1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * x86 root nexus driver 30 */ 31 32 #include <sys/sysmacros.h> 33 #include <sys/conf.h> 34 #include <sys/autoconf.h> 35 #include <sys/sysmacros.h> 36 #include <sys/debug.h> 37 #include <sys/psw.h> 38 #include <sys/ddidmareq.h> 39 #include <sys/promif.h> 40 #include <sys/devops.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <vm/seg.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/seg_dev.h> 46 #include <sys/vmem.h> 47 #include <sys/mman.h> 48 #include <vm/hat.h> 49 #include <vm/as.h> 50 #include <vm/page.h> 51 #include <sys/avintr.h> 52 #include <sys/errno.h> 53 #include <sys/modctl.h> 54 #include <sys/ddi_impldefs.h> 55 #include <sys/sunddi.h> 56 #include <sys/sunndi.h> 57 #include <sys/mach_intr.h> 58 #include <sys/psm.h> 59 #include <sys/ontrap.h> 60 #include <sys/atomic.h> 61 #include <sys/sdt.h> 62 #include <sys/rootnex.h> 63 #include <vm/hat_i86.h> 64 #include <sys/ddifm.h> 65 66 /* 67 * enable/disable extra checking of function parameters. Useful for debugging 68 * drivers. 69 */ 70 #ifdef DEBUG 71 int rootnex_alloc_check_parms = 1; 72 int rootnex_bind_check_parms = 1; 73 int rootnex_bind_check_inuse = 1; 74 int rootnex_unbind_verify_buffer = 0; 75 int rootnex_sync_check_parms = 1; 76 #else 77 int rootnex_alloc_check_parms = 0; 78 int rootnex_bind_check_parms = 0; 79 int rootnex_bind_check_inuse = 0; 80 int rootnex_unbind_verify_buffer = 0; 81 int rootnex_sync_check_parms = 0; 82 #endif 83 84 /* Master Abort and Target Abort panic flag */ 85 int rootnex_fm_ma_ta_panic_flag = 0; 86 87 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */ 88 int rootnex_bind_fail = 1; 89 int rootnex_bind_warn = 1; 90 uint8_t *rootnex_warn_list; 91 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */ 92 #define ROOTNEX_BIND_WARNING (0x1 << 0) 93 94 /* 95 * revert back to old broken behavior of always sync'ing entire copy buffer. 96 * This is useful if be have a buggy driver which doesn't correctly pass in 97 * the offset and size into ddi_dma_sync(). 98 */ 99 int rootnex_sync_ignore_params = 0; 100 101 /* 102 * maximum size that we will allow for a copy buffer. Can be patched on the 103 * fly 104 */ 105 size_t rootnex_max_copybuf_size = 0x100000; 106 107 /* 108 * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1 109 * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a 110 * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit 111 * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65 112 * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages 113 * (< 8K). We will still need to allocate the copy buffer during bind though 114 * (if we need one). These can only be modified in /etc/system before rootnex 115 * attach. 116 */ 117 #if defined(__amd64) 118 int rootnex_prealloc_cookies = 65; 119 int rootnex_prealloc_windows = 4; 120 int rootnex_prealloc_copybuf = 2; 121 #else 122 int rootnex_prealloc_cookies = 33; 123 int rootnex_prealloc_windows = 4; 124 int rootnex_prealloc_copybuf = 2; 125 #endif 126 127 /* driver global state */ 128 static rootnex_state_t *rootnex_state; 129 130 /* shortcut to rootnex counters */ 131 static uint64_t *rootnex_cnt; 132 133 /* 134 * XXX - does x86 even need these or are they left over from the SPARC days? 135 */ 136 /* statically defined integer/boolean properties for the root node */ 137 static rootnex_intprop_t rootnex_intprp[] = { 138 { "PAGESIZE", PAGESIZE }, 139 { "MMU_PAGESIZE", MMU_PAGESIZE }, 140 { "MMU_PAGEOFFSET", MMU_PAGEOFFSET }, 141 { DDI_RELATIVE_ADDRESSING, 1 }, 142 }; 143 #define NROOT_INTPROPS (sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t)) 144 145 146 static struct cb_ops rootnex_cb_ops = { 147 nodev, /* open */ 148 nodev, /* close */ 149 nodev, /* strategy */ 150 nodev, /* print */ 151 nodev, /* dump */ 152 nodev, /* read */ 153 nodev, /* write */ 154 nodev, /* ioctl */ 155 nodev, /* devmap */ 156 nodev, /* mmap */ 157 nodev, /* segmap */ 158 nochpoll, /* chpoll */ 159 ddi_prop_op, /* cb_prop_op */ 160 NULL, /* struct streamtab */ 161 D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */ 162 CB_REV, /* Rev */ 163 nodev, /* cb_aread */ 164 nodev /* cb_awrite */ 165 }; 166 167 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 168 off_t offset, off_t len, caddr_t *vaddrp); 169 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, 170 struct hat *hat, struct seg *seg, caddr_t addr, 171 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 172 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip, 173 struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep); 174 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, 175 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, 176 ddi_dma_handle_t *handlep); 177 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 178 ddi_dma_handle_t handle); 179 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 180 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 181 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 182 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 183 ddi_dma_handle_t handle); 184 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, 185 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); 186 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, 187 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, 188 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 189 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 190 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 191 off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags); 192 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, 193 ddi_ctl_enum_t ctlop, void *arg, void *result); 194 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 195 ddi_iblock_cookie_t *ibc); 196 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, 197 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 198 199 200 static struct bus_ops rootnex_bus_ops = { 201 BUSO_REV, 202 rootnex_map, 203 NULL, 204 NULL, 205 NULL, 206 rootnex_map_fault, 207 rootnex_dma_map, 208 rootnex_dma_allochdl, 209 rootnex_dma_freehdl, 210 rootnex_dma_bindhdl, 211 rootnex_dma_unbindhdl, 212 rootnex_dma_sync, 213 rootnex_dma_win, 214 rootnex_dma_mctl, 215 rootnex_ctlops, 216 ddi_bus_prop_op, 217 i_ddi_rootnex_get_eventcookie, 218 i_ddi_rootnex_add_eventcall, 219 i_ddi_rootnex_remove_eventcall, 220 i_ddi_rootnex_post_event, 221 0, /* bus_intr_ctl */ 222 0, /* bus_config */ 223 0, /* bus_unconfig */ 224 rootnex_fm_init, /* bus_fm_init */ 225 NULL, /* bus_fm_fini */ 226 NULL, /* bus_fm_access_enter */ 227 NULL, /* bus_fm_access_exit */ 228 NULL, /* bus_powr */ 229 rootnex_intr_ops /* bus_intr_op */ 230 }; 231 232 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 233 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 234 235 static struct dev_ops rootnex_ops = { 236 DEVO_REV, 237 0, 238 ddi_no_info, 239 nulldev, 240 nulldev, 241 rootnex_attach, 242 rootnex_detach, 243 nulldev, 244 &rootnex_cb_ops, 245 &rootnex_bus_ops 246 }; 247 248 static struct modldrv rootnex_modldrv = { 249 &mod_driverops, 250 "i86pc root nexus %I%", 251 &rootnex_ops 252 }; 253 254 static struct modlinkage rootnex_modlinkage = { 255 MODREV_1, 256 (void *)&rootnex_modldrv, 257 NULL 258 }; 259 260 261 /* 262 * extern hacks 263 */ 264 extern struct seg_ops segdev_ops; 265 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 266 #ifdef DDI_MAP_DEBUG 267 extern int ddi_map_debug_flag; 268 #define ddi_map_debug if (ddi_map_debug_flag) prom_printf 269 #endif 270 #define ptob64(x) (((uint64_t)(x)) << MMU_PAGESHIFT) 271 extern void i86_pp_map(page_t *pp, caddr_t kaddr); 272 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr); 273 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, 274 psm_intr_op_t, int *); 275 extern int impl_ddi_sunbus_initchild(dev_info_t *dip); 276 extern void impl_ddi_sunbus_removechild(dev_info_t *dip); 277 /* 278 * Use device arena to use for device control register mappings. 279 * Various kernel memory walkers (debugger, dtrace) need to know 280 * to avoid this address range to prevent undesired device activity. 281 */ 282 extern void *device_arena_alloc(size_t size, int vm_flag); 283 extern void device_arena_free(void * vaddr, size_t size); 284 285 286 /* 287 * Internal functions 288 */ 289 static int rootnex_dma_init(); 290 static void rootnex_add_props(dev_info_t *); 291 static int rootnex_ctl_reportdev(dev_info_t *dip); 292 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum); 293 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 294 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 295 static int rootnex_map_handle(ddi_map_req_t *mp); 296 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp); 297 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize); 298 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, 299 ddi_dma_attr_t *attr); 300 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 301 rootnex_sglinfo_t *sglinfo); 302 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 303 rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag); 304 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 305 rootnex_dma_t *dma, ddi_dma_attr_t *attr); 306 static void rootnex_teardown_copybuf(rootnex_dma_t *dma); 307 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 308 ddi_dma_attr_t *attr, int kmflag); 309 static void rootnex_teardown_windows(rootnex_dma_t *dma); 310 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 311 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset); 312 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, 313 rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset, 314 size_t *copybuf_used, page_t **cur_pp); 315 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, 316 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, 317 ddi_dma_attr_t *attr, off_t cur_offset); 318 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, 319 rootnex_dma_t *dma, rootnex_window_t **windowp, 320 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used); 321 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, 322 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie); 323 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 324 off_t offset, size_t size, uint_t cache_flags); 325 static int rootnex_verify_buffer(rootnex_dma_t *dma); 326 static int rootnex_dma_check(dev_info_t *dip, const void *handle, 327 const void *comp_addr, const void *not_used); 328 329 /* 330 * _init() 331 * 332 */ 333 int 334 _init(void) 335 { 336 337 rootnex_state = NULL; 338 return (mod_install(&rootnex_modlinkage)); 339 } 340 341 342 /* 343 * _info() 344 * 345 */ 346 int 347 _info(struct modinfo *modinfop) 348 { 349 return (mod_info(&rootnex_modlinkage, modinfop)); 350 } 351 352 353 /* 354 * _fini() 355 * 356 */ 357 int 358 _fini(void) 359 { 360 return (EBUSY); 361 } 362 363 364 /* 365 * rootnex_attach() 366 * 367 */ 368 static int 369 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 370 { 371 int fmcap; 372 int e; 373 374 375 switch (cmd) { 376 case DDI_ATTACH: 377 break; 378 case DDI_RESUME: 379 return (DDI_SUCCESS); 380 default: 381 return (DDI_FAILURE); 382 } 383 384 /* 385 * We should only have one instance of rootnex. Save it away since we 386 * don't have an easy way to get it back later. 387 */ 388 ASSERT(rootnex_state == NULL); 389 rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP); 390 391 rootnex_state->r_dip = dip; 392 rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15); 393 rootnex_state->r_reserved_msg_printed = B_FALSE; 394 rootnex_cnt = &rootnex_state->r_counters[0]; 395 396 /* 397 * Set minimum fm capability level for i86pc platforms and then 398 * initialize error handling. Since we're the rootnex, we don't 399 * care what's returned in the fmcap field. 400 */ 401 ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE | 402 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE; 403 fmcap = ddi_system_fmcap; 404 ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc); 405 406 /* initialize DMA related state */ 407 e = rootnex_dma_init(); 408 if (e != DDI_SUCCESS) { 409 kmem_free(rootnex_state, sizeof (rootnex_state_t)); 410 return (DDI_FAILURE); 411 } 412 413 /* Add static root node properties */ 414 rootnex_add_props(dip); 415 416 /* since we can't call ddi_report_dev() */ 417 cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip)); 418 419 /* Initialize rootnex event handle */ 420 i_ddi_rootnex_init_events(dip); 421 422 return (DDI_SUCCESS); 423 } 424 425 426 /* 427 * rootnex_detach() 428 * 429 */ 430 /*ARGSUSED*/ 431 static int 432 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 433 { 434 switch (cmd) { 435 case DDI_SUSPEND: 436 break; 437 default: 438 return (DDI_FAILURE); 439 } 440 441 return (DDI_SUCCESS); 442 } 443 444 445 /* 446 * rootnex_dma_init() 447 * 448 */ 449 /*ARGSUSED*/ 450 static int 451 rootnex_dma_init() 452 { 453 size_t bufsize; 454 455 456 /* 457 * size of our cookie/window/copybuf state needed in dma bind that we 458 * pre-alloc in dma_alloc_handle 459 */ 460 rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies; 461 rootnex_state->r_prealloc_size = 462 (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) + 463 (rootnex_prealloc_windows * sizeof (rootnex_window_t)) + 464 (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t)); 465 466 /* 467 * setup DDI DMA handle kmem cache, align each handle on 64 bytes, 468 * allocate 16 extra bytes for struct pointer alignment 469 * (p->dmai_private & dma->dp_prealloc_buffer) 470 */ 471 bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) + 472 rootnex_state->r_prealloc_size + 0x10; 473 rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl", 474 bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0); 475 if (rootnex_state->r_dmahdl_cache == NULL) { 476 return (DDI_FAILURE); 477 } 478 479 /* 480 * allocate array to track which major numbers we have printed warnings 481 * for. 482 */ 483 rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list), 484 KM_SLEEP); 485 486 return (DDI_SUCCESS); 487 } 488 489 490 /* 491 * rootnex_add_props() 492 * 493 */ 494 static void 495 rootnex_add_props(dev_info_t *dip) 496 { 497 rootnex_intprop_t *rpp; 498 int i; 499 500 /* Add static integer/boolean properties to the root node */ 501 rpp = rootnex_intprp; 502 for (i = 0; i < NROOT_INTPROPS; i++) { 503 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, 504 rpp[i].prop_name, rpp[i].prop_value); 505 } 506 } 507 508 509 510 /* 511 * ************************* 512 * ctlops related routines 513 * ************************* 514 */ 515 516 /* 517 * rootnex_ctlops() 518 * 519 */ 520 /*ARGSUSED*/ 521 static int 522 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, 523 void *arg, void *result) 524 { 525 int n, *ptr; 526 struct ddi_parent_private_data *pdp; 527 528 switch (ctlop) { 529 case DDI_CTLOPS_DMAPMAPC: 530 /* 531 * Return 'partial' to indicate that dma mapping 532 * has to be done in the main MMU. 533 */ 534 return (DDI_DMA_PARTIAL); 535 536 case DDI_CTLOPS_BTOP: 537 /* 538 * Convert byte count input to physical page units. 539 * (byte counts that are not a page-size multiple 540 * are rounded down) 541 */ 542 *(ulong_t *)result = btop(*(ulong_t *)arg); 543 return (DDI_SUCCESS); 544 545 case DDI_CTLOPS_PTOB: 546 /* 547 * Convert size in physical pages to bytes 548 */ 549 *(ulong_t *)result = ptob(*(ulong_t *)arg); 550 return (DDI_SUCCESS); 551 552 case DDI_CTLOPS_BTOPR: 553 /* 554 * Convert byte count input to physical page units 555 * (byte counts that are not a page-size multiple 556 * are rounded up) 557 */ 558 *(ulong_t *)result = btopr(*(ulong_t *)arg); 559 return (DDI_SUCCESS); 560 561 case DDI_CTLOPS_INITCHILD: 562 return (impl_ddi_sunbus_initchild(arg)); 563 564 case DDI_CTLOPS_UNINITCHILD: 565 impl_ddi_sunbus_removechild(arg); 566 return (DDI_SUCCESS); 567 568 case DDI_CTLOPS_REPORTDEV: 569 return (rootnex_ctl_reportdev(rdip)); 570 571 case DDI_CTLOPS_IOMIN: 572 /* 573 * Nothing to do here but reflect back.. 574 */ 575 return (DDI_SUCCESS); 576 577 case DDI_CTLOPS_REGSIZE: 578 case DDI_CTLOPS_NREGS: 579 break; 580 581 case DDI_CTLOPS_SIDDEV: 582 if (ndi_dev_is_prom_node(rdip)) 583 return (DDI_SUCCESS); 584 if (ndi_dev_is_persistent_node(rdip)) 585 return (DDI_SUCCESS); 586 return (DDI_FAILURE); 587 588 case DDI_CTLOPS_POWER: 589 return ((*pm_platform_power)((power_req_t *)arg)); 590 591 case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */ 592 case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */ 593 case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */ 594 case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */ 595 case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */ 596 case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */ 597 if (!rootnex_state->r_reserved_msg_printed) { 598 rootnex_state->r_reserved_msg_printed = B_TRUE; 599 cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for " 600 "1 or more reserved/obsolete operations."); 601 } 602 return (DDI_FAILURE); 603 604 default: 605 return (DDI_FAILURE); 606 } 607 /* 608 * The rest are for "hardware" properties 609 */ 610 if ((pdp = ddi_get_parent_data(rdip)) == NULL) 611 return (DDI_FAILURE); 612 613 if (ctlop == DDI_CTLOPS_NREGS) { 614 ptr = (int *)result; 615 *ptr = pdp->par_nreg; 616 } else { 617 off_t *size = (off_t *)result; 618 619 ptr = (int *)arg; 620 n = *ptr; 621 if (n >= pdp->par_nreg) { 622 return (DDI_FAILURE); 623 } 624 *size = (off_t)pdp->par_reg[n].regspec_size; 625 } 626 return (DDI_SUCCESS); 627 } 628 629 630 /* 631 * rootnex_ctl_reportdev() 632 * 633 */ 634 static int 635 rootnex_ctl_reportdev(dev_info_t *dev) 636 { 637 int i, n, len, f_len = 0; 638 char *buf; 639 640 buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP); 641 f_len += snprintf(buf, REPORTDEV_BUFSIZE, 642 "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev)); 643 len = strlen(buf); 644 645 for (i = 0; i < sparc_pd_getnreg(dev); i++) { 646 647 struct regspec *rp = sparc_pd_getreg(dev, i); 648 649 if (i == 0) 650 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 651 ": "); 652 else 653 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 654 " and "); 655 len = strlen(buf); 656 657 switch (rp->regspec_bustype) { 658 659 case BTEISA: 660 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 661 "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr); 662 break; 663 664 case BTISA: 665 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 666 "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr); 667 break; 668 669 default: 670 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 671 "space %x offset %x", 672 rp->regspec_bustype, rp->regspec_addr); 673 break; 674 } 675 len = strlen(buf); 676 } 677 for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) { 678 int pri; 679 680 if (i != 0) { 681 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 682 ","); 683 len = strlen(buf); 684 } 685 pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri); 686 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 687 " sparc ipl %d", pri); 688 len = strlen(buf); 689 } 690 #ifdef DEBUG 691 if (f_len + 1 >= REPORTDEV_BUFSIZE) { 692 cmn_err(CE_NOTE, "next message is truncated: " 693 "printed length 1024, real length %d", f_len); 694 } 695 #endif /* DEBUG */ 696 cmn_err(CE_CONT, "?%s\n", buf); 697 kmem_free(buf, REPORTDEV_BUFSIZE); 698 return (DDI_SUCCESS); 699 } 700 701 702 /* 703 * ****************** 704 * map related code 705 * ****************** 706 */ 707 708 /* 709 * rootnex_map() 710 * 711 */ 712 static int 713 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 714 off_t len, caddr_t *vaddrp) 715 { 716 struct regspec *rp, tmp_reg; 717 ddi_map_req_t mr = *mp; /* Get private copy of request */ 718 int error; 719 720 mp = &mr; 721 722 switch (mp->map_op) { 723 case DDI_MO_MAP_LOCKED: 724 case DDI_MO_UNMAP: 725 case DDI_MO_MAP_HANDLE: 726 break; 727 default: 728 #ifdef DDI_MAP_DEBUG 729 cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.", 730 mp->map_op); 731 #endif /* DDI_MAP_DEBUG */ 732 return (DDI_ME_UNIMPLEMENTED); 733 } 734 735 if (mp->map_flags & DDI_MF_USER_MAPPING) { 736 #ifdef DDI_MAP_DEBUG 737 cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user."); 738 #endif /* DDI_MAP_DEBUG */ 739 return (DDI_ME_UNIMPLEMENTED); 740 } 741 742 /* 743 * First, if given an rnumber, convert it to a regspec... 744 * (Presumably, this is on behalf of a child of the root node?) 745 */ 746 747 if (mp->map_type == DDI_MT_RNUMBER) { 748 749 int rnumber = mp->map_obj.rnumber; 750 #ifdef DDI_MAP_DEBUG 751 static char *out_of_range = 752 "rootnex_map: Out of range rnumber <%d>, device <%s>"; 753 #endif /* DDI_MAP_DEBUG */ 754 755 rp = i_ddi_rnumber_to_regspec(rdip, rnumber); 756 if (rp == NULL) { 757 #ifdef DDI_MAP_DEBUG 758 cmn_err(CE_WARN, out_of_range, rnumber, 759 ddi_get_name(rdip)); 760 #endif /* DDI_MAP_DEBUG */ 761 return (DDI_ME_RNUMBER_RANGE); 762 } 763 764 /* 765 * Convert the given ddi_map_req_t from rnumber to regspec... 766 */ 767 768 mp->map_type = DDI_MT_REGSPEC; 769 mp->map_obj.rp = rp; 770 } 771 772 /* 773 * Adjust offset and length correspnding to called values... 774 * XXX: A non-zero length means override the one in the regspec 775 * XXX: (regardless of what's in the parent's range?) 776 */ 777 778 tmp_reg = *(mp->map_obj.rp); /* Preserve underlying data */ 779 rp = mp->map_obj.rp = &tmp_reg; /* Use tmp_reg in request */ 780 781 #ifdef DDI_MAP_DEBUG 782 cmn_err(CE_CONT, 783 "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d>" 784 " offset %d len %d handle 0x%x\n", 785 ddi_get_name(dip), ddi_get_name(rdip), 786 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, 787 offset, len, mp->map_handlep); 788 #endif /* DDI_MAP_DEBUG */ 789 790 /* 791 * I/O or memory mapping: 792 * 793 * <bustype=0, addr=x, len=x>: memory 794 * <bustype=1, addr=x, len=x>: i/o 795 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 796 */ 797 798 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 799 cmn_err(CE_WARN, "<%s,%s> invalid register spec" 800 " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip), 801 ddi_get_name(rdip), rp->regspec_bustype, 802 rp->regspec_addr, rp->regspec_size); 803 return (DDI_ME_INVAL); 804 } 805 806 if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) { 807 /* 808 * compatibility i/o mapping 809 */ 810 rp->regspec_bustype += (uint_t)offset; 811 } else { 812 /* 813 * Normal memory or i/o mapping 814 */ 815 rp->regspec_addr += (uint_t)offset; 816 } 817 818 if (len != 0) 819 rp->regspec_size = (uint_t)len; 820 821 #ifdef DDI_MAP_DEBUG 822 cmn_err(CE_CONT, 823 " <%s,%s> <0x%x, 0x%x, 0x%d>" 824 " offset %d len %d handle 0x%x\n", 825 ddi_get_name(dip), ddi_get_name(rdip), 826 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, 827 offset, len, mp->map_handlep); 828 #endif /* DDI_MAP_DEBUG */ 829 830 /* 831 * Apply any parent ranges at this level, if applicable. 832 * (This is where nexus specific regspec translation takes place. 833 * Use of this function is implicit agreement that translation is 834 * provided via ddi_apply_range.) 835 */ 836 837 #ifdef DDI_MAP_DEBUG 838 ddi_map_debug("applying range of parent <%s> to child <%s>...\n", 839 ddi_get_name(dip), ddi_get_name(rdip)); 840 #endif /* DDI_MAP_DEBUG */ 841 842 if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0) 843 return (error); 844 845 switch (mp->map_op) { 846 case DDI_MO_MAP_LOCKED: 847 848 /* 849 * Set up the locked down kernel mapping to the regspec... 850 */ 851 852 return (rootnex_map_regspec(mp, vaddrp)); 853 854 case DDI_MO_UNMAP: 855 856 /* 857 * Release mapping... 858 */ 859 860 return (rootnex_unmap_regspec(mp, vaddrp)); 861 862 case DDI_MO_MAP_HANDLE: 863 864 return (rootnex_map_handle(mp)); 865 866 default: 867 return (DDI_ME_UNIMPLEMENTED); 868 } 869 } 870 871 872 /* 873 * rootnex_map_fault() 874 * 875 * fault in mappings for requestors 876 */ 877 /*ARGSUSED*/ 878 static int 879 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat, 880 struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, 881 uint_t lock) 882 { 883 884 #ifdef DDI_MAP_DEBUG 885 ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn); 886 ddi_map_debug(" Seg <%s>\n", 887 seg->s_ops == &segdev_ops ? "segdev" : 888 seg == &kvseg ? "segkmem" : "NONE!"); 889 #endif /* DDI_MAP_DEBUG */ 890 891 /* 892 * This is all terribly broken, but it is a start 893 * 894 * XXX Note that this test means that segdev_ops 895 * must be exported from seg_dev.c. 896 * XXX What about devices with their own segment drivers? 897 */ 898 if (seg->s_ops == &segdev_ops) { 899 struct segdev_data *sdp = 900 (struct segdev_data *)seg->s_data; 901 902 if (hat == NULL) { 903 /* 904 * This is one plausible interpretation of 905 * a null hat i.e. use the first hat on the 906 * address space hat list which by convention is 907 * the hat of the system MMU. At alternative 908 * would be to panic .. this might well be better .. 909 */ 910 ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)); 911 hat = seg->s_as->a_hat; 912 cmn_err(CE_NOTE, "rootnex_map_fault: nil hat"); 913 } 914 hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr, 915 (lock ? HAT_LOAD_LOCK : HAT_LOAD)); 916 } else if (seg == &kvseg && dp == NULL) { 917 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot, 918 HAT_LOAD_LOCK); 919 } else 920 return (DDI_FAILURE); 921 return (DDI_SUCCESS); 922 } 923 924 925 /* 926 * rootnex_map_regspec() 927 * we don't support mapping of I/O cards above 4Gb 928 */ 929 static int 930 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 931 { 932 ulong_t base; 933 void *cvaddr; 934 uint_t npages, pgoffset; 935 struct regspec *rp; 936 ddi_acc_hdl_t *hp; 937 ddi_acc_impl_t *ap; 938 uint_t hat_acc_flags; 939 940 rp = mp->map_obj.rp; 941 hp = mp->map_handlep; 942 943 #ifdef DDI_MAP_DEBUG 944 ddi_map_debug( 945 "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n", 946 rp->regspec_bustype, rp->regspec_addr, 947 rp->regspec_size, mp->map_handlep); 948 #endif /* DDI_MAP_DEBUG */ 949 950 /* 951 * I/O or memory mapping 952 * 953 * <bustype=0, addr=x, len=x>: memory 954 * <bustype=1, addr=x, len=x>: i/o 955 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 956 */ 957 958 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 959 cmn_err(CE_WARN, "rootnex: invalid register spec" 960 " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype, 961 rp->regspec_addr, rp->regspec_size); 962 return (DDI_FAILURE); 963 } 964 965 if (rp->regspec_bustype != 0) { 966 /* 967 * I/O space - needs a handle. 968 */ 969 if (hp == NULL) { 970 return (DDI_FAILURE); 971 } 972 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 973 ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE; 974 impl_acc_hdl_init(hp); 975 976 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 977 #ifdef DDI_MAP_DEBUG 978 ddi_map_debug("rootnex_map_regspec: mmap() \ 979 to I/O space is not supported.\n"); 980 #endif /* DDI_MAP_DEBUG */ 981 return (DDI_ME_INVAL); 982 } else { 983 /* 984 * 1275-compliant vs. compatibility i/o mapping 985 */ 986 *vaddrp = 987 (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ? 988 ((caddr_t)(uintptr_t)rp->regspec_bustype) : 989 ((caddr_t)(uintptr_t)rp->regspec_addr); 990 991 hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr & 992 (~MMU_PAGEOFFSET)); 993 hp->ah_pnum = mmu_btopr(rp->regspec_size + 994 (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET); 995 } 996 997 #ifdef DDI_MAP_DEBUG 998 ddi_map_debug( 999 "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n", 1000 rp->regspec_size, *vaddrp); 1001 #endif /* DDI_MAP_DEBUG */ 1002 return (DDI_SUCCESS); 1003 } 1004 1005 /* 1006 * Memory space 1007 */ 1008 1009 if (hp != NULL) { 1010 /* 1011 * hat layer ignores 1012 * hp->ah_acc.devacc_attr_endian_flags. 1013 */ 1014 switch (hp->ah_acc.devacc_attr_dataorder) { 1015 case DDI_STRICTORDER_ACC: 1016 hat_acc_flags = HAT_STRICTORDER; 1017 break; 1018 case DDI_UNORDERED_OK_ACC: 1019 hat_acc_flags = HAT_UNORDERED_OK; 1020 break; 1021 case DDI_MERGING_OK_ACC: 1022 hat_acc_flags = HAT_MERGING_OK; 1023 break; 1024 case DDI_LOADCACHING_OK_ACC: 1025 hat_acc_flags = HAT_LOADCACHING_OK; 1026 break; 1027 case DDI_STORECACHING_OK_ACC: 1028 hat_acc_flags = HAT_STORECACHING_OK; 1029 break; 1030 } 1031 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 1032 ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1033 impl_acc_hdl_init(hp); 1034 hp->ah_hat_flags = hat_acc_flags; 1035 } else { 1036 hat_acc_flags = HAT_STRICTORDER; 1037 } 1038 1039 base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */ 1040 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */ 1041 1042 if (rp->regspec_size == 0) { 1043 #ifdef DDI_MAP_DEBUG 1044 ddi_map_debug("rootnex_map_regspec: zero regspec_size\n"); 1045 #endif /* DDI_MAP_DEBUG */ 1046 return (DDI_ME_INVAL); 1047 } 1048 1049 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 1050 *vaddrp = (caddr_t)mmu_btop(base); 1051 } else { 1052 npages = mmu_btopr(rp->regspec_size + pgoffset); 1053 1054 #ifdef DDI_MAP_DEBUG 1055 ddi_map_debug("rootnex_map_regspec: Mapping %d pages \ 1056 physical %x ", 1057 npages, base); 1058 #endif /* DDI_MAP_DEBUG */ 1059 1060 cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP); 1061 if (cvaddr == NULL) 1062 return (DDI_ME_NORESOURCES); 1063 1064 /* 1065 * Now map in the pages we've allocated... 1066 */ 1067 hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages), mmu_btop(base), 1068 mp->map_prot | hat_acc_flags, HAT_LOAD_LOCK); 1069 *vaddrp = (caddr_t)cvaddr + pgoffset; 1070 1071 /* save away pfn and npages for FMA */ 1072 hp = mp->map_handlep; 1073 if (hp) { 1074 hp->ah_pfn = mmu_btop(base); 1075 hp->ah_pnum = npages; 1076 } 1077 } 1078 1079 #ifdef DDI_MAP_DEBUG 1080 ddi_map_debug("at virtual 0x%x\n", *vaddrp); 1081 #endif /* DDI_MAP_DEBUG */ 1082 return (DDI_SUCCESS); 1083 } 1084 1085 1086 /* 1087 * rootnex_unmap_regspec() 1088 * 1089 */ 1090 static int 1091 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 1092 { 1093 caddr_t addr = (caddr_t)*vaddrp; 1094 uint_t npages, pgoffset; 1095 struct regspec *rp; 1096 1097 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) 1098 return (0); 1099 1100 rp = mp->map_obj.rp; 1101 1102 if (rp->regspec_size == 0) { 1103 #ifdef DDI_MAP_DEBUG 1104 ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n"); 1105 #endif /* DDI_MAP_DEBUG */ 1106 return (DDI_ME_INVAL); 1107 } 1108 1109 /* 1110 * I/O or memory mapping: 1111 * 1112 * <bustype=0, addr=x, len=x>: memory 1113 * <bustype=1, addr=x, len=x>: i/o 1114 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1115 */ 1116 if (rp->regspec_bustype != 0) { 1117 /* 1118 * This is I/O space, which requires no particular 1119 * processing on unmap since it isn't mapped in the 1120 * first place. 1121 */ 1122 return (DDI_SUCCESS); 1123 } 1124 1125 /* 1126 * Memory space 1127 */ 1128 pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET; 1129 npages = mmu_btopr(rp->regspec_size + pgoffset); 1130 hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK); 1131 device_arena_free(addr - pgoffset, ptob(npages)); 1132 1133 /* 1134 * Destroy the pointer - the mapping has logically gone 1135 */ 1136 *vaddrp = NULL; 1137 1138 return (DDI_SUCCESS); 1139 } 1140 1141 1142 /* 1143 * rootnex_map_handle() 1144 * 1145 */ 1146 static int 1147 rootnex_map_handle(ddi_map_req_t *mp) 1148 { 1149 ddi_acc_hdl_t *hp; 1150 ulong_t base; 1151 uint_t pgoffset; 1152 struct regspec *rp; 1153 1154 rp = mp->map_obj.rp; 1155 1156 #ifdef DDI_MAP_DEBUG 1157 ddi_map_debug( 1158 "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n", 1159 rp->regspec_bustype, rp->regspec_addr, 1160 rp->regspec_size, mp->map_handlep); 1161 #endif /* DDI_MAP_DEBUG */ 1162 1163 /* 1164 * I/O or memory mapping: 1165 * 1166 * <bustype=0, addr=x, len=x>: memory 1167 * <bustype=1, addr=x, len=x>: i/o 1168 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1169 */ 1170 if (rp->regspec_bustype != 0) { 1171 /* 1172 * This refers to I/O space, and we don't support "mapping" 1173 * I/O space to a user. 1174 */ 1175 return (DDI_FAILURE); 1176 } 1177 1178 /* 1179 * Set up the hat_flags for the mapping. 1180 */ 1181 hp = mp->map_handlep; 1182 1183 switch (hp->ah_acc.devacc_attr_endian_flags) { 1184 case DDI_NEVERSWAP_ACC: 1185 hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER; 1186 break; 1187 case DDI_STRUCTURE_LE_ACC: 1188 hp->ah_hat_flags = HAT_STRUCTURE_LE; 1189 break; 1190 case DDI_STRUCTURE_BE_ACC: 1191 return (DDI_FAILURE); 1192 default: 1193 return (DDI_REGS_ACC_CONFLICT); 1194 } 1195 1196 switch (hp->ah_acc.devacc_attr_dataorder) { 1197 case DDI_STRICTORDER_ACC: 1198 break; 1199 case DDI_UNORDERED_OK_ACC: 1200 hp->ah_hat_flags |= HAT_UNORDERED_OK; 1201 break; 1202 case DDI_MERGING_OK_ACC: 1203 hp->ah_hat_flags |= HAT_MERGING_OK; 1204 break; 1205 case DDI_LOADCACHING_OK_ACC: 1206 hp->ah_hat_flags |= HAT_LOADCACHING_OK; 1207 break; 1208 case DDI_STORECACHING_OK_ACC: 1209 hp->ah_hat_flags |= HAT_STORECACHING_OK; 1210 break; 1211 default: 1212 return (DDI_FAILURE); 1213 } 1214 1215 base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */ 1216 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */ 1217 1218 if (rp->regspec_size == 0) 1219 return (DDI_ME_INVAL); 1220 1221 hp->ah_pfn = mmu_btop(base); 1222 hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset); 1223 1224 return (DDI_SUCCESS); 1225 } 1226 1227 1228 1229 /* 1230 * ************************ 1231 * interrupt related code 1232 * ************************ 1233 */ 1234 1235 /* 1236 * rootnex_intr_ops() 1237 * bus_intr_op() function for interrupt support 1238 */ 1239 /* ARGSUSED */ 1240 static int 1241 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op, 1242 ddi_intr_handle_impl_t *hdlp, void *result) 1243 { 1244 struct intrspec *ispec; 1245 struct ddi_parent_private_data *pdp; 1246 1247 DDI_INTR_NEXDBG((CE_CONT, 1248 "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n", 1249 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp)); 1250 1251 /* Process the interrupt operation */ 1252 switch (intr_op) { 1253 case DDI_INTROP_GETCAP: 1254 /* First check with pcplusmp */ 1255 if (psm_intr_ops == NULL) 1256 return (DDI_FAILURE); 1257 1258 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) { 1259 *(int *)result = 0; 1260 return (DDI_FAILURE); 1261 } 1262 break; 1263 case DDI_INTROP_SETCAP: 1264 if (psm_intr_ops == NULL) 1265 return (DDI_FAILURE); 1266 1267 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result)) 1268 return (DDI_FAILURE); 1269 break; 1270 case DDI_INTROP_ALLOC: 1271 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1272 return (DDI_FAILURE); 1273 hdlp->ih_pri = ispec->intrspec_pri; 1274 *(int *)result = hdlp->ih_scratch1; 1275 break; 1276 case DDI_INTROP_FREE: 1277 pdp = ddi_get_parent_data(rdip); 1278 /* 1279 * Special case for 'pcic' driver' only. 1280 * If an intrspec was created for it, clean it up here 1281 * See detailed comments on this in the function 1282 * rootnex_get_ispec(). 1283 */ 1284 if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1285 kmem_free(pdp->par_intr, sizeof (struct intrspec) * 1286 pdp->par_nintr); 1287 /* 1288 * Set it to zero; so that 1289 * DDI framework doesn't free it again 1290 */ 1291 pdp->par_intr = NULL; 1292 pdp->par_nintr = 0; 1293 } 1294 break; 1295 case DDI_INTROP_GETPRI: 1296 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1297 return (DDI_FAILURE); 1298 *(int *)result = ispec->intrspec_pri; 1299 break; 1300 case DDI_INTROP_SETPRI: 1301 /* Validate the interrupt priority passed to us */ 1302 if (*(int *)result > LOCK_LEVEL) 1303 return (DDI_FAILURE); 1304 1305 /* Ensure that PSM is all initialized and ispec is ok */ 1306 if ((psm_intr_ops == NULL) || 1307 ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)) 1308 return (DDI_FAILURE); 1309 1310 /* Change the priority */ 1311 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) == 1312 PSM_FAILURE) 1313 return (DDI_FAILURE); 1314 1315 /* update the ispec with the new priority */ 1316 ispec->intrspec_pri = *(int *)result; 1317 break; 1318 case DDI_INTROP_ADDISR: 1319 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1320 return (DDI_FAILURE); 1321 ispec->intrspec_func = hdlp->ih_cb_func; 1322 break; 1323 case DDI_INTROP_REMISR: 1324 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1325 return (DDI_FAILURE); 1326 ispec->intrspec_func = (uint_t (*)()) 0; 1327 break; 1328 case DDI_INTROP_ENABLE: 1329 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1330 return (DDI_FAILURE); 1331 1332 /* Call psmi to translate irq with the dip */ 1333 if (psm_intr_ops == NULL) 1334 return (DDI_FAILURE); 1335 1336 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1337 (void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, 1338 (int *)&hdlp->ih_vector); 1339 1340 /* Add the interrupt handler */ 1341 if (!add_avintr((void *)hdlp, ispec->intrspec_pri, 1342 hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector, 1343 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip)) 1344 return (DDI_FAILURE); 1345 break; 1346 case DDI_INTROP_DISABLE: 1347 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1348 return (DDI_FAILURE); 1349 1350 /* Call psm_ops() to translate irq with the dip */ 1351 if (psm_intr_ops == NULL) 1352 return (DDI_FAILURE); 1353 1354 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1355 (void) (*psm_intr_ops)(rdip, hdlp, 1356 PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector); 1357 1358 /* Remove the interrupt handler */ 1359 rem_avintr((void *)hdlp, ispec->intrspec_pri, 1360 hdlp->ih_cb_func, hdlp->ih_vector); 1361 break; 1362 case DDI_INTROP_SETMASK: 1363 if (psm_intr_ops == NULL) 1364 return (DDI_FAILURE); 1365 1366 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL)) 1367 return (DDI_FAILURE); 1368 break; 1369 case DDI_INTROP_CLRMASK: 1370 if (psm_intr_ops == NULL) 1371 return (DDI_FAILURE); 1372 1373 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL)) 1374 return (DDI_FAILURE); 1375 break; 1376 case DDI_INTROP_GETPENDING: 1377 if (psm_intr_ops == NULL) 1378 return (DDI_FAILURE); 1379 1380 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING, 1381 result)) { 1382 *(int *)result = 0; 1383 return (DDI_FAILURE); 1384 } 1385 break; 1386 case DDI_INTROP_NINTRS: 1387 if ((pdp = ddi_get_parent_data(rdip)) == NULL) 1388 return (DDI_FAILURE); 1389 *(int *)result = pdp->par_nintr; 1390 if (pdp->par_nintr == 0) { 1391 /* 1392 * Special case for 'pcic' driver' only. This driver 1393 * driver is a child of 'isa' and 'rootnex' drivers. 1394 * 1395 * See detailed comments on this in the function 1396 * rootnex_get_ispec(). 1397 * 1398 * Children of 'pcic' send 'NINITR' request all the 1399 * way to rootnex driver. But, the 'pdp->par_nintr' 1400 * field may not initialized. So, we fake it here 1401 * to return 1 (a la what PCMCIA nexus does). 1402 */ 1403 if (strcmp(ddi_get_name(rdip), "pcic") == 0) 1404 *(int *)result = 1; 1405 } 1406 break; 1407 case DDI_INTROP_SUPPORTED_TYPES: 1408 *(int *)result = 0; 1409 *(int *)result |= DDI_INTR_TYPE_FIXED; /* Always ... */ 1410 break; 1411 case DDI_INTROP_NAVAIL: 1412 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1413 return (DDI_FAILURE); 1414 1415 if (psm_intr_ops == NULL) { 1416 *(int *)result = 1; 1417 break; 1418 } 1419 1420 /* Priority in the handle not initialized yet */ 1421 hdlp->ih_pri = ispec->intrspec_pri; 1422 (void) (*psm_intr_ops)(rdip, hdlp, 1423 PSM_INTR_OP_NAVAIL_VECTORS, result); 1424 break; 1425 default: 1426 return (DDI_FAILURE); 1427 } 1428 1429 return (DDI_SUCCESS); 1430 } 1431 1432 1433 /* 1434 * rootnex_get_ispec() 1435 * convert an interrupt number to an interrupt specification. 1436 * The interrupt number determines which interrupt spec will be 1437 * returned if more than one exists. 1438 * 1439 * Look into the parent private data area of the 'rdip' to find out 1440 * the interrupt specification. First check to make sure there is 1441 * one that matchs "inumber" and then return a pointer to it. 1442 * 1443 * Return NULL if one could not be found. 1444 * 1445 * NOTE: This is needed for rootnex_intr_ops() 1446 */ 1447 static struct intrspec * 1448 rootnex_get_ispec(dev_info_t *rdip, int inum) 1449 { 1450 struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip); 1451 1452 /* 1453 * Special case handling for drivers that provide their own 1454 * intrspec structures instead of relying on the DDI framework. 1455 * 1456 * A broken hardware driver in ON could potentially provide its 1457 * own intrspec structure, instead of relying on the hardware. 1458 * If these drivers are children of 'rootnex' then we need to 1459 * continue to provide backward compatibility to them here. 1460 * 1461 * Following check is a special case for 'pcic' driver which 1462 * was found to have broken hardwre andby provides its own intrspec. 1463 * 1464 * Verbatim comments from this driver are shown here: 1465 * "Don't use the ddi_add_intr since we don't have a 1466 * default intrspec in all cases." 1467 * 1468 * Since an 'ispec' may not be always created for it, 1469 * check for that and create one if so. 1470 * 1471 * NOTE: Currently 'pcic' is the only driver found to do this. 1472 */ 1473 if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1474 pdp->par_nintr = 1; 1475 pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) * 1476 pdp->par_nintr, KM_SLEEP); 1477 } 1478 1479 /* Validate the interrupt number */ 1480 if (inum >= pdp->par_nintr) 1481 return (NULL); 1482 1483 /* Get the interrupt structure pointer and return that */ 1484 return ((struct intrspec *)&pdp->par_intr[inum]); 1485 } 1486 1487 1488 /* 1489 * ****************** 1490 * dma related code 1491 * ****************** 1492 */ 1493 1494 /* 1495 * rootnex_dma_allochdl() 1496 * called from ddi_dma_alloc_handle(). 1497 */ 1498 /*ARGSUSED*/ 1499 static int 1500 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1501 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 1502 { 1503 uint64_t maxsegmentsize_ll; 1504 uint_t maxsegmentsize; 1505 ddi_dma_impl_t *hp; 1506 rootnex_dma_t *dma; 1507 uint64_t count_max; 1508 uint64_t seg; 1509 int kmflag; 1510 int e; 1511 1512 1513 /* convert our sleep flags */ 1514 if (waitfp == DDI_DMA_SLEEP) { 1515 kmflag = KM_SLEEP; 1516 } else { 1517 kmflag = KM_NOSLEEP; 1518 } 1519 1520 /* 1521 * We try to do only one memory allocation here. We'll do a little 1522 * pointer manipulation later. If the bind ends up taking more than 1523 * our prealloc's space, we'll have to allocate more memory in the 1524 * bind operation. Not great, but much better than before and the 1525 * best we can do with the current bind interfaces. 1526 */ 1527 hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag); 1528 if (hp == NULL) { 1529 if (waitfp != DDI_DMA_DONTWAIT) { 1530 ddi_set_callback(waitfp, arg, 1531 &rootnex_state->r_dvma_call_list_id); 1532 } 1533 return (DDI_DMA_NORESOURCES); 1534 } 1535 1536 /* Do our pointer manipulation now, align the structures */ 1537 hp->dmai_private = (void *)(((uintptr_t)hp + 1538 (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7); 1539 dma = (rootnex_dma_t *)hp->dmai_private; 1540 dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma + 1541 sizeof (rootnex_dma_t) + 0x7) & ~0x7); 1542 1543 /* setup the handle */ 1544 rootnex_clean_dmahdl(hp); 1545 dma->dp_dip = rdip; 1546 dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo; 1547 dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi; 1548 hp->dmai_minxfer = attr->dma_attr_minxfer; 1549 hp->dmai_burstsizes = attr->dma_attr_burstsizes; 1550 hp->dmai_rdip = rdip; 1551 hp->dmai_attr = *attr; 1552 1553 /* we don't need to worry about the SPL since we do a tryenter */ 1554 mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL); 1555 1556 /* 1557 * Figure out our maximum segment size. If the segment size is greater 1558 * than 4G, we will limit it to (4G - 1) since the max size of a dma 1559 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and 1560 * dma_attr_count_max are size-1 type values. 1561 * 1562 * Maximum segment size is the largest physically contiguous chunk of 1563 * memory that we can return from a bind (i.e. the maximum size of a 1564 * single cookie). 1565 */ 1566 1567 /* handle the rollover cases */ 1568 seg = attr->dma_attr_seg + 1; 1569 if (seg < attr->dma_attr_seg) { 1570 seg = attr->dma_attr_seg; 1571 } 1572 count_max = attr->dma_attr_count_max + 1; 1573 if (count_max < attr->dma_attr_count_max) { 1574 count_max = attr->dma_attr_count_max; 1575 } 1576 1577 /* 1578 * granularity may or may not be a power of two. If it isn't, we can't 1579 * use a simple mask. 1580 */ 1581 if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) { 1582 dma->dp_granularity_power_2 = B_FALSE; 1583 } else { 1584 dma->dp_granularity_power_2 = B_TRUE; 1585 } 1586 1587 /* 1588 * maxxfer should be a whole multiple of granularity. If we're going to 1589 * break up a window because we're greater than maxxfer, we might as 1590 * well make sure it's maxxfer is a whole multiple so we don't have to 1591 * worry about triming the window later on for this case. 1592 */ 1593 if (attr->dma_attr_granular > 1) { 1594 if (dma->dp_granularity_power_2) { 1595 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1596 (attr->dma_attr_maxxfer & 1597 (attr->dma_attr_granular - 1)); 1598 } else { 1599 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1600 (attr->dma_attr_maxxfer % attr->dma_attr_granular); 1601 } 1602 } else { 1603 dma->dp_maxxfer = attr->dma_attr_maxxfer; 1604 } 1605 1606 maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer); 1607 maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max); 1608 if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) { 1609 maxsegmentsize = 0xFFFFFFFF; 1610 } else { 1611 maxsegmentsize = maxsegmentsize_ll; 1612 } 1613 dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize; 1614 dma->dp_sglinfo.si_segmask = attr->dma_attr_seg; 1615 1616 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 1617 if (rootnex_alloc_check_parms) { 1618 e = rootnex_valid_alloc_parms(attr, maxsegmentsize); 1619 if (e != DDI_SUCCESS) { 1620 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]); 1621 (void) rootnex_dma_freehdl(dip, rdip, 1622 (ddi_dma_handle_t)hp); 1623 return (e); 1624 } 1625 } 1626 1627 *handlep = (ddi_dma_handle_t)hp; 1628 1629 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1630 DTRACE_PROBE1(rootnex__alloc__handle, uint64_t, 1631 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1632 1633 return (DDI_SUCCESS); 1634 } 1635 1636 1637 /* 1638 * rootnex_dma_freehdl() 1639 * called from ddi_dma_free_handle(). 1640 */ 1641 /*ARGSUSED*/ 1642 static int 1643 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle) 1644 { 1645 ddi_dma_impl_t *hp; 1646 rootnex_dma_t *dma; 1647 1648 1649 hp = (ddi_dma_impl_t *)handle; 1650 dma = (rootnex_dma_t *)hp->dmai_private; 1651 1652 /* unbind should have been called first */ 1653 ASSERT(!dma->dp_inuse); 1654 1655 mutex_destroy(&dma->dp_mutex); 1656 kmem_cache_free(rootnex_state->r_dmahdl_cache, hp); 1657 1658 ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1659 DTRACE_PROBE1(rootnex__free__handle, uint64_t, 1660 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1661 1662 if (rootnex_state->r_dvma_call_list_id) 1663 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 1664 1665 return (DDI_SUCCESS); 1666 } 1667 1668 1669 /* 1670 * rootnex_dma_bindhdl() 1671 * called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle(). 1672 */ 1673 /*ARGSUSED*/ 1674 static int 1675 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 1676 struct ddi_dma_req *dmareq, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 1677 { 1678 rootnex_sglinfo_t *sinfo; 1679 ddi_dma_attr_t *attr; 1680 ddi_dma_impl_t *hp; 1681 rootnex_dma_t *dma; 1682 int kmflag; 1683 int e; 1684 1685 1686 hp = (ddi_dma_impl_t *)handle; 1687 dma = (rootnex_dma_t *)hp->dmai_private; 1688 sinfo = &dma->dp_sglinfo; 1689 attr = &hp->dmai_attr; 1690 1691 hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS; 1692 1693 /* 1694 * This is useful for debugging a driver. Not as useful in a production 1695 * system. The only time this will fail is if you have a driver bug. 1696 */ 1697 if (rootnex_bind_check_inuse) { 1698 /* 1699 * No one else should ever have this lock unless someone else 1700 * is trying to use this handle. So contention on the lock 1701 * is the same as inuse being set. 1702 */ 1703 e = mutex_tryenter(&dma->dp_mutex); 1704 if (e == 0) { 1705 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1706 return (DDI_DMA_INUSE); 1707 } 1708 if (dma->dp_inuse) { 1709 mutex_exit(&dma->dp_mutex); 1710 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1711 return (DDI_DMA_INUSE); 1712 } 1713 dma->dp_inuse = B_TRUE; 1714 mutex_exit(&dma->dp_mutex); 1715 } 1716 1717 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 1718 if (rootnex_bind_check_parms) { 1719 e = rootnex_valid_bind_parms(dmareq, attr); 1720 if (e != DDI_SUCCESS) { 1721 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1722 rootnex_clean_dmahdl(hp); 1723 return (e); 1724 } 1725 } 1726 1727 /* save away the original bind info */ 1728 dma->dp_dma = dmareq->dmar_object; 1729 1730 /* 1731 * Figure out a rough estimate of what maximum number of pages this 1732 * buffer could use (a high estimate of course). 1733 */ 1734 sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1; 1735 1736 /* 1737 * We'll use the pre-allocated cookies for any bind that will *always* 1738 * fit (more important to be consistent, we don't want to create 1739 * additional degenerate cases). 1740 */ 1741 if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) { 1742 dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer; 1743 dma->dp_need_to_free_cookie = B_FALSE; 1744 DTRACE_PROBE2(rootnex__bind__prealloc, dev_info_t *, rdip, 1745 uint_t, sinfo->si_max_pages); 1746 1747 /* 1748 * For anything larger than that, we'll go ahead and allocate the 1749 * maximum number of pages we expect to see. Hopefuly, we won't be 1750 * seeing this path in the fast path for high performance devices very 1751 * frequently. 1752 * 1753 * a ddi bind interface that allowed the driver to provide storage to 1754 * the bind interface would speed this case up. 1755 */ 1756 } else { 1757 /* convert the sleep flags */ 1758 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 1759 kmflag = KM_SLEEP; 1760 } else { 1761 kmflag = KM_NOSLEEP; 1762 } 1763 1764 /* 1765 * Save away how much memory we allocated. If we're doing a 1766 * nosleep, the alloc could fail... 1767 */ 1768 dma->dp_cookie_size = sinfo->si_max_pages * 1769 sizeof (ddi_dma_cookie_t); 1770 dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag); 1771 if (dma->dp_cookies == NULL) { 1772 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1773 rootnex_clean_dmahdl(hp); 1774 return (DDI_DMA_NORESOURCES); 1775 } 1776 dma->dp_need_to_free_cookie = B_TRUE; 1777 DTRACE_PROBE2(rootnex__bind__alloc, dev_info_t *, rdip, uint_t, 1778 sinfo->si_max_pages); 1779 } 1780 hp->dmai_cookie = dma->dp_cookies; 1781 1782 /* 1783 * Get the real sgl. rootnex_get_sgl will fill in cookie array while 1784 * looking at the contraints in the dma structure. It will then put some 1785 * additional state about the sgl in the dma struct (i.e. is the sgl 1786 * clean, or do we need to do some munging; how many pages need to be 1787 * copied, etc.) 1788 */ 1789 rootnex_get_sgl(&dmareq->dmar_object, dma->dp_cookies, 1790 &dma->dp_sglinfo); 1791 ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages); 1792 1793 /* if we don't need a copy buffer, we don't need to sync */ 1794 if (sinfo->si_copybuf_req == 0) { 1795 hp->dmai_rflags |= DMP_NOSYNC; 1796 } 1797 1798 /* 1799 * If the driver supports FMA, insert the handle in the FMA DMA handle 1800 * cache. 1801 */ 1802 if (attr->dma_attr_flags & DDI_DMA_FLAGERR) { 1803 hp->dmai_error.err_cf = rootnex_dma_check; 1804 (void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL); 1805 } 1806 1807 /* 1808 * if we don't need the copybuf and we don't need to do a partial, we 1809 * hit the fast path. All the high performance devices should be trying 1810 * to hit this path. To hit this path, a device should be able to reach 1811 * all of memory, shouldn't try to bind more than it can transfer, and 1812 * the buffer shouldn't require more cookies than the driver/device can 1813 * handle [sgllen]). 1814 */ 1815 if ((sinfo->si_copybuf_req == 0) && 1816 (sinfo->si_sgl_size <= attr->dma_attr_sgllen) && 1817 (dma->dp_dma.dmao_size < dma->dp_maxxfer)) { 1818 /* 1819 * copy out the first cookie and ccountp, set the cookie 1820 * pointer to the second cookie. The first cookie is passed 1821 * back on the stack. Additional cookies are accessed via 1822 * ddi_dma_nextcookie() 1823 */ 1824 *cookiep = dma->dp_cookies[0]; 1825 *ccountp = sinfo->si_sgl_size; 1826 hp->dmai_cookie++; 1827 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 1828 hp->dmai_nwin = 1; 1829 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1830 DTRACE_PROBE3(rootnex__bind__fast, dev_info_t *, rdip, uint64_t, 1831 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t, 1832 dma->dp_dma.dmao_size); 1833 return (DDI_DMA_MAPPED); 1834 } 1835 1836 /* 1837 * go to the slow path, we may need to alloc more memory, create 1838 * multiple windows, and munge up a sgl to make the device happy. 1839 */ 1840 e = rootnex_bind_slowpath(hp, dmareq, dma, attr, kmflag); 1841 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) { 1842 if (dma->dp_need_to_free_cookie) { 1843 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 1844 } 1845 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1846 rootnex_clean_dmahdl(hp); /* must be after free cookie */ 1847 return (e); 1848 } 1849 1850 /* if the first window uses the copy buffer, sync it for the device */ 1851 if ((dma->dp_window[dma->dp_current_win].wd_dosync) && 1852 (hp->dmai_rflags & DDI_DMA_WRITE)) { 1853 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 1854 DDI_DMA_SYNC_FORDEV); 1855 } 1856 1857 /* 1858 * copy out the first cookie and ccountp, set the cookie pointer to the 1859 * second cookie. Make sure the partial flag is set/cleared correctly. 1860 * If we have a partial map (i.e. multiple windows), the number of 1861 * cookies we return is the number of cookies in the first window. 1862 */ 1863 if (e == DDI_DMA_MAPPED) { 1864 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 1865 *ccountp = sinfo->si_sgl_size; 1866 } else { 1867 hp->dmai_rflags |= DDI_DMA_PARTIAL; 1868 *ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt; 1869 ASSERT(hp->dmai_nwin <= dma->dp_max_win); 1870 } 1871 *cookiep = dma->dp_cookies[0]; 1872 hp->dmai_cookie++; 1873 1874 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1875 DTRACE_PROBE3(rootnex__bind__slow, dev_info_t *, rdip, uint64_t, 1876 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t, 1877 dma->dp_dma.dmao_size); 1878 return (e); 1879 } 1880 1881 1882 /* 1883 * rootnex_dma_unbindhdl() 1884 * called from ddi_dma_unbind_handle() 1885 */ 1886 /*ARGSUSED*/ 1887 static int 1888 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1889 ddi_dma_handle_t handle) 1890 { 1891 ddi_dma_impl_t *hp; 1892 rootnex_dma_t *dma; 1893 int e; 1894 1895 1896 hp = (ddi_dma_impl_t *)handle; 1897 dma = (rootnex_dma_t *)hp->dmai_private; 1898 1899 /* make sure the buffer wasn't free'd before calling unbind */ 1900 if (rootnex_unbind_verify_buffer) { 1901 e = rootnex_verify_buffer(dma); 1902 if (e != DDI_SUCCESS) { 1903 ASSERT(0); 1904 return (DDI_FAILURE); 1905 } 1906 } 1907 1908 /* sync the current window before unbinding the buffer */ 1909 if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync && 1910 (hp->dmai_rflags & DDI_DMA_READ)) { 1911 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 1912 DDI_DMA_SYNC_FORCPU); 1913 } 1914 1915 /* 1916 * If the driver supports FMA, remove the handle in the FMA DMA handle 1917 * cache. 1918 */ 1919 if (hp->dmai_attr.dma_attr_flags & DDI_DMA_FLAGERR) { 1920 if ((DEVI(rdip)->devi_fmhdl != NULL) && 1921 (DDI_FM_DMA_ERR_CAP(DEVI(rdip)->devi_fmhdl->fh_cap))) { 1922 (void) ndi_fmc_remove(rdip, DMA_HANDLE, hp); 1923 } 1924 } 1925 1926 /* 1927 * cleanup and copy buffer or window state. if we didn't use the copy 1928 * buffer or windows, there won't be much to do :-) 1929 */ 1930 rootnex_teardown_copybuf(dma); 1931 rootnex_teardown_windows(dma); 1932 1933 /* 1934 * If we had to allocate space to for the worse case sgl (it didn't 1935 * fit into our pre-allocate buffer), free that up now 1936 */ 1937 if (dma->dp_need_to_free_cookie) { 1938 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 1939 } 1940 1941 /* 1942 * clean up the handle so it's ready for the next bind (i.e. if the 1943 * handle is reused). 1944 */ 1945 rootnex_clean_dmahdl(hp); 1946 1947 if (rootnex_state->r_dvma_call_list_id) 1948 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 1949 1950 ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1951 DTRACE_PROBE1(rootnex__unbind, uint64_t, 1952 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1953 1954 return (DDI_SUCCESS); 1955 } 1956 1957 1958 /* 1959 * rootnex_verify_buffer() 1960 * verify buffer wasn't free'd 1961 */ 1962 static int 1963 rootnex_verify_buffer(rootnex_dma_t *dma) 1964 { 1965 page_t **pplist; 1966 caddr_t vaddr; 1967 uint_t pcnt; 1968 uint_t poff; 1969 page_t *pp; 1970 char b; 1971 int i; 1972 1973 /* Figure out how many pages this buffer occupies */ 1974 if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) { 1975 poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET; 1976 } else { 1977 vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr; 1978 poff = (uintptr_t)vaddr & MMU_PAGEOFFSET; 1979 } 1980 pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff); 1981 1982 switch (dma->dp_dma.dmao_type) { 1983 case DMA_OTYP_PAGES: 1984 /* 1985 * for a linked list of pp's walk through them to make sure 1986 * they're locked and not free. 1987 */ 1988 pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp; 1989 for (i = 0; i < pcnt; i++) { 1990 if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) { 1991 return (DDI_FAILURE); 1992 } 1993 pp = pp->p_next; 1994 } 1995 break; 1996 1997 case DMA_OTYP_VADDR: 1998 case DMA_OTYP_BUFVADDR: 1999 pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv; 2000 /* 2001 * for an array of pp's walk through them to make sure they're 2002 * not free. It's possible that they may not be locked. 2003 */ 2004 if (pplist) { 2005 for (i = 0; i < pcnt; i++) { 2006 if (PP_ISFREE(pplist[i])) { 2007 return (DDI_FAILURE); 2008 } 2009 } 2010 2011 /* For a virtual address, try to peek at each page */ 2012 } else { 2013 if (dma->dp_sglinfo.si_asp == &kas) { 2014 for (i = 0; i < pcnt; i++) { 2015 if (ddi_peek8(NULL, vaddr, &b) == 2016 DDI_FAILURE) 2017 return (DDI_FAILURE); 2018 vaddr += MMU_PAGESIZE; 2019 } 2020 } 2021 } 2022 break; 2023 2024 default: 2025 ASSERT(0); 2026 break; 2027 } 2028 2029 return (DDI_SUCCESS); 2030 } 2031 2032 2033 /* 2034 * rootnex_clean_dmahdl() 2035 * Clean the dma handle. This should be called on a handle alloc and an 2036 * unbind handle. Set the handle state to the default settings. 2037 */ 2038 static void 2039 rootnex_clean_dmahdl(ddi_dma_impl_t *hp) 2040 { 2041 rootnex_dma_t *dma; 2042 2043 2044 dma = (rootnex_dma_t *)hp->dmai_private; 2045 2046 hp->dmai_nwin = 0; 2047 dma->dp_current_cookie = 0; 2048 dma->dp_copybuf_size = 0; 2049 dma->dp_window = NULL; 2050 dma->dp_cbaddr = NULL; 2051 dma->dp_inuse = B_FALSE; 2052 dma->dp_need_to_free_cookie = B_FALSE; 2053 dma->dp_need_to_free_window = B_FALSE; 2054 dma->dp_partial_required = B_FALSE; 2055 dma->dp_trim_required = B_FALSE; 2056 dma->dp_sglinfo.si_copybuf_req = 0; 2057 #if !defined(__amd64) 2058 dma->dp_cb_remaping = B_FALSE; 2059 dma->dp_kva = NULL; 2060 #endif 2061 2062 /* FMA related initialization */ 2063 hp->dmai_fault = 0; 2064 hp->dmai_fault_check = NULL; 2065 hp->dmai_fault_notify = NULL; 2066 hp->dmai_error.err_ena = 0; 2067 hp->dmai_error.err_status = DDI_FM_OK; 2068 hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED; 2069 hp->dmai_error.err_ontrap = NULL; 2070 hp->dmai_error.err_fep = NULL; 2071 hp->dmai_error.err_cf = NULL; 2072 } 2073 2074 2075 /* 2076 * rootnex_valid_alloc_parms() 2077 * Called in ddi_dma_alloc_handle path to validate its parameters. 2078 */ 2079 static int 2080 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize) 2081 { 2082 if ((attr->dma_attr_seg < MMU_PAGEOFFSET) || 2083 (attr->dma_attr_count_max < MMU_PAGEOFFSET) || 2084 (attr->dma_attr_granular > MMU_PAGESIZE) || 2085 (attr->dma_attr_maxxfer < MMU_PAGESIZE)) { 2086 return (DDI_DMA_BADATTR); 2087 } 2088 2089 if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) { 2090 return (DDI_DMA_BADATTR); 2091 } 2092 2093 if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET || 2094 MMU_PAGESIZE & (attr->dma_attr_granular - 1) || 2095 attr->dma_attr_sgllen <= 0) { 2096 return (DDI_DMA_BADATTR); 2097 } 2098 2099 /* We should be able to DMA into every byte offset in a page */ 2100 if (maxsegmentsize < MMU_PAGESIZE) { 2101 return (DDI_DMA_BADATTR); 2102 } 2103 2104 return (DDI_SUCCESS); 2105 } 2106 2107 2108 /* 2109 * rootnex_valid_bind_parms() 2110 * Called in ddi_dma_*_bind_handle path to validate its parameters. 2111 */ 2112 /* ARGSUSED */ 2113 static int 2114 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr) 2115 { 2116 #if !defined(__amd64) 2117 /* 2118 * we only support up to a 2G-1 transfer size on 32-bit kernels so 2119 * we can track the offset for the obsoleted interfaces. 2120 */ 2121 if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) { 2122 return (DDI_DMA_TOOBIG); 2123 } 2124 #endif 2125 2126 return (DDI_SUCCESS); 2127 } 2128 2129 2130 /* 2131 * rootnex_get_sgl() 2132 * Called in bind fastpath to get the sgl. Most of this will be replaced 2133 * with a call to the vm layer when vm2.0 comes around... 2134 */ 2135 static void 2136 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 2137 rootnex_sglinfo_t *sglinfo) 2138 { 2139 ddi_dma_atyp_t buftype; 2140 uint64_t last_page; 2141 uint64_t offset; 2142 uint64_t addrhi; 2143 uint64_t addrlo; 2144 uint64_t maxseg; 2145 page_t **pplist; 2146 uint64_t paddr; 2147 uint32_t psize; 2148 uint32_t size; 2149 caddr_t vaddr; 2150 uint_t pcnt; 2151 page_t *pp; 2152 uint_t cnt; 2153 2154 2155 /* shortcuts */ 2156 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 2157 vaddr = dmar_object->dmao_obj.virt_obj.v_addr; 2158 maxseg = sglinfo->si_max_cookie_size; 2159 buftype = dmar_object->dmao_type; 2160 addrhi = sglinfo->si_max_addr; 2161 addrlo = sglinfo->si_min_addr; 2162 size = dmar_object->dmao_size; 2163 2164 pcnt = 0; 2165 cnt = 0; 2166 2167 /* 2168 * if we were passed down a linked list of pages, i.e. pointer to 2169 * page_t, use this to get our physical address and buf offset. 2170 */ 2171 if (buftype == DMA_OTYP_PAGES) { 2172 pp = dmar_object->dmao_obj.pp_obj.pp_pp; 2173 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2174 offset = dmar_object->dmao_obj.pp_obj.pp_offset & 2175 MMU_PAGEOFFSET; 2176 paddr = ptob64(pp->p_pagenum) + offset; 2177 psize = MIN(size, (MMU_PAGESIZE - offset)); 2178 pp = pp->p_next; 2179 sglinfo->si_asp = NULL; 2180 2181 /* 2182 * We weren't passed down a linked list of pages, but if we were passed 2183 * down an array of pages, use this to get our physical address and buf 2184 * offset. 2185 */ 2186 } else if (pplist != NULL) { 2187 ASSERT((buftype == DMA_OTYP_VADDR) || 2188 (buftype == DMA_OTYP_BUFVADDR)); 2189 2190 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2191 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2192 if (sglinfo->si_asp == NULL) { 2193 sglinfo->si_asp = &kas; 2194 } 2195 2196 ASSERT(!PP_ISFREE(pplist[pcnt])); 2197 paddr = ptob64(pplist[pcnt]->p_pagenum); 2198 paddr += offset; 2199 psize = MIN(size, (MMU_PAGESIZE - offset)); 2200 pcnt++; 2201 2202 /* 2203 * All we have is a virtual address, we'll need to call into the VM 2204 * to get the physical address. 2205 */ 2206 } else { 2207 ASSERT((buftype == DMA_OTYP_VADDR) || 2208 (buftype == DMA_OTYP_BUFVADDR)); 2209 2210 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2211 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2212 if (sglinfo->si_asp == NULL) { 2213 sglinfo->si_asp = &kas; 2214 } 2215 2216 paddr = ptob64(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr)); 2217 paddr += offset; 2218 psize = MIN(size, (MMU_PAGESIZE - offset)); 2219 vaddr += psize; 2220 } 2221 2222 /* 2223 * Setup the first cookie with the physical address of the page and the 2224 * size of the page (which takes into account the initial offset into 2225 * the page. 2226 */ 2227 sgl[cnt].dmac_laddress = paddr; 2228 sgl[cnt].dmac_size = psize; 2229 sgl[cnt].dmac_type = 0; 2230 2231 /* 2232 * Save away the buffer offset into the page. We'll need this later in 2233 * the copy buffer code to help figure out the page index within the 2234 * buffer and the offset into the current page. 2235 */ 2236 sglinfo->si_buf_offset = offset; 2237 2238 /* 2239 * If the DMA engine can't reach the physical address, increase how 2240 * much copy buffer we need. We always increase by pagesize so we don't 2241 * have to worry about converting offsets. Set a flag in the cookies 2242 * dmac_type to indicate that it uses the copy buffer. If this isn't the 2243 * last cookie, go to the next cookie (since we separate each page which 2244 * uses the copy buffer in case the copy buffer is not physically 2245 * contiguous. 2246 */ 2247 if ((paddr < addrlo) || ((paddr + psize) > addrhi)) { 2248 sglinfo->si_copybuf_req += MMU_PAGESIZE; 2249 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 2250 if ((cnt + 1) < sglinfo->si_max_pages) { 2251 cnt++; 2252 sgl[cnt].dmac_laddress = 0; 2253 sgl[cnt].dmac_size = 0; 2254 sgl[cnt].dmac_type = 0; 2255 } 2256 } 2257 2258 /* 2259 * save this page's physical address so we can figure out if the next 2260 * page is physically contiguous. Keep decrementing size until we are 2261 * done with the buffer. 2262 */ 2263 last_page = paddr & MMU_PAGEMASK; 2264 size -= psize; 2265 2266 while (size > 0) { 2267 /* Get the size for this page (i.e. partial or full page) */ 2268 psize = MIN(size, MMU_PAGESIZE); 2269 2270 if (buftype == DMA_OTYP_PAGES) { 2271 /* get the paddr from the page_t */ 2272 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2273 paddr = ptob64(pp->p_pagenum); 2274 pp = pp->p_next; 2275 } else if (pplist != NULL) { 2276 /* index into the array of page_t's to get the paddr */ 2277 ASSERT(!PP_ISFREE(pplist[pcnt])); 2278 paddr = ptob64(pplist[pcnt]->p_pagenum); 2279 pcnt++; 2280 } else { 2281 /* call into the VM to get the paddr */ 2282 paddr = ptob64(hat_getpfnum(sglinfo->si_asp->a_hat, 2283 vaddr)); 2284 vaddr += psize; 2285 } 2286 2287 /* check to see if this page needs the copy buffer */ 2288 if ((paddr < addrlo) || ((paddr + psize) > addrhi)) { 2289 sglinfo->si_copybuf_req += MMU_PAGESIZE; 2290 2291 /* 2292 * if there is something in the current cookie, go to 2293 * the next one. We only want one page in a cookie which 2294 * uses the copybuf since the copybuf doesn't have to 2295 * be physically contiguous. 2296 */ 2297 if (sgl[cnt].dmac_size != 0) { 2298 cnt++; 2299 } 2300 sgl[cnt].dmac_laddress = paddr; 2301 sgl[cnt].dmac_size = psize; 2302 #if defined(__amd64) 2303 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 2304 #else 2305 /* 2306 * save the buf offset for 32-bit kernel. used in the 2307 * obsoleted interfaces. 2308 */ 2309 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF | 2310 (dmar_object->dmao_size - size); 2311 #endif 2312 /* if this isn't the last cookie, go to the next one */ 2313 if ((cnt + 1) < sglinfo->si_max_pages) { 2314 cnt++; 2315 sgl[cnt].dmac_laddress = 0; 2316 sgl[cnt].dmac_size = 0; 2317 sgl[cnt].dmac_type = 0; 2318 } 2319 2320 /* 2321 * this page didn't need the copy buffer, if it's not physically 2322 * contiguous, or it would put us over a segment boundary, or it 2323 * puts us over the max cookie size, or the current sgl doesn't 2324 * have anything in it. 2325 */ 2326 } else if (((last_page + MMU_PAGESIZE) != paddr) || 2327 !(paddr & sglinfo->si_segmask) || 2328 ((sgl[cnt].dmac_size + psize) > maxseg) || 2329 (sgl[cnt].dmac_size == 0)) { 2330 /* 2331 * if we're not already in a new cookie, go to the next 2332 * cookie. 2333 */ 2334 if (sgl[cnt].dmac_size != 0) { 2335 cnt++; 2336 } 2337 2338 /* save the cookie information */ 2339 sgl[cnt].dmac_laddress = paddr; 2340 sgl[cnt].dmac_size = psize; 2341 #if defined(__amd64) 2342 sgl[cnt].dmac_type = 0; 2343 #else 2344 /* 2345 * save the buf offset for 32-bit kernel. used in the 2346 * obsoleted interfaces. 2347 */ 2348 sgl[cnt].dmac_type = dmar_object->dmao_size - size; 2349 #endif 2350 2351 /* 2352 * this page didn't need the copy buffer, it is physically 2353 * contiguous with the last page, and it's <= the max cookie 2354 * size. 2355 */ 2356 } else { 2357 sgl[cnt].dmac_size += psize; 2358 2359 /* 2360 * if this exactly == the maximum cookie size, and 2361 * it isn't the last cookie, go to the next cookie. 2362 */ 2363 if (((sgl[cnt].dmac_size + psize) == maxseg) && 2364 ((cnt + 1) < sglinfo->si_max_pages)) { 2365 cnt++; 2366 sgl[cnt].dmac_laddress = 0; 2367 sgl[cnt].dmac_size = 0; 2368 sgl[cnt].dmac_type = 0; 2369 } 2370 } 2371 2372 /* 2373 * save this page's physical address so we can figure out if the 2374 * next page is physically contiguous. Keep decrementing size 2375 * until we are done with the buffer. 2376 */ 2377 last_page = paddr; 2378 size -= psize; 2379 } 2380 2381 /* we're done, save away how many cookies the sgl has */ 2382 if (sgl[cnt].dmac_size == 0) { 2383 ASSERT(cnt < sglinfo->si_max_pages); 2384 sglinfo->si_sgl_size = cnt; 2385 } else { 2386 sglinfo->si_sgl_size = cnt + 1; 2387 } 2388 } 2389 2390 2391 /* 2392 * rootnex_bind_slowpath() 2393 * Call in the bind path if the calling driver can't use the sgl without 2394 * modifying it. We either need to use the copy buffer and/or we will end up 2395 * with a partial bind. 2396 */ 2397 static int 2398 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 2399 rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag) 2400 { 2401 rootnex_sglinfo_t *sinfo; 2402 rootnex_window_t *window; 2403 ddi_dma_cookie_t *cookie; 2404 size_t copybuf_used; 2405 size_t dmac_size; 2406 boolean_t partial; 2407 off_t cur_offset; 2408 page_t *cur_pp; 2409 major_t mnum; 2410 int e; 2411 int i; 2412 2413 2414 sinfo = &dma->dp_sglinfo; 2415 copybuf_used = 0; 2416 partial = B_FALSE; 2417 2418 /* 2419 * If we're using the copybuf, set the copybuf state in dma struct. 2420 * Needs to be first since it sets the copy buffer size. 2421 */ 2422 if (sinfo->si_copybuf_req != 0) { 2423 e = rootnex_setup_copybuf(hp, dmareq, dma, attr); 2424 if (e != DDI_SUCCESS) { 2425 return (e); 2426 } 2427 } else { 2428 dma->dp_copybuf_size = 0; 2429 } 2430 2431 /* 2432 * Figure out if we need to do a partial mapping. If so, figure out 2433 * if we need to trim the buffers when we munge the sgl. 2434 */ 2435 if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) || 2436 (dma->dp_dma.dmao_size > dma->dp_maxxfer) || 2437 (attr->dma_attr_sgllen < sinfo->si_sgl_size)) { 2438 dma->dp_partial_required = B_TRUE; 2439 if (attr->dma_attr_granular != 1) { 2440 dma->dp_trim_required = B_TRUE; 2441 } 2442 } else { 2443 dma->dp_partial_required = B_FALSE; 2444 dma->dp_trim_required = B_FALSE; 2445 } 2446 2447 /* If we need to do a partial bind, make sure the driver supports it */ 2448 if (dma->dp_partial_required && 2449 !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) { 2450 2451 mnum = ddi_driver_major(dma->dp_dip); 2452 /* 2453 * patchable which allows us to print one warning per major 2454 * number. 2455 */ 2456 if ((rootnex_bind_warn) && 2457 ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) { 2458 rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING; 2459 cmn_err(CE_WARN, "!%s: coding error detected, the " 2460 "driver is using ddi_dma_attr(9S) incorrectly. " 2461 "There is a small risk of data corruption in " 2462 "particular with large I/Os. The driver should be " 2463 "replaced with a corrected version for proper " 2464 "system operation. To disable this warning, add " 2465 "'set rootnex:rootnex_bind_warn=0' to " 2466 "/etc/system(4).", ddi_driver_name(dma->dp_dip)); 2467 } 2468 return (DDI_DMA_TOOBIG); 2469 } 2470 2471 /* 2472 * we might need multiple windows, setup state to handle them. In this 2473 * code path, we will have at least one window. 2474 */ 2475 e = rootnex_setup_windows(hp, dma, attr, kmflag); 2476 if (e != DDI_SUCCESS) { 2477 rootnex_teardown_copybuf(dma); 2478 return (e); 2479 } 2480 2481 window = &dma->dp_window[0]; 2482 cookie = &dma->dp_cookies[0]; 2483 cur_offset = 0; 2484 rootnex_init_win(hp, dma, window, cookie, cur_offset); 2485 if (dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) { 2486 cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp; 2487 } 2488 2489 /* loop though all the cookies we got back from get_sgl() */ 2490 for (i = 0; i < sinfo->si_sgl_size; i++) { 2491 /* 2492 * If we're using the copy buffer, check this cookie and setup 2493 * its associated copy buffer state. If this cookie uses the 2494 * copy buffer, make sure we sync this window during dma_sync. 2495 */ 2496 if (dma->dp_copybuf_size > 0) { 2497 rootnex_setup_cookie(&dmareq->dmar_object, dma, cookie, 2498 cur_offset, ©buf_used, &cur_pp); 2499 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2500 window->wd_dosync = B_TRUE; 2501 } 2502 } 2503 2504 /* 2505 * save away the cookie size, since it could be modified in 2506 * the windowing code. 2507 */ 2508 dmac_size = cookie->dmac_size; 2509 2510 /* if we went over max copybuf size */ 2511 if (dma->dp_copybuf_size && 2512 (copybuf_used > dma->dp_copybuf_size)) { 2513 partial = B_TRUE; 2514 e = rootnex_copybuf_window_boundary(hp, dma, &window, 2515 cookie, cur_offset, ©buf_used); 2516 if (e != DDI_SUCCESS) { 2517 rootnex_teardown_copybuf(dma); 2518 rootnex_teardown_windows(dma); 2519 return (e); 2520 } 2521 2522 /* 2523 * if the coookie uses the copy buffer, make sure the 2524 * new window we just moved to is set to sync. 2525 */ 2526 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2527 window->wd_dosync = B_TRUE; 2528 } 2529 DTRACE_PROBE1(rootnex__copybuf__window, dev_info_t *, 2530 dma->dp_dip); 2531 2532 /* if the cookie cnt == max sgllen, move to the next window */ 2533 } else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) { 2534 partial = B_TRUE; 2535 ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen); 2536 e = rootnex_sgllen_window_boundary(hp, dma, &window, 2537 cookie, attr, cur_offset); 2538 if (e != DDI_SUCCESS) { 2539 rootnex_teardown_copybuf(dma); 2540 rootnex_teardown_windows(dma); 2541 return (e); 2542 } 2543 2544 /* 2545 * if the coookie uses the copy buffer, make sure the 2546 * new window we just moved to is set to sync. 2547 */ 2548 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2549 window->wd_dosync = B_TRUE; 2550 } 2551 DTRACE_PROBE1(rootnex__sgllen__window, dev_info_t *, 2552 dma->dp_dip); 2553 2554 /* else if we will be over maxxfer */ 2555 } else if ((window->wd_size + dmac_size) > 2556 dma->dp_maxxfer) { 2557 partial = B_TRUE; 2558 e = rootnex_maxxfer_window_boundary(hp, dma, &window, 2559 cookie); 2560 if (e != DDI_SUCCESS) { 2561 rootnex_teardown_copybuf(dma); 2562 rootnex_teardown_windows(dma); 2563 return (e); 2564 } 2565 2566 /* 2567 * if the coookie uses the copy buffer, make sure the 2568 * new window we just moved to is set to sync. 2569 */ 2570 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2571 window->wd_dosync = B_TRUE; 2572 } 2573 DTRACE_PROBE1(rootnex__maxxfer__window, dev_info_t *, 2574 dma->dp_dip); 2575 2576 /* else this cookie fits in the current window */ 2577 } else { 2578 window->wd_cookie_cnt++; 2579 window->wd_size += dmac_size; 2580 } 2581 2582 /* track our offset into the buffer, go to the next cookie */ 2583 ASSERT(dmac_size <= dma->dp_dma.dmao_size); 2584 ASSERT(cookie->dmac_size <= dmac_size); 2585 cur_offset += dmac_size; 2586 cookie++; 2587 } 2588 2589 /* if we ended up with a zero sized window in the end, clean it up */ 2590 if (window->wd_size == 0) { 2591 hp->dmai_nwin--; 2592 window--; 2593 } 2594 2595 ASSERT(window->wd_trim.tr_trim_last == B_FALSE); 2596 2597 if (!partial) { 2598 return (DDI_DMA_MAPPED); 2599 } 2600 2601 ASSERT(dma->dp_partial_required); 2602 return (DDI_DMA_PARTIAL_MAP); 2603 } 2604 2605 2606 /* 2607 * rootnex_setup_copybuf() 2608 * Called in bind slowpath. Figures out if we're going to use the copy 2609 * buffer, and if we do, sets up the basic state to handle it. 2610 */ 2611 static int 2612 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 2613 rootnex_dma_t *dma, ddi_dma_attr_t *attr) 2614 { 2615 rootnex_sglinfo_t *sinfo; 2616 ddi_dma_attr_t lattr; 2617 size_t max_copybuf; 2618 int cansleep; 2619 int e; 2620 #if !defined(__amd64) 2621 int vmflag; 2622 #endif 2623 2624 2625 sinfo = &dma->dp_sglinfo; 2626 2627 /* 2628 * read this first so it's consistent through the routine so we can 2629 * patch it on the fly. 2630 */ 2631 max_copybuf = rootnex_max_copybuf_size & MMU_PAGEMASK; 2632 2633 /* We need to call into the rootnex on ddi_dma_sync() */ 2634 hp->dmai_rflags &= ~DMP_NOSYNC; 2635 2636 /* make sure the copybuf size <= the max size */ 2637 dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf); 2638 ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0); 2639 2640 #if !defined(__amd64) 2641 /* 2642 * if we don't have kva space to copy to/from, allocate the KVA space 2643 * now. We only do this for the 32-bit kernel. We use seg kpm space for 2644 * the 64-bit kernel. 2645 */ 2646 if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) || 2647 (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) { 2648 2649 /* convert the sleep flags */ 2650 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 2651 vmflag = VM_SLEEP; 2652 } else { 2653 vmflag = VM_NOSLEEP; 2654 } 2655 2656 /* allocate Kernel VA space that we can bcopy to/from */ 2657 dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size, 2658 vmflag); 2659 if (dma->dp_kva == NULL) { 2660 return (DDI_DMA_NORESOURCES); 2661 } 2662 } 2663 #endif 2664 2665 /* convert the sleep flags */ 2666 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 2667 cansleep = 1; 2668 } else { 2669 cansleep = 0; 2670 } 2671 2672 /* 2673 * Allocated the actual copy buffer. This needs to fit within the DMA 2674 * engines limits, so we can't use kmem_alloc... 2675 */ 2676 lattr = *attr; 2677 lattr.dma_attr_align = MMU_PAGESIZE; 2678 e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep, 2679 0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL); 2680 if (e != DDI_SUCCESS) { 2681 #if !defined(__amd64) 2682 if (dma->dp_kva != NULL) { 2683 vmem_free(heap_arena, dma->dp_kva, 2684 dma->dp_copybuf_size); 2685 } 2686 #endif 2687 return (DDI_DMA_NORESOURCES); 2688 } 2689 2690 DTRACE_PROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip, 2691 size_t, dma->dp_copybuf_size); 2692 2693 return (DDI_SUCCESS); 2694 } 2695 2696 2697 /* 2698 * rootnex_setup_windows() 2699 * Called in bind slowpath to setup the window state. We always have windows 2700 * in the slowpath. Even if the window count = 1. 2701 */ 2702 static int 2703 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 2704 ddi_dma_attr_t *attr, int kmflag) 2705 { 2706 rootnex_window_t *windowp; 2707 rootnex_sglinfo_t *sinfo; 2708 size_t copy_state_size; 2709 size_t win_state_size; 2710 size_t state_available; 2711 size_t space_needed; 2712 uint_t copybuf_win; 2713 uint_t maxxfer_win; 2714 size_t space_used; 2715 uint_t sglwin; 2716 2717 2718 sinfo = &dma->dp_sglinfo; 2719 2720 dma->dp_current_win = 0; 2721 hp->dmai_nwin = 0; 2722 2723 /* If we don't need to do a partial, we only have one window */ 2724 if (!dma->dp_partial_required) { 2725 dma->dp_max_win = 1; 2726 2727 /* 2728 * we need multiple windows, need to figure out the worse case number 2729 * of windows. 2730 */ 2731 } else { 2732 /* 2733 * if we need windows because we need more copy buffer that 2734 * we allow, the worse case number of windows we could need 2735 * here would be (copybuf space required / copybuf space that 2736 * we have) plus one for remainder, and plus 2 to handle the 2737 * extra pages on the trim for the first and last pages of the 2738 * buffer (a page is the minimum window size so under the right 2739 * attr settings, you could have a window for each page). 2740 * The last page will only be hit here if the size is not a 2741 * multiple of the granularity (which theoretically shouldn't 2742 * be the case but never has been enforced, so we could have 2743 * broken things without it). 2744 */ 2745 if (sinfo->si_copybuf_req > dma->dp_copybuf_size) { 2746 ASSERT(dma->dp_copybuf_size > 0); 2747 copybuf_win = (sinfo->si_copybuf_req / 2748 dma->dp_copybuf_size) + 1 + 2; 2749 } else { 2750 copybuf_win = 0; 2751 } 2752 2753 /* 2754 * if we need windows because we have more cookies than the H/W 2755 * can handle, the number of windows we would need here would 2756 * be (cookie count / cookies count H/W supports) plus one for 2757 * remainder, and plus 2 to handle the extra pages on the trim 2758 * (see above comment about trim) 2759 */ 2760 if (attr->dma_attr_sgllen < sinfo->si_sgl_size) { 2761 sglwin = ((sinfo->si_sgl_size / attr->dma_attr_sgllen) 2762 + 1) + 2; 2763 } else { 2764 sglwin = 0; 2765 } 2766 2767 /* 2768 * if we need windows because we're binding more memory than the 2769 * H/W can transfer at once, the number of windows we would need 2770 * here would be (xfer count / max xfer H/W supports) plus one 2771 * for remainder, and plus 2 to handle the extra pages on the 2772 * trim (see above comment about trim) 2773 */ 2774 if (dma->dp_dma.dmao_size > dma->dp_maxxfer) { 2775 maxxfer_win = (dma->dp_dma.dmao_size / 2776 dma->dp_maxxfer) + 1 + 2; 2777 } else { 2778 maxxfer_win = 0; 2779 } 2780 dma->dp_max_win = copybuf_win + sglwin + maxxfer_win; 2781 ASSERT(dma->dp_max_win > 0); 2782 } 2783 win_state_size = dma->dp_max_win * sizeof (rootnex_window_t); 2784 2785 /* 2786 * Get space for window and potential copy buffer state. Before we 2787 * go and allocate memory, see if we can get away with using what's 2788 * left in the pre-allocted state or the dynamically allocated sgl. 2789 */ 2790 space_used = (uintptr_t)(sinfo->si_sgl_size * 2791 sizeof (ddi_dma_cookie_t)); 2792 2793 /* if we dynamically allocated space for the cookies */ 2794 if (dma->dp_need_to_free_cookie) { 2795 /* if we have more space in the pre-allocted buffer, use it */ 2796 ASSERT(space_used <= dma->dp_cookie_size); 2797 if ((dma->dp_cookie_size - space_used) <= 2798 rootnex_state->r_prealloc_size) { 2799 state_available = rootnex_state->r_prealloc_size; 2800 windowp = (rootnex_window_t *)dma->dp_prealloc_buffer; 2801 2802 /* 2803 * else, we have more free space in the dynamically allocated 2804 * buffer, i.e. the buffer wasn't worse case fragmented so we 2805 * didn't need a lot of cookies. 2806 */ 2807 } else { 2808 state_available = dma->dp_cookie_size - space_used; 2809 windowp = (rootnex_window_t *) 2810 &dma->dp_cookies[sinfo->si_sgl_size]; 2811 } 2812 2813 /* we used the pre-alloced buffer */ 2814 } else { 2815 ASSERT(space_used <= rootnex_state->r_prealloc_size); 2816 state_available = rootnex_state->r_prealloc_size - space_used; 2817 windowp = (rootnex_window_t *) 2818 &dma->dp_cookies[sinfo->si_sgl_size]; 2819 } 2820 2821 /* 2822 * figure out how much state we need to track the copy buffer. Add an 2823 * addition 8 bytes for pointer alignemnt later. 2824 */ 2825 if (dma->dp_copybuf_size > 0) { 2826 copy_state_size = sinfo->si_max_pages * 2827 sizeof (rootnex_pgmap_t); 2828 } else { 2829 copy_state_size = 0; 2830 } 2831 /* add an additional 8 bytes for pointer alignment */ 2832 space_needed = win_state_size + copy_state_size + 0x8; 2833 2834 /* if we have enough space already, use it */ 2835 if (state_available >= space_needed) { 2836 dma->dp_window = windowp; 2837 dma->dp_need_to_free_window = B_FALSE; 2838 2839 /* not enough space, need to allocate more. */ 2840 } else { 2841 dma->dp_window = kmem_alloc(space_needed, kmflag); 2842 if (dma->dp_window == NULL) { 2843 return (DDI_DMA_NORESOURCES); 2844 } 2845 dma->dp_need_to_free_window = B_TRUE; 2846 dma->dp_window_size = space_needed; 2847 DTRACE_PROBE2(rootnex__bind__sp__alloc, dev_info_t *, 2848 dma->dp_dip, size_t, space_needed); 2849 } 2850 2851 /* 2852 * we allocate copy buffer state and window state at the same time. 2853 * setup our copy buffer state pointers. Make sure it's aligned. 2854 */ 2855 if (dma->dp_copybuf_size > 0) { 2856 dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t) 2857 &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7); 2858 2859 #if !defined(__amd64) 2860 /* 2861 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to 2862 * false/NULL. Should be quicker to bzero vs loop and set. 2863 */ 2864 bzero(dma->dp_pgmap, copy_state_size); 2865 #endif 2866 } else { 2867 dma->dp_pgmap = NULL; 2868 } 2869 2870 return (DDI_SUCCESS); 2871 } 2872 2873 2874 /* 2875 * rootnex_teardown_copybuf() 2876 * cleans up after rootnex_setup_copybuf() 2877 */ 2878 static void 2879 rootnex_teardown_copybuf(rootnex_dma_t *dma) 2880 { 2881 #if !defined(__amd64) 2882 int i; 2883 2884 /* 2885 * if we allocated kernel heap VMEM space, go through all the pages and 2886 * map out any of the ones that we're mapped into the kernel heap VMEM 2887 * arena. Then free the VMEM space. 2888 */ 2889 if (dma->dp_kva != NULL) { 2890 for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) { 2891 if (dma->dp_pgmap[i].pm_mapped) { 2892 hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr, 2893 MMU_PAGESIZE, HAT_UNLOAD); 2894 dma->dp_pgmap[i].pm_mapped = B_FALSE; 2895 } 2896 } 2897 2898 vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size); 2899 } 2900 2901 #endif 2902 2903 /* if we allocated a copy buffer, free it */ 2904 if (dma->dp_cbaddr != NULL) { 2905 i_ddi_mem_free(dma->dp_cbaddr, 0); 2906 } 2907 } 2908 2909 2910 /* 2911 * rootnex_teardown_windows() 2912 * cleans up after rootnex_setup_windows() 2913 */ 2914 static void 2915 rootnex_teardown_windows(rootnex_dma_t *dma) 2916 { 2917 /* 2918 * if we had to allocate window state on the last bind (because we 2919 * didn't have enough pre-allocated space in the handle), free it. 2920 */ 2921 if (dma->dp_need_to_free_window) { 2922 kmem_free(dma->dp_window, dma->dp_window_size); 2923 } 2924 } 2925 2926 2927 /* 2928 * rootnex_init_win() 2929 * Called in bind slow path during creation of a new window. Initializes 2930 * window state to default values. 2931 */ 2932 /*ARGSUSED*/ 2933 static void 2934 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 2935 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset) 2936 { 2937 hp->dmai_nwin++; 2938 window->wd_dosync = B_FALSE; 2939 window->wd_offset = cur_offset; 2940 window->wd_size = 0; 2941 window->wd_first_cookie = cookie; 2942 window->wd_cookie_cnt = 0; 2943 window->wd_trim.tr_trim_first = B_FALSE; 2944 window->wd_trim.tr_trim_last = B_FALSE; 2945 window->wd_trim.tr_first_copybuf_win = B_FALSE; 2946 window->wd_trim.tr_last_copybuf_win = B_FALSE; 2947 #if !defined(__amd64) 2948 window->wd_remap_copybuf = dma->dp_cb_remaping; 2949 #endif 2950 } 2951 2952 2953 /* 2954 * rootnex_setup_cookie() 2955 * Called in the bind slow path when the sgl uses the copy buffer. If any of 2956 * the sgl uses the copy buffer, we need to go through each cookie, figure 2957 * out if it uses the copy buffer, and if it does, save away everything we'll 2958 * need during sync. 2959 */ 2960 static void 2961 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma, 2962 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used, 2963 page_t **cur_pp) 2964 { 2965 boolean_t copybuf_sz_power_2; 2966 rootnex_sglinfo_t *sinfo; 2967 uint_t pidx; 2968 uint_t pcnt; 2969 off_t poff; 2970 #if defined(__amd64) 2971 pfn_t pfn; 2972 #else 2973 page_t **pplist; 2974 #endif 2975 2976 sinfo = &dma->dp_sglinfo; 2977 2978 /* 2979 * Calculate the page index relative to the start of the buffer. The 2980 * index to the current page for our buffer is the offset into the 2981 * first page of the buffer plus our current offset into the buffer 2982 * itself, shifted of course... 2983 */ 2984 pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT; 2985 ASSERT(pidx < sinfo->si_max_pages); 2986 2987 /* if this cookie uses the copy buffer */ 2988 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2989 /* 2990 * NOTE: we know that since this cookie uses the copy buffer, it 2991 * is <= MMU_PAGESIZE. 2992 */ 2993 2994 /* 2995 * get the offset into the page. For the 64-bit kernel, get the 2996 * pfn which we'll use with seg kpm. 2997 */ 2998 poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET; 2999 #if defined(__amd64) 3000 pfn = cookie->_dmu._dmac_ll >> MMU_PAGESHIFT; 3001 #endif 3002 3003 /* figure out if the copybuf size is a power of 2 */ 3004 if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) { 3005 copybuf_sz_power_2 = B_FALSE; 3006 } else { 3007 copybuf_sz_power_2 = B_TRUE; 3008 } 3009 3010 /* This page uses the copy buffer */ 3011 dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE; 3012 3013 /* 3014 * save the copy buffer KVA that we'll use with this page. 3015 * if we still fit within the copybuf, it's a simple add. 3016 * otherwise, we need to wrap over using & or % accordingly. 3017 */ 3018 if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) { 3019 dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr + 3020 *copybuf_used; 3021 } else { 3022 if (copybuf_sz_power_2) { 3023 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3024 (uintptr_t)dma->dp_cbaddr + 3025 (*copybuf_used & 3026 (dma->dp_copybuf_size - 1))); 3027 } else { 3028 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3029 (uintptr_t)dma->dp_cbaddr + 3030 (*copybuf_used % dma->dp_copybuf_size)); 3031 } 3032 } 3033 3034 /* 3035 * over write the cookie physical address with the address of 3036 * the physical address of the copy buffer page that we will 3037 * use. 3038 */ 3039 cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat, 3040 dma->dp_pgmap[pidx].pm_cbaddr)) + poff; 3041 3042 /* if we have a kernel VA, it's easy, just save that address */ 3043 if ((dmar_object->dmao_type != DMA_OTYP_PAGES) && 3044 (sinfo->si_asp == &kas)) { 3045 /* 3046 * save away the page aligned virtual address of the 3047 * driver buffer. Offsets are handled in the sync code. 3048 */ 3049 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t) 3050 dmar_object->dmao_obj.virt_obj.v_addr + cur_offset) 3051 & MMU_PAGEMASK); 3052 #if !defined(__amd64) 3053 /* 3054 * we didn't need to, and will never need to map this 3055 * page. 3056 */ 3057 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3058 #endif 3059 3060 /* we don't have a kernel VA. We need one for the bcopy. */ 3061 } else { 3062 #if defined(__amd64) 3063 /* 3064 * for the 64-bit kernel, it's easy. We use seg kpm to 3065 * get a Kernel VA for the corresponding pfn. 3066 */ 3067 dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn); 3068 #else 3069 /* 3070 * for the 32-bit kernel, this is a pain. First we'll 3071 * save away the page_t or user VA for this page. This 3072 * is needed in rootnex_dma_win() when we switch to a 3073 * new window which requires us to re-map the copy 3074 * buffer. 3075 */ 3076 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 3077 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3078 dma->dp_pgmap[pidx].pm_pp = *cur_pp; 3079 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3080 } else if (pplist != NULL) { 3081 dma->dp_pgmap[pidx].pm_pp = pplist[pidx]; 3082 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3083 } else { 3084 dma->dp_pgmap[pidx].pm_pp = NULL; 3085 dma->dp_pgmap[pidx].pm_vaddr = (caddr_t) 3086 (((uintptr_t) 3087 dmar_object->dmao_obj.virt_obj.v_addr + 3088 cur_offset) & MMU_PAGEMASK); 3089 } 3090 3091 /* 3092 * save away the page aligned virtual address which was 3093 * allocated from the kernel heap arena (taking into 3094 * account if we need more copy buffer than we alloced 3095 * and use multiple windows to handle this, i.e. &,%). 3096 * NOTE: there isn't and physical memory backing up this 3097 * virtual address space currently. 3098 */ 3099 if ((*copybuf_used + MMU_PAGESIZE) <= 3100 dma->dp_copybuf_size) { 3101 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3102 (((uintptr_t)dma->dp_kva + *copybuf_used) & 3103 MMU_PAGEMASK); 3104 } else { 3105 if (copybuf_sz_power_2) { 3106 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3107 (((uintptr_t)dma->dp_kva + 3108 (*copybuf_used & 3109 (dma->dp_copybuf_size - 1))) & 3110 MMU_PAGEMASK); 3111 } else { 3112 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3113 (((uintptr_t)dma->dp_kva + 3114 (*copybuf_used % 3115 dma->dp_copybuf_size)) & 3116 MMU_PAGEMASK); 3117 } 3118 } 3119 3120 /* 3121 * if we haven't used up the available copy buffer yet, 3122 * map the kva to the physical page. 3123 */ 3124 if (!dma->dp_cb_remaping && ((*copybuf_used + 3125 MMU_PAGESIZE) <= dma->dp_copybuf_size)) { 3126 dma->dp_pgmap[pidx].pm_mapped = B_TRUE; 3127 if (dma->dp_pgmap[pidx].pm_pp != NULL) { 3128 i86_pp_map(dma->dp_pgmap[pidx].pm_pp, 3129 dma->dp_pgmap[pidx].pm_kaddr); 3130 } else { 3131 i86_va_map(dma->dp_pgmap[pidx].pm_vaddr, 3132 sinfo->si_asp, 3133 dma->dp_pgmap[pidx].pm_kaddr); 3134 } 3135 3136 /* 3137 * we've used up the available copy buffer, this page 3138 * will have to be mapped during rootnex_dma_win() when 3139 * we switch to a new window which requires a re-map 3140 * the copy buffer. (32-bit kernel only) 3141 */ 3142 } else { 3143 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3144 } 3145 #endif 3146 /* go to the next page_t */ 3147 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3148 *cur_pp = (*cur_pp)->p_next; 3149 } 3150 } 3151 3152 /* add to the copy buffer count */ 3153 *copybuf_used += MMU_PAGESIZE; 3154 3155 /* 3156 * This cookie doesn't use the copy buffer. Walk through the pages this 3157 * cookie occupies to reflect this. 3158 */ 3159 } else { 3160 /* 3161 * figure out how many pages the cookie occupies. We need to 3162 * use the original page offset of the buffer and the cookies 3163 * offset in the buffer to do this. 3164 */ 3165 poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET; 3166 pcnt = mmu_btopr(cookie->dmac_size + poff); 3167 3168 while (pcnt > 0) { 3169 #if !defined(__amd64) 3170 /* 3171 * the 32-bit kernel doesn't have seg kpm, so we need 3172 * to map in the driver buffer (if it didn't come down 3173 * with a kernel VA) on the fly. Since this page doesn't 3174 * use the copy buffer, it's not, or will it ever, have 3175 * to be mapped in. 3176 */ 3177 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3178 #endif 3179 dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE; 3180 3181 /* 3182 * we need to update pidx and cur_pp or we'll loose 3183 * track of where we are. 3184 */ 3185 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3186 *cur_pp = (*cur_pp)->p_next; 3187 } 3188 pidx++; 3189 pcnt--; 3190 } 3191 } 3192 } 3193 3194 3195 /* 3196 * rootnex_sgllen_window_boundary() 3197 * Called in the bind slow path when the next cookie causes us to exceed (in 3198 * this case == since we start at 0 and sgllen starts at 1) the maximum sgl 3199 * length supported by the DMA H/W. 3200 */ 3201 static int 3202 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3203 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr, 3204 off_t cur_offset) 3205 { 3206 off_t new_offset; 3207 size_t trim_sz; 3208 off_t coffset; 3209 3210 3211 /* 3212 * if we know we'll never have to trim, it's pretty easy. Just move to 3213 * the next window and init it. We're done. 3214 */ 3215 if (!dma->dp_trim_required) { 3216 (*windowp)++; 3217 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3218 (*windowp)->wd_cookie_cnt++; 3219 (*windowp)->wd_size = cookie->dmac_size; 3220 return (DDI_SUCCESS); 3221 } 3222 3223 /* figure out how much we need to trim from the window */ 3224 ASSERT(attr->dma_attr_granular != 0); 3225 if (dma->dp_granularity_power_2) { 3226 trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1); 3227 } else { 3228 trim_sz = (*windowp)->wd_size % attr->dma_attr_granular; 3229 } 3230 3231 /* The window's a whole multiple of granularity. We're done */ 3232 if (trim_sz == 0) { 3233 (*windowp)++; 3234 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3235 (*windowp)->wd_cookie_cnt++; 3236 (*windowp)->wd_size = cookie->dmac_size; 3237 return (DDI_SUCCESS); 3238 } 3239 3240 /* 3241 * The window's not a whole multiple of granularity, since we know this 3242 * is due to the sgllen, we need to go back to the last cookie and trim 3243 * that one, add the left over part of the old cookie into the new 3244 * window, and then add in the new cookie into the new window. 3245 */ 3246 3247 /* 3248 * make sure the driver isn't making us do something bad... Trimming and 3249 * sgllen == 1 don't go together. 3250 */ 3251 if (attr->dma_attr_sgllen == 1) { 3252 return (DDI_DMA_NOMAPPING); 3253 } 3254 3255 /* 3256 * first, setup the current window to account for the trim. Need to go 3257 * back to the last cookie for this. 3258 */ 3259 cookie--; 3260 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3261 (*windowp)->wd_trim.tr_last_cookie = cookie; 3262 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3263 ASSERT(cookie->dmac_size > trim_sz); 3264 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3265 (*windowp)->wd_size -= trim_sz; 3266 3267 /* save the buffer offsets for the next window */ 3268 coffset = cookie->dmac_size - trim_sz; 3269 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3270 3271 /* 3272 * set this now in case this is the first window. all other cases are 3273 * set in dma_win() 3274 */ 3275 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3276 3277 /* 3278 * initialize the next window using what's left over in the previous 3279 * cookie. 3280 */ 3281 (*windowp)++; 3282 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3283 (*windowp)->wd_cookie_cnt++; 3284 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3285 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset; 3286 (*windowp)->wd_trim.tr_first_size = trim_sz; 3287 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3288 (*windowp)->wd_dosync = B_TRUE; 3289 } 3290 3291 /* 3292 * now go back to the current cookie and add it to the new window. set 3293 * the new window size to the what was left over from the previous 3294 * cookie and what's in the current cookie. 3295 */ 3296 cookie++; 3297 (*windowp)->wd_cookie_cnt++; 3298 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 3299 3300 /* 3301 * trim plus the next cookie could put us over maxxfer (a cookie can be 3302 * a max size of maxxfer). Handle that case. 3303 */ 3304 if ((*windowp)->wd_size > dma->dp_maxxfer) { 3305 /* 3306 * maxxfer is already a whole multiple of granularity, and this 3307 * trim will be <= the previous trim (since a cookie can't be 3308 * larger than maxxfer). Make things simple here. 3309 */ 3310 trim_sz = (*windowp)->wd_size - dma->dp_maxxfer; 3311 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3312 (*windowp)->wd_trim.tr_last_cookie = cookie; 3313 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3314 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3315 (*windowp)->wd_size -= trim_sz; 3316 ASSERT((*windowp)->wd_size == dma->dp_maxxfer); 3317 3318 /* save the buffer offsets for the next window */ 3319 coffset = cookie->dmac_size - trim_sz; 3320 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3321 3322 /* setup the next window */ 3323 (*windowp)++; 3324 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3325 (*windowp)->wd_cookie_cnt++; 3326 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3327 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + 3328 coffset; 3329 (*windowp)->wd_trim.tr_first_size = trim_sz; 3330 } 3331 3332 return (DDI_SUCCESS); 3333 } 3334 3335 3336 /* 3337 * rootnex_copybuf_window_boundary() 3338 * Called in bind slowpath when we get to a window boundary because we used 3339 * up all the copy buffer that we have. 3340 */ 3341 static int 3342 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3343 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset, 3344 size_t *copybuf_used) 3345 { 3346 rootnex_sglinfo_t *sinfo; 3347 off_t new_offset; 3348 size_t trim_sz; 3349 off_t coffset; 3350 uint_t pidx; 3351 off_t poff; 3352 3353 3354 sinfo = &dma->dp_sglinfo; 3355 3356 /* 3357 * the copy buffer should be a whole multiple of page size. We know that 3358 * this cookie is <= MMU_PAGESIZE. 3359 */ 3360 ASSERT(cookie->dmac_size <= MMU_PAGESIZE); 3361 3362 /* 3363 * from now on, all new windows in this bind need to be re-mapped during 3364 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf 3365 * space... 3366 */ 3367 #if !defined(__amd64) 3368 dma->dp_cb_remaping = B_TRUE; 3369 #endif 3370 3371 /* reset copybuf used */ 3372 *copybuf_used = 0; 3373 3374 /* 3375 * if we don't have to trim (since granularity is set to 1), go to the 3376 * next window and add the current cookie to it. We know the current 3377 * cookie uses the copy buffer since we're in this code path. 3378 */ 3379 if (!dma->dp_trim_required) { 3380 (*windowp)++; 3381 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3382 3383 /* Add this cookie to the new window */ 3384 (*windowp)->wd_cookie_cnt++; 3385 (*windowp)->wd_size += cookie->dmac_size; 3386 *copybuf_used += MMU_PAGESIZE; 3387 return (DDI_SUCCESS); 3388 } 3389 3390 /* 3391 * *** may need to trim, figure it out. 3392 */ 3393 3394 /* figure out how much we need to trim from the window */ 3395 if (dma->dp_granularity_power_2) { 3396 trim_sz = (*windowp)->wd_size & 3397 (hp->dmai_attr.dma_attr_granular - 1); 3398 } else { 3399 trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular; 3400 } 3401 3402 /* 3403 * if the window's a whole multiple of granularity, go to the next 3404 * window, init it, then add in the current cookie. We know the current 3405 * cookie uses the copy buffer since we're in this code path. 3406 */ 3407 if (trim_sz == 0) { 3408 (*windowp)++; 3409 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3410 3411 /* Add this cookie to the new window */ 3412 (*windowp)->wd_cookie_cnt++; 3413 (*windowp)->wd_size += cookie->dmac_size; 3414 *copybuf_used += MMU_PAGESIZE; 3415 return (DDI_SUCCESS); 3416 } 3417 3418 /* 3419 * *** We figured it out, we definitly need to trim 3420 */ 3421 3422 /* 3423 * make sure the driver isn't making us do something bad... 3424 * Trimming and sgllen == 1 don't go together. 3425 */ 3426 if (hp->dmai_attr.dma_attr_sgllen == 1) { 3427 return (DDI_DMA_NOMAPPING); 3428 } 3429 3430 /* 3431 * first, setup the current window to account for the trim. Need to go 3432 * back to the last cookie for this. Some of the last cookie will be in 3433 * the current window, and some of the last cookie will be in the new 3434 * window. All of the current cookie will be in the new window. 3435 */ 3436 cookie--; 3437 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3438 (*windowp)->wd_trim.tr_last_cookie = cookie; 3439 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3440 ASSERT(cookie->dmac_size > trim_sz); 3441 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3442 (*windowp)->wd_size -= trim_sz; 3443 3444 /* 3445 * we're trimming the last cookie (not the current cookie). So that 3446 * last cookie may have or may not have been using the copy buffer ( 3447 * we know the cookie passed in uses the copy buffer since we're in 3448 * this code path). 3449 * 3450 * If the last cookie doesn't use the copy buffer, nothing special to 3451 * do. However, if it does uses the copy buffer, it will be both the 3452 * last page in the current window and the first page in the next 3453 * window. Since we are reusing the copy buffer (and KVA space on the 3454 * 32-bit kernel), this page will use the end of the copy buffer in the 3455 * current window, and the start of the copy buffer in the next window. 3456 * Track that info... The cookie physical address was already set to 3457 * the copy buffer physical address in setup_cookie.. 3458 */ 3459 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3460 pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset + 3461 (*windowp)->wd_size) >> MMU_PAGESHIFT; 3462 (*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE; 3463 (*windowp)->wd_trim.tr_last_pidx = pidx; 3464 (*windowp)->wd_trim.tr_last_cbaddr = 3465 dma->dp_pgmap[pidx].pm_cbaddr; 3466 #if !defined(__amd64) 3467 (*windowp)->wd_trim.tr_last_kaddr = 3468 dma->dp_pgmap[pidx].pm_kaddr; 3469 #endif 3470 } 3471 3472 /* save the buffer offsets for the next window */ 3473 coffset = cookie->dmac_size - trim_sz; 3474 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3475 3476 /* 3477 * set this now in case this is the first window. all other cases are 3478 * set in dma_win() 3479 */ 3480 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3481 3482 /* 3483 * initialize the next window using what's left over in the previous 3484 * cookie. 3485 */ 3486 (*windowp)++; 3487 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3488 (*windowp)->wd_cookie_cnt++; 3489 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3490 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset; 3491 (*windowp)->wd_trim.tr_first_size = trim_sz; 3492 3493 /* 3494 * again, we're tracking if the last cookie uses the copy buffer. 3495 * read the comment above for more info on why we need to track 3496 * additional state. 3497 * 3498 * For the first cookie in the new window, we need reset the physical 3499 * address to DMA into to the start of the copy buffer plus any 3500 * initial page offset which may be present. 3501 */ 3502 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3503 (*windowp)->wd_dosync = B_TRUE; 3504 (*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE; 3505 (*windowp)->wd_trim.tr_first_pidx = pidx; 3506 (*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr; 3507 poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET; 3508 (*windowp)->wd_trim.tr_first_paddr = ptob64(hat_getpfnum( 3509 kas.a_hat, dma->dp_cbaddr)) + poff; 3510 #if !defined(__amd64) 3511 (*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva; 3512 #endif 3513 /* account for the cookie copybuf usage in the new window */ 3514 *copybuf_used += MMU_PAGESIZE; 3515 3516 /* 3517 * every piece of code has to have a hack, and here is this 3518 * ones :-) 3519 * 3520 * There is a complex interaction between setup_cookie and the 3521 * copybuf window boundary. The complexity had to be in either 3522 * the maxxfer window, or the copybuf window, and I chose the 3523 * copybuf code. 3524 * 3525 * So in this code path, we have taken the last cookie, 3526 * virtually broken it in half due to the trim, and it happens 3527 * to use the copybuf which further complicates life. At the 3528 * same time, we have already setup the current cookie, which 3529 * is now wrong. More background info: the current cookie uses 3530 * the copybuf, so it is only a page long max. So we need to 3531 * fix the current cookies copy buffer address, physical 3532 * address, and kva for the 32-bit kernel. We due this by 3533 * bumping them by page size (of course, we can't due this on 3534 * the physical address since the copy buffer may not be 3535 * physically contiguous). 3536 */ 3537 cookie++; 3538 dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE; 3539 poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET; 3540 cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat, 3541 dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff; 3542 #if !defined(__amd64) 3543 ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE); 3544 dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE; 3545 #endif 3546 } else { 3547 /* go back to the current cookie */ 3548 cookie++; 3549 } 3550 3551 /* 3552 * add the current cookie to the new window. set the new window size to 3553 * the what was left over from the previous cookie and what's in the 3554 * current cookie. 3555 */ 3556 (*windowp)->wd_cookie_cnt++; 3557 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 3558 ASSERT((*windowp)->wd_size < dma->dp_maxxfer); 3559 3560 /* 3561 * we know that the cookie passed in always uses the copy buffer. We 3562 * wouldn't be here if it didn't. 3563 */ 3564 *copybuf_used += MMU_PAGESIZE; 3565 3566 return (DDI_SUCCESS); 3567 } 3568 3569 3570 /* 3571 * rootnex_maxxfer_window_boundary() 3572 * Called in bind slowpath when we get to a window boundary because we will 3573 * go over maxxfer. 3574 */ 3575 static int 3576 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3577 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie) 3578 { 3579 size_t dmac_size; 3580 off_t new_offset; 3581 size_t trim_sz; 3582 off_t coffset; 3583 3584 3585 /* 3586 * calculate how much we have to trim off of the current cookie to equal 3587 * maxxfer. We don't have to account for granularity here since our 3588 * maxxfer already takes that into account. 3589 */ 3590 trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer; 3591 ASSERT(trim_sz <= cookie->dmac_size); 3592 ASSERT(trim_sz <= dma->dp_maxxfer); 3593 3594 /* save cookie size since we need it later and we might change it */ 3595 dmac_size = cookie->dmac_size; 3596 3597 /* 3598 * if we're not trimming the entire cookie, setup the current window to 3599 * account for the trim. 3600 */ 3601 if (trim_sz < cookie->dmac_size) { 3602 (*windowp)->wd_cookie_cnt++; 3603 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3604 (*windowp)->wd_trim.tr_last_cookie = cookie; 3605 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3606 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3607 (*windowp)->wd_size = dma->dp_maxxfer; 3608 3609 /* 3610 * set the adjusted cookie size now in case this is the first 3611 * window. All other windows are taken care of in get win 3612 */ 3613 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3614 } 3615 3616 /* 3617 * coffset is the current offset within the cookie, new_offset is the 3618 * current offset with the entire buffer. 3619 */ 3620 coffset = dmac_size - trim_sz; 3621 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3622 3623 /* initialize the next window */ 3624 (*windowp)++; 3625 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3626 (*windowp)->wd_cookie_cnt++; 3627 (*windowp)->wd_size = trim_sz; 3628 if (trim_sz < dmac_size) { 3629 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3630 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + 3631 coffset; 3632 (*windowp)->wd_trim.tr_first_size = trim_sz; 3633 } 3634 3635 return (DDI_SUCCESS); 3636 } 3637 3638 3639 /* 3640 * rootnex_dma_sync() 3641 * called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags. 3642 * We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC 3643 * is set, ddi_dma_sync() returns immediately passing back success. 3644 */ 3645 /*ARGSUSED*/ 3646 static int 3647 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 3648 off_t off, size_t len, uint_t cache_flags) 3649 { 3650 rootnex_sglinfo_t *sinfo; 3651 rootnex_pgmap_t *cbpage; 3652 rootnex_window_t *win; 3653 ddi_dma_impl_t *hp; 3654 rootnex_dma_t *dma; 3655 caddr_t fromaddr; 3656 caddr_t toaddr; 3657 uint_t psize; 3658 off_t offset; 3659 uint_t pidx; 3660 size_t size; 3661 off_t poff; 3662 int e; 3663 3664 3665 hp = (ddi_dma_impl_t *)handle; 3666 dma = (rootnex_dma_t *)hp->dmai_private; 3667 sinfo = &dma->dp_sglinfo; 3668 3669 /* 3670 * if we don't have any windows, we don't need to sync. A copybuf 3671 * will cause us to have at least one window. 3672 */ 3673 if (dma->dp_window == NULL) { 3674 return (DDI_SUCCESS); 3675 } 3676 3677 /* This window may not need to be sync'd */ 3678 win = &dma->dp_window[dma->dp_current_win]; 3679 if (!win->wd_dosync) { 3680 return (DDI_SUCCESS); 3681 } 3682 3683 /* handle off and len special cases */ 3684 if ((off == 0) || (rootnex_sync_ignore_params)) { 3685 offset = win->wd_offset; 3686 } else { 3687 offset = off; 3688 } 3689 if ((len == 0) || (rootnex_sync_ignore_params)) { 3690 size = win->wd_size; 3691 } else { 3692 size = len; 3693 } 3694 3695 /* check the sync args to make sure they make a little sense */ 3696 if (rootnex_sync_check_parms) { 3697 e = rootnex_valid_sync_parms(hp, win, offset, size, 3698 cache_flags); 3699 if (e != DDI_SUCCESS) { 3700 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]); 3701 return (DDI_FAILURE); 3702 } 3703 } 3704 3705 /* 3706 * special case the first page to handle the offset into the page. The 3707 * offset to the current page for our buffer is the offset into the 3708 * first page of the buffer plus our current offset into the buffer 3709 * itself, masked of course. 3710 */ 3711 poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET; 3712 psize = MIN((MMU_PAGESIZE - poff), size); 3713 3714 /* go through all the pages that we want to sync */ 3715 while (size > 0) { 3716 /* 3717 * Calculate the page index relative to the start of the buffer. 3718 * The index to the current page for our buffer is the offset 3719 * into the first page of the buffer plus our current offset 3720 * into the buffer itself, shifted of course... 3721 */ 3722 pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT; 3723 ASSERT(pidx < sinfo->si_max_pages); 3724 3725 /* 3726 * if this page uses the copy buffer, we need to sync it, 3727 * otherwise, go on to the next page. 3728 */ 3729 cbpage = &dma->dp_pgmap[pidx]; 3730 ASSERT((cbpage->pm_uses_copybuf == B_TRUE) || 3731 (cbpage->pm_uses_copybuf == B_FALSE)); 3732 if (cbpage->pm_uses_copybuf) { 3733 /* cbaddr and kaddr should be page aligned */ 3734 ASSERT(((uintptr_t)cbpage->pm_cbaddr & 3735 MMU_PAGEOFFSET) == 0); 3736 ASSERT(((uintptr_t)cbpage->pm_kaddr & 3737 MMU_PAGEOFFSET) == 0); 3738 3739 /* 3740 * if we're copying for the device, we are going to 3741 * copy from the drivers buffer and to the rootnex 3742 * allocated copy buffer. 3743 */ 3744 if (cache_flags == DDI_DMA_SYNC_FORDEV) { 3745 fromaddr = cbpage->pm_kaddr + poff; 3746 toaddr = cbpage->pm_cbaddr + poff; 3747 DTRACE_PROBE2(rootnex__sync__dev, 3748 dev_info_t *, dma->dp_dip, size_t, psize); 3749 3750 /* 3751 * if we're copying for the cpu/kernel, we are going to 3752 * copy from the rootnex allocated copy buffer to the 3753 * drivers buffer. 3754 */ 3755 } else { 3756 fromaddr = cbpage->pm_cbaddr + poff; 3757 toaddr = cbpage->pm_kaddr + poff; 3758 DTRACE_PROBE2(rootnex__sync__cpu, 3759 dev_info_t *, dma->dp_dip, size_t, psize); 3760 } 3761 3762 bcopy(fromaddr, toaddr, psize); 3763 } 3764 3765 /* 3766 * decrement size until we're done, update our offset into the 3767 * buffer, and get the next page size. 3768 */ 3769 size -= psize; 3770 offset += psize; 3771 psize = MIN(MMU_PAGESIZE, size); 3772 3773 /* page offset is zero for the rest of this loop */ 3774 poff = 0; 3775 } 3776 3777 return (DDI_SUCCESS); 3778 } 3779 3780 3781 /* 3782 * rootnex_valid_sync_parms() 3783 * checks the parameters passed to sync to verify they are correct. 3784 */ 3785 static int 3786 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 3787 off_t offset, size_t size, uint_t cache_flags) 3788 { 3789 off_t woffset; 3790 3791 3792 /* 3793 * the first part of the test to make sure the offset passed in is 3794 * within the window. 3795 */ 3796 if (offset < win->wd_offset) { 3797 return (DDI_FAILURE); 3798 } 3799 3800 /* 3801 * second and last part of the test to make sure the offset and length 3802 * passed in is within the window. 3803 */ 3804 woffset = offset - win->wd_offset; 3805 if ((woffset + size) > win->wd_size) { 3806 return (DDI_FAILURE); 3807 } 3808 3809 /* 3810 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should 3811 * be set too. 3812 */ 3813 if ((cache_flags == DDI_DMA_SYNC_FORDEV) && 3814 (hp->dmai_rflags & DDI_DMA_WRITE)) { 3815 return (DDI_SUCCESS); 3816 } 3817 3818 /* 3819 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL 3820 * should be set. Also DDI_DMA_READ should be set in the flags. 3821 */ 3822 if (((cache_flags == DDI_DMA_SYNC_FORCPU) || 3823 (cache_flags == DDI_DMA_SYNC_FORKERNEL)) && 3824 (hp->dmai_rflags & DDI_DMA_READ)) { 3825 return (DDI_SUCCESS); 3826 } 3827 3828 return (DDI_FAILURE); 3829 } 3830 3831 3832 /* 3833 * rootnex_dma_win() 3834 * called from ddi_dma_getwin() 3835 */ 3836 /*ARGSUSED*/ 3837 static int 3838 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 3839 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, 3840 uint_t *ccountp) 3841 { 3842 rootnex_window_t *window; 3843 rootnex_trim_t *trim; 3844 ddi_dma_impl_t *hp; 3845 rootnex_dma_t *dma; 3846 #if !defined(__amd64) 3847 rootnex_sglinfo_t *sinfo; 3848 rootnex_pgmap_t *pmap; 3849 uint_t pidx; 3850 uint_t pcnt; 3851 off_t poff; 3852 int i; 3853 #endif 3854 3855 3856 hp = (ddi_dma_impl_t *)handle; 3857 dma = (rootnex_dma_t *)hp->dmai_private; 3858 #if !defined(__amd64) 3859 sinfo = &dma->dp_sglinfo; 3860 #endif 3861 3862 /* If we try and get a window which doesn't exist, return failure */ 3863 if (win >= hp->dmai_nwin) { 3864 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 3865 return (DDI_FAILURE); 3866 } 3867 3868 /* 3869 * if we don't have any windows, and they're asking for the first 3870 * window, setup the cookie pointer to the first cookie in the bind. 3871 * setup our return values, then increment the cookie since we return 3872 * the first cookie on the stack. 3873 */ 3874 if (dma->dp_window == NULL) { 3875 if (win != 0) { 3876 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 3877 return (DDI_FAILURE); 3878 } 3879 hp->dmai_cookie = dma->dp_cookies; 3880 *offp = 0; 3881 *lenp = dma->dp_dma.dmao_size; 3882 *ccountp = dma->dp_sglinfo.si_sgl_size; 3883 *cookiep = hp->dmai_cookie[0]; 3884 hp->dmai_cookie++; 3885 return (DDI_SUCCESS); 3886 } 3887 3888 /* sync the old window before moving on to the new one */ 3889 window = &dma->dp_window[dma->dp_current_win]; 3890 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) { 3891 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 3892 DDI_DMA_SYNC_FORCPU); 3893 } 3894 3895 #if !defined(__amd64) 3896 /* 3897 * before we move to the next window, if we need to re-map, unmap all 3898 * the pages in this window. 3899 */ 3900 if (dma->dp_cb_remaping) { 3901 /* 3902 * If we switch to this window again, we'll need to map in 3903 * on the fly next time. 3904 */ 3905 window->wd_remap_copybuf = B_TRUE; 3906 3907 /* 3908 * calculate the page index into the buffer where this window 3909 * starts, and the number of pages this window takes up. 3910 */ 3911 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 3912 MMU_PAGESHIFT; 3913 poff = (sinfo->si_buf_offset + window->wd_offset) & 3914 MMU_PAGEOFFSET; 3915 pcnt = mmu_btopr(window->wd_size + poff); 3916 ASSERT((pidx + pcnt) <= sinfo->si_max_pages); 3917 3918 /* unmap pages which are currently mapped in this window */ 3919 for (i = 0; i < pcnt; i++) { 3920 if (dma->dp_pgmap[pidx].pm_mapped) { 3921 hat_unload(kas.a_hat, 3922 dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE, 3923 HAT_UNLOAD); 3924 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3925 } 3926 pidx++; 3927 } 3928 } 3929 #endif 3930 3931 /* 3932 * Move to the new window. 3933 * NOTE: current_win must be set for sync to work right 3934 */ 3935 dma->dp_current_win = win; 3936 window = &dma->dp_window[win]; 3937 3938 /* if needed, adjust the first and/or last cookies for trim */ 3939 trim = &window->wd_trim; 3940 if (trim->tr_trim_first) { 3941 window->wd_first_cookie->_dmu._dmac_ll = trim->tr_first_paddr; 3942 window->wd_first_cookie->dmac_size = trim->tr_first_size; 3943 #if !defined(__amd64) 3944 window->wd_first_cookie->dmac_type = 3945 (window->wd_first_cookie->dmac_type & 3946 ROOTNEX_USES_COPYBUF) + window->wd_offset; 3947 #endif 3948 if (trim->tr_first_copybuf_win) { 3949 dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr = 3950 trim->tr_first_cbaddr; 3951 #if !defined(__amd64) 3952 dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr = 3953 trim->tr_first_kaddr; 3954 #endif 3955 } 3956 } 3957 if (trim->tr_trim_last) { 3958 trim->tr_last_cookie->_dmu._dmac_ll = trim->tr_last_paddr; 3959 trim->tr_last_cookie->dmac_size = trim->tr_last_size; 3960 if (trim->tr_last_copybuf_win) { 3961 dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr = 3962 trim->tr_last_cbaddr; 3963 #if !defined(__amd64) 3964 dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr = 3965 trim->tr_last_kaddr; 3966 #endif 3967 } 3968 } 3969 3970 /* 3971 * setup the cookie pointer to the first cookie in the window. setup 3972 * our return values, then increment the cookie since we return the 3973 * first cookie on the stack. 3974 */ 3975 hp->dmai_cookie = window->wd_first_cookie; 3976 *offp = window->wd_offset; 3977 *lenp = window->wd_size; 3978 *ccountp = window->wd_cookie_cnt; 3979 *cookiep = hp->dmai_cookie[0]; 3980 hp->dmai_cookie++; 3981 3982 #if !defined(__amd64) 3983 /* re-map copybuf if required for this window */ 3984 if (dma->dp_cb_remaping) { 3985 /* 3986 * calculate the page index into the buffer where this 3987 * window starts. 3988 */ 3989 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 3990 MMU_PAGESHIFT; 3991 ASSERT(pidx < sinfo->si_max_pages); 3992 3993 /* 3994 * the first page can get unmapped if it's shared with the 3995 * previous window. Even if the rest of this window is already 3996 * mapped in, we need to still check this one. 3997 */ 3998 pmap = &dma->dp_pgmap[pidx]; 3999 if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) { 4000 if (pmap->pm_pp != NULL) { 4001 pmap->pm_mapped = B_TRUE; 4002 i86_pp_map(pmap->pm_pp, pmap->pm_kaddr); 4003 } else if (pmap->pm_vaddr != NULL) { 4004 pmap->pm_mapped = B_TRUE; 4005 i86_va_map(pmap->pm_vaddr, sinfo->si_asp, 4006 pmap->pm_kaddr); 4007 } 4008 } 4009 pidx++; 4010 4011 /* map in the rest of the pages if required */ 4012 if (window->wd_remap_copybuf) { 4013 window->wd_remap_copybuf = B_FALSE; 4014 4015 /* figure out many pages this window takes up */ 4016 poff = (sinfo->si_buf_offset + window->wd_offset) & 4017 MMU_PAGEOFFSET; 4018 pcnt = mmu_btopr(window->wd_size + poff); 4019 ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages); 4020 4021 /* map pages which require it */ 4022 for (i = 1; i < pcnt; i++) { 4023 pmap = &dma->dp_pgmap[pidx]; 4024 if (pmap->pm_uses_copybuf) { 4025 ASSERT(pmap->pm_mapped == B_FALSE); 4026 if (pmap->pm_pp != NULL) { 4027 pmap->pm_mapped = B_TRUE; 4028 i86_pp_map(pmap->pm_pp, 4029 pmap->pm_kaddr); 4030 } else if (pmap->pm_vaddr != NULL) { 4031 pmap->pm_mapped = B_TRUE; 4032 i86_va_map(pmap->pm_vaddr, 4033 sinfo->si_asp, 4034 pmap->pm_kaddr); 4035 } 4036 } 4037 pidx++; 4038 } 4039 } 4040 } 4041 #endif 4042 4043 /* if the new window uses the copy buffer, sync it for the device */ 4044 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) { 4045 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 4046 DDI_DMA_SYNC_FORDEV); 4047 } 4048 4049 return (DDI_SUCCESS); 4050 } 4051 4052 4053 4054 /* 4055 * ************************ 4056 * obsoleted dma routines 4057 * ************************ 4058 */ 4059 4060 /* 4061 * rootnex_dma_map() 4062 * called from ddi_dma_setup() 4063 */ 4064 /* ARGSUSED */ 4065 static int 4066 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip, struct ddi_dma_req *dmareq, 4067 ddi_dma_handle_t *handlep) 4068 { 4069 #if defined(__amd64) 4070 /* 4071 * this interface is not supported in 64-bit x86 kernel. See comment in 4072 * rootnex_dma_mctl() 4073 */ 4074 return (DDI_DMA_NORESOURCES); 4075 4076 #else /* 32-bit x86 kernel */ 4077 ddi_dma_handle_t *lhandlep; 4078 ddi_dma_handle_t lhandle; 4079 ddi_dma_cookie_t cookie; 4080 ddi_dma_attr_t dma_attr; 4081 ddi_dma_lim_t *dma_lim; 4082 uint_t ccnt; 4083 int e; 4084 4085 4086 /* 4087 * if the driver is just testing to see if it's possible to do the bind, 4088 * we'll use local state. Otherwise, use the handle pointer passed in. 4089 */ 4090 if (handlep == NULL) { 4091 lhandlep = &lhandle; 4092 } else { 4093 lhandlep = handlep; 4094 } 4095 4096 /* convert the limit structure to a dma_attr one */ 4097 dma_lim = dmareq->dmar_limits; 4098 dma_attr.dma_attr_version = DMA_ATTR_V0; 4099 dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo; 4100 dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi; 4101 dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer; 4102 dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max; 4103 dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max; 4104 dma_attr.dma_attr_granular = dma_lim->dlim_granular; 4105 dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen; 4106 dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize; 4107 dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes; 4108 dma_attr.dma_attr_align = MMU_PAGESIZE; 4109 dma_attr.dma_attr_flags = 0; 4110 4111 e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp, 4112 dmareq->dmar_arg, lhandlep); 4113 if (e != DDI_SUCCESS) { 4114 return (e); 4115 } 4116 4117 e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt); 4118 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) { 4119 (void) rootnex_dma_freehdl(dip, rdip, *lhandlep); 4120 return (e); 4121 } 4122 4123 /* 4124 * if the driver is just testing to see if it's possible to do the bind, 4125 * free up the local state and return the result. 4126 */ 4127 if (handlep == NULL) { 4128 (void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep); 4129 (void) rootnex_dma_freehdl(dip, rdip, *lhandlep); 4130 if (e == DDI_DMA_MAPPED) { 4131 return (DDI_DMA_MAPOK); 4132 } else { 4133 return (DDI_DMA_NOMAPPING); 4134 } 4135 } 4136 4137 return (e); 4138 #endif /* defined(__amd64) */ 4139 } 4140 4141 4142 /* 4143 * rootnex_dma_mctl() 4144 * 4145 */ 4146 /* ARGSUSED */ 4147 static int 4148 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4149 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp, 4150 uint_t cache_flags) 4151 { 4152 #if defined(__amd64) 4153 /* 4154 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a 4155 * common implementation in genunix, so they no longer have x86 4156 * specific functionality which called into dma_ctl. 4157 * 4158 * The rest of the obsoleted interfaces were never supported in the 4159 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface 4160 * was not ported to the x86 64-bit kernel do to serious x86 rootnex 4161 * implementation issues. 4162 * 4163 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and 4164 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we 4165 * reflect that now too... 4166 * 4167 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are 4168 * not going to put this functionality into the 64-bit x86 kernel now. 4169 * It wasn't ported to the 64-bit kernel for s10, no reason to change 4170 * that in a future release. 4171 */ 4172 return (DDI_FAILURE); 4173 4174 #else /* 32-bit x86 kernel */ 4175 ddi_dma_cookie_t lcookie; 4176 ddi_dma_cookie_t *cookie; 4177 rootnex_window_t *window; 4178 ddi_dma_impl_t *hp; 4179 rootnex_dma_t *dma; 4180 uint_t nwin; 4181 uint_t ccnt; 4182 size_t len; 4183 off_t off; 4184 int e; 4185 4186 4187 /* 4188 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little 4189 * hacky since were optimizing for the current interfaces and so we can 4190 * cleanup the mess in genunix. Hopefully we will remove the this 4191 * obsoleted routines someday soon. 4192 */ 4193 4194 switch (request) { 4195 4196 case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */ 4197 hp = (ddi_dma_impl_t *)handle; 4198 cookie = (ddi_dma_cookie_t *)objpp; 4199 4200 /* 4201 * convert segment to cookie. We don't distinguish between the 4202 * two :-) 4203 */ 4204 *cookie = *hp->dmai_cookie; 4205 *lenp = cookie->dmac_size; 4206 *offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF; 4207 return (DDI_SUCCESS); 4208 4209 case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */ 4210 hp = (ddi_dma_impl_t *)handle; 4211 dma = (rootnex_dma_t *)hp->dmai_private; 4212 4213 if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) { 4214 return (DDI_DMA_STALE); 4215 } 4216 4217 /* handle the case where we don't have any windows */ 4218 if (dma->dp_window == NULL) { 4219 /* 4220 * if seg == NULL, and we don't have any windows, 4221 * return the first cookie in the sgl. 4222 */ 4223 if (*lenp == NULL) { 4224 dma->dp_current_cookie = 0; 4225 hp->dmai_cookie = dma->dp_cookies; 4226 *objpp = (caddr_t)handle; 4227 return (DDI_SUCCESS); 4228 4229 /* if we have more cookies, go to the next cookie */ 4230 } else { 4231 if ((dma->dp_current_cookie + 1) >= 4232 dma->dp_sglinfo.si_sgl_size) { 4233 return (DDI_DMA_DONE); 4234 } 4235 dma->dp_current_cookie++; 4236 hp->dmai_cookie++; 4237 return (DDI_SUCCESS); 4238 } 4239 } 4240 4241 /* We have one or more windows */ 4242 window = &dma->dp_window[dma->dp_current_win]; 4243 4244 /* 4245 * if seg == NULL, return the first cookie in the current 4246 * window 4247 */ 4248 if (*lenp == NULL) { 4249 dma->dp_current_cookie = 0; 4250 hp->dmai_cookie = window->wd_first_cookie; 4251 4252 /* 4253 * go to the next cookie in the window then see if we done with 4254 * this window. 4255 */ 4256 } else { 4257 if ((dma->dp_current_cookie + 1) >= 4258 window->wd_cookie_cnt) { 4259 return (DDI_DMA_DONE); 4260 } 4261 dma->dp_current_cookie++; 4262 hp->dmai_cookie++; 4263 } 4264 *objpp = (caddr_t)handle; 4265 return (DDI_SUCCESS); 4266 4267 case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */ 4268 hp = (ddi_dma_impl_t *)handle; 4269 dma = (rootnex_dma_t *)hp->dmai_private; 4270 4271 if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) { 4272 return (DDI_DMA_STALE); 4273 } 4274 4275 /* if win == NULL, return the first window in the bind */ 4276 if (*offp == NULL) { 4277 nwin = 0; 4278 4279 /* 4280 * else, go to the next window then see if we're done with all 4281 * the windows. 4282 */ 4283 } else { 4284 nwin = dma->dp_current_win + 1; 4285 if (nwin >= hp->dmai_nwin) { 4286 return (DDI_DMA_DONE); 4287 } 4288 } 4289 4290 /* switch to the next window */ 4291 e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len, 4292 &lcookie, &ccnt); 4293 ASSERT(e == DDI_SUCCESS); 4294 if (e != DDI_SUCCESS) { 4295 return (DDI_DMA_STALE); 4296 } 4297 4298 /* reset the cookie back to the first cookie in the window */ 4299 if (dma->dp_window != NULL) { 4300 window = &dma->dp_window[dma->dp_current_win]; 4301 hp->dmai_cookie = window->wd_first_cookie; 4302 } else { 4303 hp->dmai_cookie = dma->dp_cookies; 4304 } 4305 4306 *objpp = (caddr_t)handle; 4307 return (DDI_SUCCESS); 4308 4309 case DDI_DMA_FREE: /* ddi_dma_free() */ 4310 (void) rootnex_dma_unbindhdl(dip, rdip, handle); 4311 (void) rootnex_dma_freehdl(dip, rdip, handle); 4312 if (rootnex_state->r_dvma_call_list_id) { 4313 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 4314 } 4315 return (DDI_SUCCESS); 4316 4317 case DDI_DMA_IOPB_ALLOC: /* get contiguous DMA-able memory */ 4318 case DDI_DMA_SMEM_ALLOC: /* get contiguous DMA-able memory */ 4319 /* should never get here, handled in genunix */ 4320 ASSERT(0); 4321 return (DDI_FAILURE); 4322 4323 case DDI_DMA_KVADDR: 4324 case DDI_DMA_GETERR: 4325 case DDI_DMA_COFF: 4326 return (DDI_FAILURE); 4327 } 4328 4329 return (DDI_FAILURE); 4330 #endif /* defined(__amd64) */ 4331 } 4332 4333 4334 /* 4335 * ********* 4336 * FMA Code 4337 * ********* 4338 */ 4339 4340 /* 4341 * rootnex_fm_init() 4342 * FMA init busop 4343 */ 4344 /* ARGSUSED */ 4345 static int 4346 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 4347 ddi_iblock_cookie_t *ibc) 4348 { 4349 *ibc = rootnex_state->r_err_ibc; 4350 4351 return (ddi_system_fmcap); 4352 } 4353 4354 /* 4355 * rootnex_dma_check() 4356 * Function called after a dma fault occurred to find out whether the 4357 * fault address is associated with a driver that is able to handle faults 4358 * and recover from faults. 4359 */ 4360 /* ARGSUSED */ 4361 static int 4362 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr, 4363 const void *not_used) 4364 { 4365 rootnex_window_t *window; 4366 uint64_t start_addr; 4367 uint64_t fault_addr; 4368 ddi_dma_impl_t *hp; 4369 rootnex_dma_t *dma; 4370 uint64_t end_addr; 4371 size_t csize; 4372 int i; 4373 int j; 4374 4375 4376 /* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */ 4377 hp = (ddi_dma_impl_t *)handle; 4378 ASSERT(hp); 4379 4380 dma = (rootnex_dma_t *)hp->dmai_private; 4381 4382 /* Get the address that we need to search for */ 4383 fault_addr = *(uint64_t *)addr; 4384 4385 /* 4386 * if we don't have any windows, we can just walk through all the 4387 * cookies. 4388 */ 4389 if (dma->dp_window == NULL) { 4390 /* for each cookie */ 4391 for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) { 4392 /* 4393 * if the faulted address is within the physical address 4394 * range of the cookie, return DDI_FM_NONFATAL. 4395 */ 4396 if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) && 4397 (fault_addr <= (dma->dp_cookies[i].dmac_laddress + 4398 dma->dp_cookies[i].dmac_size))) { 4399 return (DDI_FM_NONFATAL); 4400 } 4401 } 4402 4403 /* fault_addr not within this DMA handle */ 4404 return (DDI_FM_UNKNOWN); 4405 } 4406 4407 /* we have mutiple windows, walk through each window */ 4408 for (i = 0; i < hp->dmai_nwin; i++) { 4409 window = &dma->dp_window[i]; 4410 4411 /* Go through all the cookies in the window */ 4412 for (j = 0; j < window->wd_cookie_cnt; j++) { 4413 4414 start_addr = window->wd_first_cookie[j].dmac_laddress; 4415 csize = window->wd_first_cookie[j].dmac_size; 4416 4417 /* 4418 * if we are trimming the first cookie in the window, 4419 * and this is the first cookie, adjust the start 4420 * address and size of the cookie to account for the 4421 * trim. 4422 */ 4423 if (window->wd_trim.tr_trim_first && (j == 0)) { 4424 start_addr = window->wd_trim.tr_first_paddr; 4425 csize = window->wd_trim.tr_first_size; 4426 } 4427 4428 /* 4429 * if we are trimming the last cookie in the window, 4430 * and this is the last cookie, adjust the start 4431 * address and size of the cookie to account for the 4432 * trim. 4433 */ 4434 if (window->wd_trim.tr_trim_last && 4435 (j == (window->wd_cookie_cnt - 1))) { 4436 start_addr = window->wd_trim.tr_last_paddr; 4437 csize = window->wd_trim.tr_last_size; 4438 } 4439 4440 end_addr = start_addr + csize; 4441 4442 /* 4443 * if the faulted address is within the physical address 4444 * range of the cookie, return DDI_FM_NONFATAL. 4445 */ 4446 if ((fault_addr >= start_addr) && 4447 (fault_addr <= end_addr)) { 4448 return (DDI_FM_NONFATAL); 4449 } 4450 } 4451 } 4452 4453 /* fault_addr not within this DMA handle */ 4454 return (DDI_FM_UNKNOWN); 4455 } 4456