xref: /titanic_51/usr/src/uts/i86pc/os/cpuid.c (revision 7eea693d6b672899726e75993fddc4e95b52647f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #endif
52 
53 /*
54  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
55  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
56  * them accordingly. For most modern processors, feature detection occurs here
57  * in pass 1.
58  *
59  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
60  * for the boot CPU and does the basic analysis that the early kernel needs.
61  * x86_feature is set based on the return value of cpuid_pass1() of the boot
62  * CPU.
63  *
64  * Pass 1 includes:
65  *
66  *	o Determining vendor/model/family/stepping and setting x86_type and
67  *	  x86_vendor accordingly.
68  *	o Processing the feature flags returned by the cpuid instruction while
69  *	  applying any workarounds or tricks for the specific processor.
70  *	o Mapping the feature flags into Solaris feature bits (X86_*).
71  *	o Processing extended feature flags if supported by the processor,
72  *	  again while applying specific processor knowledge.
73  *	o Determining the CMT characteristics of the system.
74  *
75  * Pass 1 is done on non-boot CPUs during their initialization and the results
76  * are used only as a meager attempt at ensuring that all processors within the
77  * system support the same features.
78  *
79  * Pass 2 of cpuid feature analysis happens just at the beginning
80  * of startup().  It just copies in and corrects the remainder
81  * of the cpuid data we depend on: standard cpuid functions that we didn't
82  * need for pass1 feature analysis, and extended cpuid functions beyond the
83  * simple feature processing done in pass1.
84  *
85  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
86  * particular kernel memory allocation has been made available. It creates a
87  * readable brand string based on the data collected in the first two passes.
88  *
89  * Pass 4 of cpuid analysis is invoked after post_startup() when all
90  * the support infrastructure for various hardware features has been
91  * initialized. It determines which processor features will be reported
92  * to userland via the aux vector.
93  *
94  * All passes are executed on all CPUs, but only the boot CPU determines what
95  * features the kernel will use.
96  *
97  * Much of the worst junk in this file is for the support of processors
98  * that didn't really implement the cpuid instruction properly.
99  *
100  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
101  * the pass numbers.  Accordingly, changes to the pass code may require changes
102  * to the accessor code.
103  */
104 
105 uint_t x86_feature = 0;
106 uint_t x86_vendor = X86_VENDOR_IntelClone;
107 uint_t x86_type = X86_TYPE_OTHER;
108 uint_t x86_clflush_size = 0;
109 
110 uint_t pentiumpro_bug4046376;
111 uint_t pentiumpro_bug4064495;
112 
113 uint_t enable486;
114 
115 /*
116  * monitor/mwait info.
117  *
118  * size_actual and buf_actual are the real address and size allocated to get
119  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
120  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
121  * processor cache-line alignment, but this is not guarantied in the furture.
122  */
123 struct mwait_info {
124 	size_t		mon_min;	/* min size to avoid missed wakeups */
125 	size_t		mon_max;	/* size to avoid false wakeups */
126 	size_t		size_actual;	/* size actually allocated */
127 	void		*buf_actual;	/* memory actually allocated */
128 	uint32_t	support;	/* processor support of monitor/mwait */
129 };
130 
131 /*
132  * These constants determine how many of the elements of the
133  * cpuid we cache in the cpuid_info data structure; the
134  * remaining elements are accessible via the cpuid instruction.
135  */
136 
137 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
138 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
139 
140 struct cpuid_info {
141 	uint_t cpi_pass;		/* last pass completed */
142 	/*
143 	 * standard function information
144 	 */
145 	uint_t cpi_maxeax;		/* fn 0: %eax */
146 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
147 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
148 
149 	uint_t cpi_family;		/* fn 1: extended family */
150 	uint_t cpi_model;		/* fn 1: extended model */
151 	uint_t cpi_step;		/* fn 1: stepping */
152 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
153 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
154 	int cpi_clogid;			/* fn 1: %ebx: thread # */
155 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
156 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
157 	uint_t cpi_ncache;		/* fn 2: number of elements */
158 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
159 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
160 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
161 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
162 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
163 	/*
164 	 * extended function information
165 	 */
166 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
167 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
168 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
169 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
170 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
171 	id_t cpi_coreid;		/* same coreid => strands share core */
172 	int cpi_pkgcoreid;		/* core number within single package */
173 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
174 					/* Intel: fn 4: %eax[31-26] */
175 	/*
176 	 * supported feature information
177 	 */
178 	uint32_t cpi_support[5];
179 #define	STD_EDX_FEATURES	0
180 #define	AMD_EDX_FEATURES	1
181 #define	TM_EDX_FEATURES		2
182 #define	STD_ECX_FEATURES	3
183 #define	AMD_ECX_FEATURES	4
184 	/*
185 	 * Synthesized information, where known.
186 	 */
187 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
188 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
189 	uint32_t cpi_socket;		/* Chip package/socket type */
190 
191 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
192 	uint32_t cpi_apicid;
193 };
194 
195 
196 static struct cpuid_info cpuid_info0;
197 
198 /*
199  * These bit fields are defined by the Intel Application Note AP-485
200  * "Intel Processor Identification and the CPUID Instruction"
201  */
202 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
203 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
204 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
205 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
206 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
207 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
208 
209 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
210 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
211 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
212 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
213 
214 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
215 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
216 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
217 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
218 
219 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
220 #define	CPI_XMAXEAX_MAX		0x80000100
221 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
222 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
235 
236 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
237 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
238 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
239 
240 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
241 
242 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
243 
244 
245 /*
246  * A couple of shorthand macros to identify "later" P6-family chips
247  * like the Pentium M and Core.  First, the "older" P6-based stuff
248  * (loosely defined as "pre-Pentium-4"):
249  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
250  */
251 
252 #define	IS_LEGACY_P6(cpi) (			\
253 	cpi->cpi_family == 6 && 		\
254 		(cpi->cpi_model == 1 ||		\
255 		cpi->cpi_model == 3 ||		\
256 		cpi->cpi_model == 5 ||		\
257 		cpi->cpi_model == 6 ||		\
258 		cpi->cpi_model == 7 ||		\
259 		cpi->cpi_model == 8 ||		\
260 		cpi->cpi_model == 0xA ||	\
261 		cpi->cpi_model == 0xB)		\
262 )
263 
264 /* A "new F6" is everything with family 6 that's not the above */
265 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
266 
267 /* Extended family/model support */
268 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
269 	cpi->cpi_family >= 0xf)
270 
271 /*
272  * Info for monitor/mwait idle loop.
273  *
274  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
275  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
276  * 2006.
277  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
278  * Documentation Updates" #33633, Rev 2.05, December 2006.
279  */
280 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
281 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
282 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
283 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
284 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
285 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
286 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
287 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
288 /*
289  * Number of sub-cstates for a given c-state.
290  */
291 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
292 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
293 
294 /*
295  * Functions we consune from cpuid_subr.c;  don't publish these in a header
296  * file to try and keep people using the expected cpuid_* interfaces.
297  */
298 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
299 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
300 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
301 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
302 
303 /*
304  * Apply up various platform-dependent restrictions where the
305  * underlying platform restrictions mean the CPU can be marked
306  * as less capable than its cpuid instruction would imply.
307  */
308 #if defined(__xpv)
309 static void
310 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
311 {
312 	switch (eax) {
313 	case 1: {
314 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
315 		    0 : CPUID_INTC_EDX_MCA;
316 		cp->cp_edx &=
317 		    ~(mcamask |
318 		    CPUID_INTC_EDX_PSE |
319 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
320 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
321 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
322 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
323 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
324 		break;
325 	}
326 
327 	case 0x80000001:
328 		cp->cp_edx &=
329 		    ~(CPUID_AMD_EDX_PSE |
330 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
331 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
332 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
333 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
334 		    CPUID_AMD_EDX_TSCP);
335 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
336 		break;
337 	default:
338 		break;
339 	}
340 
341 	switch (vendor) {
342 	case X86_VENDOR_Intel:
343 		switch (eax) {
344 		case 4:
345 			/*
346 			 * Zero out the (ncores-per-chip - 1) field
347 			 */
348 			cp->cp_eax &= 0x03fffffff;
349 			break;
350 		default:
351 			break;
352 		}
353 		break;
354 	case X86_VENDOR_AMD:
355 		switch (eax) {
356 		case 0x80000008:
357 			/*
358 			 * Zero out the (ncores-per-chip - 1) field
359 			 */
360 			cp->cp_ecx &= 0xffffff00;
361 			break;
362 		default:
363 			break;
364 		}
365 		break;
366 	default:
367 		break;
368 	}
369 }
370 #else
371 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
372 #endif
373 
374 /*
375  *  Some undocumented ways of patching the results of the cpuid
376  *  instruction to permit running Solaris 10 on future cpus that
377  *  we don't currently support.  Could be set to non-zero values
378  *  via settings in eeprom.
379  */
380 
381 uint32_t cpuid_feature_ecx_include;
382 uint32_t cpuid_feature_ecx_exclude;
383 uint32_t cpuid_feature_edx_include;
384 uint32_t cpuid_feature_edx_exclude;
385 
386 void
387 cpuid_alloc_space(cpu_t *cpu)
388 {
389 	/*
390 	 * By convention, cpu0 is the boot cpu, which is set up
391 	 * before memory allocation is available.  All other cpus get
392 	 * their cpuid_info struct allocated here.
393 	 */
394 	ASSERT(cpu->cpu_id != 0);
395 	cpu->cpu_m.mcpu_cpi =
396 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
397 }
398 
399 void
400 cpuid_free_space(cpu_t *cpu)
401 {
402 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
403 	int i;
404 
405 	ASSERT(cpu->cpu_id != 0);
406 
407 	/*
408 	 * Free up any function 4 related dynamic storage
409 	 */
410 	for (i = 1; i < cpi->cpi_std_4_size; i++)
411 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
412 	if (cpi->cpi_std_4_size > 0)
413 		kmem_free(cpi->cpi_std_4,
414 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
415 
416 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
417 }
418 
419 #if !defined(__xpv)
420 
421 static void
422 check_for_hvm()
423 {
424 	struct cpuid_regs cp;
425 	char *xen_str;
426 	uint32_t xen_signature[4];
427 	extern int xpv_is_hvm;
428 
429 	/*
430 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
431 	 * 0x40000000 returns a string representing the Xen signature in
432 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
433 	 * function.
434 	 */
435 	cp.cp_eax = 0x40000000;
436 	(void) __cpuid_insn(&cp);
437 	xen_signature[0] = cp.cp_ebx;
438 	xen_signature[1] = cp.cp_ecx;
439 	xen_signature[2] = cp.cp_edx;
440 	xen_signature[3] = 0;
441 	xen_str = (char *)xen_signature;
442 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
443 		xpv_is_hvm = 1;
444 }
445 #endif	/* __xpv */
446 
447 uint_t
448 cpuid_pass1(cpu_t *cpu)
449 {
450 	uint32_t mask_ecx, mask_edx;
451 	uint_t feature = X86_CPUID;
452 	struct cpuid_info *cpi;
453 	struct cpuid_regs *cp;
454 	int xcpuid;
455 #if !defined(__xpv)
456 	extern int idle_cpu_prefer_mwait;
457 #endif
458 
459 	/*
460 	 * Space statically allocated for cpu0, ensure pointer is set
461 	 */
462 	if (cpu->cpu_id == 0)
463 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
464 	cpi = cpu->cpu_m.mcpu_cpi;
465 	ASSERT(cpi != NULL);
466 	cp = &cpi->cpi_std[0];
467 	cp->cp_eax = 0;
468 	cpi->cpi_maxeax = __cpuid_insn(cp);
469 	{
470 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
471 		*iptr++ = cp->cp_ebx;
472 		*iptr++ = cp->cp_edx;
473 		*iptr++ = cp->cp_ecx;
474 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
475 	}
476 
477 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
478 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
479 
480 	/*
481 	 * Limit the range in case of weird hardware
482 	 */
483 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
484 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
485 	if (cpi->cpi_maxeax < 1)
486 		goto pass1_done;
487 
488 	cp = &cpi->cpi_std[1];
489 	cp->cp_eax = 1;
490 	(void) __cpuid_insn(cp);
491 
492 	/*
493 	 * Extract identifying constants for easy access.
494 	 */
495 	cpi->cpi_model = CPI_MODEL(cpi);
496 	cpi->cpi_family = CPI_FAMILY(cpi);
497 
498 	if (cpi->cpi_family == 0xf)
499 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
500 
501 	/*
502 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
503 	 * Intel, and presumably everyone else, uses model == 0xf, as
504 	 * one would expect (max value means possible overflow).  Sigh.
505 	 */
506 
507 	switch (cpi->cpi_vendor) {
508 	case X86_VENDOR_Intel:
509 		if (IS_EXTENDED_MODEL_INTEL(cpi))
510 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
511 		break;
512 	case X86_VENDOR_AMD:
513 		if (CPI_FAMILY(cpi) == 0xf)
514 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
515 		break;
516 	default:
517 		if (cpi->cpi_model == 0xf)
518 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
519 		break;
520 	}
521 
522 	cpi->cpi_step = CPI_STEP(cpi);
523 	cpi->cpi_brandid = CPI_BRANDID(cpi);
524 
525 	/*
526 	 * *default* assumptions:
527 	 * - believe %edx feature word
528 	 * - ignore %ecx feature word
529 	 * - 32-bit virtual and physical addressing
530 	 */
531 	mask_edx = 0xffffffff;
532 	mask_ecx = 0;
533 
534 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
535 
536 	switch (cpi->cpi_vendor) {
537 	case X86_VENDOR_Intel:
538 		if (cpi->cpi_family == 5)
539 			x86_type = X86_TYPE_P5;
540 		else if (IS_LEGACY_P6(cpi)) {
541 			x86_type = X86_TYPE_P6;
542 			pentiumpro_bug4046376 = 1;
543 			pentiumpro_bug4064495 = 1;
544 			/*
545 			 * Clear the SEP bit when it was set erroneously
546 			 */
547 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
548 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
549 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
550 			x86_type = X86_TYPE_P4;
551 			/*
552 			 * We don't currently depend on any of the %ecx
553 			 * features until Prescott, so we'll only check
554 			 * this from P4 onwards.  We might want to revisit
555 			 * that idea later.
556 			 */
557 			mask_ecx = 0xffffffff;
558 		} else if (cpi->cpi_family > 0xf)
559 			mask_ecx = 0xffffffff;
560 		/*
561 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
562 		 * to obtain the monitor linesize.
563 		 */
564 		if (cpi->cpi_maxeax < 5)
565 			mask_ecx &= ~CPUID_INTC_ECX_MON;
566 		break;
567 	case X86_VENDOR_IntelClone:
568 	default:
569 		break;
570 	case X86_VENDOR_AMD:
571 #if defined(OPTERON_ERRATUM_108)
572 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
573 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
574 			cpi->cpi_model = 0xc;
575 		} else
576 #endif
577 		if (cpi->cpi_family == 5) {
578 			/*
579 			 * AMD K5 and K6
580 			 *
581 			 * These CPUs have an incomplete implementation
582 			 * of MCA/MCE which we mask away.
583 			 */
584 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
585 
586 			/*
587 			 * Model 0 uses the wrong (APIC) bit
588 			 * to indicate PGE.  Fix it here.
589 			 */
590 			if (cpi->cpi_model == 0) {
591 				if (cp->cp_edx & 0x200) {
592 					cp->cp_edx &= ~0x200;
593 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
594 				}
595 			}
596 
597 			/*
598 			 * Early models had problems w/ MMX; disable.
599 			 */
600 			if (cpi->cpi_model < 6)
601 				mask_edx &= ~CPUID_INTC_EDX_MMX;
602 		}
603 
604 		/*
605 		 * For newer families, SSE3 and CX16, at least, are valid;
606 		 * enable all
607 		 */
608 		if (cpi->cpi_family >= 0xf)
609 			mask_ecx = 0xffffffff;
610 		/*
611 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
612 		 * to obtain the monitor linesize.
613 		 */
614 		if (cpi->cpi_maxeax < 5)
615 			mask_ecx &= ~CPUID_INTC_ECX_MON;
616 
617 #if !defined(__xpv)
618 		/*
619 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
620 		 * processors.  AMD does not intend MWAIT to be used in the cpu
621 		 * idle loop on current and future processors.  10h and future
622 		 * AMD processors use more power in MWAIT than HLT.
623 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
624 		 */
625 		idle_cpu_prefer_mwait = 0;
626 #endif
627 
628 		break;
629 	case X86_VENDOR_TM:
630 		/*
631 		 * workaround the NT workaround in CMS 4.1
632 		 */
633 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
634 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
635 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
636 		break;
637 	case X86_VENDOR_Centaur:
638 		/*
639 		 * workaround the NT workarounds again
640 		 */
641 		if (cpi->cpi_family == 6)
642 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
643 		break;
644 	case X86_VENDOR_Cyrix:
645 		/*
646 		 * We rely heavily on the probing in locore
647 		 * to actually figure out what parts, if any,
648 		 * of the Cyrix cpuid instruction to believe.
649 		 */
650 		switch (x86_type) {
651 		case X86_TYPE_CYRIX_486:
652 			mask_edx = 0;
653 			break;
654 		case X86_TYPE_CYRIX_6x86:
655 			mask_edx = 0;
656 			break;
657 		case X86_TYPE_CYRIX_6x86L:
658 			mask_edx =
659 			    CPUID_INTC_EDX_DE |
660 			    CPUID_INTC_EDX_CX8;
661 			break;
662 		case X86_TYPE_CYRIX_6x86MX:
663 			mask_edx =
664 			    CPUID_INTC_EDX_DE |
665 			    CPUID_INTC_EDX_MSR |
666 			    CPUID_INTC_EDX_CX8 |
667 			    CPUID_INTC_EDX_PGE |
668 			    CPUID_INTC_EDX_CMOV |
669 			    CPUID_INTC_EDX_MMX;
670 			break;
671 		case X86_TYPE_CYRIX_GXm:
672 			mask_edx =
673 			    CPUID_INTC_EDX_MSR |
674 			    CPUID_INTC_EDX_CX8 |
675 			    CPUID_INTC_EDX_CMOV |
676 			    CPUID_INTC_EDX_MMX;
677 			break;
678 		case X86_TYPE_CYRIX_MediaGX:
679 			break;
680 		case X86_TYPE_CYRIX_MII:
681 		case X86_TYPE_VIA_CYRIX_III:
682 			mask_edx =
683 			    CPUID_INTC_EDX_DE |
684 			    CPUID_INTC_EDX_TSC |
685 			    CPUID_INTC_EDX_MSR |
686 			    CPUID_INTC_EDX_CX8 |
687 			    CPUID_INTC_EDX_PGE |
688 			    CPUID_INTC_EDX_CMOV |
689 			    CPUID_INTC_EDX_MMX;
690 			break;
691 		default:
692 			break;
693 		}
694 		break;
695 	}
696 
697 #if defined(__xpv)
698 	/*
699 	 * Do not support MONITOR/MWAIT under a hypervisor
700 	 */
701 	mask_ecx &= ~CPUID_INTC_ECX_MON;
702 #endif	/* __xpv */
703 
704 	/*
705 	 * Now we've figured out the masks that determine
706 	 * which bits we choose to believe, apply the masks
707 	 * to the feature words, then map the kernel's view
708 	 * of these feature words into its feature word.
709 	 */
710 	cp->cp_edx &= mask_edx;
711 	cp->cp_ecx &= mask_ecx;
712 
713 	/*
714 	 * apply any platform restrictions (we don't call this
715 	 * immediately after __cpuid_insn here, because we need the
716 	 * workarounds applied above first)
717 	 */
718 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
719 
720 	/*
721 	 * fold in overrides from the "eeprom" mechanism
722 	 */
723 	cp->cp_edx |= cpuid_feature_edx_include;
724 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
725 
726 	cp->cp_ecx |= cpuid_feature_ecx_include;
727 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
728 
729 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
730 		feature |= X86_LARGEPAGE;
731 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
732 		feature |= X86_TSC;
733 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
734 		feature |= X86_MSR;
735 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
736 		feature |= X86_MTRR;
737 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
738 		feature |= X86_PGE;
739 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
740 		feature |= X86_CMOV;
741 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
742 		feature |= X86_MMX;
743 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
744 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
745 		feature |= X86_MCA;
746 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
747 		feature |= X86_PAE;
748 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
749 		feature |= X86_CX8;
750 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
751 		feature |= X86_CX16;
752 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
753 		feature |= X86_PAT;
754 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
755 		feature |= X86_SEP;
756 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
757 		/*
758 		 * In our implementation, fxsave/fxrstor
759 		 * are prerequisites before we'll even
760 		 * try and do SSE things.
761 		 */
762 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
763 			feature |= X86_SSE;
764 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
765 			feature |= X86_SSE2;
766 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
767 			feature |= X86_SSE3;
768 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
769 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
770 				feature |= X86_SSSE3;
771 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
772 				feature |= X86_SSE4_1;
773 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
774 				feature |= X86_SSE4_2;
775 		}
776 	}
777 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
778 		feature |= X86_DE;
779 #if !defined(__xpv)
780 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
781 
782 		/*
783 		 * We require the CLFLUSH instruction for erratum workaround
784 		 * to use MONITOR/MWAIT.
785 		 */
786 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
787 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
788 			feature |= X86_MWAIT;
789 		} else {
790 			extern int idle_cpu_assert_cflush_monitor;
791 
792 			/*
793 			 * All processors we are aware of which have
794 			 * MONITOR/MWAIT also have CLFLUSH.
795 			 */
796 			if (idle_cpu_assert_cflush_monitor) {
797 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
798 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
799 			}
800 		}
801 	}
802 #endif	/* __xpv */
803 
804 	/*
805 	 * Only need it first time, rest of the cpus would follow suite.
806 	 * we only capture this for the bootcpu.
807 	 */
808 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
809 		feature |= X86_CLFSH;
810 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
811 	}
812 
813 	if (feature & X86_PAE)
814 		cpi->cpi_pabits = 36;
815 
816 	/*
817 	 * Hyperthreading configuration is slightly tricky on Intel
818 	 * and pure clones, and even trickier on AMD.
819 	 *
820 	 * (AMD chose to set the HTT bit on their CMP processors,
821 	 * even though they're not actually hyperthreaded.  Thus it
822 	 * takes a bit more work to figure out what's really going
823 	 * on ... see the handling of the CMP_LGCY bit below)
824 	 */
825 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
826 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
827 		if (cpi->cpi_ncpu_per_chip > 1)
828 			feature |= X86_HTT;
829 	} else {
830 		cpi->cpi_ncpu_per_chip = 1;
831 	}
832 
833 	/*
834 	 * Work on the "extended" feature information, doing
835 	 * some basic initialization for cpuid_pass2()
836 	 */
837 	xcpuid = 0;
838 	switch (cpi->cpi_vendor) {
839 	case X86_VENDOR_Intel:
840 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
841 			xcpuid++;
842 		break;
843 	case X86_VENDOR_AMD:
844 		if (cpi->cpi_family > 5 ||
845 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
846 			xcpuid++;
847 		break;
848 	case X86_VENDOR_Cyrix:
849 		/*
850 		 * Only these Cyrix CPUs are -known- to support
851 		 * extended cpuid operations.
852 		 */
853 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
854 		    x86_type == X86_TYPE_CYRIX_GXm)
855 			xcpuid++;
856 		break;
857 	case X86_VENDOR_Centaur:
858 	case X86_VENDOR_TM:
859 	default:
860 		xcpuid++;
861 		break;
862 	}
863 
864 	if (xcpuid) {
865 		cp = &cpi->cpi_extd[0];
866 		cp->cp_eax = 0x80000000;
867 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
868 	}
869 
870 	if (cpi->cpi_xmaxeax & 0x80000000) {
871 
872 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
873 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
874 
875 		switch (cpi->cpi_vendor) {
876 		case X86_VENDOR_Intel:
877 		case X86_VENDOR_AMD:
878 			if (cpi->cpi_xmaxeax < 0x80000001)
879 				break;
880 			cp = &cpi->cpi_extd[1];
881 			cp->cp_eax = 0x80000001;
882 			(void) __cpuid_insn(cp);
883 
884 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
885 			    cpi->cpi_family == 5 &&
886 			    cpi->cpi_model == 6 &&
887 			    cpi->cpi_step == 6) {
888 				/*
889 				 * K6 model 6 uses bit 10 to indicate SYSC
890 				 * Later models use bit 11. Fix it here.
891 				 */
892 				if (cp->cp_edx & 0x400) {
893 					cp->cp_edx &= ~0x400;
894 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
895 				}
896 			}
897 
898 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
899 
900 			/*
901 			 * Compute the additions to the kernel's feature word.
902 			 */
903 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
904 				feature |= X86_NX;
905 
906 			/*
907 			 * Regardless whether or not we boot 64-bit,
908 			 * we should have a way to identify whether
909 			 * the CPU is capable of running 64-bit.
910 			 */
911 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
912 				feature |= X86_64;
913 
914 #if defined(__amd64)
915 			/* 1 GB large page - enable only for 64 bit kernel */
916 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
917 				feature |= X86_1GPG;
918 #endif
919 
920 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
921 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
922 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
923 				feature |= X86_SSE4A;
924 
925 			/*
926 			 * If both the HTT and CMP_LGCY bits are set,
927 			 * then we're not actually HyperThreaded.  Read
928 			 * "AMD CPUID Specification" for more details.
929 			 */
930 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
931 			    (feature & X86_HTT) &&
932 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
933 				feature &= ~X86_HTT;
934 				feature |= X86_CMP;
935 			}
936 #if defined(__amd64)
937 			/*
938 			 * It's really tricky to support syscall/sysret in
939 			 * the i386 kernel; we rely on sysenter/sysexit
940 			 * instead.  In the amd64 kernel, things are -way-
941 			 * better.
942 			 */
943 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
944 				feature |= X86_ASYSC;
945 
946 			/*
947 			 * While we're thinking about system calls, note
948 			 * that AMD processors don't support sysenter
949 			 * in long mode at all, so don't try to program them.
950 			 */
951 			if (x86_vendor == X86_VENDOR_AMD)
952 				feature &= ~X86_SEP;
953 #endif
954 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
955 				feature |= X86_TSCP;
956 			break;
957 		default:
958 			break;
959 		}
960 
961 		/*
962 		 * Get CPUID data about processor cores and hyperthreads.
963 		 */
964 		switch (cpi->cpi_vendor) {
965 		case X86_VENDOR_Intel:
966 			if (cpi->cpi_maxeax >= 4) {
967 				cp = &cpi->cpi_std[4];
968 				cp->cp_eax = 4;
969 				cp->cp_ecx = 0;
970 				(void) __cpuid_insn(cp);
971 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
972 			}
973 			/*FALLTHROUGH*/
974 		case X86_VENDOR_AMD:
975 			if (cpi->cpi_xmaxeax < 0x80000008)
976 				break;
977 			cp = &cpi->cpi_extd[8];
978 			cp->cp_eax = 0x80000008;
979 			(void) __cpuid_insn(cp);
980 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
981 
982 			/*
983 			 * Virtual and physical address limits from
984 			 * cpuid override previously guessed values.
985 			 */
986 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
987 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
988 			break;
989 		default:
990 			break;
991 		}
992 
993 		/*
994 		 * Derive the number of cores per chip
995 		 */
996 		switch (cpi->cpi_vendor) {
997 		case X86_VENDOR_Intel:
998 			if (cpi->cpi_maxeax < 4) {
999 				cpi->cpi_ncore_per_chip = 1;
1000 				break;
1001 			} else {
1002 				cpi->cpi_ncore_per_chip =
1003 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1004 			}
1005 			break;
1006 		case X86_VENDOR_AMD:
1007 			if (cpi->cpi_xmaxeax < 0x80000008) {
1008 				cpi->cpi_ncore_per_chip = 1;
1009 				break;
1010 			} else {
1011 				/*
1012 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1013 				 * 1 less than the number of physical cores on
1014 				 * the chip.  In family 0x10 this value can
1015 				 * be affected by "downcoring" - it reflects
1016 				 * 1 less than the number of cores actually
1017 				 * enabled on this node.
1018 				 */
1019 				cpi->cpi_ncore_per_chip =
1020 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1021 			}
1022 			break;
1023 		default:
1024 			cpi->cpi_ncore_per_chip = 1;
1025 			break;
1026 		}
1027 	} else {
1028 		cpi->cpi_ncore_per_chip = 1;
1029 	}
1030 
1031 	/*
1032 	 * If more than one core, then this processor is CMP.
1033 	 */
1034 	if (cpi->cpi_ncore_per_chip > 1)
1035 		feature |= X86_CMP;
1036 
1037 	/*
1038 	 * If the number of cores is the same as the number
1039 	 * of CPUs, then we cannot have HyperThreading.
1040 	 */
1041 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1042 		feature &= ~X86_HTT;
1043 
1044 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1045 		/*
1046 		 * Single-core single-threaded processors.
1047 		 */
1048 		cpi->cpi_chipid = -1;
1049 		cpi->cpi_clogid = 0;
1050 		cpi->cpi_coreid = cpu->cpu_id;
1051 		cpi->cpi_pkgcoreid = 0;
1052 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1053 		uint_t i;
1054 		uint_t chipid_shift = 0;
1055 		uint_t coreid_shift = 0;
1056 		uint_t apic_id = CPI_APIC_ID(cpi);
1057 
1058 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1059 			chipid_shift++;
1060 		cpi->cpi_chipid = apic_id >> chipid_shift;
1061 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1062 
1063 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1064 			if (feature & X86_CMP) {
1065 				/*
1066 				 * Multi-core (and possibly multi-threaded)
1067 				 * processors.
1068 				 */
1069 				uint_t ncpu_per_core;
1070 				if (cpi->cpi_ncore_per_chip == 1)
1071 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1072 				else if (cpi->cpi_ncore_per_chip > 1)
1073 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1074 					    cpi->cpi_ncore_per_chip;
1075 				/*
1076 				 * 8bit APIC IDs on dual core Pentiums
1077 				 * look like this:
1078 				 *
1079 				 * +-----------------------+------+------+
1080 				 * | Physical Package ID   |  MC  |  HT  |
1081 				 * +-----------------------+------+------+
1082 				 * <------- chipid -------->
1083 				 * <------- coreid --------------->
1084 				 *			   <--- clogid -->
1085 				 *			   <------>
1086 				 *			   pkgcoreid
1087 				 *
1088 				 * Where the number of bits necessary to
1089 				 * represent MC and HT fields together equals
1090 				 * to the minimum number of bits necessary to
1091 				 * store the value of cpi->cpi_ncpu_per_chip.
1092 				 * Of those bits, the MC part uses the number
1093 				 * of bits necessary to store the value of
1094 				 * cpi->cpi_ncore_per_chip.
1095 				 */
1096 				for (i = 1; i < ncpu_per_core; i <<= 1)
1097 					coreid_shift++;
1098 				cpi->cpi_coreid = apic_id >> coreid_shift;
1099 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1100 				    coreid_shift;
1101 			} else if (feature & X86_HTT) {
1102 				/*
1103 				 * Single-core multi-threaded processors.
1104 				 */
1105 				cpi->cpi_coreid = cpi->cpi_chipid;
1106 				cpi->cpi_pkgcoreid = 0;
1107 			}
1108 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1109 			/*
1110 			 * AMD CMP chips currently have a single thread per
1111 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1112 			 * cores on family 0x10.
1113 			 *
1114 			 * Since no two cpus share a core we must assign a
1115 			 * distinct coreid per cpu, and we do this by using
1116 			 * the cpu_id.  This scheme does not, however,
1117 			 * guarantee that sibling cores of a chip will have
1118 			 * sequential coreids starting at a multiple of the
1119 			 * number of cores per chip - that is usually the
1120 			 * case, but if the ACPI MADT table is presented
1121 			 * in a different order then we need to perform a
1122 			 * few more gymnastics for the pkgcoreid.
1123 			 *
1124 			 * In family 0xf CMPs there are 2 cores on all nodes
1125 			 * present - no mixing of single and dual core parts.
1126 			 *
1127 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1128 			 * "ApicIdCoreIdSize[3:0]" tells us how
1129 			 * many least-significant bits in the ApicId
1130 			 * are used to represent the core number
1131 			 * within the node.  Cores are always
1132 			 * numbered sequentially from 0 regardless
1133 			 * of how many or which are disabled, and
1134 			 * there seems to be no way to discover the
1135 			 * real core id when some are disabled.
1136 			 */
1137 			cpi->cpi_coreid = cpu->cpu_id;
1138 
1139 			if (cpi->cpi_family == 0x10 &&
1140 			    cpi->cpi_xmaxeax >= 0x80000008) {
1141 				int coreidsz =
1142 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1143 
1144 				cpi->cpi_pkgcoreid =
1145 				    apic_id & ((1 << coreidsz) - 1);
1146 			} else {
1147 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1148 			}
1149 		} else {
1150 			/*
1151 			 * All other processors are currently
1152 			 * assumed to have single cores.
1153 			 */
1154 			cpi->cpi_coreid = cpi->cpi_chipid;
1155 			cpi->cpi_pkgcoreid = 0;
1156 		}
1157 	}
1158 
1159 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1160 
1161 	/*
1162 	 * Synthesize chip "revision" and socket type
1163 	 */
1164 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1165 	    cpi->cpi_model, cpi->cpi_step);
1166 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1167 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1168 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1169 	    cpi->cpi_model, cpi->cpi_step);
1170 
1171 pass1_done:
1172 #if !defined(__xpv)
1173 	check_for_hvm();
1174 #endif
1175 	cpi->cpi_pass = 1;
1176 	return (feature);
1177 }
1178 
1179 /*
1180  * Make copies of the cpuid table entries we depend on, in
1181  * part for ease of parsing now, in part so that we have only
1182  * one place to correct any of it, in part for ease of
1183  * later export to userland, and in part so we can look at
1184  * this stuff in a crash dump.
1185  */
1186 
1187 /*ARGSUSED*/
1188 void
1189 cpuid_pass2(cpu_t *cpu)
1190 {
1191 	uint_t n, nmax;
1192 	int i;
1193 	struct cpuid_regs *cp;
1194 	uint8_t *dp;
1195 	uint32_t *iptr;
1196 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1197 
1198 	ASSERT(cpi->cpi_pass == 1);
1199 
1200 	if (cpi->cpi_maxeax < 1)
1201 		goto pass2_done;
1202 
1203 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1204 		nmax = NMAX_CPI_STD;
1205 	/*
1206 	 * (We already handled n == 0 and n == 1 in pass 1)
1207 	 */
1208 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1209 		cp->cp_eax = n;
1210 
1211 		/*
1212 		 * CPUID function 4 expects %ecx to be initialized
1213 		 * with an index which indicates which cache to return
1214 		 * information about. The OS is expected to call function 4
1215 		 * with %ecx set to 0, 1, 2, ... until it returns with
1216 		 * EAX[4:0] set to 0, which indicates there are no more
1217 		 * caches.
1218 		 *
1219 		 * Here, populate cpi_std[4] with the information returned by
1220 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1221 		 * when dynamic memory allocation becomes available.
1222 		 *
1223 		 * Note: we need to explicitly initialize %ecx here, since
1224 		 * function 4 may have been previously invoked.
1225 		 */
1226 		if (n == 4)
1227 			cp->cp_ecx = 0;
1228 
1229 		(void) __cpuid_insn(cp);
1230 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1231 		switch (n) {
1232 		case 2:
1233 			/*
1234 			 * "the lower 8 bits of the %eax register
1235 			 * contain a value that identifies the number
1236 			 * of times the cpuid [instruction] has to be
1237 			 * executed to obtain a complete image of the
1238 			 * processor's caching systems."
1239 			 *
1240 			 * How *do* they make this stuff up?
1241 			 */
1242 			cpi->cpi_ncache = sizeof (*cp) *
1243 			    BITX(cp->cp_eax, 7, 0);
1244 			if (cpi->cpi_ncache == 0)
1245 				break;
1246 			cpi->cpi_ncache--;	/* skip count byte */
1247 
1248 			/*
1249 			 * Well, for now, rather than attempt to implement
1250 			 * this slightly dubious algorithm, we just look
1251 			 * at the first 15 ..
1252 			 */
1253 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1254 				cpi->cpi_ncache = sizeof (*cp) - 1;
1255 
1256 			dp = cpi->cpi_cacheinfo;
1257 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1258 				uint8_t *p = (void *)&cp->cp_eax;
1259 				for (i = 1; i < 4; i++)
1260 					if (p[i] != 0)
1261 						*dp++ = p[i];
1262 			}
1263 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1264 				uint8_t *p = (void *)&cp->cp_ebx;
1265 				for (i = 0; i < 4; i++)
1266 					if (p[i] != 0)
1267 						*dp++ = p[i];
1268 			}
1269 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1270 				uint8_t *p = (void *)&cp->cp_ecx;
1271 				for (i = 0; i < 4; i++)
1272 					if (p[i] != 0)
1273 						*dp++ = p[i];
1274 			}
1275 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1276 				uint8_t *p = (void *)&cp->cp_edx;
1277 				for (i = 0; i < 4; i++)
1278 					if (p[i] != 0)
1279 						*dp++ = p[i];
1280 			}
1281 			break;
1282 
1283 		case 3:	/* Processor serial number, if PSN supported */
1284 			break;
1285 
1286 		case 4:	/* Deterministic cache parameters */
1287 			break;
1288 
1289 		case 5:	/* Monitor/Mwait parameters */
1290 		{
1291 			size_t mwait_size;
1292 
1293 			/*
1294 			 * check cpi_mwait.support which was set in cpuid_pass1
1295 			 */
1296 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1297 				break;
1298 
1299 			/*
1300 			 * Protect ourself from insane mwait line size.
1301 			 * Workaround for incomplete hardware emulator(s).
1302 			 */
1303 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1304 			if (mwait_size < sizeof (uint32_t) ||
1305 			    !ISP2(mwait_size)) {
1306 #if DEBUG
1307 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1308 				    "size %ld",
1309 				    cpu->cpu_id, (long)mwait_size);
1310 #endif
1311 				break;
1312 			}
1313 
1314 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1315 			cpi->cpi_mwait.mon_max = mwait_size;
1316 			if (MWAIT_EXTENSION(cpi)) {
1317 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1318 				if (MWAIT_INT_ENABLE(cpi))
1319 					cpi->cpi_mwait.support |=
1320 					    MWAIT_ECX_INT_ENABLE;
1321 			}
1322 			break;
1323 		}
1324 		default:
1325 			break;
1326 		}
1327 	}
1328 
1329 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1330 		cp->cp_eax = 0xB;
1331 		cp->cp_ecx = 0;
1332 
1333 		(void) __cpuid_insn(cp);
1334 
1335 		/*
1336 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1337 		 * indicates that the extended topology enumeration leaf is
1338 		 * available.
1339 		 */
1340 		if (cp->cp_ebx) {
1341 			uint32_t x2apic_id;
1342 			uint_t coreid_shift = 0;
1343 			uint_t ncpu_per_core = 1;
1344 			uint_t chipid_shift = 0;
1345 			uint_t ncpu_per_chip = 1;
1346 			uint_t i;
1347 			uint_t level;
1348 
1349 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1350 				cp->cp_eax = 0xB;
1351 				cp->cp_ecx = i;
1352 
1353 				(void) __cpuid_insn(cp);
1354 				level = CPI_CPU_LEVEL_TYPE(cp);
1355 
1356 				if (level == 1) {
1357 					x2apic_id = cp->cp_edx;
1358 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1359 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1360 				} else if (level == 2) {
1361 					x2apic_id = cp->cp_edx;
1362 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1363 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1364 				}
1365 			}
1366 
1367 			cpi->cpi_apicid = x2apic_id;
1368 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1369 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1370 			    ncpu_per_core;
1371 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1372 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1373 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1374 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1375 		}
1376 	}
1377 
1378 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1379 		goto pass2_done;
1380 
1381 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1382 		nmax = NMAX_CPI_EXTD;
1383 	/*
1384 	 * Copy the extended properties, fixing them as we go.
1385 	 * (We already handled n == 0 and n == 1 in pass 1)
1386 	 */
1387 	iptr = (void *)cpi->cpi_brandstr;
1388 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1389 		cp->cp_eax = 0x80000000 + n;
1390 		(void) __cpuid_insn(cp);
1391 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1392 		switch (n) {
1393 		case 2:
1394 		case 3:
1395 		case 4:
1396 			/*
1397 			 * Extract the brand string
1398 			 */
1399 			*iptr++ = cp->cp_eax;
1400 			*iptr++ = cp->cp_ebx;
1401 			*iptr++ = cp->cp_ecx;
1402 			*iptr++ = cp->cp_edx;
1403 			break;
1404 		case 5:
1405 			switch (cpi->cpi_vendor) {
1406 			case X86_VENDOR_AMD:
1407 				/*
1408 				 * The Athlon and Duron were the first
1409 				 * parts to report the sizes of the
1410 				 * TLB for large pages. Before then,
1411 				 * we don't trust the data.
1412 				 */
1413 				if (cpi->cpi_family < 6 ||
1414 				    (cpi->cpi_family == 6 &&
1415 				    cpi->cpi_model < 1))
1416 					cp->cp_eax = 0;
1417 				break;
1418 			default:
1419 				break;
1420 			}
1421 			break;
1422 		case 6:
1423 			switch (cpi->cpi_vendor) {
1424 			case X86_VENDOR_AMD:
1425 				/*
1426 				 * The Athlon and Duron were the first
1427 				 * AMD parts with L2 TLB's.
1428 				 * Before then, don't trust the data.
1429 				 */
1430 				if (cpi->cpi_family < 6 ||
1431 				    cpi->cpi_family == 6 &&
1432 				    cpi->cpi_model < 1)
1433 					cp->cp_eax = cp->cp_ebx = 0;
1434 				/*
1435 				 * AMD Duron rev A0 reports L2
1436 				 * cache size incorrectly as 1K
1437 				 * when it is really 64K
1438 				 */
1439 				if (cpi->cpi_family == 6 &&
1440 				    cpi->cpi_model == 3 &&
1441 				    cpi->cpi_step == 0) {
1442 					cp->cp_ecx &= 0xffff;
1443 					cp->cp_ecx |= 0x400000;
1444 				}
1445 				break;
1446 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1447 				/*
1448 				 * VIA C3 processors are a bit messed
1449 				 * up w.r.t. encoding cache sizes in %ecx
1450 				 */
1451 				if (cpi->cpi_family != 6)
1452 					break;
1453 				/*
1454 				 * model 7 and 8 were incorrectly encoded
1455 				 *
1456 				 * xxx is model 8 really broken?
1457 				 */
1458 				if (cpi->cpi_model == 7 ||
1459 				    cpi->cpi_model == 8)
1460 					cp->cp_ecx =
1461 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1462 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1463 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1464 					    BITX(cp->cp_ecx, 7, 0);
1465 				/*
1466 				 * model 9 stepping 1 has wrong associativity
1467 				 */
1468 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1469 					cp->cp_ecx |= 8 << 12;
1470 				break;
1471 			case X86_VENDOR_Intel:
1472 				/*
1473 				 * Extended L2 Cache features function.
1474 				 * First appeared on Prescott.
1475 				 */
1476 			default:
1477 				break;
1478 			}
1479 			break;
1480 		default:
1481 			break;
1482 		}
1483 	}
1484 
1485 pass2_done:
1486 	cpi->cpi_pass = 2;
1487 }
1488 
1489 static const char *
1490 intel_cpubrand(const struct cpuid_info *cpi)
1491 {
1492 	int i;
1493 
1494 	if ((x86_feature & X86_CPUID) == 0 ||
1495 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1496 		return ("i486");
1497 
1498 	switch (cpi->cpi_family) {
1499 	case 5:
1500 		return ("Intel Pentium(r)");
1501 	case 6:
1502 		switch (cpi->cpi_model) {
1503 			uint_t celeron, xeon;
1504 			const struct cpuid_regs *cp;
1505 		case 0:
1506 		case 1:
1507 		case 2:
1508 			return ("Intel Pentium(r) Pro");
1509 		case 3:
1510 		case 4:
1511 			return ("Intel Pentium(r) II");
1512 		case 6:
1513 			return ("Intel Celeron(r)");
1514 		case 5:
1515 		case 7:
1516 			celeron = xeon = 0;
1517 			cp = &cpi->cpi_std[2];	/* cache info */
1518 
1519 			for (i = 1; i < 4; i++) {
1520 				uint_t tmp;
1521 
1522 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1523 				if (tmp == 0x40)
1524 					celeron++;
1525 				if (tmp >= 0x44 && tmp <= 0x45)
1526 					xeon++;
1527 			}
1528 
1529 			for (i = 0; i < 2; i++) {
1530 				uint_t tmp;
1531 
1532 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1533 				if (tmp == 0x40)
1534 					celeron++;
1535 				else if (tmp >= 0x44 && tmp <= 0x45)
1536 					xeon++;
1537 			}
1538 
1539 			for (i = 0; i < 4; i++) {
1540 				uint_t tmp;
1541 
1542 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1543 				if (tmp == 0x40)
1544 					celeron++;
1545 				else if (tmp >= 0x44 && tmp <= 0x45)
1546 					xeon++;
1547 			}
1548 
1549 			for (i = 0; i < 4; i++) {
1550 				uint_t tmp;
1551 
1552 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1553 				if (tmp == 0x40)
1554 					celeron++;
1555 				else if (tmp >= 0x44 && tmp <= 0x45)
1556 					xeon++;
1557 			}
1558 
1559 			if (celeron)
1560 				return ("Intel Celeron(r)");
1561 			if (xeon)
1562 				return (cpi->cpi_model == 5 ?
1563 				    "Intel Pentium(r) II Xeon(tm)" :
1564 				    "Intel Pentium(r) III Xeon(tm)");
1565 			return (cpi->cpi_model == 5 ?
1566 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1567 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1568 		default:
1569 			break;
1570 		}
1571 	default:
1572 		break;
1573 	}
1574 
1575 	/* BrandID is present if the field is nonzero */
1576 	if (cpi->cpi_brandid != 0) {
1577 		static const struct {
1578 			uint_t bt_bid;
1579 			const char *bt_str;
1580 		} brand_tbl[] = {
1581 			{ 0x1,	"Intel(r) Celeron(r)" },
1582 			{ 0x2,	"Intel(r) Pentium(r) III" },
1583 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1584 			{ 0x4,	"Intel(r) Pentium(r) III" },
1585 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1586 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1587 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1588 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1589 			{ 0xa,	"Intel(r) Celeron(r)" },
1590 			{ 0xb,	"Intel(r) Xeon(tm)" },
1591 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1592 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1593 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1594 			{ 0x11, "Mobile Genuine Intel(r)" },
1595 			{ 0x12, "Intel(r) Celeron(r) M" },
1596 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1597 			{ 0x14, "Intel(r) Celeron(r)" },
1598 			{ 0x15, "Mobile Genuine Intel(r)" },
1599 			{ 0x16,	"Intel(r) Pentium(r) M" },
1600 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1601 		};
1602 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1603 		uint_t sgn;
1604 
1605 		sgn = (cpi->cpi_family << 8) |
1606 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1607 
1608 		for (i = 0; i < btblmax; i++)
1609 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1610 				break;
1611 		if (i < btblmax) {
1612 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1613 				return ("Intel(r) Celeron(r)");
1614 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1615 				return ("Intel(r) Xeon(tm) MP");
1616 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1617 				return ("Intel(r) Xeon(tm)");
1618 			return (brand_tbl[i].bt_str);
1619 		}
1620 	}
1621 
1622 	return (NULL);
1623 }
1624 
1625 static const char *
1626 amd_cpubrand(const struct cpuid_info *cpi)
1627 {
1628 	if ((x86_feature & X86_CPUID) == 0 ||
1629 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1630 		return ("i486 compatible");
1631 
1632 	switch (cpi->cpi_family) {
1633 	case 5:
1634 		switch (cpi->cpi_model) {
1635 		case 0:
1636 		case 1:
1637 		case 2:
1638 		case 3:
1639 		case 4:
1640 		case 5:
1641 			return ("AMD-K5(r)");
1642 		case 6:
1643 		case 7:
1644 			return ("AMD-K6(r)");
1645 		case 8:
1646 			return ("AMD-K6(r)-2");
1647 		case 9:
1648 			return ("AMD-K6(r)-III");
1649 		default:
1650 			return ("AMD (family 5)");
1651 		}
1652 	case 6:
1653 		switch (cpi->cpi_model) {
1654 		case 1:
1655 			return ("AMD-K7(tm)");
1656 		case 0:
1657 		case 2:
1658 		case 4:
1659 			return ("AMD Athlon(tm)");
1660 		case 3:
1661 		case 7:
1662 			return ("AMD Duron(tm)");
1663 		case 6:
1664 		case 8:
1665 		case 10:
1666 			/*
1667 			 * Use the L2 cache size to distinguish
1668 			 */
1669 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1670 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1671 		default:
1672 			return ("AMD (family 6)");
1673 		}
1674 	default:
1675 		break;
1676 	}
1677 
1678 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1679 	    cpi->cpi_brandid != 0) {
1680 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1681 		case 3:
1682 			return ("AMD Opteron(tm) UP 1xx");
1683 		case 4:
1684 			return ("AMD Opteron(tm) DP 2xx");
1685 		case 5:
1686 			return ("AMD Opteron(tm) MP 8xx");
1687 		default:
1688 			return ("AMD Opteron(tm)");
1689 		}
1690 	}
1691 
1692 	return (NULL);
1693 }
1694 
1695 static const char *
1696 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1697 {
1698 	if ((x86_feature & X86_CPUID) == 0 ||
1699 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1700 	    type == X86_TYPE_CYRIX_486)
1701 		return ("i486 compatible");
1702 
1703 	switch (type) {
1704 	case X86_TYPE_CYRIX_6x86:
1705 		return ("Cyrix 6x86");
1706 	case X86_TYPE_CYRIX_6x86L:
1707 		return ("Cyrix 6x86L");
1708 	case X86_TYPE_CYRIX_6x86MX:
1709 		return ("Cyrix 6x86MX");
1710 	case X86_TYPE_CYRIX_GXm:
1711 		return ("Cyrix GXm");
1712 	case X86_TYPE_CYRIX_MediaGX:
1713 		return ("Cyrix MediaGX");
1714 	case X86_TYPE_CYRIX_MII:
1715 		return ("Cyrix M2");
1716 	case X86_TYPE_VIA_CYRIX_III:
1717 		return ("VIA Cyrix M3");
1718 	default:
1719 		/*
1720 		 * Have another wild guess ..
1721 		 */
1722 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1723 			return ("Cyrix 5x86");
1724 		else if (cpi->cpi_family == 5) {
1725 			switch (cpi->cpi_model) {
1726 			case 2:
1727 				return ("Cyrix 6x86");	/* Cyrix M1 */
1728 			case 4:
1729 				return ("Cyrix MediaGX");
1730 			default:
1731 				break;
1732 			}
1733 		} else if (cpi->cpi_family == 6) {
1734 			switch (cpi->cpi_model) {
1735 			case 0:
1736 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1737 			case 5:
1738 			case 6:
1739 			case 7:
1740 			case 8:
1741 			case 9:
1742 				return ("VIA C3");
1743 			default:
1744 				break;
1745 			}
1746 		}
1747 		break;
1748 	}
1749 	return (NULL);
1750 }
1751 
1752 /*
1753  * This only gets called in the case that the CPU extended
1754  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1755  * aren't available, or contain null bytes for some reason.
1756  */
1757 static void
1758 fabricate_brandstr(struct cpuid_info *cpi)
1759 {
1760 	const char *brand = NULL;
1761 
1762 	switch (cpi->cpi_vendor) {
1763 	case X86_VENDOR_Intel:
1764 		brand = intel_cpubrand(cpi);
1765 		break;
1766 	case X86_VENDOR_AMD:
1767 		brand = amd_cpubrand(cpi);
1768 		break;
1769 	case X86_VENDOR_Cyrix:
1770 		brand = cyrix_cpubrand(cpi, x86_type);
1771 		break;
1772 	case X86_VENDOR_NexGen:
1773 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1774 			brand = "NexGen Nx586";
1775 		break;
1776 	case X86_VENDOR_Centaur:
1777 		if (cpi->cpi_family == 5)
1778 			switch (cpi->cpi_model) {
1779 			case 4:
1780 				brand = "Centaur C6";
1781 				break;
1782 			case 8:
1783 				brand = "Centaur C2";
1784 				break;
1785 			case 9:
1786 				brand = "Centaur C3";
1787 				break;
1788 			default:
1789 				break;
1790 			}
1791 		break;
1792 	case X86_VENDOR_Rise:
1793 		if (cpi->cpi_family == 5 &&
1794 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1795 			brand = "Rise mP6";
1796 		break;
1797 	case X86_VENDOR_SiS:
1798 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1799 			brand = "SiS 55x";
1800 		break;
1801 	case X86_VENDOR_TM:
1802 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1803 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1804 		break;
1805 	case X86_VENDOR_NSC:
1806 	case X86_VENDOR_UMC:
1807 	default:
1808 		break;
1809 	}
1810 	if (brand) {
1811 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1812 		return;
1813 	}
1814 
1815 	/*
1816 	 * If all else fails ...
1817 	 */
1818 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1819 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1820 	    cpi->cpi_model, cpi->cpi_step);
1821 }
1822 
1823 /*
1824  * This routine is called just after kernel memory allocation
1825  * becomes available on cpu0, and as part of mp_startup() on
1826  * the other cpus.
1827  *
1828  * Fixup the brand string, and collect any information from cpuid
1829  * that requires dynamicically allocated storage to represent.
1830  */
1831 /*ARGSUSED*/
1832 void
1833 cpuid_pass3(cpu_t *cpu)
1834 {
1835 	int	i, max, shft, level, size;
1836 	struct cpuid_regs regs;
1837 	struct cpuid_regs *cp;
1838 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1839 
1840 	ASSERT(cpi->cpi_pass == 2);
1841 
1842 	/*
1843 	 * Function 4: Deterministic cache parameters
1844 	 *
1845 	 * Take this opportunity to detect the number of threads
1846 	 * sharing the last level cache, and construct a corresponding
1847 	 * cache id. The respective cpuid_info members are initialized
1848 	 * to the default case of "no last level cache sharing".
1849 	 */
1850 	cpi->cpi_ncpu_shr_last_cache = 1;
1851 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1852 
1853 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1854 
1855 		/*
1856 		 * Find the # of elements (size) returned by fn 4, and along
1857 		 * the way detect last level cache sharing details.
1858 		 */
1859 		bzero(&regs, sizeof (regs));
1860 		cp = &regs;
1861 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1862 			cp->cp_eax = 4;
1863 			cp->cp_ecx = i;
1864 
1865 			(void) __cpuid_insn(cp);
1866 
1867 			if (CPI_CACHE_TYPE(cp) == 0)
1868 				break;
1869 			level = CPI_CACHE_LVL(cp);
1870 			if (level > max) {
1871 				max = level;
1872 				cpi->cpi_ncpu_shr_last_cache =
1873 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1874 			}
1875 		}
1876 		cpi->cpi_std_4_size = size = i;
1877 
1878 		/*
1879 		 * Allocate the cpi_std_4 array. The first element
1880 		 * references the regs for fn 4, %ecx == 0, which
1881 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1882 		 */
1883 		if (size > 0) {
1884 			cpi->cpi_std_4 =
1885 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1886 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1887 
1888 			/*
1889 			 * Allocate storage to hold the additional regs
1890 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1891 			 *
1892 			 * The regs for fn 4, %ecx == 0 has already
1893 			 * been allocated as indicated above.
1894 			 */
1895 			for (i = 1; i < size; i++) {
1896 				cp = cpi->cpi_std_4[i] =
1897 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1898 				cp->cp_eax = 4;
1899 				cp->cp_ecx = i;
1900 
1901 				(void) __cpuid_insn(cp);
1902 			}
1903 		}
1904 		/*
1905 		 * Determine the number of bits needed to represent
1906 		 * the number of CPUs sharing the last level cache.
1907 		 *
1908 		 * Shift off that number of bits from the APIC id to
1909 		 * derive the cache id.
1910 		 */
1911 		shft = 0;
1912 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1913 			shft++;
1914 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1915 	}
1916 
1917 	/*
1918 	 * Now fixup the brand string
1919 	 */
1920 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1921 		fabricate_brandstr(cpi);
1922 	} else {
1923 
1924 		/*
1925 		 * If we successfully extracted a brand string from the cpuid
1926 		 * instruction, clean it up by removing leading spaces and
1927 		 * similar junk.
1928 		 */
1929 		if (cpi->cpi_brandstr[0]) {
1930 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1931 			char *src, *dst;
1932 
1933 			dst = src = (char *)cpi->cpi_brandstr;
1934 			src[maxlen - 1] = '\0';
1935 			/*
1936 			 * strip leading spaces
1937 			 */
1938 			while (*src == ' ')
1939 				src++;
1940 			/*
1941 			 * Remove any 'Genuine' or "Authentic" prefixes
1942 			 */
1943 			if (strncmp(src, "Genuine ", 8) == 0)
1944 				src += 8;
1945 			if (strncmp(src, "Authentic ", 10) == 0)
1946 				src += 10;
1947 
1948 			/*
1949 			 * Now do an in-place copy.
1950 			 * Map (R) to (r) and (TM) to (tm).
1951 			 * The era of teletypes is long gone, and there's
1952 			 * -really- no need to shout.
1953 			 */
1954 			while (*src != '\0') {
1955 				if (src[0] == '(') {
1956 					if (strncmp(src + 1, "R)", 2) == 0) {
1957 						(void) strncpy(dst, "(r)", 3);
1958 						src += 3;
1959 						dst += 3;
1960 						continue;
1961 					}
1962 					if (strncmp(src + 1, "TM)", 3) == 0) {
1963 						(void) strncpy(dst, "(tm)", 4);
1964 						src += 4;
1965 						dst += 4;
1966 						continue;
1967 					}
1968 				}
1969 				*dst++ = *src++;
1970 			}
1971 			*dst = '\0';
1972 
1973 			/*
1974 			 * Finally, remove any trailing spaces
1975 			 */
1976 			while (--dst > cpi->cpi_brandstr)
1977 				if (*dst == ' ')
1978 					*dst = '\0';
1979 				else
1980 					break;
1981 		} else
1982 			fabricate_brandstr(cpi);
1983 	}
1984 	cpi->cpi_pass = 3;
1985 }
1986 
1987 /*
1988  * This routine is called out of bind_hwcap() much later in the life
1989  * of the kernel (post_startup()).  The job of this routine is to resolve
1990  * the hardware feature support and kernel support for those features into
1991  * what we're actually going to tell applications via the aux vector.
1992  */
1993 uint_t
1994 cpuid_pass4(cpu_t *cpu)
1995 {
1996 	struct cpuid_info *cpi;
1997 	uint_t hwcap_flags = 0;
1998 
1999 	if (cpu == NULL)
2000 		cpu = CPU;
2001 	cpi = cpu->cpu_m.mcpu_cpi;
2002 
2003 	ASSERT(cpi->cpi_pass == 3);
2004 
2005 	if (cpi->cpi_maxeax >= 1) {
2006 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2007 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2008 
2009 		*edx = CPI_FEATURES_EDX(cpi);
2010 		*ecx = CPI_FEATURES_ECX(cpi);
2011 
2012 		/*
2013 		 * [these require explicit kernel support]
2014 		 */
2015 		if ((x86_feature & X86_SEP) == 0)
2016 			*edx &= ~CPUID_INTC_EDX_SEP;
2017 
2018 		if ((x86_feature & X86_SSE) == 0)
2019 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2020 		if ((x86_feature & X86_SSE2) == 0)
2021 			*edx &= ~CPUID_INTC_EDX_SSE2;
2022 
2023 		if ((x86_feature & X86_HTT) == 0)
2024 			*edx &= ~CPUID_INTC_EDX_HTT;
2025 
2026 		if ((x86_feature & X86_SSE3) == 0)
2027 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2028 
2029 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2030 			if ((x86_feature & X86_SSSE3) == 0)
2031 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2032 			if ((x86_feature & X86_SSE4_1) == 0)
2033 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2034 			if ((x86_feature & X86_SSE4_2) == 0)
2035 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2036 		}
2037 
2038 		/*
2039 		 * [no explicit support required beyond x87 fp context]
2040 		 */
2041 		if (!fpu_exists)
2042 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2043 
2044 		/*
2045 		 * Now map the supported feature vector to things that we
2046 		 * think userland will care about.
2047 		 */
2048 		if (*edx & CPUID_INTC_EDX_SEP)
2049 			hwcap_flags |= AV_386_SEP;
2050 		if (*edx & CPUID_INTC_EDX_SSE)
2051 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2052 		if (*edx & CPUID_INTC_EDX_SSE2)
2053 			hwcap_flags |= AV_386_SSE2;
2054 		if (*ecx & CPUID_INTC_ECX_SSE3)
2055 			hwcap_flags |= AV_386_SSE3;
2056 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2057 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2058 				hwcap_flags |= AV_386_SSSE3;
2059 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2060 				hwcap_flags |= AV_386_SSE4_1;
2061 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2062 				hwcap_flags |= AV_386_SSE4_2;
2063 		}
2064 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2065 			hwcap_flags |= AV_386_POPCNT;
2066 		if (*edx & CPUID_INTC_EDX_FPU)
2067 			hwcap_flags |= AV_386_FPU;
2068 		if (*edx & CPUID_INTC_EDX_MMX)
2069 			hwcap_flags |= AV_386_MMX;
2070 
2071 		if (*edx & CPUID_INTC_EDX_TSC)
2072 			hwcap_flags |= AV_386_TSC;
2073 		if (*edx & CPUID_INTC_EDX_CX8)
2074 			hwcap_flags |= AV_386_CX8;
2075 		if (*edx & CPUID_INTC_EDX_CMOV)
2076 			hwcap_flags |= AV_386_CMOV;
2077 		if (*ecx & CPUID_INTC_ECX_MON)
2078 			hwcap_flags |= AV_386_MON;
2079 		if (*ecx & CPUID_INTC_ECX_CX16)
2080 			hwcap_flags |= AV_386_CX16;
2081 	}
2082 
2083 	if (x86_feature & X86_HTT)
2084 		hwcap_flags |= AV_386_PAUSE;
2085 
2086 	if (cpi->cpi_xmaxeax < 0x80000001)
2087 		goto pass4_done;
2088 
2089 	switch (cpi->cpi_vendor) {
2090 		struct cpuid_regs cp;
2091 		uint32_t *edx, *ecx;
2092 
2093 	case X86_VENDOR_Intel:
2094 		/*
2095 		 * Seems like Intel duplicated what we necessary
2096 		 * here to make the initial crop of 64-bit OS's work.
2097 		 * Hopefully, those are the only "extended" bits
2098 		 * they'll add.
2099 		 */
2100 		/*FALLTHROUGH*/
2101 
2102 	case X86_VENDOR_AMD:
2103 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2104 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2105 
2106 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2107 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2108 
2109 		/*
2110 		 * [these features require explicit kernel support]
2111 		 */
2112 		switch (cpi->cpi_vendor) {
2113 		case X86_VENDOR_Intel:
2114 			if ((x86_feature & X86_TSCP) == 0)
2115 				*edx &= ~CPUID_AMD_EDX_TSCP;
2116 			break;
2117 
2118 		case X86_VENDOR_AMD:
2119 			if ((x86_feature & X86_TSCP) == 0)
2120 				*edx &= ~CPUID_AMD_EDX_TSCP;
2121 			if ((x86_feature & X86_SSE4A) == 0)
2122 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2123 			break;
2124 
2125 		default:
2126 			break;
2127 		}
2128 
2129 		/*
2130 		 * [no explicit support required beyond
2131 		 * x87 fp context and exception handlers]
2132 		 */
2133 		if (!fpu_exists)
2134 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2135 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2136 
2137 		if ((x86_feature & X86_NX) == 0)
2138 			*edx &= ~CPUID_AMD_EDX_NX;
2139 #if !defined(__amd64)
2140 		*edx &= ~CPUID_AMD_EDX_LM;
2141 #endif
2142 		/*
2143 		 * Now map the supported feature vector to
2144 		 * things that we think userland will care about.
2145 		 */
2146 #if defined(__amd64)
2147 		if (*edx & CPUID_AMD_EDX_SYSC)
2148 			hwcap_flags |= AV_386_AMD_SYSC;
2149 #endif
2150 		if (*edx & CPUID_AMD_EDX_MMXamd)
2151 			hwcap_flags |= AV_386_AMD_MMX;
2152 		if (*edx & CPUID_AMD_EDX_3DNow)
2153 			hwcap_flags |= AV_386_AMD_3DNow;
2154 		if (*edx & CPUID_AMD_EDX_3DNowx)
2155 			hwcap_flags |= AV_386_AMD_3DNowx;
2156 
2157 		switch (cpi->cpi_vendor) {
2158 		case X86_VENDOR_AMD:
2159 			if (*edx & CPUID_AMD_EDX_TSCP)
2160 				hwcap_flags |= AV_386_TSCP;
2161 			if (*ecx & CPUID_AMD_ECX_AHF64)
2162 				hwcap_flags |= AV_386_AHF;
2163 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2164 				hwcap_flags |= AV_386_AMD_SSE4A;
2165 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2166 				hwcap_flags |= AV_386_AMD_LZCNT;
2167 			break;
2168 
2169 		case X86_VENDOR_Intel:
2170 			if (*edx & CPUID_AMD_EDX_TSCP)
2171 				hwcap_flags |= AV_386_TSCP;
2172 			/*
2173 			 * Aarrgh.
2174 			 * Intel uses a different bit in the same word.
2175 			 */
2176 			if (*ecx & CPUID_INTC_ECX_AHF64)
2177 				hwcap_flags |= AV_386_AHF;
2178 			break;
2179 
2180 		default:
2181 			break;
2182 		}
2183 		break;
2184 
2185 	case X86_VENDOR_TM:
2186 		cp.cp_eax = 0x80860001;
2187 		(void) __cpuid_insn(&cp);
2188 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2189 		break;
2190 
2191 	default:
2192 		break;
2193 	}
2194 
2195 pass4_done:
2196 	cpi->cpi_pass = 4;
2197 	return (hwcap_flags);
2198 }
2199 
2200 
2201 /*
2202  * Simulate the cpuid instruction using the data we previously
2203  * captured about this CPU.  We try our best to return the truth
2204  * about the hardware, independently of kernel support.
2205  */
2206 uint32_t
2207 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2208 {
2209 	struct cpuid_info *cpi;
2210 	struct cpuid_regs *xcp;
2211 
2212 	if (cpu == NULL)
2213 		cpu = CPU;
2214 	cpi = cpu->cpu_m.mcpu_cpi;
2215 
2216 	ASSERT(cpuid_checkpass(cpu, 3));
2217 
2218 	/*
2219 	 * CPUID data is cached in two separate places: cpi_std for standard
2220 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2221 	 */
2222 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2223 		xcp = &cpi->cpi_std[cp->cp_eax];
2224 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2225 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2226 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2227 	else
2228 		/*
2229 		 * The caller is asking for data from an input parameter which
2230 		 * the kernel has not cached.  In this case we go fetch from
2231 		 * the hardware and return the data directly to the user.
2232 		 */
2233 		return (__cpuid_insn(cp));
2234 
2235 	cp->cp_eax = xcp->cp_eax;
2236 	cp->cp_ebx = xcp->cp_ebx;
2237 	cp->cp_ecx = xcp->cp_ecx;
2238 	cp->cp_edx = xcp->cp_edx;
2239 	return (cp->cp_eax);
2240 }
2241 
2242 int
2243 cpuid_checkpass(cpu_t *cpu, int pass)
2244 {
2245 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2246 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2247 }
2248 
2249 int
2250 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2251 {
2252 	ASSERT(cpuid_checkpass(cpu, 3));
2253 
2254 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2255 }
2256 
2257 int
2258 cpuid_is_cmt(cpu_t *cpu)
2259 {
2260 	if (cpu == NULL)
2261 		cpu = CPU;
2262 
2263 	ASSERT(cpuid_checkpass(cpu, 1));
2264 
2265 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2266 }
2267 
2268 /*
2269  * AMD and Intel both implement the 64-bit variant of the syscall
2270  * instruction (syscallq), so if there's -any- support for syscall,
2271  * cpuid currently says "yes, we support this".
2272  *
2273  * However, Intel decided to -not- implement the 32-bit variant of the
2274  * syscall instruction, so we provide a predicate to allow our caller
2275  * to test that subtlety here.
2276  *
2277  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2278  *	even in the case where the hardware would in fact support it.
2279  */
2280 /*ARGSUSED*/
2281 int
2282 cpuid_syscall32_insn(cpu_t *cpu)
2283 {
2284 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2285 
2286 #if !defined(__xpv)
2287 	if (cpu == NULL)
2288 		cpu = CPU;
2289 
2290 	/*CSTYLED*/
2291 	{
2292 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2293 
2294 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2295 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2296 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2297 			return (1);
2298 	}
2299 #endif
2300 	return (0);
2301 }
2302 
2303 int
2304 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2305 {
2306 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2307 
2308 	static const char fmt[] =
2309 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2310 	static const char fmt_ht[] =
2311 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2312 
2313 	ASSERT(cpuid_checkpass(cpu, 1));
2314 
2315 	if (cpuid_is_cmt(cpu))
2316 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2317 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2318 		    cpi->cpi_family, cpi->cpi_model,
2319 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2320 	return (snprintf(s, n, fmt,
2321 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2322 	    cpi->cpi_family, cpi->cpi_model,
2323 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2324 }
2325 
2326 const char *
2327 cpuid_getvendorstr(cpu_t *cpu)
2328 {
2329 	ASSERT(cpuid_checkpass(cpu, 1));
2330 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2331 }
2332 
2333 uint_t
2334 cpuid_getvendor(cpu_t *cpu)
2335 {
2336 	ASSERT(cpuid_checkpass(cpu, 1));
2337 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2338 }
2339 
2340 uint_t
2341 cpuid_getfamily(cpu_t *cpu)
2342 {
2343 	ASSERT(cpuid_checkpass(cpu, 1));
2344 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2345 }
2346 
2347 uint_t
2348 cpuid_getmodel(cpu_t *cpu)
2349 {
2350 	ASSERT(cpuid_checkpass(cpu, 1));
2351 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2352 }
2353 
2354 uint_t
2355 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2356 {
2357 	ASSERT(cpuid_checkpass(cpu, 1));
2358 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2359 }
2360 
2361 uint_t
2362 cpuid_get_ncore_per_chip(cpu_t *cpu)
2363 {
2364 	ASSERT(cpuid_checkpass(cpu, 1));
2365 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2366 }
2367 
2368 uint_t
2369 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2370 {
2371 	ASSERT(cpuid_checkpass(cpu, 2));
2372 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2373 }
2374 
2375 id_t
2376 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2377 {
2378 	ASSERT(cpuid_checkpass(cpu, 2));
2379 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2380 }
2381 
2382 uint_t
2383 cpuid_getstep(cpu_t *cpu)
2384 {
2385 	ASSERT(cpuid_checkpass(cpu, 1));
2386 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2387 }
2388 
2389 uint_t
2390 cpuid_getsig(struct cpu *cpu)
2391 {
2392 	ASSERT(cpuid_checkpass(cpu, 1));
2393 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2394 }
2395 
2396 uint32_t
2397 cpuid_getchiprev(struct cpu *cpu)
2398 {
2399 	ASSERT(cpuid_checkpass(cpu, 1));
2400 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2401 }
2402 
2403 const char *
2404 cpuid_getchiprevstr(struct cpu *cpu)
2405 {
2406 	ASSERT(cpuid_checkpass(cpu, 1));
2407 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2408 }
2409 
2410 uint32_t
2411 cpuid_getsockettype(struct cpu *cpu)
2412 {
2413 	ASSERT(cpuid_checkpass(cpu, 1));
2414 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2415 }
2416 
2417 int
2418 cpuid_get_chipid(cpu_t *cpu)
2419 {
2420 	ASSERT(cpuid_checkpass(cpu, 1));
2421 
2422 	if (cpuid_is_cmt(cpu))
2423 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2424 	return (cpu->cpu_id);
2425 }
2426 
2427 id_t
2428 cpuid_get_coreid(cpu_t *cpu)
2429 {
2430 	ASSERT(cpuid_checkpass(cpu, 1));
2431 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2432 }
2433 
2434 int
2435 cpuid_get_pkgcoreid(cpu_t *cpu)
2436 {
2437 	ASSERT(cpuid_checkpass(cpu, 1));
2438 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2439 }
2440 
2441 int
2442 cpuid_get_clogid(cpu_t *cpu)
2443 {
2444 	ASSERT(cpuid_checkpass(cpu, 1));
2445 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2446 }
2447 
2448 void
2449 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2450 {
2451 	struct cpuid_info *cpi;
2452 
2453 	if (cpu == NULL)
2454 		cpu = CPU;
2455 	cpi = cpu->cpu_m.mcpu_cpi;
2456 
2457 	ASSERT(cpuid_checkpass(cpu, 1));
2458 
2459 	if (pabits)
2460 		*pabits = cpi->cpi_pabits;
2461 	if (vabits)
2462 		*vabits = cpi->cpi_vabits;
2463 }
2464 
2465 /*
2466  * Returns the number of data TLB entries for a corresponding
2467  * pagesize.  If it can't be computed, or isn't known, the
2468  * routine returns zero.  If you ask about an architecturally
2469  * impossible pagesize, the routine will panic (so that the
2470  * hat implementor knows that things are inconsistent.)
2471  */
2472 uint_t
2473 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2474 {
2475 	struct cpuid_info *cpi;
2476 	uint_t dtlb_nent = 0;
2477 
2478 	if (cpu == NULL)
2479 		cpu = CPU;
2480 	cpi = cpu->cpu_m.mcpu_cpi;
2481 
2482 	ASSERT(cpuid_checkpass(cpu, 1));
2483 
2484 	/*
2485 	 * Check the L2 TLB info
2486 	 */
2487 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2488 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2489 
2490 		switch (pagesize) {
2491 
2492 		case 4 * 1024:
2493 			/*
2494 			 * All zero in the top 16 bits of the register
2495 			 * indicates a unified TLB. Size is in low 16 bits.
2496 			 */
2497 			if ((cp->cp_ebx & 0xffff0000) == 0)
2498 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2499 			else
2500 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2501 			break;
2502 
2503 		case 2 * 1024 * 1024:
2504 			if ((cp->cp_eax & 0xffff0000) == 0)
2505 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2506 			else
2507 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2508 			break;
2509 
2510 		default:
2511 			panic("unknown L2 pagesize");
2512 			/*NOTREACHED*/
2513 		}
2514 	}
2515 
2516 	if (dtlb_nent != 0)
2517 		return (dtlb_nent);
2518 
2519 	/*
2520 	 * No L2 TLB support for this size, try L1.
2521 	 */
2522 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2523 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2524 
2525 		switch (pagesize) {
2526 		case 4 * 1024:
2527 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2528 			break;
2529 		case 2 * 1024 * 1024:
2530 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2531 			break;
2532 		default:
2533 			panic("unknown L1 d-TLB pagesize");
2534 			/*NOTREACHED*/
2535 		}
2536 	}
2537 
2538 	return (dtlb_nent);
2539 }
2540 
2541 /*
2542  * Return 0 if the erratum is not present or not applicable, positive
2543  * if it is, and negative if the status of the erratum is unknown.
2544  *
2545  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2546  * Processors" #25759, Rev 3.57, August 2005
2547  */
2548 int
2549 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2550 {
2551 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2552 	uint_t eax;
2553 
2554 	/*
2555 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2556 	 * a legacy (32-bit) AMD CPU.
2557 	 */
2558 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2559 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2560 	    cpi->cpi_family == 6)
2561 
2562 		return (0);
2563 
2564 	eax = cpi->cpi_std[1].cp_eax;
2565 
2566 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2567 #define	SH_B3(eax) 	(eax == 0xf51)
2568 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2569 
2570 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2571 
2572 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2573 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2574 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2575 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2576 
2577 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2578 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2579 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2580 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2581 
2582 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2583 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2584 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2585 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2586 #define	BH_E4(eax)	(eax == 0x20fb1)
2587 #define	SH_E5(eax)	(eax == 0x20f42)
2588 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2589 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2590 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2591 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2592 			    DH_E6(eax) || JH_E6(eax))
2593 
2594 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2595 #define	DR_B0(eax)	(eax == 0x100f20)
2596 #define	DR_B1(eax)	(eax == 0x100f21)
2597 #define	DR_BA(eax)	(eax == 0x100f2a)
2598 #define	DR_B2(eax)	(eax == 0x100f22)
2599 #define	DR_B3(eax)	(eax == 0x100f23)
2600 #define	RB_C0(eax)	(eax == 0x100f40)
2601 
2602 	switch (erratum) {
2603 	case 1:
2604 		return (cpi->cpi_family < 0x10);
2605 	case 51:	/* what does the asterisk mean? */
2606 		return (B(eax) || SH_C0(eax) || CG(eax));
2607 	case 52:
2608 		return (B(eax));
2609 	case 57:
2610 		return (cpi->cpi_family <= 0x11);
2611 	case 58:
2612 		return (B(eax));
2613 	case 60:
2614 		return (cpi->cpi_family <= 0x11);
2615 	case 61:
2616 	case 62:
2617 	case 63:
2618 	case 64:
2619 	case 65:
2620 	case 66:
2621 	case 68:
2622 	case 69:
2623 	case 70:
2624 	case 71:
2625 		return (B(eax));
2626 	case 72:
2627 		return (SH_B0(eax));
2628 	case 74:
2629 		return (B(eax));
2630 	case 75:
2631 		return (cpi->cpi_family < 0x10);
2632 	case 76:
2633 		return (B(eax));
2634 	case 77:
2635 		return (cpi->cpi_family <= 0x11);
2636 	case 78:
2637 		return (B(eax) || SH_C0(eax));
2638 	case 79:
2639 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2640 	case 80:
2641 	case 81:
2642 	case 82:
2643 		return (B(eax));
2644 	case 83:
2645 		return (B(eax) || SH_C0(eax) || CG(eax));
2646 	case 85:
2647 		return (cpi->cpi_family < 0x10);
2648 	case 86:
2649 		return (SH_C0(eax) || CG(eax));
2650 	case 88:
2651 #if !defined(__amd64)
2652 		return (0);
2653 #else
2654 		return (B(eax) || SH_C0(eax));
2655 #endif
2656 	case 89:
2657 		return (cpi->cpi_family < 0x10);
2658 	case 90:
2659 		return (B(eax) || SH_C0(eax) || CG(eax));
2660 	case 91:
2661 	case 92:
2662 		return (B(eax) || SH_C0(eax));
2663 	case 93:
2664 		return (SH_C0(eax));
2665 	case 94:
2666 		return (B(eax) || SH_C0(eax) || CG(eax));
2667 	case 95:
2668 #if !defined(__amd64)
2669 		return (0);
2670 #else
2671 		return (B(eax) || SH_C0(eax));
2672 #endif
2673 	case 96:
2674 		return (B(eax) || SH_C0(eax) || CG(eax));
2675 	case 97:
2676 	case 98:
2677 		return (SH_C0(eax) || CG(eax));
2678 	case 99:
2679 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2680 	case 100:
2681 		return (B(eax) || SH_C0(eax));
2682 	case 101:
2683 	case 103:
2684 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2685 	case 104:
2686 		return (SH_C0(eax) || CG(eax) || D0(eax));
2687 	case 105:
2688 	case 106:
2689 	case 107:
2690 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2691 	case 108:
2692 		return (DH_CG(eax));
2693 	case 109:
2694 		return (SH_C0(eax) || CG(eax) || D0(eax));
2695 	case 110:
2696 		return (D0(eax) || EX(eax));
2697 	case 111:
2698 		return (CG(eax));
2699 	case 112:
2700 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2701 	case 113:
2702 		return (eax == 0x20fc0);
2703 	case 114:
2704 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2705 	case 115:
2706 		return (SH_E0(eax) || JH_E1(eax));
2707 	case 116:
2708 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2709 	case 117:
2710 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2711 	case 118:
2712 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2713 		    JH_E6(eax));
2714 	case 121:
2715 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2716 	case 122:
2717 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2718 	case 123:
2719 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2720 	case 131:
2721 		return (cpi->cpi_family < 0x10);
2722 	case 6336786:
2723 		/*
2724 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2725 		 * if this is a K8 family or newer processor
2726 		 */
2727 		if (CPI_FAMILY(cpi) == 0xf) {
2728 			struct cpuid_regs regs;
2729 			regs.cp_eax = 0x80000007;
2730 			(void) __cpuid_insn(&regs);
2731 			return (!(regs.cp_edx & 0x100));
2732 		}
2733 		return (0);
2734 	case 6323525:
2735 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2736 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2737 
2738 	case 6671130:
2739 		/*
2740 		 * check for processors (pre-Shanghai) that do not provide
2741 		 * optimal management of 1gb ptes in its tlb.
2742 		 */
2743 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2744 
2745 	case 298:
2746 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2747 		    DR_B2(eax) || RB_C0(eax));
2748 
2749 	default:
2750 		return (-1);
2751 
2752 	}
2753 }
2754 
2755 /*
2756  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2757  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2758  */
2759 int
2760 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2761 {
2762 	struct cpuid_info	*cpi;
2763 	uint_t			osvwid;
2764 	static int		osvwfeature = -1;
2765 	uint64_t		osvwlength;
2766 
2767 
2768 	cpi = cpu->cpu_m.mcpu_cpi;
2769 
2770 	/* confirm OSVW supported */
2771 	if (osvwfeature == -1) {
2772 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2773 	} else {
2774 		/* assert that osvw feature setting is consistent on all cpus */
2775 		ASSERT(osvwfeature ==
2776 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2777 	}
2778 	if (!osvwfeature)
2779 		return (-1);
2780 
2781 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2782 
2783 	switch (erratum) {
2784 	case 298:	/* osvwid is 0 */
2785 		osvwid = 0;
2786 		if (osvwlength <= (uint64_t)osvwid) {
2787 			/* osvwid 0 is unknown */
2788 			return (-1);
2789 		}
2790 
2791 		/*
2792 		 * Check the OSVW STATUS MSR to determine the state
2793 		 * of the erratum where:
2794 		 *   0 - fixed by HW
2795 		 *   1 - BIOS has applied the workaround when BIOS
2796 		 *   workaround is available. (Or for other errata,
2797 		 *   OS workaround is required.)
2798 		 * For a value of 1, caller will confirm that the
2799 		 * erratum 298 workaround has indeed been applied by BIOS.
2800 		 *
2801 		 * A 1 may be set in cpus that have a HW fix
2802 		 * in a mixed cpu system. Regarding erratum 298:
2803 		 *   In a multiprocessor platform, the workaround above
2804 		 *   should be applied to all processors regardless of
2805 		 *   silicon revision when an affected processor is
2806 		 *   present.
2807 		 */
2808 
2809 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2810 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2811 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2812 
2813 	default:
2814 		return (-1);
2815 	}
2816 }
2817 
2818 static const char assoc_str[] = "associativity";
2819 static const char line_str[] = "line-size";
2820 static const char size_str[] = "size";
2821 
2822 static void
2823 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2824     uint32_t val)
2825 {
2826 	char buf[128];
2827 
2828 	/*
2829 	 * ndi_prop_update_int() is used because it is desirable for
2830 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2831 	 */
2832 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2833 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2834 }
2835 
2836 /*
2837  * Intel-style cache/tlb description
2838  *
2839  * Standard cpuid level 2 gives a randomly ordered
2840  * selection of tags that index into a table that describes
2841  * cache and tlb properties.
2842  */
2843 
2844 static const char l1_icache_str[] = "l1-icache";
2845 static const char l1_dcache_str[] = "l1-dcache";
2846 static const char l2_cache_str[] = "l2-cache";
2847 static const char l3_cache_str[] = "l3-cache";
2848 static const char itlb4k_str[] = "itlb-4K";
2849 static const char dtlb4k_str[] = "dtlb-4K";
2850 static const char itlb2M_str[] = "itlb-2M";
2851 static const char itlb4M_str[] = "itlb-4M";
2852 static const char dtlb4M_str[] = "dtlb-4M";
2853 static const char dtlb24_str[] = "dtlb0-2M-4M";
2854 static const char itlb424_str[] = "itlb-4K-2M-4M";
2855 static const char itlb24_str[] = "itlb-2M-4M";
2856 static const char dtlb44_str[] = "dtlb-4K-4M";
2857 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2858 static const char sl2_cache_str[] = "sectored-l2-cache";
2859 static const char itrace_str[] = "itrace-cache";
2860 static const char sl3_cache_str[] = "sectored-l3-cache";
2861 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2862 
2863 static const struct cachetab {
2864 	uint8_t 	ct_code;
2865 	uint8_t		ct_assoc;
2866 	uint16_t 	ct_line_size;
2867 	size_t		ct_size;
2868 	const char	*ct_label;
2869 } intel_ctab[] = {
2870 	/*
2871 	 * maintain descending order!
2872 	 *
2873 	 * Codes ignored - Reason
2874 	 * ----------------------
2875 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2876 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2877 	 */
2878 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2879 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2880 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2881 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2882 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2883 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2884 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2885 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2886 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2887 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2888 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2889 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2890 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2891 	{ 0xc0, 4, 0, 8, dtlb44_str },
2892 	{ 0xba, 4, 0, 64, dtlb4k_str },
2893 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2894 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2895 	{ 0xb2, 4, 0, 64, itlb4k_str },
2896 	{ 0xb0, 4, 0, 128, itlb4k_str },
2897 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2898 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2899 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2900 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2901 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2902 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2903 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2904 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2905 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2906 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2907 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2908 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2909 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2910 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2911 	{ 0x73, 8, 0, 64*1024, itrace_str},
2912 	{ 0x72, 8, 0, 32*1024, itrace_str},
2913 	{ 0x71, 8, 0, 16*1024, itrace_str},
2914 	{ 0x70, 8, 0, 12*1024, itrace_str},
2915 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2916 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2917 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2918 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2919 	{ 0x5d, 0, 0, 256, dtlb44_str},
2920 	{ 0x5c, 0, 0, 128, dtlb44_str},
2921 	{ 0x5b, 0, 0, 64, dtlb44_str},
2922 	{ 0x5a, 4, 0, 32, dtlb24_str},
2923 	{ 0x59, 0, 0, 16, dtlb4k_str},
2924 	{ 0x57, 4, 0, 16, dtlb4k_str},
2925 	{ 0x56, 4, 0, 16, dtlb4M_str},
2926 	{ 0x55, 0, 0, 7, itlb24_str},
2927 	{ 0x52, 0, 0, 256, itlb424_str},
2928 	{ 0x51, 0, 0, 128, itlb424_str},
2929 	{ 0x50, 0, 0, 64, itlb424_str},
2930 	{ 0x4f, 0, 0, 32, itlb4k_str},
2931 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2932 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2933 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2934 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2935 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2936 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2937 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2938 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2939 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2940 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2941 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2942 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2943 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2944 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2945 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2946 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2947 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2948 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2949 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2950 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2951 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2952 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2953 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2954 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2955 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2956 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2957 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
2958 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
2959 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2960 	{ 0x0b, 4, 0, 4, itlb4M_str},
2961 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2962 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2963 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2964 	{ 0x05, 4, 0, 32, dtlb4M_str},
2965 	{ 0x04, 4, 0, 8, dtlb4M_str},
2966 	{ 0x03, 4, 0, 64, dtlb4k_str},
2967 	{ 0x02, 4, 0, 2, itlb4M_str},
2968 	{ 0x01, 4, 0, 32, itlb4k_str},
2969 	{ 0 }
2970 };
2971 
2972 static const struct cachetab cyrix_ctab[] = {
2973 	{ 0x70, 4, 0, 32, "tlb-4K" },
2974 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2975 	{ 0 }
2976 };
2977 
2978 /*
2979  * Search a cache table for a matching entry
2980  */
2981 static const struct cachetab *
2982 find_cacheent(const struct cachetab *ct, uint_t code)
2983 {
2984 	if (code != 0) {
2985 		for (; ct->ct_code != 0; ct++)
2986 			if (ct->ct_code <= code)
2987 				break;
2988 		if (ct->ct_code == code)
2989 			return (ct);
2990 	}
2991 	return (NULL);
2992 }
2993 
2994 /*
2995  * Populate cachetab entry with L2 or L3 cache-information using
2996  * cpuid function 4. This function is called from intel_walk_cacheinfo()
2997  * when descriptor 0x49 is encountered. It returns 0 if no such cache
2998  * information is found.
2999  */
3000 static int
3001 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3002 {
3003 	uint32_t level, i;
3004 	int ret = 0;
3005 
3006 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3007 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3008 
3009 		if (level == 2 || level == 3) {
3010 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3011 			ct->ct_line_size =
3012 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3013 			ct->ct_size = ct->ct_assoc *
3014 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3015 			    ct->ct_line_size *
3016 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3017 
3018 			if (level == 2) {
3019 				ct->ct_label = l2_cache_str;
3020 			} else if (level == 3) {
3021 				ct->ct_label = l3_cache_str;
3022 			}
3023 			ret = 1;
3024 		}
3025 	}
3026 
3027 	return (ret);
3028 }
3029 
3030 /*
3031  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3032  * The walk is terminated if the walker returns non-zero.
3033  */
3034 static void
3035 intel_walk_cacheinfo(struct cpuid_info *cpi,
3036     void *arg, int (*func)(void *, const struct cachetab *))
3037 {
3038 	const struct cachetab *ct;
3039 	struct cachetab des_49_ct, des_b1_ct;
3040 	uint8_t *dp;
3041 	int i;
3042 
3043 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3044 		return;
3045 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3046 		/*
3047 		 * For overloaded descriptor 0x49 we use cpuid function 4
3048 		 * if supported by the current processor, to create
3049 		 * cache information.
3050 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3051 		 * to disambiguate the cache information.
3052 		 */
3053 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3054 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3055 				ct = &des_49_ct;
3056 		} else if (*dp == 0xb1) {
3057 			des_b1_ct.ct_code = 0xb1;
3058 			des_b1_ct.ct_assoc = 4;
3059 			des_b1_ct.ct_line_size = 0;
3060 			if (x86_feature & X86_PAE) {
3061 				des_b1_ct.ct_size = 8;
3062 				des_b1_ct.ct_label = itlb2M_str;
3063 			} else {
3064 				des_b1_ct.ct_size = 4;
3065 				des_b1_ct.ct_label = itlb4M_str;
3066 			}
3067 			ct = &des_b1_ct;
3068 		} else {
3069 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3070 				continue;
3071 			}
3072 		}
3073 
3074 		if (func(arg, ct) != 0) {
3075 			break;
3076 		}
3077 	}
3078 }
3079 
3080 /*
3081  * (Like the Intel one, except for Cyrix CPUs)
3082  */
3083 static void
3084 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3085     void *arg, int (*func)(void *, const struct cachetab *))
3086 {
3087 	const struct cachetab *ct;
3088 	uint8_t *dp;
3089 	int i;
3090 
3091 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3092 		return;
3093 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3094 		/*
3095 		 * Search Cyrix-specific descriptor table first ..
3096 		 */
3097 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3098 			if (func(arg, ct) != 0)
3099 				break;
3100 			continue;
3101 		}
3102 		/*
3103 		 * .. else fall back to the Intel one
3104 		 */
3105 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3106 			if (func(arg, ct) != 0)
3107 				break;
3108 			continue;
3109 		}
3110 	}
3111 }
3112 
3113 /*
3114  * A cacheinfo walker that adds associativity, line-size, and size properties
3115  * to the devinfo node it is passed as an argument.
3116  */
3117 static int
3118 add_cacheent_props(void *arg, const struct cachetab *ct)
3119 {
3120 	dev_info_t *devi = arg;
3121 
3122 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3123 	if (ct->ct_line_size != 0)
3124 		add_cache_prop(devi, ct->ct_label, line_str,
3125 		    ct->ct_line_size);
3126 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3127 	return (0);
3128 }
3129 
3130 
3131 static const char fully_assoc[] = "fully-associative?";
3132 
3133 /*
3134  * AMD style cache/tlb description
3135  *
3136  * Extended functions 5 and 6 directly describe properties of
3137  * tlbs and various cache levels.
3138  */
3139 static void
3140 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3141 {
3142 	switch (assoc) {
3143 	case 0:	/* reserved; ignore */
3144 		break;
3145 	default:
3146 		add_cache_prop(devi, label, assoc_str, assoc);
3147 		break;
3148 	case 0xff:
3149 		add_cache_prop(devi, label, fully_assoc, 1);
3150 		break;
3151 	}
3152 }
3153 
3154 static void
3155 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3156 {
3157 	if (size == 0)
3158 		return;
3159 	add_cache_prop(devi, label, size_str, size);
3160 	add_amd_assoc(devi, label, assoc);
3161 }
3162 
3163 static void
3164 add_amd_cache(dev_info_t *devi, const char *label,
3165     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3166 {
3167 	if (size == 0 || line_size == 0)
3168 		return;
3169 	add_amd_assoc(devi, label, assoc);
3170 	/*
3171 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3172 	 * associated with each tag. A sector consists of all cache lines
3173 	 * associated with a tag. For example, the AMD K6-III has a sector
3174 	 * size of 2 cache lines per tag.
3175 	 */
3176 	if (lines_per_tag != 0)
3177 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3178 	add_cache_prop(devi, label, line_str, line_size);
3179 	add_cache_prop(devi, label, size_str, size * 1024);
3180 }
3181 
3182 static void
3183 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3184 {
3185 	switch (assoc) {
3186 	case 0:	/* off */
3187 		break;
3188 	case 1:
3189 	case 2:
3190 	case 4:
3191 		add_cache_prop(devi, label, assoc_str, assoc);
3192 		break;
3193 	case 6:
3194 		add_cache_prop(devi, label, assoc_str, 8);
3195 		break;
3196 	case 8:
3197 		add_cache_prop(devi, label, assoc_str, 16);
3198 		break;
3199 	case 0xf:
3200 		add_cache_prop(devi, label, fully_assoc, 1);
3201 		break;
3202 	default: /* reserved; ignore */
3203 		break;
3204 	}
3205 }
3206 
3207 static void
3208 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3209 {
3210 	if (size == 0 || assoc == 0)
3211 		return;
3212 	add_amd_l2_assoc(devi, label, assoc);
3213 	add_cache_prop(devi, label, size_str, size);
3214 }
3215 
3216 static void
3217 add_amd_l2_cache(dev_info_t *devi, const char *label,
3218     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3219 {
3220 	if (size == 0 || assoc == 0 || line_size == 0)
3221 		return;
3222 	add_amd_l2_assoc(devi, label, assoc);
3223 	if (lines_per_tag != 0)
3224 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3225 	add_cache_prop(devi, label, line_str, line_size);
3226 	add_cache_prop(devi, label, size_str, size * 1024);
3227 }
3228 
3229 static void
3230 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3231 {
3232 	struct cpuid_regs *cp;
3233 
3234 	if (cpi->cpi_xmaxeax < 0x80000005)
3235 		return;
3236 	cp = &cpi->cpi_extd[5];
3237 
3238 	/*
3239 	 * 4M/2M L1 TLB configuration
3240 	 *
3241 	 * We report the size for 2M pages because AMD uses two
3242 	 * TLB entries for one 4M page.
3243 	 */
3244 	add_amd_tlb(devi, "dtlb-2M",
3245 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3246 	add_amd_tlb(devi, "itlb-2M",
3247 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3248 
3249 	/*
3250 	 * 4K L1 TLB configuration
3251 	 */
3252 
3253 	switch (cpi->cpi_vendor) {
3254 		uint_t nentries;
3255 	case X86_VENDOR_TM:
3256 		if (cpi->cpi_family >= 5) {
3257 			/*
3258 			 * Crusoe processors have 256 TLB entries, but
3259 			 * cpuid data format constrains them to only
3260 			 * reporting 255 of them.
3261 			 */
3262 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3263 				nentries = 256;
3264 			/*
3265 			 * Crusoe processors also have a unified TLB
3266 			 */
3267 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3268 			    nentries);
3269 			break;
3270 		}
3271 		/*FALLTHROUGH*/
3272 	default:
3273 		add_amd_tlb(devi, itlb4k_str,
3274 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3275 		add_amd_tlb(devi, dtlb4k_str,
3276 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3277 		break;
3278 	}
3279 
3280 	/*
3281 	 * data L1 cache configuration
3282 	 */
3283 
3284 	add_amd_cache(devi, l1_dcache_str,
3285 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3286 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3287 
3288 	/*
3289 	 * code L1 cache configuration
3290 	 */
3291 
3292 	add_amd_cache(devi, l1_icache_str,
3293 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3294 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3295 
3296 	if (cpi->cpi_xmaxeax < 0x80000006)
3297 		return;
3298 	cp = &cpi->cpi_extd[6];
3299 
3300 	/* Check for a unified L2 TLB for large pages */
3301 
3302 	if (BITX(cp->cp_eax, 31, 16) == 0)
3303 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3304 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3305 	else {
3306 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3307 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3308 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3309 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3310 	}
3311 
3312 	/* Check for a unified L2 TLB for 4K pages */
3313 
3314 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3315 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3316 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3317 	} else {
3318 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3319 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3320 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3321 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3322 	}
3323 
3324 	add_amd_l2_cache(devi, l2_cache_str,
3325 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3326 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3327 }
3328 
3329 /*
3330  * There are two basic ways that the x86 world describes it cache
3331  * and tlb architecture - Intel's way and AMD's way.
3332  *
3333  * Return which flavor of cache architecture we should use
3334  */
3335 static int
3336 x86_which_cacheinfo(struct cpuid_info *cpi)
3337 {
3338 	switch (cpi->cpi_vendor) {
3339 	case X86_VENDOR_Intel:
3340 		if (cpi->cpi_maxeax >= 2)
3341 			return (X86_VENDOR_Intel);
3342 		break;
3343 	case X86_VENDOR_AMD:
3344 		/*
3345 		 * The K5 model 1 was the first part from AMD that reported
3346 		 * cache sizes via extended cpuid functions.
3347 		 */
3348 		if (cpi->cpi_family > 5 ||
3349 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3350 			return (X86_VENDOR_AMD);
3351 		break;
3352 	case X86_VENDOR_TM:
3353 		if (cpi->cpi_family >= 5)
3354 			return (X86_VENDOR_AMD);
3355 		/*FALLTHROUGH*/
3356 	default:
3357 		/*
3358 		 * If they have extended CPU data for 0x80000005
3359 		 * then we assume they have AMD-format cache
3360 		 * information.
3361 		 *
3362 		 * If not, and the vendor happens to be Cyrix,
3363 		 * then try our-Cyrix specific handler.
3364 		 *
3365 		 * If we're not Cyrix, then assume we're using Intel's
3366 		 * table-driven format instead.
3367 		 */
3368 		if (cpi->cpi_xmaxeax >= 0x80000005)
3369 			return (X86_VENDOR_AMD);
3370 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3371 			return (X86_VENDOR_Cyrix);
3372 		else if (cpi->cpi_maxeax >= 2)
3373 			return (X86_VENDOR_Intel);
3374 		break;
3375 	}
3376 	return (-1);
3377 }
3378 
3379 /*
3380  * create a node for the given cpu under the prom root node.
3381  * Also, create a cpu node in the device tree.
3382  */
3383 static dev_info_t *cpu_nex_devi = NULL;
3384 static kmutex_t cpu_node_lock;
3385 
3386 /*
3387  * Called from post_startup() and mp_startup()
3388  */
3389 void
3390 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3391 {
3392 	dev_info_t *cpu_devi;
3393 	int create;
3394 
3395 	mutex_enter(&cpu_node_lock);
3396 
3397 	/*
3398 	 * create a nexus node for all cpus identified as 'cpu_id' under
3399 	 * the root node.
3400 	 */
3401 	if (cpu_nex_devi == NULL) {
3402 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3403 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3404 			mutex_exit(&cpu_node_lock);
3405 			return;
3406 		}
3407 		(void) ndi_devi_online(cpu_nex_devi, 0);
3408 	}
3409 
3410 	/*
3411 	 * create a child node for cpu identified as 'cpu_id'
3412 	 */
3413 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3414 	    cpu_id);
3415 	if (cpu_devi == NULL) {
3416 		mutex_exit(&cpu_node_lock);
3417 		return;
3418 	}
3419 
3420 	/* device_type */
3421 
3422 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3423 	    "device_type", "cpu");
3424 
3425 	/* reg */
3426 
3427 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3428 	    "reg", cpu_id);
3429 
3430 	/* cpu-mhz, and clock-frequency */
3431 
3432 	if (cpu_freq > 0) {
3433 		long long mul;
3434 
3435 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3436 		    "cpu-mhz", cpu_freq);
3437 
3438 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3439 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3440 			    "clock-frequency", (int)mul);
3441 	}
3442 
3443 	(void) ndi_devi_online(cpu_devi, 0);
3444 
3445 	if ((x86_feature & X86_CPUID) == 0) {
3446 		mutex_exit(&cpu_node_lock);
3447 		return;
3448 	}
3449 
3450 	/* vendor-id */
3451 
3452 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3453 	    "vendor-id", cpi->cpi_vendorstr);
3454 
3455 	if (cpi->cpi_maxeax == 0) {
3456 		mutex_exit(&cpu_node_lock);
3457 		return;
3458 	}
3459 
3460 	/*
3461 	 * family, model, and step
3462 	 */
3463 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3464 	    "family", CPI_FAMILY(cpi));
3465 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3466 	    "cpu-model", CPI_MODEL(cpi));
3467 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3468 	    "stepping-id", CPI_STEP(cpi));
3469 
3470 	/* type */
3471 
3472 	switch (cpi->cpi_vendor) {
3473 	case X86_VENDOR_Intel:
3474 		create = 1;
3475 		break;
3476 	default:
3477 		create = 0;
3478 		break;
3479 	}
3480 	if (create)
3481 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3482 		    "type", CPI_TYPE(cpi));
3483 
3484 	/* ext-family */
3485 
3486 	switch (cpi->cpi_vendor) {
3487 	case X86_VENDOR_Intel:
3488 	case X86_VENDOR_AMD:
3489 		create = cpi->cpi_family >= 0xf;
3490 		break;
3491 	default:
3492 		create = 0;
3493 		break;
3494 	}
3495 	if (create)
3496 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3497 		    "ext-family", CPI_FAMILY_XTD(cpi));
3498 
3499 	/* ext-model */
3500 
3501 	switch (cpi->cpi_vendor) {
3502 	case X86_VENDOR_Intel:
3503 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3504 		break;
3505 	case X86_VENDOR_AMD:
3506 		create = CPI_FAMILY(cpi) == 0xf;
3507 		break;
3508 	default:
3509 		create = 0;
3510 		break;
3511 	}
3512 	if (create)
3513 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3514 		    "ext-model", CPI_MODEL_XTD(cpi));
3515 
3516 	/* generation */
3517 
3518 	switch (cpi->cpi_vendor) {
3519 	case X86_VENDOR_AMD:
3520 		/*
3521 		 * AMD K5 model 1 was the first part to support this
3522 		 */
3523 		create = cpi->cpi_xmaxeax >= 0x80000001;
3524 		break;
3525 	default:
3526 		create = 0;
3527 		break;
3528 	}
3529 	if (create)
3530 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3531 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3532 
3533 	/* brand-id */
3534 
3535 	switch (cpi->cpi_vendor) {
3536 	case X86_VENDOR_Intel:
3537 		/*
3538 		 * brand id first appeared on Pentium III Xeon model 8,
3539 		 * and Celeron model 8 processors and Opteron
3540 		 */
3541 		create = cpi->cpi_family > 6 ||
3542 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3543 		break;
3544 	case X86_VENDOR_AMD:
3545 		create = cpi->cpi_family >= 0xf;
3546 		break;
3547 	default:
3548 		create = 0;
3549 		break;
3550 	}
3551 	if (create && cpi->cpi_brandid != 0) {
3552 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3553 		    "brand-id", cpi->cpi_brandid);
3554 	}
3555 
3556 	/* chunks, and apic-id */
3557 
3558 	switch (cpi->cpi_vendor) {
3559 		/*
3560 		 * first available on Pentium IV and Opteron (K8)
3561 		 */
3562 	case X86_VENDOR_Intel:
3563 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3564 		break;
3565 	case X86_VENDOR_AMD:
3566 		create = cpi->cpi_family >= 0xf;
3567 		break;
3568 	default:
3569 		create = 0;
3570 		break;
3571 	}
3572 	if (create) {
3573 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3574 		    "chunks", CPI_CHUNKS(cpi));
3575 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3576 		    "apic-id", cpi->cpi_apicid);
3577 		if (cpi->cpi_chipid >= 0) {
3578 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3579 			    "chip#", cpi->cpi_chipid);
3580 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3581 			    "clog#", cpi->cpi_clogid);
3582 		}
3583 	}
3584 
3585 	/* cpuid-features */
3586 
3587 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3588 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3589 
3590 
3591 	/* cpuid-features-ecx */
3592 
3593 	switch (cpi->cpi_vendor) {
3594 	case X86_VENDOR_Intel:
3595 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3596 		break;
3597 	default:
3598 		create = 0;
3599 		break;
3600 	}
3601 	if (create)
3602 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3603 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3604 
3605 	/* ext-cpuid-features */
3606 
3607 	switch (cpi->cpi_vendor) {
3608 	case X86_VENDOR_Intel:
3609 	case X86_VENDOR_AMD:
3610 	case X86_VENDOR_Cyrix:
3611 	case X86_VENDOR_TM:
3612 	case X86_VENDOR_Centaur:
3613 		create = cpi->cpi_xmaxeax >= 0x80000001;
3614 		break;
3615 	default:
3616 		create = 0;
3617 		break;
3618 	}
3619 	if (create) {
3620 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3621 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3622 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3623 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3624 	}
3625 
3626 	/*
3627 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3628 	 * model 1, and Cyrix GXm.  On earlier models we try and
3629 	 * simulate something similar .. so this string should always
3630 	 * same -something- about the processor, however lame.
3631 	 */
3632 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3633 	    "brand-string", cpi->cpi_brandstr);
3634 
3635 	/*
3636 	 * Finally, cache and tlb information
3637 	 */
3638 	switch (x86_which_cacheinfo(cpi)) {
3639 	case X86_VENDOR_Intel:
3640 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3641 		break;
3642 	case X86_VENDOR_Cyrix:
3643 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3644 		break;
3645 	case X86_VENDOR_AMD:
3646 		amd_cache_info(cpi, cpu_devi);
3647 		break;
3648 	default:
3649 		break;
3650 	}
3651 
3652 	mutex_exit(&cpu_node_lock);
3653 }
3654 
3655 struct l2info {
3656 	int *l2i_csz;
3657 	int *l2i_lsz;
3658 	int *l2i_assoc;
3659 	int l2i_ret;
3660 };
3661 
3662 /*
3663  * A cacheinfo walker that fetches the size, line-size and associativity
3664  * of the L2 cache
3665  */
3666 static int
3667 intel_l2cinfo(void *arg, const struct cachetab *ct)
3668 {
3669 	struct l2info *l2i = arg;
3670 	int *ip;
3671 
3672 	if (ct->ct_label != l2_cache_str &&
3673 	    ct->ct_label != sl2_cache_str)
3674 		return (0);	/* not an L2 -- keep walking */
3675 
3676 	if ((ip = l2i->l2i_csz) != NULL)
3677 		*ip = ct->ct_size;
3678 	if ((ip = l2i->l2i_lsz) != NULL)
3679 		*ip = ct->ct_line_size;
3680 	if ((ip = l2i->l2i_assoc) != NULL)
3681 		*ip = ct->ct_assoc;
3682 	l2i->l2i_ret = ct->ct_size;
3683 	return (1);		/* was an L2 -- terminate walk */
3684 }
3685 
3686 /*
3687  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3688  *
3689  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3690  *	value is the associativity, the associativity for the L2 cache and
3691  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3692  *	an index into the amd_afd[] array to determine the associativity.
3693  *	-1 is undefined. 0 is fully associative.
3694  */
3695 
3696 static int amd_afd[] =
3697 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3698 
3699 static void
3700 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3701 {
3702 	struct cpuid_regs *cp;
3703 	uint_t size, assoc;
3704 	int i;
3705 	int *ip;
3706 
3707 	if (cpi->cpi_xmaxeax < 0x80000006)
3708 		return;
3709 	cp = &cpi->cpi_extd[6];
3710 
3711 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3712 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3713 		uint_t cachesz = size * 1024;
3714 		assoc = amd_afd[i];
3715 
3716 		ASSERT(assoc != -1);
3717 
3718 		if ((ip = l2i->l2i_csz) != NULL)
3719 			*ip = cachesz;
3720 		if ((ip = l2i->l2i_lsz) != NULL)
3721 			*ip = BITX(cp->cp_ecx, 7, 0);
3722 		if ((ip = l2i->l2i_assoc) != NULL)
3723 			*ip = assoc;
3724 		l2i->l2i_ret = cachesz;
3725 	}
3726 }
3727 
3728 int
3729 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3730 {
3731 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3732 	struct l2info __l2info, *l2i = &__l2info;
3733 
3734 	l2i->l2i_csz = csz;
3735 	l2i->l2i_lsz = lsz;
3736 	l2i->l2i_assoc = assoc;
3737 	l2i->l2i_ret = -1;
3738 
3739 	switch (x86_which_cacheinfo(cpi)) {
3740 	case X86_VENDOR_Intel:
3741 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3742 		break;
3743 	case X86_VENDOR_Cyrix:
3744 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3745 		break;
3746 	case X86_VENDOR_AMD:
3747 		amd_l2cacheinfo(cpi, l2i);
3748 		break;
3749 	default:
3750 		break;
3751 	}
3752 	return (l2i->l2i_ret);
3753 }
3754 
3755 #if !defined(__xpv)
3756 
3757 uint32_t *
3758 cpuid_mwait_alloc(cpu_t *cpu)
3759 {
3760 	uint32_t	*ret;
3761 	size_t		mwait_size;
3762 
3763 	ASSERT(cpuid_checkpass(cpu, 2));
3764 
3765 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3766 	if (mwait_size == 0)
3767 		return (NULL);
3768 
3769 	/*
3770 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3771 	 * allocations.  mwait_size is currently cache line sized.  Neither
3772 	 * of these implementation details are guarantied to be true in the
3773 	 * future.
3774 	 *
3775 	 * First try allocating mwait_size as kmem_alloc() currently returns
3776 	 * correctly aligned memory.  If kmem_alloc() does not return
3777 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3778 	 *
3779 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3780 	 * decide to free this memory.
3781 	 */
3782 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3783 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3784 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3785 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3786 		*ret = MWAIT_RUNNING;
3787 		return (ret);
3788 	} else {
3789 		kmem_free(ret, mwait_size);
3790 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3791 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3792 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3793 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3794 		*ret = MWAIT_RUNNING;
3795 		return (ret);
3796 	}
3797 }
3798 
3799 void
3800 cpuid_mwait_free(cpu_t *cpu)
3801 {
3802 	ASSERT(cpuid_checkpass(cpu, 2));
3803 
3804 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3805 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3806 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3807 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3808 	}
3809 
3810 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3811 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3812 }
3813 
3814 void
3815 patch_tsc_read(int flag)
3816 {
3817 	size_t cnt;
3818 
3819 	switch (flag) {
3820 	case X86_NO_TSC:
3821 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3822 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3823 		break;
3824 	case X86_HAVE_TSCP:
3825 		cnt = &_tscp_end - &_tscp_start;
3826 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3827 		break;
3828 	case X86_TSC_MFENCE:
3829 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3830 		(void) memcpy((void *)tsc_read,
3831 		    (void *)&_tsc_mfence_start, cnt);
3832 		break;
3833 	case X86_TSC_LFENCE:
3834 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3835 		(void) memcpy((void *)tsc_read,
3836 		    (void *)&_tsc_lfence_start, cnt);
3837 		break;
3838 	default:
3839 		break;
3840 	}
3841 }
3842 
3843 #endif	/* !__xpv */
3844