xref: /titanic_51/usr/src/uts/i86pc/io/rootnex.c (revision fe89515e649436ba27844b63b5f18b41113d99c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * x86 root nexus driver
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/conf.h>
31 #include <sys/autoconf.h>
32 #include <sys/sysmacros.h>
33 #include <sys/debug.h>
34 #include <sys/psw.h>
35 #include <sys/ddidmareq.h>
36 #include <sys/promif.h>
37 #include <sys/devops.h>
38 #include <sys/kmem.h>
39 #include <sys/cmn_err.h>
40 #include <vm/seg.h>
41 #include <vm/seg_kmem.h>
42 #include <vm/seg_dev.h>
43 #include <sys/vmem.h>
44 #include <sys/mman.h>
45 #include <vm/hat.h>
46 #include <vm/as.h>
47 #include <vm/page.h>
48 #include <sys/avintr.h>
49 #include <sys/errno.h>
50 #include <sys/modctl.h>
51 #include <sys/ddi_impldefs.h>
52 #include <sys/sunddi.h>
53 #include <sys/sunndi.h>
54 #include <sys/mach_intr.h>
55 #include <sys/psm.h>
56 #include <sys/ontrap.h>
57 #include <sys/atomic.h>
58 #include <sys/sdt.h>
59 #include <sys/rootnex.h>
60 #include <vm/hat_i86.h>
61 #include <sys/ddifm.h>
62 #include <sys/ddi_isa.h>
63 #include <sys/apic.h>
64 
65 #ifdef __xpv
66 #include <sys/bootinfo.h>
67 #include <sys/hypervisor.h>
68 #include <sys/bootconf.h>
69 #include <vm/kboot_mmu.h>
70 #endif
71 
72 #if defined(__amd64) && !defined(__xpv)
73 #include <sys/immu.h>
74 #endif
75 
76 
77 /*
78  * enable/disable extra checking of function parameters. Useful for debugging
79  * drivers.
80  */
81 #ifdef	DEBUG
82 int rootnex_alloc_check_parms = 1;
83 int rootnex_bind_check_parms = 1;
84 int rootnex_bind_check_inuse = 1;
85 int rootnex_unbind_verify_buffer = 0;
86 int rootnex_sync_check_parms = 1;
87 #else
88 int rootnex_alloc_check_parms = 0;
89 int rootnex_bind_check_parms = 0;
90 int rootnex_bind_check_inuse = 0;
91 int rootnex_unbind_verify_buffer = 0;
92 int rootnex_sync_check_parms = 0;
93 #endif
94 
95 boolean_t rootnex_dmar_not_setup;
96 
97 /* Master Abort and Target Abort panic flag */
98 int rootnex_fm_ma_ta_panic_flag = 0;
99 
100 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
101 int rootnex_bind_fail = 1;
102 int rootnex_bind_warn = 1;
103 uint8_t *rootnex_warn_list;
104 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
105 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
106 
107 /*
108  * revert back to old broken behavior of always sync'ing entire copy buffer.
109  * This is useful if be have a buggy driver which doesn't correctly pass in
110  * the offset and size into ddi_dma_sync().
111  */
112 int rootnex_sync_ignore_params = 0;
113 
114 /*
115  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
116  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
117  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
118  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
119  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
120  * (< 8K). We will still need to allocate the copy buffer during bind though
121  * (if we need one). These can only be modified in /etc/system before rootnex
122  * attach.
123  */
124 #if defined(__amd64)
125 int rootnex_prealloc_cookies = 65;
126 int rootnex_prealloc_windows = 4;
127 int rootnex_prealloc_copybuf = 2;
128 #else
129 int rootnex_prealloc_cookies = 33;
130 int rootnex_prealloc_windows = 4;
131 int rootnex_prealloc_copybuf = 2;
132 #endif
133 
134 /* driver global state */
135 static rootnex_state_t *rootnex_state;
136 
137 #ifdef DEBUG
138 /* shortcut to rootnex counters */
139 static uint64_t *rootnex_cnt;
140 #endif
141 
142 /*
143  * XXX - does x86 even need these or are they left over from the SPARC days?
144  */
145 /* statically defined integer/boolean properties for the root node */
146 static rootnex_intprop_t rootnex_intprp[] = {
147 	{ "PAGESIZE",			PAGESIZE },
148 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
149 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
150 	{ DDI_RELATIVE_ADDRESSING,	1 },
151 };
152 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
153 
154 /*
155  * If we're dom0, we're using a real device so we need to load
156  * the cookies with MFNs instead of PFNs.
157  */
158 #ifdef __xpv
159 typedef maddr_t rootnex_addr_t;
160 #define	ROOTNEX_PADDR_TO_RBASE(pa)	\
161 	(DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa))
162 #else
163 typedef paddr_t rootnex_addr_t;
164 #define	ROOTNEX_PADDR_TO_RBASE(pa)	(pa)
165 #endif
166 
167 #if !defined(__xpv)
168 char _depends_on[] = "misc/iommulib misc/acpica";
169 #endif
170 
171 static struct cb_ops rootnex_cb_ops = {
172 	nodev,		/* open */
173 	nodev,		/* close */
174 	nodev,		/* strategy */
175 	nodev,		/* print */
176 	nodev,		/* dump */
177 	nodev,		/* read */
178 	nodev,		/* write */
179 	nodev,		/* ioctl */
180 	nodev,		/* devmap */
181 	nodev,		/* mmap */
182 	nodev,		/* segmap */
183 	nochpoll,	/* chpoll */
184 	ddi_prop_op,	/* cb_prop_op */
185 	NULL,		/* struct streamtab */
186 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
187 	CB_REV,		/* Rev */
188 	nodev,		/* cb_aread */
189 	nodev		/* cb_awrite */
190 };
191 
192 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
193     off_t offset, off_t len, caddr_t *vaddrp);
194 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
195     struct hat *hat, struct seg *seg, caddr_t addr,
196     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
197 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
198     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep);
199 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
200     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
201     ddi_dma_handle_t *handlep);
202 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
203     ddi_dma_handle_t handle);
204 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
205     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
206     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
207 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
208     ddi_dma_handle_t handle);
209 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
210     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
211 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
212     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
213     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
214 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
215     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
216     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
217 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
218     ddi_ctl_enum_t ctlop, void *arg, void *result);
219 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
220     ddi_iblock_cookie_t *ibc);
221 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
222     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
223 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *,
224     void *);
225 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *);
226 
227 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
228     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
229     ddi_dma_handle_t *handlep);
230 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
231     ddi_dma_handle_t handle);
232 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
233     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
234     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
235 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
236     ddi_dma_handle_t handle);
237 #if defined(__amd64) && !defined(__xpv)
238 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
239     ddi_dma_handle_t handle);
240 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
241     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
242 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
243     ddi_dma_cookie_t *cookiep, uint_t ccount);
244 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
245     ddi_dma_handle_t handle);
246 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
247 #endif
248 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
249     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
250 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
251     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
252     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
253 
254 #if defined(__amd64) && !defined(__xpv)
255 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
256     ddi_dma_handle_t handle, void *v);
257 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
258     ddi_dma_handle_t handle);
259 #endif
260 
261 
262 static struct bus_ops rootnex_bus_ops = {
263 	BUSO_REV,
264 	rootnex_map,
265 	NULL,
266 	NULL,
267 	NULL,
268 	rootnex_map_fault,
269 	rootnex_dma_map,
270 	rootnex_dma_allochdl,
271 	rootnex_dma_freehdl,
272 	rootnex_dma_bindhdl,
273 	rootnex_dma_unbindhdl,
274 	rootnex_dma_sync,
275 	rootnex_dma_win,
276 	rootnex_dma_mctl,
277 	rootnex_ctlops,
278 	ddi_bus_prop_op,
279 	i_ddi_rootnex_get_eventcookie,
280 	i_ddi_rootnex_add_eventcall,
281 	i_ddi_rootnex_remove_eventcall,
282 	i_ddi_rootnex_post_event,
283 	0,			/* bus_intr_ctl */
284 	0,			/* bus_config */
285 	0,			/* bus_unconfig */
286 	rootnex_fm_init,	/* bus_fm_init */
287 	NULL,			/* bus_fm_fini */
288 	NULL,			/* bus_fm_access_enter */
289 	NULL,			/* bus_fm_access_exit */
290 	NULL,			/* bus_powr */
291 	rootnex_intr_ops	/* bus_intr_op */
292 };
293 
294 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
295 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
296 static int rootnex_quiesce(dev_info_t *dip);
297 
298 static struct dev_ops rootnex_ops = {
299 	DEVO_REV,
300 	0,
301 	ddi_no_info,
302 	nulldev,
303 	nulldev,
304 	rootnex_attach,
305 	rootnex_detach,
306 	nulldev,
307 	&rootnex_cb_ops,
308 	&rootnex_bus_ops,
309 	NULL,
310 	rootnex_quiesce,		/* quiesce */
311 };
312 
313 static struct modldrv rootnex_modldrv = {
314 	&mod_driverops,
315 	"i86pc root nexus",
316 	&rootnex_ops
317 };
318 
319 static struct modlinkage rootnex_modlinkage = {
320 	MODREV_1,
321 	(void *)&rootnex_modldrv,
322 	NULL
323 };
324 
325 #if defined(__amd64) && !defined(__xpv)
326 static iommulib_nexops_t iommulib_nexops = {
327 	IOMMU_NEXOPS_VERSION,
328 	"Rootnex IOMMU ops Vers 1.1",
329 	NULL,
330 	rootnex_coredma_allochdl,
331 	rootnex_coredma_freehdl,
332 	rootnex_coredma_bindhdl,
333 	rootnex_coredma_unbindhdl,
334 	rootnex_coredma_reset_cookies,
335 	rootnex_coredma_get_cookies,
336 	rootnex_coredma_set_cookies,
337 	rootnex_coredma_clear_cookies,
338 	rootnex_coredma_get_sleep_flags,
339 	rootnex_coredma_sync,
340 	rootnex_coredma_win,
341 	rootnex_dma_map,
342 	rootnex_dma_mctl,
343 	rootnex_coredma_hdl_setprivate,
344 	rootnex_coredma_hdl_getprivate
345 };
346 #endif
347 
348 /*
349  *  extern hacks
350  */
351 extern struct seg_ops segdev_ops;
352 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
353 #ifdef	DDI_MAP_DEBUG
354 extern int ddi_map_debug_flag;
355 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
356 #endif
357 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
358 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
359 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
360     psm_intr_op_t, int *);
361 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
362 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
363 
364 /*
365  * Use device arena to use for device control register mappings.
366  * Various kernel memory walkers (debugger, dtrace) need to know
367  * to avoid this address range to prevent undesired device activity.
368  */
369 extern void *device_arena_alloc(size_t size, int vm_flag);
370 extern void device_arena_free(void * vaddr, size_t size);
371 
372 
373 /*
374  *  Internal functions
375  */
376 static int rootnex_dma_init();
377 static void rootnex_add_props(dev_info_t *);
378 static int rootnex_ctl_reportdev(dev_info_t *dip);
379 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
380 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
381 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
382 static int rootnex_map_handle(ddi_map_req_t *mp);
383 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
384 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
385 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
386     ddi_dma_attr_t *attr);
387 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
388     rootnex_sglinfo_t *sglinfo);
389 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object,
390     ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo);
391 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
392     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
393 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
394     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
395 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
396 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
397     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
398 static void rootnex_teardown_windows(rootnex_dma_t *dma);
399 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
400     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
401 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
402     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
403     size_t *copybuf_used, page_t **cur_pp);
404 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
405     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
406     ddi_dma_attr_t *attr, off_t cur_offset);
407 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
408     rootnex_dma_t *dma, rootnex_window_t **windowp,
409     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
410 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
411     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
412 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
413     off_t offset, size_t size, uint_t cache_flags);
414 static int rootnex_verify_buffer(rootnex_dma_t *dma);
415 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
416     const void *comp_addr, const void *not_used);
417 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object,
418     rootnex_sglinfo_t *sglinfo);
419 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object);
420 
421 /*
422  * _init()
423  *
424  */
425 int
426 _init(void)
427 {
428 
429 	rootnex_state = NULL;
430 	return (mod_install(&rootnex_modlinkage));
431 }
432 
433 
434 /*
435  * _info()
436  *
437  */
438 int
439 _info(struct modinfo *modinfop)
440 {
441 	return (mod_info(&rootnex_modlinkage, modinfop));
442 }
443 
444 
445 /*
446  * _fini()
447  *
448  */
449 int
450 _fini(void)
451 {
452 	return (EBUSY);
453 }
454 
455 
456 /*
457  * rootnex_attach()
458  *
459  */
460 static int
461 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
462 {
463 	int fmcap;
464 	int e;
465 
466 	switch (cmd) {
467 	case DDI_ATTACH:
468 		break;
469 	case DDI_RESUME:
470 #if defined(__amd64) && !defined(__xpv)
471 		return (immu_unquiesce());
472 #else
473 		return (DDI_SUCCESS);
474 #endif
475 	default:
476 		return (DDI_FAILURE);
477 	}
478 
479 	/*
480 	 * We should only have one instance of rootnex. Save it away since we
481 	 * don't have an easy way to get it back later.
482 	 */
483 	ASSERT(rootnex_state == NULL);
484 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
485 
486 	rootnex_state->r_dip = dip;
487 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
488 	rootnex_state->r_reserved_msg_printed = B_FALSE;
489 #ifdef DEBUG
490 	rootnex_cnt = &rootnex_state->r_counters[0];
491 #endif
492 
493 	/*
494 	 * Set minimum fm capability level for i86pc platforms and then
495 	 * initialize error handling. Since we're the rootnex, we don't
496 	 * care what's returned in the fmcap field.
497 	 */
498 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
499 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
500 	fmcap = ddi_system_fmcap;
501 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
502 
503 	/* initialize DMA related state */
504 	e = rootnex_dma_init();
505 	if (e != DDI_SUCCESS) {
506 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
507 		return (DDI_FAILURE);
508 	}
509 
510 	/* Add static root node properties */
511 	rootnex_add_props(dip);
512 
513 	/* since we can't call ddi_report_dev() */
514 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
515 
516 	/* Initialize rootnex event handle */
517 	i_ddi_rootnex_init_events(dip);
518 
519 #if defined(__amd64) && !defined(__xpv)
520 	e = iommulib_nexus_register(dip, &iommulib_nexops,
521 	    &rootnex_state->r_iommulib_handle);
522 
523 	ASSERT(e == DDI_SUCCESS);
524 #endif
525 
526 	return (DDI_SUCCESS);
527 }
528 
529 
530 /*
531  * rootnex_detach()
532  *
533  */
534 /*ARGSUSED*/
535 static int
536 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
537 {
538 	switch (cmd) {
539 	case DDI_SUSPEND:
540 #if defined(__amd64) && !defined(__xpv)
541 		return (immu_quiesce());
542 #else
543 		return (DDI_SUCCESS);
544 #endif
545 	default:
546 		return (DDI_FAILURE);
547 	}
548 	/*NOTREACHED*/
549 
550 }
551 
552 
553 /*
554  * rootnex_dma_init()
555  *
556  */
557 /*ARGSUSED*/
558 static int
559 rootnex_dma_init()
560 {
561 	size_t bufsize;
562 
563 
564 	/*
565 	 * size of our cookie/window/copybuf state needed in dma bind that we
566 	 * pre-alloc in dma_alloc_handle
567 	 */
568 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
569 	rootnex_state->r_prealloc_size =
570 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
571 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
572 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
573 
574 	/*
575 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
576 	 * allocate 16 extra bytes for struct pointer alignment
577 	 * (p->dmai_private & dma->dp_prealloc_buffer)
578 	 */
579 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
580 	    rootnex_state->r_prealloc_size + 0x10;
581 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
582 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
583 	if (rootnex_state->r_dmahdl_cache == NULL) {
584 		return (DDI_FAILURE);
585 	}
586 
587 	/*
588 	 * allocate array to track which major numbers we have printed warnings
589 	 * for.
590 	 */
591 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
592 	    KM_SLEEP);
593 
594 	return (DDI_SUCCESS);
595 }
596 
597 
598 /*
599  * rootnex_add_props()
600  *
601  */
602 static void
603 rootnex_add_props(dev_info_t *dip)
604 {
605 	rootnex_intprop_t *rpp;
606 	int i;
607 
608 	/* Add static integer/boolean properties to the root node */
609 	rpp = rootnex_intprp;
610 	for (i = 0; i < NROOT_INTPROPS; i++) {
611 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
612 		    rpp[i].prop_name, rpp[i].prop_value);
613 	}
614 }
615 
616 
617 
618 /*
619  * *************************
620  *  ctlops related routines
621  * *************************
622  */
623 
624 /*
625  * rootnex_ctlops()
626  *
627  */
628 /*ARGSUSED*/
629 static int
630 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
631     void *arg, void *result)
632 {
633 	int n, *ptr;
634 	struct ddi_parent_private_data *pdp;
635 
636 	switch (ctlop) {
637 	case DDI_CTLOPS_DMAPMAPC:
638 		/*
639 		 * Return 'partial' to indicate that dma mapping
640 		 * has to be done in the main MMU.
641 		 */
642 		return (DDI_DMA_PARTIAL);
643 
644 	case DDI_CTLOPS_BTOP:
645 		/*
646 		 * Convert byte count input to physical page units.
647 		 * (byte counts that are not a page-size multiple
648 		 * are rounded down)
649 		 */
650 		*(ulong_t *)result = btop(*(ulong_t *)arg);
651 		return (DDI_SUCCESS);
652 
653 	case DDI_CTLOPS_PTOB:
654 		/*
655 		 * Convert size in physical pages to bytes
656 		 */
657 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
658 		return (DDI_SUCCESS);
659 
660 	case DDI_CTLOPS_BTOPR:
661 		/*
662 		 * Convert byte count input to physical page units
663 		 * (byte counts that are not a page-size multiple
664 		 * are rounded up)
665 		 */
666 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
667 		return (DDI_SUCCESS);
668 
669 	case DDI_CTLOPS_INITCHILD:
670 		return (impl_ddi_sunbus_initchild(arg));
671 
672 	case DDI_CTLOPS_UNINITCHILD:
673 		impl_ddi_sunbus_removechild(arg);
674 		return (DDI_SUCCESS);
675 
676 	case DDI_CTLOPS_REPORTDEV:
677 		return (rootnex_ctl_reportdev(rdip));
678 
679 	case DDI_CTLOPS_IOMIN:
680 		/*
681 		 * Nothing to do here but reflect back..
682 		 */
683 		return (DDI_SUCCESS);
684 
685 	case DDI_CTLOPS_REGSIZE:
686 	case DDI_CTLOPS_NREGS:
687 		break;
688 
689 	case DDI_CTLOPS_SIDDEV:
690 		if (ndi_dev_is_prom_node(rdip))
691 			return (DDI_SUCCESS);
692 		if (ndi_dev_is_persistent_node(rdip))
693 			return (DDI_SUCCESS);
694 		return (DDI_FAILURE);
695 
696 	case DDI_CTLOPS_POWER:
697 		return ((*pm_platform_power)((power_req_t *)arg));
698 
699 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
700 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
701 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
702 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
703 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
704 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
705 		if (!rootnex_state->r_reserved_msg_printed) {
706 			rootnex_state->r_reserved_msg_printed = B_TRUE;
707 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
708 			    "1 or more reserved/obsolete operations.");
709 		}
710 		return (DDI_FAILURE);
711 
712 	default:
713 		return (DDI_FAILURE);
714 	}
715 	/*
716 	 * The rest are for "hardware" properties
717 	 */
718 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
719 		return (DDI_FAILURE);
720 
721 	if (ctlop == DDI_CTLOPS_NREGS) {
722 		ptr = (int *)result;
723 		*ptr = pdp->par_nreg;
724 	} else {
725 		off_t *size = (off_t *)result;
726 
727 		ptr = (int *)arg;
728 		n = *ptr;
729 		if (n >= pdp->par_nreg) {
730 			return (DDI_FAILURE);
731 		}
732 		*size = (off_t)pdp->par_reg[n].regspec_size;
733 	}
734 	return (DDI_SUCCESS);
735 }
736 
737 
738 /*
739  * rootnex_ctl_reportdev()
740  *
741  */
742 static int
743 rootnex_ctl_reportdev(dev_info_t *dev)
744 {
745 	int i, n, len, f_len = 0;
746 	char *buf;
747 
748 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
749 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
750 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
751 	len = strlen(buf);
752 
753 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
754 
755 		struct regspec *rp = sparc_pd_getreg(dev, i);
756 
757 		if (i == 0)
758 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
759 			    ": ");
760 		else
761 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
762 			    " and ");
763 		len = strlen(buf);
764 
765 		switch (rp->regspec_bustype) {
766 
767 		case BTEISA:
768 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
769 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
770 			break;
771 
772 		case BTISA:
773 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
774 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
775 			break;
776 
777 		default:
778 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
779 			    "space %x offset %x",
780 			    rp->regspec_bustype, rp->regspec_addr);
781 			break;
782 		}
783 		len = strlen(buf);
784 	}
785 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
786 		int pri;
787 
788 		if (i != 0) {
789 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
790 			    ",");
791 			len = strlen(buf);
792 		}
793 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
794 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
795 		    " sparc ipl %d", pri);
796 		len = strlen(buf);
797 	}
798 #ifdef DEBUG
799 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
800 		cmn_err(CE_NOTE, "next message is truncated: "
801 		    "printed length 1024, real length %d", f_len);
802 	}
803 #endif /* DEBUG */
804 	cmn_err(CE_CONT, "?%s\n", buf);
805 	kmem_free(buf, REPORTDEV_BUFSIZE);
806 	return (DDI_SUCCESS);
807 }
808 
809 
810 /*
811  * ******************
812  *  map related code
813  * ******************
814  */
815 
816 /*
817  * rootnex_map()
818  *
819  */
820 static int
821 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
822     off_t len, caddr_t *vaddrp)
823 {
824 	struct regspec *rp, tmp_reg;
825 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
826 	int error;
827 
828 	mp = &mr;
829 
830 	switch (mp->map_op)  {
831 	case DDI_MO_MAP_LOCKED:
832 	case DDI_MO_UNMAP:
833 	case DDI_MO_MAP_HANDLE:
834 		break;
835 	default:
836 #ifdef	DDI_MAP_DEBUG
837 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
838 		    mp->map_op);
839 #endif	/* DDI_MAP_DEBUG */
840 		return (DDI_ME_UNIMPLEMENTED);
841 	}
842 
843 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
844 #ifdef	DDI_MAP_DEBUG
845 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
846 #endif	/* DDI_MAP_DEBUG */
847 		return (DDI_ME_UNIMPLEMENTED);
848 	}
849 
850 	/*
851 	 * First, if given an rnumber, convert it to a regspec...
852 	 * (Presumably, this is on behalf of a child of the root node?)
853 	 */
854 
855 	if (mp->map_type == DDI_MT_RNUMBER)  {
856 
857 		int rnumber = mp->map_obj.rnumber;
858 #ifdef	DDI_MAP_DEBUG
859 		static char *out_of_range =
860 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
861 #endif	/* DDI_MAP_DEBUG */
862 
863 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
864 		if (rp == NULL)  {
865 #ifdef	DDI_MAP_DEBUG
866 			cmn_err(CE_WARN, out_of_range, rnumber,
867 			    ddi_get_name(rdip));
868 #endif	/* DDI_MAP_DEBUG */
869 			return (DDI_ME_RNUMBER_RANGE);
870 		}
871 
872 		/*
873 		 * Convert the given ddi_map_req_t from rnumber to regspec...
874 		 */
875 
876 		mp->map_type = DDI_MT_REGSPEC;
877 		mp->map_obj.rp = rp;
878 	}
879 
880 	/*
881 	 * Adjust offset and length correspnding to called values...
882 	 * XXX: A non-zero length means override the one in the regspec
883 	 * XXX: (regardless of what's in the parent's range?)
884 	 */
885 
886 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
887 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
888 
889 #ifdef	DDI_MAP_DEBUG
890 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
891 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
892 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset,
893 	    len, mp->map_handlep);
894 #endif	/* DDI_MAP_DEBUG */
895 
896 	/*
897 	 * I/O or memory mapping:
898 	 *
899 	 *	<bustype=0, addr=x, len=x>: memory
900 	 *	<bustype=1, addr=x, len=x>: i/o
901 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
902 	 */
903 
904 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
905 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
906 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
907 		    ddi_get_name(rdip), rp->regspec_bustype,
908 		    rp->regspec_addr, rp->regspec_size);
909 		return (DDI_ME_INVAL);
910 	}
911 
912 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
913 		/*
914 		 * compatibility i/o mapping
915 		 */
916 		rp->regspec_bustype += (uint_t)offset;
917 	} else {
918 		/*
919 		 * Normal memory or i/o mapping
920 		 */
921 		rp->regspec_addr += (uint_t)offset;
922 	}
923 
924 	if (len != 0)
925 		rp->regspec_size = (uint_t)len;
926 
927 #ifdef	DDI_MAP_DEBUG
928 	cmn_err(CE_CONT, "             <%s,%s> <0x%x, 0x%x, 0x%d> offset %d "
929 	    "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
930 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
931 	    offset, len, mp->map_handlep);
932 #endif	/* DDI_MAP_DEBUG */
933 
934 	/*
935 	 * Apply any parent ranges at this level, if applicable.
936 	 * (This is where nexus specific regspec translation takes place.
937 	 * Use of this function is implicit agreement that translation is
938 	 * provided via ddi_apply_range.)
939 	 */
940 
941 #ifdef	DDI_MAP_DEBUG
942 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
943 	    ddi_get_name(dip), ddi_get_name(rdip));
944 #endif	/* DDI_MAP_DEBUG */
945 
946 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
947 		return (error);
948 
949 	switch (mp->map_op)  {
950 	case DDI_MO_MAP_LOCKED:
951 
952 		/*
953 		 * Set up the locked down kernel mapping to the regspec...
954 		 */
955 
956 		return (rootnex_map_regspec(mp, vaddrp));
957 
958 	case DDI_MO_UNMAP:
959 
960 		/*
961 		 * Release mapping...
962 		 */
963 
964 		return (rootnex_unmap_regspec(mp, vaddrp));
965 
966 	case DDI_MO_MAP_HANDLE:
967 
968 		return (rootnex_map_handle(mp));
969 
970 	default:
971 		return (DDI_ME_UNIMPLEMENTED);
972 	}
973 }
974 
975 
976 /*
977  * rootnex_map_fault()
978  *
979  *	fault in mappings for requestors
980  */
981 /*ARGSUSED*/
982 static int
983 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
984     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
985     uint_t lock)
986 {
987 
988 #ifdef	DDI_MAP_DEBUG
989 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
990 	ddi_map_debug(" Seg <%s>\n",
991 	    seg->s_ops == &segdev_ops ? "segdev" :
992 	    seg == &kvseg ? "segkmem" : "NONE!");
993 #endif	/* DDI_MAP_DEBUG */
994 
995 	/*
996 	 * This is all terribly broken, but it is a start
997 	 *
998 	 * XXX	Note that this test means that segdev_ops
999 	 *	must be exported from seg_dev.c.
1000 	 * XXX	What about devices with their own segment drivers?
1001 	 */
1002 	if (seg->s_ops == &segdev_ops) {
1003 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
1004 
1005 		if (hat == NULL) {
1006 			/*
1007 			 * This is one plausible interpretation of
1008 			 * a null hat i.e. use the first hat on the
1009 			 * address space hat list which by convention is
1010 			 * the hat of the system MMU.  At alternative
1011 			 * would be to panic .. this might well be better ..
1012 			 */
1013 			ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock));
1014 			hat = seg->s_as->a_hat;
1015 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1016 		}
1017 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1018 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1019 	} else if (seg == &kvseg && dp == NULL) {
1020 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1021 		    HAT_LOAD_LOCK);
1022 	} else
1023 		return (DDI_FAILURE);
1024 	return (DDI_SUCCESS);
1025 }
1026 
1027 
1028 /*
1029  * rootnex_map_regspec()
1030  *     we don't support mapping of I/O cards above 4Gb
1031  */
1032 static int
1033 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1034 {
1035 	rootnex_addr_t rbase;
1036 	void *cvaddr;
1037 	uint_t npages, pgoffset;
1038 	struct regspec *rp;
1039 	ddi_acc_hdl_t *hp;
1040 	ddi_acc_impl_t *ap;
1041 	uint_t	hat_acc_flags;
1042 	paddr_t pbase;
1043 
1044 	rp = mp->map_obj.rp;
1045 	hp = mp->map_handlep;
1046 
1047 #ifdef	DDI_MAP_DEBUG
1048 	ddi_map_debug(
1049 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1050 	    rp->regspec_bustype, rp->regspec_addr,
1051 	    rp->regspec_size, mp->map_handlep);
1052 #endif	/* DDI_MAP_DEBUG */
1053 
1054 	/*
1055 	 * I/O or memory mapping
1056 	 *
1057 	 *	<bustype=0, addr=x, len=x>: memory
1058 	 *	<bustype=1, addr=x, len=x>: i/o
1059 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1060 	 */
1061 
1062 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1063 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1064 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1065 		    rp->regspec_addr, rp->regspec_size);
1066 		return (DDI_FAILURE);
1067 	}
1068 
1069 	if (rp->regspec_bustype != 0) {
1070 		/*
1071 		 * I/O space - needs a handle.
1072 		 */
1073 		if (hp == NULL) {
1074 			return (DDI_FAILURE);
1075 		}
1076 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1077 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1078 		impl_acc_hdl_init(hp);
1079 
1080 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1081 #ifdef  DDI_MAP_DEBUG
1082 			ddi_map_debug("rootnex_map_regspec: mmap() "
1083 			    "to I/O space is not supported.\n");
1084 #endif  /* DDI_MAP_DEBUG */
1085 			return (DDI_ME_INVAL);
1086 		} else {
1087 			/*
1088 			 * 1275-compliant vs. compatibility i/o mapping
1089 			 */
1090 			*vaddrp =
1091 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1092 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1093 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1094 #ifdef __xpv
1095 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1096 				hp->ah_pfn = xen_assign_pfn(
1097 				    mmu_btop((ulong_t)rp->regspec_addr &
1098 				    MMU_PAGEMASK));
1099 			} else {
1100 				hp->ah_pfn = mmu_btop(
1101 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1102 			}
1103 #else
1104 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1105 			    MMU_PAGEMASK);
1106 #endif
1107 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1108 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1109 		}
1110 
1111 #ifdef	DDI_MAP_DEBUG
1112 		ddi_map_debug(
1113 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1114 		    rp->regspec_size, *vaddrp);
1115 #endif	/* DDI_MAP_DEBUG */
1116 		return (DDI_SUCCESS);
1117 	}
1118 
1119 	/*
1120 	 * Memory space
1121 	 */
1122 
1123 	if (hp != NULL) {
1124 		/*
1125 		 * hat layer ignores
1126 		 * hp->ah_acc.devacc_attr_endian_flags.
1127 		 */
1128 		switch (hp->ah_acc.devacc_attr_dataorder) {
1129 		case DDI_STRICTORDER_ACC:
1130 			hat_acc_flags = HAT_STRICTORDER;
1131 			break;
1132 		case DDI_UNORDERED_OK_ACC:
1133 			hat_acc_flags = HAT_UNORDERED_OK;
1134 			break;
1135 		case DDI_MERGING_OK_ACC:
1136 			hat_acc_flags = HAT_MERGING_OK;
1137 			break;
1138 		case DDI_LOADCACHING_OK_ACC:
1139 			hat_acc_flags = HAT_LOADCACHING_OK;
1140 			break;
1141 		case DDI_STORECACHING_OK_ACC:
1142 			hat_acc_flags = HAT_STORECACHING_OK;
1143 			break;
1144 		}
1145 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1146 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1147 		impl_acc_hdl_init(hp);
1148 		hp->ah_hat_flags = hat_acc_flags;
1149 	} else {
1150 		hat_acc_flags = HAT_STRICTORDER;
1151 	}
1152 
1153 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1154 #ifdef __xpv
1155 	/*
1156 	 * If we're dom0, we're using a real device so we need to translate
1157 	 * the MA to a PA.
1158 	 */
1159 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1160 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1161 	} else {
1162 		pbase = rbase;
1163 	}
1164 #else
1165 	pbase = rbase;
1166 #endif
1167 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1168 
1169 	if (rp->regspec_size == 0) {
1170 #ifdef  DDI_MAP_DEBUG
1171 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1172 #endif  /* DDI_MAP_DEBUG */
1173 		return (DDI_ME_INVAL);
1174 	}
1175 
1176 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1177 		/* extra cast to make gcc happy */
1178 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1179 	} else {
1180 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1181 
1182 #ifdef	DDI_MAP_DEBUG
1183 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1184 		    "physical %llx", npages, pbase);
1185 #endif	/* DDI_MAP_DEBUG */
1186 
1187 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1188 		if (cvaddr == NULL)
1189 			return (DDI_ME_NORESOURCES);
1190 
1191 		/*
1192 		 * Now map in the pages we've allocated...
1193 		 */
1194 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1195 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1196 		    HAT_LOAD_LOCK);
1197 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1198 
1199 		/* save away pfn and npages for FMA */
1200 		hp = mp->map_handlep;
1201 		if (hp) {
1202 			hp->ah_pfn = mmu_btop(pbase);
1203 			hp->ah_pnum = npages;
1204 		}
1205 	}
1206 
1207 #ifdef	DDI_MAP_DEBUG
1208 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1209 #endif	/* DDI_MAP_DEBUG */
1210 	return (DDI_SUCCESS);
1211 }
1212 
1213 
1214 /*
1215  * rootnex_unmap_regspec()
1216  *
1217  */
1218 static int
1219 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1220 {
1221 	caddr_t addr = (caddr_t)*vaddrp;
1222 	uint_t npages, pgoffset;
1223 	struct regspec *rp;
1224 
1225 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1226 		return (0);
1227 
1228 	rp = mp->map_obj.rp;
1229 
1230 	if (rp->regspec_size == 0) {
1231 #ifdef  DDI_MAP_DEBUG
1232 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1233 #endif  /* DDI_MAP_DEBUG */
1234 		return (DDI_ME_INVAL);
1235 	}
1236 
1237 	/*
1238 	 * I/O or memory mapping:
1239 	 *
1240 	 *	<bustype=0, addr=x, len=x>: memory
1241 	 *	<bustype=1, addr=x, len=x>: i/o
1242 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1243 	 */
1244 	if (rp->regspec_bustype != 0) {
1245 		/*
1246 		 * This is I/O space, which requires no particular
1247 		 * processing on unmap since it isn't mapped in the
1248 		 * first place.
1249 		 */
1250 		return (DDI_SUCCESS);
1251 	}
1252 
1253 	/*
1254 	 * Memory space
1255 	 */
1256 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1257 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1258 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1259 	device_arena_free(addr - pgoffset, ptob(npages));
1260 
1261 	/*
1262 	 * Destroy the pointer - the mapping has logically gone
1263 	 */
1264 	*vaddrp = NULL;
1265 
1266 	return (DDI_SUCCESS);
1267 }
1268 
1269 
1270 /*
1271  * rootnex_map_handle()
1272  *
1273  */
1274 static int
1275 rootnex_map_handle(ddi_map_req_t *mp)
1276 {
1277 	rootnex_addr_t rbase;
1278 	ddi_acc_hdl_t *hp;
1279 	uint_t pgoffset;
1280 	struct regspec *rp;
1281 	paddr_t pbase;
1282 
1283 	rp = mp->map_obj.rp;
1284 
1285 #ifdef	DDI_MAP_DEBUG
1286 	ddi_map_debug(
1287 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1288 	    rp->regspec_bustype, rp->regspec_addr,
1289 	    rp->regspec_size, mp->map_handlep);
1290 #endif	/* DDI_MAP_DEBUG */
1291 
1292 	/*
1293 	 * I/O or memory mapping:
1294 	 *
1295 	 *	<bustype=0, addr=x, len=x>: memory
1296 	 *	<bustype=1, addr=x, len=x>: i/o
1297 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1298 	 */
1299 	if (rp->regspec_bustype != 0) {
1300 		/*
1301 		 * This refers to I/O space, and we don't support "mapping"
1302 		 * I/O space to a user.
1303 		 */
1304 		return (DDI_FAILURE);
1305 	}
1306 
1307 	/*
1308 	 * Set up the hat_flags for the mapping.
1309 	 */
1310 	hp = mp->map_handlep;
1311 
1312 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1313 	case DDI_NEVERSWAP_ACC:
1314 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1315 		break;
1316 	case DDI_STRUCTURE_LE_ACC:
1317 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1318 		break;
1319 	case DDI_STRUCTURE_BE_ACC:
1320 		return (DDI_FAILURE);
1321 	default:
1322 		return (DDI_REGS_ACC_CONFLICT);
1323 	}
1324 
1325 	switch (hp->ah_acc.devacc_attr_dataorder) {
1326 	case DDI_STRICTORDER_ACC:
1327 		break;
1328 	case DDI_UNORDERED_OK_ACC:
1329 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1330 		break;
1331 	case DDI_MERGING_OK_ACC:
1332 		hp->ah_hat_flags |= HAT_MERGING_OK;
1333 		break;
1334 	case DDI_LOADCACHING_OK_ACC:
1335 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1336 		break;
1337 	case DDI_STORECACHING_OK_ACC:
1338 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1339 		break;
1340 	default:
1341 		return (DDI_FAILURE);
1342 	}
1343 
1344 	rbase = (rootnex_addr_t)rp->regspec_addr &
1345 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1346 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1347 
1348 	if (rp->regspec_size == 0)
1349 		return (DDI_ME_INVAL);
1350 
1351 #ifdef __xpv
1352 	/*
1353 	 * If we're dom0, we're using a real device so we need to translate
1354 	 * the MA to a PA.
1355 	 */
1356 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1357 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1358 		    (rbase & MMU_PAGEOFFSET);
1359 	} else {
1360 		pbase = rbase;
1361 	}
1362 #else
1363 	pbase = rbase;
1364 #endif
1365 
1366 	hp->ah_pfn = mmu_btop(pbase);
1367 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1368 
1369 	return (DDI_SUCCESS);
1370 }
1371 
1372 
1373 
1374 /*
1375  * ************************
1376  *  interrupt related code
1377  * ************************
1378  */
1379 
1380 /*
1381  * rootnex_intr_ops()
1382  *	bus_intr_op() function for interrupt support
1383  */
1384 /* ARGSUSED */
1385 static int
1386 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1387     ddi_intr_handle_impl_t *hdlp, void *result)
1388 {
1389 	struct intrspec			*ispec;
1390 
1391 	DDI_INTR_NEXDBG((CE_CONT,
1392 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1393 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1394 
1395 	/* Process the interrupt operation */
1396 	switch (intr_op) {
1397 	case DDI_INTROP_GETCAP:
1398 		/* First check with pcplusmp */
1399 		if (psm_intr_ops == NULL)
1400 			return (DDI_FAILURE);
1401 
1402 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1403 			*(int *)result = 0;
1404 			return (DDI_FAILURE);
1405 		}
1406 		break;
1407 	case DDI_INTROP_SETCAP:
1408 		if (psm_intr_ops == NULL)
1409 			return (DDI_FAILURE);
1410 
1411 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1412 			return (DDI_FAILURE);
1413 		break;
1414 	case DDI_INTROP_ALLOC:
1415 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1416 		return (rootnex_alloc_intr_fixed(rdip, hdlp, result));
1417 	case DDI_INTROP_FREE:
1418 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1419 		return (rootnex_free_intr_fixed(rdip, hdlp));
1420 	case DDI_INTROP_GETPRI:
1421 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1422 			return (DDI_FAILURE);
1423 		*(int *)result = ispec->intrspec_pri;
1424 		break;
1425 	case DDI_INTROP_SETPRI:
1426 		/* Validate the interrupt priority passed to us */
1427 		if (*(int *)result > LOCK_LEVEL)
1428 			return (DDI_FAILURE);
1429 
1430 		/* Ensure that PSM is all initialized and ispec is ok */
1431 		if ((psm_intr_ops == NULL) ||
1432 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1433 			return (DDI_FAILURE);
1434 
1435 		/* Change the priority */
1436 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1437 		    PSM_FAILURE)
1438 			return (DDI_FAILURE);
1439 
1440 		/* update the ispec with the new priority */
1441 		ispec->intrspec_pri =  *(int *)result;
1442 		break;
1443 	case DDI_INTROP_ADDISR:
1444 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1445 			return (DDI_FAILURE);
1446 		ispec->intrspec_func = hdlp->ih_cb_func;
1447 		break;
1448 	case DDI_INTROP_REMISR:
1449 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1450 			return (DDI_FAILURE);
1451 		ispec->intrspec_func = (uint_t (*)()) 0;
1452 		break;
1453 	case DDI_INTROP_ENABLE:
1454 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1455 			return (DDI_FAILURE);
1456 
1457 		/* Call psmi to translate irq with the dip */
1458 		if (psm_intr_ops == NULL)
1459 			return (DDI_FAILURE);
1460 
1461 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1462 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1463 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1464 			return (DDI_FAILURE);
1465 
1466 		/* Add the interrupt handler */
1467 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1468 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1469 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1470 			return (DDI_FAILURE);
1471 		break;
1472 	case DDI_INTROP_DISABLE:
1473 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1474 			return (DDI_FAILURE);
1475 
1476 		/* Call psm_ops() to translate irq with the dip */
1477 		if (psm_intr_ops == NULL)
1478 			return (DDI_FAILURE);
1479 
1480 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1481 		(void) (*psm_intr_ops)(rdip, hdlp,
1482 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1483 
1484 		/* Remove the interrupt handler */
1485 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1486 		    hdlp->ih_cb_func, hdlp->ih_vector);
1487 		break;
1488 	case DDI_INTROP_SETMASK:
1489 		if (psm_intr_ops == NULL)
1490 			return (DDI_FAILURE);
1491 
1492 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1493 			return (DDI_FAILURE);
1494 		break;
1495 	case DDI_INTROP_CLRMASK:
1496 		if (psm_intr_ops == NULL)
1497 			return (DDI_FAILURE);
1498 
1499 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1500 			return (DDI_FAILURE);
1501 		break;
1502 	case DDI_INTROP_GETPENDING:
1503 		if (psm_intr_ops == NULL)
1504 			return (DDI_FAILURE);
1505 
1506 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1507 		    result)) {
1508 			*(int *)result = 0;
1509 			return (DDI_FAILURE);
1510 		}
1511 		break;
1512 	case DDI_INTROP_NAVAIL:
1513 	case DDI_INTROP_NINTRS:
1514 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1515 		if (*(int *)result == 0) {
1516 			/*
1517 			 * Special case for 'pcic' driver' only. This driver
1518 			 * driver is a child of 'isa' and 'rootnex' drivers.
1519 			 *
1520 			 * See detailed comments on this in the function
1521 			 * rootnex_get_ispec().
1522 			 *
1523 			 * Children of 'pcic' send 'NINITR' request all the
1524 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1525 			 * field may not initialized. So, we fake it here
1526 			 * to return 1 (a la what PCMCIA nexus does).
1527 			 */
1528 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1529 				*(int *)result = 1;
1530 			else
1531 				return (DDI_FAILURE);
1532 		}
1533 		break;
1534 	case DDI_INTROP_SUPPORTED_TYPES:
1535 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1536 		break;
1537 	default:
1538 		return (DDI_FAILURE);
1539 	}
1540 
1541 	return (DDI_SUCCESS);
1542 }
1543 
1544 
1545 /*
1546  * rootnex_get_ispec()
1547  *	convert an interrupt number to an interrupt specification.
1548  *	The interrupt number determines which interrupt spec will be
1549  *	returned if more than one exists.
1550  *
1551  *	Look into the parent private data area of the 'rdip' to find out
1552  *	the interrupt specification.  First check to make sure there is
1553  *	one that matchs "inumber" and then return a pointer to it.
1554  *
1555  *	Return NULL if one could not be found.
1556  *
1557  *	NOTE: This is needed for rootnex_intr_ops()
1558  */
1559 static struct intrspec *
1560 rootnex_get_ispec(dev_info_t *rdip, int inum)
1561 {
1562 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1563 
1564 	/*
1565 	 * Special case handling for drivers that provide their own
1566 	 * intrspec structures instead of relying on the DDI framework.
1567 	 *
1568 	 * A broken hardware driver in ON could potentially provide its
1569 	 * own intrspec structure, instead of relying on the hardware.
1570 	 * If these drivers are children of 'rootnex' then we need to
1571 	 * continue to provide backward compatibility to them here.
1572 	 *
1573 	 * Following check is a special case for 'pcic' driver which
1574 	 * was found to have broken hardwre andby provides its own intrspec.
1575 	 *
1576 	 * Verbatim comments from this driver are shown here:
1577 	 * "Don't use the ddi_add_intr since we don't have a
1578 	 * default intrspec in all cases."
1579 	 *
1580 	 * Since an 'ispec' may not be always created for it,
1581 	 * check for that and create one if so.
1582 	 *
1583 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1584 	 */
1585 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1586 		pdp->par_nintr = 1;
1587 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1588 		    pdp->par_nintr, KM_SLEEP);
1589 	}
1590 
1591 	/* Validate the interrupt number */
1592 	if (inum >= pdp->par_nintr)
1593 		return (NULL);
1594 
1595 	/* Get the interrupt structure pointer and return that */
1596 	return ((struct intrspec *)&pdp->par_intr[inum]);
1597 }
1598 
1599 /*
1600  * Allocate interrupt vector for FIXED (legacy) type.
1601  */
1602 static int
1603 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp,
1604     void *result)
1605 {
1606 	struct intrspec		*ispec;
1607 	ddi_intr_handle_impl_t	info_hdl;
1608 	int			ret;
1609 	int			free_phdl = 0;
1610 	apic_get_type_t		type_info;
1611 
1612 	if (psm_intr_ops == NULL)
1613 		return (DDI_FAILURE);
1614 
1615 	if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1616 		return (DDI_FAILURE);
1617 
1618 	/*
1619 	 * If the PSM module is "APIX" then pass the request for it
1620 	 * to allocate the vector now.
1621 	 */
1622 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1623 	info_hdl.ih_private = &type_info;
1624 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1625 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1626 		if (hdlp->ih_private == NULL) { /* allocate phdl structure */
1627 			free_phdl = 1;
1628 			i_ddi_alloc_intr_phdl(hdlp);
1629 		}
1630 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1631 		ret = (*psm_intr_ops)(rdip, hdlp,
1632 		    PSM_INTR_OP_ALLOC_VECTORS, result);
1633 		if (free_phdl) { /* free up the phdl structure */
1634 			free_phdl = 0;
1635 			i_ddi_free_intr_phdl(hdlp);
1636 			hdlp->ih_private = NULL;
1637 		}
1638 	} else {
1639 		/*
1640 		 * No APIX module; fall back to the old scheme where the
1641 		 * interrupt vector is allocated during ddi_enable_intr() call.
1642 		 */
1643 		hdlp->ih_pri = ispec->intrspec_pri;
1644 		*(int *)result = hdlp->ih_scratch1;
1645 		ret = DDI_SUCCESS;
1646 	}
1647 
1648 	return (ret);
1649 }
1650 
1651 /*
1652  * Free up interrupt vector for FIXED (legacy) type.
1653  */
1654 static int
1655 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp)
1656 {
1657 	struct intrspec			*ispec;
1658 	struct ddi_parent_private_data	*pdp;
1659 	ddi_intr_handle_impl_t		info_hdl;
1660 	int				ret;
1661 	apic_get_type_t			type_info;
1662 
1663 	if (psm_intr_ops == NULL)
1664 		return (DDI_FAILURE);
1665 
1666 	/*
1667 	 * If the PSM module is "APIX" then pass the request for it
1668 	 * to free up the vector now.
1669 	 */
1670 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1671 	info_hdl.ih_private = &type_info;
1672 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1673 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1674 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1675 			return (DDI_FAILURE);
1676 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1677 		ret = (*psm_intr_ops)(rdip, hdlp,
1678 		    PSM_INTR_OP_FREE_VECTORS, NULL);
1679 	} else {
1680 		/*
1681 		 * No APIX module; fall back to the old scheme where
1682 		 * the interrupt vector was already freed during
1683 		 * ddi_disable_intr() call.
1684 		 */
1685 		ret = DDI_SUCCESS;
1686 	}
1687 
1688 	pdp = ddi_get_parent_data(rdip);
1689 
1690 	/*
1691 	 * Special case for 'pcic' driver' only.
1692 	 * If an intrspec was created for it, clean it up here
1693 	 * See detailed comments on this in the function
1694 	 * rootnex_get_ispec().
1695 	 */
1696 	if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1697 		kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1698 		    pdp->par_nintr);
1699 		/*
1700 		 * Set it to zero; so that
1701 		 * DDI framework doesn't free it again
1702 		 */
1703 		pdp->par_intr = NULL;
1704 		pdp->par_nintr = 0;
1705 	}
1706 
1707 	return (ret);
1708 }
1709 
1710 
1711 /*
1712  * ******************
1713  *  dma related code
1714  * ******************
1715  */
1716 
1717 /*ARGSUSED*/
1718 static int
1719 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1720     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1721     ddi_dma_handle_t *handlep)
1722 {
1723 	uint64_t maxsegmentsize_ll;
1724 	uint_t maxsegmentsize;
1725 	ddi_dma_impl_t *hp;
1726 	rootnex_dma_t *dma;
1727 	uint64_t count_max;
1728 	uint64_t seg;
1729 	int kmflag;
1730 	int e;
1731 
1732 
1733 	/* convert our sleep flags */
1734 	if (waitfp == DDI_DMA_SLEEP) {
1735 		kmflag = KM_SLEEP;
1736 	} else {
1737 		kmflag = KM_NOSLEEP;
1738 	}
1739 
1740 	/*
1741 	 * We try to do only one memory allocation here. We'll do a little
1742 	 * pointer manipulation later. If the bind ends up taking more than
1743 	 * our prealloc's space, we'll have to allocate more memory in the
1744 	 * bind operation. Not great, but much better than before and the
1745 	 * best we can do with the current bind interfaces.
1746 	 */
1747 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1748 	if (hp == NULL)
1749 		return (DDI_DMA_NORESOURCES);
1750 
1751 	/* Do our pointer manipulation now, align the structures */
1752 	hp->dmai_private = (void *)(((uintptr_t)hp +
1753 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1754 	dma = (rootnex_dma_t *)hp->dmai_private;
1755 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1756 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1757 
1758 	/* setup the handle */
1759 	rootnex_clean_dmahdl(hp);
1760 	hp->dmai_error.err_fep = NULL;
1761 	hp->dmai_error.err_cf = NULL;
1762 	dma->dp_dip = rdip;
1763 	dma->dp_sglinfo.si_flags = attr->dma_attr_flags;
1764 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1765 
1766 	/*
1767 	 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU
1768 	 * is being used. Set the upper limit to the seg value.
1769 	 * There will be enough DVMA space to always get addresses
1770 	 * that will match the constraints.
1771 	 */
1772 	if (IOMMU_USED(rdip) &&
1773 	    (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) {
1774 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg;
1775 		dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG;
1776 	} else
1777 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1778 
1779 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1780 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1781 	hp->dmai_rdip = rdip;
1782 	hp->dmai_attr = *attr;
1783 
1784 	if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr)
1785 		dma->dp_sglinfo.si_cancross = B_FALSE;
1786 	else
1787 		dma->dp_sglinfo.si_cancross = B_TRUE;
1788 
1789 	/* we don't need to worry about the SPL since we do a tryenter */
1790 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1791 
1792 	/*
1793 	 * Figure out our maximum segment size. If the segment size is greater
1794 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1795 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1796 	 * dma_attr_count_max are size-1 type values.
1797 	 *
1798 	 * Maximum segment size is the largest physically contiguous chunk of
1799 	 * memory that we can return from a bind (i.e. the maximum size of a
1800 	 * single cookie).
1801 	 */
1802 
1803 	/* handle the rollover cases */
1804 	seg = attr->dma_attr_seg + 1;
1805 	if (seg < attr->dma_attr_seg) {
1806 		seg = attr->dma_attr_seg;
1807 	}
1808 	count_max = attr->dma_attr_count_max + 1;
1809 	if (count_max < attr->dma_attr_count_max) {
1810 		count_max = attr->dma_attr_count_max;
1811 	}
1812 
1813 	/*
1814 	 * granularity may or may not be a power of two. If it isn't, we can't
1815 	 * use a simple mask.
1816 	 */
1817 	if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) {
1818 		dma->dp_granularity_power_2 = B_FALSE;
1819 	} else {
1820 		dma->dp_granularity_power_2 = B_TRUE;
1821 	}
1822 
1823 	/*
1824 	 * maxxfer should be a whole multiple of granularity. If we're going to
1825 	 * break up a window because we're greater than maxxfer, we might as
1826 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1827 	 * worry about triming the window later on for this case.
1828 	 */
1829 	if (attr->dma_attr_granular > 1) {
1830 		if (dma->dp_granularity_power_2) {
1831 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1832 			    (attr->dma_attr_maxxfer &
1833 			    (attr->dma_attr_granular - 1));
1834 		} else {
1835 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1836 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1837 		}
1838 	} else {
1839 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1840 	}
1841 
1842 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1843 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1844 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1845 		maxsegmentsize = 0xFFFFFFFF;
1846 	} else {
1847 		maxsegmentsize = maxsegmentsize_ll;
1848 	}
1849 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1850 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1851 
1852 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1853 	if (rootnex_alloc_check_parms) {
1854 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1855 		if (e != DDI_SUCCESS) {
1856 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1857 			(void) rootnex_dma_freehdl(dip, rdip,
1858 			    (ddi_dma_handle_t)hp);
1859 			return (e);
1860 		}
1861 	}
1862 
1863 	*handlep = (ddi_dma_handle_t)hp;
1864 
1865 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1866 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1867 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1868 
1869 	return (DDI_SUCCESS);
1870 }
1871 
1872 
1873 /*
1874  * rootnex_dma_allochdl()
1875  *    called from ddi_dma_alloc_handle().
1876  */
1877 static int
1878 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1879     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1880 {
1881 	int retval = DDI_SUCCESS;
1882 #if defined(__amd64) && !defined(__xpv)
1883 
1884 	if (IOMMU_UNITIALIZED(rdip)) {
1885 		retval = iommulib_nex_open(dip, rdip);
1886 
1887 		if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP)
1888 			return (retval);
1889 	}
1890 
1891 	if (IOMMU_UNUSED(rdip)) {
1892 		retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1893 		    handlep);
1894 	} else {
1895 		retval = iommulib_nexdma_allochdl(dip, rdip, attr,
1896 		    waitfp, arg, handlep);
1897 	}
1898 #else
1899 	retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1900 	    handlep);
1901 #endif
1902 	switch (retval) {
1903 	case DDI_DMA_NORESOURCES:
1904 		if (waitfp != DDI_DMA_DONTWAIT) {
1905 			ddi_set_callback(waitfp, arg,
1906 			    &rootnex_state->r_dvma_call_list_id);
1907 		}
1908 		break;
1909 	case DDI_SUCCESS:
1910 		ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL);
1911 		break;
1912 	default:
1913 		break;
1914 	}
1915 	return (retval);
1916 }
1917 
1918 /*ARGSUSED*/
1919 static int
1920 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1921     ddi_dma_handle_t handle)
1922 {
1923 	ddi_dma_impl_t *hp;
1924 	rootnex_dma_t *dma;
1925 
1926 
1927 	hp = (ddi_dma_impl_t *)handle;
1928 	dma = (rootnex_dma_t *)hp->dmai_private;
1929 
1930 	/* unbind should have been called first */
1931 	ASSERT(!dma->dp_inuse);
1932 
1933 	mutex_destroy(&dma->dp_mutex);
1934 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1935 
1936 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1937 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1938 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1939 
1940 	return (DDI_SUCCESS);
1941 }
1942 
1943 /*
1944  * rootnex_dma_freehdl()
1945  *    called from ddi_dma_free_handle().
1946  */
1947 static int
1948 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1949 {
1950 	int ret;
1951 
1952 	ndi_fmc_remove(rdip, DMA_HANDLE, handle);
1953 #if defined(__amd64) && !defined(__xpv)
1954 	if (IOMMU_USED(rdip))
1955 		ret = iommulib_nexdma_freehdl(dip, rdip, handle);
1956 	else
1957 #endif
1958 	ret = rootnex_coredma_freehdl(dip, rdip, handle);
1959 
1960 	if (rootnex_state->r_dvma_call_list_id)
1961 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1962 
1963 	return (ret);
1964 }
1965 
1966 /*ARGSUSED*/
1967 static int
1968 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1969     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1970     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1971 {
1972 	rootnex_sglinfo_t *sinfo;
1973 	ddi_dma_obj_t *dmao;
1974 #if defined(__amd64) && !defined(__xpv)
1975 	struct dvmaseg *dvs;
1976 	ddi_dma_cookie_t *cookie;
1977 #endif
1978 	ddi_dma_attr_t *attr;
1979 	ddi_dma_impl_t *hp;
1980 	rootnex_dma_t *dma;
1981 	int kmflag;
1982 	int e;
1983 	uint_t ncookies;
1984 
1985 	hp = (ddi_dma_impl_t *)handle;
1986 	dma = (rootnex_dma_t *)hp->dmai_private;
1987 	dmao = &dma->dp_dma;
1988 	sinfo = &dma->dp_sglinfo;
1989 	attr = &hp->dmai_attr;
1990 
1991 	/* convert the sleep flags */
1992 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1993 		dma->dp_sleep_flags = kmflag = KM_SLEEP;
1994 	} else {
1995 		dma->dp_sleep_flags = kmflag = KM_NOSLEEP;
1996 	}
1997 
1998 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1999 
2000 	/*
2001 	 * This is useful for debugging a driver. Not as useful in a production
2002 	 * system. The only time this will fail is if you have a driver bug.
2003 	 */
2004 	if (rootnex_bind_check_inuse) {
2005 		/*
2006 		 * No one else should ever have this lock unless someone else
2007 		 * is trying to use this handle. So contention on the lock
2008 		 * is the same as inuse being set.
2009 		 */
2010 		e = mutex_tryenter(&dma->dp_mutex);
2011 		if (e == 0) {
2012 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2013 			return (DDI_DMA_INUSE);
2014 		}
2015 		if (dma->dp_inuse) {
2016 			mutex_exit(&dma->dp_mutex);
2017 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2018 			return (DDI_DMA_INUSE);
2019 		}
2020 		dma->dp_inuse = B_TRUE;
2021 		mutex_exit(&dma->dp_mutex);
2022 	}
2023 
2024 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
2025 	if (rootnex_bind_check_parms) {
2026 		e = rootnex_valid_bind_parms(dmareq, attr);
2027 		if (e != DDI_SUCCESS) {
2028 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2029 			rootnex_clean_dmahdl(hp);
2030 			return (e);
2031 		}
2032 	}
2033 
2034 	/* save away the original bind info */
2035 	dma->dp_dma = dmareq->dmar_object;
2036 
2037 #if defined(__amd64) && !defined(__xpv)
2038 	if (IOMMU_USED(rdip)) {
2039 		dmao = &dma->dp_dvma;
2040 		e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao);
2041 		switch (e) {
2042 		case DDI_SUCCESS:
2043 			if (sinfo->si_cancross ||
2044 			    dmao->dmao_obj.dvma_obj.dv_nseg != 1 ||
2045 			    dmao->dmao_size > sinfo->si_max_cookie_size) {
2046 				dma->dp_dvma_used = B_TRUE;
2047 				break;
2048 			}
2049 			sinfo->si_sgl_size = 1;
2050 			hp->dmai_rflags |= DMP_NOSYNC;
2051 
2052 			dma->dp_dvma_used = B_TRUE;
2053 			dma->dp_need_to_free_cookie = B_FALSE;
2054 
2055 			dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0];
2056 			cookie = hp->dmai_cookie = dma->dp_cookies =
2057 			    (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2058 			cookie->dmac_laddress = dvs->dvs_start +
2059 			    dmao->dmao_obj.dvma_obj.dv_off;
2060 			cookie->dmac_size = dvs->dvs_len;
2061 			cookie->dmac_type = 0;
2062 
2063 			ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *,
2064 			    rdip);
2065 			goto fast;
2066 		case DDI_ENOTSUP:
2067 			break;
2068 		default:
2069 			rootnex_clean_dmahdl(hp);
2070 			return (e);
2071 		}
2072 	}
2073 #endif
2074 
2075 	/*
2076 	 * Figure out a rough estimate of what maximum number of pages
2077 	 * this buffer could use (a high estimate of course).
2078 	 */
2079 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
2080 
2081 	if (dma->dp_dvma_used) {
2082 		/*
2083 		 * The number of physical pages is the worst case.
2084 		 *
2085 		 * For DVMA, the worst case is the length divided
2086 		 * by the maximum cookie length, plus 1. Add to that
2087 		 * the number of segment boundaries potentially crossed, and
2088 		 * the additional number of DVMA segments that was returned.
2089 		 *
2090 		 * In the normal case, for modern devices, si_cancross will
2091 		 * be false, and dv_nseg will be 1, and the fast path will
2092 		 * have been taken above.
2093 		 */
2094 		ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size)
2095 		    + 1;
2096 		if (sinfo->si_cancross)
2097 			ncookies +=
2098 			    (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1;
2099 		ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1);
2100 
2101 		sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies);
2102 	}
2103 
2104 	/*
2105 	 * We'll use the pre-allocated cookies for any bind that will *always*
2106 	 * fit (more important to be consistent, we don't want to create
2107 	 * additional degenerate cases).
2108 	 */
2109 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
2110 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2111 		dma->dp_need_to_free_cookie = B_FALSE;
2112 		ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
2113 		    uint_t, sinfo->si_max_pages);
2114 
2115 	/*
2116 	 * For anything larger than that, we'll go ahead and allocate the
2117 	 * maximum number of pages we expect to see. Hopefuly, we won't be
2118 	 * seeing this path in the fast path for high performance devices very
2119 	 * frequently.
2120 	 *
2121 	 * a ddi bind interface that allowed the driver to provide storage to
2122 	 * the bind interface would speed this case up.
2123 	 */
2124 	} else {
2125 		/*
2126 		 * Save away how much memory we allocated. If we're doing a
2127 		 * nosleep, the alloc could fail...
2128 		 */
2129 		dma->dp_cookie_size = sinfo->si_max_pages *
2130 		    sizeof (ddi_dma_cookie_t);
2131 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
2132 		if (dma->dp_cookies == NULL) {
2133 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2134 			rootnex_clean_dmahdl(hp);
2135 			return (DDI_DMA_NORESOURCES);
2136 		}
2137 		dma->dp_need_to_free_cookie = B_TRUE;
2138 		ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip,
2139 		    uint_t, sinfo->si_max_pages);
2140 	}
2141 	hp->dmai_cookie = dma->dp_cookies;
2142 
2143 	/*
2144 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
2145 	 * looking at the constraints in the dma structure. It will then put
2146 	 * some additional state about the sgl in the dma struct (i.e. is
2147 	 * the sgl clean, or do we need to do some munging; how many pages
2148 	 * need to be copied, etc.)
2149 	 */
2150 	if (dma->dp_dvma_used)
2151 		rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2152 	else
2153 		rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2154 
2155 out:
2156 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
2157 	/* if we don't need a copy buffer, we don't need to sync */
2158 	if (sinfo->si_copybuf_req == 0) {
2159 		hp->dmai_rflags |= DMP_NOSYNC;
2160 	}
2161 
2162 	/*
2163 	 * if we don't need the copybuf and we don't need to do a partial,  we
2164 	 * hit the fast path. All the high performance devices should be trying
2165 	 * to hit this path. To hit this path, a device should be able to reach
2166 	 * all of memory, shouldn't try to bind more than it can transfer, and
2167 	 * the buffer shouldn't require more cookies than the driver/device can
2168 	 * handle [sgllen]).
2169 	 */
2170 	if ((sinfo->si_copybuf_req == 0) &&
2171 	    (sinfo->si_sgl_size <= attr->dma_attr_sgllen) &&
2172 	    (dmao->dmao_size < dma->dp_maxxfer)) {
2173 fast:
2174 		/*
2175 		 * If the driver supports FMA, insert the handle in the FMA DMA
2176 		 * handle cache.
2177 		 */
2178 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2179 			hp->dmai_error.err_cf = rootnex_dma_check;
2180 
2181 		/*
2182 		 * copy out the first cookie and ccountp, set the cookie
2183 		 * pointer to the second cookie. The first cookie is passed
2184 		 * back on the stack. Additional cookies are accessed via
2185 		 * ddi_dma_nextcookie()
2186 		 */
2187 		*cookiep = dma->dp_cookies[0];
2188 		*ccountp = sinfo->si_sgl_size;
2189 		hp->dmai_cookie++;
2190 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2191 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2192 		ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip,
2193 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
2194 		    uint_t, dmao->dmao_size, uint_t, *ccountp);
2195 
2196 
2197 		return (DDI_DMA_MAPPED);
2198 	}
2199 
2200 	/*
2201 	 * go to the slow path, we may need to alloc more memory, create
2202 	 * multiple windows, and munge up a sgl to make the device happy.
2203 	 */
2204 
2205 	/*
2206 	 * With the IOMMU mapobject method used, we should never hit
2207 	 * the slow path. If we do, something is seriously wrong.
2208 	 * Clean up and return an error.
2209 	 */
2210 
2211 #if defined(__amd64) && !defined(__xpv)
2212 
2213 	if (dma->dp_dvma_used) {
2214 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2215 		    &dma->dp_dvma);
2216 		e = DDI_DMA_NOMAPPING;
2217 	} else {
2218 #endif
2219 		e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma,
2220 		    kmflag);
2221 #if defined(__amd64) && !defined(__xpv)
2222 	}
2223 #endif
2224 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2225 		if (dma->dp_need_to_free_cookie) {
2226 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2227 		}
2228 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2229 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2230 		return (e);
2231 	}
2232 
2233 	/*
2234 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2235 	 * cache.
2236 	 */
2237 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2238 		hp->dmai_error.err_cf = rootnex_dma_check;
2239 
2240 	/* if the first window uses the copy buffer, sync it for the device */
2241 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2242 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2243 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2244 		    DDI_DMA_SYNC_FORDEV);
2245 	}
2246 
2247 	/*
2248 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2249 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2250 	 * If we have a partial map (i.e. multiple windows), the number of
2251 	 * cookies we return is the number of cookies in the first window.
2252 	 */
2253 	if (e == DDI_DMA_MAPPED) {
2254 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2255 		*ccountp = sinfo->si_sgl_size;
2256 		hp->dmai_nwin = 1;
2257 	} else {
2258 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2259 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2260 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2261 	}
2262 	*cookiep = dma->dp_cookies[0];
2263 	hp->dmai_cookie++;
2264 
2265 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2266 	ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2267 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2268 	    dmao->dmao_size, uint_t, *ccountp);
2269 	return (e);
2270 }
2271 
2272 /*
2273  * rootnex_dma_bindhdl()
2274  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2275  */
2276 static int
2277 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2278     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2279     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2280 {
2281 	int ret;
2282 #if defined(__amd64) && !defined(__xpv)
2283 	if (IOMMU_USED(rdip))
2284 		ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2285 		    cookiep, ccountp);
2286 	else
2287 #endif
2288 	ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2289 	    cookiep, ccountp);
2290 
2291 	if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) {
2292 		ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg,
2293 		    &rootnex_state->r_dvma_call_list_id);
2294 	}
2295 
2296 	return (ret);
2297 }
2298 
2299 
2300 
2301 /*ARGSUSED*/
2302 static int
2303 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2304     ddi_dma_handle_t handle)
2305 {
2306 	ddi_dma_impl_t *hp;
2307 	rootnex_dma_t *dma;
2308 	int e;
2309 
2310 	hp = (ddi_dma_impl_t *)handle;
2311 	dma = (rootnex_dma_t *)hp->dmai_private;
2312 
2313 	/* make sure the buffer wasn't free'd before calling unbind */
2314 	if (rootnex_unbind_verify_buffer) {
2315 		e = rootnex_verify_buffer(dma);
2316 		if (e != DDI_SUCCESS) {
2317 			ASSERT(0);
2318 			return (DDI_FAILURE);
2319 		}
2320 	}
2321 
2322 	/* sync the current window before unbinding the buffer */
2323 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2324 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2325 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2326 		    DDI_DMA_SYNC_FORCPU);
2327 	}
2328 
2329 	/*
2330 	 * cleanup and copy buffer or window state. if we didn't use the copy
2331 	 * buffer or windows, there won't be much to do :-)
2332 	 */
2333 	rootnex_teardown_copybuf(dma);
2334 	rootnex_teardown_windows(dma);
2335 
2336 #if defined(__amd64) && !defined(__xpv)
2337 	if (IOMMU_USED(rdip))
2338 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2339 		    &dma->dp_dvma);
2340 #endif
2341 
2342 	/*
2343 	 * If we had to allocate space to for the worse case sgl (it didn't
2344 	 * fit into our pre-allocate buffer), free that up now
2345 	 */
2346 	if (dma->dp_need_to_free_cookie) {
2347 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2348 	}
2349 
2350 	/*
2351 	 * clean up the handle so it's ready for the next bind (i.e. if the
2352 	 * handle is reused).
2353 	 */
2354 	rootnex_clean_dmahdl(hp);
2355 	hp->dmai_error.err_cf = NULL;
2356 
2357 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2358 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2359 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2360 
2361 	return (DDI_SUCCESS);
2362 }
2363 
2364 /*
2365  * rootnex_dma_unbindhdl()
2366  *    called from ddi_dma_unbind_handle()
2367  */
2368 /*ARGSUSED*/
2369 static int
2370 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2371     ddi_dma_handle_t handle)
2372 {
2373 	int ret;
2374 
2375 #if defined(__amd64) && !defined(__xpv)
2376 	if (IOMMU_USED(rdip))
2377 		ret = iommulib_nexdma_unbindhdl(dip, rdip, handle);
2378 	else
2379 #endif
2380 	ret = rootnex_coredma_unbindhdl(dip, rdip, handle);
2381 
2382 	if (rootnex_state->r_dvma_call_list_id)
2383 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2384 
2385 	return (ret);
2386 }
2387 
2388 #if defined(__amd64) && !defined(__xpv)
2389 
2390 static int
2391 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2392 {
2393 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2394 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2395 
2396 	if (dma->dp_sleep_flags != KM_SLEEP &&
2397 	    dma->dp_sleep_flags != KM_NOSLEEP)
2398 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2399 	return (dma->dp_sleep_flags);
2400 }
2401 /*ARGSUSED*/
2402 static void
2403 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2404 {
2405 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2406 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2407 	rootnex_window_t *window;
2408 
2409 	if (dma->dp_window) {
2410 		window = &dma->dp_window[dma->dp_current_win];
2411 		hp->dmai_cookie = window->wd_first_cookie;
2412 	} else {
2413 		hp->dmai_cookie = dma->dp_cookies;
2414 	}
2415 	hp->dmai_cookie++;
2416 }
2417 
2418 /*ARGSUSED*/
2419 static int
2420 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2421     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2422 {
2423 	int i;
2424 	int km_flags;
2425 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2426 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2427 	rootnex_window_t *window;
2428 	ddi_dma_cookie_t *cp;
2429 	ddi_dma_cookie_t *cookie;
2430 
2431 	ASSERT(*cookiepp == NULL);
2432 	ASSERT(*ccountp == 0);
2433 
2434 	if (dma->dp_window) {
2435 		window = &dma->dp_window[dma->dp_current_win];
2436 		cp = window->wd_first_cookie;
2437 		*ccountp = window->wd_cookie_cnt;
2438 	} else {
2439 		cp = dma->dp_cookies;
2440 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2441 	}
2442 
2443 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2444 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2445 	if (cookie == NULL) {
2446 		return (DDI_DMA_NORESOURCES);
2447 	}
2448 
2449 	for (i = 0; i < *ccountp; i++) {
2450 		cookie[i].dmac_notused = cp[i].dmac_notused;
2451 		cookie[i].dmac_type = cp[i].dmac_type;
2452 		cookie[i].dmac_address = cp[i].dmac_address;
2453 		cookie[i].dmac_size = cp[i].dmac_size;
2454 	}
2455 
2456 	*cookiepp = cookie;
2457 
2458 	return (DDI_SUCCESS);
2459 }
2460 
2461 /*ARGSUSED*/
2462 static int
2463 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2464     ddi_dma_cookie_t *cookiep, uint_t ccount)
2465 {
2466 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2467 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2468 	rootnex_window_t *window;
2469 	ddi_dma_cookie_t *cur_cookiep;
2470 
2471 	ASSERT(cookiep);
2472 	ASSERT(ccount != 0);
2473 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2474 
2475 	if (dma->dp_window) {
2476 		window = &dma->dp_window[dma->dp_current_win];
2477 		dma->dp_saved_cookies = window->wd_first_cookie;
2478 		window->wd_first_cookie = cookiep;
2479 		ASSERT(ccount == window->wd_cookie_cnt);
2480 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2481 		    + window->wd_first_cookie;
2482 	} else {
2483 		dma->dp_saved_cookies = dma->dp_cookies;
2484 		dma->dp_cookies = cookiep;
2485 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2486 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2487 		    + dma->dp_cookies;
2488 	}
2489 
2490 	dma->dp_need_to_switch_cookies = B_TRUE;
2491 	hp->dmai_cookie = cur_cookiep;
2492 
2493 	return (DDI_SUCCESS);
2494 }
2495 
2496 /*ARGSUSED*/
2497 static int
2498 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2499 {
2500 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2501 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2502 	rootnex_window_t *window;
2503 	ddi_dma_cookie_t *cur_cookiep;
2504 	ddi_dma_cookie_t *cookie_array;
2505 	uint_t ccount;
2506 
2507 	/* check if cookies have not been switched */
2508 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2509 		return (DDI_SUCCESS);
2510 
2511 	ASSERT(dma->dp_saved_cookies);
2512 
2513 	if (dma->dp_window) {
2514 		window = &dma->dp_window[dma->dp_current_win];
2515 		cookie_array = window->wd_first_cookie;
2516 		window->wd_first_cookie = dma->dp_saved_cookies;
2517 		dma->dp_saved_cookies = NULL;
2518 		ccount = window->wd_cookie_cnt;
2519 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2520 		    + window->wd_first_cookie;
2521 	} else {
2522 		cookie_array = dma->dp_cookies;
2523 		dma->dp_cookies = dma->dp_saved_cookies;
2524 		dma->dp_saved_cookies = NULL;
2525 		ccount = dma->dp_sglinfo.si_sgl_size;
2526 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2527 		    + dma->dp_cookies;
2528 	}
2529 
2530 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2531 
2532 	hp->dmai_cookie = cur_cookiep;
2533 
2534 	dma->dp_need_to_switch_cookies = B_FALSE;
2535 
2536 	return (DDI_SUCCESS);
2537 }
2538 
2539 #endif
2540 
2541 static struct as *
2542 rootnex_get_as(ddi_dma_obj_t *dmao)
2543 {
2544 	struct as *asp;
2545 
2546 	switch (dmao->dmao_type) {
2547 	case DMA_OTYP_VADDR:
2548 	case DMA_OTYP_BUFVADDR:
2549 		asp = dmao->dmao_obj.virt_obj.v_as;
2550 		if (asp == NULL)
2551 			asp = &kas;
2552 		break;
2553 	default:
2554 		asp = NULL;
2555 		break;
2556 	}
2557 	return (asp);
2558 }
2559 
2560 /*
2561  * rootnex_verify_buffer()
2562  *   verify buffer wasn't free'd
2563  */
2564 static int
2565 rootnex_verify_buffer(rootnex_dma_t *dma)
2566 {
2567 	page_t **pplist;
2568 	caddr_t vaddr;
2569 	uint_t pcnt;
2570 	uint_t poff;
2571 	page_t *pp;
2572 	char b;
2573 	int i;
2574 
2575 	/* Figure out how many pages this buffer occupies */
2576 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2577 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2578 	} else {
2579 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2580 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2581 	}
2582 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2583 
2584 	switch (dma->dp_dma.dmao_type) {
2585 	case DMA_OTYP_PAGES:
2586 		/*
2587 		 * for a linked list of pp's walk through them to make sure
2588 		 * they're locked and not free.
2589 		 */
2590 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2591 		for (i = 0; i < pcnt; i++) {
2592 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2593 				return (DDI_FAILURE);
2594 			}
2595 			pp = pp->p_next;
2596 		}
2597 		break;
2598 
2599 	case DMA_OTYP_VADDR:
2600 	case DMA_OTYP_BUFVADDR:
2601 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2602 		/*
2603 		 * for an array of pp's walk through them to make sure they're
2604 		 * not free. It's possible that they may not be locked.
2605 		 */
2606 		if (pplist) {
2607 			for (i = 0; i < pcnt; i++) {
2608 				if (PP_ISFREE(pplist[i])) {
2609 					return (DDI_FAILURE);
2610 				}
2611 			}
2612 
2613 		/* For a virtual address, try to peek at each page */
2614 		} else {
2615 			if (rootnex_get_as(&dma->dp_dma) == &kas) {
2616 				for (i = 0; i < pcnt; i++) {
2617 					if (ddi_peek8(NULL, vaddr, &b) ==
2618 					    DDI_FAILURE)
2619 						return (DDI_FAILURE);
2620 					vaddr += MMU_PAGESIZE;
2621 				}
2622 			}
2623 		}
2624 		break;
2625 
2626 	default:
2627 		cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object");
2628 		break;
2629 	}
2630 
2631 	return (DDI_SUCCESS);
2632 }
2633 
2634 
2635 /*
2636  * rootnex_clean_dmahdl()
2637  *    Clean the dma handle. This should be called on a handle alloc and an
2638  *    unbind handle. Set the handle state to the default settings.
2639  */
2640 static void
2641 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2642 {
2643 	rootnex_dma_t *dma;
2644 
2645 
2646 	dma = (rootnex_dma_t *)hp->dmai_private;
2647 
2648 	hp->dmai_nwin = 0;
2649 	dma->dp_current_cookie = 0;
2650 	dma->dp_copybuf_size = 0;
2651 	dma->dp_window = NULL;
2652 	dma->dp_cbaddr = NULL;
2653 	dma->dp_inuse = B_FALSE;
2654 	dma->dp_dvma_used = B_FALSE;
2655 	dma->dp_need_to_free_cookie = B_FALSE;
2656 	dma->dp_need_to_switch_cookies = B_FALSE;
2657 	dma->dp_saved_cookies = NULL;
2658 	dma->dp_sleep_flags = KM_PANIC;
2659 	dma->dp_need_to_free_window = B_FALSE;
2660 	dma->dp_partial_required = B_FALSE;
2661 	dma->dp_trim_required = B_FALSE;
2662 	dma->dp_sglinfo.si_copybuf_req = 0;
2663 #if !defined(__amd64)
2664 	dma->dp_cb_remaping = B_FALSE;
2665 	dma->dp_kva = NULL;
2666 #endif
2667 
2668 	/* FMA related initialization */
2669 	hp->dmai_fault = 0;
2670 	hp->dmai_fault_check = NULL;
2671 	hp->dmai_fault_notify = NULL;
2672 	hp->dmai_error.err_ena = 0;
2673 	hp->dmai_error.err_status = DDI_FM_OK;
2674 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2675 	hp->dmai_error.err_ontrap = NULL;
2676 }
2677 
2678 
2679 /*
2680  * rootnex_valid_alloc_parms()
2681  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2682  */
2683 static int
2684 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2685 {
2686 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2687 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2688 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2689 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2690 		return (DDI_DMA_BADATTR);
2691 	}
2692 
2693 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2694 		return (DDI_DMA_BADATTR);
2695 	}
2696 
2697 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2698 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2699 	    attr->dma_attr_sgllen <= 0) {
2700 		return (DDI_DMA_BADATTR);
2701 	}
2702 
2703 	/* We should be able to DMA into every byte offset in a page */
2704 	if (maxsegmentsize < MMU_PAGESIZE) {
2705 		return (DDI_DMA_BADATTR);
2706 	}
2707 
2708 	/* if we're bouncing on seg, seg must be <= addr_hi */
2709 	if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) &&
2710 	    (attr->dma_attr_seg > attr->dma_attr_addr_hi)) {
2711 		return (DDI_DMA_BADATTR);
2712 	}
2713 	return (DDI_SUCCESS);
2714 }
2715 
2716 /*
2717  * rootnex_valid_bind_parms()
2718  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2719  */
2720 /* ARGSUSED */
2721 static int
2722 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2723 {
2724 #if !defined(__amd64)
2725 	/*
2726 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2727 	 * we can track the offset for the obsoleted interfaces.
2728 	 */
2729 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2730 		return (DDI_DMA_TOOBIG);
2731 	}
2732 #endif
2733 
2734 	return (DDI_SUCCESS);
2735 }
2736 
2737 
2738 /*
2739  * rootnex_need_bounce_seg()
2740  *    check to see if the buffer lives on both side of the seg.
2741  */
2742 static boolean_t
2743 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo)
2744 {
2745 	ddi_dma_atyp_t buftype;
2746 	rootnex_addr_t raddr;
2747 	boolean_t lower_addr;
2748 	boolean_t upper_addr;
2749 	uint64_t offset;
2750 	page_t **pplist;
2751 	uint64_t paddr;
2752 	uint32_t psize;
2753 	uint32_t size;
2754 	caddr_t vaddr;
2755 	uint_t pcnt;
2756 	page_t *pp;
2757 
2758 
2759 	/* shortcuts */
2760 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2761 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2762 	buftype = dmar_object->dmao_type;
2763 	size = dmar_object->dmao_size;
2764 
2765 	lower_addr = B_FALSE;
2766 	upper_addr = B_FALSE;
2767 	pcnt = 0;
2768 
2769 	/*
2770 	 * Process the first page to handle the initial offset of the buffer.
2771 	 * We'll use the base address we get later when we loop through all
2772 	 * the pages.
2773 	 */
2774 	if (buftype == DMA_OTYP_PAGES) {
2775 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2776 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2777 		    MMU_PAGEOFFSET;
2778 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2779 		psize = MIN(size, (MMU_PAGESIZE - offset));
2780 		pp = pp->p_next;
2781 		sglinfo->si_asp = NULL;
2782 	} else if (pplist != NULL) {
2783 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2784 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2785 		if (sglinfo->si_asp == NULL) {
2786 			sglinfo->si_asp = &kas;
2787 		}
2788 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2789 		paddr += offset;
2790 		psize = MIN(size, (MMU_PAGESIZE - offset));
2791 		pcnt++;
2792 	} else {
2793 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2794 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2795 		if (sglinfo->si_asp == NULL) {
2796 			sglinfo->si_asp = &kas;
2797 		}
2798 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2799 		paddr += offset;
2800 		psize = MIN(size, (MMU_PAGESIZE - offset));
2801 		vaddr += psize;
2802 	}
2803 
2804 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2805 
2806 	if ((raddr + psize) > sglinfo->si_segmask) {
2807 		upper_addr = B_TRUE;
2808 	} else {
2809 		lower_addr = B_TRUE;
2810 	}
2811 	size -= psize;
2812 
2813 	/*
2814 	 * Walk through the rest of the pages in the buffer. Track to see
2815 	 * if we have pages on both sides of the segment boundary.
2816 	 */
2817 	while (size > 0) {
2818 		/* partial or full page */
2819 		psize = MIN(size, MMU_PAGESIZE);
2820 
2821 		if (buftype == DMA_OTYP_PAGES) {
2822 			/* get the paddr from the page_t */
2823 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2824 			paddr = pfn_to_pa(pp->p_pagenum);
2825 			pp = pp->p_next;
2826 		} else if (pplist != NULL) {
2827 			/* index into the array of page_t's to get the paddr */
2828 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2829 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2830 			pcnt++;
2831 		} else {
2832 			/* call into the VM to get the paddr */
2833 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2834 			    vaddr));
2835 			vaddr += psize;
2836 		}
2837 
2838 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2839 
2840 		if ((raddr + psize) > sglinfo->si_segmask) {
2841 			upper_addr = B_TRUE;
2842 		} else {
2843 			lower_addr = B_TRUE;
2844 		}
2845 		/*
2846 		 * if the buffer lives both above and below the segment
2847 		 * boundary, or the current page is the page immediately
2848 		 * after the segment, we will use a copy/bounce buffer for
2849 		 * all pages > seg.
2850 		 */
2851 		if ((lower_addr && upper_addr) ||
2852 		    (raddr == (sglinfo->si_segmask + 1))) {
2853 			return (B_TRUE);
2854 		}
2855 
2856 		size -= psize;
2857 	}
2858 
2859 	return (B_FALSE);
2860 }
2861 
2862 /*
2863  * rootnex_get_sgl()
2864  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2865  *    with a call to the vm layer when vm2.0 comes around...
2866  */
2867 static void
2868 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2869     rootnex_sglinfo_t *sglinfo)
2870 {
2871 	ddi_dma_atyp_t buftype;
2872 	rootnex_addr_t raddr;
2873 	uint64_t last_page;
2874 	uint64_t offset;
2875 	uint64_t addrhi;
2876 	uint64_t addrlo;
2877 	uint64_t maxseg;
2878 	page_t **pplist;
2879 	uint64_t paddr;
2880 	uint32_t psize;
2881 	uint32_t size;
2882 	caddr_t vaddr;
2883 	uint_t pcnt;
2884 	page_t *pp;
2885 	uint_t cnt;
2886 
2887 
2888 	/* shortcuts */
2889 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2890 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2891 	maxseg = sglinfo->si_max_cookie_size;
2892 	buftype = dmar_object->dmao_type;
2893 	addrhi = sglinfo->si_max_addr;
2894 	addrlo = sglinfo->si_min_addr;
2895 	size = dmar_object->dmao_size;
2896 
2897 	pcnt = 0;
2898 	cnt = 0;
2899 
2900 
2901 	/*
2902 	 * check to see if we need to use the copy buffer for pages over
2903 	 * the segment attr.
2904 	 */
2905 	sglinfo->si_bounce_on_seg = B_FALSE;
2906 	if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) {
2907 		sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg(
2908 		    dmar_object, sglinfo);
2909 	}
2910 
2911 	/*
2912 	 * if we were passed down a linked list of pages, i.e. pointer to
2913 	 * page_t, use this to get our physical address and buf offset.
2914 	 */
2915 	if (buftype == DMA_OTYP_PAGES) {
2916 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2917 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2918 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2919 		    MMU_PAGEOFFSET;
2920 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2921 		psize = MIN(size, (MMU_PAGESIZE - offset));
2922 		pp = pp->p_next;
2923 		sglinfo->si_asp = NULL;
2924 
2925 	/*
2926 	 * We weren't passed down a linked list of pages, but if we were passed
2927 	 * down an array of pages, use this to get our physical address and buf
2928 	 * offset.
2929 	 */
2930 	} else if (pplist != NULL) {
2931 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2932 		    (buftype == DMA_OTYP_BUFVADDR));
2933 
2934 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2935 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2936 		if (sglinfo->si_asp == NULL) {
2937 			sglinfo->si_asp = &kas;
2938 		}
2939 
2940 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2941 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2942 		paddr += offset;
2943 		psize = MIN(size, (MMU_PAGESIZE - offset));
2944 		pcnt++;
2945 
2946 	/*
2947 	 * All we have is a virtual address, we'll need to call into the VM
2948 	 * to get the physical address.
2949 	 */
2950 	} else {
2951 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2952 		    (buftype == DMA_OTYP_BUFVADDR));
2953 
2954 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2955 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2956 		if (sglinfo->si_asp == NULL) {
2957 			sglinfo->si_asp = &kas;
2958 		}
2959 
2960 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2961 		paddr += offset;
2962 		psize = MIN(size, (MMU_PAGESIZE - offset));
2963 		vaddr += psize;
2964 	}
2965 
2966 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2967 
2968 	/*
2969 	 * Setup the first cookie with the physical address of the page and the
2970 	 * size of the page (which takes into account the initial offset into
2971 	 * the page.
2972 	 */
2973 	sgl[cnt].dmac_laddress = raddr;
2974 	sgl[cnt].dmac_size = psize;
2975 	sgl[cnt].dmac_type = 0;
2976 
2977 	/*
2978 	 * Save away the buffer offset into the page. We'll need this later in
2979 	 * the copy buffer code to help figure out the page index within the
2980 	 * buffer and the offset into the current page.
2981 	 */
2982 	sglinfo->si_buf_offset = offset;
2983 
2984 	/*
2985 	 * If we are using the copy buffer for anything over the segment
2986 	 * boundary, and this page is over the segment boundary.
2987 	 *   OR
2988 	 * if the DMA engine can't reach the physical address.
2989 	 */
2990 	if (((sglinfo->si_bounce_on_seg) &&
2991 	    ((raddr + psize) > sglinfo->si_segmask)) ||
2992 	    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
2993 		/*
2994 		 * Increase how much copy buffer we use. We always increase by
2995 		 * pagesize so we don't have to worry about converting offsets.
2996 		 * Set a flag in the cookies dmac_type to indicate that it uses
2997 		 * the copy buffer. If this isn't the last cookie, go to the
2998 		 * next cookie (since we separate each page which uses the copy
2999 		 * buffer in case the copy buffer is not physically contiguous.
3000 		 */
3001 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
3002 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3003 		if ((cnt + 1) < sglinfo->si_max_pages) {
3004 			cnt++;
3005 			sgl[cnt].dmac_laddress = 0;
3006 			sgl[cnt].dmac_size = 0;
3007 			sgl[cnt].dmac_type = 0;
3008 		}
3009 	}
3010 
3011 	/*
3012 	 * save this page's physical address so we can figure out if the next
3013 	 * page is physically contiguous. Keep decrementing size until we are
3014 	 * done with the buffer.
3015 	 */
3016 	last_page = raddr & MMU_PAGEMASK;
3017 	size -= psize;
3018 
3019 	while (size > 0) {
3020 		/* Get the size for this page (i.e. partial or full page) */
3021 		psize = MIN(size, MMU_PAGESIZE);
3022 
3023 		if (buftype == DMA_OTYP_PAGES) {
3024 			/* get the paddr from the page_t */
3025 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
3026 			paddr = pfn_to_pa(pp->p_pagenum);
3027 			pp = pp->p_next;
3028 		} else if (pplist != NULL) {
3029 			/* index into the array of page_t's to get the paddr */
3030 			ASSERT(!PP_ISFREE(pplist[pcnt]));
3031 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
3032 			pcnt++;
3033 		} else {
3034 			/* call into the VM to get the paddr */
3035 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
3036 			    vaddr));
3037 			vaddr += psize;
3038 		}
3039 
3040 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
3041 
3042 		/*
3043 		 * If we are using the copy buffer for anything over the
3044 		 * segment boundary, and this page is over the segment
3045 		 * boundary.
3046 		 *   OR
3047 		 * if the DMA engine can't reach the physical address.
3048 		 */
3049 		if (((sglinfo->si_bounce_on_seg) &&
3050 		    ((raddr + psize) > sglinfo->si_segmask)) ||
3051 		    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
3052 
3053 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
3054 
3055 			/*
3056 			 * if there is something in the current cookie, go to
3057 			 * the next one. We only want one page in a cookie which
3058 			 * uses the copybuf since the copybuf doesn't have to
3059 			 * be physically contiguous.
3060 			 */
3061 			if (sgl[cnt].dmac_size != 0) {
3062 				cnt++;
3063 			}
3064 			sgl[cnt].dmac_laddress = raddr;
3065 			sgl[cnt].dmac_size = psize;
3066 #if defined(__amd64)
3067 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3068 #else
3069 			/*
3070 			 * save the buf offset for 32-bit kernel. used in the
3071 			 * obsoleted interfaces.
3072 			 */
3073 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
3074 			    (dmar_object->dmao_size - size);
3075 #endif
3076 			/* if this isn't the last cookie, go to the next one */
3077 			if ((cnt + 1) < sglinfo->si_max_pages) {
3078 				cnt++;
3079 				sgl[cnt].dmac_laddress = 0;
3080 				sgl[cnt].dmac_size = 0;
3081 				sgl[cnt].dmac_type = 0;
3082 			}
3083 
3084 		/*
3085 		 * this page didn't need the copy buffer, if it's not physically
3086 		 * contiguous, or it would put us over a segment boundary, or it
3087 		 * puts us over the max cookie size, or the current sgl doesn't
3088 		 * have anything in it.
3089 		 */
3090 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
3091 		    !(raddr & sglinfo->si_segmask) ||
3092 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3093 		    (sgl[cnt].dmac_size == 0)) {
3094 			/*
3095 			 * if we're not already in a new cookie, go to the next
3096 			 * cookie.
3097 			 */
3098 			if (sgl[cnt].dmac_size != 0) {
3099 				cnt++;
3100 			}
3101 
3102 			/* save the cookie information */
3103 			sgl[cnt].dmac_laddress = raddr;
3104 			sgl[cnt].dmac_size = psize;
3105 #if defined(__amd64)
3106 			sgl[cnt].dmac_type = 0;
3107 #else
3108 			/*
3109 			 * save the buf offset for 32-bit kernel. used in the
3110 			 * obsoleted interfaces.
3111 			 */
3112 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
3113 #endif
3114 
3115 		/*
3116 		 * this page didn't need the copy buffer, it is physically
3117 		 * contiguous with the last page, and it's <= the max cookie
3118 		 * size.
3119 		 */
3120 		} else {
3121 			sgl[cnt].dmac_size += psize;
3122 
3123 			/*
3124 			 * if this exactly ==  the maximum cookie size, and
3125 			 * it isn't the last cookie, go to the next cookie.
3126 			 */
3127 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3128 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3129 				cnt++;
3130 				sgl[cnt].dmac_laddress = 0;
3131 				sgl[cnt].dmac_size = 0;
3132 				sgl[cnt].dmac_type = 0;
3133 			}
3134 		}
3135 
3136 		/*
3137 		 * save this page's physical address so we can figure out if the
3138 		 * next page is physically contiguous. Keep decrementing size
3139 		 * until we are done with the buffer.
3140 		 */
3141 		last_page = raddr;
3142 		size -= psize;
3143 	}
3144 
3145 	/* we're done, save away how many cookies the sgl has */
3146 	if (sgl[cnt].dmac_size == 0) {
3147 		ASSERT(cnt < sglinfo->si_max_pages);
3148 		sglinfo->si_sgl_size = cnt;
3149 	} else {
3150 		sglinfo->si_sgl_size = cnt + 1;
3151 	}
3152 }
3153 
3154 static void
3155 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
3156     rootnex_sglinfo_t *sglinfo)
3157 {
3158 	uint64_t offset;
3159 	uint64_t maxseg;
3160 	uint64_t dvaddr;
3161 	struct dvmaseg *dvs;
3162 	uint64_t paddr;
3163 	uint32_t psize, ssize;
3164 	uint32_t size;
3165 	uint_t cnt;
3166 	int physcontig;
3167 
3168 	ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR);
3169 
3170 	/* shortcuts */
3171 	maxseg = sglinfo->si_max_cookie_size;
3172 	size = dmar_object->dmao_size;
3173 
3174 	cnt = 0;
3175 	sglinfo->si_bounce_on_seg = B_FALSE;
3176 
3177 	dvs = dmar_object->dmao_obj.dvma_obj.dv_seg;
3178 	offset = dmar_object->dmao_obj.dvma_obj.dv_off;
3179 	ssize = dvs->dvs_len;
3180 	paddr = dvs->dvs_start;
3181 	paddr += offset;
3182 	psize = MIN(ssize, (maxseg - offset));
3183 	dvaddr = paddr + psize;
3184 	ssize -= psize;
3185 
3186 	sgl[cnt].dmac_laddress = paddr;
3187 	sgl[cnt].dmac_size = psize;
3188 	sgl[cnt].dmac_type = 0;
3189 
3190 	size -= psize;
3191 	while (size > 0) {
3192 		if (ssize == 0) {
3193 			dvs++;
3194 			ssize = dvs->dvs_len;
3195 			dvaddr = dvs->dvs_start;
3196 			physcontig = 0;
3197 		} else
3198 			physcontig = 1;
3199 
3200 		paddr = dvaddr;
3201 		psize = MIN(ssize, maxseg);
3202 		dvaddr += psize;
3203 		ssize -= psize;
3204 
3205 		if (!physcontig || !(paddr & sglinfo->si_segmask) ||
3206 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3207 		    (sgl[cnt].dmac_size == 0)) {
3208 			/*
3209 			 * if we're not already in a new cookie, go to the next
3210 			 * cookie.
3211 			 */
3212 			if (sgl[cnt].dmac_size != 0) {
3213 				cnt++;
3214 			}
3215 
3216 			/* save the cookie information */
3217 			sgl[cnt].dmac_laddress = paddr;
3218 			sgl[cnt].dmac_size = psize;
3219 			sgl[cnt].dmac_type = 0;
3220 		} else {
3221 			sgl[cnt].dmac_size += psize;
3222 
3223 			/*
3224 			 * if this exactly ==  the maximum cookie size, and
3225 			 * it isn't the last cookie, go to the next cookie.
3226 			 */
3227 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3228 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3229 				cnt++;
3230 				sgl[cnt].dmac_laddress = 0;
3231 				sgl[cnt].dmac_size = 0;
3232 				sgl[cnt].dmac_type = 0;
3233 			}
3234 		}
3235 		size -= psize;
3236 	}
3237 
3238 	/* we're done, save away how many cookies the sgl has */
3239 	if (sgl[cnt].dmac_size == 0) {
3240 		sglinfo->si_sgl_size = cnt;
3241 	} else {
3242 		sglinfo->si_sgl_size = cnt + 1;
3243 	}
3244 }
3245 
3246 /*
3247  * rootnex_bind_slowpath()
3248  *    Call in the bind path if the calling driver can't use the sgl without
3249  *    modifying it. We either need to use the copy buffer and/or we will end up
3250  *    with a partial bind.
3251  */
3252 static int
3253 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3254     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3255 {
3256 	rootnex_sglinfo_t *sinfo;
3257 	rootnex_window_t *window;
3258 	ddi_dma_cookie_t *cookie;
3259 	size_t copybuf_used;
3260 	size_t dmac_size;
3261 	boolean_t partial;
3262 	off_t cur_offset;
3263 	page_t *cur_pp;
3264 	major_t mnum;
3265 	int e;
3266 	int i;
3267 
3268 
3269 	sinfo = &dma->dp_sglinfo;
3270 	copybuf_used = 0;
3271 	partial = B_FALSE;
3272 
3273 	/*
3274 	 * If we're using the copybuf, set the copybuf state in dma struct.
3275 	 * Needs to be first since it sets the copy buffer size.
3276 	 */
3277 	if (sinfo->si_copybuf_req != 0) {
3278 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
3279 		if (e != DDI_SUCCESS) {
3280 			return (e);
3281 		}
3282 	} else {
3283 		dma->dp_copybuf_size = 0;
3284 	}
3285 
3286 	/*
3287 	 * Figure out if we need to do a partial mapping. If so, figure out
3288 	 * if we need to trim the buffers when we munge the sgl.
3289 	 */
3290 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
3291 	    (dmao->dmao_size > dma->dp_maxxfer) ||
3292 	    (attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
3293 		dma->dp_partial_required = B_TRUE;
3294 		if (attr->dma_attr_granular != 1) {
3295 			dma->dp_trim_required = B_TRUE;
3296 		}
3297 	} else {
3298 		dma->dp_partial_required = B_FALSE;
3299 		dma->dp_trim_required = B_FALSE;
3300 	}
3301 
3302 	/* If we need to do a partial bind, make sure the driver supports it */
3303 	if (dma->dp_partial_required &&
3304 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
3305 
3306 		mnum = ddi_driver_major(dma->dp_dip);
3307 		/*
3308 		 * patchable which allows us to print one warning per major
3309 		 * number.
3310 		 */
3311 		if ((rootnex_bind_warn) &&
3312 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
3313 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
3314 			cmn_err(CE_WARN, "!%s: coding error detected, the "
3315 			    "driver is using ddi_dma_attr(9S) incorrectly. "
3316 			    "There is a small risk of data corruption in "
3317 			    "particular with large I/Os. The driver should be "
3318 			    "replaced with a corrected version for proper "
3319 			    "system operation. To disable this warning, add "
3320 			    "'set rootnex:rootnex_bind_warn=0' to "
3321 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
3322 		}
3323 		return (DDI_DMA_TOOBIG);
3324 	}
3325 
3326 	/*
3327 	 * we might need multiple windows, setup state to handle them. In this
3328 	 * code path, we will have at least one window.
3329 	 */
3330 	e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag);
3331 	if (e != DDI_SUCCESS) {
3332 		rootnex_teardown_copybuf(dma);
3333 		return (e);
3334 	}
3335 
3336 	window = &dma->dp_window[0];
3337 	cookie = &dma->dp_cookies[0];
3338 	cur_offset = 0;
3339 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
3340 	if (dmao->dmao_type == DMA_OTYP_PAGES) {
3341 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
3342 	}
3343 
3344 	/* loop though all the cookies we got back from get_sgl() */
3345 	for (i = 0; i < sinfo->si_sgl_size; i++) {
3346 		/*
3347 		 * If we're using the copy buffer, check this cookie and setup
3348 		 * its associated copy buffer state. If this cookie uses the
3349 		 * copy buffer, make sure we sync this window during dma_sync.
3350 		 */
3351 		if (dma->dp_copybuf_size > 0) {
3352 			rootnex_setup_cookie(dmao, dma, cookie,
3353 			    cur_offset, &copybuf_used, &cur_pp);
3354 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3355 				window->wd_dosync = B_TRUE;
3356 			}
3357 		}
3358 
3359 		/*
3360 		 * save away the cookie size, since it could be modified in
3361 		 * the windowing code.
3362 		 */
3363 		dmac_size = cookie->dmac_size;
3364 
3365 		/* if we went over max copybuf size */
3366 		if (dma->dp_copybuf_size &&
3367 		    (copybuf_used > dma->dp_copybuf_size)) {
3368 			partial = B_TRUE;
3369 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
3370 			    cookie, cur_offset, &copybuf_used);
3371 			if (e != DDI_SUCCESS) {
3372 				rootnex_teardown_copybuf(dma);
3373 				rootnex_teardown_windows(dma);
3374 				return (e);
3375 			}
3376 
3377 			/*
3378 			 * if the coookie uses the copy buffer, make sure the
3379 			 * new window we just moved to is set to sync.
3380 			 */
3381 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3382 				window->wd_dosync = B_TRUE;
3383 			}
3384 			ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *,
3385 			    dma->dp_dip);
3386 
3387 		/* if the cookie cnt == max sgllen, move to the next window */
3388 		} else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) {
3389 			partial = B_TRUE;
3390 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
3391 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
3392 			    cookie, attr, cur_offset);
3393 			if (e != DDI_SUCCESS) {
3394 				rootnex_teardown_copybuf(dma);
3395 				rootnex_teardown_windows(dma);
3396 				return (e);
3397 			}
3398 
3399 			/*
3400 			 * if the coookie uses the copy buffer, make sure the
3401 			 * new window we just moved to is set to sync.
3402 			 */
3403 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3404 				window->wd_dosync = B_TRUE;
3405 			}
3406 			ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *,
3407 			    dma->dp_dip);
3408 
3409 		/* else if we will be over maxxfer */
3410 		} else if ((window->wd_size + dmac_size) >
3411 		    dma->dp_maxxfer) {
3412 			partial = B_TRUE;
3413 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
3414 			    cookie);
3415 			if (e != DDI_SUCCESS) {
3416 				rootnex_teardown_copybuf(dma);
3417 				rootnex_teardown_windows(dma);
3418 				return (e);
3419 			}
3420 
3421 			/*
3422 			 * if the coookie uses the copy buffer, make sure the
3423 			 * new window we just moved to is set to sync.
3424 			 */
3425 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3426 				window->wd_dosync = B_TRUE;
3427 			}
3428 			ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *,
3429 			    dma->dp_dip);
3430 
3431 		/* else this cookie fits in the current window */
3432 		} else {
3433 			window->wd_cookie_cnt++;
3434 			window->wd_size += dmac_size;
3435 		}
3436 
3437 		/* track our offset into the buffer, go to the next cookie */
3438 		ASSERT(dmac_size <= dmao->dmao_size);
3439 		ASSERT(cookie->dmac_size <= dmac_size);
3440 		cur_offset += dmac_size;
3441 		cookie++;
3442 	}
3443 
3444 	/* if we ended up with a zero sized window in the end, clean it up */
3445 	if (window->wd_size == 0) {
3446 		hp->dmai_nwin--;
3447 		window--;
3448 	}
3449 
3450 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3451 
3452 	if (!partial) {
3453 		return (DDI_DMA_MAPPED);
3454 	}
3455 
3456 	ASSERT(dma->dp_partial_required);
3457 	return (DDI_DMA_PARTIAL_MAP);
3458 }
3459 
3460 /*
3461  * rootnex_setup_copybuf()
3462  *    Called in bind slowpath. Figures out if we're going to use the copy
3463  *    buffer, and if we do, sets up the basic state to handle it.
3464  */
3465 static int
3466 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3467     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3468 {
3469 	rootnex_sglinfo_t *sinfo;
3470 	ddi_dma_attr_t lattr;
3471 	size_t max_copybuf;
3472 	int cansleep;
3473 	int e;
3474 #if !defined(__amd64)
3475 	int vmflag;
3476 #endif
3477 
3478 	ASSERT(!dma->dp_dvma_used);
3479 
3480 	sinfo = &dma->dp_sglinfo;
3481 
3482 	/* read this first so it's consistent through the routine  */
3483 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3484 
3485 	/* We need to call into the rootnex on ddi_dma_sync() */
3486 	hp->dmai_rflags &= ~DMP_NOSYNC;
3487 
3488 	/* make sure the copybuf size <= the max size */
3489 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3490 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3491 
3492 #if !defined(__amd64)
3493 	/*
3494 	 * if we don't have kva space to copy to/from, allocate the KVA space
3495 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3496 	 * the 64-bit kernel.
3497 	 */
3498 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3499 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3500 
3501 		/* convert the sleep flags */
3502 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3503 			vmflag = VM_SLEEP;
3504 		} else {
3505 			vmflag = VM_NOSLEEP;
3506 		}
3507 
3508 		/* allocate Kernel VA space that we can bcopy to/from */
3509 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3510 		    vmflag);
3511 		if (dma->dp_kva == NULL) {
3512 			return (DDI_DMA_NORESOURCES);
3513 		}
3514 	}
3515 #endif
3516 
3517 	/* convert the sleep flags */
3518 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3519 		cansleep = 1;
3520 	} else {
3521 		cansleep = 0;
3522 	}
3523 
3524 	/*
3525 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3526 	 * engine limits, so we can't use kmem_alloc... We don't need
3527 	 * contiguous memory (sgllen) since we will be forcing windows on
3528 	 * sgllen anyway.
3529 	 */
3530 	lattr = *attr;
3531 	lattr.dma_attr_align = MMU_PAGESIZE;
3532 	/*
3533 	 * this should be < 0 to indicate no limit, but due to a bug in
3534 	 * the rootnex, we'll set it to the maximum positive int.
3535 	 */
3536 	lattr.dma_attr_sgllen = 0x7fffffff;
3537 	/*
3538 	 * if we're using the copy buffer because of seg, use that for our
3539 	 * upper address limit.
3540 	 */
3541 	if (sinfo->si_bounce_on_seg) {
3542 		lattr.dma_attr_addr_hi = lattr.dma_attr_seg;
3543 	}
3544 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3545 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3546 	if (e != DDI_SUCCESS) {
3547 #if !defined(__amd64)
3548 		if (dma->dp_kva != NULL) {
3549 			vmem_free(heap_arena, dma->dp_kva,
3550 			    dma->dp_copybuf_size);
3551 		}
3552 #endif
3553 		return (DDI_DMA_NORESOURCES);
3554 	}
3555 
3556 	ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3557 	    size_t, dma->dp_copybuf_size);
3558 
3559 	return (DDI_SUCCESS);
3560 }
3561 
3562 
3563 /*
3564  * rootnex_setup_windows()
3565  *    Called in bind slowpath to setup the window state. We always have windows
3566  *    in the slowpath. Even if the window count = 1.
3567  */
3568 static int
3569 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3570     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3571 {
3572 	rootnex_window_t *windowp;
3573 	rootnex_sglinfo_t *sinfo;
3574 	size_t copy_state_size;
3575 	size_t win_state_size;
3576 	size_t state_available;
3577 	size_t space_needed;
3578 	uint_t copybuf_win;
3579 	uint_t maxxfer_win;
3580 	size_t space_used;
3581 	uint_t sglwin;
3582 
3583 
3584 	sinfo = &dma->dp_sglinfo;
3585 
3586 	dma->dp_current_win = 0;
3587 	hp->dmai_nwin = 0;
3588 
3589 	/* If we don't need to do a partial, we only have one window */
3590 	if (!dma->dp_partial_required) {
3591 		dma->dp_max_win = 1;
3592 
3593 	/*
3594 	 * we need multiple windows, need to figure out the worse case number
3595 	 * of windows.
3596 	 */
3597 	} else {
3598 		/*
3599 		 * if we need windows because we need more copy buffer that
3600 		 * we allow, the worse case number of windows we could need
3601 		 * here would be (copybuf space required / copybuf space that
3602 		 * we have) plus one for remainder, and plus 2 to handle the
3603 		 * extra pages on the trim for the first and last pages of the
3604 		 * buffer (a page is the minimum window size so under the right
3605 		 * attr settings, you could have a window for each page).
3606 		 * The last page will only be hit here if the size is not a
3607 		 * multiple of the granularity (which theoretically shouldn't
3608 		 * be the case but never has been enforced, so we could have
3609 		 * broken things without it).
3610 		 */
3611 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3612 			ASSERT(dma->dp_copybuf_size > 0);
3613 			copybuf_win = (sinfo->si_copybuf_req /
3614 			    dma->dp_copybuf_size) + 1 + 2;
3615 		} else {
3616 			copybuf_win = 0;
3617 		}
3618 
3619 		/*
3620 		 * if we need windows because we have more cookies than the H/W
3621 		 * can handle, the number of windows we would need here would
3622 		 * be (cookie count / cookies count H/W supports minus 1[for
3623 		 * trim]) plus one for remainder.
3624 		 */
3625 		if (attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3626 			sglwin = (sinfo->si_sgl_size /
3627 			    (attr->dma_attr_sgllen - 1)) + 1;
3628 		} else {
3629 			sglwin = 0;
3630 		}
3631 
3632 		/*
3633 		 * if we need windows because we're binding more memory than the
3634 		 * H/W can transfer at once, the number of windows we would need
3635 		 * here would be (xfer count / max xfer H/W supports) plus one
3636 		 * for remainder, and plus 2 to handle the extra pages on the
3637 		 * trim (see above comment about trim)
3638 		 */
3639 		if (dmao->dmao_size > dma->dp_maxxfer) {
3640 			maxxfer_win = (dmao->dmao_size /
3641 			    dma->dp_maxxfer) + 1 + 2;
3642 		} else {
3643 			maxxfer_win = 0;
3644 		}
3645 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3646 		ASSERT(dma->dp_max_win > 0);
3647 	}
3648 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3649 
3650 	/*
3651 	 * Get space for window and potential copy buffer state. Before we
3652 	 * go and allocate memory, see if we can get away with using what's
3653 	 * left in the pre-allocted state or the dynamically allocated sgl.
3654 	 */
3655 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3656 	    sizeof (ddi_dma_cookie_t));
3657 
3658 	/* if we dynamically allocated space for the cookies */
3659 	if (dma->dp_need_to_free_cookie) {
3660 		/* if we have more space in the pre-allocted buffer, use it */
3661 		ASSERT(space_used <= dma->dp_cookie_size);
3662 		if ((dma->dp_cookie_size - space_used) <=
3663 		    rootnex_state->r_prealloc_size) {
3664 			state_available = rootnex_state->r_prealloc_size;
3665 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3666 
3667 		/*
3668 		 * else, we have more free space in the dynamically allocated
3669 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3670 		 * didn't need a lot of cookies.
3671 		 */
3672 		} else {
3673 			state_available = dma->dp_cookie_size - space_used;
3674 			windowp = (rootnex_window_t *)
3675 			    &dma->dp_cookies[sinfo->si_sgl_size];
3676 		}
3677 
3678 	/* we used the pre-alloced buffer */
3679 	} else {
3680 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3681 		state_available = rootnex_state->r_prealloc_size - space_used;
3682 		windowp = (rootnex_window_t *)
3683 		    &dma->dp_cookies[sinfo->si_sgl_size];
3684 	}
3685 
3686 	/*
3687 	 * figure out how much state we need to track the copy buffer. Add an
3688 	 * addition 8 bytes for pointer alignemnt later.
3689 	 */
3690 	if (dma->dp_copybuf_size > 0) {
3691 		copy_state_size = sinfo->si_max_pages *
3692 		    sizeof (rootnex_pgmap_t);
3693 	} else {
3694 		copy_state_size = 0;
3695 	}
3696 	/* add an additional 8 bytes for pointer alignment */
3697 	space_needed = win_state_size + copy_state_size + 0x8;
3698 
3699 	/* if we have enough space already, use it */
3700 	if (state_available >= space_needed) {
3701 		dma->dp_window = windowp;
3702 		dma->dp_need_to_free_window = B_FALSE;
3703 
3704 	/* not enough space, need to allocate more. */
3705 	} else {
3706 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3707 		if (dma->dp_window == NULL) {
3708 			return (DDI_DMA_NORESOURCES);
3709 		}
3710 		dma->dp_need_to_free_window = B_TRUE;
3711 		dma->dp_window_size = space_needed;
3712 		ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3713 		    dma->dp_dip, size_t, space_needed);
3714 	}
3715 
3716 	/*
3717 	 * we allocate copy buffer state and window state at the same time.
3718 	 * setup our copy buffer state pointers. Make sure it's aligned.
3719 	 */
3720 	if (dma->dp_copybuf_size > 0) {
3721 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3722 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3723 
3724 #if !defined(__amd64)
3725 		/*
3726 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3727 		 * false/NULL. Should be quicker to bzero vs loop and set.
3728 		 */
3729 		bzero(dma->dp_pgmap, copy_state_size);
3730 #endif
3731 	} else {
3732 		dma->dp_pgmap = NULL;
3733 	}
3734 
3735 	return (DDI_SUCCESS);
3736 }
3737 
3738 
3739 /*
3740  * rootnex_teardown_copybuf()
3741  *    cleans up after rootnex_setup_copybuf()
3742  */
3743 static void
3744 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3745 {
3746 #if !defined(__amd64)
3747 	int i;
3748 
3749 	/*
3750 	 * if we allocated kernel heap VMEM space, go through all the pages and
3751 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3752 	 * arena. Then free the VMEM space.
3753 	 */
3754 	if (dma->dp_kva != NULL) {
3755 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3756 			if (dma->dp_pgmap[i].pm_mapped) {
3757 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3758 				    MMU_PAGESIZE, HAT_UNLOAD);
3759 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3760 			}
3761 		}
3762 
3763 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3764 	}
3765 
3766 #endif
3767 
3768 	/* if we allocated a copy buffer, free it */
3769 	if (dma->dp_cbaddr != NULL) {
3770 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3771 	}
3772 }
3773 
3774 
3775 /*
3776  * rootnex_teardown_windows()
3777  *    cleans up after rootnex_setup_windows()
3778  */
3779 static void
3780 rootnex_teardown_windows(rootnex_dma_t *dma)
3781 {
3782 	/*
3783 	 * if we had to allocate window state on the last bind (because we
3784 	 * didn't have enough pre-allocated space in the handle), free it.
3785 	 */
3786 	if (dma->dp_need_to_free_window) {
3787 		kmem_free(dma->dp_window, dma->dp_window_size);
3788 	}
3789 }
3790 
3791 
3792 /*
3793  * rootnex_init_win()
3794  *    Called in bind slow path during creation of a new window. Initializes
3795  *    window state to default values.
3796  */
3797 /*ARGSUSED*/
3798 static void
3799 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3800     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3801 {
3802 	hp->dmai_nwin++;
3803 	window->wd_dosync = B_FALSE;
3804 	window->wd_offset = cur_offset;
3805 	window->wd_size = 0;
3806 	window->wd_first_cookie = cookie;
3807 	window->wd_cookie_cnt = 0;
3808 	window->wd_trim.tr_trim_first = B_FALSE;
3809 	window->wd_trim.tr_trim_last = B_FALSE;
3810 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3811 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3812 #if !defined(__amd64)
3813 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3814 #endif
3815 }
3816 
3817 
3818 /*
3819  * rootnex_setup_cookie()
3820  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3821  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3822  *    out if it uses the copy buffer, and if it does, save away everything we'll
3823  *    need during sync.
3824  */
3825 static void
3826 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3827     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3828     page_t **cur_pp)
3829 {
3830 	boolean_t copybuf_sz_power_2;
3831 	rootnex_sglinfo_t *sinfo;
3832 	paddr_t paddr;
3833 	uint_t pidx;
3834 	uint_t pcnt;
3835 	off_t poff;
3836 #if defined(__amd64)
3837 	pfn_t pfn;
3838 #else
3839 	page_t **pplist;
3840 #endif
3841 
3842 	ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR);
3843 
3844 	sinfo = &dma->dp_sglinfo;
3845 
3846 	/*
3847 	 * Calculate the page index relative to the start of the buffer. The
3848 	 * index to the current page for our buffer is the offset into the
3849 	 * first page of the buffer plus our current offset into the buffer
3850 	 * itself, shifted of course...
3851 	 */
3852 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3853 	ASSERT(pidx < sinfo->si_max_pages);
3854 
3855 	/* if this cookie uses the copy buffer */
3856 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3857 		/*
3858 		 * NOTE: we know that since this cookie uses the copy buffer, it
3859 		 * is <= MMU_PAGESIZE.
3860 		 */
3861 
3862 		/*
3863 		 * get the offset into the page. For the 64-bit kernel, get the
3864 		 * pfn which we'll use with seg kpm.
3865 		 */
3866 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3867 #if defined(__amd64)
3868 		/* mfn_to_pfn() is a NOP on i86pc */
3869 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3870 #endif /* __amd64 */
3871 
3872 		/* figure out if the copybuf size is a power of 2 */
3873 		if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) {
3874 			copybuf_sz_power_2 = B_FALSE;
3875 		} else {
3876 			copybuf_sz_power_2 = B_TRUE;
3877 		}
3878 
3879 		/* This page uses the copy buffer */
3880 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3881 
3882 		/*
3883 		 * save the copy buffer KVA that we'll use with this page.
3884 		 * if we still fit within the copybuf, it's a simple add.
3885 		 * otherwise, we need to wrap over using & or % accordingly.
3886 		 */
3887 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3888 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3889 			    *copybuf_used;
3890 		} else {
3891 			if (copybuf_sz_power_2) {
3892 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3893 				    (uintptr_t)dma->dp_cbaddr +
3894 				    (*copybuf_used &
3895 				    (dma->dp_copybuf_size - 1)));
3896 			} else {
3897 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3898 				    (uintptr_t)dma->dp_cbaddr +
3899 				    (*copybuf_used % dma->dp_copybuf_size));
3900 			}
3901 		}
3902 
3903 		/*
3904 		 * over write the cookie physical address with the address of
3905 		 * the physical address of the copy buffer page that we will
3906 		 * use.
3907 		 */
3908 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3909 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3910 
3911 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
3912 
3913 		/* if we have a kernel VA, it's easy, just save that address */
3914 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3915 		    (sinfo->si_asp == &kas)) {
3916 			/*
3917 			 * save away the page aligned virtual address of the
3918 			 * driver buffer. Offsets are handled in the sync code.
3919 			 */
3920 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3921 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3922 			    & MMU_PAGEMASK);
3923 #if !defined(__amd64)
3924 			/*
3925 			 * we didn't need to, and will never need to map this
3926 			 * page.
3927 			 */
3928 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3929 #endif
3930 
3931 		/* we don't have a kernel VA. We need one for the bcopy. */
3932 		} else {
3933 #if defined(__amd64)
3934 			/*
3935 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3936 			 * get a Kernel VA for the corresponding pfn.
3937 			 */
3938 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3939 #else
3940 			/*
3941 			 * for the 32-bit kernel, this is a pain. First we'll
3942 			 * save away the page_t or user VA for this page. This
3943 			 * is needed in rootnex_dma_win() when we switch to a
3944 			 * new window which requires us to re-map the copy
3945 			 * buffer.
3946 			 */
3947 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3948 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3949 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3950 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3951 			} else if (pplist != NULL) {
3952 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3953 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3954 			} else {
3955 				dma->dp_pgmap[pidx].pm_pp = NULL;
3956 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3957 				    (((uintptr_t)
3958 				    dmar_object->dmao_obj.virt_obj.v_addr +
3959 				    cur_offset) & MMU_PAGEMASK);
3960 			}
3961 
3962 			/*
3963 			 * save away the page aligned virtual address which was
3964 			 * allocated from the kernel heap arena (taking into
3965 			 * account if we need more copy buffer than we alloced
3966 			 * and use multiple windows to handle this, i.e. &,%).
3967 			 * NOTE: there isn't and physical memory backing up this
3968 			 * virtual address space currently.
3969 			 */
3970 			if ((*copybuf_used + MMU_PAGESIZE) <=
3971 			    dma->dp_copybuf_size) {
3972 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3973 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3974 				    MMU_PAGEMASK);
3975 			} else {
3976 				if (copybuf_sz_power_2) {
3977 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3978 					    (((uintptr_t)dma->dp_kva +
3979 					    (*copybuf_used &
3980 					    (dma->dp_copybuf_size - 1))) &
3981 					    MMU_PAGEMASK);
3982 				} else {
3983 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3984 					    (((uintptr_t)dma->dp_kva +
3985 					    (*copybuf_used %
3986 					    dma->dp_copybuf_size)) &
3987 					    MMU_PAGEMASK);
3988 				}
3989 			}
3990 
3991 			/*
3992 			 * if we haven't used up the available copy buffer yet,
3993 			 * map the kva to the physical page.
3994 			 */
3995 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3996 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3997 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3998 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3999 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
4000 					    dma->dp_pgmap[pidx].pm_kaddr);
4001 				} else {
4002 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
4003 					    sinfo->si_asp,
4004 					    dma->dp_pgmap[pidx].pm_kaddr);
4005 				}
4006 
4007 			/*
4008 			 * we've used up the available copy buffer, this page
4009 			 * will have to be mapped during rootnex_dma_win() when
4010 			 * we switch to a new window which requires a re-map
4011 			 * the copy buffer. (32-bit kernel only)
4012 			 */
4013 			} else {
4014 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4015 			}
4016 #endif
4017 			/* go to the next page_t */
4018 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4019 				*cur_pp = (*cur_pp)->p_next;
4020 			}
4021 		}
4022 
4023 		/* add to the copy buffer count */
4024 		*copybuf_used += MMU_PAGESIZE;
4025 
4026 	/*
4027 	 * This cookie doesn't use the copy buffer. Walk through the pages this
4028 	 * cookie occupies to reflect this.
4029 	 */
4030 	} else {
4031 		/*
4032 		 * figure out how many pages the cookie occupies. We need to
4033 		 * use the original page offset of the buffer and the cookies
4034 		 * offset in the buffer to do this.
4035 		 */
4036 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
4037 		pcnt = mmu_btopr(cookie->dmac_size + poff);
4038 
4039 		while (pcnt > 0) {
4040 #if !defined(__amd64)
4041 			/*
4042 			 * the 32-bit kernel doesn't have seg kpm, so we need
4043 			 * to map in the driver buffer (if it didn't come down
4044 			 * with a kernel VA) on the fly. Since this page doesn't
4045 			 * use the copy buffer, it's not, or will it ever, have
4046 			 * to be mapped in.
4047 			 */
4048 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4049 #endif
4050 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
4051 
4052 			/*
4053 			 * we need to update pidx and cur_pp or we'll loose
4054 			 * track of where we are.
4055 			 */
4056 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4057 				*cur_pp = (*cur_pp)->p_next;
4058 			}
4059 			pidx++;
4060 			pcnt--;
4061 		}
4062 	}
4063 }
4064 
4065 
4066 /*
4067  * rootnex_sgllen_window_boundary()
4068  *    Called in the bind slow path when the next cookie causes us to exceed (in
4069  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
4070  *    length supported by the DMA H/W.
4071  */
4072 static int
4073 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4074     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
4075     off_t cur_offset)
4076 {
4077 	off_t new_offset;
4078 	size_t trim_sz;
4079 	off_t coffset;
4080 
4081 
4082 	/*
4083 	 * if we know we'll never have to trim, it's pretty easy. Just move to
4084 	 * the next window and init it. We're done.
4085 	 */
4086 	if (!dma->dp_trim_required) {
4087 		(*windowp)++;
4088 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4089 		(*windowp)->wd_cookie_cnt++;
4090 		(*windowp)->wd_size = cookie->dmac_size;
4091 		return (DDI_SUCCESS);
4092 	}
4093 
4094 	/* figure out how much we need to trim from the window */
4095 	ASSERT(attr->dma_attr_granular != 0);
4096 	if (dma->dp_granularity_power_2) {
4097 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
4098 	} else {
4099 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
4100 	}
4101 
4102 	/* The window's a whole multiple of granularity. We're done */
4103 	if (trim_sz == 0) {
4104 		(*windowp)++;
4105 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4106 		(*windowp)->wd_cookie_cnt++;
4107 		(*windowp)->wd_size = cookie->dmac_size;
4108 		return (DDI_SUCCESS);
4109 	}
4110 
4111 	/*
4112 	 * The window's not a whole multiple of granularity, since we know this
4113 	 * is due to the sgllen, we need to go back to the last cookie and trim
4114 	 * that one, add the left over part of the old cookie into the new
4115 	 * window, and then add in the new cookie into the new window.
4116 	 */
4117 
4118 	/*
4119 	 * make sure the driver isn't making us do something bad... Trimming and
4120 	 * sgllen == 1 don't go together.
4121 	 */
4122 	if (attr->dma_attr_sgllen == 1) {
4123 		return (DDI_DMA_NOMAPPING);
4124 	}
4125 
4126 	/*
4127 	 * first, setup the current window to account for the trim. Need to go
4128 	 * back to the last cookie for this.
4129 	 */
4130 	cookie--;
4131 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4132 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4133 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4134 	ASSERT(cookie->dmac_size > trim_sz);
4135 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4136 	(*windowp)->wd_size -= trim_sz;
4137 
4138 	/* save the buffer offsets for the next window */
4139 	coffset = cookie->dmac_size - trim_sz;
4140 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4141 
4142 	/*
4143 	 * set this now in case this is the first window. all other cases are
4144 	 * set in dma_win()
4145 	 */
4146 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4147 
4148 	/*
4149 	 * initialize the next window using what's left over in the previous
4150 	 * cookie.
4151 	 */
4152 	(*windowp)++;
4153 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4154 	(*windowp)->wd_cookie_cnt++;
4155 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4156 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4157 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4158 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4159 		(*windowp)->wd_dosync = B_TRUE;
4160 	}
4161 
4162 	/*
4163 	 * now go back to the current cookie and add it to the new window. set
4164 	 * the new window size to the what was left over from the previous
4165 	 * cookie and what's in the current cookie.
4166 	 */
4167 	cookie++;
4168 	(*windowp)->wd_cookie_cnt++;
4169 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4170 
4171 	/*
4172 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
4173 	 * a max size of maxxfer). Handle that case.
4174 	 */
4175 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
4176 		/*
4177 		 * maxxfer is already a whole multiple of granularity, and this
4178 		 * trim will be <= the previous trim (since a cookie can't be
4179 		 * larger than maxxfer). Make things simple here.
4180 		 */
4181 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
4182 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4183 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4184 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4185 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4186 		(*windowp)->wd_size -= trim_sz;
4187 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
4188 
4189 		/* save the buffer offsets for the next window */
4190 		coffset = cookie->dmac_size - trim_sz;
4191 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4192 
4193 		/* setup the next window */
4194 		(*windowp)++;
4195 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4196 		(*windowp)->wd_cookie_cnt++;
4197 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4198 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4199 		    coffset;
4200 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4201 	}
4202 
4203 	return (DDI_SUCCESS);
4204 }
4205 
4206 
4207 /*
4208  * rootnex_copybuf_window_boundary()
4209  *    Called in bind slowpath when we get to a window boundary because we used
4210  *    up all the copy buffer that we have.
4211  */
4212 static int
4213 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4214     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
4215     size_t *copybuf_used)
4216 {
4217 	rootnex_sglinfo_t *sinfo;
4218 	off_t new_offset;
4219 	size_t trim_sz;
4220 	paddr_t paddr;
4221 	off_t coffset;
4222 	uint_t pidx;
4223 	off_t poff;
4224 
4225 
4226 	sinfo = &dma->dp_sglinfo;
4227 
4228 	/*
4229 	 * the copy buffer should be a whole multiple of page size. We know that
4230 	 * this cookie is <= MMU_PAGESIZE.
4231 	 */
4232 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
4233 
4234 	/*
4235 	 * from now on, all new windows in this bind need to be re-mapped during
4236 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
4237 	 * space...
4238 	 */
4239 #if !defined(__amd64)
4240 	dma->dp_cb_remaping = B_TRUE;
4241 #endif
4242 
4243 	/* reset copybuf used */
4244 	*copybuf_used = 0;
4245 
4246 	/*
4247 	 * if we don't have to trim (since granularity is set to 1), go to the
4248 	 * next window and add the current cookie to it. We know the current
4249 	 * cookie uses the copy buffer since we're in this code path.
4250 	 */
4251 	if (!dma->dp_trim_required) {
4252 		(*windowp)++;
4253 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4254 
4255 		/* Add this cookie to the new window */
4256 		(*windowp)->wd_cookie_cnt++;
4257 		(*windowp)->wd_size += cookie->dmac_size;
4258 		*copybuf_used += MMU_PAGESIZE;
4259 		return (DDI_SUCCESS);
4260 	}
4261 
4262 	/*
4263 	 * *** may need to trim, figure it out.
4264 	 */
4265 
4266 	/* figure out how much we need to trim from the window */
4267 	if (dma->dp_granularity_power_2) {
4268 		trim_sz = (*windowp)->wd_size &
4269 		    (hp->dmai_attr.dma_attr_granular - 1);
4270 	} else {
4271 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
4272 	}
4273 
4274 	/*
4275 	 * if the window's a whole multiple of granularity, go to the next
4276 	 * window, init it, then add in the current cookie. We know the current
4277 	 * cookie uses the copy buffer since we're in this code path.
4278 	 */
4279 	if (trim_sz == 0) {
4280 		(*windowp)++;
4281 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4282 
4283 		/* Add this cookie to the new window */
4284 		(*windowp)->wd_cookie_cnt++;
4285 		(*windowp)->wd_size += cookie->dmac_size;
4286 		*copybuf_used += MMU_PAGESIZE;
4287 		return (DDI_SUCCESS);
4288 	}
4289 
4290 	/*
4291 	 * *** We figured it out, we definitly need to trim
4292 	 */
4293 
4294 	/*
4295 	 * make sure the driver isn't making us do something bad...
4296 	 * Trimming and sgllen == 1 don't go together.
4297 	 */
4298 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
4299 		return (DDI_DMA_NOMAPPING);
4300 	}
4301 
4302 	/*
4303 	 * first, setup the current window to account for the trim. Need to go
4304 	 * back to the last cookie for this. Some of the last cookie will be in
4305 	 * the current window, and some of the last cookie will be in the new
4306 	 * window. All of the current cookie will be in the new window.
4307 	 */
4308 	cookie--;
4309 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4310 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4311 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4312 	ASSERT(cookie->dmac_size > trim_sz);
4313 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4314 	(*windowp)->wd_size -= trim_sz;
4315 
4316 	/*
4317 	 * we're trimming the last cookie (not the current cookie). So that
4318 	 * last cookie may have or may not have been using the copy buffer (
4319 	 * we know the cookie passed in uses the copy buffer since we're in
4320 	 * this code path).
4321 	 *
4322 	 * If the last cookie doesn't use the copy buffer, nothing special to
4323 	 * do. However, if it does uses the copy buffer, it will be both the
4324 	 * last page in the current window and the first page in the next
4325 	 * window. Since we are reusing the copy buffer (and KVA space on the
4326 	 * 32-bit kernel), this page will use the end of the copy buffer in the
4327 	 * current window, and the start of the copy buffer in the next window.
4328 	 * Track that info... The cookie physical address was already set to
4329 	 * the copy buffer physical address in setup_cookie..
4330 	 */
4331 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4332 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
4333 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
4334 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
4335 		(*windowp)->wd_trim.tr_last_pidx = pidx;
4336 		(*windowp)->wd_trim.tr_last_cbaddr =
4337 		    dma->dp_pgmap[pidx].pm_cbaddr;
4338 #if !defined(__amd64)
4339 		(*windowp)->wd_trim.tr_last_kaddr =
4340 		    dma->dp_pgmap[pidx].pm_kaddr;
4341 #endif
4342 	}
4343 
4344 	/* save the buffer offsets for the next window */
4345 	coffset = cookie->dmac_size - trim_sz;
4346 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4347 
4348 	/*
4349 	 * set this now in case this is the first window. all other cases are
4350 	 * set in dma_win()
4351 	 */
4352 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4353 
4354 	/*
4355 	 * initialize the next window using what's left over in the previous
4356 	 * cookie.
4357 	 */
4358 	(*windowp)++;
4359 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4360 	(*windowp)->wd_cookie_cnt++;
4361 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4362 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4363 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4364 
4365 	/*
4366 	 * again, we're tracking if the last cookie uses the copy buffer.
4367 	 * read the comment above for more info on why we need to track
4368 	 * additional state.
4369 	 *
4370 	 * For the first cookie in the new window, we need reset the physical
4371 	 * address to DMA into to the start of the copy buffer plus any
4372 	 * initial page offset which may be present.
4373 	 */
4374 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4375 		(*windowp)->wd_dosync = B_TRUE;
4376 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
4377 		(*windowp)->wd_trim.tr_first_pidx = pidx;
4378 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
4379 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
4380 
4381 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
4382 		    poff;
4383 		(*windowp)->wd_trim.tr_first_paddr =
4384 		    ROOTNEX_PADDR_TO_RBASE(paddr);
4385 
4386 #if !defined(__amd64)
4387 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
4388 #endif
4389 		/* account for the cookie copybuf usage in the new window */
4390 		*copybuf_used += MMU_PAGESIZE;
4391 
4392 		/*
4393 		 * every piece of code has to have a hack, and here is this
4394 		 * ones :-)
4395 		 *
4396 		 * There is a complex interaction between setup_cookie and the
4397 		 * copybuf window boundary. The complexity had to be in either
4398 		 * the maxxfer window, or the copybuf window, and I chose the
4399 		 * copybuf code.
4400 		 *
4401 		 * So in this code path, we have taken the last cookie,
4402 		 * virtually broken it in half due to the trim, and it happens
4403 		 * to use the copybuf which further complicates life. At the
4404 		 * same time, we have already setup the current cookie, which
4405 		 * is now wrong. More background info: the current cookie uses
4406 		 * the copybuf, so it is only a page long max. So we need to
4407 		 * fix the current cookies copy buffer address, physical
4408 		 * address, and kva for the 32-bit kernel. We due this by
4409 		 * bumping them by page size (of course, we can't due this on
4410 		 * the physical address since the copy buffer may not be
4411 		 * physically contiguous).
4412 		 */
4413 		cookie++;
4414 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
4415 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
4416 
4417 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
4418 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
4419 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
4420 
4421 #if !defined(__amd64)
4422 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
4423 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
4424 #endif
4425 	} else {
4426 		/* go back to the current cookie */
4427 		cookie++;
4428 	}
4429 
4430 	/*
4431 	 * add the current cookie to the new window. set the new window size to
4432 	 * the what was left over from the previous cookie and what's in the
4433 	 * current cookie.
4434 	 */
4435 	(*windowp)->wd_cookie_cnt++;
4436 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4437 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4438 
4439 	/*
4440 	 * we know that the cookie passed in always uses the copy buffer. We
4441 	 * wouldn't be here if it didn't.
4442 	 */
4443 	*copybuf_used += MMU_PAGESIZE;
4444 
4445 	return (DDI_SUCCESS);
4446 }
4447 
4448 
4449 /*
4450  * rootnex_maxxfer_window_boundary()
4451  *    Called in bind slowpath when we get to a window boundary because we will
4452  *    go over maxxfer.
4453  */
4454 static int
4455 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4456     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4457 {
4458 	size_t dmac_size;
4459 	off_t new_offset;
4460 	size_t trim_sz;
4461 	off_t coffset;
4462 
4463 
4464 	/*
4465 	 * calculate how much we have to trim off of the current cookie to equal
4466 	 * maxxfer. We don't have to account for granularity here since our
4467 	 * maxxfer already takes that into account.
4468 	 */
4469 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4470 	ASSERT(trim_sz <= cookie->dmac_size);
4471 	ASSERT(trim_sz <= dma->dp_maxxfer);
4472 
4473 	/* save cookie size since we need it later and we might change it */
4474 	dmac_size = cookie->dmac_size;
4475 
4476 	/*
4477 	 * if we're not trimming the entire cookie, setup the current window to
4478 	 * account for the trim.
4479 	 */
4480 	if (trim_sz < cookie->dmac_size) {
4481 		(*windowp)->wd_cookie_cnt++;
4482 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4483 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4484 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4485 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4486 		(*windowp)->wd_size = dma->dp_maxxfer;
4487 
4488 		/*
4489 		 * set the adjusted cookie size now in case this is the first
4490 		 * window. All other windows are taken care of in get win
4491 		 */
4492 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4493 	}
4494 
4495 	/*
4496 	 * coffset is the current offset within the cookie, new_offset is the
4497 	 * current offset with the entire buffer.
4498 	 */
4499 	coffset = dmac_size - trim_sz;
4500 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4501 
4502 	/* initialize the next window */
4503 	(*windowp)++;
4504 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4505 	(*windowp)->wd_cookie_cnt++;
4506 	(*windowp)->wd_size = trim_sz;
4507 	if (trim_sz < dmac_size) {
4508 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4509 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4510 		    coffset;
4511 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4512 	}
4513 
4514 	return (DDI_SUCCESS);
4515 }
4516 
4517 
4518 /*ARGSUSED*/
4519 static int
4520 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4521     off_t off, size_t len, uint_t cache_flags)
4522 {
4523 	rootnex_sglinfo_t *sinfo;
4524 	rootnex_pgmap_t *cbpage;
4525 	rootnex_window_t *win;
4526 	ddi_dma_impl_t *hp;
4527 	rootnex_dma_t *dma;
4528 	caddr_t fromaddr;
4529 	caddr_t toaddr;
4530 	uint_t psize;
4531 	off_t offset;
4532 	uint_t pidx;
4533 	size_t size;
4534 	off_t poff;
4535 	int e;
4536 
4537 
4538 	hp = (ddi_dma_impl_t *)handle;
4539 	dma = (rootnex_dma_t *)hp->dmai_private;
4540 	sinfo = &dma->dp_sglinfo;
4541 
4542 	/*
4543 	 * if we don't have any windows, we don't need to sync. A copybuf
4544 	 * will cause us to have at least one window.
4545 	 */
4546 	if (dma->dp_window == NULL) {
4547 		return (DDI_SUCCESS);
4548 	}
4549 
4550 	/* This window may not need to be sync'd */
4551 	win = &dma->dp_window[dma->dp_current_win];
4552 	if (!win->wd_dosync) {
4553 		return (DDI_SUCCESS);
4554 	}
4555 
4556 	/* handle off and len special cases */
4557 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4558 		offset = win->wd_offset;
4559 	} else {
4560 		offset = off;
4561 	}
4562 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4563 		size = win->wd_size;
4564 	} else {
4565 		size = len;
4566 	}
4567 
4568 	/* check the sync args to make sure they make a little sense */
4569 	if (rootnex_sync_check_parms) {
4570 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4571 		    cache_flags);
4572 		if (e != DDI_SUCCESS) {
4573 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4574 			return (DDI_FAILURE);
4575 		}
4576 	}
4577 
4578 	/*
4579 	 * special case the first page to handle the offset into the page. The
4580 	 * offset to the current page for our buffer is the offset into the
4581 	 * first page of the buffer plus our current offset into the buffer
4582 	 * itself, masked of course.
4583 	 */
4584 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4585 	psize = MIN((MMU_PAGESIZE - poff), size);
4586 
4587 	/* go through all the pages that we want to sync */
4588 	while (size > 0) {
4589 		/*
4590 		 * Calculate the page index relative to the start of the buffer.
4591 		 * The index to the current page for our buffer is the offset
4592 		 * into the first page of the buffer plus our current offset
4593 		 * into the buffer itself, shifted of course...
4594 		 */
4595 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4596 		ASSERT(pidx < sinfo->si_max_pages);
4597 
4598 		/*
4599 		 * if this page uses the copy buffer, we need to sync it,
4600 		 * otherwise, go on to the next page.
4601 		 */
4602 		cbpage = &dma->dp_pgmap[pidx];
4603 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4604 		    (cbpage->pm_uses_copybuf == B_FALSE));
4605 		if (cbpage->pm_uses_copybuf) {
4606 			/* cbaddr and kaddr should be page aligned */
4607 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4608 			    MMU_PAGEOFFSET) == 0);
4609 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4610 			    MMU_PAGEOFFSET) == 0);
4611 
4612 			/*
4613 			 * if we're copying for the device, we are going to
4614 			 * copy from the drivers buffer and to the rootnex
4615 			 * allocated copy buffer.
4616 			 */
4617 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4618 				fromaddr = cbpage->pm_kaddr + poff;
4619 				toaddr = cbpage->pm_cbaddr + poff;
4620 				ROOTNEX_DPROBE2(rootnex__sync__dev,
4621 				    dev_info_t *, dma->dp_dip, size_t, psize);
4622 
4623 			/*
4624 			 * if we're copying for the cpu/kernel, we are going to
4625 			 * copy from the rootnex allocated copy buffer to the
4626 			 * drivers buffer.
4627 			 */
4628 			} else {
4629 				fromaddr = cbpage->pm_cbaddr + poff;
4630 				toaddr = cbpage->pm_kaddr + poff;
4631 				ROOTNEX_DPROBE2(rootnex__sync__cpu,
4632 				    dev_info_t *, dma->dp_dip, size_t, psize);
4633 			}
4634 
4635 			bcopy(fromaddr, toaddr, psize);
4636 		}
4637 
4638 		/*
4639 		 * decrement size until we're done, update our offset into the
4640 		 * buffer, and get the next page size.
4641 		 */
4642 		size -= psize;
4643 		offset += psize;
4644 		psize = MIN(MMU_PAGESIZE, size);
4645 
4646 		/* page offset is zero for the rest of this loop */
4647 		poff = 0;
4648 	}
4649 
4650 	return (DDI_SUCCESS);
4651 }
4652 
4653 /*
4654  * rootnex_dma_sync()
4655  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4656  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4657  *    is set, ddi_dma_sync() returns immediately passing back success.
4658  */
4659 /*ARGSUSED*/
4660 static int
4661 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4662     off_t off, size_t len, uint_t cache_flags)
4663 {
4664 #if defined(__amd64) && !defined(__xpv)
4665 	if (IOMMU_USED(rdip)) {
4666 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4667 		    cache_flags));
4668 	}
4669 #endif
4670 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4671 	    cache_flags));
4672 }
4673 
4674 /*
4675  * rootnex_valid_sync_parms()
4676  *    checks the parameters passed to sync to verify they are correct.
4677  */
4678 static int
4679 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4680     off_t offset, size_t size, uint_t cache_flags)
4681 {
4682 	off_t woffset;
4683 
4684 
4685 	/*
4686 	 * the first part of the test to make sure the offset passed in is
4687 	 * within the window.
4688 	 */
4689 	if (offset < win->wd_offset) {
4690 		return (DDI_FAILURE);
4691 	}
4692 
4693 	/*
4694 	 * second and last part of the test to make sure the offset and length
4695 	 * passed in is within the window.
4696 	 */
4697 	woffset = offset - win->wd_offset;
4698 	if ((woffset + size) > win->wd_size) {
4699 		return (DDI_FAILURE);
4700 	}
4701 
4702 	/*
4703 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4704 	 * be set too.
4705 	 */
4706 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4707 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4708 		return (DDI_SUCCESS);
4709 	}
4710 
4711 	/*
4712 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4713 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4714 	 */
4715 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4716 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4717 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4718 		return (DDI_SUCCESS);
4719 	}
4720 
4721 	return (DDI_FAILURE);
4722 }
4723 
4724 
4725 /*ARGSUSED*/
4726 static int
4727 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4728     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4729     uint_t *ccountp)
4730 {
4731 	rootnex_window_t *window;
4732 	rootnex_trim_t *trim;
4733 	ddi_dma_impl_t *hp;
4734 	rootnex_dma_t *dma;
4735 	ddi_dma_obj_t *dmao;
4736 #if !defined(__amd64)
4737 	rootnex_sglinfo_t *sinfo;
4738 	rootnex_pgmap_t *pmap;
4739 	uint_t pidx;
4740 	uint_t pcnt;
4741 	off_t poff;
4742 	int i;
4743 #endif
4744 
4745 
4746 	hp = (ddi_dma_impl_t *)handle;
4747 	dma = (rootnex_dma_t *)hp->dmai_private;
4748 #if !defined(__amd64)
4749 	sinfo = &dma->dp_sglinfo;
4750 #endif
4751 
4752 	/* If we try and get a window which doesn't exist, return failure */
4753 	if (win >= hp->dmai_nwin) {
4754 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4755 		return (DDI_FAILURE);
4756 	}
4757 
4758 	dmao = dma->dp_dvma_used ? &dma->dp_dma : &dma->dp_dvma;
4759 
4760 	/*
4761 	 * if we don't have any windows, and they're asking for the first
4762 	 * window, setup the cookie pointer to the first cookie in the bind.
4763 	 * setup our return values, then increment the cookie since we return
4764 	 * the first cookie on the stack.
4765 	 */
4766 	if (dma->dp_window == NULL) {
4767 		if (win != 0) {
4768 			ROOTNEX_DPROF_INC(
4769 			    &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4770 			return (DDI_FAILURE);
4771 		}
4772 		hp->dmai_cookie = dma->dp_cookies;
4773 		*offp = 0;
4774 		*lenp = dmao->dmao_size;
4775 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4776 		*cookiep = hp->dmai_cookie[0];
4777 		hp->dmai_cookie++;
4778 		return (DDI_SUCCESS);
4779 	}
4780 
4781 	/* sync the old window before moving on to the new one */
4782 	window = &dma->dp_window[dma->dp_current_win];
4783 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4784 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4785 		    DDI_DMA_SYNC_FORCPU);
4786 	}
4787 
4788 #if !defined(__amd64)
4789 	/*
4790 	 * before we move to the next window, if we need to re-map, unmap all
4791 	 * the pages in this window.
4792 	 */
4793 	if (dma->dp_cb_remaping) {
4794 		/*
4795 		 * If we switch to this window again, we'll need to map in
4796 		 * on the fly next time.
4797 		 */
4798 		window->wd_remap_copybuf = B_TRUE;
4799 
4800 		/*
4801 		 * calculate the page index into the buffer where this window
4802 		 * starts, and the number of pages this window takes up.
4803 		 */
4804 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4805 		    MMU_PAGESHIFT;
4806 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4807 		    MMU_PAGEOFFSET;
4808 		pcnt = mmu_btopr(window->wd_size + poff);
4809 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4810 
4811 		/* unmap pages which are currently mapped in this window */
4812 		for (i = 0; i < pcnt; i++) {
4813 			if (dma->dp_pgmap[pidx].pm_mapped) {
4814 				hat_unload(kas.a_hat,
4815 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4816 				    HAT_UNLOAD);
4817 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4818 			}
4819 			pidx++;
4820 		}
4821 	}
4822 #endif
4823 
4824 	/*
4825 	 * Move to the new window.
4826 	 * NOTE: current_win must be set for sync to work right
4827 	 */
4828 	dma->dp_current_win = win;
4829 	window = &dma->dp_window[win];
4830 
4831 	/* if needed, adjust the first and/or last cookies for trim */
4832 	trim = &window->wd_trim;
4833 	if (trim->tr_trim_first) {
4834 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4835 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4836 #if !defined(__amd64)
4837 		window->wd_first_cookie->dmac_type =
4838 		    (window->wd_first_cookie->dmac_type &
4839 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4840 #endif
4841 		if (trim->tr_first_copybuf_win) {
4842 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4843 			    trim->tr_first_cbaddr;
4844 #if !defined(__amd64)
4845 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4846 			    trim->tr_first_kaddr;
4847 #endif
4848 		}
4849 	}
4850 	if (trim->tr_trim_last) {
4851 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4852 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4853 		if (trim->tr_last_copybuf_win) {
4854 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4855 			    trim->tr_last_cbaddr;
4856 #if !defined(__amd64)
4857 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4858 			    trim->tr_last_kaddr;
4859 #endif
4860 		}
4861 	}
4862 
4863 	/*
4864 	 * setup the cookie pointer to the first cookie in the window. setup
4865 	 * our return values, then increment the cookie since we return the
4866 	 * first cookie on the stack.
4867 	 */
4868 	hp->dmai_cookie = window->wd_first_cookie;
4869 	*offp = window->wd_offset;
4870 	*lenp = window->wd_size;
4871 	*ccountp = window->wd_cookie_cnt;
4872 	*cookiep = hp->dmai_cookie[0];
4873 	hp->dmai_cookie++;
4874 
4875 #if !defined(__amd64)
4876 	/* re-map copybuf if required for this window */
4877 	if (dma->dp_cb_remaping) {
4878 		/*
4879 		 * calculate the page index into the buffer where this
4880 		 * window starts.
4881 		 */
4882 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4883 		    MMU_PAGESHIFT;
4884 		ASSERT(pidx < sinfo->si_max_pages);
4885 
4886 		/*
4887 		 * the first page can get unmapped if it's shared with the
4888 		 * previous window. Even if the rest of this window is already
4889 		 * mapped in, we need to still check this one.
4890 		 */
4891 		pmap = &dma->dp_pgmap[pidx];
4892 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4893 			if (pmap->pm_pp != NULL) {
4894 				pmap->pm_mapped = B_TRUE;
4895 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4896 			} else if (pmap->pm_vaddr != NULL) {
4897 				pmap->pm_mapped = B_TRUE;
4898 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4899 				    pmap->pm_kaddr);
4900 			}
4901 		}
4902 		pidx++;
4903 
4904 		/* map in the rest of the pages if required */
4905 		if (window->wd_remap_copybuf) {
4906 			window->wd_remap_copybuf = B_FALSE;
4907 
4908 			/* figure out many pages this window takes up */
4909 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4910 			    MMU_PAGEOFFSET;
4911 			pcnt = mmu_btopr(window->wd_size + poff);
4912 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4913 
4914 			/* map pages which require it */
4915 			for (i = 1; i < pcnt; i++) {
4916 				pmap = &dma->dp_pgmap[pidx];
4917 				if (pmap->pm_uses_copybuf) {
4918 					ASSERT(pmap->pm_mapped == B_FALSE);
4919 					if (pmap->pm_pp != NULL) {
4920 						pmap->pm_mapped = B_TRUE;
4921 						i86_pp_map(pmap->pm_pp,
4922 						    pmap->pm_kaddr);
4923 					} else if (pmap->pm_vaddr != NULL) {
4924 						pmap->pm_mapped = B_TRUE;
4925 						i86_va_map(pmap->pm_vaddr,
4926 						    sinfo->si_asp,
4927 						    pmap->pm_kaddr);
4928 					}
4929 				}
4930 				pidx++;
4931 			}
4932 		}
4933 	}
4934 #endif
4935 
4936 	/* if the new window uses the copy buffer, sync it for the device */
4937 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4938 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4939 		    DDI_DMA_SYNC_FORDEV);
4940 	}
4941 
4942 	return (DDI_SUCCESS);
4943 }
4944 
4945 /*
4946  * rootnex_dma_win()
4947  *    called from ddi_dma_getwin()
4948  */
4949 /*ARGSUSED*/
4950 static int
4951 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4952     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4953     uint_t *ccountp)
4954 {
4955 #if defined(__amd64) && !defined(__xpv)
4956 	if (IOMMU_USED(rdip)) {
4957 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4958 		    cookiep, ccountp));
4959 	}
4960 #endif
4961 
4962 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4963 	    cookiep, ccountp));
4964 }
4965 
4966 #if defined(__amd64) && !defined(__xpv)
4967 /*ARGSUSED*/
4968 static int
4969 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
4970     ddi_dma_handle_t handle, void *v)
4971 {
4972 	ddi_dma_impl_t *hp;
4973 	rootnex_dma_t *dma;
4974 
4975 	hp = (ddi_dma_impl_t *)handle;
4976 	dma = (rootnex_dma_t *)hp->dmai_private;
4977 	dma->dp_iommu_private = v;
4978 
4979 	return (DDI_SUCCESS);
4980 }
4981 
4982 /*ARGSUSED*/
4983 static void *
4984 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
4985     ddi_dma_handle_t handle)
4986 {
4987 	ddi_dma_impl_t *hp;
4988 	rootnex_dma_t *dma;
4989 
4990 	hp = (ddi_dma_impl_t *)handle;
4991 	dma = (rootnex_dma_t *)hp->dmai_private;
4992 
4993 	return (dma->dp_iommu_private);
4994 }
4995 #endif
4996 
4997 /*
4998  * ************************
4999  *  obsoleted dma routines
5000  * ************************
5001  */
5002 
5003 /*
5004  * rootnex_dma_map()
5005  *    called from ddi_dma_setup()
5006  * NO IOMMU in 32 bit mode. The below routines doesn't work in 64 bit mode.
5007  */
5008 /* ARGSUSED */
5009 static int
5010 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
5011     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep)
5012 {
5013 #if defined(__amd64)
5014 	/*
5015 	 * this interface is not supported in 64-bit x86 kernel. See comment in
5016 	 * rootnex_dma_mctl()
5017 	 */
5018 	return (DDI_DMA_NORESOURCES);
5019 
5020 #else /* 32-bit x86 kernel */
5021 	ddi_dma_handle_t *lhandlep;
5022 	ddi_dma_handle_t lhandle;
5023 	ddi_dma_cookie_t cookie;
5024 	ddi_dma_attr_t dma_attr;
5025 	ddi_dma_lim_t *dma_lim;
5026 	uint_t ccnt;
5027 	int e;
5028 
5029 
5030 	/*
5031 	 * if the driver is just testing to see if it's possible to do the bind,
5032 	 * we'll use local state. Otherwise, use the handle pointer passed in.
5033 	 */
5034 	if (handlep == NULL) {
5035 		lhandlep = &lhandle;
5036 	} else {
5037 		lhandlep = handlep;
5038 	}
5039 
5040 	/* convert the limit structure to a dma_attr one */
5041 	dma_lim = dmareq->dmar_limits;
5042 	dma_attr.dma_attr_version = DMA_ATTR_V0;
5043 	dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo;
5044 	dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi;
5045 	dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer;
5046 	dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max;
5047 	dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max;
5048 	dma_attr.dma_attr_granular = dma_lim->dlim_granular;
5049 	dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen;
5050 	dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize;
5051 	dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes;
5052 	dma_attr.dma_attr_align = MMU_PAGESIZE;
5053 	dma_attr.dma_attr_flags = 0;
5054 
5055 	e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp,
5056 	    dmareq->dmar_arg, lhandlep);
5057 	if (e != DDI_SUCCESS) {
5058 		return (e);
5059 	}
5060 
5061 	e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt);
5062 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
5063 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
5064 		return (e);
5065 	}
5066 
5067 	/*
5068 	 * if the driver is just testing to see if it's possible to do the bind,
5069 	 * free up the local state and return the result.
5070 	 */
5071 	if (handlep == NULL) {
5072 		(void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep);
5073 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
5074 		if (e == DDI_DMA_MAPPED) {
5075 			return (DDI_DMA_MAPOK);
5076 		} else {
5077 			return (DDI_DMA_NOMAPPING);
5078 		}
5079 	}
5080 
5081 	return (e);
5082 #endif /* defined(__amd64) */
5083 }
5084 
5085 /*
5086  * rootnex_dma_mctl()
5087  *
5088  * No IOMMU in 32 bit mode. The below routine doesn't work in 64 bit mode.
5089  */
5090 /* ARGSUSED */
5091 static int
5092 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
5093     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
5094     uint_t cache_flags)
5095 {
5096 #if defined(__amd64)
5097 	/*
5098 	 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a
5099 	 * common implementation in genunix, so they no longer have x86
5100 	 * specific functionality which called into dma_ctl.
5101 	 *
5102 	 * The rest of the obsoleted interfaces were never supported in the
5103 	 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface
5104 	 * was not ported to the x86 64-bit kernel do to serious x86 rootnex
5105 	 * implementation issues.
5106 	 *
5107 	 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and
5108 	 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we
5109 	 * reflect that now too...
5110 	 *
5111 	 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are
5112 	 * not going to put this functionality into the 64-bit x86 kernel now.
5113 	 * It wasn't ported to the 64-bit kernel for s10, no reason to change
5114 	 * that in a future release.
5115 	 */
5116 	return (DDI_FAILURE);
5117 
5118 #else /* 32-bit x86 kernel */
5119 	ddi_dma_cookie_t lcookie;
5120 	ddi_dma_cookie_t *cookie;
5121 	rootnex_window_t *window;
5122 	ddi_dma_impl_t *hp;
5123 	rootnex_dma_t *dma;
5124 	uint_t nwin;
5125 	uint_t ccnt;
5126 	size_t len;
5127 	off_t off;
5128 	int e;
5129 
5130 
5131 	/*
5132 	 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little
5133 	 * hacky since were optimizing for the current interfaces and so we can
5134 	 * cleanup the mess in genunix. Hopefully we will remove the this
5135 	 * obsoleted routines someday soon.
5136 	 */
5137 
5138 	switch (request) {
5139 
5140 	case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */
5141 		hp = (ddi_dma_impl_t *)handle;
5142 		cookie = (ddi_dma_cookie_t *)objpp;
5143 
5144 		/*
5145 		 * convert segment to cookie. We don't distinguish between the
5146 		 * two :-)
5147 		 */
5148 		*cookie = *hp->dmai_cookie;
5149 		*lenp = cookie->dmac_size;
5150 		*offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF;
5151 		return (DDI_SUCCESS);
5152 
5153 	case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */
5154 		hp = (ddi_dma_impl_t *)handle;
5155 		dma = (rootnex_dma_t *)hp->dmai_private;
5156 
5157 		if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) {
5158 			return (DDI_DMA_STALE);
5159 		}
5160 
5161 		/* handle the case where we don't have any windows */
5162 		if (dma->dp_window == NULL) {
5163 			/*
5164 			 * if seg == NULL, and we don't have any windows,
5165 			 * return the first cookie in the sgl.
5166 			 */
5167 			if (*lenp == NULL) {
5168 				dma->dp_current_cookie = 0;
5169 				hp->dmai_cookie = dma->dp_cookies;
5170 				*objpp = (caddr_t)handle;
5171 				return (DDI_SUCCESS);
5172 
5173 			/* if we have more cookies, go to the next cookie */
5174 			} else {
5175 				if ((dma->dp_current_cookie + 1) >=
5176 				    dma->dp_sglinfo.si_sgl_size) {
5177 					return (DDI_DMA_DONE);
5178 				}
5179 				dma->dp_current_cookie++;
5180 				hp->dmai_cookie++;
5181 				return (DDI_SUCCESS);
5182 			}
5183 		}
5184 
5185 		/* We have one or more windows */
5186 		window = &dma->dp_window[dma->dp_current_win];
5187 
5188 		/*
5189 		 * if seg == NULL, return the first cookie in the current
5190 		 * window
5191 		 */
5192 		if (*lenp == NULL) {
5193 			dma->dp_current_cookie = 0;
5194 			hp->dmai_cookie = window->wd_first_cookie;
5195 
5196 		/*
5197 		 * go to the next cookie in the window then see if we done with
5198 		 * this window.
5199 		 */
5200 		} else {
5201 			if ((dma->dp_current_cookie + 1) >=
5202 			    window->wd_cookie_cnt) {
5203 				return (DDI_DMA_DONE);
5204 			}
5205 			dma->dp_current_cookie++;
5206 			hp->dmai_cookie++;
5207 		}
5208 		*objpp = (caddr_t)handle;
5209 		return (DDI_SUCCESS);
5210 
5211 	case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */
5212 		hp = (ddi_dma_impl_t *)handle;
5213 		dma = (rootnex_dma_t *)hp->dmai_private;
5214 
5215 		if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) {
5216 			return (DDI_DMA_STALE);
5217 		}
5218 
5219 		/* if win == NULL, return the first window in the bind */
5220 		if (*offp == NULL) {
5221 			nwin = 0;
5222 
5223 		/*
5224 		 * else, go to the next window then see if we're done with all
5225 		 * the windows.
5226 		 */
5227 		} else {
5228 			nwin = dma->dp_current_win + 1;
5229 			if (nwin >= hp->dmai_nwin) {
5230 				return (DDI_DMA_DONE);
5231 			}
5232 		}
5233 
5234 		/* switch to the next window */
5235 		e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len,
5236 		    &lcookie, &ccnt);
5237 		ASSERT(e == DDI_SUCCESS);
5238 		if (e != DDI_SUCCESS) {
5239 			return (DDI_DMA_STALE);
5240 		}
5241 
5242 		/* reset the cookie back to the first cookie in the window */
5243 		if (dma->dp_window != NULL) {
5244 			window = &dma->dp_window[dma->dp_current_win];
5245 			hp->dmai_cookie = window->wd_first_cookie;
5246 		} else {
5247 			hp->dmai_cookie = dma->dp_cookies;
5248 		}
5249 
5250 		*objpp = (caddr_t)handle;
5251 		return (DDI_SUCCESS);
5252 
5253 	case DDI_DMA_FREE: /* ddi_dma_free() */
5254 		(void) rootnex_dma_unbindhdl(dip, rdip, handle);
5255 		(void) rootnex_dma_freehdl(dip, rdip, handle);
5256 		if (rootnex_state->r_dvma_call_list_id) {
5257 			ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
5258 		}
5259 		return (DDI_SUCCESS);
5260 
5261 	case DDI_DMA_IOPB_ALLOC:	/* get contiguous DMA-able memory */
5262 	case DDI_DMA_SMEM_ALLOC:	/* get contiguous DMA-able memory */
5263 		/* should never get here, handled in genunix */
5264 		ASSERT(0);
5265 		return (DDI_FAILURE);
5266 
5267 	case DDI_DMA_KVADDR:
5268 	case DDI_DMA_GETERR:
5269 	case DDI_DMA_COFF:
5270 		return (DDI_FAILURE);
5271 	}
5272 
5273 	return (DDI_FAILURE);
5274 #endif /* defined(__amd64) */
5275 }
5276 
5277 /*
5278  * *********
5279  *  FMA Code
5280  * *********
5281  */
5282 
5283 /*
5284  * rootnex_fm_init()
5285  *    FMA init busop
5286  */
5287 /* ARGSUSED */
5288 static int
5289 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
5290     ddi_iblock_cookie_t *ibc)
5291 {
5292 	*ibc = rootnex_state->r_err_ibc;
5293 
5294 	return (ddi_system_fmcap);
5295 }
5296 
5297 /*
5298  * rootnex_dma_check()
5299  *    Function called after a dma fault occurred to find out whether the
5300  *    fault address is associated with a driver that is able to handle faults
5301  *    and recover from faults.
5302  */
5303 /* ARGSUSED */
5304 static int
5305 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
5306     const void *not_used)
5307 {
5308 	rootnex_window_t *window;
5309 	uint64_t start_addr;
5310 	uint64_t fault_addr;
5311 	ddi_dma_impl_t *hp;
5312 	rootnex_dma_t *dma;
5313 	uint64_t end_addr;
5314 	size_t csize;
5315 	int i;
5316 	int j;
5317 
5318 
5319 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
5320 	hp = (ddi_dma_impl_t *)handle;
5321 	ASSERT(hp);
5322 
5323 	dma = (rootnex_dma_t *)hp->dmai_private;
5324 
5325 	/* Get the address that we need to search for */
5326 	fault_addr = *(uint64_t *)addr;
5327 
5328 	/*
5329 	 * if we don't have any windows, we can just walk through all the
5330 	 * cookies.
5331 	 */
5332 	if (dma->dp_window == NULL) {
5333 		/* for each cookie */
5334 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
5335 			/*
5336 			 * if the faulted address is within the physical address
5337 			 * range of the cookie, return DDI_FM_NONFATAL.
5338 			 */
5339 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
5340 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
5341 			    dma->dp_cookies[i].dmac_size))) {
5342 				return (DDI_FM_NONFATAL);
5343 			}
5344 		}
5345 
5346 		/* fault_addr not within this DMA handle */
5347 		return (DDI_FM_UNKNOWN);
5348 	}
5349 
5350 	/* we have mutiple windows, walk through each window */
5351 	for (i = 0; i < hp->dmai_nwin; i++) {
5352 		window = &dma->dp_window[i];
5353 
5354 		/* Go through all the cookies in the window */
5355 		for (j = 0; j < window->wd_cookie_cnt; j++) {
5356 
5357 			start_addr = window->wd_first_cookie[j].dmac_laddress;
5358 			csize = window->wd_first_cookie[j].dmac_size;
5359 
5360 			/*
5361 			 * if we are trimming the first cookie in the window,
5362 			 * and this is the first cookie, adjust the start
5363 			 * address and size of the cookie to account for the
5364 			 * trim.
5365 			 */
5366 			if (window->wd_trim.tr_trim_first && (j == 0)) {
5367 				start_addr = window->wd_trim.tr_first_paddr;
5368 				csize = window->wd_trim.tr_first_size;
5369 			}
5370 
5371 			/*
5372 			 * if we are trimming the last cookie in the window,
5373 			 * and this is the last cookie, adjust the start
5374 			 * address and size of the cookie to account for the
5375 			 * trim.
5376 			 */
5377 			if (window->wd_trim.tr_trim_last &&
5378 			    (j == (window->wd_cookie_cnt - 1))) {
5379 				start_addr = window->wd_trim.tr_last_paddr;
5380 				csize = window->wd_trim.tr_last_size;
5381 			}
5382 
5383 			end_addr = start_addr + csize;
5384 
5385 			/*
5386 			 * if the faulted address is within the physical
5387 			 * address of the cookie, return DDI_FM_NONFATAL.
5388 			 */
5389 			if ((fault_addr >= start_addr) &&
5390 			    (fault_addr <= end_addr)) {
5391 				return (DDI_FM_NONFATAL);
5392 			}
5393 		}
5394 	}
5395 
5396 	/* fault_addr not within this DMA handle */
5397 	return (DDI_FM_UNKNOWN);
5398 }
5399 
5400 /*ARGSUSED*/
5401 static int
5402 rootnex_quiesce(dev_info_t *dip)
5403 {
5404 #if defined(__amd64) && !defined(__xpv)
5405 	return (immu_quiesce());
5406 #else
5407 	return (DDI_SUCCESS);
5408 #endif
5409 }
5410 
5411 #if defined(__xpv)
5412 void
5413 immu_init(void)
5414 {
5415 	;
5416 }
5417 
5418 void
5419 immu_startup(void)
5420 {
5421 	;
5422 }
5423 /*ARGSUSED*/
5424 void
5425 immu_physmem_update(uint64_t addr, uint64_t size)
5426 {
5427 	;
5428 }
5429 #endif
5430