models we try and
3410 	 * simulate something similar .. so this string should always
3411 	 * same -something- about the processor, however lame.
3412 	 */
3413 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3414 	    "brand-string", cpi->cpi_brandstr);
3415 
3416 	/*
3417 	 * Finally, cache and tlb information
3418 	 */
3419 	switch (x86_which_cacheinfo(cpi)) {
3420 	case X86_VENDOR_Intel:
3421 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3422 		break;
3423 	case X86_VENDOR_Cyrix:
3424 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3425 		break;
3426 	case X86_VENDOR_AMD:
3427 		amd_cache_info(cpi, cpu_devi);
3428 		break;
3429 	default:
3430 		break;
3431 	}
3432 
3433 	mutex_exit(&cpu_node_lock);
3434 }
3435 
3436 struct l2info {
3437 	int *l2i_csz;
3438 	int *l2i_lsz;
3439 	int *l2i_assoc;
3440 	int l2i_ret;
3441 };
3442 
3443 /*
3444  * A cacheinfo walker that fetches the size, line-size and associativity
3445  * of the L2 cache
3446  */
3447 static int
3448 intel_l2cinfo(void *arg, const struct cachetab *ct)
3449 {
3450 	struct l2info *l2i = arg;
3451 	int *ip;
3452 
3453 	if (ct->ct_label != l2_cache_str &&
3454 	    ct->ct_label != sl2_cache_str)
3455 		return (0);	/* not an L2 -- keep walking */
3456 
3457 	if ((ip = l2i->l2i_csz) != NULL)
3458 		*ip = ct->ct_size;
3459 	if ((ip = l2i->l2i_lsz) != NULL)
3460 		*ip = ct->ct_line_size;
3461 	if ((ip = l2i->l2i_assoc) != NULL)
3462 		*ip = ct->ct_assoc;
3463 	l2i->l2i_ret = ct->ct_size;
3464 	return (1);		/* was an L2 -- terminate walk */
3465 }
3466 
3467 /*
3468  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3469  *
3470  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3471  *	value is the associativity, the associativity for the L2 cache and
3472  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3473  *	an index into the amd_afd[] array to determine the associativity.
3474  *	-1 is undefined. 0 is fully associative.
3475  */
3476 
3477 static int amd_afd[] =
3478 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3479 
3480 static void
3481 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3482 {
3483 	struct cpuid_regs *cp;
3484 	uint_t size, assoc;
3485 	int i;
3486 	int *ip;
3487 
3488 	if (cpi->cpi_xmaxeax < 0x80000006)
3489 		return;
3490 	cp = &cpi->cpi_extd[6];
3491 
3492 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3493 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3494 		uint_t cachesz = size * 1024;
3495 		assoc = amd_afd[i];
3496 
3497 		ASSERT(assoc != -1);
3498 
3499 		if ((ip = l2i->l2i_csz) != NULL)
3500 			*ip = cachesz;
3501 		if ((ip = l2i->l2i_lsz) != NULL)
3502 			*ip = BITX(cp->cp_ecx, 7, 0);
3503 		if ((ip = l2i->l2i_assoc) != NULL)
3504 			*ip = assoc;
3505 		l2i->l2i_ret = cachesz;
3506 	}
3507 }
3508 
3509 int
3510 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3511 {
3512 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3513 	struct l2info __l2info, *l2i = &__l2info;
3514 
3515 	l2i->l2i_csz = csz;
3516 	l2i->l2i_lsz = lsz;
3517 	l2i->l2i_assoc = assoc;
3518 	l2i->l2i_ret = -1;
3519 
3520 	switch (x86_which_cacheinfo(cpi)) {
3521 	case X86_VENDOR_Intel:
3522 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3523 		break;
3524 	case X86_VENDOR_Cyrix:
3525 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3526 		break;
3527 	case X86_VENDOR_AMD:
3528 		amd_l2cacheinfo(cpi, l2i);
3529 		break;
3530 	default:
3531 		break;
3532 	}
3533 	return (l2i->l2i_ret);
3534 }
3535 
3536 #if !defined(__xpv)
3537 
3538 uint32_t *
3539 cpuid_mwait_alloc(cpu_t *cpu)
3540 {
3541 	uint32_t	*ret;
3542 	size_t		mwait_size;
3543 
3544 	ASSERT(cpuid_checkpass(cpu, 2));
3545 
3546 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3547 	if (mwait_size == 0)
3548 		return (NULL);
3549 
3550 	/*
3551 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3552 	 * allocations.  mwait_size is currently cache line sized.  Neither
3553 	 * of these implementation details are guarantied to be true in the
3554 	 * future.
3555 	 *
3556 	 * First try allocating mwait_size as kmem_alloc() currently returns
3557 	 * correctly aligned memory.  If kmem_alloc() does not return
3558 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3559 	 *
3560 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3561 	 * decide to free this memory.
3562 	 */
3563 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3564 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3565 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3566 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3567 		*ret = MWAIT_RUNNING;
3568 		return (ret);
3569 	} else {
3570 		kmem_free(ret, mwait_size);
3571 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3572 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3573 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3574 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3575 		*ret = MWAIT_RUNNING;
3576 		return (ret);
3577 	}
3578 }
3579 
3580 void
3581 cpuid_mwait_free(cpu_t *cpu)
3582 {
3583 	ASSERT(cpuid_checkpass(cpu, 2));
3584 
3585 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3586 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3587 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3588 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3589 	}
3590 
3591 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3592 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3593 }
3594 
3595 #endif	/* !__xpv */
3596