1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Various routines to handle identification 30 * and classification of x86 processors. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/archsystm.h> 35 #include <sys/x86_archext.h> 36 #include <sys/kmem.h> 37 #include <sys/systm.h> 38 #include <sys/cmn_err.h> 39 #include <sys/sunddi.h> 40 #include <sys/sunndi.h> 41 #include <sys/cpuvar.h> 42 #include <sys/processor.h> 43 #include <sys/pg.h> 44 #include <sys/fp.h> 45 #include <sys/controlregs.h> 46 #include <sys/auxv_386.h> 47 #include <sys/bitmap.h> 48 #include <sys/memnode.h> 49 50 /* 51 * Pass 0 of cpuid feature analysis happens in locore. It contains special code 52 * to recognize Cyrix processors that are not cpuid-compliant, and to deal with 53 * them accordingly. For most modern processors, feature detection occurs here 54 * in pass 1. 55 * 56 * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() 57 * for the boot CPU and does the basic analysis that the early kernel needs. 58 * x86_feature is set based on the return value of cpuid_pass1() of the boot 59 * CPU. 60 * 61 * Pass 1 includes: 62 * 63 * o Determining vendor/model/family/stepping and setting x86_type and 64 * x86_vendor accordingly. 65 * o Processing the feature flags returned by the cpuid instruction while 66 * applying any workarounds or tricks for the specific processor. 67 * o Mapping the feature flags into Solaris feature bits (X86_*). 68 * o Processing extended feature flags if supported by the processor, 69 * again while applying specific processor knowledge. 70 * o Determining the CMT characteristics of the system. 71 * 72 * Pass 1 is done on non-boot CPUs during their initialization and the results 73 * are used only as a meager attempt at ensuring that all processors within the 74 * system support the same features. 75 * 76 * Pass 2 of cpuid feature analysis happens just at the beginning 77 * of startup(). It just copies in and corrects the remainder 78 * of the cpuid data we depend on: standard cpuid functions that we didn't 79 * need for pass1 feature analysis, and extended cpuid functions beyond the 80 * simple feature processing done in pass1. 81 * 82 * Pass 3 of cpuid analysis is invoked after basic kernel services; in 83 * particular kernel memory allocation has been made available. It creates a 84 * readable brand string based on the data collected in the first two passes. 85 * 86 * Pass 4 of cpuid analysis is invoked after post_startup() when all 87 * the support infrastructure for various hardware features has been 88 * initialized. It determines which processor features will be reported 89 * to userland via the aux vector. 90 * 91 * All passes are executed on all CPUs, but only the boot CPU determines what 92 * features the kernel will use. 93 * 94 * Much of the worst junk in this file is for the support of processors 95 * that didn't really implement the cpuid instruction properly. 96 * 97 * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, 98 * the pass numbers. Accordingly, changes to the pass code may require changes 99 * to the accessor code. 100 */ 101 102 uint_t x86_feature = 0; 103 uint_t x86_vendor = X86_VENDOR_IntelClone; 104 uint_t x86_type = X86_TYPE_OTHER; 105 106 uint_t pentiumpro_bug4046376; 107 uint_t pentiumpro_bug4064495; 108 109 uint_t enable486; 110 111 /* 112 * This set of strings are for processors rumored to support the cpuid 113 * instruction, and is used by locore.s to figure out how to set x86_vendor 114 */ 115 const char CyrixInstead[] = "CyrixInstead"; 116 117 /* 118 * monitor/mwait info. 119 */ 120 struct mwait_info { 121 size_t mon_min; /* min size to avoid missed wakeups */ 122 size_t mon_max; /* size to avoid false wakeups */ 123 uint32_t support; /* processor support of monitor/mwait */ 124 }; 125 126 /* 127 * These constants determine how many of the elements of the 128 * cpuid we cache in the cpuid_info data structure; the 129 * remaining elements are accessible via the cpuid instruction. 130 */ 131 132 #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ 133 #define NMAX_CPI_EXTD 9 /* eax = 0x80000000 .. 0x80000008 */ 134 135 struct cpuid_info { 136 uint_t cpi_pass; /* last pass completed */ 137 /* 138 * standard function information 139 */ 140 uint_t cpi_maxeax; /* fn 0: %eax */ 141 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 142 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 143 144 uint_t cpi_family; /* fn 1: extended family */ 145 uint_t cpi_model; /* fn 1: extended model */ 146 uint_t cpi_step; /* fn 1: stepping */ 147 chipid_t cpi_chipid; /* fn 1: %ebx: chip # on ht cpus */ 148 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 149 int cpi_clogid; /* fn 1: %ebx: thread # */ 150 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 151 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 152 uint_t cpi_ncache; /* fn 2: number of elements */ 153 uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */ 154 id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */ 155 uint_t cpi_std_4_size; /* fn 4: number of fn 4 elements */ 156 struct cpuid_regs **cpi_std_4; /* fn 4: %ecx == 0 .. fn4_size */ 157 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ 158 /* 159 * extended function information 160 */ 161 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 162 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 163 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 164 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 165 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */ 166 id_t cpi_coreid; 167 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 168 /* Intel: fn 4: %eax[31-26] */ 169 /* 170 * supported feature information 171 */ 172 uint32_t cpi_support[5]; 173 #define STD_EDX_FEATURES 0 174 #define AMD_EDX_FEATURES 1 175 #define TM_EDX_FEATURES 2 176 #define STD_ECX_FEATURES 3 177 #define AMD_ECX_FEATURES 4 178 /* 179 * Synthesized information, where known. 180 */ 181 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 182 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 183 uint32_t cpi_socket; /* Chip package/socket type */ 184 185 struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */ 186 }; 187 188 189 static struct cpuid_info cpuid_info0; 190 191 /* 192 * These bit fields are defined by the Intel Application Note AP-485 193 * "Intel Processor Identification and the CPUID Instruction" 194 */ 195 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 196 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 197 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 198 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 199 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 200 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 201 202 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 203 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 204 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 205 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 206 207 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 208 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 209 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 210 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 211 212 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 213 #define CPI_XMAXEAX_MAX 0x80000100 214 #define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */ 215 216 /* 217 * Function 4 (Deterministic Cache Parameters) macros 218 * Defined by Intel Application Note AP-485 219 */ 220 #define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26) 221 #define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14) 222 #define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9) 223 #define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8) 224 #define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5) 225 #define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0) 226 227 #define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22) 228 #define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12) 229 #define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0) 230 231 #define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0) 232 233 #define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0) 234 235 236 /* 237 * A couple of shorthand macros to identify "later" P6-family chips 238 * like the Pentium M and Core. First, the "older" P6-based stuff 239 * (loosely defined as "pre-Pentium-4"): 240 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 241 */ 242 243 #define IS_LEGACY_P6(cpi) ( \ 244 cpi->cpi_family == 6 && \ 245 (cpi->cpi_model == 1 || \ 246 cpi->cpi_model == 3 || \ 247 cpi->cpi_model == 5 || \ 248 cpi->cpi_model == 6 || \ 249 cpi->cpi_model == 7 || \ 250 cpi->cpi_model == 8 || \ 251 cpi->cpi_model == 0xA || \ 252 cpi->cpi_model == 0xB) \ 253 ) 254 255 /* A "new F6" is everything with family 6 that's not the above */ 256 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 257 258 /* 259 * AMD family 0xf socket types. 260 * First index is 0 for revs B thru E, 1 for F and G. 261 * Second index by (model & 0x3) 262 */ 263 static uint32_t amd_skts[2][4] = { 264 { 265 X86_SOCKET_754, /* 0b00 */ 266 X86_SOCKET_940, /* 0b01 */ 267 X86_SOCKET_754, /* 0b10 */ 268 X86_SOCKET_939 /* 0b11 */ 269 }, 270 { 271 X86_SOCKET_S1g1, /* 0b00 */ 272 X86_SOCKET_F1207, /* 0b01 */ 273 X86_SOCKET_UNKNOWN, /* 0b10 */ 274 X86_SOCKET_AM2 /* 0b11 */ 275 } 276 }; 277 278 /* 279 * Table for mapping AMD Family 0xf model/stepping combination to 280 * chip "revision" and socket type. Only rm_family 0xf is used at the 281 * moment, but AMD family 0x10 will extend the exsiting revision names 282 * so will likely also use this table. 283 * 284 * The first member of this array that matches a given family, extended model 285 * plus model range, and stepping range will be considered a match. 286 */ 287 static const struct amd_rev_mapent { 288 uint_t rm_family; 289 uint_t rm_modello; 290 uint_t rm_modelhi; 291 uint_t rm_steplo; 292 uint_t rm_stephi; 293 uint32_t rm_chiprev; 294 const char *rm_chiprevstr; 295 int rm_sktidx; 296 } amd_revmap[] = { 297 /* 298 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1. 299 */ 300 { 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 }, 301 { 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 }, 302 /* 303 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8 304 */ 305 { 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 }, 306 /* 307 * Rev CG is the rest of extended model 0x0 - i.e., everything 308 * but the rev B and C0 combinations covered above. 309 */ 310 { 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 }, 311 /* 312 * Rev D has extended model 0x1. 313 */ 314 { 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 }, 315 /* 316 * Rev E has extended model 0x2. 317 * Extended model 0x3 is unused but available to grow into. 318 */ 319 { 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 }, 320 /* 321 * Rev F has extended models 0x4 and 0x5. 322 */ 323 { 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 }, 324 /* 325 * Rev G has extended model 0x6. 326 */ 327 { 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 }, 328 }; 329 330 /* 331 * Info for monitor/mwait idle loop. 332 * 333 * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's 334 * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November 335 * 2006. 336 * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual 337 * Documentation Updates" #33633, Rev 2.05, December 2006. 338 */ 339 #define MWAIT_SUPPORT (0x00000001) /* mwait supported */ 340 #define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */ 341 #define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */ 342 #define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON) 343 #define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2) 344 #define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1) 345 #define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0) 346 #define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0) 347 /* 348 * Number of sub-cstates for a given c-state. 349 */ 350 #define MWAIT_NUM_SUBC_STATES(cpi, c_state) \ 351 BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state) 352 353 static void 354 synth_amd_info(struct cpuid_info *cpi) 355 { 356 const struct amd_rev_mapent *rmp; 357 uint_t family, model, step; 358 int i; 359 360 /* 361 * Currently only AMD family 0xf uses these fields. 362 */ 363 if (cpi->cpi_family != 0xf) 364 return; 365 366 family = cpi->cpi_family; 367 model = cpi->cpi_model; 368 step = cpi->cpi_step; 369 370 for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp); 371 i++, rmp++) { 372 if (family == rmp->rm_family && 373 model >= rmp->rm_modello && model <= rmp->rm_modelhi && 374 step >= rmp->rm_steplo && step <= rmp->rm_stephi) { 375 cpi->cpi_chiprev = rmp->rm_chiprev; 376 cpi->cpi_chiprevstr = rmp->rm_chiprevstr; 377 cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3]; 378 return; 379 } 380 } 381 } 382 383 static void 384 synth_info(struct cpuid_info *cpi) 385 { 386 cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN; 387 cpi->cpi_chiprevstr = "Unknown"; 388 cpi->cpi_socket = X86_SOCKET_UNKNOWN; 389 390 switch (cpi->cpi_vendor) { 391 case X86_VENDOR_AMD: 392 synth_amd_info(cpi); 393 break; 394 395 default: 396 break; 397 398 } 399 } 400 401 /* 402 * Apply up various platform-dependent restrictions where the 403 * underlying platform restrictions mean the CPU can be marked 404 * as less capable than its cpuid instruction would imply. 405 */ 406 407 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 408 409 /* 410 * Some undocumented ways of patching the results of the cpuid 411 * instruction to permit running Solaris 10 on future cpus that 412 * we don't currently support. Could be set to non-zero values 413 * via settings in eeprom. 414 */ 415 416 uint32_t cpuid_feature_ecx_include; 417 uint32_t cpuid_feature_ecx_exclude; 418 uint32_t cpuid_feature_edx_include; 419 uint32_t cpuid_feature_edx_exclude; 420 421 void 422 cpuid_alloc_space(cpu_t *cpu) 423 { 424 /* 425 * By convention, cpu0 is the boot cpu, which is set up 426 * before memory allocation is available. All other cpus get 427 * their cpuid_info struct allocated here. 428 */ 429 ASSERT(cpu->cpu_id != 0); 430 cpu->cpu_m.mcpu_cpi = 431 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 432 } 433 434 void 435 cpuid_free_space(cpu_t *cpu) 436 { 437 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 438 int i; 439 440 ASSERT(cpu->cpu_id != 0); 441 442 /* 443 * Free up any function 4 related dynamic storage 444 */ 445 for (i = 1; i < cpi->cpi_std_4_size; i++) 446 kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs)); 447 if (cpi->cpi_std_4_size > 0) 448 kmem_free(cpi->cpi_std_4, 449 cpi->cpi_std_4_size * sizeof (struct cpuid_regs *)); 450 451 kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi)); 452 } 453 454 uint_t 455 cpuid_pass1(cpu_t *cpu) 456 { 457 uint32_t mask_ecx, mask_edx; 458 uint_t feature = X86_CPUID; 459 struct cpuid_info *cpi; 460 struct cpuid_regs *cp; 461 int xcpuid; 462 463 464 /* 465 * Space statically allocated for cpu0, ensure pointer is set 466 */ 467 if (cpu->cpu_id == 0) 468 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 469 cpi = cpu->cpu_m.mcpu_cpi; 470 ASSERT(cpi != NULL); 471 cp = &cpi->cpi_std[0]; 472 cp->cp_eax = 0; 473 cpi->cpi_maxeax = __cpuid_insn(cp); 474 { 475 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 476 *iptr++ = cp->cp_ebx; 477 *iptr++ = cp->cp_edx; 478 *iptr++ = cp->cp_ecx; 479 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 480 } 481 482 /* 483 * Map the vendor string to a type code 484 */ 485 if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0) 486 cpi->cpi_vendor = X86_VENDOR_Intel; 487 else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0) 488 cpi->cpi_vendor = X86_VENDOR_AMD; 489 else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0) 490 cpi->cpi_vendor = X86_VENDOR_TM; 491 else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0) 492 /* 493 * CyrixInstead is a variable used by the Cyrix detection code 494 * in locore. 495 */ 496 cpi->cpi_vendor = X86_VENDOR_Cyrix; 497 else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0) 498 cpi->cpi_vendor = X86_VENDOR_UMC; 499 else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0) 500 cpi->cpi_vendor = X86_VENDOR_NexGen; 501 else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0) 502 cpi->cpi_vendor = X86_VENDOR_Centaur; 503 else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0) 504 cpi->cpi_vendor = X86_VENDOR_Rise; 505 else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0) 506 cpi->cpi_vendor = X86_VENDOR_SiS; 507 else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0) 508 cpi->cpi_vendor = X86_VENDOR_NSC; 509 else 510 cpi->cpi_vendor = X86_VENDOR_IntelClone; 511 512 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 513 514 /* 515 * Limit the range in case of weird hardware 516 */ 517 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 518 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 519 if (cpi->cpi_maxeax < 1) 520 goto pass1_done; 521 522 cp = &cpi->cpi_std[1]; 523 cp->cp_eax = 1; 524 (void) __cpuid_insn(cp); 525 526 /* 527 * Extract identifying constants for easy access. 528 */ 529 cpi->cpi_model = CPI_MODEL(cpi); 530 cpi->cpi_family = CPI_FAMILY(cpi); 531 532 if (cpi->cpi_family == 0xf) 533 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 534 535 /* 536 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf. 537 * Intel, and presumably everyone else, uses model == 0xf, as 538 * one would expect (max value means possible overflow). Sigh. 539 */ 540 541 switch (cpi->cpi_vendor) { 542 case X86_VENDOR_AMD: 543 if (CPI_FAMILY(cpi) == 0xf) 544 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 545 break; 546 default: 547 if (cpi->cpi_model == 0xf) 548 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 549 break; 550 } 551 552 cpi->cpi_step = CPI_STEP(cpi); 553 cpi->cpi_brandid = CPI_BRANDID(cpi); 554 555 /* 556 * *default* assumptions: 557 * - believe %edx feature word 558 * - ignore %ecx feature word 559 * - 32-bit virtual and physical addressing 560 */ 561 mask_edx = 0xffffffff; 562 mask_ecx = 0; 563 564 cpi->cpi_pabits = cpi->cpi_vabits = 32; 565 566 switch (cpi->cpi_vendor) { 567 case X86_VENDOR_Intel: 568 if (cpi->cpi_family == 5) 569 x86_type = X86_TYPE_P5; 570 else if (IS_LEGACY_P6(cpi)) { 571 x86_type = X86_TYPE_P6; 572 pentiumpro_bug4046376 = 1; 573 pentiumpro_bug4064495 = 1; 574 /* 575 * Clear the SEP bit when it was set erroneously 576 */ 577 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 578 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 579 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 580 x86_type = X86_TYPE_P4; 581 /* 582 * We don't currently depend on any of the %ecx 583 * features until Prescott, so we'll only check 584 * this from P4 onwards. We might want to revisit 585 * that idea later. 586 */ 587 mask_ecx = 0xffffffff; 588 } else if (cpi->cpi_family > 0xf) 589 mask_ecx = 0xffffffff; 590 break; 591 case X86_VENDOR_IntelClone: 592 default: 593 break; 594 case X86_VENDOR_AMD: 595 #if defined(OPTERON_ERRATUM_108) 596 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 597 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 598 cpi->cpi_model = 0xc; 599 } else 600 #endif 601 if (cpi->cpi_family == 5) { 602 /* 603 * AMD K5 and K6 604 * 605 * These CPUs have an incomplete implementation 606 * of MCA/MCE which we mask away. 607 */ 608 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 609 610 /* 611 * Model 0 uses the wrong (APIC) bit 612 * to indicate PGE. Fix it here. 613 */ 614 if (cpi->cpi_model == 0) { 615 if (cp->cp_edx & 0x200) { 616 cp->cp_edx &= ~0x200; 617 cp->cp_edx |= CPUID_INTC_EDX_PGE; 618 } 619 } 620 621 /* 622 * Early models had problems w/ MMX; disable. 623 */ 624 if (cpi->cpi_model < 6) 625 mask_edx &= ~CPUID_INTC_EDX_MMX; 626 } 627 628 /* 629 * For newer families, SSE3 and CX16, at least, are valid; 630 * enable all 631 */ 632 if (cpi->cpi_family >= 0xf) 633 mask_ecx = 0xffffffff; 634 break; 635 case X86_VENDOR_TM: 636 /* 637 * workaround the NT workaround in CMS 4.1 638 */ 639 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 640 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 641 cp->cp_edx |= CPUID_INTC_EDX_CX8; 642 break; 643 case X86_VENDOR_Centaur: 644 /* 645 * workaround the NT workarounds again 646 */ 647 if (cpi->cpi_family == 6) 648 cp->cp_edx |= CPUID_INTC_EDX_CX8; 649 break; 650 case X86_VENDOR_Cyrix: 651 /* 652 * We rely heavily on the probing in locore 653 * to actually figure out what parts, if any, 654 * of the Cyrix cpuid instruction to believe. 655 */ 656 switch (x86_type) { 657 case X86_TYPE_CYRIX_486: 658 mask_edx = 0; 659 break; 660 case X86_TYPE_CYRIX_6x86: 661 mask_edx = 0; 662 break; 663 case X86_TYPE_CYRIX_6x86L: 664 mask_edx = 665 CPUID_INTC_EDX_DE | 666 CPUID_INTC_EDX_CX8; 667 break; 668 case X86_TYPE_CYRIX_6x86MX: 669 mask_edx = 670 CPUID_INTC_EDX_DE | 671 CPUID_INTC_EDX_MSR | 672 CPUID_INTC_EDX_CX8 | 673 CPUID_INTC_EDX_PGE | 674 CPUID_INTC_EDX_CMOV | 675 CPUID_INTC_EDX_MMX; 676 break; 677 case X86_TYPE_CYRIX_GXm: 678 mask_edx = 679 CPUID_INTC_EDX_MSR | 680 CPUID_INTC_EDX_CX8 | 681 CPUID_INTC_EDX_CMOV | 682 CPUID_INTC_EDX_MMX; 683 break; 684 case X86_TYPE_CYRIX_MediaGX: 685 break; 686 case X86_TYPE_CYRIX_MII: 687 case X86_TYPE_VIA_CYRIX_III: 688 mask_edx = 689 CPUID_INTC_EDX_DE | 690 CPUID_INTC_EDX_TSC | 691 CPUID_INTC_EDX_MSR | 692 CPUID_INTC_EDX_CX8 | 693 CPUID_INTC_EDX_PGE | 694 CPUID_INTC_EDX_CMOV | 695 CPUID_INTC_EDX_MMX; 696 break; 697 default: 698 break; 699 } 700 break; 701 } 702 703 /* 704 * Now we've figured out the masks that determine 705 * which bits we choose to believe, apply the masks 706 * to the feature words, then map the kernel's view 707 * of these feature words into its feature word. 708 */ 709 cp->cp_edx &= mask_edx; 710 cp->cp_ecx &= mask_ecx; 711 712 /* 713 * apply any platform restrictions (we don't call this 714 * immediately after __cpuid_insn here, because we need the 715 * workarounds applied above first) 716 */ 717 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 718 719 /* 720 * fold in overrides from the "eeprom" mechanism 721 */ 722 cp->cp_edx |= cpuid_feature_edx_include; 723 cp->cp_edx &= ~cpuid_feature_edx_exclude; 724 725 cp->cp_ecx |= cpuid_feature_ecx_include; 726 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 727 728 if (cp->cp_edx & CPUID_INTC_EDX_PSE) 729 feature |= X86_LARGEPAGE; 730 if (cp->cp_edx & CPUID_INTC_EDX_TSC) 731 feature |= X86_TSC; 732 if (cp->cp_edx & CPUID_INTC_EDX_MSR) 733 feature |= X86_MSR; 734 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) 735 feature |= X86_MTRR; 736 if (cp->cp_edx & CPUID_INTC_EDX_PGE) 737 feature |= X86_PGE; 738 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) 739 feature |= X86_CMOV; 740 if (cp->cp_edx & CPUID_INTC_EDX_MMX) 741 feature |= X86_MMX; 742 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 743 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) 744 feature |= X86_MCA; 745 if (cp->cp_edx & CPUID_INTC_EDX_PAE) 746 feature |= X86_PAE; 747 if (cp->cp_edx & CPUID_INTC_EDX_CX8) 748 feature |= X86_CX8; 749 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) 750 feature |= X86_CX16; 751 if (cp->cp_edx & CPUID_INTC_EDX_PAT) 752 feature |= X86_PAT; 753 if (cp->cp_edx & CPUID_INTC_EDX_SEP) 754 feature |= X86_SEP; 755 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 756 /* 757 * In our implementation, fxsave/fxrstor 758 * are prerequisites before we'll even 759 * try and do SSE things. 760 */ 761 if (cp->cp_edx & CPUID_INTC_EDX_SSE) 762 feature |= X86_SSE; 763 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) 764 feature |= X86_SSE2; 765 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) 766 feature |= X86_SSE3; 767 } 768 if (cp->cp_edx & CPUID_INTC_EDX_DE) 769 feature |= X86_DE; 770 if (cp->cp_ecx & CPUID_INTC_ECX_MON) { 771 cpi->cpi_mwait.support |= MWAIT_SUPPORT; 772 feature |= X86_MWAIT; 773 } 774 775 if (feature & X86_PAE) 776 cpi->cpi_pabits = 36; 777 778 /* 779 * Hyperthreading configuration is slightly tricky on Intel 780 * and pure clones, and even trickier on AMD. 781 * 782 * (AMD chose to set the HTT bit on their CMP processors, 783 * even though they're not actually hyperthreaded. Thus it 784 * takes a bit more work to figure out what's really going 785 * on ... see the handling of the CMP_LGCY bit below) 786 */ 787 if (cp->cp_edx & CPUID_INTC_EDX_HTT) { 788 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 789 if (cpi->cpi_ncpu_per_chip > 1) 790 feature |= X86_HTT; 791 } else { 792 cpi->cpi_ncpu_per_chip = 1; 793 } 794 795 /* 796 * Work on the "extended" feature information, doing 797 * some basic initialization for cpuid_pass2() 798 */ 799 xcpuid = 0; 800 switch (cpi->cpi_vendor) { 801 case X86_VENDOR_Intel: 802 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf) 803 xcpuid++; 804 break; 805 case X86_VENDOR_AMD: 806 if (cpi->cpi_family > 5 || 807 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 808 xcpuid++; 809 break; 810 case X86_VENDOR_Cyrix: 811 /* 812 * Only these Cyrix CPUs are -known- to support 813 * extended cpuid operations. 814 */ 815 if (x86_type == X86_TYPE_VIA_CYRIX_III || 816 x86_type == X86_TYPE_CYRIX_GXm) 817 xcpuid++; 818 break; 819 case X86_VENDOR_Centaur: 820 case X86_VENDOR_TM: 821 default: 822 xcpuid++; 823 break; 824 } 825 826 if (xcpuid) { 827 cp = &cpi->cpi_extd[0]; 828 cp->cp_eax = 0x80000000; 829 cpi->cpi_xmaxeax = __cpuid_insn(cp); 830 } 831 832 if (cpi->cpi_xmaxeax & 0x80000000) { 833 834 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 835 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 836 837 switch (cpi->cpi_vendor) { 838 case X86_VENDOR_Intel: 839 case X86_VENDOR_AMD: 840 if (cpi->cpi_xmaxeax < 0x80000001) 841 break; 842 cp = &cpi->cpi_extd[1]; 843 cp->cp_eax = 0x80000001; 844 (void) __cpuid_insn(cp); 845 846 if (cpi->cpi_vendor == X86_VENDOR_AMD && 847 cpi->cpi_family == 5 && 848 cpi->cpi_model == 6 && 849 cpi->cpi_step == 6) { 850 /* 851 * K6 model 6 uses bit 10 to indicate SYSC 852 * Later models use bit 11. Fix it here. 853 */ 854 if (cp->cp_edx & 0x400) { 855 cp->cp_edx &= ~0x400; 856 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 857 } 858 } 859 860 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 861 862 /* 863 * Compute the additions to the kernel's feature word. 864 */ 865 if (cp->cp_edx & CPUID_AMD_EDX_NX) 866 feature |= X86_NX; 867 868 /* 869 * If both the HTT and CMP_LGCY bits are set, 870 * then we're not actually HyperThreaded. Read 871 * "AMD CPUID Specification" for more details. 872 */ 873 if (cpi->cpi_vendor == X86_VENDOR_AMD && 874 (feature & X86_HTT) && 875 (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) { 876 feature &= ~X86_HTT; 877 feature |= X86_CMP; 878 } 879 #if defined(__amd64) 880 /* 881 * It's really tricky to support syscall/sysret in 882 * the i386 kernel; we rely on sysenter/sysexit 883 * instead. In the amd64 kernel, things are -way- 884 * better. 885 */ 886 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) 887 feature |= X86_ASYSC; 888 889 /* 890 * While we're thinking about system calls, note 891 * that AMD processors don't support sysenter 892 * in long mode at all, so don't try to program them. 893 */ 894 if (x86_vendor == X86_VENDOR_AMD) 895 feature &= ~X86_SEP; 896 #endif 897 if (cp->cp_edx & CPUID_AMD_EDX_TSCP) 898 feature |= X86_TSCP; 899 break; 900 default: 901 break; 902 } 903 904 /* 905 * Get CPUID data about processor cores and hyperthreads. 906 */ 907 switch (cpi->cpi_vendor) { 908 case X86_VENDOR_Intel: 909 if (cpi->cpi_maxeax >= 4) { 910 cp = &cpi->cpi_std[4]; 911 cp->cp_eax = 4; 912 cp->cp_ecx = 0; 913 (void) __cpuid_insn(cp); 914 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 915 } 916 /*FALLTHROUGH*/ 917 case X86_VENDOR_AMD: 918 if (cpi->cpi_xmaxeax < 0x80000008) 919 break; 920 cp = &cpi->cpi_extd[8]; 921 cp->cp_eax = 0x80000008; 922 (void) __cpuid_insn(cp); 923 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp); 924 925 /* 926 * Virtual and physical address limits from 927 * cpuid override previously guessed values. 928 */ 929 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 930 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 931 break; 932 default: 933 break; 934 } 935 936 /* 937 * Derive the number of cores per chip 938 */ 939 switch (cpi->cpi_vendor) { 940 case X86_VENDOR_Intel: 941 if (cpi->cpi_maxeax < 4) { 942 cpi->cpi_ncore_per_chip = 1; 943 break; 944 } else { 945 cpi->cpi_ncore_per_chip = 946 BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1; 947 } 948 break; 949 case X86_VENDOR_AMD: 950 if (cpi->cpi_xmaxeax < 0x80000008) { 951 cpi->cpi_ncore_per_chip = 1; 952 break; 953 } else { 954 cpi->cpi_ncore_per_chip = 955 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 956 } 957 break; 958 default: 959 cpi->cpi_ncore_per_chip = 1; 960 break; 961 } 962 } 963 964 /* 965 * If more than one core, then this processor is CMP. 966 */ 967 if (cpi->cpi_ncore_per_chip > 1) 968 feature |= X86_CMP; 969 970 /* 971 * If the number of cores is the same as the number 972 * of CPUs, then we cannot have HyperThreading. 973 */ 974 if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) 975 feature &= ~X86_HTT; 976 977 if ((feature & (X86_HTT | X86_CMP)) == 0) { 978 /* 979 * Single-core single-threaded processors. 980 */ 981 cpi->cpi_chipid = -1; 982 cpi->cpi_clogid = 0; 983 cpi->cpi_coreid = cpu->cpu_id; 984 } else if (cpi->cpi_ncpu_per_chip > 1) { 985 uint_t i; 986 uint_t chipid_shift = 0; 987 uint_t coreid_shift = 0; 988 uint_t apic_id = CPI_APIC_ID(cpi); 989 990 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 991 chipid_shift++; 992 cpi->cpi_chipid = apic_id >> chipid_shift; 993 cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1); 994 995 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 996 if (feature & X86_CMP) { 997 /* 998 * Multi-core (and possibly multi-threaded) 999 * processors. 1000 */ 1001 uint_t ncpu_per_core; 1002 if (cpi->cpi_ncore_per_chip == 1) 1003 ncpu_per_core = cpi->cpi_ncpu_per_chip; 1004 else if (cpi->cpi_ncore_per_chip > 1) 1005 ncpu_per_core = cpi->cpi_ncpu_per_chip / 1006 cpi->cpi_ncore_per_chip; 1007 /* 1008 * 8bit APIC IDs on dual core Pentiums 1009 * look like this: 1010 * 1011 * +-----------------------+------+------+ 1012 * | Physical Package ID | MC | HT | 1013 * +-----------------------+------+------+ 1014 * <------- chipid --------> 1015 * <------- coreid ---------------> 1016 * <--- clogid --> 1017 * 1018 * Where the number of bits necessary to 1019 * represent MC and HT fields together equals 1020 * to the minimum number of bits necessary to 1021 * store the value of cpi->cpi_ncpu_per_chip. 1022 * Of those bits, the MC part uses the number 1023 * of bits necessary to store the value of 1024 * cpi->cpi_ncore_per_chip. 1025 */ 1026 for (i = 1; i < ncpu_per_core; i <<= 1) 1027 coreid_shift++; 1028 cpi->cpi_coreid = apic_id >> coreid_shift; 1029 } else if (feature & X86_HTT) { 1030 /* 1031 * Single-core multi-threaded processors. 1032 */ 1033 cpi->cpi_coreid = cpi->cpi_chipid; 1034 } 1035 } else if (cpi->cpi_vendor == X86_VENDOR_AMD) { 1036 /* 1037 * AMD currently only has dual-core processors with 1038 * single-threaded cores. If they ever release 1039 * multi-threaded processors, then this code 1040 * will have to be updated. 1041 */ 1042 cpi->cpi_coreid = cpu->cpu_id; 1043 } else { 1044 /* 1045 * All other processors are currently 1046 * assumed to have single cores. 1047 */ 1048 cpi->cpi_coreid = cpi->cpi_chipid; 1049 } 1050 } 1051 1052 /* 1053 * Synthesize chip "revision" and socket type 1054 */ 1055 synth_info(cpi); 1056 1057 pass1_done: 1058 cpi->cpi_pass = 1; 1059 return (feature); 1060 } 1061 1062 /* 1063 * Make copies of the cpuid table entries we depend on, in 1064 * part for ease of parsing now, in part so that we have only 1065 * one place to correct any of it, in part for ease of 1066 * later export to userland, and in part so we can look at 1067 * this stuff in a crash dump. 1068 */ 1069 1070 /*ARGSUSED*/ 1071 void 1072 cpuid_pass2(cpu_t *cpu) 1073 { 1074 uint_t n, nmax; 1075 int i; 1076 struct cpuid_regs *cp; 1077 uint8_t *dp; 1078 uint32_t *iptr; 1079 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1080 1081 ASSERT(cpi->cpi_pass == 1); 1082 1083 if (cpi->cpi_maxeax < 1) 1084 goto pass2_done; 1085 1086 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 1087 nmax = NMAX_CPI_STD; 1088 /* 1089 * (We already handled n == 0 and n == 1 in pass 1) 1090 */ 1091 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 1092 cp->cp_eax = n; 1093 1094 /* 1095 * CPUID function 4 expects %ecx to be initialized 1096 * with an index which indicates which cache to return 1097 * information about. The OS is expected to call function 4 1098 * with %ecx set to 0, 1, 2, ... until it returns with 1099 * EAX[4:0] set to 0, which indicates there are no more 1100 * caches. 1101 * 1102 * Here, populate cpi_std[4] with the information returned by 1103 * function 4 when %ecx == 0, and do the rest in cpuid_pass3() 1104 * when dynamic memory allocation becomes available. 1105 * 1106 * Note: we need to explicitly initialize %ecx here, since 1107 * function 4 may have been previously invoked. 1108 */ 1109 if (n == 4) 1110 cp->cp_ecx = 0; 1111 1112 (void) __cpuid_insn(cp); 1113 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 1114 switch (n) { 1115 case 2: 1116 /* 1117 * "the lower 8 bits of the %eax register 1118 * contain a value that identifies the number 1119 * of times the cpuid [instruction] has to be 1120 * executed to obtain a complete image of the 1121 * processor's caching systems." 1122 * 1123 * How *do* they make this stuff up? 1124 */ 1125 cpi->cpi_ncache = sizeof (*cp) * 1126 BITX(cp->cp_eax, 7, 0); 1127 if (cpi->cpi_ncache == 0) 1128 break; 1129 cpi->cpi_ncache--; /* skip count byte */ 1130 1131 /* 1132 * Well, for now, rather than attempt to implement 1133 * this slightly dubious algorithm, we just look 1134 * at the first 15 .. 1135 */ 1136 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 1137 cpi->cpi_ncache = sizeof (*cp) - 1; 1138 1139 dp = cpi->cpi_cacheinfo; 1140 if (BITX(cp->cp_eax, 31, 31) == 0) { 1141 uint8_t *p = (void *)&cp->cp_eax; 1142 for (i = 1; i < 3; i++) 1143 if (p[i] != 0) 1144 *dp++ = p[i]; 1145 } 1146 if (BITX(cp->cp_ebx, 31, 31) == 0) { 1147 uint8_t *p = (void *)&cp->cp_ebx; 1148 for (i = 0; i < 4; i++) 1149 if (p[i] != 0) 1150 *dp++ = p[i]; 1151 } 1152 if (BITX(cp->cp_ecx, 31, 31) == 0) { 1153 uint8_t *p = (void *)&cp->cp_ecx; 1154 for (i = 0; i < 4; i++) 1155 if (p[i] != 0) 1156 *dp++ = p[i]; 1157 } 1158 if (BITX(cp->cp_edx, 31, 31) == 0) { 1159 uint8_t *p = (void *)&cp->cp_edx; 1160 for (i = 0; i < 4; i++) 1161 if (p[i] != 0) 1162 *dp++ = p[i]; 1163 } 1164 break; 1165 1166 case 3: /* Processor serial number, if PSN supported */ 1167 break; 1168 1169 case 4: /* Deterministic cache parameters */ 1170 break; 1171 1172 case 5: /* Monitor/Mwait parameters */ 1173 1174 /* 1175 * check cpi_mwait.support which was set in cpuid_pass1 1176 */ 1177 if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT)) 1178 break; 1179 1180 cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi); 1181 cpi->cpi_mwait.mon_max = (size_t)MWAIT_SIZE_MAX(cpi); 1182 if (MWAIT_EXTENSION(cpi)) { 1183 cpi->cpi_mwait.support |= MWAIT_EXTENSIONS; 1184 if (MWAIT_INT_ENABLE(cpi)) 1185 cpi->cpi_mwait.support |= 1186 MWAIT_ECX_INT_ENABLE; 1187 } 1188 break; 1189 default: 1190 break; 1191 } 1192 } 1193 1194 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) 1195 goto pass2_done; 1196 1197 if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) 1198 nmax = NMAX_CPI_EXTD; 1199 /* 1200 * Copy the extended properties, fixing them as we go. 1201 * (We already handled n == 0 and n == 1 in pass 1) 1202 */ 1203 iptr = (void *)cpi->cpi_brandstr; 1204 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 1205 cp->cp_eax = 0x80000000 + n; 1206 (void) __cpuid_insn(cp); 1207 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp); 1208 switch (n) { 1209 case 2: 1210 case 3: 1211 case 4: 1212 /* 1213 * Extract the brand string 1214 */ 1215 *iptr++ = cp->cp_eax; 1216 *iptr++ = cp->cp_ebx; 1217 *iptr++ = cp->cp_ecx; 1218 *iptr++ = cp->cp_edx; 1219 break; 1220 case 5: 1221 switch (cpi->cpi_vendor) { 1222 case X86_VENDOR_AMD: 1223 /* 1224 * The Athlon and Duron were the first 1225 * parts to report the sizes of the 1226 * TLB for large pages. Before then, 1227 * we don't trust the data. 1228 */ 1229 if (cpi->cpi_family < 6 || 1230 (cpi->cpi_family == 6 && 1231 cpi->cpi_model < 1)) 1232 cp->cp_eax = 0; 1233 break; 1234 default: 1235 break; 1236 } 1237 break; 1238 case 6: 1239 switch (cpi->cpi_vendor) { 1240 case X86_VENDOR_AMD: 1241 /* 1242 * The Athlon and Duron were the first 1243 * AMD parts with L2 TLB's. 1244 * Before then, don't trust the data. 1245 */ 1246 if (cpi->cpi_family < 6 || 1247 cpi->cpi_family == 6 && 1248 cpi->cpi_model < 1) 1249 cp->cp_eax = cp->cp_ebx = 0; 1250 /* 1251 * AMD Duron rev A0 reports L2 1252 * cache size incorrectly as 1K 1253 * when it is really 64K 1254 */ 1255 if (cpi->cpi_family == 6 && 1256 cpi->cpi_model == 3 && 1257 cpi->cpi_step == 0) { 1258 cp->cp_ecx &= 0xffff; 1259 cp->cp_ecx |= 0x400000; 1260 } 1261 break; 1262 case X86_VENDOR_Cyrix: /* VIA C3 */ 1263 /* 1264 * VIA C3 processors are a bit messed 1265 * up w.r.t. encoding cache sizes in %ecx 1266 */ 1267 if (cpi->cpi_family != 6) 1268 break; 1269 /* 1270 * model 7 and 8 were incorrectly encoded 1271 * 1272 * xxx is model 8 really broken? 1273 */ 1274 if (cpi->cpi_model == 7 || 1275 cpi->cpi_model == 8) 1276 cp->cp_ecx = 1277 BITX(cp->cp_ecx, 31, 24) << 16 | 1278 BITX(cp->cp_ecx, 23, 16) << 12 | 1279 BITX(cp->cp_ecx, 15, 8) << 8 | 1280 BITX(cp->cp_ecx, 7, 0); 1281 /* 1282 * model 9 stepping 1 has wrong associativity 1283 */ 1284 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 1285 cp->cp_ecx |= 8 << 12; 1286 break; 1287 case X86_VENDOR_Intel: 1288 /* 1289 * Extended L2 Cache features function. 1290 * First appeared on Prescott. 1291 */ 1292 default: 1293 break; 1294 } 1295 break; 1296 default: 1297 break; 1298 } 1299 } 1300 1301 pass2_done: 1302 cpi->cpi_pass = 2; 1303 } 1304 1305 static const char * 1306 intel_cpubrand(const struct cpuid_info *cpi) 1307 { 1308 int i; 1309 1310 if ((x86_feature & X86_CPUID) == 0 || 1311 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1312 return ("i486"); 1313 1314 switch (cpi->cpi_family) { 1315 case 5: 1316 return ("Intel Pentium(r)"); 1317 case 6: 1318 switch (cpi->cpi_model) { 1319 uint_t celeron, xeon; 1320 const struct cpuid_regs *cp; 1321 case 0: 1322 case 1: 1323 case 2: 1324 return ("Intel Pentium(r) Pro"); 1325 case 3: 1326 case 4: 1327 return ("Intel Pentium(r) II"); 1328 case 6: 1329 return ("Intel Celeron(r)"); 1330 case 5: 1331 case 7: 1332 celeron = xeon = 0; 1333 cp = &cpi->cpi_std[2]; /* cache info */ 1334 1335 for (i = 1; i < 3; i++) { 1336 uint_t tmp; 1337 1338 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 1339 if (tmp == 0x40) 1340 celeron++; 1341 if (tmp >= 0x44 && tmp <= 0x45) 1342 xeon++; 1343 } 1344 1345 for (i = 0; i < 2; i++) { 1346 uint_t tmp; 1347 1348 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 1349 if (tmp == 0x40) 1350 celeron++; 1351 else if (tmp >= 0x44 && tmp <= 0x45) 1352 xeon++; 1353 } 1354 1355 for (i = 0; i < 4; i++) { 1356 uint_t tmp; 1357 1358 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 1359 if (tmp == 0x40) 1360 celeron++; 1361 else if (tmp >= 0x44 && tmp <= 0x45) 1362 xeon++; 1363 } 1364 1365 for (i = 0; i < 4; i++) { 1366 uint_t tmp; 1367 1368 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 1369 if (tmp == 0x40) 1370 celeron++; 1371 else if (tmp >= 0x44 && tmp <= 0x45) 1372 xeon++; 1373 } 1374 1375 if (celeron) 1376 return ("Intel Celeron(r)"); 1377 if (xeon) 1378 return (cpi->cpi_model == 5 ? 1379 "Intel Pentium(r) II Xeon(tm)" : 1380 "Intel Pentium(r) III Xeon(tm)"); 1381 return (cpi->cpi_model == 5 ? 1382 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 1383 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 1384 default: 1385 break; 1386 } 1387 default: 1388 break; 1389 } 1390 1391 /* BrandID is present if the field is nonzero */ 1392 if (cpi->cpi_brandid != 0) { 1393 static const struct { 1394 uint_t bt_bid; 1395 const char *bt_str; 1396 } brand_tbl[] = { 1397 { 0x1, "Intel(r) Celeron(r)" }, 1398 { 0x2, "Intel(r) Pentium(r) III" }, 1399 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 1400 { 0x4, "Intel(r) Pentium(r) III" }, 1401 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 1402 { 0x7, "Mobile Intel(r) Celeron(r)" }, 1403 { 0x8, "Intel(r) Pentium(r) 4" }, 1404 { 0x9, "Intel(r) Pentium(r) 4" }, 1405 { 0xa, "Intel(r) Celeron(r)" }, 1406 { 0xb, "Intel(r) Xeon(tm)" }, 1407 { 0xc, "Intel(r) Xeon(tm) MP" }, 1408 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 1409 { 0xf, "Mobile Intel(r) Celeron(r)" }, 1410 { 0x11, "Mobile Genuine Intel(r)" }, 1411 { 0x12, "Intel(r) Celeron(r) M" }, 1412 { 0x13, "Mobile Intel(r) Celeron(r)" }, 1413 { 0x14, "Intel(r) Celeron(r)" }, 1414 { 0x15, "Mobile Genuine Intel(r)" }, 1415 { 0x16, "Intel(r) Pentium(r) M" }, 1416 { 0x17, "Mobile Intel(r) Celeron(r)" } 1417 }; 1418 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 1419 uint_t sgn; 1420 1421 sgn = (cpi->cpi_family << 8) | 1422 (cpi->cpi_model << 4) | cpi->cpi_step; 1423 1424 for (i = 0; i < btblmax; i++) 1425 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 1426 break; 1427 if (i < btblmax) { 1428 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 1429 return ("Intel(r) Celeron(r)"); 1430 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 1431 return ("Intel(r) Xeon(tm) MP"); 1432 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 1433 return ("Intel(r) Xeon(tm)"); 1434 return (brand_tbl[i].bt_str); 1435 } 1436 } 1437 1438 return (NULL); 1439 } 1440 1441 static const char * 1442 amd_cpubrand(const struct cpuid_info *cpi) 1443 { 1444 if ((x86_feature & X86_CPUID) == 0 || 1445 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1446 return ("i486 compatible"); 1447 1448 switch (cpi->cpi_family) { 1449 case 5: 1450 switch (cpi->cpi_model) { 1451 case 0: 1452 case 1: 1453 case 2: 1454 case 3: 1455 case 4: 1456 case 5: 1457 return ("AMD-K5(r)"); 1458 case 6: 1459 case 7: 1460 return ("AMD-K6(r)"); 1461 case 8: 1462 return ("AMD-K6(r)-2"); 1463 case 9: 1464 return ("AMD-K6(r)-III"); 1465 default: 1466 return ("AMD (family 5)"); 1467 } 1468 case 6: 1469 switch (cpi->cpi_model) { 1470 case 1: 1471 return ("AMD-K7(tm)"); 1472 case 0: 1473 case 2: 1474 case 4: 1475 return ("AMD Athlon(tm)"); 1476 case 3: 1477 case 7: 1478 return ("AMD Duron(tm)"); 1479 case 6: 1480 case 8: 1481 case 10: 1482 /* 1483 * Use the L2 cache size to distinguish 1484 */ 1485 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 1486 "AMD Athlon(tm)" : "AMD Duron(tm)"); 1487 default: 1488 return ("AMD (family 6)"); 1489 } 1490 default: 1491 break; 1492 } 1493 1494 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 1495 cpi->cpi_brandid != 0) { 1496 switch (BITX(cpi->cpi_brandid, 7, 5)) { 1497 case 3: 1498 return ("AMD Opteron(tm) UP 1xx"); 1499 case 4: 1500 return ("AMD Opteron(tm) DP 2xx"); 1501 case 5: 1502 return ("AMD Opteron(tm) MP 8xx"); 1503 default: 1504 return ("AMD Opteron(tm)"); 1505 } 1506 } 1507 1508 return (NULL); 1509 } 1510 1511 static const char * 1512 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 1513 { 1514 if ((x86_feature & X86_CPUID) == 0 || 1515 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 1516 type == X86_TYPE_CYRIX_486) 1517 return ("i486 compatible"); 1518 1519 switch (type) { 1520 case X86_TYPE_CYRIX_6x86: 1521 return ("Cyrix 6x86"); 1522 case X86_TYPE_CYRIX_6x86L: 1523 return ("Cyrix 6x86L"); 1524 case X86_TYPE_CYRIX_6x86MX: 1525 return ("Cyrix 6x86MX"); 1526 case X86_TYPE_CYRIX_GXm: 1527 return ("Cyrix GXm"); 1528 case X86_TYPE_CYRIX_MediaGX: 1529 return ("Cyrix MediaGX"); 1530 case X86_TYPE_CYRIX_MII: 1531 return ("Cyrix M2"); 1532 case X86_TYPE_VIA_CYRIX_III: 1533 return ("VIA Cyrix M3"); 1534 default: 1535 /* 1536 * Have another wild guess .. 1537 */ 1538 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 1539 return ("Cyrix 5x86"); 1540 else if (cpi->cpi_family == 5) { 1541 switch (cpi->cpi_model) { 1542 case 2: 1543 return ("Cyrix 6x86"); /* Cyrix M1 */ 1544 case 4: 1545 return ("Cyrix MediaGX"); 1546 default: 1547 break; 1548 } 1549 } else if (cpi->cpi_family == 6) { 1550 switch (cpi->cpi_model) { 1551 case 0: 1552 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 1553 case 5: 1554 case 6: 1555 case 7: 1556 case 8: 1557 case 9: 1558 return ("VIA C3"); 1559 default: 1560 break; 1561 } 1562 } 1563 break; 1564 } 1565 return (NULL); 1566 } 1567 1568 /* 1569 * This only gets called in the case that the CPU extended 1570 * feature brand string (0x80000002, 0x80000003, 0x80000004) 1571 * aren't available, or contain null bytes for some reason. 1572 */ 1573 static void 1574 fabricate_brandstr(struct cpuid_info *cpi) 1575 { 1576 const char *brand = NULL; 1577 1578 switch (cpi->cpi_vendor) { 1579 case X86_VENDOR_Intel: 1580 brand = intel_cpubrand(cpi); 1581 break; 1582 case X86_VENDOR_AMD: 1583 brand = amd_cpubrand(cpi); 1584 break; 1585 case X86_VENDOR_Cyrix: 1586 brand = cyrix_cpubrand(cpi, x86_type); 1587 break; 1588 case X86_VENDOR_NexGen: 1589 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1590 brand = "NexGen Nx586"; 1591 break; 1592 case X86_VENDOR_Centaur: 1593 if (cpi->cpi_family == 5) 1594 switch (cpi->cpi_model) { 1595 case 4: 1596 brand = "Centaur C6"; 1597 break; 1598 case 8: 1599 brand = "Centaur C2"; 1600 break; 1601 case 9: 1602 brand = "Centaur C3"; 1603 break; 1604 default: 1605 break; 1606 } 1607 break; 1608 case X86_VENDOR_Rise: 1609 if (cpi->cpi_family == 5 && 1610 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 1611 brand = "Rise mP6"; 1612 break; 1613 case X86_VENDOR_SiS: 1614 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1615 brand = "SiS 55x"; 1616 break; 1617 case X86_VENDOR_TM: 1618 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 1619 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 1620 break; 1621 case X86_VENDOR_NSC: 1622 case X86_VENDOR_UMC: 1623 default: 1624 break; 1625 } 1626 if (brand) { 1627 (void) strcpy((char *)cpi->cpi_brandstr, brand); 1628 return; 1629 } 1630 1631 /* 1632 * If all else fails ... 1633 */ 1634 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 1635 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 1636 cpi->cpi_model, cpi->cpi_step); 1637 } 1638 1639 /* 1640 * This routine is called just after kernel memory allocation 1641 * becomes available on cpu0, and as part of mp_startup() on 1642 * the other cpus. 1643 * 1644 * Fixup the brand string, and collect any information from cpuid 1645 * that requires dynamicically allocated storage to represent. 1646 */ 1647 /*ARGSUSED*/ 1648 void 1649 cpuid_pass3(cpu_t *cpu) 1650 { 1651 int i, max, shft, level, size; 1652 struct cpuid_regs regs; 1653 struct cpuid_regs *cp; 1654 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1655 1656 ASSERT(cpi->cpi_pass == 2); 1657 1658 /* 1659 * Function 4: Deterministic cache parameters 1660 * 1661 * Take this opportunity to detect the number of threads 1662 * sharing the last level cache, and construct a corresponding 1663 * cache id. The respective cpuid_info members are initialized 1664 * to the default case of "no last level cache sharing". 1665 */ 1666 cpi->cpi_ncpu_shr_last_cache = 1; 1667 cpi->cpi_last_lvl_cacheid = cpu->cpu_id; 1668 1669 if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) { 1670 1671 /* 1672 * Find the # of elements (size) returned by fn 4, and along 1673 * the way detect last level cache sharing details. 1674 */ 1675 bzero(®s, sizeof (regs)); 1676 cp = ®s; 1677 for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) { 1678 cp->cp_eax = 4; 1679 cp->cp_ecx = i; 1680 1681 (void) __cpuid_insn(cp); 1682 1683 if (CPI_CACHE_TYPE(cp) == 0) 1684 break; 1685 level = CPI_CACHE_LVL(cp); 1686 if (level > max) { 1687 max = level; 1688 cpi->cpi_ncpu_shr_last_cache = 1689 CPI_NTHR_SHR_CACHE(cp) + 1; 1690 } 1691 } 1692 cpi->cpi_std_4_size = size = i; 1693 1694 /* 1695 * Allocate the cpi_std_4 array. The first element 1696 * references the regs for fn 4, %ecx == 0, which 1697 * cpuid_pass2() stashed in cpi->cpi_std[4]. 1698 */ 1699 if (size > 0) { 1700 cpi->cpi_std_4 = 1701 kmem_alloc(size * sizeof (cp), KM_SLEEP); 1702 cpi->cpi_std_4[0] = &cpi->cpi_std[4]; 1703 1704 /* 1705 * Allocate storage to hold the additional regs 1706 * for function 4, %ecx == 1 .. cpi_std_4_size. 1707 * 1708 * The regs for fn 4, %ecx == 0 has already 1709 * been allocated as indicated above. 1710 */ 1711 for (i = 1; i < size; i++) { 1712 cp = cpi->cpi_std_4[i] = 1713 kmem_zalloc(sizeof (regs), KM_SLEEP); 1714 cp->cp_eax = 4; 1715 cp->cp_ecx = i; 1716 1717 (void) __cpuid_insn(cp); 1718 } 1719 } 1720 /* 1721 * Determine the number of bits needed to represent 1722 * the number of CPUs sharing the last level cache. 1723 * 1724 * Shift off that number of bits from the APIC id to 1725 * derive the cache id. 1726 */ 1727 shft = 0; 1728 for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1) 1729 shft++; 1730 cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft; 1731 } 1732 1733 /* 1734 * Now fixup the brand string 1735 */ 1736 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { 1737 fabricate_brandstr(cpi); 1738 } else { 1739 1740 /* 1741 * If we successfully extracted a brand string from the cpuid 1742 * instruction, clean it up by removing leading spaces and 1743 * similar junk. 1744 */ 1745 if (cpi->cpi_brandstr[0]) { 1746 size_t maxlen = sizeof (cpi->cpi_brandstr); 1747 char *src, *dst; 1748 1749 dst = src = (char *)cpi->cpi_brandstr; 1750 src[maxlen - 1] = '\0'; 1751 /* 1752 * strip leading spaces 1753 */ 1754 while (*src == ' ') 1755 src++; 1756 /* 1757 * Remove any 'Genuine' or "Authentic" prefixes 1758 */ 1759 if (strncmp(src, "Genuine ", 8) == 0) 1760 src += 8; 1761 if (strncmp(src, "Authentic ", 10) == 0) 1762 src += 10; 1763 1764 /* 1765 * Now do an in-place copy. 1766 * Map (R) to (r) and (TM) to (tm). 1767 * The era of teletypes is long gone, and there's 1768 * -really- no need to shout. 1769 */ 1770 while (*src != '\0') { 1771 if (src[0] == '(') { 1772 if (strncmp(src + 1, "R)", 2) == 0) { 1773 (void) strncpy(dst, "(r)", 3); 1774 src += 3; 1775 dst += 3; 1776 continue; 1777 } 1778 if (strncmp(src + 1, "TM)", 3) == 0) { 1779 (void) strncpy(dst, "(tm)", 4); 1780 src += 4; 1781 dst += 4; 1782 continue; 1783 } 1784 } 1785 *dst++ = *src++; 1786 } 1787 *dst = '\0'; 1788 1789 /* 1790 * Finally, remove any trailing spaces 1791 */ 1792 while (--dst > cpi->cpi_brandstr) 1793 if (*dst == ' ') 1794 *dst = '\0'; 1795 else 1796 break; 1797 } else 1798 fabricate_brandstr(cpi); 1799 } 1800 cpi->cpi_pass = 3; 1801 } 1802 1803 /* 1804 * This routine is called out of bind_hwcap() much later in the life 1805 * of the kernel (post_startup()). The job of this routine is to resolve 1806 * the hardware feature support and kernel support for those features into 1807 * what we're actually going to tell applications via the aux vector. 1808 */ 1809 uint_t 1810 cpuid_pass4(cpu_t *cpu) 1811 { 1812 struct cpuid_info *cpi; 1813 uint_t hwcap_flags = 0; 1814 1815 if (cpu == NULL) 1816 cpu = CPU; 1817 cpi = cpu->cpu_m.mcpu_cpi; 1818 1819 ASSERT(cpi->cpi_pass == 3); 1820 1821 if (cpi->cpi_maxeax >= 1) { 1822 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 1823 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 1824 1825 *edx = CPI_FEATURES_EDX(cpi); 1826 *ecx = CPI_FEATURES_ECX(cpi); 1827 1828 /* 1829 * [these require explicit kernel support] 1830 */ 1831 if ((x86_feature & X86_SEP) == 0) 1832 *edx &= ~CPUID_INTC_EDX_SEP; 1833 1834 if ((x86_feature & X86_SSE) == 0) 1835 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 1836 if ((x86_feature & X86_SSE2) == 0) 1837 *edx &= ~CPUID_INTC_EDX_SSE2; 1838 1839 if ((x86_feature & X86_HTT) == 0) 1840 *edx &= ~CPUID_INTC_EDX_HTT; 1841 1842 if ((x86_feature & X86_SSE3) == 0) 1843 *ecx &= ~CPUID_INTC_ECX_SSE3; 1844 1845 /* 1846 * [no explicit support required beyond x87 fp context] 1847 */ 1848 if (!fpu_exists) 1849 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 1850 1851 /* 1852 * Now map the supported feature vector to things that we 1853 * think userland will care about. 1854 */ 1855 if (*edx & CPUID_INTC_EDX_SEP) 1856 hwcap_flags |= AV_386_SEP; 1857 if (*edx & CPUID_INTC_EDX_SSE) 1858 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 1859 if (*edx & CPUID_INTC_EDX_SSE2) 1860 hwcap_flags |= AV_386_SSE2; 1861 if (*ecx & CPUID_INTC_ECX_SSE3) 1862 hwcap_flags |= AV_386_SSE3; 1863 1864 if (*edx & CPUID_INTC_EDX_FPU) 1865 hwcap_flags |= AV_386_FPU; 1866 if (*edx & CPUID_INTC_EDX_MMX) 1867 hwcap_flags |= AV_386_MMX; 1868 1869 if (*edx & CPUID_INTC_EDX_TSC) 1870 hwcap_flags |= AV_386_TSC; 1871 if (*edx & CPUID_INTC_EDX_CX8) 1872 hwcap_flags |= AV_386_CX8; 1873 if (*edx & CPUID_INTC_EDX_CMOV) 1874 hwcap_flags |= AV_386_CMOV; 1875 if (*ecx & CPUID_INTC_ECX_MON) 1876 hwcap_flags |= AV_386_MON; 1877 if (*ecx & CPUID_INTC_ECX_CX16) 1878 hwcap_flags |= AV_386_CX16; 1879 } 1880 1881 if (x86_feature & X86_HTT) 1882 hwcap_flags |= AV_386_PAUSE; 1883 1884 if (cpi->cpi_xmaxeax < 0x80000001) 1885 goto pass4_done; 1886 1887 switch (cpi->cpi_vendor) { 1888 struct cpuid_regs cp; 1889 uint32_t *edx, *ecx; 1890 1891 case X86_VENDOR_Intel: 1892 /* 1893 * Seems like Intel duplicated what we necessary 1894 * here to make the initial crop of 64-bit OS's work. 1895 * Hopefully, those are the only "extended" bits 1896 * they'll add. 1897 */ 1898 /*FALLTHROUGH*/ 1899 1900 case X86_VENDOR_AMD: 1901 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 1902 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 1903 1904 *edx = CPI_FEATURES_XTD_EDX(cpi); 1905 *ecx = CPI_FEATURES_XTD_ECX(cpi); 1906 1907 /* 1908 * [these features require explicit kernel support] 1909 */ 1910 switch (cpi->cpi_vendor) { 1911 case X86_VENDOR_Intel: 1912 break; 1913 1914 case X86_VENDOR_AMD: 1915 if ((x86_feature & X86_TSCP) == 0) 1916 *edx &= ~CPUID_AMD_EDX_TSCP; 1917 break; 1918 1919 default: 1920 break; 1921 } 1922 1923 /* 1924 * [no explicit support required beyond 1925 * x87 fp context and exception handlers] 1926 */ 1927 if (!fpu_exists) 1928 *edx &= ~(CPUID_AMD_EDX_MMXamd | 1929 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 1930 1931 if ((x86_feature & X86_NX) == 0) 1932 *edx &= ~CPUID_AMD_EDX_NX; 1933 #if !defined(__amd64) 1934 *edx &= ~CPUID_AMD_EDX_LM; 1935 #endif 1936 /* 1937 * Now map the supported feature vector to 1938 * things that we think userland will care about. 1939 */ 1940 #if defined(__amd64) 1941 if (*edx & CPUID_AMD_EDX_SYSC) 1942 hwcap_flags |= AV_386_AMD_SYSC; 1943 #endif 1944 if (*edx & CPUID_AMD_EDX_MMXamd) 1945 hwcap_flags |= AV_386_AMD_MMX; 1946 if (*edx & CPUID_AMD_EDX_3DNow) 1947 hwcap_flags |= AV_386_AMD_3DNow; 1948 if (*edx & CPUID_AMD_EDX_3DNowx) 1949 hwcap_flags |= AV_386_AMD_3DNowx; 1950 1951 switch (cpi->cpi_vendor) { 1952 case X86_VENDOR_AMD: 1953 if (*edx & CPUID_AMD_EDX_TSCP) 1954 hwcap_flags |= AV_386_TSCP; 1955 if (*ecx & CPUID_AMD_ECX_AHF64) 1956 hwcap_flags |= AV_386_AHF; 1957 break; 1958 1959 case X86_VENDOR_Intel: 1960 /* 1961 * Aarrgh. 1962 * Intel uses a different bit in the same word. 1963 */ 1964 if (*ecx & CPUID_INTC_ECX_AHF64) 1965 hwcap_flags |= AV_386_AHF; 1966 break; 1967 1968 default: 1969 break; 1970 } 1971 break; 1972 1973 case X86_VENDOR_TM: 1974 cp.cp_eax = 0x80860001; 1975 (void) __cpuid_insn(&cp); 1976 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 1977 break; 1978 1979 default: 1980 break; 1981 } 1982 1983 pass4_done: 1984 cpi->cpi_pass = 4; 1985 return (hwcap_flags); 1986 } 1987 1988 1989 /* 1990 * Simulate the cpuid instruction using the data we previously 1991 * captured about this CPU. We try our best to return the truth 1992 * about the hardware, independently of kernel support. 1993 */ 1994 uint32_t 1995 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 1996 { 1997 struct cpuid_info *cpi; 1998 struct cpuid_regs *xcp; 1999 2000 if (cpu == NULL) 2001 cpu = CPU; 2002 cpi = cpu->cpu_m.mcpu_cpi; 2003 2004 ASSERT(cpuid_checkpass(cpu, 3)); 2005 2006 /* 2007 * CPUID data is cached in two separate places: cpi_std for standard 2008 * CPUID functions, and cpi_extd for extended CPUID functions. 2009 */ 2010 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) 2011 xcp = &cpi->cpi_std[cp->cp_eax]; 2012 else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax && 2013 cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD) 2014 xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000]; 2015 else 2016 /* 2017 * The caller is asking for data from an input parameter which 2018 * the kernel has not cached. In this case we go fetch from 2019 * the hardware and return the data directly to the user. 2020 */ 2021 return (__cpuid_insn(cp)); 2022 2023 cp->cp_eax = xcp->cp_eax; 2024 cp->cp_ebx = xcp->cp_ebx; 2025 cp->cp_ecx = xcp->cp_ecx; 2026 cp->cp_edx = xcp->cp_edx; 2027 return (cp->cp_eax); 2028 } 2029 2030 int 2031 cpuid_checkpass(cpu_t *cpu, int pass) 2032 { 2033 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 2034 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 2035 } 2036 2037 int 2038 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 2039 { 2040 ASSERT(cpuid_checkpass(cpu, 3)); 2041 2042 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 2043 } 2044 2045 int 2046 cpuid_is_cmt(cpu_t *cpu) 2047 { 2048 if (cpu == NULL) 2049 cpu = CPU; 2050 2051 ASSERT(cpuid_checkpass(cpu, 1)); 2052 2053 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 2054 } 2055 2056 /* 2057 * AMD and Intel both implement the 64-bit variant of the syscall 2058 * instruction (syscallq), so if there's -any- support for syscall, 2059 * cpuid currently says "yes, we support this". 2060 * 2061 * However, Intel decided to -not- implement the 32-bit variant of the 2062 * syscall instruction, so we provide a predicate to allow our caller 2063 * to test that subtlety here. 2064 */ 2065 /*ARGSUSED*/ 2066 int 2067 cpuid_syscall32_insn(cpu_t *cpu) 2068 { 2069 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 2070 2071 if (cpu == NULL) 2072 cpu = CPU; 2073 2074 /*CSTYLED*/ 2075 { 2076 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2077 2078 if (cpi->cpi_vendor == X86_VENDOR_AMD && 2079 cpi->cpi_xmaxeax >= 0x80000001 && 2080 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 2081 return (1); 2082 } 2083 return (0); 2084 } 2085 2086 int 2087 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 2088 { 2089 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2090 2091 static const char fmt[] = 2092 "x86 (%s %X family %d model %d step %d clock %d MHz)"; 2093 static const char fmt_ht[] = 2094 "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)"; 2095 2096 ASSERT(cpuid_checkpass(cpu, 1)); 2097 2098 if (cpuid_is_cmt(cpu)) 2099 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 2100 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2101 cpi->cpi_family, cpi->cpi_model, 2102 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2103 return (snprintf(s, n, fmt, 2104 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2105 cpi->cpi_family, cpi->cpi_model, 2106 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2107 } 2108 2109 const char * 2110 cpuid_getvendorstr(cpu_t *cpu) 2111 { 2112 ASSERT(cpuid_checkpass(cpu, 1)); 2113 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 2114 } 2115 2116 uint_t 2117 cpuid_getvendor(cpu_t *cpu) 2118 { 2119 ASSERT(cpuid_checkpass(cpu, 1)); 2120 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 2121 } 2122 2123 uint_t 2124 cpuid_getfamily(cpu_t *cpu) 2125 { 2126 ASSERT(cpuid_checkpass(cpu, 1)); 2127 return (cpu->cpu_m.mcpu_cpi->cpi_family); 2128 } 2129 2130 uint_t 2131 cpuid_getmodel(cpu_t *cpu) 2132 { 2133 ASSERT(cpuid_checkpass(cpu, 1)); 2134 return (cpu->cpu_m.mcpu_cpi->cpi_model); 2135 } 2136 2137 uint_t 2138 cpuid_get_ncpu_per_chip(cpu_t *cpu) 2139 { 2140 ASSERT(cpuid_checkpass(cpu, 1)); 2141 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 2142 } 2143 2144 uint_t 2145 cpuid_get_ncore_per_chip(cpu_t *cpu) 2146 { 2147 ASSERT(cpuid_checkpass(cpu, 1)); 2148 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 2149 } 2150 2151 uint_t 2152 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu) 2153 { 2154 ASSERT(cpuid_checkpass(cpu, 2)); 2155 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache); 2156 } 2157 2158 id_t 2159 cpuid_get_last_lvl_cacheid(cpu_t *cpu) 2160 { 2161 ASSERT(cpuid_checkpass(cpu, 2)); 2162 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 2163 } 2164 2165 uint_t 2166 cpuid_getstep(cpu_t *cpu) 2167 { 2168 ASSERT(cpuid_checkpass(cpu, 1)); 2169 return (cpu->cpu_m.mcpu_cpi->cpi_step); 2170 } 2171 2172 uint_t 2173 cpuid_getsig(struct cpu *cpu) 2174 { 2175 ASSERT(cpuid_checkpass(cpu, 1)); 2176 return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax); 2177 } 2178 2179 uint32_t 2180 cpuid_getchiprev(struct cpu *cpu) 2181 { 2182 ASSERT(cpuid_checkpass(cpu, 1)); 2183 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 2184 } 2185 2186 const char * 2187 cpuid_getchiprevstr(struct cpu *cpu) 2188 { 2189 ASSERT(cpuid_checkpass(cpu, 1)); 2190 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 2191 } 2192 2193 uint32_t 2194 cpuid_getsockettype(struct cpu *cpu) 2195 { 2196 ASSERT(cpuid_checkpass(cpu, 1)); 2197 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 2198 } 2199 2200 int 2201 cpuid_get_chipid(cpu_t *cpu) 2202 { 2203 ASSERT(cpuid_checkpass(cpu, 1)); 2204 2205 if (cpuid_is_cmt(cpu)) 2206 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 2207 return (cpu->cpu_id); 2208 } 2209 2210 id_t 2211 cpuid_get_coreid(cpu_t *cpu) 2212 { 2213 ASSERT(cpuid_checkpass(cpu, 1)); 2214 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 2215 } 2216 2217 int 2218 cpuid_get_clogid(cpu_t *cpu) 2219 { 2220 ASSERT(cpuid_checkpass(cpu, 1)); 2221 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 2222 } 2223 2224 void 2225 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 2226 { 2227 struct cpuid_info *cpi; 2228 2229 if (cpu == NULL) 2230 cpu = CPU; 2231 cpi = cpu->cpu_m.mcpu_cpi; 2232 2233 ASSERT(cpuid_checkpass(cpu, 1)); 2234 2235 if (pabits) 2236 *pabits = cpi->cpi_pabits; 2237 if (vabits) 2238 *vabits = cpi->cpi_vabits; 2239 } 2240 2241 /* 2242 * Returns the number of data TLB entries for a corresponding 2243 * pagesize. If it can't be computed, or isn't known, the 2244 * routine returns zero. If you ask about an architecturally 2245 * impossible pagesize, the routine will panic (so that the 2246 * hat implementor knows that things are inconsistent.) 2247 */ 2248 uint_t 2249 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 2250 { 2251 struct cpuid_info *cpi; 2252 uint_t dtlb_nent = 0; 2253 2254 if (cpu == NULL) 2255 cpu = CPU; 2256 cpi = cpu->cpu_m.mcpu_cpi; 2257 2258 ASSERT(cpuid_checkpass(cpu, 1)); 2259 2260 /* 2261 * Check the L2 TLB info 2262 */ 2263 if (cpi->cpi_xmaxeax >= 0x80000006) { 2264 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 2265 2266 switch (pagesize) { 2267 2268 case 4 * 1024: 2269 /* 2270 * All zero in the top 16 bits of the register 2271 * indicates a unified TLB. Size is in low 16 bits. 2272 */ 2273 if ((cp->cp_ebx & 0xffff0000) == 0) 2274 dtlb_nent = cp->cp_ebx & 0x0000ffff; 2275 else 2276 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 2277 break; 2278 2279 case 2 * 1024 * 1024: 2280 if ((cp->cp_eax & 0xffff0000) == 0) 2281 dtlb_nent = cp->cp_eax & 0x0000ffff; 2282 else 2283 dtlb_nent = BITX(cp->cp_eax, 27, 16); 2284 break; 2285 2286 default: 2287 panic("unknown L2 pagesize"); 2288 /*NOTREACHED*/ 2289 } 2290 } 2291 2292 if (dtlb_nent != 0) 2293 return (dtlb_nent); 2294 2295 /* 2296 * No L2 TLB support for this size, try L1. 2297 */ 2298 if (cpi->cpi_xmaxeax >= 0x80000005) { 2299 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 2300 2301 switch (pagesize) { 2302 case 4 * 1024: 2303 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 2304 break; 2305 case 2 * 1024 * 1024: 2306 dtlb_nent = BITX(cp->cp_eax, 23, 16); 2307 break; 2308 default: 2309 panic("unknown L1 d-TLB pagesize"); 2310 /*NOTREACHED*/ 2311 } 2312 } 2313 2314 return (dtlb_nent); 2315 } 2316 2317 /* 2318 * Return 0 if the erratum is not present or not applicable, positive 2319 * if it is, and negative if the status of the erratum is unknown. 2320 * 2321 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 2322 * Processors" #25759, Rev 3.57, August 2005 2323 */ 2324 int 2325 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 2326 { 2327 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2328 uint_t eax; 2329 2330 /* 2331 * Bail out if this CPU isn't an AMD CPU, or if it's 2332 * a legacy (32-bit) AMD CPU. 2333 */ 2334 if (cpi->cpi_vendor != X86_VENDOR_AMD || 2335 cpi->cpi_family == 4 || cpi->cpi_family == 5 || 2336 cpi->cpi_family == 6) 2337 2338 return (0); 2339 2340 eax = cpi->cpi_std[1].cp_eax; 2341 2342 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 2343 #define SH_B3(eax) (eax == 0xf51) 2344 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 2345 2346 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 2347 2348 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 2349 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 2350 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 2351 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 2352 2353 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 2354 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 2355 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 2356 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 2357 2358 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 2359 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 2360 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 2361 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 2362 #define BH_E4(eax) (eax == 0x20fb1) 2363 #define SH_E5(eax) (eax == 0x20f42) 2364 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 2365 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 2366 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 2367 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 2368 DH_E6(eax) || JH_E6(eax)) 2369 2370 switch (erratum) { 2371 case 1: 2372 return (cpi->cpi_family < 0x10); 2373 case 51: /* what does the asterisk mean? */ 2374 return (B(eax) || SH_C0(eax) || CG(eax)); 2375 case 52: 2376 return (B(eax)); 2377 case 57: 2378 return (cpi->cpi_family <= 0x10); 2379 case 58: 2380 return (B(eax)); 2381 case 60: 2382 return (cpi->cpi_family <= 0x10); 2383 case 61: 2384 case 62: 2385 case 63: 2386 case 64: 2387 case 65: 2388 case 66: 2389 case 68: 2390 case 69: 2391 case 70: 2392 case 71: 2393 return (B(eax)); 2394 case 72: 2395 return (SH_B0(eax)); 2396 case 74: 2397 return (B(eax)); 2398 case 75: 2399 return (cpi->cpi_family < 0x10); 2400 case 76: 2401 return (B(eax)); 2402 case 77: 2403 return (cpi->cpi_family <= 0x10); 2404 case 78: 2405 return (B(eax) || SH_C0(eax)); 2406 case 79: 2407 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2408 case 80: 2409 case 81: 2410 case 82: 2411 return (B(eax)); 2412 case 83: 2413 return (B(eax) || SH_C0(eax) || CG(eax)); 2414 case 85: 2415 return (cpi->cpi_family < 0x10); 2416 case 86: 2417 return (SH_C0(eax) || CG(eax)); 2418 case 88: 2419 #if !defined(__amd64) 2420 return (0); 2421 #else 2422 return (B(eax) || SH_C0(eax)); 2423 #endif 2424 case 89: 2425 return (cpi->cpi_family < 0x10); 2426 case 90: 2427 return (B(eax) || SH_C0(eax) || CG(eax)); 2428 case 91: 2429 case 92: 2430 return (B(eax) || SH_C0(eax)); 2431 case 93: 2432 return (SH_C0(eax)); 2433 case 94: 2434 return (B(eax) || SH_C0(eax) || CG(eax)); 2435 case 95: 2436 #if !defined(__amd64) 2437 return (0); 2438 #else 2439 return (B(eax) || SH_C0(eax)); 2440 #endif 2441 case 96: 2442 return (B(eax) || SH_C0(eax) || CG(eax)); 2443 case 97: 2444 case 98: 2445 return (SH_C0(eax) || CG(eax)); 2446 case 99: 2447 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2448 case 100: 2449 return (B(eax) || SH_C0(eax)); 2450 case 101: 2451 case 103: 2452 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2453 case 104: 2454 return (SH_C0(eax) || CG(eax) || D0(eax)); 2455 case 105: 2456 case 106: 2457 case 107: 2458 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2459 case 108: 2460 return (DH_CG(eax)); 2461 case 109: 2462 return (SH_C0(eax) || CG(eax) || D0(eax)); 2463 case 110: 2464 return (D0(eax) || EX(eax)); 2465 case 111: 2466 return (CG(eax)); 2467 case 112: 2468 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2469 case 113: 2470 return (eax == 0x20fc0); 2471 case 114: 2472 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2473 case 115: 2474 return (SH_E0(eax) || JH_E1(eax)); 2475 case 116: 2476 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2477 case 117: 2478 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2479 case 118: 2480 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 2481 JH_E6(eax)); 2482 case 121: 2483 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2484 case 122: 2485 return (cpi->cpi_family < 0x10); 2486 case 123: 2487 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 2488 case 131: 2489 return (cpi->cpi_family < 0x10); 2490 case 6336786: 2491 /* 2492 * Test for AdvPowerMgmtInfo.TscPStateInvariant 2493 * if this is a K8 family or newer processor 2494 */ 2495 if (CPI_FAMILY(cpi) == 0xf) { 2496 struct cpuid_regs regs; 2497 regs.cp_eax = 0x80000007; 2498 (void) __cpuid_insn(®s); 2499 return (!(regs.cp_edx & 0x100)); 2500 } 2501 return (0); 2502 case 6323525: 2503 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 2504 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 2505 2506 default: 2507 return (-1); 2508 } 2509 } 2510 2511 static const char assoc_str[] = "associativity"; 2512 static const char line_str[] = "line-size"; 2513 static const char size_str[] = "size"; 2514 2515 static void 2516 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 2517 uint32_t val) 2518 { 2519 char buf[128]; 2520 2521 /* 2522 * ndi_prop_update_int() is used because it is desirable for 2523 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 2524 */ 2525 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 2526 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 2527 } 2528 2529 /* 2530 * Intel-style cache/tlb description 2531 * 2532 * Standard cpuid level 2 gives a randomly ordered 2533 * selection of tags that index into a table that describes 2534 * cache and tlb properties. 2535 */ 2536 2537 static const char l1_icache_str[] = "l1-icache"; 2538 static const char l1_dcache_str[] = "l1-dcache"; 2539 static const char l2_cache_str[] = "l2-cache"; 2540 static const char l3_cache_str[] = "l3-cache"; 2541 static const char itlb4k_str[] = "itlb-4K"; 2542 static const char dtlb4k_str[] = "dtlb-4K"; 2543 static const char itlb4M_str[] = "itlb-4M"; 2544 static const char dtlb4M_str[] = "dtlb-4M"; 2545 static const char itlb424_str[] = "itlb-4K-2M-4M"; 2546 static const char dtlb44_str[] = "dtlb-4K-4M"; 2547 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 2548 static const char sl2_cache_str[] = "sectored-l2-cache"; 2549 static const char itrace_str[] = "itrace-cache"; 2550 static const char sl3_cache_str[] = "sectored-l3-cache"; 2551 2552 static const struct cachetab { 2553 uint8_t ct_code; 2554 uint8_t ct_assoc; 2555 uint16_t ct_line_size; 2556 size_t ct_size; 2557 const char *ct_label; 2558 } intel_ctab[] = { 2559 /* maintain descending order! */ 2560 { 0xb4, 4, 0, 256, dtlb4k_str }, 2561 { 0xb3, 4, 0, 128, dtlb4k_str }, 2562 { 0xb0, 4, 0, 128, itlb4k_str }, 2563 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 2564 { 0x86, 4, 64, 512*1024, l2_cache_str}, 2565 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 2566 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 2567 { 0x83, 8, 32, 512*1024, l2_cache_str}, 2568 { 0x82, 8, 32, 256*1024, l2_cache_str}, 2569 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 2570 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 2571 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 2572 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 2573 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 2574 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 2575 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 2576 { 0x73, 8, 0, 64*1024, itrace_str}, 2577 { 0x72, 8, 0, 32*1024, itrace_str}, 2578 { 0x71, 8, 0, 16*1024, itrace_str}, 2579 { 0x70, 8, 0, 12*1024, itrace_str}, 2580 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 2581 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 2582 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 2583 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 2584 { 0x5d, 0, 0, 256, dtlb44_str}, 2585 { 0x5c, 0, 0, 128, dtlb44_str}, 2586 { 0x5b, 0, 0, 64, dtlb44_str}, 2587 { 0x52, 0, 0, 256, itlb424_str}, 2588 { 0x51, 0, 0, 128, itlb424_str}, 2589 { 0x50, 0, 0, 64, itlb424_str}, 2590 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 2591 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 2592 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 2593 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 2594 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 2595 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 2596 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 2597 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 2598 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 2599 { 0x43, 4, 32, 512*1024, l2_cache_str}, 2600 { 0x42, 4, 32, 256*1024, l2_cache_str}, 2601 { 0x41, 4, 32, 128*1024, l2_cache_str}, 2602 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 2603 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 2604 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 2605 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 2606 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 2607 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 2608 { 0x30, 8, 64, 32*1024, l1_icache_str}, 2609 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 2610 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 2611 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 2612 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 2613 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 2614 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 2615 { 0x0b, 4, 0, 4, itlb4M_str}, 2616 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 2617 { 0x08, 4, 32, 16*1024, l1_icache_str}, 2618 { 0x06, 4, 32, 8*1024, l1_icache_str}, 2619 { 0x04, 4, 0, 8, dtlb4M_str}, 2620 { 0x03, 4, 0, 64, dtlb4k_str}, 2621 { 0x02, 4, 0, 2, itlb4M_str}, 2622 { 0x01, 4, 0, 32, itlb4k_str}, 2623 { 0 } 2624 }; 2625 2626 static const struct cachetab cyrix_ctab[] = { 2627 { 0x70, 4, 0, 32, "tlb-4K" }, 2628 { 0x80, 4, 16, 16*1024, "l1-cache" }, 2629 { 0 } 2630 }; 2631 2632 /* 2633 * Search a cache table for a matching entry 2634 */ 2635 static const struct cachetab * 2636 find_cacheent(const struct cachetab *ct, uint_t code) 2637 { 2638 if (code != 0) { 2639 for (; ct->ct_code != 0; ct++) 2640 if (ct->ct_code <= code) 2641 break; 2642 if (ct->ct_code == code) 2643 return (ct); 2644 } 2645 return (NULL); 2646 } 2647 2648 /* 2649 * Walk the cacheinfo descriptor, applying 'func' to every valid element 2650 * The walk is terminated if the walker returns non-zero. 2651 */ 2652 static void 2653 intel_walk_cacheinfo(struct cpuid_info *cpi, 2654 void *arg, int (*func)(void *, const struct cachetab *)) 2655 { 2656 const struct cachetab *ct; 2657 uint8_t *dp; 2658 int i; 2659 2660 if ((dp = cpi->cpi_cacheinfo) == NULL) 2661 return; 2662 for (i = 0; i < cpi->cpi_ncache; i++, dp++) 2663 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 2664 if (func(arg, ct) != 0) 2665 break; 2666 } 2667 } 2668 2669 /* 2670 * (Like the Intel one, except for Cyrix CPUs) 2671 */ 2672 static void 2673 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 2674 void *arg, int (*func)(void *, const struct cachetab *)) 2675 { 2676 const struct cachetab *ct; 2677 uint8_t *dp; 2678 int i; 2679 2680 if ((dp = cpi->cpi_cacheinfo) == NULL) 2681 return; 2682 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 2683 /* 2684 * Search Cyrix-specific descriptor table first .. 2685 */ 2686 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 2687 if (func(arg, ct) != 0) 2688 break; 2689 continue; 2690 } 2691 /* 2692 * .. else fall back to the Intel one 2693 */ 2694 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 2695 if (func(arg, ct) != 0) 2696 break; 2697 continue; 2698 } 2699 } 2700 } 2701 2702 /* 2703 * A cacheinfo walker that adds associativity, line-size, and size properties 2704 * to the devinfo node it is passed as an argument. 2705 */ 2706 static int 2707 add_cacheent_props(void *arg, const struct cachetab *ct) 2708 { 2709 dev_info_t *devi = arg; 2710 2711 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 2712 if (ct->ct_line_size != 0) 2713 add_cache_prop(devi, ct->ct_label, line_str, 2714 ct->ct_line_size); 2715 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 2716 return (0); 2717 } 2718 2719 static const char fully_assoc[] = "fully-associative?"; 2720 2721 /* 2722 * AMD style cache/tlb description 2723 * 2724 * Extended functions 5 and 6 directly describe properties of 2725 * tlbs and various cache levels. 2726 */ 2727 static void 2728 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 2729 { 2730 switch (assoc) { 2731 case 0: /* reserved; ignore */ 2732 break; 2733 default: 2734 add_cache_prop(devi, label, assoc_str, assoc); 2735 break; 2736 case 0xff: 2737 add_cache_prop(devi, label, fully_assoc, 1); 2738 break; 2739 } 2740 } 2741 2742 static void 2743 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 2744 { 2745 if (size == 0) 2746 return; 2747 add_cache_prop(devi, label, size_str, size); 2748 add_amd_assoc(devi, label, assoc); 2749 } 2750 2751 static void 2752 add_amd_cache(dev_info_t *devi, const char *label, 2753 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 2754 { 2755 if (size == 0 || line_size == 0) 2756 return; 2757 add_amd_assoc(devi, label, assoc); 2758 /* 2759 * Most AMD parts have a sectored cache. Multiple cache lines are 2760 * associated with each tag. A sector consists of all cache lines 2761 * associated with a tag. For example, the AMD K6-III has a sector 2762 * size of 2 cache lines per tag. 2763 */ 2764 if (lines_per_tag != 0) 2765 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 2766 add_cache_prop(devi, label, line_str, line_size); 2767 add_cache_prop(devi, label, size_str, size * 1024); 2768 } 2769 2770 static void 2771 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 2772 { 2773 switch (assoc) { 2774 case 0: /* off */ 2775 break; 2776 case 1: 2777 case 2: 2778 case 4: 2779 add_cache_prop(devi, label, assoc_str, assoc); 2780 break; 2781 case 6: 2782 add_cache_prop(devi, label, assoc_str, 8); 2783 break; 2784 case 8: 2785 add_cache_prop(devi, label, assoc_str, 16); 2786 break; 2787 case 0xf: 2788 add_cache_prop(devi, label, fully_assoc, 1); 2789 break; 2790 default: /* reserved; ignore */ 2791 break; 2792 } 2793 } 2794 2795 static void 2796 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 2797 { 2798 if (size == 0 || assoc == 0) 2799 return; 2800 add_amd_l2_assoc(devi, label, assoc); 2801 add_cache_prop(devi, label, size_str, size); 2802 } 2803 2804 static void 2805 add_amd_l2_cache(dev_info_t *devi, const char *label, 2806 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 2807 { 2808 if (size == 0 || assoc == 0 || line_size == 0) 2809 return; 2810 add_amd_l2_assoc(devi, label, assoc); 2811 if (lines_per_tag != 0) 2812 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 2813 add_cache_prop(devi, label, line_str, line_size); 2814 add_cache_prop(devi, label, size_str, size * 1024); 2815 } 2816 2817 static void 2818 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 2819 { 2820 struct cpuid_regs *cp; 2821 2822 if (cpi->cpi_xmaxeax < 0x80000005) 2823 return; 2824 cp = &cpi->cpi_extd[5]; 2825 2826 /* 2827 * 4M/2M L1 TLB configuration 2828 * 2829 * We report the size for 2M pages because AMD uses two 2830 * TLB entries for one 4M page. 2831 */ 2832 add_amd_tlb(devi, "dtlb-2M", 2833 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 2834 add_amd_tlb(devi, "itlb-2M", 2835 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 2836 2837 /* 2838 * 4K L1 TLB configuration 2839 */ 2840 2841 switch (cpi->cpi_vendor) { 2842 uint_t nentries; 2843 case X86_VENDOR_TM: 2844 if (cpi->cpi_family >= 5) { 2845 /* 2846 * Crusoe processors have 256 TLB entries, but 2847 * cpuid data format constrains them to only 2848 * reporting 255 of them. 2849 */ 2850 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 2851 nentries = 256; 2852 /* 2853 * Crusoe processors also have a unified TLB 2854 */ 2855 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 2856 nentries); 2857 break; 2858 } 2859 /*FALLTHROUGH*/ 2860 default: 2861 add_amd_tlb(devi, itlb4k_str, 2862 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 2863 add_amd_tlb(devi, dtlb4k_str, 2864 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 2865 break; 2866 } 2867 2868 /* 2869 * data L1 cache configuration 2870 */ 2871 2872 add_amd_cache(devi, l1_dcache_str, 2873 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 2874 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 2875 2876 /* 2877 * code L1 cache configuration 2878 */ 2879 2880 add_amd_cache(devi, l1_icache_str, 2881 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 2882 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 2883 2884 if (cpi->cpi_xmaxeax < 0x80000006) 2885 return; 2886 cp = &cpi->cpi_extd[6]; 2887 2888 /* Check for a unified L2 TLB for large pages */ 2889 2890 if (BITX(cp->cp_eax, 31, 16) == 0) 2891 add_amd_l2_tlb(devi, "l2-tlb-2M", 2892 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2893 else { 2894 add_amd_l2_tlb(devi, "l2-dtlb-2M", 2895 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 2896 add_amd_l2_tlb(devi, "l2-itlb-2M", 2897 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2898 } 2899 2900 /* Check for a unified L2 TLB for 4K pages */ 2901 2902 if (BITX(cp->cp_ebx, 31, 16) == 0) { 2903 add_amd_l2_tlb(devi, "l2-tlb-4K", 2904 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2905 } else { 2906 add_amd_l2_tlb(devi, "l2-dtlb-4K", 2907 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 2908 add_amd_l2_tlb(devi, "l2-itlb-4K", 2909 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2910 } 2911 2912 add_amd_l2_cache(devi, l2_cache_str, 2913 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 2914 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 2915 } 2916 2917 /* 2918 * There are two basic ways that the x86 world describes it cache 2919 * and tlb architecture - Intel's way and AMD's way. 2920 * 2921 * Return which flavor of cache architecture we should use 2922 */ 2923 static int 2924 x86_which_cacheinfo(struct cpuid_info *cpi) 2925 { 2926 switch (cpi->cpi_vendor) { 2927 case X86_VENDOR_Intel: 2928 if (cpi->cpi_maxeax >= 2) 2929 return (X86_VENDOR_Intel); 2930 break; 2931 case X86_VENDOR_AMD: 2932 /* 2933 * The K5 model 1 was the first part from AMD that reported 2934 * cache sizes via extended cpuid functions. 2935 */ 2936 if (cpi->cpi_family > 5 || 2937 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 2938 return (X86_VENDOR_AMD); 2939 break; 2940 case X86_VENDOR_TM: 2941 if (cpi->cpi_family >= 5) 2942 return (X86_VENDOR_AMD); 2943 /*FALLTHROUGH*/ 2944 default: 2945 /* 2946 * If they have extended CPU data for 0x80000005 2947 * then we assume they have AMD-format cache 2948 * information. 2949 * 2950 * If not, and the vendor happens to be Cyrix, 2951 * then try our-Cyrix specific handler. 2952 * 2953 * If we're not Cyrix, then assume we're using Intel's 2954 * table-driven format instead. 2955 */ 2956 if (cpi->cpi_xmaxeax >= 0x80000005) 2957 return (X86_VENDOR_AMD); 2958 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 2959 return (X86_VENDOR_Cyrix); 2960 else if (cpi->cpi_maxeax >= 2) 2961 return (X86_VENDOR_Intel); 2962 break; 2963 } 2964 return (-1); 2965 } 2966 2967 /* 2968 * create a node for the given cpu under the prom root node. 2969 * Also, create a cpu node in the device tree. 2970 */ 2971 static dev_info_t *cpu_nex_devi = NULL; 2972 static kmutex_t cpu_node_lock; 2973 2974 /* 2975 * Called from post_startup() and mp_startup() 2976 */ 2977 void 2978 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi) 2979 { 2980 dev_info_t *cpu_devi; 2981 int create; 2982 2983 mutex_enter(&cpu_node_lock); 2984 2985 /* 2986 * create a nexus node for all cpus identified as 'cpu_id' under 2987 * the root node. 2988 */ 2989 if (cpu_nex_devi == NULL) { 2990 if (ndi_devi_alloc(ddi_root_node(), "cpus", 2991 (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) { 2992 mutex_exit(&cpu_node_lock); 2993 return; 2994 } 2995 (void) ndi_devi_online(cpu_nex_devi, 0); 2996 } 2997 2998 /* 2999 * create a child node for cpu identified as 'cpu_id' 3000 */ 3001 cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, 3002 cpu_id); 3003 if (cpu_devi == NULL) { 3004 mutex_exit(&cpu_node_lock); 3005 return; 3006 } 3007 3008 /* device_type */ 3009 3010 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3011 "device_type", "cpu"); 3012 3013 /* reg */ 3014 3015 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3016 "reg", cpu_id); 3017 3018 /* cpu-mhz, and clock-frequency */ 3019 3020 if (cpu_freq > 0) { 3021 long long mul; 3022 3023 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3024 "cpu-mhz", cpu_freq); 3025 3026 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 3027 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3028 "clock-frequency", (int)mul); 3029 } 3030 3031 (void) ndi_devi_online(cpu_devi, 0); 3032 3033 if ((x86_feature & X86_CPUID) == 0) { 3034 mutex_exit(&cpu_node_lock); 3035 return; 3036 } 3037 3038 /* vendor-id */ 3039 3040 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3041 "vendor-id", cpi->cpi_vendorstr); 3042 3043 if (cpi->cpi_maxeax == 0) { 3044 mutex_exit(&cpu_node_lock); 3045 return; 3046 } 3047 3048 /* 3049 * family, model, and step 3050 */ 3051 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3052 "family", CPI_FAMILY(cpi)); 3053 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3054 "cpu-model", CPI_MODEL(cpi)); 3055 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3056 "stepping-id", CPI_STEP(cpi)); 3057 3058 /* type */ 3059 3060 switch (cpi->cpi_vendor) { 3061 case X86_VENDOR_Intel: 3062 create = 1; 3063 break; 3064 default: 3065 create = 0; 3066 break; 3067 } 3068 if (create) 3069 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3070 "type", CPI_TYPE(cpi)); 3071 3072 /* ext-family */ 3073 3074 switch (cpi->cpi_vendor) { 3075 case X86_VENDOR_Intel: 3076 case X86_VENDOR_AMD: 3077 create = cpi->cpi_family >= 0xf; 3078 break; 3079 default: 3080 create = 0; 3081 break; 3082 } 3083 if (create) 3084 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3085 "ext-family", CPI_FAMILY_XTD(cpi)); 3086 3087 /* ext-model */ 3088 3089 switch (cpi->cpi_vendor) { 3090 case X86_VENDOR_Intel: 3091 create = CPI_MODEL(cpi) == 0xf; 3092 break; 3093 case X86_VENDOR_AMD: 3094 create = CPI_FAMILY(cpi) == 0xf; 3095 break; 3096 default: 3097 create = 0; 3098 break; 3099 } 3100 if (create) 3101 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3102 "ext-model", CPI_MODEL_XTD(cpi)); 3103 3104 /* generation */ 3105 3106 switch (cpi->cpi_vendor) { 3107 case X86_VENDOR_AMD: 3108 /* 3109 * AMD K5 model 1 was the first part to support this 3110 */ 3111 create = cpi->cpi_xmaxeax >= 0x80000001; 3112 break; 3113 default: 3114 create = 0; 3115 break; 3116 } 3117 if (create) 3118 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3119 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 3120 3121 /* brand-id */ 3122 3123 switch (cpi->cpi_vendor) { 3124 case X86_VENDOR_Intel: 3125 /* 3126 * brand id first appeared on Pentium III Xeon model 8, 3127 * and Celeron model 8 processors and Opteron 3128 */ 3129 create = cpi->cpi_family > 6 || 3130 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 3131 break; 3132 case X86_VENDOR_AMD: 3133 create = cpi->cpi_family >= 0xf; 3134 break; 3135 default: 3136 create = 0; 3137 break; 3138 } 3139 if (create && cpi->cpi_brandid != 0) { 3140 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3141 "brand-id", cpi->cpi_brandid); 3142 } 3143 3144 /* chunks, and apic-id */ 3145 3146 switch (cpi->cpi_vendor) { 3147 /* 3148 * first available on Pentium IV and Opteron (K8) 3149 */ 3150 case X86_VENDOR_Intel: 3151 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3152 break; 3153 case X86_VENDOR_AMD: 3154 create = cpi->cpi_family >= 0xf; 3155 break; 3156 default: 3157 create = 0; 3158 break; 3159 } 3160 if (create) { 3161 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3162 "chunks", CPI_CHUNKS(cpi)); 3163 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3164 "apic-id", CPI_APIC_ID(cpi)); 3165 if (cpi->cpi_chipid >= 0) { 3166 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3167 "chip#", cpi->cpi_chipid); 3168 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3169 "clog#", cpi->cpi_clogid); 3170 } 3171 } 3172 3173 /* cpuid-features */ 3174 3175 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3176 "cpuid-features", CPI_FEATURES_EDX(cpi)); 3177 3178 3179 /* cpuid-features-ecx */ 3180 3181 switch (cpi->cpi_vendor) { 3182 case X86_VENDOR_Intel: 3183 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3184 break; 3185 default: 3186 create = 0; 3187 break; 3188 } 3189 if (create) 3190 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3191 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 3192 3193 /* ext-cpuid-features */ 3194 3195 switch (cpi->cpi_vendor) { 3196 case X86_VENDOR_Intel: 3197 case X86_VENDOR_AMD: 3198 case X86_VENDOR_Cyrix: 3199 case X86_VENDOR_TM: 3200 case X86_VENDOR_Centaur: 3201 create = cpi->cpi_xmaxeax >= 0x80000001; 3202 break; 3203 default: 3204 create = 0; 3205 break; 3206 } 3207 if (create) { 3208 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3209 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 3210 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3211 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 3212 } 3213 3214 /* 3215 * Brand String first appeared in Intel Pentium IV, AMD K5 3216 * model 1, and Cyrix GXm. On earlier models we try and 3217 * simulate something similar .. so this string should always 3218 * same -something- about the processor, however lame. 3219 */ 3220 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3221 "brand-string", cpi->cpi_brandstr); 3222 3223 /* 3224 * Finally, cache and tlb information 3225 */ 3226 switch (x86_which_cacheinfo(cpi)) { 3227 case X86_VENDOR_Intel: 3228 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3229 break; 3230 case X86_VENDOR_Cyrix: 3231 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3232 break; 3233 case X86_VENDOR_AMD: 3234 amd_cache_info(cpi, cpu_devi); 3235 break; 3236 default: 3237 break; 3238 } 3239 3240 mutex_exit(&cpu_node_lock); 3241 } 3242 3243 struct l2info { 3244 int *l2i_csz; 3245 int *l2i_lsz; 3246 int *l2i_assoc; 3247 int l2i_ret; 3248 }; 3249 3250 /* 3251 * A cacheinfo walker that fetches the size, line-size and associativity 3252 * of the L2 cache 3253 */ 3254 static int 3255 intel_l2cinfo(void *arg, const struct cachetab *ct) 3256 { 3257 struct l2info *l2i = arg; 3258 int *ip; 3259 3260 if (ct->ct_label != l2_cache_str && 3261 ct->ct_label != sl2_cache_str) 3262 return (0); /* not an L2 -- keep walking */ 3263 3264 if ((ip = l2i->l2i_csz) != NULL) 3265 *ip = ct->ct_size; 3266 if ((ip = l2i->l2i_lsz) != NULL) 3267 *ip = ct->ct_line_size; 3268 if ((ip = l2i->l2i_assoc) != NULL) 3269 *ip = ct->ct_assoc; 3270 l2i->l2i_ret = ct->ct_size; 3271 return (1); /* was an L2 -- terminate walk */ 3272 } 3273 3274 static void 3275 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 3276 { 3277 struct cpuid_regs *cp; 3278 uint_t size, assoc; 3279 int *ip; 3280 3281 if (cpi->cpi_xmaxeax < 0x80000006) 3282 return; 3283 cp = &cpi->cpi_extd[6]; 3284 3285 if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 && 3286 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 3287 uint_t cachesz = size * 1024; 3288 3289 3290 if ((ip = l2i->l2i_csz) != NULL) 3291 *ip = cachesz; 3292 if ((ip = l2i->l2i_lsz) != NULL) 3293 *ip = BITX(cp->cp_ecx, 7, 0); 3294 if ((ip = l2i->l2i_assoc) != NULL) 3295 *ip = assoc; 3296 l2i->l2i_ret = cachesz; 3297 } 3298 } 3299 3300 int 3301 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 3302 { 3303 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3304 struct l2info __l2info, *l2i = &__l2info; 3305 3306 l2i->l2i_csz = csz; 3307 l2i->l2i_lsz = lsz; 3308 l2i->l2i_assoc = assoc; 3309 l2i->l2i_ret = -1; 3310 3311 switch (x86_which_cacheinfo(cpi)) { 3312 case X86_VENDOR_Intel: 3313 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3314 break; 3315 case X86_VENDOR_Cyrix: 3316 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3317 break; 3318 case X86_VENDOR_AMD: 3319 amd_l2cacheinfo(cpi, l2i); 3320 break; 3321 default: 3322 break; 3323 } 3324 return (l2i->l2i_ret); 3325 } 3326 3327 size_t 3328 cpuid_get_mwait_size(cpu_t *cpu) 3329 { 3330 ASSERT(cpuid_checkpass(cpu, 2)); 3331 return (cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max); 3332 } 3333