1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * CPU Module Interface - hardware abstraction. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/cpu_module.h> 35 #include <sys/kmem.h> 36 #include <sys/x86_archext.h> 37 #include <sys/cpuvar.h> 38 #include <sys/ksynch.h> 39 #include <sys/x_call.h> 40 #include <sys/pghw.h> 41 #include <sys/pci_cfgspace.h> 42 #include <sys/archsystm.h> 43 #include <sys/ontrap.h> 44 #include <sys/controlregs.h> 45 #include <sys/sunddi.h> 46 47 /* 48 * Outside of this file consumers use the opaque cmi_hdl_t. This 49 * definition is duplicated in the generic_cpu mdb module, so keep 50 * them in-sync when making changes. 51 */ 52 typedef struct cmi_hdl_impl { 53 enum cmi_hdl_class cmih_class; /* Handle nature */ 54 struct cmi_hdl_ops *cmih_ops; /* Operations vector */ 55 uint_t cmih_chipid; /* Chipid of cpu resource */ 56 uint_t cmih_coreid; /* Core within die */ 57 uint_t cmih_strandid; /* Thread within core */ 58 volatile uint32_t *cmih_refcntp; /* Reference count pointer */ 59 uint64_t cmih_msrsrc; /* MSR data source flags */ 60 void *cmih_hdlpriv; /* cmi_hw.c private data */ 61 void *cmih_spec; /* cmi_hdl_{set,get}_specific */ 62 void *cmih_cmi; /* cpu mod control structure */ 63 void *cmih_cmidata; /* cpu mod private data */ 64 const struct cmi_mc_ops *cmih_mcops; /* Memory-controller ops */ 65 void *cmih_mcdata; /* Memory-controller data */ 66 } cmi_hdl_impl_t; 67 68 #define IMPLHDL(ophdl) ((cmi_hdl_impl_t *)ophdl) 69 70 /* 71 * Handles are looked up from contexts such as polling, injection etc 72 * where the context is reasonably well defined (although a poller could 73 * interrupt any old thread holding any old lock). They are also looked 74 * up by machine check handlers, which may strike at inconvenient times 75 * such as during handle initialization or destruction or during handle 76 * lookup (which the #MC handler itself will also have to perform). 77 * 78 * So keeping handles in a linked list makes locking difficult when we 79 * consider #MC handlers. Our solution is to have an array indexed 80 * by that which uniquely identifies a handle - chip/core/strand id - 81 * with each array member a structure including a pointer to a handle 82 * structure for the resource, and a reference count for the handle. 83 * Reference counts are modified atomically. The public cmi_hdl_hold 84 * always succeeds because this can only be used after handle creation 85 * and before the call to destruct, so the hold count it already at least one. 86 * In other functions that lookup a handle (cmi_hdl_lookup, cmi_hdl_any) 87 * we must be certain that the count has not already decrmented to zero 88 * before applying our hold. 89 * 90 * This array is allocated when first we want to populate an entry. 91 * When allocated it is maximal - ideally we should scale to the 92 * actual number of chips, cores per chip and strand per core but 93 * that info is not readily available if we are virtualized so 94 * for now we stick with the dumb approach. 95 */ 96 #define CMI_MAX_CHIPS 16 97 #define CMI_MAX_CORES_PER_CHIP 4 98 #define CMI_MAX_STRANDS_PER_CORE 2 99 #define CMI_HDL_HASHSZ (CMI_MAX_CHIPS * CMI_MAX_CORES_PER_CHIP * \ 100 CMI_MAX_STRANDS_PER_CORE) 101 102 struct cmi_hdl_hashent { 103 volatile uint32_t cmhe_refcnt; 104 cmi_hdl_impl_t *cmhe_hdlp; 105 }; 106 107 static struct cmi_hdl_hashent *cmi_hdl_hash; 108 109 #define CMI_HDL_HASHIDX(chipid, coreid, strandid) \ 110 ((chipid) * CMI_MAX_CHIPS + (coreid) * CMI_MAX_CORES_PER_CHIP + \ 111 (strandid)) 112 113 /* 114 * Controls where we will source PCI config space data. 115 */ 116 #define CMI_PCICFG_FLAG_RD_HWOK 0x0001 117 #define CMI_PCICFG_FLAG_RD_INTERPOSEOK 0X0002 118 #define CMI_PCICFG_FLAG_WR_HWOK 0x0004 119 #define CMI_PCICFG_FLAG_WR_INTERPOSEOK 0X0008 120 121 static uint64_t cmi_pcicfg_flags = 122 CMI_PCICFG_FLAG_RD_HWOK | CMI_PCICFG_FLAG_RD_INTERPOSEOK | 123 CMI_PCICFG_FLAG_WR_HWOK | CMI_PCICFG_FLAG_WR_INTERPOSEOK; 124 125 /* 126 * The flags for individual cpus are kept in their per-cpu handle cmih_msrsrc 127 */ 128 #define CMI_MSR_FLAG_RD_HWOK 0x0001 129 #define CMI_MSR_FLAG_RD_INTERPOSEOK 0x0002 130 #define CMI_MSR_FLAG_WR_HWOK 0x0004 131 #define CMI_MSR_FLAG_WR_INTERPOSEOK 0x0008 132 133 int cmi_call_func_ntv_tries = 3; 134 135 static cmi_errno_t 136 call_func_ntv(int cpuid, xc_func_t func, xc_arg_t arg1, xc_arg_t arg2) 137 { 138 cmi_errno_t rc = -1; 139 int i; 140 141 kpreempt_disable(); 142 143 if (CPU->cpu_id == cpuid) { 144 (*func)(arg1, arg2, (xc_arg_t)&rc); 145 } else { 146 /* 147 * This should not happen for a #MC trap or a poll, so 148 * this is likely an error injection or similar. 149 * We will try to cross call with xc_trycall - we 150 * can't guarantee success with xc_call because 151 * the interrupt code in the case of a #MC may 152 * already hold the xc mutex. 153 */ 154 for (i = 0; i < cmi_call_func_ntv_tries; i++) { 155 cpuset_t cpus; 156 157 CPUSET_ONLY(cpus, cpuid); 158 xc_trycall(arg1, arg2, (xc_arg_t)&rc, cpus, func); 159 if (rc != -1) 160 break; 161 162 DELAY(1); 163 } 164 } 165 166 kpreempt_enable(); 167 168 return (rc != -1 ? rc : CMIERR_DEADLOCK); 169 } 170 171 /* 172 * ======================================================= 173 * | MSR Interposition | 174 * | ----------------- | 175 * | | 176 * ------------------------------------------------------- 177 */ 178 179 #define CMI_MSRI_HASHSZ 16 180 #define CMI_MSRI_HASHIDX(hdl, msr) \ 181 (((uintptr_t)(hdl) >> 3 + (msr)) % (CMI_MSRI_HASHSZ - 1)) 182 183 struct cmi_msri_bkt { 184 kmutex_t msrib_lock; 185 struct cmi_msri_hashent *msrib_head; 186 }; 187 188 struct cmi_msri_hashent { 189 struct cmi_msri_hashent *msrie_next; 190 struct cmi_msri_hashent *msrie_prev; 191 cmi_hdl_impl_t *msrie_hdl; 192 uint_t msrie_msrnum; 193 uint64_t msrie_msrval; 194 }; 195 196 #define CMI_MSRI_MATCH(ent, hdl, req_msr) \ 197 ((ent)->msrie_hdl == (hdl) && (ent)->msrie_msrnum == (req_msr)) 198 199 static struct cmi_msri_bkt msrihash[CMI_MSRI_HASHSZ]; 200 201 static void 202 msri_addent(cmi_hdl_impl_t *hdl, cmi_mca_regs_t *regp) 203 { 204 int idx = CMI_MSRI_HASHIDX(hdl, regp->cmr_msrnum); 205 struct cmi_msri_bkt *hbp = &msrihash[idx]; 206 struct cmi_msri_hashent *hep; 207 208 mutex_enter(&hbp->msrib_lock); 209 210 for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { 211 if (CMI_MSRI_MATCH(hep, hdl, regp->cmr_msrnum)) 212 break; 213 } 214 215 if (hep != NULL) { 216 hep->msrie_msrval = regp->cmr_msrval; 217 } else { 218 hep = kmem_alloc(sizeof (*hep), KM_SLEEP); 219 hep->msrie_hdl = hdl; 220 hep->msrie_msrnum = regp->cmr_msrnum; 221 hep->msrie_msrval = regp->cmr_msrval; 222 223 if (hbp->msrib_head != NULL) 224 hbp->msrib_head->msrie_prev = hep; 225 hep->msrie_next = hbp->msrib_head; 226 hep->msrie_prev = NULL; 227 hbp->msrib_head = hep; 228 } 229 230 mutex_exit(&hbp->msrib_lock); 231 } 232 233 /* 234 * Look for a match for the given hanlde and msr. Return 1 with valp 235 * filled if a match is found, otherwise return 0 with valp untouched. 236 */ 237 static int 238 msri_lookup(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp) 239 { 240 int idx = CMI_MSRI_HASHIDX(hdl, msr); 241 struct cmi_msri_bkt *hbp = &msrihash[idx]; 242 struct cmi_msri_hashent *hep; 243 244 /* 245 * This function is called during #MC trap handling, so we should 246 * consider the possibility that the hash mutex is held by the 247 * interrupted thread. This should not happen because interposition 248 * is an artificial injection mechanism and the #MC is requested 249 * after adding entries, but just in case of a real #MC at an 250 * unlucky moment we'll use mutex_tryenter here. 251 */ 252 if (!mutex_tryenter(&hbp->msrib_lock)) 253 return (0); 254 255 for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { 256 if (CMI_MSRI_MATCH(hep, hdl, msr)) { 257 *valp = hep->msrie_msrval; 258 break; 259 } 260 } 261 262 mutex_exit(&hbp->msrib_lock); 263 264 return (hep != NULL); 265 } 266 267 /* 268 * Remove any interposed value that matches. 269 */ 270 static void 271 msri_rment(cmi_hdl_impl_t *hdl, uint_t msr) 272 { 273 274 int idx = CMI_MSRI_HASHIDX(hdl, msr); 275 struct cmi_msri_bkt *hbp = &msrihash[idx]; 276 struct cmi_msri_hashent *hep; 277 278 if (!mutex_tryenter(&hbp->msrib_lock)) 279 return; 280 281 for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { 282 if (CMI_MSRI_MATCH(hep, hdl, msr)) { 283 if (hep->msrie_prev != NULL) 284 hep->msrie_prev->msrie_next = hep->msrie_next; 285 286 if (hep->msrie_next != NULL) 287 hep->msrie_next->msrie_prev = hep->msrie_prev; 288 289 if (hbp->msrib_head == hep) 290 hbp->msrib_head = hep->msrie_next; 291 292 kmem_free(hep, sizeof (*hep)); 293 break; 294 } 295 } 296 297 mutex_exit(&hbp->msrib_lock); 298 } 299 300 /* 301 * ======================================================= 302 * | PCI Config Space Interposition | 303 * | ------------------------------ | 304 * | | 305 * ------------------------------------------------------- 306 */ 307 308 /* 309 * Hash for interposed PCI config space values. We lookup on bus/dev/fun/offset 310 * and then record whether the value stashed was made with a byte, word or 311 * doubleword access; we will only return a hit for an access of the 312 * same size. If you access say a 32-bit register using byte accesses 313 * and then attempt to read the full 32-bit value back you will not obtain 314 * any sort of merged result - you get a lookup miss. 315 */ 316 317 #define CMI_PCII_HASHSZ 16 318 #define CMI_PCII_HASHIDX(b, d, f, o) \ 319 (((b) + (d) + (f) + (o)) % (CMI_PCII_HASHSZ - 1)) 320 321 struct cmi_pcii_bkt { 322 kmutex_t pciib_lock; 323 struct cmi_pcii_hashent *pciib_head; 324 }; 325 326 struct cmi_pcii_hashent { 327 struct cmi_pcii_hashent *pcii_next; 328 struct cmi_pcii_hashent *pcii_prev; 329 int pcii_bus; 330 int pcii_dev; 331 int pcii_func; 332 int pcii_reg; 333 int pcii_asize; 334 uint32_t pcii_val; 335 }; 336 337 #define CMI_PCII_MATCH(ent, b, d, f, r, asz) \ 338 ((ent)->pcii_bus == (b) && (ent)->pcii_dev == (d) && \ 339 (ent)->pcii_func == (f) && (ent)->pcii_reg == (r) && \ 340 (ent)->pcii_asize == (asz)) 341 342 static struct cmi_pcii_bkt pciihash[CMI_PCII_HASHSZ]; 343 344 345 /* 346 * Add a new entry to the PCI interpose hash, overwriting any existing 347 * entry that is found. 348 */ 349 static void 350 pcii_addent(int bus, int dev, int func, int reg, uint32_t val, int asz) 351 { 352 int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); 353 struct cmi_pcii_bkt *hbp = &pciihash[idx]; 354 struct cmi_pcii_hashent *hep; 355 356 mutex_enter(&hbp->pciib_lock); 357 358 for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { 359 if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) 360 break; 361 } 362 363 if (hep != NULL) { 364 hep->pcii_val = val; 365 } else { 366 hep = kmem_alloc(sizeof (*hep), KM_SLEEP); 367 hep->pcii_bus = bus; 368 hep->pcii_dev = dev; 369 hep->pcii_func = func; 370 hep->pcii_reg = reg; 371 hep->pcii_asize = asz; 372 hep->pcii_val = val; 373 374 if (hbp->pciib_head != NULL) 375 hbp->pciib_head->pcii_prev = hep; 376 hep->pcii_next = hbp->pciib_head; 377 hep->pcii_prev = NULL; 378 hbp->pciib_head = hep; 379 } 380 381 mutex_exit(&hbp->pciib_lock); 382 } 383 384 /* 385 * Look for a match for the given bus/dev/func/reg; return 1 with valp 386 * filled if a match is found, otherwise return 0 with valp untouched. 387 */ 388 static int 389 pcii_lookup(int bus, int dev, int func, int reg, int asz, uint32_t *valp) 390 { 391 int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); 392 struct cmi_pcii_bkt *hbp = &pciihash[idx]; 393 struct cmi_pcii_hashent *hep; 394 395 if (!mutex_tryenter(&hbp->pciib_lock)) 396 return (0); 397 398 for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { 399 if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) { 400 *valp = hep->pcii_val; 401 break; 402 } 403 } 404 405 mutex_exit(&hbp->pciib_lock); 406 407 return (hep != NULL); 408 } 409 410 static void 411 pcii_rment(int bus, int dev, int func, int reg, int asz) 412 { 413 int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); 414 struct cmi_pcii_bkt *hbp = &pciihash[idx]; 415 struct cmi_pcii_hashent *hep; 416 417 mutex_enter(&hbp->pciib_lock); 418 419 for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { 420 if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) { 421 if (hep->pcii_prev != NULL) 422 hep->pcii_prev->pcii_next = hep->pcii_next; 423 424 if (hep->pcii_next != NULL) 425 hep->pcii_next->pcii_prev = hep->pcii_prev; 426 427 if (hbp->pciib_head == hep) 428 hbp->pciib_head = hep->pcii_next; 429 430 kmem_free(hep, sizeof (*hep)); 431 break; 432 } 433 } 434 435 mutex_exit(&hbp->pciib_lock); 436 } 437 438 /* 439 * ======================================================= 440 * | Native methods | 441 * | -------------- | 442 * | | 443 * | These are used when we are running native on bare- | 444 * | metal, or simply don't know any better. | 445 * --------------------------------------------------------- 446 */ 447 448 static uint_t 449 ntv_vendor(cmi_hdl_impl_t *hdl) 450 { 451 return (cpuid_getvendor((cpu_t *)hdl->cmih_hdlpriv)); 452 } 453 454 static const char * 455 ntv_vendorstr(cmi_hdl_impl_t *hdl) 456 { 457 return (cpuid_getvendorstr((cpu_t *)hdl->cmih_hdlpriv)); 458 } 459 460 static uint_t 461 ntv_family(cmi_hdl_impl_t *hdl) 462 { 463 return (cpuid_getfamily((cpu_t *)hdl->cmih_hdlpriv)); 464 } 465 466 static uint_t 467 ntv_model(cmi_hdl_impl_t *hdl) 468 { 469 return (cpuid_getmodel((cpu_t *)hdl->cmih_hdlpriv)); 470 } 471 472 static uint_t 473 ntv_stepping(cmi_hdl_impl_t *hdl) 474 { 475 return (cpuid_getstep((cpu_t *)hdl->cmih_hdlpriv)); 476 } 477 478 static uint_t 479 ntv_chipid(cmi_hdl_impl_t *hdl) 480 { 481 return (hdl->cmih_chipid); 482 483 } 484 485 static uint_t 486 ntv_coreid(cmi_hdl_impl_t *hdl) 487 { 488 return (hdl->cmih_coreid); 489 } 490 491 static uint_t 492 ntv_strandid(cmi_hdl_impl_t *hdl) 493 { 494 return (hdl->cmih_strandid); 495 } 496 497 static uint32_t 498 ntv_chiprev(cmi_hdl_impl_t *hdl) 499 { 500 return (cpuid_getchiprev((cpu_t *)hdl->cmih_hdlpriv)); 501 } 502 503 static const char * 504 ntv_chiprevstr(cmi_hdl_impl_t *hdl) 505 { 506 return (cpuid_getchiprevstr((cpu_t *)hdl->cmih_hdlpriv)); 507 } 508 509 static uint32_t 510 ntv_getsockettype(cmi_hdl_impl_t *hdl) 511 { 512 return (cpuid_getsockettype((cpu_t *)hdl->cmih_hdlpriv)); 513 } 514 515 /*ARGSUSED*/ 516 static int 517 ntv_getcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 518 { 519 ulong_t *dest = (ulong_t *)arg1; 520 cmi_errno_t *rcp = (cmi_errno_t *)arg3; 521 522 *dest = getcr4(); 523 *rcp = CMI_SUCCESS; 524 525 return (0); 526 } 527 528 static ulong_t 529 ntv_getcr4(cmi_hdl_impl_t *hdl) 530 { 531 cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; 532 ulong_t val; 533 534 (void) call_func_ntv(cp->cpu_id, ntv_getcr4_xc, (xc_arg_t)&val, NULL); 535 536 return (val); 537 } 538 539 /*ARGSUSED*/ 540 static int 541 ntv_setcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 542 { 543 ulong_t val = (ulong_t)arg1; 544 cmi_errno_t *rcp = (cmi_errno_t *)arg3; 545 546 setcr4(val); 547 *rcp = CMI_SUCCESS; 548 549 return (0); 550 } 551 552 static void 553 ntv_setcr4(cmi_hdl_impl_t *hdl, ulong_t val) 554 { 555 cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; 556 557 (void) call_func_ntv(cp->cpu_id, ntv_setcr4_xc, (xc_arg_t)val, NULL); 558 } 559 560 volatile uint32_t cmi_trapped_rdmsr; 561 562 /*ARGSUSED*/ 563 static int 564 ntv_rdmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 565 { 566 uint_t msr = (uint_t)arg1; 567 uint64_t *valp = (uint64_t *)arg2; 568 cmi_errno_t *rcp = (cmi_errno_t *)arg3; 569 570 on_trap_data_t otd; 571 572 if (on_trap(&otd, OT_DATA_ACCESS) == 0) { 573 if (checked_rdmsr(msr, valp) == 0) 574 *rcp = CMI_SUCCESS; 575 else 576 *rcp = CMIERR_NOTSUP; 577 } else { 578 *rcp = CMIERR_MSRGPF; 579 atomic_inc_32(&cmi_trapped_rdmsr); 580 } 581 no_trap(); 582 583 return (0); 584 } 585 586 static cmi_errno_t 587 ntv_rdmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp) 588 { 589 cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; 590 591 return (call_func_ntv(cp->cpu_id, ntv_rdmsr_xc, 592 (xc_arg_t)msr, (xc_arg_t)valp)); 593 } 594 595 volatile uint32_t cmi_trapped_wrmsr; 596 597 /*ARGSUSED*/ 598 static int 599 ntv_wrmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 600 { 601 uint_t msr = (uint_t)arg1; 602 uint64_t val = *((uint64_t *)arg2); 603 cmi_errno_t *rcp = (cmi_errno_t *)arg3; 604 on_trap_data_t otd; 605 606 if (on_trap(&otd, OT_DATA_ACCESS) == 0) { 607 if (checked_wrmsr(msr, val) == 0) 608 *rcp = CMI_SUCCESS; 609 else 610 *rcp = CMIERR_NOTSUP; 611 } else { 612 *rcp = CMIERR_MSRGPF; 613 atomic_inc_32(&cmi_trapped_wrmsr); 614 } 615 no_trap(); 616 617 return (0); 618 619 } 620 621 static cmi_errno_t 622 ntv_wrmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val) 623 { 624 cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; 625 626 return (call_func_ntv(cp->cpu_id, ntv_wrmsr_xc, 627 (xc_arg_t)msr, (xc_arg_t)&val)); 628 } 629 630 /*ARGSUSED*/ 631 static int 632 ntv_mcheck_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 633 { 634 cmi_errno_t *rcp = (cmi_errno_t *)arg3; 635 636 int18(); 637 *rcp = CMI_SUCCESS; 638 639 return (0); 640 } 641 642 static void 643 ntv_mcheck(cmi_hdl_impl_t *hdl) 644 { 645 cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; 646 647 (void) call_func_ntv(cp->cpu_id, ntv_mcheck_xc, NULL, NULL); 648 } 649 650 /* 651 * Ops structure for handle operations. 652 */ 653 struct cmi_hdl_ops { 654 uint_t (*cmio_vendor)(cmi_hdl_impl_t *); 655 const char *(*cmio_vendorstr)(cmi_hdl_impl_t *); 656 uint_t (*cmio_family)(cmi_hdl_impl_t *); 657 uint_t (*cmio_model)(cmi_hdl_impl_t *); 658 uint_t (*cmio_stepping)(cmi_hdl_impl_t *); 659 uint_t (*cmio_chipid)(cmi_hdl_impl_t *); 660 uint_t (*cmio_coreid)(cmi_hdl_impl_t *); 661 uint_t (*cmio_strandid)(cmi_hdl_impl_t *); 662 uint32_t (*cmio_chiprev)(cmi_hdl_impl_t *); 663 const char *(*cmio_chiprevstr)(cmi_hdl_impl_t *); 664 uint32_t (*cmio_getsockettype)(cmi_hdl_impl_t *); 665 ulong_t (*cmio_getcr4)(cmi_hdl_impl_t *); 666 void (*cmio_setcr4)(cmi_hdl_impl_t *, ulong_t); 667 cmi_errno_t (*cmio_rdmsr)(cmi_hdl_impl_t *, uint_t, uint64_t *); 668 cmi_errno_t (*cmio_wrmsr)(cmi_hdl_impl_t *, uint_t, uint64_t); 669 void (*cmio_mcheck)(cmi_hdl_impl_t *); 670 } cmi_hdl_ops[] = { 671 /* 672 * CMI_HDL_NATIVE - ops when apparently running on bare-metal 673 */ 674 { 675 ntv_vendor, 676 ntv_vendorstr, 677 ntv_family, 678 ntv_model, 679 ntv_stepping, 680 ntv_chipid, 681 ntv_coreid, 682 ntv_strandid, 683 ntv_chiprev, 684 ntv_chiprevstr, 685 ntv_getsockettype, 686 ntv_getcr4, 687 ntv_setcr4, 688 ntv_rdmsr, 689 ntv_wrmsr, 690 ntv_mcheck 691 }, 692 }; 693 694 #ifndef __xpv 695 static void * 696 cpu_search(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, 697 uint_t strandid) 698 { 699 switch (class) { 700 case CMI_HDL_NATIVE: { 701 cpu_t *cp, *startcp; 702 703 kpreempt_disable(); 704 cp = startcp = CPU; 705 do { 706 if (cmi_ntv_hwchipid(cp) == chipid && 707 cmi_ntv_hwcoreid(cp) == coreid && 708 cmi_ntv_hwstrandid(cp) == strandid) { 709 kpreempt_enable(); 710 return ((void *)cp); 711 } 712 713 cp = cp->cpu_next; 714 } while (cp != startcp); 715 kpreempt_enable(); 716 return (NULL); 717 } 718 719 default: 720 return (NULL); 721 } 722 } 723 #endif 724 725 cmi_hdl_t 726 cmi_hdl_create(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, 727 uint_t strandid) 728 { 729 cmi_hdl_impl_t *hdl; 730 void *priv = NULL; 731 int idx; 732 733 if (chipid > CMI_MAX_CHIPS - 1 || coreid > CMI_MAX_CORES_PER_CHIP - 1 || 734 strandid > CMI_MAX_STRANDS_PER_CORE - 1) 735 return (NULL); 736 737 #ifndef __xpv 738 if ((priv = cpu_search(class, chipid, coreid, strandid)) == NULL) 739 return (NULL); 740 #endif 741 742 hdl = kmem_zalloc(sizeof (*hdl), KM_SLEEP); 743 744 hdl->cmih_class = class; 745 hdl->cmih_ops = &cmi_hdl_ops[class]; 746 hdl->cmih_chipid = chipid; 747 hdl->cmih_coreid = coreid; 748 hdl->cmih_strandid = strandid; 749 hdl->cmih_hdlpriv = priv; 750 hdl->cmih_msrsrc = CMI_MSR_FLAG_RD_HWOK | CMI_MSR_FLAG_RD_INTERPOSEOK | 751 CMI_MSR_FLAG_WR_HWOK | CMI_MSR_FLAG_WR_INTERPOSEOK; 752 753 ASSERT(hdl->cmih_cmi == NULL && hdl->cmih_cmidata == NULL); 754 755 if (cmi_hdl_hash == NULL) { 756 size_t sz = CMI_HDL_HASHSZ * sizeof (struct cmi_hdl_hashent); 757 void *hash = kmem_zalloc(sz, KM_SLEEP); 758 759 if (atomic_cas_ptr(&cmi_hdl_hash, NULL, hash) != NULL) 760 kmem_free(hash, sz); /* someone beat us */ 761 } 762 763 idx = CMI_HDL_HASHIDX(chipid, coreid, strandid); 764 ASSERT(cmi_hdl_hash[idx].cmhe_refcnt == 0 && 765 cmi_hdl_hash[idx].cmhe_hdlp == NULL); 766 767 /* 768 * Once we store a nonzero reference count others can find this 769 * handle via cmi_hdl_lookup etc. This initial hold on the handle 770 * is to be dropped only if some other part of cmi initialization 771 * fails or, if it succeeds, at later cpu deconfigure. Note the 772 * the module private data we hold in cmih_cmi and cmih_cmidata 773 * is still NULL at this point (the caller will fill it with 774 * cmi_hdl_setcmi if it initializes) so consumers of handles 775 * should always be ready for that possibility. 776 */ 777 cmi_hdl_hash[idx].cmhe_hdlp = hdl; 778 hdl->cmih_refcntp = &cmi_hdl_hash[idx].cmhe_refcnt; 779 cmi_hdl_hash[idx].cmhe_refcnt = 1; 780 781 return ((cmi_hdl_t)hdl); 782 } 783 784 void 785 cmi_hdl_hold(cmi_hdl_t ophdl) 786 { 787 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 788 789 ASSERT(*hdl->cmih_refcntp != 0); /* must not be the initial hold */ 790 791 atomic_inc_32(hdl->cmih_refcntp); 792 } 793 794 static int 795 cmi_hdl_canref(int hashidx) 796 { 797 volatile uint32_t *refcntp; 798 uint32_t refcnt; 799 800 if (cmi_hdl_hash == NULL) 801 return (0); 802 803 refcntp = &cmi_hdl_hash[hashidx].cmhe_refcnt; 804 refcnt = *refcntp; 805 806 if (refcnt == 0) { 807 /* 808 * Associated object never existed, is being destroyed, 809 * or has been destroyed. 810 */ 811 return (0); 812 } 813 814 /* 815 * We cannot use atomic increment here because once the reference 816 * count reaches zero it must never be bumped up again. 817 */ 818 while (refcnt != 0) { 819 if (atomic_cas_32(refcntp, refcnt, refcnt + 1) == refcnt) 820 return (1); 821 refcnt = *refcntp; 822 } 823 824 /* 825 * Somebody dropped the reference count to 0 after our initial 826 * check. 827 */ 828 return (0); 829 } 830 831 832 void 833 cmi_hdl_rele(cmi_hdl_t ophdl) 834 { 835 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 836 int idx; 837 838 ASSERT(*hdl->cmih_refcntp > 0); 839 840 if (atomic_dec_32_nv(hdl->cmih_refcntp) > 0) 841 return; 842 843 idx = CMI_HDL_HASHIDX(hdl->cmih_chipid, hdl->cmih_coreid, 844 hdl->cmih_strandid); 845 cmi_hdl_hash[idx].cmhe_hdlp = NULL; 846 847 kmem_free(hdl, sizeof (*hdl)); 848 } 849 850 void 851 cmi_hdl_setspecific(cmi_hdl_t ophdl, void *arg) 852 { 853 IMPLHDL(ophdl)->cmih_spec = arg; 854 } 855 856 void * 857 cmi_hdl_getspecific(cmi_hdl_t ophdl) 858 { 859 return (IMPLHDL(ophdl)->cmih_spec); 860 } 861 862 void 863 cmi_hdl_setmc(cmi_hdl_t ophdl, const struct cmi_mc_ops *mcops, void *mcdata) 864 { 865 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 866 867 ASSERT(hdl->cmih_mcops == NULL && hdl->cmih_mcdata == NULL); 868 hdl->cmih_mcops = mcops; 869 hdl->cmih_mcdata = mcdata; 870 } 871 872 const struct cmi_mc_ops * 873 cmi_hdl_getmcops(cmi_hdl_t ophdl) 874 { 875 return (IMPLHDL(ophdl)->cmih_mcops); 876 } 877 878 void * 879 cmi_hdl_getmcdata(cmi_hdl_t ophdl) 880 { 881 return (IMPLHDL(ophdl)->cmih_mcdata); 882 } 883 884 cmi_hdl_t 885 cmi_hdl_lookup(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, 886 uint_t strandid) 887 { 888 int idx = CMI_HDL_HASHIDX(chipid, coreid, strandid); 889 890 if (!cmi_hdl_canref(idx)) 891 return (NULL); 892 893 if (cmi_hdl_hash[idx].cmhe_hdlp->cmih_class != class) { 894 cmi_hdl_rele((cmi_hdl_t)cmi_hdl_hash[idx].cmhe_hdlp); 895 return (NULL); 896 } 897 898 return ((cmi_hdl_t)cmi_hdl_hash[idx].cmhe_hdlp); 899 } 900 901 cmi_hdl_t 902 cmi_hdl_any(void) 903 { 904 int i; 905 906 for (i = 0; i < CMI_HDL_HASHSZ; i++) { 907 if (cmi_hdl_canref(i)) 908 return ((cmi_hdl_t)cmi_hdl_hash[i].cmhe_hdlp); 909 } 910 911 return (NULL); 912 } 913 914 void 915 cmi_hdl_walk(int (*cbfunc)(cmi_hdl_t, void *, void *, void *), 916 void *arg1, void *arg2, void *arg3) 917 { 918 int i; 919 920 for (i = 0; i < CMI_HDL_HASHSZ; i++) { 921 if (cmi_hdl_canref(i)) { 922 cmi_hdl_impl_t *hdl = cmi_hdl_hash[i].cmhe_hdlp; 923 924 if ((*cbfunc)((cmi_hdl_t)hdl, arg1, arg2, arg3) == 925 CMI_HDL_WALK_DONE) { 926 cmi_hdl_rele((cmi_hdl_t)hdl); 927 break; 928 } 929 cmi_hdl_rele((cmi_hdl_t)hdl); 930 } 931 } 932 } 933 934 void 935 cmi_hdl_setcmi(cmi_hdl_t ophdl, void *cmi, void *cmidata) 936 { 937 IMPLHDL(ophdl)->cmih_cmidata = cmidata; 938 IMPLHDL(ophdl)->cmih_cmi = cmi; 939 } 940 941 void * 942 cmi_hdl_getcmi(cmi_hdl_t ophdl) 943 { 944 return (IMPLHDL(ophdl)->cmih_cmi); 945 } 946 947 void * 948 cmi_hdl_getcmidata(cmi_hdl_t ophdl) 949 { 950 return (IMPLHDL(ophdl)->cmih_cmidata); 951 } 952 953 enum cmi_hdl_class 954 cmi_hdl_class(cmi_hdl_t ophdl) 955 { 956 return (IMPLHDL(ophdl)->cmih_class); 957 } 958 959 #define CMI_HDL_OPFUNC(what, type) \ 960 type \ 961 cmi_hdl_##what(cmi_hdl_t ophdl) \ 962 { \ 963 return (IMPLHDL(ophdl)->cmih_ops-> \ 964 cmio_##what(IMPLHDL(ophdl))); \ 965 } 966 967 CMI_HDL_OPFUNC(vendor, uint_t) 968 CMI_HDL_OPFUNC(vendorstr, const char *) 969 CMI_HDL_OPFUNC(family, uint_t) 970 CMI_HDL_OPFUNC(model, uint_t) 971 CMI_HDL_OPFUNC(stepping, uint_t) 972 CMI_HDL_OPFUNC(chipid, uint_t) 973 CMI_HDL_OPFUNC(coreid, uint_t) 974 CMI_HDL_OPFUNC(strandid, uint_t) 975 CMI_HDL_OPFUNC(chiprev, uint32_t) 976 CMI_HDL_OPFUNC(chiprevstr, const char *) 977 CMI_HDL_OPFUNC(getsockettype, uint32_t) 978 979 void 980 cmi_hdl_mcheck(cmi_hdl_t ophdl) 981 { 982 IMPLHDL(ophdl)->cmih_ops->cmio_mcheck(IMPLHDL(ophdl)); 983 } 984 985 #ifndef __xpv 986 /* 987 * Return hardware chip instance; cpuid_get_chipid provides this directly. 988 */ 989 uint_t 990 cmi_ntv_hwchipid(cpu_t *cp) 991 { 992 return (cpuid_get_chipid(cp)); 993 } 994 995 /* 996 * Return core instance within a single chip. cpuid_get_coreid numbers cores 997 * across all chips with the same number of cores on each chip and counting 998 * all cores of chip N before moving on to count the cores of chip N + 1. 999 */ 1000 uint_t 1001 cmi_ntv_hwcoreid(cpu_t *cp) 1002 { 1003 return (cpuid_get_coreid(cp) % cpuid_get_ncore_per_chip(cp)); 1004 } 1005 1006 /* 1007 * Return strand number within a single core. cpuid_get_clogid numbers 1008 * all execution units (strands, or cores in unstranded models) sequentially 1009 * within a single chip. 1010 */ 1011 uint_t 1012 cmi_ntv_hwstrandid(cpu_t *cp) 1013 { 1014 int strands_per_core = cpuid_get_ncpu_per_chip(cp) / 1015 cpuid_get_ncore_per_chip(cp); 1016 1017 return (cpuid_get_clogid(cp) % strands_per_core); 1018 } 1019 #endif /* __xpv */ 1020 1021 void 1022 cmi_hdlconf_rdmsr_nohw(cmi_hdl_t ophdl) 1023 { 1024 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1025 1026 hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_RD_HWOK; 1027 } 1028 1029 void 1030 cmi_hdlconf_wrmsr_nohw(cmi_hdl_t ophdl) 1031 { 1032 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1033 1034 hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_WR_HWOK; 1035 } 1036 1037 cmi_errno_t 1038 cmi_hdl_rdmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t *valp) 1039 { 1040 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1041 1042 /* 1043 * Regardless of the handle class, we first check for am 1044 * interposed value. In the xVM case you probably want to 1045 * place interposed values within the hypervisor itself, but 1046 * we still allow interposing them in dom0 for test and bringup 1047 * purposes. 1048 */ 1049 if ((hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_INTERPOSEOK) && 1050 msri_lookup(hdl, msr, valp)) 1051 return (CMI_SUCCESS); 1052 1053 if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_HWOK)) 1054 return (CMIERR_INTERPOSE); 1055 1056 return (hdl->cmih_ops->cmio_rdmsr(hdl, msr, valp)); 1057 } 1058 1059 cmi_errno_t 1060 cmi_hdl_wrmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t val) 1061 { 1062 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1063 1064 /* Invalidate any interposed value */ 1065 msri_rment(hdl, msr); 1066 1067 if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_WR_HWOK)) 1068 return (CMI_SUCCESS); 1069 1070 return (hdl->cmih_ops->cmio_wrmsr(hdl, msr, val)); 1071 } 1072 1073 void 1074 cmi_hdl_enable_mce(cmi_hdl_t ophdl) 1075 { 1076 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1077 ulong_t cr4 = hdl->cmih_ops->cmio_getcr4(hdl); 1078 1079 hdl->cmih_ops->cmio_setcr4(hdl, cr4 | CR4_MCE); 1080 } 1081 1082 void 1083 cmi_hdl_msrinterpose(cmi_hdl_t ophdl, cmi_mca_regs_t *regs, uint_t nregs) 1084 { 1085 cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); 1086 int i; 1087 1088 for (i = 0; i < nregs; i++) 1089 msri_addent(hdl, regs++); 1090 } 1091 1092 void 1093 cmi_pcird_nohw(void) 1094 { 1095 cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_RD_HWOK; 1096 } 1097 1098 void 1099 cmi_pciwr_nohw(void) 1100 { 1101 cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_WR_HWOK; 1102 } 1103 1104 static uint32_t 1105 cmi_pci_get_cmn(int bus, int dev, int func, int reg, int asz, 1106 int *interpose, ddi_acc_handle_t hdl) 1107 { 1108 uint32_t val; 1109 1110 if (cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_INTERPOSEOK && 1111 pcii_lookup(bus, dev, func, reg, asz, &val)) { 1112 if (interpose) 1113 *interpose = 1; 1114 return (val); 1115 } 1116 if (interpose) 1117 *interpose = 0; 1118 1119 if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_HWOK)) 1120 return (0); 1121 1122 switch (asz) { 1123 case 1: 1124 if (hdl) 1125 val = pci_config_get8(hdl, (off_t)reg); 1126 else 1127 val = (*pci_getb_func)(bus, dev, func, reg); 1128 break; 1129 case 2: 1130 if (hdl) 1131 val = pci_config_get16(hdl, (off_t)reg); 1132 else 1133 val = (*pci_getw_func)(bus, dev, func, reg); 1134 break; 1135 case 4: 1136 if (hdl) 1137 val = pci_config_get32(hdl, (off_t)reg); 1138 else 1139 val = (*pci_getl_func)(bus, dev, func, reg); 1140 break; 1141 default: 1142 val = 0; 1143 } 1144 return (val); 1145 } 1146 1147 uint8_t 1148 cmi_pci_getb(int bus, int dev, int func, int reg, int *interpose, 1149 ddi_acc_handle_t hdl) 1150 { 1151 return ((uint8_t)cmi_pci_get_cmn(bus, dev, func, reg, 1, interpose, 1152 hdl)); 1153 } 1154 1155 uint16_t 1156 cmi_pci_getw(int bus, int dev, int func, int reg, int *interpose, 1157 ddi_acc_handle_t hdl) 1158 { 1159 return ((uint16_t)cmi_pci_get_cmn(bus, dev, func, reg, 2, interpose, 1160 hdl)); 1161 } 1162 1163 uint32_t 1164 cmi_pci_getl(int bus, int dev, int func, int reg, int *interpose, 1165 ddi_acc_handle_t hdl) 1166 { 1167 return (cmi_pci_get_cmn(bus, dev, func, reg, 4, interpose, hdl)); 1168 } 1169 1170 void 1171 cmi_pci_interposeb(int bus, int dev, int func, int reg, uint8_t val) 1172 { 1173 pcii_addent(bus, dev, func, reg, val, 1); 1174 } 1175 1176 void 1177 cmi_pci_interposew(int bus, int dev, int func, int reg, uint16_t val) 1178 { 1179 pcii_addent(bus, dev, func, reg, val, 2); 1180 } 1181 1182 void 1183 cmi_pci_interposel(int bus, int dev, int func, int reg, uint32_t val) 1184 { 1185 pcii_addent(bus, dev, func, reg, val, 4); 1186 } 1187 1188 static void 1189 cmi_pci_put_cmn(int bus, int dev, int func, int reg, int asz, 1190 ddi_acc_handle_t hdl, uint32_t val) 1191 { 1192 /* 1193 * If there is an interposed value for this register invalidate it. 1194 */ 1195 pcii_rment(bus, dev, func, reg, asz); 1196 1197 if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_WR_HWOK)) 1198 return; 1199 1200 switch (asz) { 1201 case 1: 1202 if (hdl) 1203 pci_config_put8(hdl, (off_t)reg, (uint8_t)val); 1204 else 1205 (*pci_putb_func)(bus, dev, func, reg, (uint8_t)val); 1206 break; 1207 1208 case 2: 1209 if (hdl) 1210 pci_config_put16(hdl, (off_t)reg, (uint16_t)val); 1211 else 1212 (*pci_putw_func)(bus, dev, func, reg, (uint16_t)val); 1213 break; 1214 1215 case 4: 1216 if (hdl) 1217 pci_config_put32(hdl, (off_t)reg, val); 1218 else 1219 (*pci_putl_func)(bus, dev, func, reg, val); 1220 break; 1221 1222 default: 1223 break; 1224 } 1225 } 1226 1227 extern void 1228 cmi_pci_putb(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, 1229 uint8_t val) 1230 { 1231 cmi_pci_put_cmn(bus, dev, func, reg, 1, hdl, val); 1232 } 1233 1234 extern void 1235 cmi_pci_putw(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, 1236 uint16_t val) 1237 { 1238 cmi_pci_put_cmn(bus, dev, func, reg, 2, hdl, val); 1239 } 1240 1241 extern void 1242 cmi_pci_putl(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, 1243 uint32_t val) 1244 { 1245 cmi_pci_put_cmn(bus, dev, func, reg, 4, hdl, val); 1246 } 1247